WorldWideScience

Sample records for vibrational raman lidar

  1. Raman lidar observations of particle hygroscopicity during COPS

    Science.gov (United States)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and

  2. Regularized algorithm for Raman lidar data processing.

    Science.gov (United States)

    Shcherbakov, Valery

    2007-08-01

    A regularized algorithm that has the potential to improve the quality of Raman lidar data processing is presented. Compared to the conventional scheme, the proposed algorithm has the advantage, which results from the fact that it is based on a well-posed procedure. That is, the profile of the aerosol backscatter coefficient is computed directly, using the explicit relationships, without numerical differentiation. Thereafter, the profile of the lidar ratio is retrieved as a regularized solution of a first-kind Volterra integral equation. Once these two steps have been completed, the profile of the aerosol extinction coefficient is computed by a straightforward multiplication. The numerical simulations demonstrated that the proposed algorithm provides good accuracy and resolution of aerosol profile retrievals. The error analysis showed that the retrieved profiles are continuous functions of the measurement errors and of the a priori information uncertainties.

  3. Raman lidar characterization of the meteorological, electromagnetic, and electro-optical environment

    Science.gov (United States)

    Philbrick, C. Russell

    2005-08-01

    Raman lidar has provided a remarkable tool for characterizing the various properties of the lower atmosphere. The research of the Penn State University Lidar Laboratory is focused on development of Raman lidar techniques and research using five Raman lidar instruments prepared since the mid-1970's. The LAPS instrument was demonstrated in 1996 as the first prototype for an operational shipboard lidar sensor. It is the most advanced lidar instrument developed to date for profiling properties of the lower atmosphere. The LAPS sensor measures profiles with eight data channels to determine several atmospheric properties simultaneously. The single most important property for understanding the meteorological state in the lower atmosphere is the water vapor profile. The specific humidity and temperature profiles are measured directly using the vibrational and rotational Raman scattered signals. The electromagnetic parameter of most interest is the gradient in the refractive index profile, because of the influence it has on RF-propagation of radar and radio communications signals. The electro-optical parameter of most interest is the optical extinction profile at various wavelengths, because optical propagation affects aircraft operations, visual aesthetics, and optical sensor performance. Profiles of water vapor, temperature and multiwavelength optical extinction are measured simultaneously to describe the meteorological, electromagnetic, electro-optical and air quality environmental conditions. Measurements are key in forecasting atmospheric conditions and are of major importance because of their influence on the performance of various systems. Current techniques and capabilities are described in this paper, and examples are used to indicate how well the Raman lidar performs in characterizing the atmosphere.

  4. Raman Lidar MERGE Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, Rob [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Goldsmith, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-15

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidars (RLs) are semi-autonomous, land-based, laser remote sensing systems that provide height- and time-resolved measurements of water vapor mixing ratio, temperature, aerosol backscatter, extinction, and linear depolarization ratio from about 200 m to greater than 10 km AGL. These systems transmit at a wavelength of 355 nm with 300 mJ, ~5 ns pulses, and a pulse repetition frequency of 30 Hz. The receiver incorporates nine detection channels, including two water vapor channels at 408 nm, two nitrogen channels at 387 nm, three elastic channels, and two rotational Raman channels for temperature profiling at 354 and 353 nm. Figure 1 illustrates the layout of the ARM RL receiver system. Backscattered light from the atmosphere enters the telescope and is directed into the receiver system (i.e., aft optics). This signal is then split between a narrow-field-of-view radiometer (NFOV) path (blue) and a wide-field-of-view zenith radiometer (WFOV) path (red). The WFOV (2 mrad) path contains three channels (water vapor, nitrogen, and unpolarized elastic), and the NFOV (0.3 mrad) path contains six channels (water vapor, nitrogen, parallel and perpendicular elastic, and two rotational Raman). All nine detection channels use Electron Tubes 9954B photomultiplier tubes (PMTs). The signals from each of the nine PMTs are acquired using transient data recorders from Licel GbR (Berlin, Germany). The Licel data recorders provide simultaneous measurements of both analog photomultiplier current and photon counts at height resolution of 7.5 m and a time resolution of 10 s. The analog signal provides good linearity in the strong signal regime, but poor sensitivity at low signal levels. Conversely, the photo counting signal provides good sensitivity in the weak signal regime, but is strongly nonlinear at higher signal levels. The advantage in recording both signals is that they can be

  5. Daytime Raman lidar for water vapor and ozone concentration measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Duk Hyeon; Cha, Hyung Ki; Lee, Jong Min [Laboratory for QuantumOptics, Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of); Veselovskii, I. [Physcis Instrumentation Center of General Physcis Institute, Moscow (Russian Federation)

    1996-11-15

    A Raman lidar system based on a quadrupled Nd : Yagi laser monitors the Raman signals from N{sub 2}, O{sub 2} and H{sub 2}O molecules. To suppress the elastic backscatter, a specially designed liquid absorption edge filter is used. The water vapor concentration is calculated from the radio of water and nitrogen Raman signals. Ozone concentration is evaluated from nitrogen and oxygen Raman returns by applying Dial technique. The obtained ozone profiles can be used for water vapor data correction.

  6. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  7. Vibration-free Raman Doppler velocimeter

    Science.gov (United States)

    Exton, R. J.

    1986-11-01

    A method and apparatus unaffected by vibrational environments for obtaining measurements using Raman Doppler Velocimetry is described. Two laser beams, a pump beam, and a probe beam, are focused by a lens to a point in a flow. A lens collimates the two beams. A beam splitter dumps the beam and the other beam is reflected by a corner cube back to the lens. The other lens then focuses the beam back to the point. The reflected beam and the backward and forward scattering at the point are detected by a detector and processed by a boxcar averager. The lens and corner cube combination, called a retrometer, ensure that the measurements are unaffected by vibrations.

  8. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  9. Characterization of particle hygroscopicity by Raman lidar: Selected case studies from the convective and orographically-induced precipitation study

    Science.gov (United States)

    Stelitano, Dario; Di Girolamo, Paolo; Summa, Donato

    2013-05-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapor and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64° N, Long: 8.06° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behavior. The observed behavior, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic.

  10. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    been reported. Subsequently, the vibrational absorption (VA) and vibrational circular dichroism (VCD) and the Raman and Raman Optical Activity (ROA) spectra have been reported. In this work an analysis of the aqueous solution VA, VCD, Raman, and ROA spectra for various isotopomers of LALA are reported...... with the experimentally measured spectra. With the DFT, explicit water molecules, and a continuum solvent model we are better able to reproduce the vibrational absorption and Raman spectra than previously reported. The AAT have been implemented at the DFT level, although not within the continuum treatment. The VCD sign...

  11. Sensitivity of Particle Extinction and Backscattering Calculation from Mie-Raman Lidar Measurements to the Choice of Ångström Exponent

    Directory of Open Access Journals (Sweden)

    Suvorina Anastasia

    2016-01-01

    Full Text Available Vibrational Raman scattering from nitrogen is commonly used in Mie-Raman lidars for evaluation of particle backscattering (β and extinction (α coefficients. However, vibrational scattering is characterized by significant frequency shift of the Raman component, so for the calculation of α and β the assumption about the extinction Ångström exponent is needed. Simulation results presented in this study demonstrate that ambiguity in the choice of this exponent can be the significant source of uncertainty in the calculation of backscattering coefficients when optically thick aerosol layers are considered. Examples of lidar measurements and optical data calculated for different values of Ångström exponent are given.

  12. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  13. Raman Lidar Calibration for the DMSP SSM/T-2 Microwave Water Vapor Sensor

    National Research Council Canada - National Science Library

    Wessel, J

    2000-01-01

    Campaigns were conducted at the Pacific Missile Range Facility, Barking Sands, Kauai, investigating Raman lidar as a method to improve calibration of the DMSP SSM/T-2 microwave water vapor profiling instrument...

  14. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  15. Barbados Cloud Observatory: Raman Lidars for air temperature, humidity, aerosols and cloud characterization

    Science.gov (United States)

    Serikov, Ilya; Linné, Holger; Brügmann, Björn; Kiliani, Johannes; Stevens, Bjorn

    2017-04-01

    Processes governing the development and evolution of shallow cumulus clouds in trades remain a large uncertainty in climate studies. To enrich the experimental database, Max Planck Institute for Meteorology in cooperation with Caribbean Institute for Meteorology and Hydrology have established and maintain since April 2010 the Barbados Cloud Observatory (13.1627 N, 59.4289 W) equipped among other instrumentation with multi-channel Raman lidar to profile routinely the cloud stratification, aerosol properties, air temperature and humidity. More than six years of operation with nearly continuous data flow resulted in quite extensive and statistically representative dataset. In this presentation we describe and evaluate three generations of Raman lidars that have been or are begin deployed at the observatory. Focusing primarily on our first lidar initially deployed on the site, an EARLI system (the MPI-M Raman lidar originally designed for EARLINET, the European Aerosol Research LIdar NETwork) that gave us most of the lidar data collected, we compare it to the presently deployed instrument, the LICHT system (LIdar for Clouds, Humidity and Temperature) designed to extend the observation with daytime measurements of water vapor. Third-generation lidar, a high power Raman lidar component of the upcoming CORAL system (Cloud Observation with RAdar and Lidar) developed for high resolution water vapor measurement is being prepared for deployment and will be described conceptually. Giving an overview on the technique implemented, we touch briefly the lidar calibration algorithms, some aspects of quality assurance, and present the data available with a particular focus on the ability of the instruments to measure atmospheric humidity and extinction.

  16. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  17. RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.

    Energy Technology Data Exchange (ETDEWEB)

    FERRARE,R.A.

    2000-01-09

    We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  18. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  19. Development of the Raman lidar system for remote hydrogen gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, In Young; Baik, Sung Hoon; Park, Seung Kyu; Park, Nak Gyu; Choi, Young Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Detection of hydrogen (H{sub 2}) gas leakage is very important for safety of the nuclear power plant because H{sub 2} gas is very flammable and explosive. H{sub 2} gas is generated by oxidizing the nuclear fuel cladding during the critical accident and generated H{sub 2} gas leads to serious secondary damages in the containment building of nuclear power plant. Thus, various H{sub 2} gas detection techniques are used in the nuclear power plant such as catalytic combustion sensors, semiconducting oxide sensors, thermal conductivity sensors and electrochemical sensor. A Raman lidar (Light Detection And Ranging) system for remote detection of the H{sub 2} gas can cover the area in the containment building of a nuclear power plant. H{sub 2} gas has a very strong Raman Effect, and H{sub 2} Raman cells have been widely used for laser wavelength conversion. In this study, Raman lidar system was developed for H{sub 2} gas detection used in the containment building of nuclear power plant. In this study, remote hydrogen gas detection devices and measuring algorithm are developed by using the Raman lidar method. Through the experiment, we proved that our developed Raman lidar system was possible to measure the N{sub 2} and H{sub 2} gas scattering signal remotely.

  20. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    Science.gov (United States)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  1. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance

    Directory of Open Access Journals (Sweden)

    U. von Zahn

    Full Text Available We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69°N and 16°E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30° off zenith. Their fields-of-view have 180 µrad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm and one single Fabry-Perot interferometer (for 1064 nm. A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2

  2. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance

    Directory of Open Access Journals (Sweden)

    U. von Zahn

    2000-07-01

    Full Text Available We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69°N and 16°E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30° off zenith. Their fields-of-view have 180 µrad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm and one single Fabry-Perot interferometer (for 1064 nm. A number of separate detector channels also allow registration of photons which are produced by rotational-vibrational and rotational Raman scatter on N2 and N2+O2 molecules

  3. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  4. Remote measurement of atmospheric temperature profiles in clouds with rotational Raman lidar; Fernmessung atmosphaerischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Behrendt, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    2000-07-01

    The development of a lidar receiver for remote measurements of atmospheric temperature profiles with the rotational Raman method is described. By a new receiver concept, this instrument allowed for the first time remote temperature measurements without any perturbation by the presence of clouds up to a backscatter ratio of 45. In addition, high efficiency of the spectral separation of atmospheric backscatter signals leads to improved measurement resolution: the minimum integration time needed for a statistical uncertainty < {+-}1 K at, e.g., 10 km height and 960 m height resolution is only 5 minutes. The measurement range extends to over 45 km altitude. Results of field campaigns obtained with the instrument are presented and discussed. In winter 1997/98, the instrument was transferred with the GKSS Raman lidar to Esrange (67.9 N, 21.1 E) in northern Sweden, where pioneering remote measurements of local temperatures in orographically induced polar stratospheric clouds could be carried out. (orig.)

  5. Remote sensing of seawater and drifting ice in Svalbard fjords by compact Raman LIDAR

    CERN Document Server

    Bunkin, Alexey F; Lednev, Vasily N; Lushnikov, Dmitry L; Marchenko, Aleksey V; Morozov, Eugene G; Pershin, Sergey M; Yulmetov, Renat N

    2013-01-01

    A compact Raman LIDAR system for remote sensing of sea and drifting ice was developed at the Wave Research Center at the Prokhorov General Physics Institute of the RAS. The developed system is based on a diode pumped solid state YVO4:Nd laser combined with compact spectrograph equipped with gated detector. The system exhibits high sensitivity and can be used for mapping or depth profiling of different parameters within many oceanographic problems. Light weight (~20 kg) and low power consumption (300 W) make possible to install the device on any vehicle including unmanned aircraft or submarine system. The Raman LIDAR presented was used for Svalbard fjords study and analysis of different influence of the open sea and glaciers on the water properties. Temperature, phytoplankton, and dissolved organic matter distributions in the seawater were studied in the Ice Fjord, Van Mijen Fjord and Rinders Fjord. Drifting ice and seawater in the Rinders Fjord were characterized by the Raman spectroscopy and fluorescence. It...

  6. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    OpenAIRE

    Noh Young M.; Mueller Detlef; Shin Sungkyun

    2016-01-01

    In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section a...

  7. Automated retrieval of cloud and aerosol properties from the ARM Raman lidar, part 1: feature detection

    Energy Technology Data Exchange (ETDEWEB)

    Thorsen, Tyler J.; Fu, Qiang; Newsom, Rob K.; Turner, David D.; Comstock, Jennifer M.

    2015-11-01

    A Feature detection and EXtinction retrieval (FEX) algorithm for the Atmospheric Radiation Measurement (ARM) program’s Raman lidar (RL) has been developed. Presented here is part 1 of the FEX algorithm: the detection of features including both clouds and aerosols. The approach of FEX is to use multiple quantities— scattering ratios derived using elastic and nitro-gen channel signals from two fields of view, the scattering ratio derived using only the elastic channel, and the total volume depolarization ratio— to identify features using range-dependent detection thresholds. FEX is designed to be context-sensitive with thresholds determined for each profile by calculating the expected clear-sky signal and noise. The use of multiple quantities pro-vides complementary depictions of cloud and aerosol locations and allows for consistency checks to improve the accuracy of the feature mask. The depolarization ratio is shown to be particularly effective at detecting optically-thin features containing non-spherical particles such as cirrus clouds. Improve-ments over the existing ARM RL cloud mask are shown. The performance of FEX is validated against a collocated micropulse lidar and observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite over the ARM Darwin, Australia site. While we focus on a specific lidar system, the FEX framework presented here is suitable for other Raman or high spectral resolution lidars.

  8. Retrieval of aerosol extinction coefficient profiles from Raman lidar data by inversion method.

    Science.gov (United States)

    Pornsawad, Pornsarp; D'Amico, Giuseppe; Böckmann, Christine; Amodeo, Aldo; Pappalardo, Gelsomina

    2012-04-20

    We regard the problem of differentiation occurring in the retrieval of aerosol extinction coefficient profiles from inelastic Raman lidar signals by searching for a stable solution of the resulting Volterra integral equation. An algorithm based on a projection method and iterative regularization together with the L-curve method has been performed on synthetic and measured lidar signals. A strategy to choose a suitable range for the integration within the framework of the retrieval of optical properties is proposed here for the first time to our knowledge. The Monte Carlo procedure has been adapted to treat the uncertainty in the retrieval of extinction coefficients.

  9. Central Asian Dust Experiment (CADEX: Multiwavelength Polarization Raman Lidar Observations in Tajikistan

    Directory of Open Access Journals (Sweden)

    Hofer Julian

    2016-01-01

    Full Text Available For the first time lidar measurements of vertical aerosol profiles are conducted in Tajikistan/Central Asia. These measurements just started on March 17th, 2015. They are performed within the Central Asian Dust Experiment (CADEX in Dushanbe and they will last at least one year. The deployed system for these observations is an updated version of the multiwavelength polarization Raman lidar PollyXT. Vertical profiles of the backscatter coefficient, the extinction coefficient, and the particle depolarization ratio are measured by this instrument. A first and preliminary measurement example of an aerosol layer over Dushanbe is shown.

  10. INTERACT-II campaign:comparison of commercial lidars and ceilometers with advanced multi-wavelength Raman lidars

    Science.gov (United States)

    Rosoldi, Marco; Madonna, Fabio; Pappalardo, Gelsomina; Vande Hey, Joshua; Zheng, Yunhui; Vaisala Team

    2017-04-01

    Knowledge of aerosol spatio-temporal distribution in troposphere is essential for the study of climate and air quality. For this purpose, global scale high resolution continuous measurements of tropospheric aerosols are needed. Global coverage high resolution networks of ground-based low-cost and low-maintenance remote sensing instruments, such as commercial automatic lidars and ceilometers, can strongly contribute to this scientific mission. Therefore, it is very interesting for scientific community to understand to which extent these instruments are able to provide reliable aerosol measurements and fill in the geographical gaps of existing networks of the advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). The INTERACT-II (INTERcomparison of Aerosol and Cloud Tracking) campaign, carried out at CIAO (CNR-IMAA Atmospheric Observatory) in Tito Scalo, Potenza, Italy (760m a.s.l., 40.60°N, 15.72°E), aims to evaluate the performances of commercial automatic lidars and ceilometers for tropospheric aerosol profiling. The campaign has been performed in the period from July 2016 to January 2017 in the framework of ACTRIS-2 (Aerosol Clouds Trace gases Research InfraStructure) H2020 research infrastructure project. Besides the commercial ceilometers operational at CIAO (VAISALA CT25K and Luftt CHM15k), the performance of a CL51 VAISALA ceilometer, a Campbell CS135 ceilometer and a mini-Micro Pulse Lidar (MPL) have been assessed using the EARLINET multi-wavelengths Raman lidars operative at CIAO as reference. Following a similar approach used in the first INTERACT campaign (Madonna et al., AMT 2015), attenuated backscatter coefficient profiles and signals obtained from all the instruments have been compared, over a vertical resolution of 60 meters and a temporal integration ranging between 1 and 2 hours, depending on the observed atmospheric scenario. CIAO lidars signals have been processed using the EARLINET Single Calculus Chain (SCC) also with the

  11. Study and mitigation of calibration error sources in a water vapour Raman lidar

    Science.gov (United States)

    David, Leslie; Bock, Olivier; Bosser, Pierre; Thom, Christian; Pelon, Jacques

    2014-05-01

    The monitoring of water vapour throughout the atmosphere is important for many scientific applications (weather forecasting, climate research, calibration of GNSS altimetry measurements). Measuring water vapour remains a technical challenge because of its high variability in space and time. The major issues are achieving long-term stability (e.g., for climate trends monitoring) and high accuracy (e.g. for calibration/validation applications). LAREG and LOEMI at Institut National de l'Information Géographique et Forestière (IGN) have developed a mobile scanning water vapour Raman lidar in collaboration with LATMOS at CNRS. This system aims at providing high accuracy water vapour measurements throughout the troposphere for calibrating GNSS wet delay signals and thus improving vertical positioning. Current developments aim at improving the calibration method and long term stability of the system to allow the Raman lidar to be used as a reference instrument. The IGN-LATMOS lidar was deployed in the DEMEVAP (Development of Methodologies for Water Vapour Measurement) campaign that took place in 2011 at the Observatoire de Haute Provence. The goals of DEMEVAP were to inter-compare different water vapour sounding techniques (lidars, operational and research radiosondes, GPS,…) and to study various calibration methods for the Raman lidar. A significant decrease of the signals and of the calibration constants of the IGN-LATMOS Raman lidar has been noticed all along the campaign. This led us to study the likely sources of uncertainty and drifts in each part of the instrument: emission, reception and detection. We inventoried several error sources as well as instability sources. The impact of the temperature dependence of the Raman lines on the filter transmission or the fluorescence in the fibre, are examples of the error sources. We investigated each error source and each instability source (uncontrolled laser beam jitter, temporal fluctuations of the photomultiplier

  12. Ground-based network observation using Mie-Raman lidars and multi-wavelength Raman lidars and algorithm to retrieve distributions of aerosol components

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Hara, Yukari; Itsushi, Uno; Yasunaga, Kazuaki; Kudo, Rei; Kim, Sang-Woo

    2017-02-01

    We improved two-wavelength polarization Mie-scattering lidars at several main sites of the Asian dust and aerosol lidar observation network (AD-Net) by adding a nitrogen Raman scatter measurement channel at 607 nm and have conducted ground-based network observation with the improved Mie-Raman lidars (MRL) in East Asia since 2009. This MRL provides 1α+2β+1δ data at nighttime: extinction coefficient (α532), backscatter coefficient (β532), and depolarization ratio (δ532) of particles at 532 nm and an attenuated backscatter coefficient at 1064 nm (βat,1064). Furthermore, we developed a Multi-wavelength Mie-Raman lidar (MMRL) providing 2α+3β+2δ data (α at 355 and 532 nm; β at 355 and 532; βat at 1064 nm; and δ at 355 and 532 nm) and constructed MMRLs at several main sites of the AD-Net. We identified an aerosol-rich layer and height of the planetary boundary layer (PBL) using βat,1064 data, and derived aerosol optical properties (AOPs, for example, αa, βa, δa, and lidar ratio (Sa)). We demonstrated that AOPs cloud be derived with appropriate accuracy. Seasonal means of AOPs in the PBL were evaluated for each MRL observation site using three-year data from 2010 through 2012; the AOPs changed according to each season and region. For example, Sa,532 at Fukue, Japan, were 44±15 sr in winter and 49±17 in summer; those at Seoul, Korea, were 56±18 sr in winter and 62±15 sr in summer. We developed an algorithm to estimate extinction coefficients at 532 nm for black carbon, dust, sea-salt, and air-pollution aerosols consisting of a mixture of sulfate, nitrate, and organic-carbon substances using the 1α532+2β532 and 1064+1δ532 data. With this method, we assume an external mixture of aerosol components and prescribe their size distributions, refractive indexes, and particle shapes. We applied the algorithm to the observed data to demonstrate the performance of the algorithm and determined the vertical structure for each aerosol component.

  13. A N2-Raman lidar on board ULA for Arctic atmospheric studies

    Science.gov (United States)

    de Cacqueray, Victor; Chazette, Patrick; Totems, Julien; Raut, Jean-Christophe; Shang, Xiaoxia; Marpillat, Alexandre

    2016-04-01

    A key scientific question relative to atmospheric studies in the Arctic is the quantification and the vertical distribution of aerosols and their interactions with clouds in the lower troposphere. In May 2016, as part of the PARCS (Pollution in the ARCtic System) project, we will conduct an experiment in order to assess the optical properties and concentrations of aerosols near the North-Cape in Norway. This campaign will involve a new airborne N2-Raman lidar (355 nm) on board an Ultra Light Aircraft (ULA) and an original instrumental synergy between ground-based radar (95 GHz) and N2-H2O Raman lidar. The airborne experimental preparation for this campaign was divided in two weeks: the first week of experiments above the Rhône valley in June 2015 and the second in the Maurienne valley in the French Alps in December 2015. The capability of the N2-Raman lidar to perform measurements from the ULA during daytime has been checked. After the first campaign of tests, the laser emitted energy per pulse has been upgraded to improve the signal to noise ratio. Both the strategies and the main results of the two field campaigns will be presented. We will focus on the error budget for the retrieval of the aerosol optical thickness in the first atmospheric kilometer. We will present in addition the potential of such a lidar to monitor industrial pollution plumes in the planetary boundary layer. The airborne lidar measurements will be analysed taking into account the synergy with an in situ particle sizer (FIDAS) provided by the ADDAIR Company.

  14. Observations of water vapor by ground-based micro-wave radiometers and Raman lidar

    Science.gov (United States)

    Han, Yong; Snider, J. B.; Westwater, E. R.; Melfi, S. H.; Ferrare, R. A.

    1994-09-01

    In November to December 1991, a substantial number of remote sensors and in situ instruments were operated together in Coffeyville, Kansas, during the climate experiment FIRE II. Included in the suite of instruments were (1) the NOAA Environmental Technology Laboratory (ETL) three-channel microwave radiometer, (2) the NASA GSFC Raman lidar, (3) ETL radio acoustic sounding system (RASS), and (4) frequent, research-quality radiosondes. The Raman lidar operated only at night and the focus of this portion of the experiment concentrated on clear conditions. The lidar data, together with frequent radiosondes and measurements of temperature profiles (every 15 min) by RASS allowed profiles of temperature and absolute humidity to be estimated every minute. We compared 2-min measurements of brightness temperature (Tb) with calculations of Tb that were based on the Liebe and Lay ton (1987) and Liebe et al. (1993) microwave propagation models, as well as the Waters (1976) model. The comparisons showed the best agreement at 20.6 GHz with the Waters model, with the Liebe et al. (1993) model being best at 31.65 GHz. The results at 90 GHz gave about equal success with the Liebe and Layton (1987) and Liebe et al. (1993) models. Comparisons of precipitable water vapor derived independently from the two instruments also showed excellent agreement, even for averages as short as 2 min. The rms difference between Raman and radiometric determinations of precipitable water vapor was 0.03 cm which is roughly 2%. The experiments clearly demonstrate the potential of simultaneous operation of radiometers and Raman lidars for fundamental physical studies of water vapor.

  15. PollyNET: a global network of automated Raman-polarization lidars for continuous aerosol profiling

    Science.gov (United States)

    Baars, H.; Kanitz, T.; Engelmann, R.; Althausen, D.; Heese, B.; Komppula, M.; Preißler, J.; Tesche, M.; Ansmann, A.; Wandinger, U.; Lim, J.-H.; Ahn, J. Y.; Stachlewska, I. S.; Amiridis, V.; Marinou, E.; Seifert, P.; Hofer, J.; Skupin, A.; Schneider, F.; Bohlmann, S.; Foth, A.; Bley, S.; Pfüller, A.; Giannakaki, E.; Lihavainen, H.; Viisanen, Y.; Hooda, R. K.; Pereira, S.; Bortoli, D.; Wagner, F.; Mattis, I.; Janicka, L.; Markowicz, K. M.; Achtert, P.; Artaxo, P.; Pauliquevis, T.; Souza, R. A. F.; Sharma, V. P.; van Zyl, P. G.; Beukes, J. P.; Sun, J. Y.; Rohwer, E. G.; Deng, R.; Mamouri, R. E.; Zamorano, F.

    2015-10-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design and apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  16. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    Directory of Open Access Journals (Sweden)

    Madonna F.

    2016-01-01

    Full Text Available In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E, in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  17. Assessment of lidar remote sensing capability of Raman water temperature from laboratory and field experiments (Conference Presentation)

    Science.gov (United States)

    Josset, Damien B.; Hou, Weilin W.; Goode, Wesley; Matt, Silvia C.; Hu, Yongxiang

    2017-05-01

    Lidar remote sensing based on visible wavelength is one of the only way to penetrate the water surface and to obtain range resolved information of the ocean surface mixed layer at the synoptic scale. Accurate measurement of the mixed layer properties is important for ocean weather forecast and to assist the optimal deployment of military assets. Turbulence within the mixed layer also plays an important role in climate variability as it also influences ocean heat storage and algae photosynthesis (Sverdrup 1953, Behrenfeld 2010). As of today, mixed layer depth changes are represented in the models through various parameterizations constrained mostly by surface properties like wind speed, surface salinity and sea surface temperature. However, cooling by wind and rain can create strong gradients (0.5C) of temperature between the submillimeter surface layer and the subsurface layer (Soloviev and Lukas, 1997) which will manifest itself as a low temperature bias in the observations. Temperature and salinity profiles are typically used to characterize the mixed layer variability (de Boyer Montégut et al. 2004) and are both key components of turbulence characterization (Hou 2009). Recently, several research groups have been investigating ocean temperature profiling with laser remote sensing based either on Brillouin (Fry 2012, Rudolf and Walther 2014) or Raman scattering (Artlett and Pask 2015, Lednev et al. 2016). It is the continuity of promising research that started decades ago (Leonard et al. 1979, Guagliardo and Dufilho 1980, Hirschberg et al. 1984) and can benefit from the current state of laser and detector technology. One aspect of this research that has not been overlooked (Artlett and Pask 2012) but has yet to be revisited is the impact of temperature on vibrational Raman polarization (Chang and Young, 1972). The TURBulence Ocean Lidar is an experimental system, aimed at characterizing underwater turbulence by examining various Stokes parameters. Its

  18. Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data

    Science.gov (United States)

    Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina

    2015-04-01

    Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE

  19. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    CERN Document Server

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  20. An all-fiber spectroscopic Raman lidar system for atmospheric water vapor measurements

    Science.gov (United States)

    Wang, Yufeng; Zhao, Meina; Fu, Qiang; Li, Zhao; Di, Huige; Wang, Li; Hua, Dengxin

    2016-01-01

    Aimed to establish a Raman lidar system with high-reliability and high anti-interference performance, an newly all-fiber spectroscopic Raman lidar system was proposed for atmospheric water vapor measurement, in which optical fiber couplers, fiber band-width filters and fiber F-P filters constitute the all-fiber spectroscopic system. On the basis of the design of fiber F-P filters and its transmission analysis, the series connection of optical fiber coupler is designed as fiber optics splitter, which is not only to obtain fiber coupling of the input and output of lidar returns, and also to achieve the optimal energy output ratio at three fiber channels. Furthermore, fiber band-width filters are proposed to replace the dichroic mirrors, and the structure of fiber band-width filters and fiber F-P filters is to constitute the secondary cascade filter system, achieving the fine extraction of interested spectrum and high rejection rate to elastic scattering signals. Preliminary test results indicated that, the energy at the three output ports is %sim;5: 2.5: 2.5, and the two fiber band-width filters are provided with the central wavelength of 606nm and 660nm, the bandwidth of 20nm, and the out of band inhibition of >0.5%, which met the design requirements. The design and results will provide a reliable basis for the integration and experiment of the subsequent all-fiber spectroscopic system.

  1. Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity

    DEFF Research Database (Denmark)

    Barron, L.D.; Blanch, E.W.; McColl, I.H.

    2003-01-01

    On account of its sensitivity to chirality Raman optical activity (ROA), which may be measured as a small difference in vibrational Raman scattering from chiral molecules in right- and left-circularly polarized incident light, is a powerful probe of structure and behaviour of biomolecules in aque...

  2. Raman Lidar for Meteorological Observations, RALMO – Part 1: Instrument description

    Directory of Open Access Journals (Sweden)

    T. Dinoev

    2013-05-01

    Full Text Available A new Raman lidar for unattended, round-the-clock measurement of vertical water vapor profiles for operational use by the MeteoSwiss has been developed during the past years by the Swiss Federal Institute of Technology, Lausanne. The lidar uses narrow field-of-view, narrowband configuration, a UV laser, and four 30 cm in diameter mirrors, fiber-coupled to a grating polychromator. The optical design allows water vapor retrieval from the incomplete overlap region without instrument-specific range-dependent corrections. The daytime vertical range covers the mid-troposphere, whereas the nighttime range extends to the tropopause. The near range coverage is extended down to 100 m AGL by the use of an additional fiber in one of the telescopes. This paper describes the system layout and technical realization. Day- and nighttime lidar profiles compared to Vaisala RS92 and Snow White® profiles and a six-day continuous observation are presented as an illustration of the lidar measurement capability.

  3. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling.

    Science.gov (United States)

    Wang, Zhaofei; Mao, Jiandong; Li, Juan; Zhao, Hu; Zhou, Chunyan; Sheng, Hongjiang

    2017-07-10

    Aerosols and water vapor are important atmospheric components, and have significant effects on both atmospheric energy conversion and climate formation. They play the important roles in balancing the radiation budget between the atmosphere and Earth, while water vapor also directly affects rainfall and other weather processes. To further research atmospheric aerosol optical properties and water vapor content, an all-time six-channel multi-wavelength polarization Raman lidar has been developed at Beifang University of Nationalities. In addition to 1064, 532, and 355 nm Mie scattering channels, the lidar has a polarization channel for 532 nm return signals, a 660 nm water vapor channel, and a 607 nm nitrogen detection channel. Experiments verified the lidar's feasibility and return signals from six channels were detected. Using inversion algorithms, extinction coefficient profiles at 1064, 532 and 355 nm, Ångström exponent profiles, depolarization ratio profiles, and water vapor mixing ratio profiles were all obtained. The polarization characteristics and water vapor content of cirrus clouds, the polarization characteristics of dusty weather, and the water vapor profiles over different days were also analyzed. Results show that the lidar has the full-time detection capability for atmospheric aerosol optical properties and water vapor profiles, and real-time measurements of aerosols and water vapor over the Yinchuan area were realized, providing important information for studying the environmental quality and climate change in this area.

  4. Lidar Observations of Tropical High-altitude Cirrus Clouds: Results form Dual Wavelength Raman Lidar Measurements During the ALBATROSS Campaign 1996

    Science.gov (United States)

    Neuber, R.; Wegener, Alfred; Schrems, O.; McDermid, I. S.

    1997-01-01

    Results from dual wavelength Raman Lidar Observations of tropical high-altitude cirrus clouds are reported. Based on 107 hours of night-time measurements cirrus cloud were present in more than 50% of the observations at latitudes between 23.5 degress S and 23.5 degrees N and altitudes between 11 and 16km.

  5. FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues

    OpenAIRE

    Lin, Shan-Yang; Li, Mei-Jane; Cheng, Wen-Ting

    2007-01-01

    Fourier transform infrared (FT-IR) and Raman vibrational microspectroscopies used for biomedical diagnosis of human tissues are reviewed from basic principle to biological applications. The advantages and disadvantages of both vibrational microspectroscopies are compared to highlight their efficiency and adaptability for noninvasively investigating the chemical compositions of ultrastructual human tissues at different disease states. Biochemical fingerprints applied to the biological samples ...

  6. Optimal estimation of water vapour profiles using a combination of Raman lidar and microwave radiometer

    Science.gov (United States)

    Foth, Andreas; Pospichal, Bernhard

    2017-09-01

    In this work, a two-step algorithm to obtain water vapour profiles from a combination of Raman lidar and microwave radiometer is presented. Both instruments were applied during an intensive 2-month measurement campaign (HOPE) close to Jülich, western Germany, during spring 2013. To retrieve reliable water vapour information from inside or above the cloud a two-step algorithm is applied. The first step is a Kalman filter that extends the profiles, truncated at cloud base, to the full height range (up to 10 km) by combining previous information and current measurement. Then the complete water vapour profile serves as input to the one-dimensional variational (1D-VAR) method, also known as optimal estimation. A forward model simulates the brightness temperatures which would be observed by the microwave radiometer for the given atmospheric state. The profile is iteratively modified according to its error bars until the modelled and the actually measured brightness temperatures sufficiently agree. The functionality of the retrieval is presented in detail by means of case studies under different conditions. A statistical analysis shows that the availability of Raman lidar data (night) improves the accuracy of the profiles even under cloudy conditions. During the day, the absence of lidar data results in larger differences in comparison to reference radiosondes. The data availability of the full-height water vapour lidar profiles of 17 % during the 2-month campaign is significantly enhanced to 60 % by applying the retrieval. The bias with respect to radiosonde and the retrieved a posteriori uncertainty of the retrieved profiles clearly show that the application of the Kalman filter considerably improves the accuracy and quality of the retrieved mixing ratio profiles.

  7. Implementation of Rotational Raman Channel in Multiwavelength Aerosol Lidar to Improve Measurements of Particle Extinction and Backscattering at 532 NM

    Directory of Open Access Journals (Sweden)

    Veselovskii Igor

    2016-01-01

    Full Text Available We describe a practical implementation of rotational Raman (RR measurements in an existing Mie-Raman lidar to obtain measurements of aerosol extinction and backscattering at 532 nm. A 2.3 nm width interference filter was used to select a spectral range characterized by low temperature sensitivity within the anti-Stokes branch of the RR spectrum. Simulations demonstrate that the temperature dependence of the scattering cross section does not exceed 1.0% in the 230-300K range making accurate correction for this dependence quite easy. With this upgrade, the NASA/GSFC multiwavelength Raman lidar has demonstrated useful α532 measurements and was used for regular observations. Examples of lidar measurements and inversion of optical data to the particle microphysics will be given in presentation.

  8. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude

    Directory of Open Access Journals (Sweden)

    Hauchecorne Alain

    2016-01-01

    Full Text Available A concept of innovative rotational Raman lidar with daylight measurement capability is proposed to measure the vertical profile of temperature from the ground to the middle stratosphere. The optical filtering is made using a Fabry-Pérot Interferometer with line spacing equal to the line spacing of the Raman spectrum. The detection is made using a linear PMT array operated in photon counting mode. We plan to build a prototype and to test it at the Haute-Provence Observatory lidar facility. to achieve a time resolution permitting the observation of small-scale atmospheric processes playing a role in the troposphere-stratosphere interaction as gravity waves. If successful, this project will open the possibility to consider a Raman space lidar for the global observation of atmospheric temperature profiles.

  9. Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Sheng, Shaoxiang; Wu, Jiang-bin; Cong, Xin; Li, Wenbin; Gou, Jian; Zhong, Qing; Cheng, Peng; Tan, Ping-heng; Chen, Lan; Wu, Kehui

    2017-11-01

    Combining ultrahigh sensitivity, spatial resolution, and the capability to resolve chemical information, tip-enhanced Raman spectroscopy (TERS) is a powerful tool to study molecules or nanoscale objects. Here we show that TERS can also be a powerful tool in studying two-dimensional materials. We have achieved a 109 Raman signal enhancement and a 0.5 nm spatial resolution using monolayer silicene on Ag(111) as a prototypical 2D material system. Because of the selective enhancement on Raman modes with vertical vibrational components in TERS, our experiment provides direct evidence of the origination of Raman modes in silicene. Furthermore, the ultrahigh sensitivity of TERS allows us to identify different vibrational properties of silicene phases, which differ only in the bucking direction of the Si-Si bonds. Local vibrational features from defects and domain boundaries in silicene can also be identified.

  10. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    Directory of Open Access Journals (Sweden)

    Han Zaw

    2016-01-01

    Full Text Available Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff, we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  11. Signatures of dynamical processes in Raman lidar profiles of the atmosphere

    Science.gov (United States)

    Philbrick, C. Russell; Hallen, Hans D.

    2017-05-01

    Raman lidar measurements provide profiles of several different tracers of spatial and temporal variations, which are excellent signatures for studies of dynamical processes in the atmosphere. An examination of Raman lidar data collected during the last four decades clearly show signatures of atmospheric planetary waves, gravity waves, low-level jets, weather fronts, turbulence from wind shear at surfaces and at the interface of the boundary layer with the free troposphere. Water vapor profiles are found to be important as a tracer of the sources of turbulence eddies associated with thermal convection, pressure waves, and wind shears, which result from surface heating, winds, weather systems, orographic forcing, and regions of reduced atmospheric stability. Examples of these processes are selected to show the influence of turbulence on profiles of atmospheric properties. Turbulence eddies generated in the wind shear region near the top of the boundary layer are found to mix into the atmospheric boundary layer. Results from several prior research projects are examined to gain a better understanding of processes impacting optical propagation through the many sources of turbulence observed in the lower atmosphere. Advances in lasers, detectors, and particularly in high-speed electronics now available are expected to provide important opportunities to improve our understanding of the formation processes, as well as for tracking of the sources and dissipation of turbulence eddies.

  12. Depolarization calibration and measurements using the CANDAC Rayleigh-Mie-Raman lidar at Eureka, Canada

    Science.gov (United States)

    McCullough, Emily M.; Sica, Robert J.; Drummond, James R.; Nott, Graeme; Perro, Christopher; Thackray, Colin P.; Hopper, Jason; Doyle, Jonathan; Duck, Thomas J.; Walker, Kaley A.

    2017-11-01

    The Canadian Network for the Detection of Atmospheric Change (CANDAC) Rayleigh-Mie-Raman lidar (CRL) at Eureka, Nunavut, has measured tropospheric clouds, aerosols, and water vapour since 2007. In remote and meteorologically significant locations, such as the Canadian High Arctic, the ability to add new measurement capability to an existing well-tested facility is extremely valuable. In 2010, linear depolarization 532 nm measurement hardware was installed in the lidar's receiver. To minimize disruption in the existing lidar channels and to preserve their existing characterization so far as is possible, the depolarization hardware was placed near the end of the receiver cascade. The upstream optics already in place were not optimized for preserving the polarization of received light. Calibrations and Mueller matrix calculations are used to determine and mitigate the contribution of these upstream optics on the depolarization measurements. The results show that with appropriate calibration, indications of cloud particle phase (ice vs. water) through the use of the depolarization parameter are now possible to a precision of ±0.05 absolute uncertainty ( ≤ 10 % relative uncertainty) within clouds at time and altitude resolutions of 5 min and 37.5 m respectively, with higher precision and higher resolution possible in select cases. The uncertainty is somewhat larger outside of clouds at the same altitude, typically with absolute uncertainty ≤ 0.1. Monitoring changes in Arctic cloud composition, including particle phase, is essential for an improved understanding of the changing climate locally and globally.

  13. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  14. Study of the optical properties of aerosols in the Sao Paulo State by LIDAR Raman technique; Estudo das propriedades opticas dos aerossois no Estado de Sao Paulo com a tecnica de LIDAR Raman

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Renata Facundes da

    2010-07-01

    The investigation reported in this dissertation has been divided in two parts. The first part was made to carry out an independent calibration of a Raman LIDAR system for water vapor in the CLA installed using a methodology that was developed at Howard University, based on a careful analysis of the efficiency of the optical system components aimed at determining the efficiency and displaying the spectral response of the system. After this study, which led to a better understanding of the eld of instrumental system, the second part, presents a preliminary study of the optical properties of aerosols in the troposphere by evaluating parameters such as, for example, the vertical profiles of aerosol extinction, SR and LR, using a mobile Raman LIDAR system developed by Raymetrics LIDAR Systems, during campaigns conducted in some research institutes in the State of Sao Paulo. (author)

  15. Raman Lidar Observations of Aerosol Optical Properties in 11 Cities from France to Siberia

    Directory of Open Access Journals (Sweden)

    Elsa Dieudonné

    2017-09-01

    Full Text Available In June 2013, a ground-based mobile lidar performed the ~10,000 km ride from Paris to Ulan-Ude, near Lake Baikal, profiling aerosol optical properties in the cities visited along the journey and allowing the first comparison of urban aerosols optical properties across Eurasia. The lidar instrument was equipped with N2-Raman and depolarization channels, enabling the retrieval of the 355-nm extinction-to-backscatter ratio (also called Lidar Ratio (LR and the linear Particle Depolarization Ratio (PDR in the urban planetary boundary or residual layer over 11 cities. The optical properties of pollution particles were found to be homogeneous all along the journey: no longitude dependence was observed for the LR, with most values falling within the 67–96 sr range. There exists only a slight increase of PDR between cities in Europe and Russia, which we attribute to a higher fraction of coarse terrigenous particles lifted from bad-tarmac roads and unvegetated terrains, which resulted, for instance, in a +1.7% increase between the megalopolises of Paris and Moscow. A few lower LR values (38 to 50 sr were encountered above two medium size Siberian cities and in an isolated plume, suggesting that the relative weight of terrigenous aerosols in the mix may increase in smaller cities. Space-borne observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, retrieved during summer 2013 above the same Russian cities, confirmed the prevalence of aerosols classified as “polluted dust”. Finally, we encountered one special feature in the Russian aerosol mix as we observed with good confidence an unusual aerosol layer displaying both a very high LR (96 sr and a very high PDR (20%, even though both features make it difficult to identify the aerosol type.

  16. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    aminoethoxy)propane (baep) were examined both experimentally and theoretically including FT-IR and Raman spectroscopic methods. Among the possible structural configurations, 30 of them were handled in the framework of this study.

  17. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    Science.gov (United States)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  18. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility

    Science.gov (United States)

    Aspey, R. A.; McDermid, I. S.; Leblanc, T.; Howe, J. W.; Walsh, T. D.

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4°N, 117.7°W) and Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

  19. Monitoring and characterization of atmospheric aerosols with Raman and dual-polarization lidars

    Science.gov (United States)

    Royer, P.; Sauvage, L.; Bizard, A.; Thobois, L.

    2013-10-01

    Atmospheric aerosols play a key role on climate balance (direct, semi-direct and indirect effects), on human health (increase of breathing problems and lung cancer for pollution aerosols) and human activities (damage to aircraft engines by volcanic ashes, reduction of visibility by dust or pollution aerosols). In order to monitor and characterize this threat it is necessary to localize, characterize and possibly quantify the presence of aerosols in the atmosphere from the lowest layers (~100 m) up to the tropopause (18 km). We use here an approach based on measurements of the new Raman and dual-polarization LiDAR R-Man510. We present in this paper how it is possible to detect atmospheric layers, to retrieve their optical properties and to classify these layers with this sensor.

  20. Measurements of aerosol and cloud layers using a multi-wavelength Elastic-Raman lidar

    Science.gov (United States)

    Arapi, A.

    2016-12-01

    Aerosols and clouds play an important role in air-quality, weather and climate relevant studies. The discrimination of aerosol and cloud and their subtype classification are critical in the remote sensing measurements from ground and space. In this presentation, we first present the visual measurements of aloft aerosol and cloud layers from a multi-wavelength Elastic-Raman lidar this summer in New York City. Then, we implement an algorithm and Matlab codes for discriminating aerosol and cloud based on spectral dependence or attenuated color-ratio of aerosols and clouds. The color-ratios at the three-wavelength pairs and the different thresholds are examined for improving the detection sensitivity or capability. Furthermore, a wavelet-analysis technique with different scales parameter is refined to estimate the heights of aerosol and clouds. Finally, a few cases studies are shown for the algorithm evaluation.

  1. The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, U. von; Cossart, G. von; Fiedler, J. [Institut fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Fricke, K.H.; Nelke, G.; Baumgarten, G. [Bonn Univ. (Germany). Physikalisches Inst.; Rees, D. [Hovemere Ltd., Hayes (United Kingdom); Hauchecorne, A. [Centre National de la Recherche Scientifique (CNRS), 91 - Verrieres-le-Buisson (France). Service d' Aeronomie; Adolfsen, K. [Andoya Rocket Range, Andenes (Norway)

    2000-07-01

    We report on the development and current capabilities of the ALOMAR Rayleigh/Mie/Raman lidar. This instrument is one of the core instruments of the international ALOMAR facility, located near Andenes in Norway at 69 N and 16 E. The major task of the instrument is to perform advanced studies of the Arctic middle atmosphere over altitudes between about 15 to 90 km on a climatological basis. These studies address questions about the thermal structure of the Arctic middle atmosphere, the dynamical processes acting therein, and of aerosols in the form of stratospheric background aerosol, polar stratospheric clouds, noctilucent clouds, and injected aerosols of volcanic or anthropogenic origin. Furthermore, the lidar is meant to work together with other remote sensing instruments, both ground- and satellite-based, and with balloon- and rocket-borne instruments performing in situ observations. The instrument is basically a twin lidar, using two independent power lasers and two tiltable receiving telescopes. The power lasers are Nd:YAG lasers emitting at wavelengths 1064, 532, and 355 nm and producing 30 pulses per second each. The power lasers are highly stabilized in both their wavelengths and the directions of their laser beams. The laser beams are emitted into the atmosphere fully coaxial with the line-of-sight of the receiving telescopes. The latter use primary mirrors of 1.8 m diameter and are tiltable within 30 off zenith. Their fields-of-view have 180 {mu}rad angular diameter. Spectral separation, filtering, and detection of the received photons are made on an optical bench which carries, among a multitude of other optical components, three double Fabry-Perot interferometers (two for 532 and one for 355 nm) and one single Fabry-Perot interferometer (for 1064 nm).

  2. Depolarization calibration and measurements using the CANDAC Rayleigh–Mie–Raman lidar at Eureka, Canada

    Directory of Open Access Journals (Sweden)

    E. M. McCullough

    2017-11-01

    Full Text Available The Canadian Network for the Detection of Atmospheric Change (CANDAC Rayleigh–Mie–Raman lidar (CRL at Eureka, Nunavut, has measured tropospheric clouds, aerosols, and water vapour since 2007. In remote and meteorologically significant locations, such as the Canadian High Arctic, the ability to add new measurement capability to an existing well-tested facility is extremely valuable. In 2010, linear depolarization 532 nm measurement hardware was installed in the lidar's receiver. To minimize disruption in the existing lidar channels and to preserve their existing characterization so far as is possible, the depolarization hardware was placed near the end of the receiver cascade. The upstream optics already in place were not optimized for preserving the polarization of received light. Calibrations and Mueller matrix calculations are used to determine and mitigate the contribution of these upstream optics on the depolarization measurements. The results show that with appropriate calibration, indications of cloud particle phase (ice vs. water through the use of the depolarization parameter are now possible to a precision of ±0.05 absolute uncertainty ( ≤ 10 % relative uncertainty within clouds at time and altitude resolutions of 5 min and 37.5 m respectively, with higher precision and higher resolution possible in select cases. The uncertainty is somewhat larger outside of clouds at the same altitude, typically with absolute uncertainty  ≤ 0.1. Monitoring changes in Arctic cloud composition, including particle phase, is essential for an improved understanding of the changing climate locally and globally.

  3. Epi-detection of vibrational phase contrast coherent anti-Stokes Raman scattering

    NARCIS (Netherlands)

    Garbacik, E.T.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2014-01-01

    We demonstrate a system for the phase-resolved epi-detection of coherent anti-Stokes Raman scattering (CARS) signals in highly scattering and/or thick samples. With this setup, we measure the complex vibrational responses of multiple components in a thick, highly-scattering pharmaceutical tablet in

  4. Ab-initio molecular dynamics and vibrational Raman spectroscopy investigations of quartz polymorph at high temperature

    Science.gov (United States)

    Sediki, Hayet; Simon, Patrick; Hadjadj, Aomar; Krallafa, Abdelghani M.

    2017-09-01

    Quartz has found a wide range of applications over the past years. In the present work, the temperature dependence of microcrystalline quartz is investigated with Raman spectroscopy and DFT-based molecular dynamics simulations. We aimed to determine the structure at short and medium range distances as a function of the increasing temperature. The dynamics and the structural changes are analysed in terms of time-dependent properties, and the vibrational analysis obtained from calculated dipole trajectory and vibrational density of states (VDOS). The computed data is compared to Raman and infrared spectroscopic measurements. The approach is of a particularly great interest when we focus on the structural behaviour, and the dynamical disorder observed and characterised through geometric and thermodynamic data. The calculations confirm that the infrared and Raman signature as a function of temperature provide a sensitive analysis of the structural behaviour of quartz.

  5. Validation of Temperature Measurements from the Airborne Raman Ozone Temperature and Aerosol Lidar During SOLVE

    Science.gov (United States)

    Burris, John; McGee, Thomas; Hoegy, Walter; Lait, Leslie; Twigg, Laurence; Sumnicht, Grant; Heaps, William; Hostetler, Chris; Bui, T. Paul; Neuber, Roland; hide

    2001-01-01

    The Airborne Raman Ozone, Temperature and Aerosol Lidar (AROTEL) participated in the recent Sage III Ozone Loss and Validation Experiment (SOLVE) by providing profiles of aerosols, polar stratospheric clouds (PSCs), ozone and temperature with high vertical and horizontal resolution. Temperatures were derived from just above the aircraft to approximately 60 kilometers geometric altitude with a reported vertical resolution of between 0.5 and 1.5 km. The horizontal footprint varied from 4 to 70 km. This paper explores the measurement uncertainties associated with the temperature retrievals and makes comparisons with independent, coincident, measurements of temperature. Measurement uncertainties range from 0.1 K to approximately 4 K depending on altitude and integration time. Comparisons between AROTEL and balloon sonde temperatures retrieved under clear sky conditions using both Rayleigh and Raman scattered data showed AROTEL approximately 1 K colder than sonde values. Comparisons between AROTEL and the Meteorological Measurement System (MMS) on NASA's ER-2 show AROTEL being from 2-3 K colder for altitudes ranging from 14 to 18 km. Temperature comparisons between AROTEL and the United Kingdom Meteorological Office's model showed differences of approximately 1 K below approximately 25 km and a very strong cold bias of approximately 12 K at altitudes between 30 and 35 km.

  6. LABVIEW graphical user interface for precision multichannel alignment of Raman lidar at Jet Propulsion Laboratory, Table Mountain Facility.

    Science.gov (United States)

    Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D

    2008-09-01

    The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.

  7. Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model

    Science.gov (United States)

    Filioglou, Maria; Nikandrova, Anna; Niemelä, Sami; Baars, Holger; Mielonen, Tero; Leskinen, Ari; Brus, David; Romakkaniemi, Sami; Giannakaki, Elina; Komppula, Mika

    2017-11-01

    We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitée Adaptation dynamique Développement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.

  8. VIBRATIONAL RAMAN OPTICAL-ACTIVITY CALCULATIONS USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Helgaker, T.; Ruud, K.; Bak, Keld L.

    1994-01-01

    Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency of the inc...... of the incident light, using SCF linear response theory. London atomic orbitals are employed, imposing gauge origin invariance on the calculations. Calculations have been carried out in the harmonic approximation for CFHDT and methyloxirane.......Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency...

  9. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2017-09-01

    We applied the recently introduced polarization lidar-photometer networking (POLIPHON) technique for the first time to triple-wavelength polarization lidar measurements at 355, 532, and 1064 nm. The lidar observations were performed at Barbados during the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) in the summer of 2014. The POLIPHON method comprises the traditional lidar technique to separate mineral dust and non-dust backscatter contributions and the new, extended approach to separate even the fine and coarse dust backscatter fractions. We show that the traditional and the advanced method are compatible and lead to a consistent set of dust and non-dust profiles at simplified, less complex aerosol layering and mixing conditions as is the case over the remote tropical Atlantic. To derive dust mass concentration profiles from the lidar observations, trustworthy extinction-to-volume conversion factors for fine, coarse, and total dust are needed and obtained from an updated, extended Aerosol Robotic Network sun photometer data analysis of the correlation between the fine, coarse and total dust volume concentration and the respective fine, coarse, and total dust extinction coefficient for all three laser wavelengths. Conversion factors (total volume to extinction) for pure marine aerosol conditions and continental anthropogenic aerosol situations are presented in addition. As a new feature of the POLIPHON data analysis, the Raman lidar method for particle extinction profiling is used to identify the aerosol type (marine or anthropogenic) of the non-dust aerosol fraction. The full POLIPHON methodology was successfully applied to a SALTRACE case and the results are discussed. We conclude that the 532 nm polarization lidar technique has many advantages in comparison to 355 and 1064 nm polarization lidar approaches and leads to the most robust and accurate POLIPHON products.

  10. Micro-Raman Vibrational Identification of 10-MDP Bond to Zirconia and Shear Bond Strength Analysis

    Directory of Open Access Journals (Sweden)

    Diego Martins De-Paula

    2017-01-01

    Full Text Available So far, there is no report regarding the micro-Raman vibrational fingerprint of the bonds between 10-methacryloyloxy-decyl dihydrogen phosphate (10-MDP and zirconia ceramics. Thus, the aim of this study was to identify the Raman vibrational peaks related to the bonds of 10-MDP with zirconia, as well as the influence on microshear bond strength. Micro-Raman spectroscopy was employed to assess the vibrational peak of 10-MDP binding to zirconia. Microshear bond strength of the dual-cure resin cement to zirconia with the presence of 10-MDP in composition of experimental ceramic primer and self-adhesive resin cement was also surveyed. Statistical analysis was performed by one-way ANOVA and Tukey’s test (p<0.05. Peaks at 1545 cm−1 and 1562 cm−1 were found to refer to zirconia binding with 10-MDP. The presence of 10-MDP in both experimental ceramic primer and self-adhesive resin cement improved microshear bond strength to zirconia ceramic. It can be concluded that the nondestructive method of micro-Raman spectroscopy was able to characterize chemical bonds of 10-MDP with zirconia, which improves the bond strengths of resin cement.

  11. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  12. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied......) the composition of blisters found on the surface of bread, (4) the microstructure of high-lysine barley and (5) the composition of white spots in the shell of frozen shrimps. (C) 2003 Elsevier Science Ltd. All rights reserved....

  13. Polar stratospheric clouds over Finland in the 2012/2013 Arctic winter measured by two Raman lidars

    Science.gov (United States)

    Hoffmann, Anne; Giannakaki, Eleni; Kivi, Rigel; Schrems, Otto; Immler, Franz; Komppula, Mika

    2013-04-01

    Already in December 2012, the Arctic stratospheric vortex reached temperatures sufficiently low for polar stratospheric cloud (PSC) formation over wide areas of Northern Europe and whole Finland. Within Finland, stratospheric aerosol lidar measurements have been and are performed with two Raman lidar systems, the PollyXT, owned by the Finnish Meteorological Institute (FMI) and situated well below the Arctic circle close to Kuopio (63 N, 27 E) and the MARL lidar owned by the Alfred-Wegener-Institute for Polar and Marine Research (AWI), and situated at the FMI Arctic Research Centre in Sodankylä (67 N, 26 E). The PollyXT has been designed as an autonomous tropospheric lidar system, but it has proven to be able to detect aerosol backscatter and depolarization at least as high up as 25 km. Measurements are ongoing as far as low clouds allow for stratospheric analysis with both lidars until the end of PSC season in February. For the winter 2012/2013, PSC occurrence frequency, types and characteristics will be determined. Comparative analysis with Calipso lidar profiles covering Finland will be performed. Preliminary results from December 17-24 show PSCs detected in Kuopio during seven days with the PollyXT lidar. The altitude of the clouds varied in the range of 17-25 km. In Sodankylä the measurements were running on one day during the period and PSCs were observed between altitudes 17-25 km. For the same time period (December 17-24, 2012) CALIPSO has observed stratospheric layers at all overpasses over Finland (9 tracks on five days). The clouds were observed between 18.5 and 26 km, with varying geometric and optical thickness.

  14. A Fourier transform-Raman and infrared vibrational study of delorazepam, fludiazepam, flurazepam, and tetrazepam.

    Science.gov (United States)

    Neville, G A; Beckstead, H D; Shurvell, H F

    1994-02-01

    Fourier transform-Raman and IR spectra of four compounds that are closely related to diazepam (Valium) have been recorded. The compounds, delorazepam, fludiazepam, flurazepam, and tetrazepam, are all 7-chloro-1,3-dihydro-[2H]-1,4-benzodiazepine -2-ones and differ from diazepam by the substituents at positions 1 and 5 of the diazepine ring. The spectra show characteristic features associated with both the diazepine ring and substituents. A strong line near 1610 cm-1 in the Raman spectra is assigned to the C = N stretch of the diazepine ring, and very strong IR absorption near 1690 cm-1 is attributed to the C = O stretching mode. Various IR and Raman vibrational features serve to characterize and differentiate these molecules. Evidence for intermolecular hydrogen bonding in one of the compounds (delorazepam) is presented.

  15. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  16. Origin invariance in vibrational resonance Raman optical activity.

    Science.gov (United States)

    Vidal, Luciano N; Egidi, Franco; Barone, Vincenzo; Cappelli, Chiara

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  17. Noctilucent clouds in the polar sumer mesopause: Investigations using the ALOMAR Rayleigh/Mie/Raman Lidar; Leuchtende Nachtwolken an der polaren Sommermesopause: Untersuchungen mit dem ALOMAR Rayleigh/Mie/Raman Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Baumgarten, G.

    2001-09-01

    Noctilucent clouds (NLC) are rare, tenuous clouds in the terrestrial atmosphere that occur at polar latitudes in summer near 83 km altitude. These clouds where studied using the ALOMAR Rayleigh/Mie/Raman lidar located at 69 N, 16 E. The depolarization of light, which was backscattered on NLC particles was measured for the first time by the ALOMAR RMR-Lidar. Considering the small ratio of particle size over wavelength an unexpectedly large depolarization of 1.7% was observed. Comparing this result to T-matrix calculations for scattering on randomly oriented aspherical particles implies that the shape of the NLC particles is needle like. The ALOMAR RMR-Lidar is a twin-lidar equipped with two steerable telescopes which were used to observe a single NLC layer in two separate measurement volumes about 50 km apart at NLC altitudes. Cross correlation technique reveal the layer to be tilted with imbedded periodic horizontal structures showing wavelengths of about 30 to 50 km. These structures drift horizontally through the measurement volumes rather than being microphysically formed during the observation period. (orig.)

  18. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  19. Continuous vertical aerosol profiling with a multi-wavelength Raman polarization lidar over the Pearl River Delta, China

    Science.gov (United States)

    Heese, Birgit; Baars, Holger; Bohlmann, Stephanie; Althausen, Dietrich; Deng, Ruru

    2017-06-01

    A dataset of particle optical properties of the highly polluted atmosphere over the Pearl River Delta (PRD), Guangzhou, China, is presented in this paper. The data were derived from the measurements of a multi-wavelength Raman and depolarization lidar PollyXT and a co-located AERONET sun photometer. The measurement campaign was conducted from November 2011 to mid-June 2012. These are the first Raman lidar measurements in the PRD that lasted for several months. A mean value of aerosol optical depth (AOD) of 0.54 ± 0.33 was observed by the sun photometer at 500 nm in the polluted atmosphere over this megacity for the whole measurement period. The lidar profiles frequently show lofted aerosol layers, which reach altitudes of up to 2 to 3 km and, especially during the spring season, up to 5 km. These layers contain between 12 and 56 % of the total AOD, with the highest values in spring. The aerosol types in these lofted layers are classified by their optical properties. The observed lidar ratio values range from 30 to 80 sr with a mean value of 48.0 ± 10.7 sr at 532 nm. The linear particle depolarization ratio at 532 nm lies mostly below 5 %, with a mean value of 3.6 ± 3.7 %. The majority of the Ångström exponents lie between 0.5 and 1.5, indicating a mixture of fine- and coarse-mode aerosols. These results reveal that mostly urban pollution particles mixed with particles produced from biomass and industrial burning are present in the atmosphere above the Pearl River Delta. Trajectory analyses show that these pollution mixtures arise mainly from local and regional sources.

  20. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    Science.gov (United States)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  1. A Case Study on Observed and Simulated CO2 Concentration Profiles in Hefei based on Raman Lidar and GEOS-Chem Model

    Directory of Open Access Journals (Sweden)

    Wang Yinan

    2016-01-01

    Full Text Available Observations of atmospheric CO2 concentration profiles provide significative constraints on the global/regional inversions of carbon sources and sinks. Anhui Institute of Optics and Fine Mechanics of Chinese Academy of Sciences developed a Raman Lidar system to detect the vertical distribution of atmospheric CO2. This paper compared the observations with the modeled results from a three-dimensional global chemistry transport model-GEOS-Chem, which showed a good agreement in the trend of change with lidar measurements. The case study indicated a potential for better simulating vertical distribution of atmospheric CO2 by combining with lidar measurements.

  2. Vertical Resolved Dust Mass Concentration and Backscatter Coefficient Retrieval of Asian Dust Plume Using Quartz Raman Channel in Lidar Measurements

    Directory of Open Access Journals (Sweden)

    Noh Young M.

    2016-01-01

    Full Text Available In this work, we present a method for estimating vertical resolved mass concentration of dust immersed in Asian dust plume using Raman scattering of quartz (silicon dioxide, silica. During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profiles of the quartz backscatter coefficient. Since the Raman backscatter coefficient was connected with the Raman backscatter differential cross section and the number density of quartz molecules, the mass concentration of quartz in the atmosphere can be estimated from the quartz backscatter coefficient. The weight percentage from 40 to 70 % for quartz in the Asian dust was estimated from references. The vertical resolved mass concentration of dust was estimated by quartz mass concentration and weight percentage. We also present a retrieval method to obtain dust backscatter coefficient from the mixed Asian dust and pollutant layer. OPAC (Optical Properties of Aerosol and Clouds simulations were conducted to calculate dust backscatter coefficient. The retrieved dust mass concentration was used as an input parameter for the OPAC calculations. These approaches in the study will be useful for characterizing the quartz dominated in the atmospheric aerosols and estimating vertical resolved mass concentration of dust. It will be especially applicable for optically distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian dust plume. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

  3. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Science.gov (United States)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  4. Feasibility study of integral property retrieval for tropospheric aerosol from Raman lidar data using principal component analysis.

    Science.gov (United States)

    de Graaf, Martin; Apituley, Arnoud; Donovan, David P

    2013-04-01

    A method is introduced to derive integral properties of the aerosol size distribution, e.g., aerosol mass, from tropospheric multiwavelength Raman lidar aerosol extinction and backscatter data, using an adapted form of the principal component analysis (PCA) technique. Since the refractive index of general tropospheric aerosols is variable and aerosol types can vary within one profile, an inversion technique applied in the troposphere should account for varying aerosol refractive indices. Using PCA, if a sufficiently complete set of appropriate refractive index dependent kernels is used, no a priori information about the aerosol type is necessary for the inversion of integral properties. In principle, the refractive index itself can be retrieved, but this quantity is more sensitive to measurement errors than the various integral properties of the aerosol size distribution. Here, the PCA technique adapted for use in the troposphere is introduced, the refractive index information content of the kernel sets is investigated, and error analyses are presented. The technique is then applied to actual tropospheric Raman lidar measurements.

  5. Forest Fire Smoke Layers Observed in the Free Troposphere over Portugal with a Multiwavelength Raman Lidar: Optical and Microphysical Properties

    Directory of Open Access Journals (Sweden)

    Sérgio Nepomuceno Pereira

    2014-01-01

    Full Text Available Vertically resolved optical and microphysical properties of biomass burning aerosols, measured in 2011 with a multiwavelength Raman lidar, are presented. The transportation time, within 1-2 days (or less, pointed towards the presence of relatively fresh smoke particles over the site. Some strong layers aloft were observed with particle backscatter and extinction coefficients (at 355 nm greater than 5 Mm−1 sr−1 and close to 300 Mm−1, respectively. The particle intensive optical properties showed features different from the ones reported for aged smoke, but rather consistent with fresh smoke. The Ångström exponents were generally high, mainly above 1.4, indicating a dominating accumulation mode. Weak depolarization values, as shown by the small depolarization ratio of 5% or lower, were measured. Furthermore, the lidar ratio presented no clear wavelength dependency. The inversion of the lidar signals provided a set of microphysical properties including particle effective radius below 0.2 μm, which is less than values previously observed for aged smoke particles. Real and imaginary parts of refractive index of about 1.5-1.6 and 0.02i, respectively, were derived. The single scattering albedo was in the range between 0.85 and 0.93; these last two quantities indicate the nonnegligible absorbing characteristics of the observed particles.

  6. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    Science.gov (United States)

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  7. Microwave, infrared and Raman spectra, conformational stability and vibrational assignment of methoxyflurane

    Science.gov (United States)

    Li, Y. S.; Durig, J. R.

    1982-05-01

    The low resolution microwave spectrum of methoxyflurane, CHCl 2CF 2OCH 3, has been recorded from 26.5 to 39.0 GHz. From the spacing of the major transitions it is shown that the value of 2036 MHz for B + C is consistent with the trans-trans or gauche-trans conformers where the first term ( trans or gauche) refers to the internal rotation around the C-C bond. The infrared (40-3500 cm -1) and the Raman (20-3500 cm -1) spectra have been recorded for gaseous and solid methoxyflurane. Additionally, the Raman spectrum of the liquid has been obtained and qualitative depolarization ratios measured. From these data it is shown that the most stable form in the fluid phases at ambient temperature is the gauche-trans conformer but the trans-trans form is the most stable in the solid state. A complete vibrational analysis based on infrared band contours, depolarization values and group frequencies is proposed for this conformer. From the analysis of the low frequency vibrational data, values of some of the barriers to internal rotation are estimated. These results are compared to some similar quantities for some corresponding molecules.

  8. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli

    NARCIS (Netherlands)

    Fernández, A.J.; Apituley, A.; Veselovskii, I.; Suvorina, A.; Henzing, J.; Pujadas, M.; Artíñano, B.

    2015-01-01

    This article presents a study of aerosol optical and microphysical properties under different relative humidity (RH) but well mixed layer conditions using optical and microphysical aerosol properties from multi-wavelength (MW) Raman lidar and in-situ aerosol observations collected at the Cabauw

  9. Extremely slow intramolecular vibrational redistribution: Direct observation by time-resolved raman spectroscopy in trifluoropropyne

    Science.gov (United States)

    Malinovsky, A. L.; Makarov, A. A.; Ryabov, E. A.

    2011-04-01

    We have studied the dynamics of intramolecular vibrational redistribution (IVR) from the initially excited mode v1 ≈ 3330 cm-1 (acetylene-type H-C bond) in H-C≡C-CF3 molecules in the gaseous phase by means of anti-Stokes spontaneous Raman scattering. The time constant of this process is estimated as 2.3 ns—this is the slowest IVR time reported so far for the room-temperature gases. It is suggested that so long IVR time with respect to the other propyne derivatives can be explained by a larger defect, in this case, of the Fermi resonance of v1 with v2 + 2v7—the most probable doorway state leading to IVR from v1 to the bath of all vibrational-rotational states with the close energies. In addition, it is shown that the observed dynamics is in agreement with a theoretical model assuming strong vibrational-rotational mixing.

  10. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory

    Science.gov (United States)

    Ramya, K. R.; Venkatnathan, Arun

    2013-03-01

    Hydrogen clathrate hydrates are promising sources of clean energy and are known to exist in a sII hydrate lattice, which consists of H2 molecules in dodecahedron (512) and hexakaidecahedron (51264) water cages. The formation of these hydrates which occur in extreme thermodynamic conditions is known to be considerably reduced by an inclusion of tetrahydrofuran (THF) in cages of these hydrate lattice. In this present work, we employ the density functional theory with a dispersion corrected (B97-D) functional to characterize vibrational Raman modes in the cages of pure and THF doped hydrogen clathrate hydrates. Our calculations show that the symmetric stretch of the H2 molecule in the 51264H2.THF cage is blueshifted compared to the 51264H2 cage. However, all vibrational modes of water molecules are redshifted which suggest reduced interaction between the H2 molecule and water molecules in the 51264H2.THF cage. The symmetric and asymmetric O-H stretch of water molecules in 512H2, 51264H2, and 51264H2.THF cages are redshifted compared with the corresponding guest free cages due to interactions between encapsulated H2 molecules and water molecules of the cages. The low frequency modes contain contributions from contraction and expansion of water cages and vibration of water molecules due to hydrogen bonding and these modes could possibly play an important role in the formation of the hydrate lattice.

  11. Vibrational dynamics (IR, Raman, NRVS) and DFT study of new antitumor tetranuclearstannoxanecluster, Sn(IV)$-$oxo$-${di$-$o$-$vanillin} dimethyl dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry

    2016-06-21

    The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.

  12. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  13. Aerosol content survey by mini N 2 -Raman lidar: Application to local and long-range transport aerosols

    Science.gov (United States)

    Royer, Philippe; Chazette, Patrick; Lardier, Melody; Sauvage, Laurent

    2011-12-01

    This study shows an aerosol content survey in the low and middle troposphere over Paris with a compact and light Nitrogen-Raman lidar which has been recently developed by the Commissariat à l'Energie Atomique (CEA) and LEOSPHERE company. This eye-safe and wide field-of-view system (full overlap between 150 and 200 m) is particularly well-adapted to air pollution survey in the vicinity of Megalopolis. Extinction-to-backscatter coefficient (so-called Lidar Ratio LR) profiles obtained with a Tikhonov regularization scheme are presented for long-range transport events of aerosols (volcanic ash plume LR = 48 ± 10 sr, and desert dust, LR = 45 ± 8 sr) which may contribute to the local load of aerosols emitted by traffic and industries in Megalopolis. Due to an insufficient signal to noise ratio (SNR < 30), a new dichotomous algorithm has been developed to perform daytime inversions every hour which is in accordance with the typical time evolution of aerosols within the planetary boundary layer. This inversion scheme is based on the constraint of the elastic channel with the aerosol optical depth (between typically 0.2 and 0.7 km) determined with the N 2-Raman channel and thus only gives access to an equivalent LR between 0.2 and 0.7 km with a relative uncertainty lower than 15%. This approach has been applied to retrieve diurnal cycle of LR for polluted continental aerosols over Paris and is compared with Tikhonov regularization applied during the night. We found a mean value of 85 ± 18 sr for polluted continental aerosols which is in agreement with other studies performed around the Paris urban area. Results for aerosol optical properties are presented and the error sources are discussed for each approach.

  14. Using Raman-lidar-based regularized microphysical retrievals and Aerosol Mass Spectrometer measurements for the characterization of biomass burning aerosols

    Science.gov (United States)

    Samaras, Stefanos; Nicolae, Doina; Böckmann, Christine; Vasilescu, Jeni; Binietoglou, Ioannis; Labzovskii, Lev; Toanca, Florica; Papayannis, Alexandros

    2015-10-01

    In this work we extract the microphysical properties of aerosols for a collection of measurement cases with low volume depolarization ratio originating from fire sources captured by the Raman lidar located at the National Institute of Optoelectronics (INOE) in Bucharest. Our algorithm was tested not only for pure smoke but also for mixed smoke and urban aerosols of variable age and growth. Applying a sensitivity analysis on initial parameter settings of our retrieval code was proved vital for producing semi-automatized retrievals with a hybrid regularization method developed at the Institute of Mathematics of Potsdam University. A direct quantitative comparison of the retrieved microphysical properties with measurements from a Compact Time of Flight Aerosol Mass Spectrometer (CToF-AMS) is used to validate our algorithm. Microphysical retrievals performed with sun photometer data are also used to explore our results. Focusing on the fine mode we observed remarkable similarities between the retrieved size distribution and the one measured by the AMS. More complicated atmospheric structures and the factor of absorption appear to depend more on particle radius being subject to variation. A good correlation was found between the aerosol effective radius and particle age, using the ratio of lidar ratios (LR: aerosol extinction to backscatter ratios) as an indicator for the latter. Finally, the dependence on relative humidity of aerosol effective radii measured on the ground and within the layers aloft show similar patterns.

  15. Long-Term Measurement for Low-Tropospheric Water Vapor and Aerosol by Raman Lidar in Wuhan

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-04-01

    Full Text Available A Raman Lidar (RL system is developed to measure the water vapor mixing ratio (WVMR and aerosol optical property in Wuhan with high temporal-spatial resolution during rainless nights. The principle of the self-developed lidar system and data processing method are discussed. WVMR profiles of a representative case retrieved by RL, Radiosonde (RS, and microwave radiometer (MR are in good agreement. The relationship of WVMR and aerosol optical depth (AOD indicates that water vapor dramatically reduces with the decline of the AOD. Moreover, the mean relative difference of mean WVMRs at low-troposphere obtained by RL and RS (MR is about 5.17% (9.47% during the analyzed year. The agreement certifies that the self-developed RL system can stably provide accurate and high temporal-spatial resolution data for the fundamental physical studies on water vapor. Furthermore, the maximum AOD from 0.5 km to 3 km is 0.41 at night in spring, which indicates that the air quality in Wuhan is heavily influenced by aerosols that are transported by air mass from the north during this time. Moreover, abundant rainfall led to relatively low AOD in summer (0.22, which demonstrates that water vapor is crucial for air purification.

  16. Optimization design of the tuning method for FBG spectroscopy based on the numerical analysis of all-fiber Raman temperature lidar

    Science.gov (United States)

    Wang, Li; Wang, Jun; Bao, Dong; Yang, Rong; Yan, Qing; Gao, Fei; Hua, Dengxin

    2018-01-01

    All fiber Raman temperature lidar for space borne platform has been proposed for profiling of the temperature with high accuracy. Fiber Bragg grating (FBG) is proposed as the spectroscopic system of Raman lidar because of good wavelength selectivity, high spectral resolution and high out-of-band rejection rate. Two sets of FBGs at visible wavelength 532 nm as Raman spectroscopy system are designed for extracting the rotational Raman spectra of atmospheric molecules, which intensities depend on the atmospheric temperature. The optimization design of the tuning method of an all-fiber rotational Raman spectroscopy system is analyzed and tested for estimating the potential temperature inversion error caused by the instability of FBG. The cantilever structure with temperature control device is designed to realize the tuning and stabilization of the central wavelengths of FBGs. According to numerical calculation of FBG and finite element analysis of the cantilever structure, the center wavelength offset of FBG is 11.03 nm/°C with the temperature change in the spectroscopy system. By experimental observation, the center wavelength offset of surface-bonded FBG is 9.80 nm/°C with temperature changing when subjected to certain strain for the high quantum number channel, while 10.01 nm/°C for the low quantum number channel. The tunable wavelength range of FBG is from 528.707 nm to 529.014 nm for the high quantum number channel and from 530.226 nm to 530.547 nm for the low quantum number channel. The temperature control accuracy of the FBG spectroscopy system is up to 0.03 °C, the corresponding potential atmospheric temperature inversion error is 0.04 K based on the numerical analysis of all-fiber Raman temperature lidar. The fine tuning and stabilization of the FBG wavelength realize the elaborate spectroscope of Raman lidar system. The conclusion is of great significance for the application of FBG spectroscopy system for space-borne platform Raman lidar.

  17. Structural and vibrational characterization of sugar arabinitol structures employing micro-Raman spectra and DFT calculations

    Science.gov (United States)

    Hédoux, Alain; Guinet, Yannick; Carpentier, Laurent; Paccou, Laurent; Derollez, Patrick; Brandán, Silvia Antonia

    2017-06-01

    In this work, three monomeric forms of arabinitol, usually named arabitol, and their dimeric species have been structural and vibrationally studied by using the micro-Raman spectra in the solid phase accomplished with theoretical calculations based on the theory of the functional of the density (DFT). The hybrid B3LYP method was used for all the calculations together with the 6-31G* and 6-311++g** basis sets. Two different L structures with minima energies were predicted in accordance to the two polymorphic structures revealed by recent X-ray diffraction experiments. The studies by natural bond orbital (NBO) calculations reveals high stabilities of the L form as compared with the D one but the topological properties by using the atoms in molecules (AIM) suggest a higher stability of the D form due to a strong H bond interactions. The scaled mechanical force fields (SQMFF) procedure was used to perform the complete vibrational assignments for the monomeric forms and their dimer. On the other hand, the similarity in the gap values computed for the three forms of arabitol with those observed for sucrose, trehalose, maltose and lactose in gas phase at the same level of theory could partially explain the sweetening property of this alcohol. In addition, the influences of the size of the basis set on some properties were evidenced.

  18. Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering

    National Research Council Canada - National Science Library

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Men, Zhiwei

    2016-01-01

    To investigate the vibrational features of nitromethane (NM), which is a kind of energy material and a well known low-sensitivity and high explosive, experiments are performed to obtain the stimulated Raman scattering (SRS...

  19. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Song, Yuxin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se; Gong, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Lu, Pengfei [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  20. Raman spectra of vibrational and librational modes in methane clathrate hydrates using density functional theory

    Science.gov (United States)

    Ramya, K. R.; Pavan Kumar, G. V.; Venkatnathan, Arun

    2012-05-01

    The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (512CH4) and tetrakaidecahedron (51262CH4) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH4 in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH4 and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 512CH4 cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH4 molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 512CH4 and 51262CH4 cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH4 molecules. The CH4 bending modes in the 512CH4 and 51262CH4 cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH4. The low frequency librational modes which are collective motion of the water molecules and CH4 in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.

  1. Experimental Raman and IR spectral and theoretical studies of vibrational spectrum and molecular structure of Pantothenic acid (vitamin B5)

    Science.gov (United States)

    Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.

    2014-08-01

    Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.

  2. Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry.

    Science.gov (United States)

    Yang, Chao-Bo; He, Ping; Escofet-Martin, David; Peng, Jiang-Bo; Fan, Rong-Wei; Yu, Xin; Dunn-Rankin, Derek

    2018-01-10

    In this paper, three ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry approaches are summarized with a theoretical time-domain model. The difference between the approaches can be attributed to variations in the input field characteristics of the time-domain model. That is, all three approaches of ultrashort-pulse (CARS) thermometry can be simulated with the unified model by only changing the input fields features. As a specific example, the hybrid femtosecond/picosecond CARS is assessed for its use in combustion flow diagnostics; thus, the examination of the input field has an impact on thermometry focuses on vibrational hybrid femtosecond/picosecond CARS. Beginning with the general model of ultrashort-pulse CARS, the spectra with different input field parameters are simulated. To analyze the temperature measurement error brought by the input field impacts, the spectra are fitted and compared to fits, with the model neglecting the influence introduced by the input fields. The results demonstrate that, however the input pulses are depicted, temperature errors still would be introduced during an experiment. With proper field characterization, however, the significance of the error can be reduced.

  3. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water

    NARCIS (Netherlands)

    Besemer, M.; Bloemenkamp, R.; Ariese, F.; van Manen, H.J.

    2016-01-01

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable

  4. A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2014-12-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes.

  5. A study of the eigenvectors of the vibrational modes in crystalline cytidine via high-pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2015-01-01

    Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K and high pressures by evaluating the logarithmic derivative of the vibrational frequency ω with respect to pressure P: [Formula: see text]. Crystalline samples of molecular materials have strong intramolecular bonds and weak intermolecular bonds. This hierarchy of bonding strengths causes the vibrational optical modes localized within a molecular unit ("internal" modes) to be relatively high in frequency while the modes in which the molecular units vibrate against each other ("external" modes) have relatively low frequencies. The value of the logarithmic derivative is a useful diagnostic probe of the nature of the eigenvector of the vibrational modes because stretching modes (which are predominantly internal to the molecule) have low logarithmic derivatives while external modes have higher logarithmic derivatives. In crystalline cytidine, the modes at 85.8, 101.4, and 110.6 cm(-1) are external in which the molecules of the unit cell vibrate against each other in either translational or librational motions (or some linear combination thereof). All of the modes above 320 cm(-1) are predominantly internal stretching modes. The remaining modes below 320 cm(-1) include external modes and internal modes, mostly involving either torsional or bending motions of groups of atoms within a molecule.

  6. Anomalous vibrational modes in few layer WTe2 revealed by polarized Raman scattering and first-principles calculations

    Science.gov (United States)

    Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo; Yuan, Hui; Zhong, Tingting; Meunier, Vincent; Pan, Minghu

    2017-09-01

    When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a 2D geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe2 as a vibrational mode centered at ~86.9 cm-1 in the monolayer splits into two active modes at 82.9 and 89.6 cm-1 in the bilayer. Davydov splitting of these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.

  7. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Directory of Open Access Journals (Sweden)

    H. Baars

    2016-04-01

    Full Text Available A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  8. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Science.gov (United States)

    Baars, Holger; Kanitz, Thomas; Engelmann, Ronny; Althausen, Dietrich; Heese, Birgit; Komppula, Mika; Preißler, Jana; Tesche, Matthias; Ansmann, Albert; Wandinger, Ulla; Lim, Jae-Hyun; Ahn, Joon Young; Stachlewska, Iwona S.; Amiridis, Vassilis; Marinou, Eleni; Seifert, Patric; Hofer, Julian; Skupin, Annett; Schneider, Florian; Bohlmann, Stephanie; Foth, Andreas; Bley, Sebastian; Pfüller, Anne; Giannakaki, Eleni; Lihavainen, Heikki; Viisanen, Yrjö; Hooda, Rakesh Kumar; Nepomuceno Pereira, Sérgio; Bortoli, Daniele; Wagner, Frank; Mattis, Ina; Janicka, Lucja; Markowicz, Krzysztof M.; Achtert, Peggy; Artaxo, Paulo; Pauliquevis, Theotonio; Souza, Rodrigo A. F.; Prakesh Sharma, Ved; Gideon van Zyl, Pieter; Beukes, Johan Paul; Sun, Junying; Rohwer, Erich G.; Deng, Ruru; Mamouri, Rodanthi-Elisavet; Zamorano, Felix

    2016-04-01

    A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  9. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  10. Macrocycle and substituent vibrational modes of nonplanar nickel (II) octaethyltetraphenylporphyrin from its resonance Raman, near-infrared-excited FT Raman, and FT-IR spectra and deuterium isotope shifts

    Energy Technology Data Exchange (ETDEWEB)

    Stichternath, A.; Schweitzer-Stenner, R.; Dreybrodt, W. (Univ. of Bremen (Germany)); Mak, R.S.W.; Li, X.Y. (Hong Kong Univ. of Science and Technology (Hong Kong)); Sparks, L.D.; Shelnutt, J.A. (Sandia National Lab., Albuquerque, NM (United States) Univ. of New Mexico, Albuquerque (United States)); Medforth, C.J.; Smith, K.M. (Univ. of California, Davis (United States))

    1993-04-15

    We have employed Raman dispersion, FT Raman, and FT-IR spectroscopy to identify a large number of resonance Raman lines of Ni(II) octaethyltetraphenylporphyrin dissolved in CS[sub 2]. The Raman depolarization dispersion technique was used to derive the symmetry of the normal modes giving rise to the observed Raman lines. By combining this information and the already available normal coordinates of Ni(II) tetraphenylporphyrin and Ni(II) octaethylporphyrin, many of the Raman-modes of the macrocycle could be assigned. Some resonance-enhanced Raman lines were found to arise from vibrations of the ethyl and phenyl substituents. They were identified by comparing resonance Raman, FT Raman, and FT infrared spectra of the Ni(II) octaethyltetraphenylporphyrin and its d[sub 20] isotopomer. All Raman lines normally referred to as core-size markers are found to be significantly shifted to lower frequencies with respect to their positions in Ni(II) octaethylporphyrin, in accordance with earlier findings (Shelnutt et al., J. Am. Chem. Soc. 113, 4077, 1991). This suggests that the molecule is in a highly nonplanar conformation. This notion is further corroborated by the strong dispersion of the depolarization ratio observed for nearly all A[sub 1g] and A[sub 2g] modes of the macrocycle. 27 refs., 13 figs., 2 tabs.

  11. Low-frequency vibrational excitations in the amorphous and crystalline states of triphenyl phosphite: A neutron and Raman scattering investigation

    Science.gov (United States)

    Hédoux, Alain; Derollez, Patrick; Guinet, Yannick; Dianoux, Albert José; Descamps, Marc

    2001-04-01

    The vibrational density of states in the triphenyl phosphite, measured by inelastic neutron scattering, were obtained during isothermal aging at Ta=210, 213, and 216 K. The low-frequency ωn behavior of the vibrational density of states was observed to be time dependent. This is suggestive of an abortive crystallization process because the ω exponent has not reached the characteristic value of the crystalline state (n=2) at the end of the transformation. The confrontation of inelastic neutron scattering and Raman data in the low-frequency range reveals interesting information about the structural organization in the liquid, the glass, the undercooled liquid, and the glacial state, through the observation of the boson peak.

  12. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  13. Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-Te chalcogenide alloys studied by Raman spectroscopy

    Science.gov (United States)

    Shportko, K.; Revutska, L.; Paiuk, O.; Baran, J.; Stronski, A.; Gubanova, A.; Venger, E.

    2017-11-01

    This work is focused on the compositional dependencies in the Raman spectra of amorphous Ge-As-Se and Ge-Sb-Te chalcogenides with the systematic increase of the Ge-content. Studied Ge-As-Se and Ge-Sb-Te chalcogenides are promising for applications in the photonics, optical, and electronic data storages. Gaussians used to fit the obtained Raman spectra were attributed to the vibrations of the structural units in Ge-Sb-Te and Ge-As-Se samples. Systematic compositional dependencies of the intensities of the characteristic Raman bands correlate with evolution of concentration of the different structural units in Ge-Sb-Te and Ge-As-Se alloys along the studied compositional lines. Obtained compositional trends in the intensities of Raman bands may enable one to predict vibrational properties of other amorphous Ge-Sb-Te and Ge-As-Se chalcogenides.

  14. [A study of phonon vibration like modes for aggregation structure in silicate melts by high temperature Raman spectrum].

    Science.gov (United States)

    Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin

    2010-05-01

    Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.

  15. Evaluation of NaCl Effect on Vibration-Delaminated Metal-Polymer Composites by Improved Micro-Raman Methodology

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2013-01-01

    Full Text Available Polyethylene terephthalate (PET is a polymer coating that protects the electrolytic chromium coated steel (ECCS against aggressive electrolytes like NaCl. It is widely accepted by manufacturers that NaCl has no effect on the PET coating, which is inert. However, we showed that there are some effects at the structural level, caused by vibrations, and facilitated by defects on the layers. The vibrations occurring during the transportation of food containers produce delaminations at given points of the metal-polymer interface, known as antinodes, which in turn may produce PET degradation affecting food quality. The former can be determined by electrochemical measurements, and the changes in composition or structural order can be characterized by Raman. The present work applied this latter technique in experimental samples of PET-coated ECCS sheets by performing perpendicular and parallel analyses to the surface, and determined that it constitutes a new potential methodology to determine the behavior of the composite under the above conditions. The results demonstrated that the delamination areas on the PET facilitated polymer degradation by the electrolyte. Moreover, the Raman characterization evidenced the presence of multilayers and crystalline orderings, which limited its functionality as a protective coating.

  16. Vibrational analysis by Raman spectroscopy of the interface between dental adhesive resin and dentin.

    Science.gov (United States)

    Suzuki, M; Kato, H; Wakumoto, S

    1991-07-01

    The Raman microprobe technique was applied for analysis of the molecular components at the adhesive interface between 4-META/MMA-TBB resin and dentin. The Raman spectra showed that the 4-META molecules in monomer solution were mostly hydrolyzed into 4-MET molecules, which were then co-polymerized with MMA molecules to form resin and resin-reinforced dentin layers. On the basis of line analysis by the Raman microprobe, resin molecules were estimated to penetrate 6 microns into the dentin from the interface. Raman intensity studies indicated that the concentration of 4-MET molecular units in the resin-reinforced dentin was more than four times the concentration in the original monomer solution. This demonstrated the excellent infiltration ability of 4-MET monomer into dentin substrate in situ.

  17. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  18. Vapor-phase Raman spectra, theoretical calculations, and the vibrational and structural properties of cis- and trans-stilbene.

    Science.gov (United States)

    Egawa, Toru; Shinashi, Kiyoaki; Ueda, Toyotoshi; Ocola, Esther J; Chiang, Whe-Yi; Laane, Jaan

    2014-02-13

    The vapor-phase Raman spectra of cis- and trans-stilbene have been collected at high temperatures and assigned. The low-frequency skeletal modes were of special interest. The molecular structures and vibrational frequencies of both molecules have also been obtained using MP2/cc-pVTZ and B3LYP/cc-pVTZ calculations, respectively. The two-dimensional potential map for the internal rotations around the two Cphenyl-C(═C) bonds of cis-stilbene was generated by using a series of B3LYP/cc-pVTZ calculations. It was confirmed that the molecule has only one conformer with C2 symmetry. The energy level calculation with a two-dimensional Hamiltonian was carried out, and the probability distribution for each level was obtained. The calculation revealed that the "gearing" internal rotation in which the two phenyl rings rotate with opposite directions has a vibrational frequency of 26 cm(-1), whereas that of the "antigearing" internal rotation in which the phenyl rings rotate with the same direction is about 52 cm(-1). In the low vibrational energy region the probability distribution for the gearing internal rotation is similar to that of a one-dimensional harmonic oscillator, and in the higher region the motion behaves like that of a free rotor.

  19. Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model

    Directory of Open Access Journals (Sweden)

    M. Filioglou

    2017-11-01

    Full Text Available We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS and the Advanced Microwave Sounding Unit (AMSU satellite product; the Aire Limitée Adaptation dynamique Développement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM numerical weather prediction (NWP system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar. The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are  < 2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50 % up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15±0.40 g kg−1; during summer it is wet (5.54±1.02 g kg−1; and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes

  20. Vibrational Raman and optical studies of Cm in zirconia-based pyrochlores and related oxide matrices

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Z.; Haire, R.G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Raison, P.E. [CEA-DRN/DEC/SPUA/LACA, Commissariat a l' Energie Atomique, Cadarache (France)

    2002-11-01

    Raman spectroscopy has been employed to follow the phase behavior of Cm-Zr oxide materials as a function of Cm:Zr ratio. Three different structural phases, monoclinic, cubic and pyrochlore, are formed when the Cm:Zr ratio is varied from > 0 to 1. Each phase produces a distinct Raman profile in the 100-700 cm{sup -1} spectral region. Up to 10 atom % Cm, the Raman spectra indicate that the monoclinic structure is dominant. Raman bands corresponding to the monoclinic phase are absent in samples containing 20-40 atom % Cm. Concomitantly, a band at {approx}600 cm{sup -1} broadens and increases in intensity with increasing curium content, indicating that the cubic phase is dominant in this concentration range. The pyrochlore oxide structure, which forms at 50 atom % Cm, generates three Raman bands (the center of mass are at 283, 387, 495 cm{sup -1}) out of six bands predicted by nuclear site group analyses. The strongest of these is at 283 cm{sup -1}, and corresponds to the O-Cm-O bending mode. Details of these studies will be compared and discussed with data obtained for comparable systems containing selected analogous 4f-elements. (author)

  1. Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis

    Science.gov (United States)

    Papayannis, A.; Mamouri, R. E.; Amiridis, V.; Remoundaki, E.; Tsaknakis, G.; Kokkalis, P.; Veselovskii, I.; Kolgotin, A.; Nenes, A.; Fountoukis, C.

    2012-05-01

    A strong Saharan dust event that occurred over the city of Athens, Greece (37.9° N, 23.6° E) between 27 March and 3 April 2009 was followed by a synergy of three instruments: a 6-wavelength Raman lidar, a CIMEL sun-sky radiometer and the MODIS sensor. The BSC-DREAM model was used to forecast the dust event and to simulate the vertical profiles of the aerosol concentration. Due to mixture of dust particles with low clouds during most of the reported period, the dust event could be followed by the lidar only during the cloud-free day of 2 April 2009. The lidar data obtained were used to retrieve the vertical profile of the optical (extinction and backscatter coefficients) properties of aerosols in the troposphere. The aerosol optical depth (AOD) values derived from the CIMEL ranged from 0.33-0.91 (355 nm) to 0.18-0.60 (532 nm), while the lidar ratio (LR) values retrieved from the Raman lidar ranged within 75-100 sr (355 nm) and 45-75 sr (532 nm). Inside a selected dust layer region, between 1.8 and 3.5 km height, mean LR values were 83 ± 7 and 54 ± 7 sr, at 355 and 532 nm, respectively, while the Ångström-backscatter-related (ABR355/532) and Ångström-extinction-related (AER355/532) were found larger than 1 (1.17 ± 0.08 and 1.11 ± 0.02, respectively), indicating mixing of dust with other particles. Additionally, a retrieval technique representing dust as a mixture of spheres and spheroids was used to derive the mean aerosol microphysical properties (mean and effective radius, number, surface and volume density, and mean refractive index) inside the selected atmospheric layers. Thus, the mean value of the retrieved refractive index was found to be 1.49( ± 0.10) + 0.007( ± 0.007)i, and that of the effective radiuses was 0.30 ± 0.18 μm. The final data set of the aerosol optical and microphysical properties along with the water vapor profiles obtained by Raman lidar were incorporated into the ISORROPIA II model to provide a possible aerosol composition

  2. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  3. On the impact of Vibrational Raman Scattering of N2/O2 on MAX-DOAS Measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, Johannes; Zielcke, Johannes; Frieß, Udo; Platt, Ulrich; Wagner, Thomas

    2015-04-01

    In remote sensing applications, such as the applications of differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered since they can modify the observed spectra. Inelastic scattering of photons by N2 and O2 molecules can be observed as additional intensity, effectively leading to filling-in of both, solar Fraunhofer lines and absorption bands of atmospheric constituents. The main contribution is due to rotational Raman scattering, which can lead to changes in observed optical densities of absorption lines up to several percent. Measured optical densities are typically corrected for this effect (also known as Ring Effect). In contrast to that Vibrational Raman scattering of N2 and O2 was often thought to be negligible, but also contributes to this effect. We present calculations of Vibrational Raman cross-sections for O2 and N2 for the application in passive DOAS measurements. Consequences of vibrational Raman scattering are red-shifted Fraunhofer structures, so called 'Fraunhofer Ghost' lines (FGL), in scattered light spectra and filling-in of Fraunhofer lines, additional to rotational Raman scattering. We also present first unequivocal observations of FGL at optical densities of up to several 104. From our measurements and calculations of the optical density of these FGL, we conclude, that this phenomenon has to be included in the spectral evaluation of weak absorbers. Its relevance is demonstrated in spectral evaluations of Multi-Axis (MAX)-DOAS data and an agreement with calculated scattering cross-sections is found. To exclude cross-sensitivities with other absorbers, such as water vapour, MAX-DOAS data from different latitudes and different instruments were analysed. We evaluate the influence of the additional intensities due to vibrational Raman scattering on the spectral retrieval of IO, Glyoxal, H2O and NO2 in the blue wavelength range. In the case of NO2 the column densities derived from certain wavelength

  4. To Avoid Chasing Incorrect Chemical Structures of Chiral Compounds: Raman Optical Activity and Vibrational Circular Dichroism Spectroscopies.

    Science.gov (United States)

    Polavarapu, Prasad L; Covington, Cody L; Raghavan, Vijay

    2017-09-20

    A chemical structure (CS) identifies the connectivities between atoms, and the nature of those connections, for a given elemental composition. For chiral molecules, in addition to the identification of CS, the identification of the correct absolute configuration (AC) is also needed. Several chiral natural products are known whose CSs were initially misidentified and later corrected, and these errors were often discovered during the total synthesis of natural products. In this work, we present a new and convenient approach that can be used with Raman optical activity (ROA) and vibrational circular dichroism (VCD) spectroscopies, to distinguish between the correct and incorrect CSs of chiral compounds. This approach involves analyzing the spectral similarity overlap between experimental spectra and those predicted with advanced quantum chemical theories. Significant labor needed for establishing the correct CSs via chemical syntheses of chiral natural products can thus be avoided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Vibrational Phase Contrast Microscopy by Use of Coherent Anti-Stokes Raman Scattering

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2009-01-01

    In biological samples the resonant coherent anti-Stokes Raman scattering signal of less abundant constituents can be overwhelmed by the nonresonant background, preventing detection of those molecules. We demonstrate a method to obtain the phase of the oscillators in the focal volume that allows

  6. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations.

    Science.gov (United States)

    Singh, Harshita; Singh, Swapnil; Srivastava, Anubha; Tandon, Poonam; Bharti, Purnima; Kumar, Sudhir; Maurya, Rakesh

    2014-01-01

    Daidzein (C15H10O4) is a type of isoflavone. It was isolated from Butea monosperma that belongs to the Fabaceae family. Soybeans and soy products are the abundant source of daidzein. It is the subject of investigation for many reasons, as it has got wide applications, such as anti-tumor, anti-estrogen, weak pro-estrogen and anti-cancer activities. In the present study, a complete vibrational assignment is provided for the observed IR and Raman spectra of daidzein. Electronic properties have been analyzed using TD-DFT method for both gaseous and solvent phase. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of daidzein have been determined using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and a good correlation was found between observed and calculated values. The double well potential energy curve of the molecule about three bonds, has been plotted, as obtained from DFT/6-31G basis. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Global reactivity descriptors have been calculated for predicting the chemical reactivity and the stability of chemical systems. Electrostatic potential surface has been plotted for predicting the structure activity relationship. NBO analysis has also been performed to study the stability of the molecule. NLO study reveals the nonlinear properties of the molecule. 1H and 13C NMR spectra have also been studied. Finally, the calculated results were used to simulate infrared and Raman spectra of the title compound which showed a good agreement with the observed spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Antimicrobial activity, structural evaluation and vibrational (FT-IR and FT-Raman) study of pyrrole containing vinyl derivatives

    Science.gov (United States)

    Singh, R. N.; Rawat, Poonam; Sahu, Sangeeta; Kumar, Yashvinder

    2016-02-01

    In this paper we present structural and vibrational study of three vinylpyrrole derivatives: 2-Cyano-3-(1H-pyrrol-2-yl)-acrylamide (CPA), 1-(1H-Pyrrol-2-yl)-Pent-1-en-3-one (PP) and 1-(1H-Pyrrol-2-yl)-but-1-en-3-one (PB), using ab initio, DFT and experimental approaches. The quantum chemical calculation have been performed on B3LYP method and 6-311 + G(d,p) basis set. The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. The experimental FT-IR and Raman study clearly indicate that the compound exist as dimer in solid state. The binding energies of (CPA), (PP) and (PB) dimers are found to be 20.95, 18.75 and 19.18 kcal/mol, respectively. The vibrational analysis shows red shifts in vN-H and vCdbnd O stretching as result of dimer formation. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using NBO analysis. Topological and energetic parameters reveal the nature of interactions in dimer. The local electronic descriptors analyses were used to predict the reactive sites in the molecule. Calculated first static hyperpolarizability of CPA, PP and PB is found to be 10.41 × 10- 30, 18.93 × 10- 30, 18.29 × 10- 30 esu, respectively, shows that investigated molecules will have non-linear optical response and might be used as non-linear optical (NLO) material. These vinylpyrrole compounds (CPA), (PP) and (PB) showed antifungal and antibacterial activity against Aspergillus niger and gram-positive bacteria Bacillus subtili.

  8. Temporal variations in optical and microphysical properties of mineral dust and biomass burning aerosol derived from daytime Raman lidar observations over Warsaw, Poland

    Science.gov (United States)

    Janicka, Lucja; Stachlewska, Iwona S.; Veselovskii, Igor; Baars, Holger

    2017-11-01

    In July 2013, favorable weather conditions caused a severe events of advection of biomass burning particles of Canadian forest fires to Europe. The smoke layers were widely observed, especially in Western Europe. An unusual atmospheric aerosol composition was measured at the EARLINET site in Warsaw, Central Poland, during a short event that occurred between 11 and 21 UTC on 10th July 2013. Additionally to the smoke layer, mineral dust was detected in a separate layer. The long-range dust transport pathway followed an uncommon way; originating in Western Sahara, passing above middle Atlantic, and circulating over British Islands, prior to its arrival to Poland. An effective radius of 560 nm was obtained for Saharan dust over Warsaw. This relatively small effective radius is likely due to the long time of the transport. The aerosol-polarization-Raman PollyXT-UW lidar was used for a successful daytime Raman retrieval of the aerosol optical properties at selected times during this short event. The aerosol vertical structure during the inflow over Warsaw in terms of optical properties and depolarization was analyzed, indicating clear distinction of the layers. The microphysical properties were inverted from the lidar derived optical data for selected ranges as representing the smoke and the mineral dust. For smoke, the effective radius was in the range of 0.29-0.36 μm and the complex refractive index 1.36 + 0.008i, on average. For dust, the values of 0.33-0.56 μm and 1.56 + 0.004i were obtained. An evolution of the aerosol composition over Warsaw during the day was analyzed.

  9. IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil

    Science.gov (United States)

    Singh, J. S.

    2014-09-01

    Infrared (IR) and Raman spectra of uracil and 5-aminouracil have been recorded and analyzed between the region 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke’s exchange in conjunction with Lee-Yang-Parr’s correlation functional and Becke’s three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-aminouracil by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, the most of B3LYP/6-311++G** vibrational frequencies are in the excellent agreement with available experimental assignments and helped in the reassignments of some fundamental vibrational modes. On the basis of calculated results, the assignments of some missing frequencies in the experimental study are proposed. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) are given by 25a‧ + 11a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 6 modes (4a‧ + 2a″) to the NH2 group. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of amino group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the NH2 group in place of the hydrogen atom. All other bands have also been assigned different fundamentals/overtones/combinations.

  10. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of but-2-enoyl fluoride

    Science.gov (United States)

    Durig, James R.; Guirgis, Gamil A.; Jin, Yanping

    1996-06-01

    The Raman (3500-10 cm -1) and infrared (3200-50 cm -1 spectra have been recorded of the fluid and solid phases of but-2-enoyl fluoride (crotonyl fluoride) trans-CH 3CHCHCFO, where the methyl group is trans to the CFO group. From the variable temperature studies of the infrared spectrum of the sample dissolved in liquified Xe, the conformer pair at {836}/{827}cm-1 has been used to determine a ΔH value of 135 ± 11 cm -1 (387 ± 30 cal mol -1), with the s-cis ( syn) form (two double bonds oriented cis to one another) the more stable form. In the Raman and infrared spectra of the solid, the s-cis conformer seems predominant, but even with repeated annealing a spectrum free of signals from the s-trans ( anti) conformer could not be obtained. In fact, in some of the infrared spectra, there appeared to be a slight preference for the trans conformer. The asymmetric torsional fundamental of the s-trans conformer was observed at 104.3 cm -1 with two hot bands and that for the s-cis rotamer at 97.0 cm -1 with one hot band. From these data the potential function governing the conformational interchange was determined, and the potential coefficients are: V1 = -122 ± 1, V2 = 1993 ± 27, V3 = 21 ± 1 and V4 = -88 ± 8 cm -1. The s-trans to s-cis and s-cis to s-trans barriers were determined to be 2044 and 1942 cm -1, respectively, with an enthalpy difference between the conformers of 102 ± 29 cm -1(292 ± 83 cal mol -1). The barriers governing the internal rotation of the CH 3 group for the s-trans and s-cis conformers are calculated to be 1060 ± 17 cm -1 (3.03 ± 0.05 kcal mol -1) and 1042 ± 23 cm -1 (2.98 ± 0.07 kcal mol -1), respectively. A complete vibrational assignment of the normal modes is provided. The structural parameters, force constants, and vibrational frequencies have been determined from ab initio {RHF}/{3-21 G}, {RHF}/{6-31 G∗ } and {MP2 }/{6-31 G∗ } calculations, and the theoretical results are compared with the experimental values when appropriate

  11. Profiling of Saharan dust from the Caribbean to western Africa - Part 1: Layering structures and optical properties from shipborne polarization/Raman lidar observations

    Science.gov (United States)

    Rittmeister, Franziska; Ansmann, Albert; Engelmann, Ronny; Skupin, Annett; Baars, Holger; Kanitz, Thomas; Kinne, Stefan

    2017-11-01

    We present final and quality-assured results of multiwavelength polarization/Raman lidar observations of the Saharan air layer (SAL) over the tropical Atlantic. Observations were performed aboard the German research vessel R/V Meteor during the 1-month transatlantic cruise from Guadeloupe to Cabo Verde over 4500 km from 61.5 to 20° W at 14-15° N in April-May 2013. First results of the shipborne lidar measurements, conducted in the framework of SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud Interaction Experiment), were reported by Kanitz et al.(2014). Here, we present four observational cases representing key stages of the SAL evolution between Africa and the Caribbean in detail in terms of layering structures and optical properties of the mixture of predominantly dust and aged smoke in the SAL. We discuss to what extent the lidar results confirm the validity of the SAL conceptual model which describes the dust long-range transport and removal processes over the tropical Atlantic. Our observations of a clean marine aerosol layer (MAL, layer from the surface to the SAL base) confirm the conceptual model and suggest that the removal of dust from the MAL, below the SAL, is very efficient. However, the removal of dust from the SAL assumed in the conceptual model to be caused by gravitational settling in combination with large-scale subsidence is weaker than expected. To explain the observed homogenous (height-independent) dust optical properties from the SAL base to the SAL top, from the African coast to the Caribbean, we have to assume that the particle sedimentation strength is reduced and dust vertical mixing and upward transport mechanisms must be active in the SAL. Based on lidar observations on 20 nights at different longitudes in May 2013, we found, on average, MAL and SAL layer mean values (at 532 nm) of the extinction-to-backscatter ratio (lidar ratio) of 17±5 sr (MAL) and 43±8 sr (SAL), of the particle linear depolarization ratio of 0

  12. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d/sub 8//sup 1/. [Low temperature spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-05-03

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new /sup 3/B/sub 1//sub g/ ..-->.. /sup 1/A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced /sup 3/A/sub u/-/sup 3/B/sub 1//sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K.

  13. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  14. Spectral dependence of backscattering coefficient of mixed phase clouds over West Africa measured with two-wavelength Raman polarization lidar: Features attributed to ice-crystals corner reflection

    Science.gov (United States)

    Veselovskii, I.; Goloub, P.; Podvin, T.; Tanre, D.; Ansmann, A.; Korenskiy, M.; Borovoi, A.; Hu, Q.; Whiteman, D. N.

    2017-11-01

    The existing models predict that corner reflection (CR) of laser radiation by simple ice crystals of perfect shape, such as hexagonal columns or plates, can provide a significant contribution to the ice cloud backscattering. However in real clouds the CR effect may be suppressed due to crystal deformation and surface roughness. In contrast to the extinction coefficient, which is spectrally independent, consideration of diffraction associated with CR results in a spectral dependence of the backscattering coefficient. Thus measuring the spectral dependence of the cloud backscattering coefficient, the contribution of CR can be identified. The paper presents the results of profiling of backscattering coefficient (β) and particle depolarization ratio (δ) of ice and mixed-phase clouds over West Africa by means of a two-wavelength polarization Mie-Raman lidar operated at 355 nm and 532 nm during the SHADOW field campaign. The lidar observations were performed at a slant angle of 43 degree off zenith, thus CR from both randomly oriented crystals and oriented plates could be analyzed. For the most of the observations the cloud backscatter color ratio β355/β532 was close to 1.0, and no spectral features that might indicate the presence of CR of randomly oriented crystals were revealed. Still, in two measurement sessions we observed an increase of backscatter color ratio to a value of nearly 1.3 simultaneously with a decrease of the spectral depolarization ratio δ355/δ532 ratio from 1.0 to 0.8 inside the layers containing precipitating ice crystals. We attribute these changes in optical properties to corner reflections by horizontally oriented ice plates.

  15. Structural and Raman Vibrational Studies of CeO2-Bi2O3 Oxide System

    Directory of Open Access Journals (Sweden)

    L. Bourja

    2009-01-01

    Full Text Available A series of ceramics samples belonging to the CeO2-Bi2O3 phase system have been prepared via a coprecipitation route. The crystallized phases were obtained by heating the solid precursors at 600∘C for 6 hours, then quenching the samples. X-ray diffraction analyses show that for x<0.20 a solid solution Ce1−xBixO2−x/2 with fluorine structure is formed. For x ranging between 0.25 and 0.7, a tetragonal β′ phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new tetragonal β phase appears. The β′ phase is postulated to be a superstructure of the β phase. Finally, close to x=1, the classical monoclinic α Bi2O3 structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0 and 1.

  16. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    Science.gov (United States)

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  18. Lidar to lidar calibration

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Villanueva, Héctor

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and correspondi...

  19. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  20. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine.

    Science.gov (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2014-01-01

    The FTIR and FT-Raman spectra of 1-(m-(trifluoromethyl)phenyl)piperazine [TFMPP] have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of the compound was obtained by the density functional theory using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. A detailed interpretation of the infrared and Raman spectra were also reported based on potential energy distribution (PED). UV-Vis spectrum of the compound was recorded and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. Furthermore, molecular electrostatic potential is performed and also the calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study

    Science.gov (United States)

    Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang

    2016-01-01

    Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm−1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1–2 wall layered nanotubes and monolayer flat sheets. PMID:27620879

  2. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine)

    Science.gov (United States)

    Singh, J. S.

    2015-02-01

    FT-IR (400-4000 cm-1) and Raman spectra (200-4000 cm-1) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a‧ + 13a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 9 modes (5a‧ + 4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3

  3. Vibrational properties of SrCu{sub 2}O{sub 2} studied via Density Functional Theory calculations and compared to Raman and infrared spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Huyberechts, G. [FLAMAC, Technologiepark 903, 9052 Zwijnaarde (Belgium); Servet, B. [Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau cedex France (France); Chaix-Pluchery, O. [Laboratoire des Matériaux et du Génie Physique, Grenoble INP—Minatec, 3, parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1 (France)

    2013-08-31

    The SrCu{sub 2}O{sub 2} material is a p-type transparent conductive oxide. A theoretical study of the SrCu{sub 2}O{sub 2} crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu{sub 2}O{sub 2} crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results. - Highlights: ► The symmetry properties of the optical phonons of the SrCu{sub 2}O{sub 2} crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

  4. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant population...... in beta-sheet shows amide I and amide II ROA bands similar to those of beta-sheet poly(L-lysine), which suggests that the C-terminal domain of the prion protein is able to support unusually flat beta-sheets. A principal component analysis (PCA) that identifies protein structural types from ROA band...

  5. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic......The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  6. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    Science.gov (United States)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  7. Vertically resolved light-absorption characteristics and the influence of relative humidity on particle properties: Multiwavelength Raman lidar observations of East Asian aerosol types over Korea

    Science.gov (United States)

    Noh, Young M.; Müller, Detlef; Mattis, Ina; Lee, Hanlim; Kim, Young J.

    2011-03-01

    Optical and microphysical particle properties, including the particle single-scattering albedo, were derived from multiwavelength aerosol Raman lidar observations at Gwangju (35.10°N, 126.53°E), and Anmyeon Island (36.54°N, 126.33°E), South Korea. The results present aerosol properties in various heights of the atmospheric aerosol layers on 12 different measurement days. The measurement cases differ in terms of aerosol loading as well as aerosol types (long-range transported urban/industrial haze from China, regional/local haze that mainly originated from the Korean peninsula, and smoke from forest fires in east Siberia). The origin of the particle plumes was determined from chemical transport modeling with the FLEXPART model. We find comparably clear differences between the optical and microphysical properties of the aerosol types. Local haze aerosols show effective radii of 0.32 ± 0.02 μm at relative humidity of 60-80%. The effective radii of urban/industrial haze and smoke aerosols are approximately 0.26 μm and 0.27 μm at relative humidity of 35-60%. Light absorption, expressed in terms of single-scattering albedo, is 0.87 ± 0.02 (at 532 nm) for urban/industrial haze from China. This value is considerably lower than the single-scattering albedo of smoke aerosols from Siberia and northern China (0.92 at 532 nm) and of regional/local haze aerosols (0.97 ± 0.01 at 532 nm). We find a hygroscopic growth factor (from relative humidity of 30% to relative humidity of 85%) of 1.49 ± 0.36, if we consider all measurements.

  8. Detection of Atmospheric Composition Based on Lidar

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinye; Tong Yala; Yang Xiaoling; Gong Jiaoli [School of science, Hubei University of Technology, Wuhan 430068 (China); Gong Wei, E-mail: yezi.zh@163.com [State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079 (China)

    2011-02-01

    A summary overview about the types of lidar and their own applications on atmosphere detection is presented. Measurement of atmospheric aerosols by Mie lidar and Raman lidar is focused. The vertical profiles of aerosols in the atmosphere are retrieved. And at the same time, through analyzing aerosol vertical content distribution, the atmosphere boundary layer and the cloud are also observed. All the results show that the lidar has good performance on detecting the atmospheric composition.

  9. Exploring the Atmosphere with Lidars

    Indian Academy of Sciences (India)

    2 by oxygen and water molecules at heightz, respectively and T(zo' z) is the transmission correction term (ratio of atmospheric transmissivity at oxygen Raman backscattering to that of water vapor Raman scattering from the !idar at height Zo to height z). Differential Absorption Lidar (DIAL). A DIAL system is similar to a LIDAR ...

  10. Raman and Surface Enhanced Raman of Biological Material

    National Research Council Canada - National Science Library

    Guicheteau, Jason A; Gonser, Kristina; Christesen, Steven Dale

    2004-01-01

    .... Vibrational spectroscopic methods such as Raman and surface enhanced Raman scattering (SERS) provide rapid detailed fingerprint information about the molecular composition of biomaterial in a non-destructive manner...

  11. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime

    Science.gov (United States)

    Suvitha, A.; Periandy, S.; Boomadevi, S.; Govindarajan, M.

    2014-01-01

    In this work, the vibrational spectral analysis is carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for pycolinaldehyde oxime (PAO) (C6H6N2O) molecule. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on HF and B3LYP methods with 6-311++G(d,p) basis set. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The optimized geometric parameters are compared with experimental values of PAO. The non linear optical properties, NBO analysis, thermodynamics properties and mulliken charges of the title molecule are also calculated and interpreted. A study on the electronic properties, such as HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) are performed. The effects due to the substitutions of CHdbnd NOH ring are investigated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  12. Resonance Raman and vibrational mode analysis used to predict ligand geometry for docking simulations of a water soluble porphyrin and tubulin.

    Science.gov (United States)

    McMicken, Brady; Parker, James E; Thomas, Robert J; Brancaleon, Lorenzo

    2016-09-01

    The ability to modify the conformation of a protein by controlled partial unfolding may have practical applications such as inhibiting its function or providing non-native photosensitive properties. A water-soluble porphyrin, meso-tetrakis (p-sulfonatophenyl) porphyrin (TSPP), non-covalently bound to tubulin can be used as a photosensitizer, which upon irradiation can lead to conformational changes of the protein. To fully understand the mechanism responsible for this partial unfolding and determine the amino acid residues and atoms involved, it is essential to find the most likely binding location and the configuration of the ligand and protein. Techniques typically used to analyze atomic position details, such as nuclear magnetic resonance and X-ray crystallography, require large concentrations, which are incompatible with the dilute conditions required in experiments for photoinduced mechanisms. Instead, we develop an atomistic description of the TSPP-tubulin complex using vibrational mode analysis from density functional theory calculations correlated to resonance Raman spectra of the porphyrin paired with docking simulations. Changes in the Raman peaks of the porphyrin molecule correlate with changes in its structural vibrational modes when bound to tubulin. The data allow us to construct the relative geometry of the porphyrin when bound to protein, which are then used with docking simulations to find the most likely configuration of the TSPP-tubulin complex.

  13. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars

    Directory of Open Access Journals (Sweden)

    E.A. Lalla

    2016-07-01

    Full Text Available A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1 the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2 Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldspar/plagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.

  14. Raman and IR studies and DFT calculations of the vibrational spectra of 2,4-Dithiouracil and its cation and anion.

    Science.gov (United States)

    Singh, R; Yadav, R A

    2014-09-15

    Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5C6 bond length increases and loses its double bond character while the C4C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled NH stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Visualizing Resonances in the Complex Plane with Vibrational Phase Contrast Coherent Anti-Stokes Raman Scattering (CARS)

    NARCIS (Netherlands)

    Jurna, M.; Garbacik, E.T.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Otto, Cornelis; Offerhaus, Herman L.

    2010-01-01

    In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant

  16. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I)

    Science.gov (United States)

    Singh, J. S.

    2014-01-01

    Raman (200-4000 cm-1) and FT-IR (400-4000 cm-1) spectra of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X = F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  17. Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-04

    Defects are ubiquitous in carbon nanotubes (CNTs), despite their large formation energies, and have astounding effects on their physicochemical properties. In this study, we employ density-functional theory (DFT) calculations to study systematically the atomic structure, stability, and characteristic vibrations of pristine and defected zigzag CNTs, where the defects are of the form of Stone-Wales (SW) and diatom vacancies (DV). The DFT optimized structures and the phonon modes are subsequently used in conjunction with a semiempirical bond-polarization model to study the nonresonant Raman spectra. For each defect type, we find two CNT structures with defects parallel or oblique to the tube axis. For the SW defects, the two structures have similar formation energies, whereas for the DV defect, only defects parallel to the tube axis are likely to exist. The results show that the defects induce a blue shift in the radial breathing mode (RBM) of metallic CNTs, whereas this mode is not shifted for semiconducting CNTs. However, the RBM shift or its Raman profile is not sensitive to the defect type. The G-band showed more sensitivity to the defects in the form of a red/blue shift in the frequency, or a partial/complete defragmentation of the G bands.

  18. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer.

    Science.gov (United States)

    Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R

    2017-03-31

    The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.

  19. Raman Lidar Temperature Profiler Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft wake vortices is especially hazardous during the landing and taking-off phases of flight. It is essential to obtain an accurate atmospheric temperature...

  20. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, A [Australian Bureau of Meterology; Young, S

    2015-02-01

    The objective of this field campaign was to evaluate the performance of the new Leosphere R-MAN 510 lidar, procured by the Australian Bureau of Meteorology, by testing it against the MicroPulse Lidar (MPL) and Raman lidars, at the Darwin Atmospheric Radiation Measurement (ARM) site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To accomplish this evaluation, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer (VCEIL) for three months (from 20 January 2013 to 20 April 2013) in order to collect a sufficient sample size for statistical comparisons.

  1. Multi-wavelength Raman lidar, sun photometric and aircraft measurements in combination with inversion models for the estimation of the aerosol optical and physico-chemical properties over Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2012-07-01

    Full Text Available A novel procedure has been developed to retrieve, simultaneously, the optical, microphysical and chemical properties of tropospheric aerosols with a multi-wavelength Raman lidar system in the troposphere over an urban site (Athens, Greece: 37.9° N, 23.6° E, 200 m a.s.l. using data obtained during the European Space Agency (ESA THERMOPOLIS project, which took place between 15–31 July 2009 over the Greater Athens Area (GAA. We selected to apply our procedure for a case study of intense aerosol layers that occurred on 20–21 July 2009. The National Technical University of Athens (NTUA EOLE 6-wavelength Raman lidar system has been used to provide the vertical profiles of the optical properties of aerosols (extinction and backscatter coefficients, lidar ratio and the water vapor mixing ratio. An inversion algorithm was used to derive the mean aerosol microphysical properties (mean effective radius (reff, single-scattering albedo ω and mean complex refractive index (m at selected heights in the 2–3 km height region. We found that reff was 0.14–0.4 (±0.14 μm, ω was 0.63–0.88 (±0.08 (at 532 nm and m ranged from 1.44 (±0.10 + 0.01 (±0.01i to 1.55 (±0.12 + 0.06 (±0.02i, in good agreement (only for the reff values with in situ aircraft measurements. The water vapor and temperature profiles were incorporated into the ISORROPIA II model to propose a possible in situ aerosol composition consistent with the retrieved m and ω values. The retrieved aerosol chemical composition in the 2–3 km height region gave a variable range of sulfate (0–60% and organic carbon (OC content (0–50%, although the OC content increased (up to 50% and the sulfate content dropped (up to 30% around 3 km height; the retrieved low ω value (0.63, indicates the presence of absorbing biomass burning smoke mixed with urban haze. Finally, the retrieved

  2. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin.

    Science.gov (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2013-10-01

    The FTIR and FT-Raman spectra of Isoxanthopterin have been recorded in the region 4000-450 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of Isoxanthopterin were obtained by the density functional theory (DFT) using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were scaled and compared with experimental values. The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-visible spectrum was also recorded and compared with the theoretical values. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0), related properties (β, α0 and Δα) and the Mulliken charges of the molecule were also computed using DFT calculations. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. Information about the charge density distribution of the molecule and its chemical reactivity has been obtained by mapping molecular electrostatic potential surface. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant population......-sheet poly(L-lysine) contains up-and-down antiparallel beta-sheets based on the hairpin motif. The ROA spectrum of beta-sheet poly(L-lysine) was compared with ROA data on a number of native proteins containing different types of beta-sheet. Amide I and amide II ROA band patterns observed in beta-sheet poly...... in beta-sheet shows amide I and amide II ROA bands similar to those of beta-sheet poly(L-lysine), which suggests that the C-terminal domain of the prion protein is able to support unusually flat beta-sheets. A principal component analysis (PCA) that identifies protein structural types from ROA band...

  4. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations

    Science.gov (United States)

    Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R.

    2015-03-01

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the 13C NMR and 1H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  5. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project

    Directory of Open Access Journals (Sweden)

    A. Papayannis

    2005-01-01

    Full Text Available We report on the vertical distributions of Saharan dust aerosols over the N.E. Mediterranean region, which were obtained during a typical dust outbreak on August 2000, by two lidar systems located in Athens and Thessaloniki, Greece, in the frame of the European EARLINET project. MODIS and ground sun spectrophotometric data, as well as air-mass backward trajectories confirmed the existence of Saharan dust in the case examined, which was also successfully forecasted by the DREAM dust model. The lidar data analysis for the period 2000-2002 made possible, for the first time, an estimation of the vertical extent of free tropospheric dust layers [mean values of the aerosol backscatter and extinction coefficients and the extinction-to-backscatter ratio (lidar ratio, LR at 355 nm], as well as a seasonal distribution of Saharan dust outbreaks over Greece, under cloud-free conditions. A mean value of the lidar ratio at 355 nm was obtained over Athens (53±1 sr and over Thessaloniki (44±2 sr during the Saharan dust outbreaks. The corresponding aerosol optical thickness (AOT at 355 nm, in the altitude range 0-5 km, was 0.69±0.12 and 0.65±0.10 for Athens and Thessaloniki, respectively (within the dust layer the AOT was 0.23 and 0.21, respectively. Air-mass back-trajectory analysis performed in the period 2000-2002 for all Saharan dust outbreaks over the N.E. Mediterranean indicated the main pathways followed by the dust aerosols.

  6. Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs /InAs1 -xSbx

    Science.gov (United States)

    Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.

    2017-09-01

    The InAs /InAs1 -xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs /AlAs and InAs /GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs /InAs1 -xSbx system when compared to the other two systems. In this work, we report a polarized Raman study of the vibrational properties of the InAs /InAs1 -xSbx superlattices (SLs) as well as selected InAs1 -xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like "forbidden" LO mode is observed in two parallel-polarization configurations. The InAs1 -xSbx alloys lattice matched to the substrate (xSb˜0.09 ) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb˜0.35 ) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs /InAs1 -xSbx and InAs /GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural

  7. Water Vapor Measurements by Mobile Raman Lidar Over The Mediterranean Sea in the Framework of HyMex: Application to Multi-Platform Validation of Moisture Profiles

    Science.gov (United States)

    Totems, Julien; Chazette, Patrick; Shang, Xiaoxia; Flamant, Cyrille; Raut, Jean-Christophe; Doerenbecher, Alexis; Ducroq, Véronique; Bock, Olivier; Marnas, Fabien

    2016-06-01

    The Water Aerosol Lidar (WALI) system, deployed for 14 weeks during 2012 & 2013 on the island of Menorca, provided the Hydrological cycle in the Mediterranean eXperiment (HyMeX) with an opportunity to perform a multi-platform comparison on moisture retrievals at the timescales relevant for extreme precipitation events in the West Mediterranean basin. After calibration, the WALI lidar yields nighttime profiles of water vapor with ~7% accuracy from the ground up to 7 km, and daytime coverage of the lower layers, alongside common aerosol retrievals. It is used to characterize the water vapor profile product given by the IASI instrument on-board MetOp-B, and the fields simulated by the Météo-France AROME-WMED model and the open-source WRF model. IASI is found to be reliable above 1 km altitude, and the two models obtain similar high scores in the middle troposphere; WRF beneficiates from a more accurate modelling of the planetary boundary layer.

  8. Water Vapor Measurements by Mobile Raman Lidar Over The Mediterranean Sea in the Framework of HyMex: Application to Multi-Platform Validation of Moisture Profiles

    Directory of Open Access Journals (Sweden)

    Totems Julien

    2016-01-01

    Full Text Available The Water Aerosol Lidar (WALI system, deployed for 14 weeks during 2012 & 2013 on the island of Menorca, provided the Hydrological cycle in the Mediterranean eXperiment (HyMeX with an opportunity to perform a multi-platform comparison on moisture retrievals at the timescales relevant for extreme precipitation events in the West Mediterranean basin. After calibration, the WALI lidar yields nighttime profiles of water vapor with ~7% accuracy from the ground up to 7 km, and daytime coverage of the lower layers, alongside common aerosol retrievals. It is used to characterize the water vapor profile product given by the IASI instrument on-board MetOp-B, and the fields simulated by the Météo-France AROME-WMED model and the open-source WRF model. IASI is found to be reliable above 1 km altitude, and the two models obtain similar high scores in the middle troposphere; WRF beneficiates from a more accurate modelling of the planetary boundary layer.

  9. Normal coordinate analysis and vibrational spectroscopy (FT-IR and FT-Raman) studies of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid using ab initio HF and DFT method

    Science.gov (United States)

    Prabakaran, A.; Muthu, S.

    2012-12-01

    The FT-IR and FT-Raman spectra of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid (2ADMA) were recorded in the region 4000-400 cm-1 and 4000-100 cm-1, respectively. The geometrical structure, harmonic vibrational frequency, infrared intensity, Raman activities and bonding features of this compound was carried out by ab initio HF and DFT methods with 6-31G (d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The electric dipole moment (μ) and the first-order hyperpolarizability (β0) values have been the computed quantum mechanically. The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The charge delocalizations of these molecules have been analyzed using NBO analysis. The solvent effects have been calculated using TD-DFT in combination with the polarized continuum model (PCM), and the results are in good agreement with experimental measurements. The other molecular properties like Mulliken population analysis, electrostatic potential (ESP) and thermodynamic properties of the title compound at the different temperatures have been calculated. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound which shows good agreement with observed spectra.

  10. Anharmonic vibrational and electronic spectral study of 2-amino-4-hydroxy-6-methylpyrimidine: A combined experimental (FTIR, FT-Raman, UV-Vis) and theoretical (DFT, MP2) approach

    Science.gov (United States)

    Faizan, Mohd; Bhat, Sheeraz Ahmad; Alam, Mohammad Jane; Afroz, Ziya; Ahmad, Shabbir

    2017-11-01

    A combined experimental and theoretical study of the structure, vibrational spectra and electronic spectra of 2-amino-4-hydroxy-6-methylpyrimidine in the ground electronic state are reported. Anharmonic frequencies for the most stable conformer have been simulated using GVPT2, VSCF and PT2-VSCF methods with potential energy surface calculated using MP2 and DFT level of theory with 6-311G(d,p) basis set. The vibrational spectra (FTIR and FT-Raman) are interpreted in terms of fundamental, combination and overtone bands. It is found that the experimental and the VPT2 computed frequencies are in well agreement. The experimental and the calculated UV-Vis spectrum in gas and ethanol solvent are found comparable. Furthermore, HOMO-LUMO analysis, NLO, MEP, and natural charges of the molecule are also reported.

  11. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-01

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations.

  12. Coherence between multi-instrument and multi-model atmospheric moisture retrievals and a ground-based Raman-lidar reference in the framework of the HyMeX SOP 1

    Science.gov (United States)

    Chazette, Patrick; Flamant, Cyrille; Totems, Julien; Shangt, Xiaoxia; Raut, Jean-Christophe; Boufies-Cloche, Sophie; Doerenbecher, Alexis; Ducrocq, Véronique

    2015-04-01

    The Mediterranean area is one of the main climate change hot spot regions where the water cycle needs to be better understood in order to make progress on the predictability of high-impact weather events and their evolution with global change. Characterizing the water vapour variability across the Mediterranean basin at hourly to synoptic timescales is of paramount importance to advance knowledge on the life cycle of heavy precipitation events and improve forecast in numerical weather prediction models. However, such a characterization based on a single instrument or model remains elusive and a multi-instrument, multi-model approach is needed to properly apprehend the water vapour variability at the relevant timescales, especially over data scarce regions such as oceans and seas. This approach has been undertaken during the Hydrological cycle in the Mediterranean eXperiment (HyMeX) in September and October 2012 during which part of observational effort has been established on Menorca to characterize the upwind marine low-level flow, essential to determine the strength, timing and precise location of the subsequent precipitation at the Mediterranean coastline. The ground-based Water vapor Raman Lidar (WALI), the airborne LEANDRE-2 DIAL water vapor lidar and boundary layer pressurized balloons were implemented during the first Special Observing Periods (SOP 1) and contributed to characterize water vapour variability in the vicinity of the Balearic Islands. Furthermore, analyses from regional and global numerical models (AROME-WMED, ECMWF and WRF) were also available over large domains encompassing part or the whole of the Western Mediterranean basin. We will present the comparisons of the water vapor mixing ratio profiles and water vapor integrated content derived from these different data sets and we will show that good agreements is found between them. This work is an essential step towards ensuring that the water vapour datasets (both measurements and simulations

  13. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and corresponding...... lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from the reference lidar measurements are given for information only....

  14. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: A comparison to form 2

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A. K.

    2013-03-01

    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  15. Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields.

    Science.gov (United States)

    Xiao, Yuming; Koutmos, Markos; Case, David A; Coucouvanis, Dimitri; Wang, Hongxin; Cramer, Stephen P

    2006-05-14

    We have used four vibrational spectroscopies--FT-IR, FT-Raman, resonance Raman, and 57Fe nuclear resonance vibrational spectroscopy (NRVS)--to study the normal modes of the Fe-S cluster in [(n-Bu)4N]2[Fe4S4(SPh)4]. This [Fe4S4(SR)4]2- complex serves as a model for the clusters in 4Fe ferredoxins and high-potential iron proteins (HiPIPs). The IR spectra exhibited differences above and below the 243 K phase transition. Significant shifts with 36S substitution into the bridging S positions were also observed. The NRVS results were in good agreement with the low temperature data from the conventional spectroscopies. The NRVS spectra were interpreted by normal mode analysis using optimized Urey-Bradley force fields (UBFF) as well as from DFT theory. For the UBFF calculations, the parameters were refined by comparing calculated and observed NRVS frequencies and intensities. The frequency shifts after 36S substitution were used as an additional constraint. A D 2d symmetry Fe4S4S'4 model could explain most of the observed frequencies, but a better match to the observed intensities was obtained when the ligand aromatic rings were included for a D 2d Fe4S4(SPh)4 model. The best results were obtained using the low temperature structure without symmetry constraints. In addition to stretching and bending vibrations, low frequency modes between approximately 50 and 100 cm(-1) were observed. These modes, which have not been seen before, are interpreted as twisting motions with opposing sides of the cube rotating in opposite directions. In contrast with a recent paper on a related Fe4S4 cluster, we find no need to assign a large fraction of the low frequency NRVS intensity to 'rotational lattice modes'. We also reassign the 430 cm(-1) band as primarily an elongation of the thiophenolate ring, with approximately 10% terminal Fe-S stretch character. This study illustrates the benefits of combining NRVS with conventional Raman and IR analysis for characterization of Fe-S centers. DFT

  16. Lidar to lidar calibration of Ground-based Lidar

    DEFF Research Database (Denmark)

    Fernandez Garcia, Sergio; Courtney, Michael

    This report presents the result of the lidar to lidar calibration performed for ground-based lidar. Calibration is here understood as the establishment of a relation between the reference lidar wind speed measurements with measurement uncertainties provided by measurement standard and correspondi...

  17. Vibrational Relaxation in Neat Crystals of Naphthalene by Picosecond CARS

    NARCIS (Netherlands)

    Hesp, Ben H.; Wiersma, Douwe A.

    1980-01-01

    Picosecond delayed CARS experiments on totally symmetric modes in naphthalene at 1.5 K are reported. The Raman lineshape of the vibrational excitons is lorentzian and vibrational relaxation can be surprisingly slow. The Raman lineshape of the Ag exciton level of the 766 cm-1 vibrational mode reveals

  18. Supramolecular organization of perfluorinated 1H-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies.

    Science.gov (United States)

    Quesada-Moreno, María M; Avilés-Moreno, Juan Ramón; López-González, Juan Jesús; Jacob, Kane; Vendier, Laure; Etienne, Michel; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M

    2017-01-04

    1H-Indazole derivatives exhibit a remarkable property since some of them form chiral supramolecular structures starting from achiral monomers. The present work deals with the study of three perfluorinated 1H-indazoles that resolve spontaneously as conglomerates. These conglomerates can contain either a pure enantiomer (one helix) or a mixture of both enantiomers (both helices) with an enantiomeric excess (e.e.) of one of them. The difficulty of the structural analysis of these types of compounds is thus clear. We outline a complete strategy to determine the structures and configurations (M or P helices) of the enantiomers (helices) forming the conglomerates of these perfluorinated 1H-indazoles based on X-ray crystallography, solid state NMR spectroscopy and different solid state vibrational spectroscopies that are either sensitive (VCD) or not (FarIR, IR and Raman) to chirality, together with quantum chemical calculations (DFT).

  19. Lidar to lidar calibration phase 2

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the results from phase 2 of a lidar to lidar (L2L) calibration procedure. Phase two of the project included two measurement campaigns conducted at given sites. The purpose was to find out if the lidar-to-lidar calibration procedure can be conducted with similar results...

  20. Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements.

    Science.gov (United States)

    Donovan, D P; Carswell, A I

    1997-12-20

    The use of powerful Raman backscatter lidars enables one to measure the stratospheric aerosol extinction profile independently of the backscatter, thereby obtaining additional information to aid in retrieving the physical characteristics of the sampled aerosol. We used principal component analysis to construct a self-consistent method for the retrieval of aerosol bulk physical and optical properties from multiwavelength elastic and/or inelastic Raman backscatter lidar signals. The procedure is applied to synthetic and actual lidar signals. We found that aerosol surface area and volume can be usefully estimated and that the use of Raman-derived extinction data leads to a notable improvement in the accuracy of the estimations.

  1. Lidar to lidar calibration phase 1

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents a feasibility study of a lidar to lidar (L2L) calibration procedure. Phase one of the project was conducted at Høvsøre, Denmark. Two windcubes were placed next to the 116m met mast and different methods were applied to obtain the sensing height error of the lidars. The purpose...... is to find the most consistent method and use it in a potential lidar to lidar calibration procedure....

  2. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  3. New lidar challenges for gas hazard management in industrial environments

    Science.gov (United States)

    Cézard, Nicolas; Liméry, Anasthase; Bertrand, Johan; Le Méhauté, Simon; Benoit, Philippe; Fleury, Didier; Goular, Didier; Planchat, Christophe; Valla, Matthieu; Augère, Béatrice; Dolfi-Bouteyre, Agnès.

    2017-10-01

    The capability of Lidars to perform range-resolved gas profiles makes them an appealing choice for many applications. In order to address new remote sensing challenges, arising from industrial contexts, Onera currently develops two lidar systems, one Raman and one DIAL. On the Raman side, a high spatial-resolution multi-channel Raman Lidar is developed in partnership with the French National Radioactive Waste Management Agency (Andra). This development aims at enabling future monitoring of hydrogen gas and water vapor profiles inside disposal cells containing radioactive wastes. We report on the development and first tests of a three-channel Raman Lidar (H2, H2O, N2) designed to address this issue. Simultaneous hydrogen and water vapor profiles have been successfully performed along a 5m-long gas cell with 1m resolution at a distance of 85 m. On the DIAL side, a new instrumental concept is being explored and developed in partnership with Total E and P. The objective is to perform methane plume monitoring and flux assessment in the vicinity of industrials plants or platforms. For flux assessment, both gas concentration and air speed must be profiled by lidar. Therefore, we started developing a bi-function, all-fiber, coherent DIAL/Doppler Lidar. The first challenge was to design and build an appropriate fiber laser source. The achieved demonstrator delivers 200 W peak power, polarized, spectrally narrow (<15 MHz), 110 ns pulses of light out of a monomode fiber at 1645 nm. It fulfills the requirements for a future implementation in a bi-function Dial/Doppler lidar with km-range expectation. We report on the laser and lidar architecture, and on first lidar tests at 1645 nm.

  4. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    J. KAO; D. COOPER; ET AL

    2000-11-01

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  5. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  6. Vibrational spectroscopy at very high pressures. Part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Adams, David M.; Berg, Rolf W.; Williams, Alan D.

    1981-01-01

    Raman and far-IR mode frequency shifts with pressure have been observed under hydrostatic conditions in a gasketed diamond anvil cell (d.a.c.). Using compressibilities calculated from unit cell constants and lattice energies, Grüneisen parameters gammai have been obtained for all observed modes...... pressure curves for K2SnCl6 and [(CH3)4N]2MCl6 (M=Sn, Te, Pt) are discussed in relation to their structures. Shifts of nu-tilde i with temperature for K2ReCl6 and K2PtCl6 are analyzed into explicit and implicit anharmonic contributions. The Journal of Chemical Physics is copyrighted by The American...

  7. Lidar Inter-Comparison Exercise Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Protat, Alain [Atmospheric Radiation Measurement Climate Research Facility (ARM), Northern Territory (Australia). Darwin Site; Young, S. [CSIRO, Western Australia (Australia). Marine and Atmospheric Research

    2015-02-01

    The objective of this IOP was to evaluate the performances of the new Leosphere R-MAN 510 lidar procured by the Australian Bureau of Meteorology, by testing it against the MPL and Raman lidars at the Darwin ARM site. This lidar is an eye-safe (355 nm), turn-key mini Raman lidar, which allows for the detection of aerosols and cloud properties, and the retrieval of particulate extinction profiles. To do so, the R-MAN 510 lidar has been operated at the Darwin ARM site, next to the MPL, Raman lidar, and Vaisala ceilometer for three months (from 20 January 2013 to 20 April 2013) in order to collect a good sample for statistical comparisons. The comparisons with the Raman lidar were not performed, since the Raman lidar attenuated backscatter and depolarization ratio product was not available. A new product has just been delivered to the ARM archive as a value-added product, hence this study will continue. Nevertheless we have developed software to match the different space and time resolutions of the other lidars and project the data onto a common grid to permit detailed comparison of the instruments’ performance and an enhanced analysis of clouds and aerosols through the use of composite data products, like the ratios of attenuated backscatters, attenuated scattering ratios and depolarization ratios. Comparisons between the MPL and R-MAN510 lidar data exhibit large differences in total attenuated backscatter at 355 and 532 nm, attenuated scattering ratios, and aerosol volume depolarization ratios. Differences in attenuated backscatter result mainly from the different relative contributions of scattering from molecules and particles at the different wavelengths, but there are some intriguing differences that will require further investigations. The differences in volume depolarization ratios are due to the much larger contribution of molecular returns to the volume depolarization ratio (5 times larger at 355 nm than at 532 nm). The R-MAN510 lidar is also found to be

  8. Industrial applications of Raman spectroscopy

    Science.gov (United States)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  9. Low-Pass Parabolic FFT Filter for Airborne and Satellite Lidar Signal Processing

    OpenAIRE

    Zhongke Jiao; Bo Liu; Enhai Liu; Yongjian Yue

    2015-01-01

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for l...

  10. Extending and Merging the Purple Crow Lidar Temperature Climatologies Using the Inversion Method

    Science.gov (United States)

    Jalali, Ali; Sica, R. J.; Argall, P. S.

    2016-06-01

    Rayleigh and Raman scatter measurements from The University of Western Ontario Purple Crow Lidar (PCL) have been used to develop temperature climatologies for the stratosphere, mesosphere, and thermosphere using data from 1994 to 2013 (Rayleigh system) and from 1999 to 2013 (vibrational Raman system). Temperature retrievals from Rayleigh-scattering lidar measurements have been performed using the methods by Hauchecorne and Chanin (1980; henceforth HC) and Khanna et al. (2012). Argall and Sica (2007) used the HC method to compute a climatology of the PCL measurements from 1994 to 2004 for 35 to 110 km, while Iserhienrhien et al. (2013) applied the same technique from 1999 to 2007 for 10 to 35 km. Khanna et al. (2012) used the inversion technique to retrieve atmospheric temperature profiles and found that it had advantages over the HC method. This paper presents an extension of the PCL climatologies created by Argall and Sica (2007) and Iserhienrhien et al. (2013). Both the inversion and HC methods were used to form the Rayleigh climatology, while only the latter was adopted for the Raman climatology. Then, two different approaches were used to merge the climatologies from 10 to 110 km. Among four different functional identities, a trigonometric hyperbolic relation results in the best choice for merging temperature profiles between the Raman and Low level Rayleigh channels, with an estimated uncertainty of 0.9 K for merging temperatures. Also, error function produces best result with uncertainty of 0.7 K between the Low Level Rayleigh and High Level Rayleigh channels. The results show that the temperature climatologies produced by the HC method when using a seed pressure are comparable to the climatologies produced by the inversion method. The Rayleigh extended climatology is slightly warmer below 80 km and slightly colder above 80 km. There are no significant differences in temperature between the extended and the previous Raman channel climatologies. Through out

  11. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  12. Raman active modes of NiSi crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wan Li, E-mail: liwan_china@yahoo.com.c [Department of Physics, Wenzhou University (China); Tang Bo; Cheng Xinhong; Ren Yiming; Zhang Xuefei; Xu Dapeng; Luo Haijun; Huang Yunmi [Department of Physics, Wenzhou University (China)

    2009-08-01

    Raman scattering intensities of the NiSi Raman-active modes have been calculated with three Raman measurement configurations, which can be used for the symmetry assignment of the NiSi Raman peaks. Raman-active vibrations of the NiSi crystal have also been theoretically studied. Results show that the lattices with A{sub g} and B{sub 2g} modes vibrate only in the plane normal to the NiSi[0 1 0] direction while the lattices with B{sub 1g} and B{sub 3g} modes vibrate only along the NiSi[0 1 0] axis. Based on such study, the relationship between the anisotropic strain distribution in the NiSi thin film and the Raman peak shifts has been briefly discussed.

  13. Low-pass parabolic FFT filter for airborne and satellite lidar signal processing.

    Science.gov (United States)

    Jiao, Zhongke; Liu, Bo; Liu, Enhai; Yue, Yongjian

    2015-10-14

    In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF) was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF), median filter (MF), empirical mode decomposition (EMD) and wavelet transform (WT) were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL). Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  14. Low-Pass Parabolic FFT Filter for Airborne and Satellite Lidar Signal Processing

    Directory of Open Access Journals (Sweden)

    Zhongke Jiao

    2015-10-01

    Full Text Available In order to reduce random errors of the lidar signal inversion, a low-pass parabolic fast Fourier transform filter (PFFTF was introduced for noise elimination. A compact airborne Raman lidar system was studied, which applied PFFTF to process lidar signals. Mathematics and simulations of PFFTF along with low pass filters, sliding mean filter (SMF, median filter (MF, empirical mode decomposition (EMD and wavelet transform (WT were studied, and the practical engineering value of PFFTF for lidar signal processing has been verified. The method has been tested on real lidar signal from Wyoming Cloud Lidar (WCL. Results show that PFFTF has advantages over the other methods. It keeps the high frequency components well and reduces much of the random noise simultaneously for lidar signal processing.

  15. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  16. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  17. High Spectral Resolution Lidar (HSRL) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2016-04-01

    High Spectral Resolution Lidar (HSRL) systems provide vertical profiles of optical depth, backscatter cross-section, depolarization, and backscatter phase function. All HSRL measurements are absolutely calibrated by reference to molecular scattering, which is measured at each point in the lidar profile. Like the Raman lidar but unlike simple backscatter lidars such as the micropulse lidar, the HSRL can measure backscatter cross-sections and optical depths without prior assumptions about the scattering properties of the atmosphere. The depolarization observations also allow robust discrimination between ice and water clouds. In addition, rigorous error estimates can be computed for all measurements. A very narrow, angular field of view reduces multiple scattering contributions. The small field of view, coupled with a narrow optical bandwidth, nearly eliminates noise due to scattered sunlight. There are two operational U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility HSRL systems, one at the Barrow North Slope of Alaska (NSA) site and the other in the second ARM Mobile Facility (AMF2) collection of instrumentation.

  18. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  19. Lidar calibration experiments

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Mikkelsen, T.; Streicher, J.

    1997-01-01

    A series of atmospheric aerosol diffusion experiments combined with lidar detection was conducted to evaluate and calibrate an existing retrieval algorithm for aerosol backscatter lidar systems. The calibration experiments made use of two (almost) identical mini-lidar systems for aerosol cloud...... detection to test the reproducibility and uncertainty of lidars. Lidar data were obtained from both single-ended and double-ended Lidar configurations. A backstop was introduced in one of the experiments and a new method was developed where information obtained from the backstop can be used in the inversion...... algorithm. Independent in-situ aerosol plume concentrations were obtained from a simultaneous tracer gas experiment with SF6, and comparisons with the two lidars were made. The study shows that the reproducibility of the lidars is within 15%, including measurements from both sides of a plume...

  20. LIDAR Research & Development Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The LIDAR Research and Development labs are used to investigate and improve LIDAR components such as laser sources, optical signal detectors and optical filters. The...

  1. Wind Measurement LIDAR Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Systems & Processes Engineering Corporation (SPEC) proposes a Wind Measurement LIDAR whose sensor assembly is composed of SPEC Gen IV LIDAR seeker, with 12.8...

  2. Notes on Rayleigh scattering in lidar signals.

    Science.gov (United States)

    Adam, Mariana

    2012-04-20

    Classical and quantum formulations are used to estimate Rayleigh scattering within lidar signals. Within the classical approach, three scenarios are used to characterize atmospheric molecular composition: 2-component atmosphere (N2 and O2), 4-component atmosphere (N2, O2, Ar, and CO2), and 5-component atmosphere (N2, O2, Ar, CO2, and water vapor). First, analysis focuses on Rayleigh scattering, showing the relative difference between the three scenarios within classical approach. The relative difference in molecular scattering between 2(4)-component atmosphere and 5-component atmosphere is below ~1%. The second analysis focuses on the lidar retrieval of aerosol backscatter and extinction coefficients showing the effect of different molecular formulations. A relative difference of ±3% was found between the molecular formulation of 2-component atmosphere and the molecular formulation of 5-component atmosphere. Consideration of the Raman rotational lines blocked by the interference filter is important for the elastic channels, but of little significance in the N2 Raman channel. For lidar retrieval of aerosol profiles, the 5-component approximation is the best when the water vapor profile is known, but 2-component is still adequate and quite accurate when water vapor is only poorly known.

  3. Lidar base specification

    Science.gov (United States)

    Heidemann, Hans Karl

    2012-01-01

    In late 2009, a $14.3 million allocation from the “American Recovery and Reinvestment Act” for new light detection and ranging (lidar) elevation data prompted the U.S. Geological Survey (USGS) National Geospatial Program (NGP) to develop a common base specification for all lidar data acquired for The National Map. Released as a draft in 2010 and formally published in 2012, the USGS–NGP “Lidar Base Specification Version 1.0” (now Lidar Base Specification) was quickly embraced as the foundation for numerous state, county, and foreign country lidar specifications. Prompted by a growing appreciation for the wide applicability and inherent value of lidar, a USGS-led consortium of Federal agencies commissioned a National Enhanced Elevation Assessment (NEEA) study in 2010 to quantify the costs and benefits of a national lidar program. A 2012 NEEA report documented a substantial return on such an investment, defined five Quality Levels (QL) for elevation data, and recommended an 8-year collection cycle of Quality Level 2 (QL2) lidar data as the optimum balance of benefit and affordability. In response to the study, the USGS–NGP established the 3D Elevation Program (3DEP) in 2013 as the interagency vehicle through which the NEEA recommendations could be realized. Lidar is a fast evolving technology, and much has changed in the industry since the final draft of the “Lidar Base Specification Version 1.0” was written. Lidar data have improved in accuracy and spatial resolution, geospatial accuracy standards have been revised by the American Society for Photogrammetry and Remote Sensing (ASPRS), industry standard file formats have been expanded, additional applications for lidar have become accepted, and the need for interoperable data across collections has been realized. This revision to the “Lidar Base Specification Version 1.0” publication addresses those changes and provides continued guidance towards a nationally consistent lidar dataset.

  4. Page 1 RAMAN AND INFRARED SPECTRA OF ETHYLENE GLY ...

    Indian Academy of Sciences (India)

    17 infrared maxima in the liquid State and 20 Raman lines in the solid state have been reported. Detailed vibrational assignments have been given. Two strong polarised Raman lines of the liquid which have no correspond- ing infrared absorption bands, and which disappear on Solidification, have been attributed to the ...

  5. Nd:Glass-Raman laser for water vapor dial

    Science.gov (United States)

    Kagann, R. H.; Petheram, J. C.; Rosenberg, A.

    1986-01-01

    A tunable solid-state Raman shifted laser which was used in a water vapor Differential Absorption Lidar (DIAL) system at 9400 A is described. The DIAL transmitter is based on a tunable glass laser operating at 1.06 microns, a hydrogen Raman cell to shift the radiation to 1.88 microns, and a frequency doubling crystal. The results of measurements which characterize the output of the laser with respect to optimization of optical configuration and of Raman parameters were reported. The DIAL system was also described and preliminary atmospheric returns shown.

  6. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  7. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    Loss features. (anti-Stokes side). Extracted Raman spectrum. Figure 6. Schematic diagram of SRGS and URLS. by broadband WL continuum which contains several frequency components. This results in the simultane- ous excitation of a large number of vibrational modes in the system. If the WL continuum contains frequen ...

  8. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  9. New Mobile Lidar Systems Aboard Ultra-Light Aircrafts

    Science.gov (United States)

    Chazette, Patrick; Shang, Xiaoxia; Totems, Julien; Marnas, Fabien; Sanak, Joseph

    2013-04-01

    Two lidar systems embedded on ultra light aircraft (ULA) flew over the Rhone valley, south-east of France, to characterize the vertical extend of pollution aerosols in this area influenced by large industrial sites. The main industrial source is the Etang de Berre (43°28' N, 5°01' E), close to Marseille city. The emissions are mainly due to metallurgy and petrochemical factories. Traffic related to Marseille's area contribute to pollution with its ~1500000 inhabitants. Note that the maritime traffic close to Marseille may play an important role due to its position as the leading French harbor . For the previous scientific purpose and for the first time on ULA, we flew a mini-N2 Raman lidar system to help the assessment of the aerosol optical properties. Another Ultra-Violet Rayleigh-Mie lidar has been integrated aboard a second ULA. The lidars are compact and eye safe instruments. They operate at the wavelength of 355 nm with a sampling along the line-of-sight of 0.75 m. Different flights plans were tested to use the two lidars in synergy. We will present the different approaches and discuss both their advantages and limitations. Acknowledgements: the lidar systems have been developed by CEA. They have been deployed with the support of FERRING France. We acknowledge the ULA pilots Franck Toussaint, François Bernard and José Coutet, and the Air Creation ULA Company for logistical help during the ULA campaign.

  10. Raman Spectra and Dynamics of Thiocyanate Ion in Poly(Vinyl Alcohol)-KSCN Films

    Science.gov (United States)

    Gafurov, M. M.; Rabadanov, K. Sh.; Shabanov, N. S.; Tretinnikov, O. N.; Amirov, A. M.; Gadjimagomedov, S. Kh.

    2017-11-01

    Raman spectra of poly(vinyl alcohol)-potassium-thiocyanate films are studied. Parameters of vibrational and orientational relaxation of thiocyanate ion in the polymer matrix are determined. The character and rate of vibrational dephasing become identical to SCN- vibrations in aqueous solution at salt concentrations ≥0.3 M.

  11. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT......-molecular orbital calculations by use of the Gaussian 03W pro- gram, based on complete geometry minimizations of the conformational energy of the S-(+)-amphetamine molecule, the S-(+)-amphetamine-H+ ion, and the R-(–)-amphetamine molecule. Following this, harmonic frequency calculations have been made, providing...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  12. Modeling Raman scattering in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Miguel [Seccion de Estudios de Posgrado, ESIME-Culhuacan, IPN, Av. Santa Ana 1000, 04430, Mexico, D.F. (Mexico); Wang, Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, 04510, Mexico, D.F. (Mexico)

    2005-06-01

    In this work, we model the Raman scattering by phonons using the Born potential and the Green's function formalism, which takes into account the long-range correlation of atomic vibrations. The porous silicon is viewed as a sponge, in which periodical column pores are dug in direction [001] from crystalline silicon, i.e., a supercell model is used to calculate the Raman response. The results show that the main Raman peak shifts to lower energies when the porosity increases, and for square pores it asymptotically approaches to a limit value of 475 cm{sup -1}. Finally, the supercell results are compared with the quantum wire model, in which the main Raman peaks move to higher energies as the width of the wires grows. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Lidar User’s Manual

    OpenAIRE

    Peterson, Lance William

    2011-01-01

    This is intended to be a user’s manual for the upgraded USU Rayleigh lidar. As such, it begins with a discussion of the purpose of a lidar. This is followed by a brief explanation of the fundamentals of Rayleigh scatter lidar. Next the reasons for and benefits of upgrading the lidar are discussed and as well as how the upgrade was accomplished. After establishing this basis, instructions are provided for operating the lidar, performing basic maintenance, and aligning various components.

  14. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H2O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  15. Vibrational modes and Structure of Niobium(V) Oxosulfato Complexes in the Molten Nb2O5-K2S2O7-K2SO4 System Studied by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Paulsen, Andreas L.; Borup, Flemming; Berg, Rolf W.

    2010-01-01

    coefficient, n, pointing to n = 3 and to the following reaction: Nb2O5 + 3S2O7 --> 2NbO(SO4)3, which is consistent with the Raman spectra of the molten mixtures. Nb2O5 could be dissolved much easier when K2SO4 was present in an equimolar (1:1) SO4/Nb ratio; the incremental presence of K2SO4 in Nb2O5-K2S2O7...... melts induces composition effects in the Raman spectra that terminate when n(SO4)/n(Nb) = 1. The composition effects and the temperature-dependent features of the Raman spectra obtained for Nb2O5-K2S2O7-K2SO4 molten mixtures together with the spectral changes occurring upon freezing are accounted...

  16. Determination of SiO2 Raman spectrum indicating the transformation from coesite to quartz in Gföhl migmatitic gneisses in the Moldanubian Zone, Czech Republic

    National Research Council Canada - National Science Library

    Tomoyuki KOBAYASHI; Takao HIRAJIMA; Yoshikuni HIROI; Martin SVOJTKA

    2008-01-01

    .... The Raman spectrum is composed of the intense vibrations of quartz at 464, 393 and 266 cm-1 of quartz and the weak vibration of coesite at 521 cm-1 is obtained from the quartz proximal to the relict...

  17. FT-IR and FT-Raman spectroscopic signatures, vibrational assignments, NBO, NLO analysis and molecular docking study of 2-{[5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine.

    Science.gov (United States)

    Almutairi, Maha S; Alanazi, Amer M; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Pathak, Shilendra K; Srivastava, Ruchi; Prasad, Onkar; Sinha, Leena

    2015-04-05

    FT-Raman and FT-IR spectra of the title compound 2-{[5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine were recorded and investigated. The DFT/B3LYP/6-311++G(d,p) method was used to compute the vibrational wavenumbers. A good coherence between experimental and theoretical wavenumbers shows the preciseness of the assignments. NLO properties like the dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface and contour map have been calculated to get a better cognizance of the properties of the title molecule. Natural bond orbital analysis has been applied to estimate the stability of the molecule arising from charge delocalization. The molecular docking studies concede that title compound may exhibit HIV-1 Protease 1N49 inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    Science.gov (United States)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  19. Lidar 2009 - All Returns

    Data.gov (United States)

    Kansas Data Access and Support Center — LIDAR-derived binary (.las) files containing classified points of all returns. We have 3 classifications Unclassified, Ground, Low points. The average Ground Sample...

  20. LIDAR: Malheur NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — LiDAR has been identified by the Malheur Lake Work Group as critical tool for planning, management, and restoration across the Harney Basin. In particular, this...

  1. 2004 Maine Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata document describes the collection and processing of Light Detection and Ranging (LIDAR) data over an area along the coast of Maine. Data was collected...

  2. LIDAR: Malheur NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project was funded through the Region 1 Inventory and Monitoring Initiative RFP in 2011. LiDAR has been identified by the Malheur Lake Work Group as critical...

  3. 2004 Connecticut Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LIDAR data is remotely sensed high-resolution elevation data collected by an airborne collection platform. Using a combination of laser rangefinding, GPS positioning...

  4. Installation report - Lidar

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Villanueva, Héctor

    The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project.......The report describes the installation, configuration and data transfer for the ground-based lidar. The unit is provided by a customer but is installed and operated by DTU while in this project....

  5. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  6. Lidar Observation of Ozone Profiles in the Equatorial Tropopause Region

    Science.gov (United States)

    Abo, M.; Shibata, Y.; Nagasawa, C.

    2014-12-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. We have constructed the lidar facility for survey of atmospheric structure over troposphere, stratosphere, mesosphere and low thermosphere over Kototabang (100.3E, 0.2S), Indonesia in the equatorial region. The lidar system consists of the Mie and Raman lidars for tropospheric aerosol, water vapor and cirrus cloud measurements, the Rayleigh lidar for stratospheric and mesospheric temperature measurements and the Resonance lidar for metallic species such as Na, Fe, Ca ion measurements and temperature measurements in the mesopause region. The lidar observations started from 2004, and routine observations of clouds and aerosol in the troposphere and stratosphere are continued now. We have installed DIAL (differential absorption lidar) system for high-resolution measurements of vertical ozone profiles in the equatorial tropopause region over Kototabang. There were many ozone DIAL systems in the world, but their systems are almost optimized for stratospheric ozone layer measurement or tropospheric ozone measurement. Because of deep ozone absorption in the UV region, the wavelength selection is important. Over the equatorial region, the tropopause height is almost 17km. So we use 305nm for on-line and 355nm for off-line using second harmonics of dye laser and third harmonics of Nd:YAG laser. We have observed large ozone enhancement in the upper troposphere, altitude of 13-17km in June 2014, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause[1] at equatorial region. References Fujiwara, M. et al., JGR, 103, D15, 19,173-19,182, 1998.

  7. Lattice vibrational modes and their frequency shifts in semiconductor nanowires.

    Science.gov (United States)

    Yang, Li; Chou, M Y

    2011-07-13

    We have performed first-principles calculations to study the lattice vibrational modes and their Raman activities in silicon nanowires (SiNWs). Two types of characteristic vibrational modes are examined: high-frequency optical modes and low-frequency confined modes. Their frequencies have opposite size dependence with a red shift for the optical modes and a blue shift for the confined modes as the diameter of SiNWs decreases. In addition, our calculations show that these vibrational modes can be detected by Raman scattering measurements, providing an efficient way to estimate the size of SiNWs.

  8. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  9. The resonance Raman excitation profile of lutein

    Science.gov (United States)

    Hoskins, L. C.

    The resonance Raman excitation profiles for the ν 1, ν 2 and ν 3 vibrations of lutein in acetone, toluene and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found in acetone and toluene, but the results in carbon disulfide indicate a possible breakdown in the three-mode model. The major broadening mechanism is homogeneous, with about a 25% contribution from inhomogeneous broadening.

  10. Raman Spectroscopic Study of Tungsten(VI) Oxosulfato Complexes in WO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties and Molecular Structure

    DEFF Research Database (Denmark)

    Paulson, Andreas L.; Kalampounias, Angelos G.; Berg, Rolf W.

    2011-01-01

    ; therefore, the reaction WO3 þ S2O7 2- f WO2(SO4)2 2- with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 inWO3-K2S2O7 melts point to aWO3 3 K2S2O7 3 K2SO4 stoichiometry and a corresponding complex...

  11. 2014 OLC Lidar: Colville, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — WSI, a Quantum Spatial company, has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Colville study area. This study area is...

  12. 2015 OLC Lidar: Okanogan WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Okanogan FEMA study area. This study area is located in...

  13. 2015 OLC Lidar DEM: Chelan

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in...

  14. Sonoma County, CA, 2013 Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sonoma County Vegetation Mapping and LiDAR Consortium retained WSI to provide lidar and Orthophoto data and derived products in Sonoma County, CA. A classified LAS...

  15. 2006 Volusia County, Florida Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  16. 2012 USGS Lidar: Juneau (AK)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for Juneau, Alaska. LiDAR data, and derivative...

  17. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  18. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical...

  19. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  20. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    Science.gov (United States)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  1. QED description of Raman scattering from molecules in plasmonic cavities

    CERN Document Server

    Schmidt, Mikolaj K; Gonzalez-Tudela, Alejandro; Giedke, Geza; Aizpurua, Javier

    2015-01-01

    Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of \\textit{phonon-stimulated Raman scattering} and an counter-intuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this novel QED framework opens a venue to analyze the correlations of photons emitted at a plasmonic cavity

  2. Raman spectroscopy of blood in-vitro

    Science.gov (United States)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Ortiz-Lima, C. M.; Delgado-Atencio, J. A.

    2012-03-01

    We present Raman spectra from a sample of 8 volunteers that have different type of blood. The experimental data were carried out using a 785 nm excitation laser and an ocean optics spectrometer of 6 cm-1 resolution, with a used spectral region from 1000 to 1800 cm-1. We find Raman features at 1000 and 1542 cm-1 regarded with hemoglobin and its derivatives. Also we find Raman features at 1248 and 1342 cm-1 that are now regarded with pure fibrin. In this work, we use Principal Component analysis (PCA) to determine all variations of our samples, which allows us to define a classification of the influence of the blood type. Finally, we found vibrational lines of cholesterol, glucose and triglycerides that are reported in literature.

  3. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.

    Science.gov (United States)

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-10

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

  4. VALIDATION OF LIDAR TEMPERATURE MEASUREMENTS IN THE STRATOSPHERE OVER TOMSK ON AEROLOGICAL AND SATELLITE DATA FOR 2015-16 YEARS

    Directory of Open Access Journals (Sweden)

    V. N. Marichev

    2017-12-01

    Full Text Available The vertical temperature distribution in the lower stratosphere is compared with the data of lidar, radiosonde, and satellite measurements. In the lidar measurements, Raman and Rayleigh channels for receiving scattered light at wavelengths of 607 nm and 532 nm were used. Taking into account the spatio-temporal separation of the measurements, a qualitative and quantitative correspondence of the vertical temperature profiles was obtained. The prospects of using the Raman scattering method for measuring temperature in the lower stratosphere are shown.

  5. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  6. Calibration of scanning Lidar

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Courtney, Michael

    This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast. Additio......This report describes the tests carried out on a scanning lidar at the DTU Test Station for large wind turbines, Høvsøre. The tests were divided in two parts. In the first part, the purpose was to obtain wind speed calibrations at two heights against two cup anemometers mounted on a mast...

  7. Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine

    Science.gov (United States)

    Sett, Pinaky; Datta, Shirsendu; Chowdhury, Joydeep; Ghosh, Manash; Mallick, Prabal Kumar

    2017-07-01

    In the present work IR, UV absorption and Raman spectra including Raman excitation profiles and structure of 3-benzoyl pyridine have been investigated. Detailed studies on the vibrational and electronic properties of the molecule have been carried out. All these studies are aided with valuable quantum chemical calculations. The structural changes encountered on excitation to the low lying excited states have been investigated. Theoretical profiles determined by the sum-over-states method based on pertinent Franck-Condon and Herzberg-Teller terms have satisfactorily simulated the experimentally measured relative Raman intensities and these are also in compliance with the structural changes and potential energy distributions.

  8. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  9. Shape sensitive Raman scattering from Nano-particles

    CERN Document Server

    Apell, S P; Antosiewicz, Tomasz; Aizpurua, J

    2016-01-01

    We investigate the interplay of shape changes and localized surface plasmons in small metal particles with the potential of a large enhancement of the Raman signal from the particles own vibrations. The framework is a geometrical one where we study the change in geometric factors during the vibrational movement. The resulting cross-section is found to be of a detectable order of magnitude however much smaller than the elastic cross-section.

  10. Probing molecular symmetry with polarization-sensitive stimulated Raman spectroscopy

    CERN Document Server

    Kerdoncuff, Hugo; Westergaard, Philip G; Petersen, Jan C; Lassen, Mikael

    2016-01-01

    We demonstrate polarization-sensitive stimulated Raman spectroscopy (PS-SRS) enabling fast, high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations. The method provides information about the symmetry of the Raman-active vibrational modes. Our compact PS-SRS setup is based on a tunable continuous wave (CW) probe laser combined with a semi-monolithic nanosecond pulsed pump laser. The CW operation of the laser offers narrow linewidth and low noise, and does not require temporal synchronization with the pump. We demonstrate the technique by measuring the depolarization ratios of carbon-hydrogen (CH) stretches in two different polymer samples in the spectral range of 2825-3025 cm-1. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm-1/s) with a resolution of 0.65 cm-1. A normalization method is introduced for the direct comparison of the simultaneously acquired polarization Raman spectra.

  11. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy.

    Science.gov (United States)

    Faulstich, Fabiano Richard Leite; Castro, Harlem V; de Oliveira, Luiz Fernando Cappa; Neumann, Reiner

    2011-10-01

    In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Raman microspectroscopy detects epigenetic modifications in living Jurkat leukemic cells.

    Science.gov (United States)

    Poplineau, Mathilde; Trussardi-Régnier, Aurélie; Happillon, Teddy; Dufer, Jean; Manfait, Michel; Bernard, Philippe; Piot, Olivier; Antonicelli, Frank

    2011-12-01

    Classical biochemical and molecular methods for discerning cells with epigenetic modifications are often biologically perturbing or even destructive. We wondered whether the noninvasive laser tweezer Raman spectroscopy technique allowed the discrimination of single living human cells undergoing epigenetic modifications. Human Jurkat leukemic cells were treated with inhibitors of histone deacetylases (trichostatin A and MS-275). Epigenetic changes were monitored through histone electrophoresis, nuclear image cytometry and laser tweezer Raman spectroscopy. Treatment of Jurkat cells with histone deacetylase inhibitors increased histone acetylation and induced chromatin organization changes. Characteristic vibrations, issued from laser tweezer Raman spectroscopy analyses, mostly assigned to DNA and proteins allowed discerning histone deacetylase inhibitor-treated cells from control with high confidence. Statistical processing of laser tweezer Raman spectroscopy data led to the definition of specific biomolecular fingerprints of each cell group. This original study shows that laser tweezer Raman spectroscopy is a label-free rapid tool to identify living cells that underwent epigenetic changes.

  13. Vibrational energy flow in substituted benzenes

    Science.gov (United States)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  14. Fourier-transform Raman and infrared spectroscopic analysis of novel biliverdin compounds

    Science.gov (United States)

    Hu, Jiming; Moigno, Damien; Kiefer, Wolfgang; Ma, Jinshi; Chen, Qiongqi; Wang, Changqi; Feng, Haitao; Shen, Jingkai; Niu, Fei; Gu, Yinghong

    2000-11-01

    The vibrational spectroscopy of novel biliverdin compounds were studied by Fourier-transform Raman (FT-Raman) and infrared (FT-IR) spectroscopy. The effects of type, length and position of substituents at C(8) and C(12) or C(1) and C(19) of tetrapyrroles on FT-Raman and FT-IR spectra of these compounds, are discussed. The marker bands are developed in order to distinguish between etiobiliverdin and mesobiliverdin.

  15. Karthik Raman Nagasuma Chandra

    Indian Academy of Sciences (India)

    Author Affiliations. Karthik Raman1 Nagasuma Chandra2. Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland; Bioinformatics Centre, Raman building, Indian Institute of Science, Bangalore 560 012, India ...

  16. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  17. Lidar 2009 - IMG

    Data.gov (United States)

    Kansas Data Access and Support Center — ESRI Grids 1 meter resolution are created from the ground classified lidar points. The tiles are delivered in 5,000m by 5,000m tiles. The ESRI grids are exported to...

  18. Calibrating nacelle lidars

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, M.

    2013-01-15

    Nacelle mounted, forward looking wind lidars are beginning to be used to provide reference wind speed measurements for the power performance testing of wind turbines. In such applications, a formal calibration procedure with a corresponding uncertainty assessment will be necessary. This report presents four concepts for performing such a nacelle lidar calibration. Of the four methods, two are found to be immediately relevant and are pursued in some detail. The first of these is a line of sight calibration method in which both lines of sight (for a two beam lidar) are individually calibrated by accurately aligning the beam to pass close to a reference wind speed sensor. A testing procedure is presented, reporting requirements outlined and the uncertainty of the method analysed. It is seen that the main limitation of the line of sight calibration method is the time required to obtain a representative distribution of radial wind speeds. An alternative method is to place the nacelle lidar on the ground and incline the beams upwards to bisect a mast equipped with reference instrumentation at a known height and range. This method will be easier and faster to implement and execute but the beam inclination introduces extra uncertainties. A procedure for conducting such a calibration is presented and initial indications of the uncertainties given. A discussion of the merits and weaknesses of the two methods is given together with some proposals for the next important steps to be taken in this work. (Author)

  19. 2004 Alaska Lidar Mapping

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data sets are generated using the OPTECH ALTM 70 kHz LIDAR system mounted onboard AeroMap's twin-engine Cessna 320 aircraft. Classified data sets such as this...

  20. Imaging with Raman spectroscopy.

    Science.gov (United States)

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2010-09-01

    Raman spectroscopy, based on the inelastic scattering of a photon, has been widely used as an analytical tool in many research fields. Recently, Raman spectroscopy has also been explored for biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. This review article will provide a brief summary of Raman spectroscopy-based imaging, which includes the use of coherent anti-Stokes Raman spectroscopy (CARS, primarily used for imaging the C-H bond in lipids), surface-enhanced Raman spectroscopy (SERS, for which a variety of nanoparticles can be used as contrast agents), and single-walled carbon nanotubes (SWNTs, with its intrinsic Raman signal). The superb multiplexing capability of SERS-based Raman imaging can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the interrogation of multiple biological events simultaneously in living subjects. The primary limitations of Raman imaging in humans are those also faced by other optical techniques, in particular limited tissue penetration. Over the last several years, Raman spectroscopy imaging has advanced significantly and many critical proof-of-principle experiments have been successfully carried out. It is expected that imaging with Raman Spectroscopy will continue to be a dynamic research field over the next decade.

  1. Vibrational spectroscopic characterization of fluoroquinolones

    Science.gov (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  2. Volcanic Ash Detection Using Raman LIDAR: "VADER" Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  3. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  4. 2006 MDEQ Camp Shelby, MS Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines...

  5. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane

    DEFF Research Database (Denmark)

    Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.

    2014-01-01

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational as...

  6. Prof. C. V. Raman | History | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sc. Work in Vibrations and Musical Instruments, Geometrical and Wave Optics, Light and X-ray Scattering, Physics of Crystals, Colour. Best known for the Phenomenon of inelastic light scattering named the 'Raman effect' after him. Large body of experimental work was concerned with waves - wave motions of vibrating ...

  7. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols.

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-06-20

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed.

  8. ARCADE: Description of the project and setup of the Lidar/AMT system

    Directory of Open Access Journals (Sweden)

    Valore L.

    2015-01-01

    Full Text Available The ARCADE (Atmospheric Research for Climate and Astroparticle DEtection project is a 3 years project funded by MIUR, that aims to study the aerosol attenuation of UV light in atmosphere using multiple instruments and techniques, as those commonly used in the cosmic rays community: elastic Lidar, Raman Lidar, side-scattering measurements using a distant laser source. All measurements will be acquired on the same air mass at the same time, in a semi-desertic site near Lamar, Colorado (U.S.. For each instrument, multiple analysis techniques will be tested: the target is a better comprehension of the systematics and limits of applicability of each method. The system is composed by a Lidar (elastic+Raman, fully designed and built within this project, and by the Atmospheric Monitoring Telescope (AMT, a telescope for the detection of UV light owned by the Colorado School of Mines. The setup of the two instruments is described in detail here. The project is presently in its third year: the Lidar system has been tested at the University of L'Aquila in February 2014 before shipment to the U.S., and the AMT has been recently reinstalled and tested in Lamar (May 2014. In June/July 2014 the ARCADE group will work out the final setup of the Lidar+AMT system in Lamar and will begin data acquisition.

  9. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest

  10. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  11. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...

  12. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  13. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy.

    Science.gov (United States)

    Oscar, Breland G; Chen, Cheng; Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2017-07-27

    Tracking molecular motions in real time remains a formidable challenge in science and engineering fields because the experimental methodology requires simultaneously high spatial and temporal resolutions. Building on early successes and future potential of femtosecond stimulated Raman spectroscopy (FSRS) as a structural dynamics technique, we present a comprehensive study of stimulated Raman line shapes of a photosensitive molecule in solution with tunable Raman pump and probe pulses. Following femtosecond 400 nm electronic excitation, the model photoacid pyranine exhibits dynamic and mode-dependent Raman line shapes when the Raman pump is tuned from the red side toward and across the excited-state absorption (ESA) band (e.g., from S1) with varying resonance conditions. On the anti-Stokes FSRS side, low-frequency modes below ∼1000 cm-1 exhibit a line shape change from gain to dispersive to loss, whereas the dispersive intermediate is much less notable for high-frequency modes. The characteristic mode frequency blue shift involving vibrationally hot states in S1 with time constants of ∼9.6 and 58.6 ps reveals the sensitivity of anti-Stokes FSRS to vibrational cooling and solvation. This work lays the foundation for expanding tunable FSRS technology on both the Stokes and anti-Stokes sides to investigate a variety of photoinduced processes in solution with sufficient resolution to expose functional motions and increased sensitivity to monitor vibrational cooling.

  14. Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Hildebrand

    2012-10-01

    Full Text Available During a joint campaign in January 2009, the Rayleigh/Mie/Raman (RMR lidar and the sodium lidar at the ALOMAR Observatory (69° N, 16° E in Northern Norway were operated simultaneously for more than 40 h, collecting data for wind measurements in the middle atmosphere from 30 up to 110 km altitude. As both lidars share the same receiving telescopes, the upper altitude range of the RMR lidar and the lower altitude range of the sodium lidar overlap in the altitude region of ≈80–85 km. For this overlap region we are thus able to present the first simultaneous wind measurements derived from two different lidar instruments. The comparison of winds derived by RMR and sodium lidar is excellent for long integration times of 10 h as well as shorter ones of 1 h. Combination of data from both lidars allows identifying wavy structures between 30 and 110 km altitude, whose amplitudes increase with height. We have also performed vertical wind measurements and measurements of the same horizontal wind component using two independent lasers and telescopes of the RMR lidar and show how to use this data to calibrate and validate the wind retrieval. For the latter configuration we found a good agreement of the results but also identified inhomogeneities in the horizontal wind at about 55 km altitude of up to 20 ms−1 for an integration time of nearly 4 h. Such small-scale inhomogeneities in the horizontal wind field are an essential challenge when comparing data from different instruments.

  15. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer.

    Science.gov (United States)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2016-01-05

    Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique. Copyright © 2015. Published by Elsevier B.V.

  16. [Progress in Raman spectroscopic measurement of methane hydrate].

    Science.gov (United States)

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  17. Raman spectroscopy for cancer detection and characterization in metastasis models

    Science.gov (United States)

    Koga, Shigehiro; Oshima, Yusuke; Sato, Mitsunori; Ishimaru, Kei; Yoshida, Motohira; Yamamoto, Yuji; Matsuno, Yusuke; Watanabe, Yuji

    2017-02-01

    Raman spectroscopy provides a wealth of diagnostic information to the surgeon with in situ cancer detection and label-free histopathology in clinical practice. Raman spectroscopy is a developing optical technique which can analyze biological tissues with light scattering. The difference in frequencies between the incident light and the scattering light are called Raman shifts, which correspond to the vibrational energy of the molecular bonds. Raman spectrum gives information about the molecular structure and composition in biological specimens. We had been previously reported that Raman spectroscopy could distinguish various histological types of human lung cancer cells from normal cells in vitro. However, to identify and detect cancer diagnostic biomarkers in vivo on Raman spectroscopy is still challenging, because malignancy can be characterized not only by the cancer cells but also by the environmental factors including immune cells, stroma cells, secretion vesicles and extracellular matrix. Here we investigate morphological and molecular dynamics in both cancer cells and their environment in xenograft models and spontaneous metastasis models using Raman spectroscopy combined with fluorescence microscopy and photoluminescence imaging. We are also constructing a custom-designed Raman spectral imaging system for both in vitro and in vivo assay of tumor tissues to reveal the metastasis process and to evaluate therapeutic effects of anti-cancer drugs and their drug delivery toward the clinical application of the technique.

  18. Resonant Femtosecond Stimulated Raman Band Intensity and S_{n} State Electronic Structure

    Science.gov (United States)

    Quincy, Timothy J.; Barclay, Matthew S.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is a powerful technique capable of providing dynamic vibrational information on molecular excited states. When combined with transient electronic spectroscopies such as Pump-Probe or Pump-Repump-Probe, the excited state dynamics can be viewed with greater clarity. Due to the low intensities of Raman scattering typical for FSRS, experiments are commonly performed with the Raman pump in resonance with the excited state absorption to take advantage of resonance enhancement. However, the inherent information about the resonant state embedded in the Raman scattering is not a well explored component of the technique. 2,5-diphenylthiophene (DPT) in solution is used as a model system to study the wavelength dependence of the excited state Raman resonance enhancement. DPT has strong excited state absorption and stimulated emission bands within the tunable range of the Raman pump, allowing a wide variety of resonance conditions to be probed. Varying the Raman pump wavelength across the excited state absorption band produces different trends in both the absolute and relative magnitudes of the resulting FSRS vibrational modes. Comparing with calculations of the S_{1} vibrational modes, we determine the structure of the resonant S_{n} state potential energy surface based on the motions of the resonantly enhanced vibrations.

  19. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  20. Remote sensing of coastal area near Bari : results of marine campaign performed with lidar fluorosensor; Rapporto sulla campagna di misura con LIDAR fluorosensore effettuate sul mare di Bari

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo, S. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione

    1995-12-01

    The lidar fluorosensor, built at ENEA Frascati to remotely monitor the sea-water quality by collecting the water Raman back scattering and induced fluorescence from dispersed oils, suspended matter and chlorophyll, has been employed in a marine campaign in the southern Adriatic sea. To this aim, the lidar fluorosensor has been installed on a coastal guard boat and operated during the cruise. Extensive calibration measurements have been undertaken by using this system, both in laboratory and during the campaigns, to analyze sea water samples taken at several places along the Italian coasts. Absolute values of organic matter, chlorophyll concentrations have been obtained by calibrating the locally and remotely sensed lidar data with standard physical-chemical methods.

  1. A density functional theory study of Raman modes of cadmium hexathiohypodiphosphate (CdPS3

    Directory of Open Access Journals (Sweden)

    Shakoor Abdul

    2015-06-01

    Full Text Available Raman scattering investigations based on density functional theory (DFT calculations were performed to explore the vibrational modes of a cadmium hexathiohypodiphosphate CdPS3 single crystal. The calculations were performed to obtain the Raman spectra for the cadmium hexathiohypodiphosphate atoms to study the size dependence. Several vibrational modes indicating stretching and bending features related to Cd, S and P atoms were observed. Modifications of the frequency and intensity of different Raman modes with an increase in the number of atoms in CdPS3 were discussed in detail. Hydrogen atoms were added in order to make the closed shell configuration and saturate the CdPS3 as per the requisite for calculating the Raman spectra. This produced some additional modes of vibration related to hydrogen atoms. Band gap and formation energy were also calculated. The results generated are found to be in close agreement with the experimental values.

  2. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  3. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2017-05-01

    Full Text Available Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.

  4. Characterization of pollen by vibrational spectroscopy.

    Science.gov (United States)

    Zimmermann, Boris

    2010-12-01

    Classification, discrimination, and biochemical assignment of vibrational spectra of pollen samples belonging to 43 different species of the order Pinales has been made using three different vibrational techniques. The comparative study of transmission (KBr pellet) and attenuated total reflection (ATR) Fourier transform infrared (FT-IR) and FT-Raman spectroscopies was based on substantial variability of pollen grain size, shape, and relative biochemical composition. Depending on the penetration depth of the probe light, vibrational techniques acquire predominant information either on pollen grain walls (FT-Raman and ATR-FT-IR) or intracellular material (transmission FT-IR). Compared with the other two methods, transmission FT-IR obtains more comprehensive information and as a result achieves superior spectral identification and discrimination of pollen. The results strongly indicate that biochemical similarities of pollen grains belonging to the same plant genus or family lead to similar features in corresponding vibrational spectra. The exploitation of that property in aerobiological monitoring was demonstrated by simple and rapid pollen identification based on relatively small spectral libraries, with the same (or better) taxonomic resolution as that provided by optical microscopy. Therefore, the clear correlation between vibrational spectra and pollen grain morphology, biochemistry, and taxonomy is obtained, while successful pollen identification illustrates the practicability of such an approach in environmental studies.

  5. High-resolution measurements of humidity and temperature with lidar

    Science.gov (United States)

    Behrendt, Andreas; Wulfmeyer, Volker; Spaeth, Florian; Hammann, Eva; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea

    2015-04-01

    3-dimensional thermodynamic fields of temperature and moisture including their turbulent fluctuations have been observed with the two scanning lidar systems of University of Hohenheim in three field campaigns in 2013 and 2014. In this contribution, we will introduce these two self-developed instruments and illustrate their performance with measurement examples. Finally, an outlook to envisioned future research activities with the new data sets of the instruments is given. Our temperature lidar is based on the rotational Raman technique. The scanning rotational Raman lidar (RRL) uses a seeded frequency-doubled Nd:YAG laser at a wavelength of 355 nm. A two-mirror scanner with a 40-cm telescope collects the atmospheric backscatter signals. Humidity measurements are made with a scanning water vapor differential absorption lidar (DIAL) which uses a titanium sapphire laser at 820 nm as transmitter. This laser is pumped with a frequency-doubled Nd:YAG laser and injection-seeded for switching between the online and offline wavelengths. The DIAL receiver consists of a scanning 80-cm telescope. The measured temperature and humidity profiles of both instruments have typical resolutions of only a few seconds and 100 m in the atmospheric boundary layer both in day- and night-time. Recent field experiments with the RRL and the DIAL of University of Hohenheim were (1) the HD(CP)2 Prototype Experiment (HOPE) in spring 2013 in western Germany - this activity is embedded in the project HD(CP)2 (High-definition clouds and precipitation for advancing climate prediction); (2) a measurement campaign in Hohenheim in autumn 2013; (3) the campaign SABLE (Surface Atmospheric Boundary Layer Exchange) in south-western Germany in summer 2014. The collected moisture and temperature data will serve as initial thermodynamic fields for forecast experiments related to the formation of clouds and precipitation. Due to their high resolution and high precision, the systems are capable of resolving

  6. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Bijay Kumar; Ando, Hideo; Dorfman, Konstantin E.; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92617 (United States)

    2015-01-14

    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.

  7. Application of NIR Raman spectroscopy for detecting and characterizing early dental caries

    Science.gov (United States)

    Ko, A. C.; Choo-Smith, L.-P.; Zhu, R.; Hewko, M.; Dong, C.; Cleghorn, B.; Sowa, M. G.

    2006-02-01

    Early dental caries detection facilitates implementation of non-surgical methods for arresting caries progression and promoting tooth remineralization. We present a method based on Raman spectroscopy with near-IR laser excitation to provide biochemical contrast for detecting and characterizing incipient carious lesions found in extracted human teeth. Changes in Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Examination of various intensities of the PO 4 3- ν2, ν3, ν4 vibrations showed consistent increased intensities in spectra of carious lesions compared to sound enamel. The spectral changes are attributed to demineralization-induced alterations of enamel crystallite morphology and/or orientation. This hypothesis is supported by reduced Raman polarization anisotropy derived from polarized Raman spectra of carious lesions. Polarized Raman spectral imaging of carious lesions found on whole (i.e. un-sectioned) tooth samples will also be presented.

  8. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  9. Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kneipp, K.; Kneipp, H.; Corio, P.; Brown, S. D. M.; Shafer, K.; Motz, J.; Perelman, L. T.; Hanlon, E. B.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S.

    2000-04-01

    Surface enhancement factors of at least 1012 for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions.

  10. Raman scattering in right angle configuration on Cu2ZnSiSe4 single crystals

    Science.gov (United States)

    Guc, M.; Levcenko, S.; Zalamai, V.; Arushanov, E.; Syrbu, N. N.

    2017-11-01

    Polarized Raman scattering and resonance Raman scattering spectra of Cu2ZnSiSe4 crystals measured at temperature 300 and 10 K were investigated. Nine vibrational modes of A2 symmetry, seven modes of B2 symmetry and nine modes of B1 symmetry were determined in Raman spectra taken at right angle configuration from the (2 1 0) crystal plane. A resonance Raman scattering with participation of 2LO, 3LO and more phonons was observed at photon energies higher than the ground state of exciton transition at low temperature.

  11. DFT study on the Raman spectra of Fe(II-porphin

    Directory of Open Access Journals (Sweden)

    Hovorun D. M.

    2009-02-01

    Full Text Available DFT quantum-chemical calculations of the Raman spectra of Fe(II-porphin in quintet (ground state were performed. Spin-unrestricted UB3LYP functional in 6-311G basis was used for geometry optimization and Raman calculation. All active modes of Raman spectrum were analyzed in detail. It was noted that the insertion of Fe(II ion into porphin leads to the considerable changes in frequencies and intensities for those vibrational modes which involve nitrogen atoms displacement. The Raman depolarization ratio for plane polarized incident light is discussed

  12. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  13. Raman Spectroscopic Investigation of Dyes in Spices

    Science.gov (United States)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen

    2010-08-01

    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  14. 2006 Fulton County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Light Detection and Ranging (LiDAR) LAS dataset is a survey of Fulton County. The Fulton County LiDAR Survey project area consists of approximately 690.5 square...

  15. Relationship between molecular structure and Raman spectra of quinolines

    Science.gov (United States)

    Frosch, Torsten; Popp, Jürgen

    2009-04-01

    DFT calculations were applied to investigate the relationship between the molecular structure and the Raman spectra of quinolines. A variety of different quinolines with increasing complexity was investigated and an aminoquinoline nucleus was found that describes the Raman spectrum of protonated chloroquine. It was discovered that the biological important, rigid C7-chloro group and C4-side chain of chloroquine significantly disturb certain molecular vibrations. The protonation at the N1 position causes dramatic changes of the Raman bands in the wavenumber region between 1500 cm -1 and 1650 cm -1. These bands are putative marker bands of the aminoquinoline drugs for π-π interactions to the hematin targets in malaria infected cells. The calculation of the normal modes and the illustration of the associated atomic displacements are very valuable for a deeper understanding of the associated bands in the Raman spectra.

  16. Raman Cooling of Solids through Photonic Density of States Engineering

    CERN Document Server

    Chen, Yin-Chung

    2015-01-01

    The laser cooling of vibrational states of solids has been achieved through photoluminescence in rare-earth elements, optical forces in optomechanics, and the Brillouin scattering light-sound interaction. The net cooling of solids through spontaneous Raman scattering, and laser refrigeration of indirect band gap semiconductors, both remain unsolved challenges. Here, we analytically show that photonic density of states (DoS) engineering can address the two fundamental requirements for achieving spontaneous Raman cooling: suppressing the dominance of Stokes (heating) transitions, and the enhancement of anti-Stokes (cooling) efficiency beyond the natural optical absorption of the material. We develop a general model for the DoS modification to spontaneous Raman scattering probabilities, and elucidate the necessary and minimum condition required for achieving net Raman cooling. With a suitably engineered DoS, we establish the enticing possibility of refrigeration of intrinsic silicon by annihilating phonons from ...

  17. Lidar characterization of the Arctic atmosphere during ASTAR 2007: four cases studies of boundary layer, mixed-phase and multi-layer clouds

    Directory of Open Access Journals (Sweden)

    A. Lampert

    2010-03-01

    Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR, which was conducted in Svalbard in March and April 2007, tropospheric Arctic clouds were observed with two ground-based backscatter lidar systems (micro pulse lidar and Raman lidar and with an airborne elastic lidar. In the time period of the ASTAR 2007 campaign, an increase in low-level cloud cover (cloud tops below 2.5 km from 51% to 65% was observed above Ny-Ålesund. Four different case studies of lidar cloud observations are analyzed: With the ground-based Raman lidar, a layer of spherical particles was observed at an altitude of 2 km after the dissolution of a cloud. The layer probably consisted of small hydrated aerosol (radius of 280 nm with a high number concentration (around 300 cm−3 at low temperatures (−30 °C. Observations of a boundary layer mixed-phase cloud by airborne lidar and concurrent airborne in situ and spectral solar radiation sensors revealed the localized process of total glaciation at the boundary of different air masses. In the free troposphere, a cloud composed of various ice layers with very different optical properties was detected by the Raman lidar, suggesting large differences of ice crystal size, shape and habit. Further, a mixed-phase double layer cloud was observed by airborne lidar in the free troposphere. Local orography influenced the evolution of this cloud. The four case studies revealed relations of cloud properties and specific atmospheric conditions, which we plan to use as the base for numerical simulations of these clouds.

  18. Assignment of the Raman lines in single crystal barium metaborate (beta-BaB sub 2 O sub 4)

    CERN Document Server

    Ney, P; Maillard, A; Polgar, K

    1998-01-01

    A Raman-scattering study performed on beta-BaB sub 2 O sub 4 (beta-BBO) at room temperature allows us to assign all the vibrational modes detected in the Raman spectra. The internal and external vibration modes are properly obtained by taking account of the light polarization, mode contamination and isotope effects. A correspondence between the lattice and the free-ring modes is also presented. (author)

  19. Dimensionless parameterization of lidar for laser remote sensing of the atmosphere and its application to systems with SiPM and PMT detectors.

    Science.gov (United States)

    Agishev, Ravil; Comerón, Adolfo; Rodriguez, Alejandro; Sicard, Michaël

    2014-05-20

    In this paper, we show a renewed approach to the generalized methodology for atmospheric lidar assessment, which uses the dimensionless parameterization as a core component. It is based on a series of our previous works where the problem of universal parameterization over many lidar technologies were described and analyzed from different points of view. The modernized dimensionless parameterization concept applied to relatively new silicon photomultiplier detectors (SiPMs) and traditional photomultiplier (PMT) detectors for remote-sensing instruments allowed predicting the lidar receiver performance with sky background available. The renewed approach can be widely used to evaluate a broad range of lidar system capabilities for a variety of lidar remote-sensing applications as well as to serve as a basis for selection of appropriate lidar system parameters for a specific application. Such a modernized methodology provides a generalized, uniform, and objective approach for evaluation of a broad range of lidar types and systems (aerosol, Raman, DIAL) operating on different targets (backscatter or topographic) and under intense sky background conditions. It can be used within the lidar community to compare different lidar instruments.

  20. Genomic DNA characterization of pork spleen by Raman spectroscopy

    Science.gov (United States)

    Guzmán-Embús, D. A.; Orrego Cardozo, M.; Vargas-Hernández, C.

    2013-11-01

    In this paper, the study of Raman signal enhancement due to interaction between ZnO rods and pork spleen DNA is reported. ZnO microstructures were synthesized by the Sol-Gel method and afterward combined with porcine spleen DNA extracted in the previous stages, following standardized cell lysis, deproteinization, and precipitation processes. Raman spectroscopy was used for the characterization of structures of ZnO and ZnO-DNA complex, and the results show the respective bands of ZnO wurtzite hexagonal phase for modes E2 (M), A1(TO), E2(High), E1(LO), and 2LO. Due to the SERS effect in the spectral range from 200 to 1800 cm,-1 Raman bands caused by vibrations of the deoxyribose C-O-C binding were also observed, producing deformation of the ring as shown in the 559 cm-1 peak. The broad band at 782 cm-1, together with the complex vibration of the string 5'-COPO-C3', is over a wide band of thymine (790 cm-1) or cytosine (780 cm-1). A prominent band near 1098 cm-1 assigned to symmetric stretching vibration phosphodioxy group (PO2-) DNA backbone is most favoured in intensity by the addition of ZnO particles originated by the SERS effect. This effect suggests a possible mechanism for enhancing the Raman signal due to the electromagnetic interaction between a DNA molecule and the flat surface of the ZnO rod.

  1. T R Shankar Raman

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. T R Shankar Raman. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 7 July 1996 pp 52-61 Feature Article. Nature Watch - A Horde of Indian Deer · T R Shankar Raman · More Details Fulltext PDF. Volume 1 Issue 9 September 1996 ...

  2. Characterization of Thalidomide using Raman Spectroscopy

    Science.gov (United States)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  3. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  4. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  5. Three-channel single-wavelength lidar depolarization calibration

    Directory of Open Access Journals (Sweden)

    E. M. McCullough

    2018-02-01

    Full Text Available Linear depolarization measurement capabilities were added to the CANDAC Rayleigh–Mie–Raman lidar (CRL at Eureka, Nunavut, in the Canadian High Arctic in 2010. This upgrade enables measurements of the phases (liquid versus ice of cold and mixed-phase clouds throughout the year, including during polar night. Depolarization measurements were calibrated according to existing methods using parallel- and perpendicular-polarized profiles as discussed in . We present a new technique that uses the polarization-independent Rayleigh elastic channel in combination with one of the new polarization-dependent channels, and we show that for a lidar with low signal in one of the polarization-dependent channels this method is superior to the traditional method. The optimal procedure for CRL is to determine the depolarization parameter using the traditional method at low resolution (from parallel and perpendicular signals and then to use this value to calibrate the high-resolution new measurements (from parallel and polarization-independent Rayleigh elastic signals. Due to its use of two high-signal-rate channels, the new method has lower statistical uncertainty and thus gives depolarization parameter values at higher spatial–temporal resolution by up to a factor of 20 for CRL. This method is easily adaptable to other lidar systems which are considering adding depolarization capability to existing hardware.

  6. Raman spectroscopic study of uranyl complex in alkali chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Toshiyuki, E-mail: tosiyuki@rri.kyoto-u.ac.jp [Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Uda, Takeshi [Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Iwadate, Yasuhiko [Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage, Chiba 263-8522 (Japan); Nagai, Takayuki [Nuclear Fuel Cycle Engineering Lab., Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai, Ibaraki 319-1194 (Japan); Uehara, Akihiro; Yamana, Hajimu [Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494 (Japan)

    2013-09-15

    Raman spectra of alkali chloride melts containing 3 mol% U(VI) were measured at 823 K. The complexation of UO{sub 2}Cl{sub 4}{sup 2-} in binary mixtures of LiCl-KCl, LiCl-RbCl, and LiCl-CsCl was investigated. The spectrum of UO{sub 2}Cl{sub 4}{sup 2-} obtained was characterized by Raman active vibration modes, that is, totally symmetric stretching vibrations A{sub 1g} (ν{sub 1}: OUO) and A{sub 1g} (ν{sub 2}: UCl{sub 4}), and bending vibration E{sub g} (ν{sub 8:} UO{sub 2}Cl{sub 2}). The dependence of polarizing power of solvent cations on the vibrational frequencies was clarified. The ν{sub 8} frequencies were insensitive to the change in the polarizing power. On the other hand, the ν{sub 1} and ν{sub 2} frequencies increased with the rise of polarizing power. The Raman shifts suggest that the square bipyramidal structure of UO{sub 2}Cl{sub 4}{sup 2-} is kept in various binary alkali chlorides, while O{sup 2−} and Cl{sup −} around U(VI) are clearly polarized by the increase of polarizing power.

  7. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  8. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    Science.gov (United States)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  9. Conformational and vibrational reassessment of solid paracetamol

    Science.gov (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  10. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  11. 2012 Oregon Lidar Consortium (OLC) Lidar: Keno (OR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data of the Oregon Keno Study Area for the Oregon Department of Geology and Mineral...

  12. New explanation of Raman peak redshift in nanoparticles

    Science.gov (United States)

    Meilakhs, A. P.; Koniakhin, S. V.

    2017-10-01

    In this letter, we propose a new model that explains the Raman peak downshift observed in nanoparticles with respect to bulk materials. The proposed model takes into account discreteness of the vibrational spectra of nanoparticles. For crystals with a cubic lattice (Diamond, Silicon, Germanium) we give a relation between the displacement of Raman peak position and the size of nanoparticles. The proposed model does not include any uncertain parameters, unlike the conventionally used phonon confinement model (PCM), and can be employed for unambiguous nanoparticles size estimation.

  13. Density functional theory study of vibrational spectra, and ...

    Indian Academy of Sciences (India)

    The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using ab initio Hartree-Fock, MP2 and DFT methods. A complete vibrational ...

  14. Density functional theory study of vibrational spectra, and ...

    Indian Academy of Sciences (India)

    WINTEC

    315. *For correspondence. Density functional theory study of vibrational spectra, and assignment of fundamental modes of ... FTIR; FT-Raman; density functional theory; dacarbazine. 1. Introduction. Dacarbazine, used as antineoplastic in ...... molecules (London: Chapman and Hall) vol 2. 18. Wiberg K B and Sharke A 1973 ...

  15. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...

  16. Characterization and calibration of a combined laser Raman, fluorescence and coherent Raman spectrometer

    Science.gov (United States)

    Lawhead, Carlos; Cooper, Nathan; Anderson, Josiah; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Electronic and vibrational spectroscopy is extremely important tools used in material characterization; therefore a table-top laser spectrometer system was built in the spectroscopy lab at the UWF physics department. The system is based upon an injection seeded nanosecond Nd:YAG Laser. The second and the third harmonics of the fundamental 1064 nm radiation are used to generate Raman and fluorescence spectra measured with MS260i imaging spectrograph occupied with a CCD detector and cooled to -85 °C, in order to minimize the dark background noise. The wavelength calibration was performed with the emission spectra of standard gas-discharge lamps. Spectral sensitivity calibration is needed before any spectra are recorded, because of the table-top nature of the instrument. A variety of intensity standards were investigated to find standards suitable for our table top setup that do not change the geometry of the system. High quality measurement of Raman standards where analyzed to test spectral corrections. Background fluorescence removal methods were used to improve Raman signal intensity reading on highly fluorescent molecules. This instrument will be used to measure vibrational and electronic spectra of biological molecules.

  17. FT-IR and Raman spectra and DFT calculations on bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Maia, J. R.; Lima, J. A.; Freire, P. T. C.; Mendes Filho, J.; Nogueira, C. E. S.; Teixeira, A. M. R.; de Menezes, A. S.; Remédios, C. M. R.; Cardoso, L. P.

    2013-12-01

    In this work the Fourier transform infrared and the Raman spectra of bis(L-hisidinato)nickel(II) monohydrate were recorded at room temperature. Optimized geometry and vibrational frequencies were obtained by means of Density Functional Theory (DFT). Experimental and theoretical vibrational spectra were compared and a complete analysis of the modes was done in terms of the Potential Energy Distribution (PED).

  18. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    Science.gov (United States)

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  19. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  20. Generic methodology for calibrating profiling nacelle lidars

    DEFF Research Database (Denmark)

    Borraccino, Antoine; Courtney, Michael; Wagner, Rozenn

    Improving power performance assessment by measuring at different heights has been demonstrated using ground-based profiling LIDARs. More recently, nacelle-mounted lidars studies have shown promising capabilities to assess power performance. Using nacelle lidars avoids the erection of expensive...... meteorology masts, especially offshore. A new generation of commercially developed profiling nacelle lidars has sophisticated measurement capabilities. As for any other measuring system, lidars measurements have uncertainties. Their estimation is the ultimate goal of a calibration. Field calibration...... procedures have been developed for non-profiling nacelle lidars. However, their specificity to one type of lidar or another highlights the need for developing generic calibration procedures. Such procedures should be applicable to any type of existing and upcoming lidar technology. Profiling nacelle lidars...

  1. Raman scattering in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  2. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  3. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available Silver-doped hydroxyapatite (Ag:HAp was obtained by coprecipitation method. Transmission electron microscopy (TEM, infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The most intense peak Raman spectrum is the narrow band observed at 960 cm−1. In this article Ag:HAp-NPs were also evaluated for their antimicrobial activities against gram-positive, gram-negative, and fungal strains. The specific antimicrobial activity revealed by the qualitative assay demonstrates that our compounds are interacting differently with the microbial targets.

  4. 2013 USGS Lidar: Norfolk (VA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Laser Mapping Specialist, Inc (LMSI) and The Atlantic Group (Atlantic) provided high accuracy, calibrated multiple return LiDAR for roughly 1,130 square miles around...

  5. 2009 SCDNR Horry County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Horry County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  6. 2009 SCDNR Berkeley County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  7. 2014 NJMC Lidar: Hackensack Meadowlands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial, Inc. (QSI) was contracted by the New Jersey Meadowlands Commission (NJMC) to collect Light Detection and Ranging (LiDAR) data in...

  8. 2006 FEMA Lidar: Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The FEMA Task Order 26 LiDAR data set was collected by Airborne 1 Corporation of El Segundo, California in September - December of 2006 for URS Corp.

  9. Complex Terrain and Wind Lidars

    DEFF Research Database (Denmark)

    Bingöl, Ferhat

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed...... in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar...... models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to ∼6h. At the forest...

  10. 2005 Baltimore County Maryland Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2005, Sanborn as part of the Dewberry team was contracted to execute a LiDAR (Light Detection and Ranging) survey campaign to collect the...

  11. Alabama 2003 Lidar Coverage, USACE

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) has performed a coastal survey along the Gulf of Mexico in the summer of 2003. The data...

  12. 2004 USACE Puerto Rico Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This record describes Light Detection and Ranging (Lidar) data acquired for the island of Puerto Rico. The data were acquired for USACE, St. Louis District by 3001,...

  13. 2014 Mobile County, AL Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Atlantic was contracted to acquire high resolution topographic LiDAR (Light Detection and Ranging) data located in Mobile County, Alabama. The intent was to collect...

  14. Methane LIDAR Laser Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop laser technology intended to meet NASA's need for innovative lidar technologies for atmospheric measurements of methane. NASA and the...

  15. 2008 City of Baltimore Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the spring of 2008, the City of Baltimore expressed an interest to upgrade the City GIS Database with mapping quality airborne LiDAR data. The City of Baltimore...

  16. 2009 Chatham County Georgia Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR generated point cloud acquired in spring 2009 for Chatham County, Georgia for the Metropolitan Planning Commission. The data are classified as follows: Class 1...

  17. 2009 SCDRN Lidar: Florence County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The South Carolina Department of Natural Resources (SCDNR) contracted with Sanborn to provide LiDAR mapping services for Florence County, SC. Utilizing multi-return...

  18. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  19. Application of UV-Raman spectroscopy to the detection of chemical and biological threats

    Science.gov (United States)

    Sedlacek, Arthur J., III; Christesen, Steven D.; Chyba, Tom; Ponsardin, Pat

    2004-03-01

    Brookhaven National Laboratory (BNL), Edgewood Chemical and Biological Center (ECBC) and ITT Industries Advanced Engineering and Sciences Division (AES) have been collaborating on the transitioning and subsequent development of a short-range, non-contact Raman lidar system specifically designed to detect and identify chemical agents on the battlefield. [The instrument, referred to as LISA (Laser Interrogation of Surface Agents), will the subject of an accompanying paper.] As part of this collaboration, BNL has the responsibility for developing a spectral database (library) of surrogates and precursors for use with LISA"s pattern recognition algorithms. In this paper, the authors discuss the phenomenon of UV Raman and resonance-enhanced Raman spectroscopy, the development of an instrument-independent Raman spectral library, and highlight the exploitable characteristics present in the acquired spectral signatures that suggest potential utility in our country"s efforts on Homeland Security.

  20. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  1. The Asian Dust and Aerosol Lidar Observation Network (AD-NET: Strategy and Progress

    Directory of Open Access Journals (Sweden)

    Nishizawa Tomoaki

    2016-01-01

    Full Text Available We have operated a ground-based lidar network AD-Net using dual wavelength (532, 1064nm depolarization Mie lidar continuously and observed movement of Asian dust and air pollution aerosols in East Asia since 2001. This lidar network observation contributed to understanding of the occurrence and transport mechanisms of Asian dust, validation of chemical transport models, data assimilation and epidemiologic studies. To better understand the optical and microphysical properties, externally and internally mixing states, and the movements of Asian dust and airpollution aerosols, we go forward with introducing a multi-wavelength Raman lidar to the AD-Net and developing a multi-wavelength technique of HSRL in order to evaluate optical concentrations of more aerosol components. We will use this evolving AD-Net for validation of Earth-CARE satellite observation and data assimilation to evaluate emissions of air pollution and dust aerosols in East Asia. We go forward with deploying an in-situ instrument polarization optical particle counter (POPC, which can measure size distributions and non-sphericity of aerosols, to several main AD-Net sites and conducting simultaneous observation of POPC and lidar to clarify internally mixed state of Asian dust and air pollution aerosols transported from the Asian continent to Japan.

  2. Retrieval of Polar Stratospheric Cloud Microphysical Properties from Lidar Measurements: Dependence on Particle Shape Assumptions

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.

  3. Raman spectroscopic study of LiHPO

    Science.gov (United States)

    Lee, Kwang-Sei; Ko, Jae-Hyeon; Moon, Joonhee; Lee, Sookyoung; Jeon, Minhyon

    2008-03-01

    The dielectric constant of polycrystalline LiH 2PO 4 has been measured between 297 and 17 K. No marked changes were observed over this range, indicating that the room-temperature orthorhombic phase persisted up to 17 K. Raman spectra of polycrystalline LiH 2PO 4 were also measured at 297, 200, and 70 K in the frequency shift region of 15-4000 cm -1 with Raman-active vibrational modes naively assigned to low-frequency (0-300 cm -1) external and high-frequency (300-4000 cm -1) internal modes. In addition to the internal modes of the PO 4 tetrahedra, the internal modes of the LiO 4 tetrahedra spectroscopically manifested themselves between 390-500 cm -1. This frequency range overlaps those of ν2 (PO 4) and ν4 (PO 4). The LiH 2PO 4O-H vibrational frequencies were in good agreement with crystallographic reports that there are two types of hydrogen bonds: intermediate (long bonds) and strong (short bonds).

  4. Random Raman lasing

    CERN Document Server

    Hokr, Brett H; Mason, John D; Beier, Hope T; Rockwll, Benjamin A; Thomas, Robert J; Noojin, Gary D; Petrov, Georgi I; Golovan, Leonid A; Yakovlev, Vladislav V

    2013-01-01

    Propagation of light in a highly scattering medium is among the most fascinating optical effect that everyone experiences on an everyday basis and possesses a number of fundamental problems which have yet to be solved. Conventional wisdom suggests that non-linear effects do not play a significant role because the diffusive nature of scattering acts to spread the intensity, dramatically weakening these effects. We demonstrate the first experimental evidence of lasing on a Raman transition in a bulk three-dimensional random media. From a practical standpoint, Raman transitions allow for spectroscopic analysis of the chemical makeup of the sample. A random Raman laser could serve as a bright Raman source allowing for remote, chemically specific, identification of powders and aerosols. Fundamentally, the first demonstration of this new light source opens up an entire new field of study into non-linear light propagation in turbid media, with the most notable application related to non-invasive biomedical imaging.

  5. Enhanced signal-to-noise ratio estimation for tropospheric lidar channels

    Science.gov (United States)

    Saeed, Umar; Barragan, Rubén; Rocadenbosch, Francesc

    2016-04-01

    This works combines the fields of tropospheric lidar remote sensing and signal processing to come up with a robust signal-to-noise ratio (SNR) estimator apt for elastic and Raman channels. The estimator uses a combined low-pass / high-pass filtering scheme along with high-order statistics (kurtosis) to estimate the range-dependent signal and noise components with minimum distortion. While low-pass filtering is used to estimate the range-dependent signal level, high-pass filtering is used to estimate the noise component with minimum distortion. From this noise component estimate (a random realization) the noise level (e.g., variance) is computed as a function of range along with error bars. The minimum-distortion specification determines the optimal cut-off de-noising filter frequency and, in turn, the spatial resolution of the SNR estimation algorithm. The proposed SNR estimator has a much wider dynamic range of operation than well-known classic SNR estimation techniques, in which the SNR is directly computed from the mean and standard deviation of the measured noise-corrupted lidar signal along successive adjacent range intervals and where the spatial resolution is just a subjective input from the user's side. Aligned with ACTRIS (http://www.actris.net) WP on "optimization of the processing chain and Single-Calculus Chain (SCC)" the proposed topic is of application to assess lidar reception channel performance and confidence on the detected atmospheric morphology (e.g., cloud base and top, and location of aerosol layers). The SNR algorithm is tested against the classic SNR estimation approach using test-bed synthetic lidar data modelling the UPC multi-spectral lidar. Towards this end, the Nd:YAG UPC elastic-Raman lidar provides aerosol channels in the near-infrared (1064 nm), visible (532 nm), and ultra-violet (355 nm) as well as aerosol Raman and water-vapour channels with fairly varying SNR levels. The SNR estimator is also used to compare SNR levels between

  6. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R

    Science.gov (United States)

    Xie, Yunfei; Li, Yan; Sun, Yingying; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-01

    Ponceau 4R is used as a coloring agent in many different products, such as food, drinks, medicines, cosmetics and tobacco. However, ponceau 4R also shows carcinogenic, teratogenic and mutagenic behavior in high doses. In this work, standard Raman, theoretical Raman and surface-enhanced Raman scattering (SERS) spectra have been used to investigate ponceau 4R. More specifically, density functional theory (DFT) calculations have been used to calculate the optimized Raman spectrum of ponceau 4R at the B3LYP/6-31G(d) level. This has provided a better understanding of the optimized geometry and vibrational frequencies of this dye. In addition, the experimental spectrum of ponceau 4R has been compared with the theoretical spectrum; good agreement was obtained. Finally, it has shown that using SERS the detection limit of the ponceau 4R solution can be as low as 5 μg/mL. This has been achieved by SERS measurements of ponceau 4R on a substrate of gold nanoparticles. The SERS peaks at 1030, 1236, 1356 and 1502 cm-1 were chosen as index for semi-quantitative analysis, showing that the SERS technique provided a useful ultrasensitive method for the detection of ponceau 4R.

  7. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  8. Raman hyperspectral image analysis of benzoyl peroxide additive

    Science.gov (United States)

    Wang, Xiaobin; Huang, Wenqian; Wang, Qingyan; Liu, Chen; Wang, Chaopeng; Yang, Guiyan; Zhao, Chunjiang

    2017-06-01

    This study adopted a Raman hyperspectral imaging system to collect the Raman spectra and hyperspectral images of benzoyl peroxide (BPO) additive for subsequent analysis. The raw Raman spectra of BPO were preprocessed by wavelet denoising. Optimal parameters of wavelet denoising were selected by the orthogonal experimental design. The signal-noise (S/N) ratio of the optimal parameter combination was 32.848. The smoothed Raman spectra were divided into three regions (1900-1300, 1300-700, and 700-100 cm-1) for assignment and the band vibrational modes of BPO molecule were obtained. Wherein, the Raman bands at 1771, 1597, 1230, 999, 889 and 845 cm-1 are higher than others, and can be used as the Raman characteristic bands. Analysis of the grayscale images corresponding to different characteristic bands, it is found that the order of change of the image gray level was consistent with characteristic bands intensity. Findings of this study provide the research basics for the detection and analysis of BPO additive.

  9. Evaluation and optimization of lidar temperature analysis algorithms using simulated data

    Science.gov (United States)

    Leblanc, Thierry; McDermid, I. Stuart; Hauchecorne, Alain; Keckhut, Philippe

    1998-01-01

    The middle atmosphere (20 to 90 km altitude) ha received increasing interest from the scientific community during the last decades, especially since such problems as polar ozone depletion and climatic change have become so important. Temperature profiles have been obtained in this region using a variety of satellite-, rocket-, and balloon-borne instruments as well as some ground-based systems. One of the more promising of these instruments, especially for long-term high resolution measurements, is the lidar. Measurements of laser radiation Rayleigh backscattered, or Raman scattered, by atmospheric air molecules can be used to determine the relative air density profile and subsequently the temperature profile if it is assumed that the atmosphere is in hydrostatic equilibrium and follows the ideal gas law. The high vertical and spatial resolution make the lidar a well adapted instrument for the study of many middle atmospheric processes and phenomena as well as for the evaluation and validation of temperature measurements from satellites, such as the Upper Atmosphere Research Satellite (UARS). In the Network for Detection of Stratospheric Change (NDSC) lidar is the core instrument for measuring middle atmosphere temperature profiles. Using the best lidar analysis algorithm possible is therefore of crucial importance. In this work, the JPL and CNRS/SA lidar analysis software were evaluated. The results of this evaluation allowed the programs to be corrected and optimized and new production software versions were produced. First, a brief description of the lidar technique and the method used to simulate lidar raw-data profiles from a given temperature profile is presented. Evaluation and optimization of the JPL and CNRS/SA algorithms are then discussed.

  10. IR, Raman, SERS and DFT study of paroxetine

    Science.gov (United States)

    Cozar, I. B.; Szabó, L.; Mare, D.; Leopold, N.; David, L.; Chiş, V.

    2011-05-01

    Structural investigations by different vibrational spectroscopic methods (FTIR, Raman and SERS), as well as density functional theory (DFT) calculations were performed on paroxetine (IUPAC name: (3S,4R)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine. After the identification of the lowest energy conformer of the investigated molecule, the FTIR, FT-Raman and SERS spectra were assigned on the basis of DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between experimental and theoretical data is a clear evidence for a reliable assignment of the vibrational bands. The molecular electrostatic potential was calculated and used for the prediction of preferred adsorption sites of the paroxetine molecule on the silver nanoparticles surface. Based on SERS spectra analysis it is shown that the molecule is adsorbed on the silver surface through the benzodioxol ring, in a tilted orientation.

  11. Raman signatures of charge ordering in K0.3WO3

    OpenAIRE

    Sagar, D. M.; Fausti, D.; Smaalen, S. van; van Loosdrecht, P. H. M.

    2010-01-01

    We present polarization- and temperature-dependent Raman spectroscopic study of hexagonal tungsten bronze, K0.3WO3. The observed asymmetry in phonon line shapes indicate the presence of strong lattice anharmonicity arising due to the nonstoichiometry of the material. We observed a broad multipeak Raman feature at low frequency due to the local modes of K atoms known as local structural excitations. The observed vibrational features indicate a second-order phase transition around T=200 K accom...

  12. Raman scattering in the high T c superconductors MBa 2Cu 3O 7-x

    Science.gov (United States)

    Liu, Ran; Merlin, R.; Cardona, M.; Mattausch, Hj.; Bauhofer, W.; Simon, A.; Garcia-Alvarado, F.; Moran, E.; Vallet, M.; Gonzalez-Calbet, J. M.; Alario, M. A.

    1987-09-01

    We report Raman scattering measurements of MBa 2Cu 3O 7 ( M = Y, Sm, Eu) polycrystalline superconductors in the region of Cu-O stretching vibrations. Four peaks are seen. On the basis of the factor group analysis given here they are assigned to two Raman allowed and two ir-allowed LO modes. The latter are probably induced by disorder (e.g. O-vacancies).

  13. Barium Nitrate Raman Laser Development for Remote Sensing of Ozone

    Science.gov (United States)

    McCray, Christopher L.; Chyba, Thomas H.

    1997-01-01

    In order to understand the impact of anthropogenic emissions upon the earth's environment, scientists require remote sensing techniques which are capable of providing range-resolved measurements of clouds, aerosols, and the concentrations of several chemical constituents of the atmosphere. The differential absorption lidar (DIAL) technique is a very promising method to measure concentration profiles of chemical species such as ozone and water vapor as well as detect the presence of aerosols and clouds. If a suitable DIAL system could be deployed in space, it would provide a global data set of tremendous value. Such systems, however, need to be compact, reliable, and very efficient. In order to measure atmospheric gases with the DIAL technique, the laser transmitter must generate suitable on-line and off-line wavelength pulse pairs. The on-line pulse is resonant with an absorption feature of the species of interest. The off-line pulse is tuned so that it encounters significantly less absorption. The relative backscattered power for the two pulses enables the range-resolved concentration to be computed. Preliminary experiments at NASA LaRC suggested that the solid state Raman shifting material, Ba(NO3)2, could be utilized to produce these pulse pairs. A Raman oscillator pumped at 532 nm by a frequency-doubled Nd:YAG laser can create first Stokes laser output at 563 nm and second Stokes output at 599 nm. With frequency doublers, UV output at 281 nm and 299 nm can be subsequently obtained. This all-solid state system has the potential to be very efficient, compact, and reliable. Raman shifting in Ba(NO3)2, has previously been performed in both the visible and the infrared. The first Raman oscillator in the visible region was investigated in 1986 with the configurations of plane-plane and unstable telescopic resonators. However, most of the recent research has focused on the development of infrared sources for eye-safe lidar applications.

  14. Anisotropic effects in the Raman scattering of Re-doped 2H-MoSe2 layered semiconductors

    Directory of Open Access Journals (Sweden)

    Chia-Ti Wu

    Full Text Available We present the anisotropic Raman spectra of the Re-doped MoSe2 layered semiconductor with thicker edge plane grown by chemical vapor transport method. The anisotropic lattice dynamics in the doped MoSe2 layered material are investigated by Raman scattering. The vibrational spectra measured on the planes perpendicular and parallel to the crystal c-axis can be correlated, respectively, to the Raman active E1g, A1g and E2g1 modes. The linewidth parameter Γ and correlation length L evaluated using spatial correlation model for describing the Raman spectra lineshape are further discussed to understand the in-plane and out-of-plane vibration of the Se atoms in the E1g and A1g modes. Keywords: MoSe2, Anisotropic, Layered semiconductors, Raman scattering

  15. Raman Spectroscopic Characterization of Melanoma and Benign Melanocytic Lesions Suspected of Melanoma Using High-Wavenumber Raman Spectroscopy.

    Science.gov (United States)

    Santos, Inês P; Caspers, Peter J; Bakker Schut, Tom C; van Doorn, Remco; Noordhoek Hegt, Vincent; Koljenović, Senada; Puppels, Gerwin J

    2016-08-02

    Melanoma is a pigmented type of skin cancer, which has the highest mortality of all skin cancers. Because of the low clinical diagnostic accuracy for melanoma, an objective tool is needed to assist clinical assessment of skin lesions that are suspected of (early) melanoma. The aim of this study was to identify spectral differences in the CH region of HWVN (high-wavenumber) Raman spectra between melanoma and benign melanocytic lesions clinically suspected of melanoma. We used these spectral differences to explore preliminary classification models to distinguish melanoma from benign melanocytic lesions. Data from 82 freshly excised melanocytic lesions clinically suspected of melanoma were measured using an in-house built Raman spectrometer, which has been optimized for measurements on pigmented skin lesions (excitation wavelength 976 nm and a wavelength range of the Raman signal 1340-1540 nm). Clear spectral differences were observed between melanoma and benign melanocytic lesions. These differences can be assigned mainly to the symmetric CH2 stretching vibrations of lipids. Our results show that the Raman bands between 2840 and 2930 cm(-1) have increased intensity for melanoma when compared to benign melanocytic lesions, suggesting an increase in lipid content in melanoma. These results demonstrate that spectroscopic information in the CH-stretching region of HWVN Raman spectra can discriminate melanoma from benign melanocytic lesions that are often clinically misdiagnosed as melanoma and that Raman spectroscopy has the potential to provide an objective clinical tool to improve the clinical diagnostic accuracy of skin lesions suspected of melanoma.

  16. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  17. LiDAR for data efficiency.

    Science.gov (United States)

    2011-09-30

    This report documents the AHMCT research project: LiDAR for Data Efficiency for the Washington State Department of Transportation (WSDOT). The research objective was to evaluate mobile LiDAR technology to enhance safety, determine efficiency ga...

  18. 2006 Volusia County Florida LiDAR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is the lidar data for Volusia County, Florida, approximately 1,432 square miles, acquired in early March of 2006. A total of 143 flight lines of Lidar...

  19. HAYABUSA LIDAR V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The HAYABUSA spacecraft included a LIght Detection and Ranging (LIDAR) altimeter. The primary objective of LIDAR was to establish the range between the HAYABUSA...

  20. 2014 PSLC Lidar: City of Redmond

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In February 2014, Quantum Spatial (QSI) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data for the City of...

  1. 2015 OLC Lidar DEM: Big Wood, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Big Wood 2015 study area. This study area is located in...

  2. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  3. 2004 SWFWMD Citrus County Lidar Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the ortho & LIDAR mapping of Citrus County, FL. The mapping consists of LIDAR data collection, contour generation, and production...

  4. 2002 Willapa Bay LiDAR Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA contracted with Spencer B. Gross, Inc. (SBG) to obtain airborne LiDAR of Willapa Bay, Washington during low tide conditions. The LiDAR data was processed to...

  5. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  6. 2014 Horry County, South Carolina Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is comprised of lidar point cloud data. This project required lidar data to be acquired over Horry County, South Carolina. The total area of the Horry...

  7. 2015 Oregon Department Forestry Lidar: Northwest OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GeoTerra, Inc. was selected by Oregon Department of Forestry to provide Lidar remote sensing data including LAZ files of the classified Lidar points and surface...

  8. 2008 St. Johns County, FL Countywide Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne terrestrial LiDAR was collected for St. Johns County, FL. System Parameters/Flight Plan. The LiDAR system acquisition parameters were developed based on a...

  9. 2011 South Carolina DNR Lidar: York County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Towill Inc. collected LiDAR for over 3,500 square miles in York, Pickens, Anderson, and Oconee Counties in South Carolina. This metadata covers the LiDAR produced...

  10. Iowa LiDAR Mapping Project

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This is collection level metadata for LAS and ASCII data files from the statewide Iowa Lidar Project. The Iowa Light Detection and Ranging (LiDAR) Project collects...

  11. 2007 USGS Lidar: Canyon Fire (CA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Southern California Light Detection and Ranging (LiDAR) data is to provide high accuracy LIDAR data. These datasets will be the initial acquisition to support...

  12. LIDAR for atmosphere research over Africa

    CSIR Research Space (South Africa)

    Sivakumar, V

    2008-11-01

    Full Text Available This paper describes the LIDAR for atmosphere research over Africa and current initiatives being undertaken in South Africa. A mobile LIDAR system is being developed at the Council for Scientific and Industrial Research (CSIR) National Laser Centre...

  13. 2010 ARRA Lidar: 4 Southeast Counties (MI)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — TASK NAME: Southeast Michigan LiDAR LiDAR Data Acquisition and Processing Production Task- Monroe, St. Clair, Macomb, and Livingston Counties SEMCOG CONTRACT:...

  14. 2011 ARRA Lidar: Willacy County (TX)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for a portion of Willacy County, Texas. LiDAR data,...

  15. Elevation - LIDAR Survey - Roseau County, Minnesota

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LIDAR Data for Roseau County Minnesota. This project consists of approximately 87 square miles of LIDAR mapping in Roseau County, Minnesota at two sites: area 1,...

  16. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy

    OpenAIRE

    Taylor, Jack; Huefner, Anna; Li, Li; Wingfield, Jonathan; Mahajan, Sumeet

    2016-01-01

    Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of hig...

  17. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis.

    Science.gov (United States)

    Dumont, Elodie; De Bleye, Charlotte; Sacré, Pierre-Yves; Netchacovitch, Lauranne; Hubert, Philippe; Ziemons, Eric

    2016-05-01

    Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.

  18. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  19. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Yordanova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a two-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  20. Calibration of Nacelle-based Lidar instrument

    DEFF Research Database (Denmark)

    Georgieva Yankova, Ginka; Courtney, Michael

    This report presents the result of the lidar calibration performed for a four-beam nacelle based lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark.Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements...... with measurement uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements....

  1. FT-Raman and FTIR-ATR spectroscopies and DFT calculations of triterpene acetyl aleuritolic acid

    Science.gov (United States)

    Melo, I. R. S.; Teixeira, A. M. R.; Sena Junior, D. M.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Rodrigues, A. S.; Braz-Filho, R.; Gusmão, G. O. M.; Silva, J. H.; Faria, J. L. B.; Bento, R. R. F.

    2014-01-01

    Triterpenoids comprise an important class of compounds presenting a wide range of biologically important properties. Acetyl aleutitolic acid (AAA) is a triterpenoid isolated from Croton zehntneri, with molecular formula C32H50O4. Its structure has been characterized by NMR spectroscopy, however, there are no papers available regarding its vibrational properties. The Fourier-Transform Infrared with Attenuated Total Reflectance and Fourier-Transform Raman spectra, together with Density Functional Theory calculations of AAA are reported. Vibrational spectra were recorded at 300 K in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, for IR and Raman, respectively. Vibrational wavenumbers were predicted using Density Functional Theory calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p). A complete assignment of vibrational modes is given.

  2. Infrared and Raman Study of the Recluse Spider Silk

    Science.gov (United States)

    Wang, S. L.; Wang, Qijue; Xing, Zhen; Schniepp, H. C.; Qazilbash, M. M.

    Spider silk exhibits remarkable mechanical properties, such as high tensile strength and toughness. We want to gain insight into the composition and structure of spider silk to discover the origin of these properties. We are especially interested in the organization of the crystalline beta sheets that are expected to contribute to the high strength of the silk from the recluse spider, Loxosceles laeta. The recluse spider produces a silk that has a unique geometry amongst arachnids. We measure the silk's optical properties, particularly the infrared-active and Raman-active vibrations. Broadband infrared transmission spectra were collected in the spectral range between 600 cm-1 and 4000 cm-1, with light polarized parallel and perpendicular to the long axis of the silk. Raman micro-spectroscopy was performed in the spectral range 500 cm-1 and 4000 cm- 1 with a 514 nm laser. The infrared and Raman vibrational modes are fit with Lorentzian and pseudo-Voigt functions. The vibrational modes are assigned to specific structures and electronic bonds in the silk. This work was supported by NASA/ Virginia Space Grant Consortium.

  3. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  4. Industrial fiber lidar: some applications

    Science.gov (United States)

    Belanger, Brigitte; Fougeres, Andre; Talbot, Mario; Roy, Gilles

    2000-12-01

    In recent years, INO has developed an eye-safe, transportable industrial fiber lidar (IFL) for industrial applications of pollution control during handling of loose materials'2. However, it can also be used for other applications like urban particulates monitoring, cloud mapping, and unattended surveillance. The IPL is a compact and direct scanning lidar. It is based on 1140's diode pumped Erbium doped fiber laser, which delivers an energy of 1 .5microJoules in l2ns pulses with a high repetition rate of 10kHz at an eye-safe wavelength of 1.5microns. 1140's lidar system is composed of a lidar head containing the transmitter-receiver optics in a biaxial configuration mounted on a scanning platform. The lidar head is connected to the laser source and detector via optical fibers. A computer controls the scanning platform via an optical RS- 232 communication link. This allows remote operation since sensitive equipment like the laser and the computer can be located away from the surveillance site in an environmentally controlled room. The TEL characteristics and results obtained from monitoring in an urban area and field trials on surveillance of hard targets and transmission through obscurants will be detailed.

  5. Cloud properties derived from two lidars over the ARM SGP site

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  6. Structured illumination microscopy for vibrational molecular imaging (Conference Presentation)

    Science.gov (United States)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2016-09-01

    Raman microscopy is a powerful tool for analytical imaging. The wavelength shift of Raman scattering corresponds to molecular vibrational energy. Therefore, we can access rich chemical information, such as distribution, concentration, and chemical environment of sample molecules. Despite these strengths of Raman microscopy, the spatial resolution has been a limiting factor for many practical applications. In this study, we developed a large-area, high-resolution Raman microscope by utilizing structured illumination microscopy (SIM) to overcome the spatial resolution limit. A structured line-illumination (SLI) Raman microscope was constructed. The structured illumination is introduced along the line direction by the interference of two line-shaped beams. In SIM, the spatial frequency mixing between structured illumination and Raman scattering from the sample allows access to the high spatial frequency information beyond the conventional cut-off. As a result, the FWHM of 40-nm fluorescence particle images showed a clear resolution enhancement in the line direction: 366 nm in LI and 199 nm in SLI microscope. Using the developed microscope, we successfully demonstrated high-resolution Raman imaging of various kinds of specimens, such as few-layer graphene, graphite, mouse brain tissue, and polymer nanoparticles. The high resolution Raman images showed the capability to extract original spectral features from the mixed Raman spectra of a multi-component sample because of the enhanced spatial resolution, which is advantageous in observing complex spectral features. The Raman microscopy technique reported here enables us to see the detailed chemical structures of chemical, biological, and medical samples with a spatial resolution smaller than 200 nm.

  7. Generation of Pseudoscalar Bosons by Stimulated Raman Scattering of Light in Dielectric Media

    Directory of Open Access Journals (Sweden)

    Gorelik V.S.

    2015-01-01

    Full Text Available The conditions of pseudoscalar excitations of liquids and crystals vibration states in spontaneous and stimulated Raman spectra revealing are reported. The selection rules for pseudoscalar modes of molecules and crystals observation have been obtained. The experiments on observation of spontaneous and stimulated Raman scattering on pseudoscalar modes of molecules and crystals have been fulfilled. The excitation of stimulated Raman scattering was with using of solid state laser YAG:Nd3+, generating intense (up to 1 TW/cm2 ultrashort (60 ps laser pulses with energy 10 mJ and frequency repetition 10 Hz. The relationship between pseudoscalar bosons of dielectric media and axion of vacuum is analyzed.

  8. Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles

    Science.gov (United States)

    Kavelin, V.; Fesenko, O.; Dubyna, H.; Vidal, C.; Klar, T. A.; Hrelescu, C.; Dolgov, L.

    2017-03-01

    Sulfonated Zn phthalocyanine, as a prospective photosensitizer in the photodynamic therapy of tumors, is investigated by means of Raman, infrared, and fluorescence spectroscopies. Conventional and surface-enhanced spectra from this photosensitizer are obtained and compared. Gold nano-islands attached to silica cores (Au-SiO2) are proposed as nanostructures providing plasmonically enhanced signals. Pronounced enhancement of Raman and infrared spectral bands from sulfonated Zn phthalocyanine allows their more convenient assignment with vibrational modes of sulfonated Zn phthalocyanine. In comparison to Raman and IR, the fluorescence is less enhanced by Au-SiO2 particles.

  9. (17)O NMR and Raman Spectroscopies of Green Tea Infusion with Nanomaterial to Investigate Their Properties.

    Science.gov (United States)

    Zhou, Changyan; Zhang, Huiping; Yan, Ying; Zhang, Xinya

    2016-09-01

    (17)O NMR and Raman spectrograms of green tea infusions with nanomaterial were investigated. Different green tea infusions were prepared by steeping tea powder with different concentrations of nanomaterial aqueous solution. The tea infusions were tested with (17)O NMR and Raman spectroscopies. The (17)O NMR results showed that line width increased to 90 in the tea infusions after nanomaterial was added as a result of the effects of the self-association of Ca(2+) and tea polyphenol. The results of Raman spectroscopy showed that, in tea infusions, the enhancement of C─C and C─O stretching vibrations suggest an increase in the number of effective components in water.

  10. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    Science.gov (United States)

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  11. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  12. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    Science.gov (United States)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  13. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of the reaction equilibrium is derived. The method is used-along with the temperature-dependent features of the Raman spectra-to show that the studied equilibrium 2HSO(4)(-) (1) S2O72-(1) + H2O(g) is the only......Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... band intensities inferring the occurrence of the temperature-dependent dissociation equilibrium 2HSO(4)(-) (1) S2O72-(1) + H2O(g). The Raman data are adequate for determining the partial pressures of H2O in the gas phase above the molten mixtures. A formalism for correlating relative Raman band...

  14. Monosodium glutamate in its anhydrous and monohydrate form: Differentiation by Raman spectroscopies and density functional calculations

    Science.gov (United States)

    Peica, N.; Lehene, C.; Leopold, N.; Schlücker, S.; Kiefer, W.

    2007-03-01

    Monosodium glutamate (MSG), a common flavor enhancer, is detected in aqueous solutions by Raman and surface-enhanced Raman (SERS) spectroscopies at the micromolar level. The presence of different species, such as protonated and unprotonated MSG, is demonstrated by concentration and pH dependent Raman and SERS experiments. In particular, the symmetric bending modes of the amino group and the stretching modes of the carboxy moiety are employed as marker bands. The protonation of the NH 2 group at acidic pH values, for example, is detected in the Raman spectra. From the measured SERS spectra, a strong chemical interaction of MSG with the colloidal particles is deduced and a geometry of MSG adsorbed on the silver surface is proposed. In order to assign the observed Raman bands, calculations employing density functional theory (DFT) were performed. The calculated geometries, harmonic vibrational wavenumbers and Raman scattering activities for both MSG forms are in good agreement with experimental data. The set of theoretical data enables a complete vibrational assignment of the experimentally detected Raman spectra and the differentiation between the anhydrous and monohydrate forms of MSG.

  15. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  16. Can Wind Lidars Measure Turbulence?

    DEFF Research Database (Denmark)

    Sathe, Ameya; Mann, Jakob; Gottschall, Julia

    2011-01-01

    Modeling of the systematic errors in the second-order moments of wind speeds measured by continuous-wave (ZephIR) and pulsed (WindCube) lidars is presented. These lidars use the conical scanning technique to measure the velocity field. The model captures the effect of volume illumination...... and conical scanning. The predictions are compared with the measurements from the ZephIR, WindCube, and sonic anemometers at a flat terrain test site under different atmospheric stability conditions. The sonic measurements are used at several heights on a meteorological mast in combination with lidars...... that are placed on the ground. Results show that the systematic errors are up to 90% for the vertical velocity variance, whereas they are up to 70% for the horizontal velocity variance. For the ZephIR, the systematic errors increase with height, whereas for the WindCube, they decrease with height. The systematic...

  17. Identification of gaseous oxygen and nitrogen in bubble inclusions in Bi4(GeO4)3 (BGO) crystals by means of Raman spectroscopy

    NARCIS (Netherlands)

    Boer, R.C. de; Loosdrecht, P.H.M. van; Meekes, H.L.M.

    1994-01-01

    Bubble inclusions in BGO crystals have been studied by means of Raman spectroscopy. Since the crystals were grown under ambient atmospheric conditions, we focused our attention on oxygen and nitrogen. Both species are diatomic homonuclear molecules which are vibrationally and rotationally Raman

  18. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  19. Vibrational assignments for 7-methyl-4-bromomethylcoumarin, as aided by RHF and B3LYP/6-31G* calculations.

    Science.gov (United States)

    Sortur, Veenasangeeta; Yenagi, Jayashree; Tonannavar, J; Jadhav, V B; Kulkarni, M V

    2008-11-15

    Infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectral measurements have been made for the solid sample of 7-methyl-4-bromomethylcoumarin. Electronic structure calculations at RHF/6-31G* and B3LYP/6-31G* levels of theory have been performed, giving equilibrium geometries, harmonic vibrational spectra and normal modes. Different orientations of bromomethyl group have yielded only two conformers, of which the most stable one lying lower from the other conformer by approximately 7.99 kJ/mol, is non-planar with no symmetry. A complete assignment of the vibrational modes, aided by the calculations, has been proposed. Coupled vibrations are manifest in many modes. Some spectral features, compared to 6-methyl-4-bromomethylcoumarin, show changes across both IR and Raman spectra, involving mainly skeletal vibrations, and to a lesser degree, methyl and bromomethyl vibrations. Low-frequency vibrations below 150 cm(-1) are assigned to lattice modes.

  20. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  1. Calibration of Ground-based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  2. Calibration of Ground -based Lidar instrument

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Yordanova, Ginka

    This report presents the result of the lidar calibration performed for the given Ground-based Lidar at DTU’s test site for large wind turbines at Høvsøre, Denmark. Calibration is here understood as the establishment of a relation between the reference wind speed measurements with measurement...... uncertainties provided by measurement standard and corresponding lidar wind speed indications with associated measurement uncertainties. The lidar calibration concerns the 10 minute mean wind speed measurements. The comparison of the lidar measurements of the wind direction with that from wind vanes...

  3. DFT studies on the vibrational and electronic spectra of acetylsalicylic acid

    Science.gov (United States)

    Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu

    2016-05-01

    The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.

  4. Toward surface-enhanced Raman imaging of latent fingerprints.

    Science.gov (United States)

    Connatser, R Maggie; Prokes, Sharka M; Glembocki, Orest J; Schuler, Rebecca L; Gardner, Charles W; Lewis, Samuel A; Lewis, Linda A

    2010-11-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands' intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  5. LIDAR and atmosphere remote sensing

    CSIR Research Space (South Africa)

    Venkataraman, S

    2008-05-01

    Full Text Available causes scattering. • Absorbtion by gases and particles attenuates the beam as it propagates • Fraction of energy is backscattered in the direction of the LiDAR system and is available for detection. LiDAR Platforms Airborne Satellite Slide 3 © CSIR... 2008 www.csir.co.za Mobile Ground-based Phoenix Mars Mission Slide 4 © CSIR 2008 www.csir.co.za System 3-D View Slide 5 © CSIR 2008 www.csir.co.za System Block Diagram Slide 6...

  6. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  7. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  8. Development and application of a backscatter lidar forward operator for quantitative validation of aerosol dispersion models and future data assimilation

    Science.gov (United States)

    Geisinger, Armin; Behrendt, Andreas; Wulfmeyer, Volker; Strohbach, Jens; Förstner, Jochen; Potthast, Roland

    2017-12-01

    A new backscatter lidar forward operator was developed which is based on the distinct calculation of the aerosols' backscatter and extinction properties. The forward operator was adapted to the COSMO-ART ash dispersion simulation of the Eyjafjallajökull eruption in 2010. While the particle number concentration was provided as a model output variable, the scattering properties of each individual particle type were determined by dedicated scattering calculations. Sensitivity studies were performed to estimate the uncertainties related to the assumed particle properties. Scattering calculations for several types of non-spherical particles required the usage of T-matrix routines. Due to the distinct calculation of the backscatter and extinction properties of the models' volcanic ash size classes, the sensitivity studies could be made for each size class individually, which is not the case for forward models based on a fixed lidar ratio. Finally, the forward-modeled lidar profiles have been compared to automated ceilometer lidar (ACL) measurements both qualitatively and quantitatively while the attenuated backscatter coefficient was chosen as a suitable physical quantity. As the ACL measurements were not calibrated automatically, their calibration had to be performed using satellite lidar and ground-based Raman lidar measurements. A slight overestimation of the model-predicted volcanic ash number density was observed. Major requirements for future data assimilation of data from ACL have been identified, namely, the availability of calibrated lidar measurement data, a scattering database for atmospheric aerosols, a better representation and coverage of aerosols by the ash dispersion model, and more investigation in backscatter lidar forward operators which calculate the backscatter coefficient directly for each individual aerosol type. The introduced forward operator offers the flexibility to be adapted to a multitude of model systems and measurement setups.

  9. Optically active vibrational modes of PPV derivatives on textile substrate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.A.T. da, E-mail: seaquinhos@uel.br [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Dias, I.F.L. [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Santos, E.P. dos; Martins, A.A. [Departamento de Fisica, Universidade Vale do Paraiba-UNIVAP, Avenida Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, Sao Paulo (Brazil); Duarte, J.L.; Laureto, E.; Reis, G.A. dos [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Guimaraes, P.S.S.; Cury, L.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte, CEP 30123-970 Minas Gerais (Brazil)

    2013-02-15

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on 'dirty' textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I{sub (01)}/I{sub (00)}, were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: Black-Right-Pointing-Pointer MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. Black-Right-Pointing-Pointer Their properties were studied by photoluminescence and Raman techniques. Black-Right-Pointing-Pointer We observed inversion of first vibrational band in relation to purely electronic peak. Black-Right-Pointing-Pointer Optically active vibrational modes of PPV derivatives were studied.

  10. Shear and Turbulence Effects on Lidar Measurements

    DEFF Research Database (Denmark)

    Courtney, Michael; Sathe, Ameya; Gayle Nygaard, Nicolai

    Wind lidars are now used extensively for wind resource measurements. It is known that lidar wind speed measure-ments are affected by both turbulence and wind shear. This report explains the mechanisms behind these sensitivities. For turbulence, it is found that errors in the scalar mean speed...... are usually only small. However, particularly in re-spect of a lidar calibration procedure, turbulence induced errors in the cup anemometer speed are seen to be signifi-cantly larger. Wind shear is shown to induce measurement errors both due to possible imperfections in the lidar sensing height and due...... to the averaging of a non-linear speed profile. Both effects in combination have to be included when modelling the lidar error. Attempts to evaluate the lidar error from ex-perimental data have not been successful probably due to a lack of detailed knowledge of both the wind shear and the actual lidar sensing...

  11. Fluorescence from atmospheric aerosol detected by a lidar indicates biogenic particles in the lowermost stratosphere

    Directory of Open Access Journals (Sweden)

    F. Immler

    2005-01-01

    Full Text Available With a lidar system that was installed in Lindenberg/Germany, we observed in June 2003 an extended aerosol layer at 13km altitude in the lowermost stratosphere. This layer created an inelastic backscatter signal that we detected with a water vapour Raman channel, but that was not produced by Raman scattering. Also, we find evidence for inelastic scattering from a smoke plume from a forest fire that we observed in the troposphere. We interpret the unexpected properties of these aerosols as fluorescence induced by the laser beam at organic components of the aerosol particles. Fluorescence from ambient aerosol had not yet been considered detectable by lidar systems. However, organic compounds such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores or pollen fluoresce when excited with UV-radiation in a way that is detectable by our lidar system. Therefore, we conclude that fluorescence from organic material released by biomass burning creates, inelastic backscatter signals that we measured with our instrument and thus demonstrate a new and powerful way to characterize aerosols by a remote sensing technique. The stratospheric aerosol layer that we have observed in Lindenberg for three consecutive days is likely to be a remnant from Siberian forest fire plumes lifted across the tropopause and transported around the globe.

  12. Raman spectroscopy of oral bacteria

    Science.gov (United States)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  13. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Pawelko Ezequiel Eduardo

    2016-01-01

    Full Text Available At Lidar Division of CEILAP (CITEDEF-CONICET a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  14. Vibrational microspectroscopy analysis of human lenses

    Science.gov (United States)

    Paluszkiewicz, C.; Piergies, N.; Sozańska, A.; Chaniecki, P.; Rękas, M.; Miszczyk, J.; Gajda, M.; Kwiatek, W. M.

    2018-01-01

    In this study we present vibrational analysis of healthy (non-affected by cataract) and cataractous human lenses by means of Raman and FTIR spectroscopy methods. The performed analysis provides complex information about the secondary structure of the proteins and conformational changes of the amino acid residues due to the formation of opacification of human lens. Briefly, the changes in the conformation of the Tyr and Trp residues and the protein secondary structure between the healthy and cataractous samples, were recognized. Moreover, the observed spectral pattern suggests that the process of cataract development does not occur uniformly over the entire volume of the lens.

  15. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  16. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF).

    Science.gov (United States)

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm(-1) to 4500 cm(-1), sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  17. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  18. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  19. Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements

    Science.gov (United States)

    Baars, Holger; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla

    2017-09-01

    Absolute calibrated signals at 532 and 1064 nm and the depolarization ratio from a multiwavelength lidar are used to categorize primary aerosol but also clouds in high temporal and spatial resolution. Automatically derived particle backscatter coefficient profiles in low temporal resolution (30 min) are applied to calibrate the lidar signals. From these calibrated lidar signals, new atmospheric parameters in temporally high resolution (quasi-particle-backscatter coefficients) are derived. By using thresholds obtained from multiyear, multisite EARLINET (European Aerosol Research Lidar Network) measurements, four aerosol classes (small; large, spherical; large, non-spherical; mixed, partly non-spherical) and several cloud classes (liquid, ice) are defined. Thus, particles are classified by their physical features (shape and size) instead of by source. The methodology is applied to 2 months of continuous observations (24 h a day, 7 days a week) with the multiwavelength-Raman-polarization lidar PollyXT during the High-Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE) in spring 2013. Cloudnet equipment was operated continuously directly next to the lidar and is used for comparison. By discussing three 24 h case studies, it is shown that the aerosol discrimination is very feasible and informative and gives a good complement to the Cloudnet target categorization. Performing the categorization for the 2-month data set of the entire HOPE campaign, almost 1 million pixel (5 min × 30 m) could be analysed with the newly developed tool. We find that the majority of the aerosol trapped in the planetary boundary layer (PBL) was composed of small particles as expected for a heavily populated and industrialized area. Large, spherical aerosol was observed mostly at the top of the PBL and close to the identified cloud bases, indicating the importance of hygroscopic growth of the particles at high relative

  20. Raman, Prof. Rajiva

    Indian Academy of Sciences (India)

    Elected: 1996 Section: Animal Sciences. Raman, Prof. Rajiva Ph.D. (Banaras), FNA, FNASc. Date of birth: 9 December 1948. Specialization: Human Molecular Genetics & Cytogenetics, Gene Expression & Chromatin Organization in Development and Sex Determination Address: Professor Emeritus, Department of Zoology, ...

  1. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  2. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  3. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    Directory of Open Access Journals (Sweden)

    Dan Lis

    2014-11-01

    Full Text Available Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS. They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA and surface-enhanced Raman scattering (SERS techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis.

  4. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  5. LIDAR Developments at Clermont-Ferrand—France for Atmospheric Observation

    Science.gov (United States)

    Fréville, Patrick; Montoux, Nadège; Baray, Jean-Luc; Chauvigné, Aurélien; Réveret, François; Hervo, Maxime; Dionisi, Davide; Payen, Guillaume; Sellegri, Karine

    2015-01-01

    We present a Rayleigh-Mie-Raman LIDAR system in operation at Clermont-Ferrand (France) since 2008. The system provides continuous vertical tropospheric profiles of aerosols, cirrus optical properties and water vapour mixing ratio. Located in proximity to the high altitude Puy de Dôme station, labelled as the GAW global station PUY since August 2014, it is a useful tool to describe the boundary layer dynamics and hence interpret in situ measurements. This LIDAR has been upgraded with specific hardware/software developments and laboratory calibrations in order to improve the quality of the profiles, calibrate the depolarization ratio, and increase the automation of operation. As a result, we provide a climatological water vapour profile analysis for the 2009–2013 period, showing an annual cycle with a winter minimum and a summer maximum, consistent with in-situ observations at the PUY station. An overview of a preliminary climatology of cirrus clouds frequency shows that in 2014, more than 30% of days present cirrus events. Finally, the backscatter coefficient profile observed on 27 September 2014 shows the capacity of the system to detect cirrus clouds at 13 km altitude, in presence of aerosols below the 5 km altitude. PMID:25643059

  6. Lidar Aerosol Profiles Measured From Halifax During Summer 2007

    Science.gov (United States)

    Crawford, L.; Duck, T. J.; Doyle, J.; Harris, R.; Beauchamp, S.

    2007-12-01

    Measurements of aerosol profiles in the troposphere and lower stratosphere were obtained with a high-power Raman Lidar from Halifax, Nova Scotia (44.63N, 63.58W) on the East Coast of Canada during Summer 2007. Observations throughout the troposphere at high temporal resolution were made possible by using a new dual-receiver setup. The lidar was operated in clear-sky conditions, and several long duration (> 80 hours) data sets were obtained. The measurements reveal the presence of boundary-layer aerosols during episodes of pollution transport from the Eastern US and Canada, and are compared with surface measurements of ozone and other species. Boundary layer development, entrainment and mixing are evident in the data. Structured plumes at higher altitudes are traced back to biomass burning events throughout North America. Aerosols were also observed on two occasions at 15 km in altitude, and are most likely due to pyroconvection. The measurements are being used to help understand transport and mixing processes, and to form a climatology of aerosol export from North America during the summer months.

  7. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  8. Complex terrain and wind lidars

    Energy Technology Data Exchange (ETDEWEB)

    Bingoel, F.

    2009-08-15

    This thesis includes the results of a PhD study about complex terrain and wind lidars. The study mostly focuses on hilly and forested areas. Lidars have been used in combination with cups, sonics and vanes, to reach the desired vertical measurement heights. Several experiments are performed in complex terrain sites and the measurements are compared with two different flow models; a linearised flow model LINCOM and specialised forest model SCADIS. In respect to the lidar performance in complex terrain, the results showed that horizontal wind speed errors measured by a conically scanning lidar can be of the order of 3-4% in moderately-complex terrain and up to 10% in complex terrain. The findings were based on experiments involving collocated lidars and meteorological masts, together with flow calculations over the same terrains. The lidar performance was also simulated with the commercial software WAsP Engineering 2.0 and was well predicted except for some sectors where the terrain is particularly steep. Subsequently, two experiments were performed in forested areas; where the measurements are recorded at a location deep-in forest and at the forest edge. Both sites were modelled with flow models and the comparison of the measurement data with the flow model outputs showed that the mean wind speed calculated by LINCOM model was only reliable between 1 and 2 tree height (h) above canopy. The SCADIS model reported better correlation with the measurements in forest up to approx6h. At the forest edge, LINCOM model was used by allocating a slope half-in half out of the forest based on the suggestions of previous studies. The optimum slope angle was reported as 17 deg.. Thus, a suggestion was made to use WAsP Engineering 2.0 for forest edge modelling with known limitations and the applied method. The SCADIS model worked better than the LINCOM model at the forest edge but the model reported closer results to the measurements at upwind than the downwind and this should be

  9. Raman spectroscopy an intensity approach

    CERN Document Server

    Guozhen, Wu

    2017-01-01

    This book summarizes the highlights of our work on the bond polarizability approach to the intensity analysis. The topics covered include surface enhanced Raman scattering, Raman excited virtual states and Raman optical activity (ROA). The first chapter briefly introduces the Raman effect in a succinct but clear way. Chapter 2 deals with the normal mode analysis. This is a basic tool for our work. Chapter 3 introduces our proposed algorithm for the Raman intensity analysis. Chapter 4 heavily introduces the physical picture of Raman virtual states. Chapter 5 offers details so that the readers can have a comprehensive idea of Raman virtual states. Chapter 6 demonstrates how this bond polarizability algorithm is extended to ROA intensity analysis. Chapters 7 and 8 offer details on ROA, showing many findings on ROA mechanism that were not known or neglected before. Chapter 9 introduces our proposed classical treatment on ROA which, as combined with the results from the bond polarizability analysis, leads to a com...

  10. Direct measurement of phase coexistence in DPPC/Cholesterol vesicles using Raman spectroscopy.

    NARCIS (Netherlands)

    de Lange, M.J.L.; Bonn, M.; Müller, M.

    2007-01-01

    The phase behavior of bilayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol has been studied using Raman spectroscopy. It is observed that the shape of the cholesterol vibrational spectrum in lipid-cholesterol binary mixtures does not vary significantly

  11. Enhancement of the stimulated Raman scattering of benzene, acetonitrile and pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, L; Contreras, W A; Cabanzo, R; Aya-RamIrez, O; Mejia-Ospino, E, E-mail: emejia@uis.edu.co [Laboratorio de Espectroscopia Atomica y Molecular (LEAM) Universidad Industrial de Santander, Escuela de Fisica, Facultad de Ciencias, Universidad Industrial de Santander (UIS). AA. 678 Bucaramanga (Colombia)

    2011-01-01

    In this work we used the second harmonic of Nd:YAG laser to observe stimulated Raman scattering (SRS). SRS was observed on benzene, acetonitrile and pyridine using a single shot laser. The SRS radiation is very intense due their laser characteristics, and it is possible to observe several harmonics of different vibrational modes to each molecule studied here.

  12. Study of optical phonon modes of CdS nanoparticles using Raman ...

    Indian Academy of Sciences (India)

    In the case of nanostructured materials, confinement of optical phonons can produce noticeable changes in their vibrational spectra compared to those of bulk crystals. In this paper we report the study of optical phonon modes of nanoparticles of CdS using Raman spectroscopy. Nanoparticle sample for the present study ...

  13. Determining the Structure of Oxalate Anion Using Infrared and Raman Spectroscopy Coupled with Gaussian Calculations

    Science.gov (United States)

    Peterson, Karen I.; Pullman, David P.

    2016-01-01

    A laboratory project for the upper-division physical chemistry laboratory is described, and it combines IR and Raman spectroscopies with Gaussian electronic structure calculations to determine the structure of the oxalate anion in solid alkali oxalates and in aqueous solution. The oxalate anion has two limiting structures whose vibrational spectra…

  14. Lidar configurations for wind turbine control

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Mann, Jakob

    2016-01-01

    Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...... by the lidar is compared against the effective wind speed on a wind turbine rotor both theoretically and through simulations. The study provides some results to choose the best configuration of the lidar with few measurement points....... configuration of an inexpensive lidar in terms of number of measurement points, the measurement distance and the opening angle is the subject of this study. In order to solve the problem, a lidar model is developed and used to measure wind speed in a turbulence box. The effective wind speed measured......Lidar sensors have proved to be very beneficial in the wind energy industry. They can be used for yaw correction, feed-forward pitch control and load verification. However, the current lidars are expensive. One way to reduce the price is to use lidars with few measurement points. Finding the best...

  15. Raman Scattering in a New Carbon Material

    Science.gov (United States)

    Voronov, O. A.; Street, K. W., Jr.

    2010-01-01

    Samples of a new carbon material, Diamonite-B, were fabricated under high pressure from a commercial carbon black--identified as mixed fullerenes. The new material is neither graphite-like nor diamond-like, but exhibits electrical properties close to graphite and mechanical properties close to diamond. The use of Raman spectroscopy to investigate the vibrational dynamics of this new carbon material and to provide structural characterization of its short-, medium- and long-range order is reported. We also provide the results of investigations of these samples by high-resolution electron microscopy and X-ray diffraction. Hardness, electrical conductivity, thermal conductivity and other properties of this new material are compared with synthetic graphite-like and diamond-like materials, two other phases of synthetic bulk carbon.

  16. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  17. Vibrational analysis of dibenzo-18-crown-6. Effect of dispersion correction on the calculated vibrational spectra

    Science.gov (United States)

    Al-Jallal, Nada A.; El-Azhary, Adel A.

    2017-09-01

    We report for the first time a detailed vibrational analysis of dibenzo-18-crown-6, db18c6. The experimental IR and Raman spectra of db18c6 were measured. The assignment of the fundamental vibrational frequencies of db18c6 was aided by using scaled quantum mechanical force fields calculated at the B3LYP/6-311G** and CAM-B3LYP/6-311G** levels. Comparison between the experimental and calculated spectra of some of the important conformations of db18c6 led to the conclusion that db18c6 in the solid phase exists in a C2 conformation that is similar to that predicted by X-ray, for also the solid phase. The effect of inclusion of the atom pair-wise dispersion correction to the B3LYP method, known as the B3LYP-D3 method, on the calculated IR and Raman spectra of db18c6 at the B3LYP level was also investigated. It was concluded that the effect of inclusion of the dispersion correction on the calculated vibrational frequencies and intensities is negligible.

  18. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  19. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  20. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  1. Temperature-dependent vibrational spectroscopic study and DFT calculations of the sorbic acid

    Science.gov (United States)

    Saraiva, G. D.; Nogueira, C. E. S.; Freire, P. T. C.; de Sousa, F. F.; da Silva, J. H.; Teixeira, A. M. R.; Mendes Filho, J.

    2015-02-01

    This work reports a temperature-dependent vibrational spectroscopic study of the sorbic acid (C6H8O2), as well as the mode assignment at ambient conditions, based on the density functional theory. Temperature-dependent vibrational properties have been performed in polycrystalline sorbic acid through both Raman and infrared spectroscopy in the 20-300 K and 80-300 K temperature ranges, respectively. These studies present the occurrence of some modifications in the Raman spectra that could be interpreted as a low temperature phase transition undergone by sorbic acid from the monoclinic phase to an unknown phase with conformational change of the molecules in the unit cell.

  2. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Tulalip Partnership

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC)to collect Light Detection and Ranging (LiDAR) data on a...

  3. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Nooksack

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In July 2012, WSI (Watershed Sciences, Inc.) was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data on a...

  4. 2013 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Saddle Mountain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In October 2013, WSI, a Quantum Spatial Company (QSI), was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  5. 2009 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Lewis County survey area for the Puget Sound LiDAR Consortium. This data...

  6. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  7. 2014 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Willapa Valley (Delivery 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In January, 2014 WSI, a Quantum Spatial (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR) data...

  8. 2015 Puget Sound LiDAR Consortium (PSLC) LiDAR: WA DNR Lands (P1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In June 2014, WSI, a Quantum Spatial Inc. (QSI) company, was contracted by the Puget Sound LiDAR Consortium (PSLC) to collect Light Detection and Ranging (LiDAR)...

  9. 2006 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Lewis County, WA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. collected Light Detection and Ranging (LiDAR) data of Western Lewis County for the Puget Sound LiDAR Consortium. This data set covers...

  10. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Areas 2 and 3 (Mid-Coastal Cleanup), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  11. 2012 MEGIS Topographic Lidar: Statewide Lidar Project Area 1 (Aroostook), Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS...

  12. 2004 Southwest Florida Water Management District Lidar: Sarasota District

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record describes the ortho & lidar mapping of Sarasota County, FL. The mapping consists of lidar data collected using a Leica ALS-40 Lidar Sensor,...

  13. Alexandrite lidar for the atmospheric water vapor detection and development of powerful tunable sources in IR

    Science.gov (United States)

    Uchiumi, M.; Maeda, M.; Muraoka, K.; Uchino, O.

    1992-01-01

    New tunable solid-state lasers, such as alexandrite and Ti-sapphire lasers, provide a powerful technique to detect various molecules in the atmosphere whose absorption bands are in the infrared region. The differential absorption lidar (DIAL) system to measure the tropospheric water vapor has been investigated by many authors, in an early stage, by dye and ruby lasers. Using the alpha band of water vapor, the longest detection range can be obtained with high accuracy, and the alexandrite laser is the most suitable laser for this purpose. In this paper, we describe the detection of water vapor in the atmosphere by an alexandrite lidar, and the development of powerful tunable sources based on Raman lasers in the infrared region.

  14. Raman study of oxygen deficient YVO{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jin, B.M.; Erdei, S.; Bhalla, A.S.; Ainger, F.W. [Pennsylvania State Univ., University Park, PA (United States). Materials Research Lab.

    1995-10-01

    Oxygen deficiency which is an inherent problem in melt grown YVO{sub 4} single crystals was investigated by Micro-Probe Raman Spectroscopy (MPRS). External vibrational modes at 157 cm{sup {minus}1}, 162 cm{sup {minus}1} and selected internal vibrational modes at 379 cm{sup {minus}1}, 840 cm{sup {minus}1} of full Raman spectra were compared with different YVO{sub 4} crystals grown by the Czochralski (CZ) technique both with and without annealing in an O{sub 2} atmosphere as well as by top seeded solution growth technique (TSSG) in directly produced oxygen deficiency-free form. Special differences of above mentioned frequencies and over 1,000 cm{sup {minus}1} were observed in the Raman spectra, which could prove that the growth technologies generated different rates of oxygen deficiency in addition to critical intrinsic segregation effects in YVO{sub 4} which significantly determine the crystal quality.

  15. Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Weeks, Tyler; Schie, Iwan; den Hartigh, Laura J.; Rutledge, John C.; Huser, Thomas

    2011-02-01

    We demonstrate that doubly-resonant coherent anti-Stokes Raman scattering can provide enhanced and highly specific contrast for molecules containing unique Raman-active small molecular groups. This combination provides contrast for molecules that can otherwise be difficult to discriminate by Raman spectroscopy. Here, human monocytes were incubated with either deuterated oleic acid or 17-octadecynoic acid (a fatty acid with an end terminal acetylene group). The carbon-deuterium stretching vibration of the deuterated fatty acid, as well as the unique alkyne stretching vibration of the alkyne-containing fatty acid, were used to provide contrast for these exogenous free fatty acids. The combination of these unique modes with the common aliphatic carbon-hydrogen stretching vibration inherent to all fatty acid allowed for doubly-resonant detection of these unique molecules and enabled us to detect the presence of these lipids in areas within a cell where each molecular resonance by itself did not generate sufficient signal.

  16. Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy.

    Science.gov (United States)

    Weeks, Tyler; Schie, Iwan; den Hartigh, Laura J; Rutledge, John C; Huser, Thomas

    2011-02-01

    We demonstrate that doubly-resonant coherent anti-Stokes Raman scattering can provide enhanced and highly specific contrast for molecules containing unique Raman-active small molecular groups. This combination provides contrast for molecules that can otherwise be difficult to discriminate by Raman spectroscopy. Here, human monocytes were incubated with either deuterated oleic acid or 17-octadecynoic acid (a fatty acid with an end terminal acetylene group). The carbon-deuterium stretching vibration of the deuterated fatty acid, as well as the unique alkyne stretching vibration of the alkyne-containing fatty acid, were used to provide contrast for these exogenous free fatty acids. The combination of these unique modes with the common aliphatic carbon-hydrogen stretching vibration inherent to all fatty acid allowed for doubly-resonant detection of these unique molecules and enabled us to detect the presence of these lipids in areas within a cell where each molecular resonance by itself did not generate sufficient signal.

  17. Monte Carlo analysis of radiative transport in oceanographic lidar measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2001-07-01

    The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is

  18. Vibrational spectra and DFT calculations of sonderianin diterpene

    Science.gov (United States)

    Oliveira, I. M. M.; Santos, H. S.; Sena, D. M.; Cruz, B. G.; Teixeira, A. M. R.; Freire, P. T. C.; Braz-Filho, R.; Sousa, J. W.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Bernardino, A. C. S. S.; Gusmão, G. O. M.; Bento, R. R. F.

    2015-11-01

    In the present study, the natural product sonderianin diterpene (C21H26O4), a diterpenoid isolated from Croton blanchetianus, with potential application in the drug industry, was characterized by nuclear magnetic resonance, infrared and Raman spectroscopy. Vibrational spectra were supported by Density Functional Theory calculations. Infrared and Raman spectra of sonderianin were recorded at ambient temperature in the regions from 400 cm-1 to 3600 cm-1 and from 40 cm-1 to 3500 cm-1, respectively. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this organic compound. A comparison with experimental spectra allowed us to assign all of the normal modes of the crystal. The assignment of the normal modes was carried out by means of potential energy distribution.

  19. Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nandan K. Das

    2017-07-01

    Full Text Available Raman spectroscopy is a label-free method of obtaining detailed chemical information about samples. Its compatibility with living tissue makes it an attractive choice for biomedical analysis, yet its translation from a research tool to a clinical tool has been slow, hampered by fundamental Raman scattering issues such as long integration times and limited penetration depth. In this review we detail the how combining Raman spectroscopy with other techniques yields multimodal instruments that can help to surmount the translational barriers faced by Raman alone. We review Raman combined with several optical and non-optical methods, including fluorescence, elastic scattering, OCT, phase imaging, and mass spectrometry. In each section we highlight the power of each combination along with a brief history and presentation of representative results. Finally, we conclude with a perspective detailing both benefits and challenges for multimodal Raman measurements, and give thoughts on future directions in the field.

  20. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (pspectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  1. A Raman spectroscopic comparison of calcite and dolomite.

    Science.gov (United States)

    Sun, Junmin; Wu, Zeguang; Cheng, Hongfei; Zhang, Zhanjun; Frost, Ray L

    2014-01-03

    Raman spectroscopy was used to characterize and differentiate the two minerals calcite and dolomite and the bands related to the mineral structure. The (CO3)(2-) group is characterized by four prominent Raman vibrational modes: (a) the symmetric stretching, (b) the asymmetric deformation, (c) asymmetric stretching and (d) symmetric deformation. These vibrational modes of the calcite and dolomite were observed at 1440, 1088, 715 and 278 cm(-1). The significant differences between the minerals calcite and dolomite are observed by Raman spectroscopy. Calcite shows the typical bands observed at 1361, 1047, 715 and 157 cm(-1), and the special bands at 1393, 1098, 1069, 1019, 299, 258 and 176 cm(-1) for dolomite are observed. The difference is explained on the basis of the structure variation of the two minerals. Calcite has a trigonal structure with two molecules per unit cell, and dolomite has a hexagonal structure. This is more likely to cause the splitting and distorting of the carbonate groups. Another cause for the difference is the cation substituting for Mg in the dolomite mineral. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Raman spectroscopy for screening and diagnosis of cervical cancer.

    Science.gov (United States)

    Lyng, Fiona M; Traynor, Damien; Ramos, Inês R M; Bonnier, Franck; Byrne, Hugh J

    2015-11-01

    Cervical cancer is the fourth most common cancer in women worldwide and mainly affects younger women. The mortality associated with cervical cancer can be reduced if the disease is detected at the pre-cancer stage. Current best-practice methods include cytopathology, HPV testing, and histopathology, but these methods are limited in terms of subjectivity, cost, and time. There is an unmet clinical need for new methods to aid clinicians in the early detection of cervical pre-cancer. These methods should be objective and rapid and require minimal sample preparation. Raman spectroscopy is a vibrational spectroscopic technique by which incident radiation is used to induce vibrations in the molecules of a sample and the scattered radiation may be used to characterise the sample in a rapid and non-destructive manner. Raman spectroscopy is sensitive to subtle biochemical changes occurring at the molecular level, enabling spectral variations corresponding to disease onset to be detected. Over the past 15 years, there have been numerous reports revealing the potential of Raman spectroscopy together with multivariate statistical analysis for the detection of a variety of cancers. This paper discusses the recent advances and challenges for cervical-cancer screening and diagnosis and offers some perspectives for the future.

  3. Low-Resolution Raman-Spectroscopy Combustion Thermometry

    Science.gov (United States)

    Nguyen, Quang-Viet; Kojima, Jun

    2008-01-01

    A method of optical thermometry, now undergoing development, involves low-resolution measurement of the spectrum of spontaneous Raman scattering (SRS) from N2 and O2 molecules. The method is especially suitable for measuring temperatures in high pressure combustion environments that contain N2, O2, or N2/O2 mixtures (including air). Methods based on SRS (in which scattered light is shifted in wavelength by amounts that depend on vibrational and rotational energy levels of laser-illuminated molecules) have been popular means of probing flames because they are almost the only methods that provide spatially and temporally resolved concentrations and temperatures of multiple molecular species in turbulent combustion. The present SRS-based method differs from prior SRS-based methods that have various drawbacks, a description of which would exceed the scope of this article. Two main differences between this and prior SRS-based methods are that it involves analysis in the frequency (equivalently, wavelength) domain, in contradistinction to analysis in the intensity domain in prior methods; and it involves low-resolution measurement of what amounts to predominantly the rotational Raman spectra of N2 and O2, in contradistinction to higher-resolution measurement of the vibrational Raman spectrum of N2 only in prior methods.

  4. Vibrational and theoretical study of selected diacetylenes.

    Science.gov (United States)

    Roman, Maciej; Baranska, Malgorzata

    2013-11-01

    Six commonly used disubstituted diacetylenes with short side-chains (RCCCCR, where R=CH2OH, CH2OPh, C(CH3)2OH, C(CH3)3, Si(CH3)3, and Ph) were analyzed using vibrational spectroscopy and quantum-chemical calculations to shed new light on structural and spectroscopic properties of these compounds. Prior to that the conformational analysis of diacetylenes was performed to search the Potential Energy Surface for low-energy minima. Theoretical investigations were followed by the potential energy distribution (PED) analysis to gain deeper insight into FT-Raman and FT-IR spectra that, in some cases, were recorded for the first time for the studied compounds. The analysis was focused mainly on spectral features of the diacetylene system sensitive to the substitution. Shifts of the characteristic bands and changes in bond lengths were observed when changing the substituent. Furthermore, Fermi resonance was observed in the vibrational spectra of some diacetylenes. FT-IR spectra were measured by using two methods, i.e. transmission (with KBr substrate) and Attenuated Total Reflection (ATR), showing the latter adequate and fast tool for IR measurements of diacetylenes. Additionally, Surface Enhanced Raman Spectroscopy (SERS) was applied for phenyl derivative for the first time to study its interaction with metallic nanoparticles that seems to be perpendicular. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Lidar data used in the COFIN project

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Nielsen, Morten

    1999-01-01

    This report presents the Lidar data used in the COFIN project. The Lidar data have been obtained from several ground level dispersion experiments over flat and complex terrain. The method for treating the data and the conditons under which the data wereobtained are described in detail. Finally we...... describe the Tools to extract and visualize the Lidar data. Data, report, and visualisation tools are available on the Risø FTP server....

  6. Ozone Lidar Observations for Air Quality Studies

    Science.gov (United States)

    Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.; hide

    2015-01-01

    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.

  7. Synthesis of Transportation Applications of Mobile LIDAR

    OpenAIRE

    Keith Williams; Michael J. Olsen; Gene V. Roe; Craig Glennie

    2013-01-01

    A thorough review of available literature was conducted to inform of advancements in mobile LIDAR technology, techniques, and current and emerging applications in transportation. The literature review touches briefly on the basics of LIDAR technology followed by a more in depth description of current mobile LIDAR trends, including system components and software. An overview of existing quality control procedures used to verify the accuracy of the collected data is presented. A collection of c...

  8. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GRIP Lidar Atmospheric Sensing Experiment (LASE) dataset was collected by NASA's Lidar Atmospheric Sensing Experiment (LASE) system, which is an airborne...

  9. NAMMA LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system using the DIAL (Differential Absorption Lidar) system was operated during the NASA African Monsoon...

  10. GRIP LIDAR ATMOSPHERIC SENSING EXPERIMENT (LASE) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Lidar Atmospheric Sensing Experiment (LASE) system is an airborne DIAL (Differential Absorption Lidar) system used to measure water vapor, aerosols, and...

  11. Drug–excipient interactions in ketoprofen: A vibrational spectroscopy study

    OpenAIRE

    Carvalho, L. A. E. Batista de; Marques, M. Paula M.; Tomkinson, John

    2006-01-01

    Ketoprofen (3-benzoyl-alpha-methylbenzeneacetic acid) is a widely used nonsteroidal anti-inflammatory drug (NSAID), always administered in the form of drug-excipient physical mixtures (PMs). The occurrence of possible interactions between ketoprofen and two commonly used excipients - lactose (LAC) and polyvinylpyrrolidone (PVP) - was evaluated, through vibrational spectroscopy techniques [both Raman and Inelastic Neutron Scattering (INS)]. Spectral evidence of drug:excipient close contacts, w...

  12. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military...... compound sarin. Raman and infrared spectral bands of the pyridostigmine bromide were measured. Detailed correlation of obtained spectral bands with specific vibrations in pyridostigmine bromide was done. Silica nanoparticles with attached gold nano-islands showed more essential enhancement of the Raman...

  13. Enhancement of Raman light scattering in dye-labeled cell membrane on metal-containing conducting polymer film

    Science.gov (United States)

    Grushevskaya, H. V.; Krylova, N. G.; Lipnevich, I. V.; Orekhovskaja, T. I.; Egorova, V. P.; Shulitski, B. G.

    2016-03-01

    An enhanced Raman spectroscopy method based on a plasmon resonance in ultrathin metal-containing LB-film deposited on nanoporous anodic alumina supports has been proposed. This material has been utilized to enhance Raman scattering of light in fluorescent-labeled subcellular membrane structures. It has been shown that the plasmon resonance between vibrational modes of the organometallic complexes monolayers and dye-labeled subcellular structures happens. It makes possible to detect interactions between living cell monolayers and an extracellular matrix.

  14. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  15. Air aerosol pollution and lidar measurements

    Science.gov (United States)

    Yegorov, Alexander D.; Kopp, Ilia Z.; Perelman, Anri Y.

    1995-09-01

    The means and techniques of lidar sounding are nowadays widely used to obtain the data on the aerosol pollution of the atmosphere, including the industrial emissions and atmospheric characteristics around highways. To add to that scope, pioneering unconventional lidar sounding of optical and microphysical aerosol characteristics was organized during the recent field programs: CLE (Leningrad, 1984), Soviet-American AUTOEX experiment (Leningrad, 1988), Leningrad experiment (1991). The paper presents lidar data obtained from these programs. The problem of interpreting lidar measurements data is discussed. The relationships between optical and microphysical aerosol characteristics are analysed.

  16. LAND COVER INFORMATION EXTRACTION USING LIDAR DATA

    OpenAIRE

    Shaker, A; N. El-Ashmawy

    2012-01-01

    Light Detection and Ranging (LiDAR) systems are used intensively in terrain surface modelling based on the range data determined by the LiDAR sensors. LiDAR sensors record the distance between the sensor and the targets (range data) with a capability to record the strength of the backscatter energy reflected from the targets (intensity data). The LiDAR sensors use the near-infrared spectrum range which has high separability in the reflected energy from different targets. This characteristic i...

  17. Vibrational spectroscopy and density functional theory study of ninhydrin

    Science.gov (United States)

    Li, Ran; Sui, Huimin; Liu, Peipie; Chen, Lei; Cheng, Jianbo; Zhao, Bing

    2015-02-01

    In this paper, ninhydrin was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. Based on the modeling results obtained at the B3LYP/6-311++G** level, all FTIR and Raman bands of the compound obtained experimentally were assigned. Our calculated vibrational frequencies are in good agreement with the experimental values. The molecular electrostatic potential surface calculation was performed and the result suggested that the ninhydrin had two potential hydrogen bond donors and four potential hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311++G** level.

  18. LIDAR TS for ITER core plasma. Part I: layout & hardware

    Science.gov (United States)

    Salzmann, H.; Gowers, C.; Nielsen, P.

    2017-12-01

    The original time-of-flight design of the Thomson scattering diagnostic for the ITER core plasma has been shown up by ITER. This decision was justified by insufficiencies of some of the components. In this paper we show that with available, present day technology a LIDAR TS system is feasible which meets all the ITER specifications. As opposed to the conventional TS system the LIDAR TS also measures the high field side of the plasma. The optical layout of the front end has been changed only little in comparison with the latest one considered by ITER. The main change is that it offers an optical collection without any vignetting over the low field side. The throughput of the system is defined only by the size and the angle of acceptance of the detectors. This, in combination with the fact that the LIDAR system uses only one set of spectral channels for the whole line of sight, means that no absolute calibration using Raman or Rayleigh scattering from a non-hydrogen isotope gas fill of the vessel is needed. Alignment of the system is easy since the collection optics view the footprint of the laser on the inner wall. In the described design we use, simultaneously, two different wavelength pulses from a Nd:YAG laser system. Its fundamental wavelength ensures measurements of 2 keV up to more than 40 keV, whereas the injection of the second harmonic enables measurements of low temperatures. As it is the purpose of this paper to show the technological feasibility of the LIDAR system, the hardware is considered in Part I of the paper. In Part II we demonstrate by numerical simulations that the accuracy of the measurements as required by ITER is maintained throughout the given plasma parameter range. The effect of enhanced background radiation in the wavelength range 400 nm–500 nm is considered. In Part III the recovery of calibration in case of changing spectral transmission of the front end is treated. We also investigate how to improve the spatial resolution at the

  19. Automating the Purple Crow Lidar

    Directory of Open Access Journals (Sweden)

    Hicks Shannon

    2016-01-01

    Full Text Available The Purple Crow LiDAR (PCL was built to measure short and long term coupling between the lower, middle, and upper atmosphere. The initial component of my MSc. project is to automate two key elements of the PCL: the rotating liquid mercury mirror and the Zaber alignment mirror. In addition to the automation of the Zaber alignment mirror, it is also necessary to describe the mirror’s movement and positioning errors. Its properties will then be added into the alignment software. Once the alignment software has been completed, we will compare the new alignment method with the previous manual procedure. This is the first among several projects that will culminate in a fully-automated lidar. Eventually, we will be able to work remotely, thereby increasing the amount of data we collect. This paper will describe the motivation for automation, the methods we propose, preliminary results for the Zaber alignment error analysis, and future work.

  20. Automating the Purple Crow Lidar

    Science.gov (United States)

    Hicks, Shannon; Sica, R. J.; Argall, P. S.

    2016-06-01

    The Purple Crow LiDAR (PCL) was built to measure short and long term coupling between the lower, middle, and upper atmosphere. The initial component of my MSc. project is to automate two key elements of the PCL: the rotating liquid mercury mirror and the Zaber alignment mirror. In addition to the automation of the Zaber alignment mirror, it is also necessary to describe the mirror's movement and positioning errors. Its properties will then be added into the alignment software. Once the alignment software has been completed, we will compare the new alignment method with the previous manual procedure. This is the first among several projects that will culminate in a fully-automated lidar. Eventually, we will be able to work remotely, thereby increasing the amount of data we collect. This paper will describe the motivation for automation, the methods we propose, preliminary results for the Zaber alignment error analysis, and future work.

  1. [Synthesis, characterization and study on vibration spectra of potassium triborate].

    Science.gov (United States)

    Zhang, Jin-Ping; Sun, Yong; Yang, Gang; Li, Zuo-Hu

    2007-07-01

    Potassium triborate was synthesized with potassium carbonate and boric acid by controlling suitable feed mixture ratio, reaction temperature and dehydration temperature in the self-designed boiling reactor. According to chemical analysis, the formula of the synthetics was monohydrate potassium triborate (KB3O5 x H2O). It's structure was characterized by XRD, FTIR, Raman and TG, and it was found by XRD analysis that the synthetics was amorphous solid. FTIR and Raman spectroscopy anal-ysis show that three coordination B(3) -O bond, four coordination B(4) -O bond, and hydroxy and triborate anions existed in the formula of the synthetics. Thermogravimetric (TG) analysis show that the groups which can lose mono-water existed in the formula of the synthetics, and structural formula of the synthetics was deduced as K[B3O4 (OH)2]. Vibration spectra of the synthetics were studied, including FTIR and Raman spectroscopy. Vibration absorption peaks of some main groups of the synthetics were investigated, including three coordination B(3) -O bond and four coordination B(4) -O bond that are the main existing forms of boron atoms in the synthetics as well as other groups, and each vibration absorption peak was assigned.

  2. Coherent anti-Stokes Raman scattering under electric field stimulation

    Science.gov (United States)

    Capitaine, Erwan; Ould Moussa, Nawel; Louot, Christophe; Lefort, Claire; Pagnoux, Dominique; Duclère, Jean-René; Kaneyasu, Junya F.; Kano, Hideaki; Duponchel, Ludovic; Couderc, Vincent; Leproux, Philippe

    2016-12-01

    We introduce an experiment using electro-CARS, an electro-optical method based on the combination of ultrabroadband multiplex coherent anti-Stokes Raman scattering (M-CARS) spectroscopy and electric field stimulation. We demonstrate that this method can effectively discriminate the resonant CARS signal from the nonresonant background owing to a phenomenon of molecular orientation in the sample medium. Such molecular orientation is intrinsically related to the induction of an electric dipole moment by the applied static electric field. Evidence of the electro-CARS effect is obtained with a solution of n -alkanes (CnH2 n +2 , 15 ≤n ≤40 ), for which an enhancement of the CARS signal-to-noise ratio is achieved in the case of CH2 and CH3 symmetric/asymmetric stretching vibrations. Additionally, an electric-field-induced second-harmonic generation experiment is performed in order to corroborate the orientational organization of molecules due to the electric field excitation. Finally, we use a simple mathematical approach to compare the vibrational information extracted from electro-CARS measurements with spontaneous Raman data and to highlight the impact of electric stimulation on the vibrational signal.

  3. Three-dimension imaging lidar

    Science.gov (United States)

    Degnan, John J. (Inventor)

    2007-01-01

    This invention is directed to a 3-dimensional imaging lidar, which utilizes modest power kHz rate lasers, array detectors, photon-counting multi-channel timing receivers, and dual wedge optical scanners with transmitter point-ahead correction to provide contiguous high spatial resolution mapping of surface features including ground, water, man-made objects, vegetation and submerged surfaces from an aircraft or a spacecraft.

  4. Lidar Detection of Explosives Traces

    Directory of Open Access Journals (Sweden)

    Bobrovnikov Sergei M.

    2016-01-01

    Full Text Available The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT, hexogen (RDX, trotyl-hexogen (Comp B, octogen (HMX, and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  5. Ultra broadband UV generation by stimulated Raman scattering of two-color KrF laser in deuterium confined in a hollow fiber.

    Science.gov (United States)

    Takahashi, Eiichi; Kato, Susumu; Matsumoto, Yuji; Losev, Leonid L

    2007-03-05

    Broad Raman-multi-frequency spectra were generated from the resonant two-color excitation of the deuterium molecule rotational Raman transition (J=0?2), using ultraviolet bi-harmonic lasers with a quartz hollow fiber. Fifty pure rotational Raman spectral lines (34 lines that have intensity within 10% of the strongest spectral line) from 230 to 290 nm were generated at a gas pressure of 30 kPa. Furthermore, vibrational-rotational Raman spectral lines of almost 300 lines from 220 to 600 nm were also generated by increasing the gas pressure to 60 kPa.

  6. Raman Scattering of Inorganic Fibers

    OpenAIRE

    SASAKI, Yoshiro; Sato, Mitsuhiko; OKAMURA, Kiyohito; NISHINA, Yuichiro

    1985-01-01

    We have examined evolution of Raman spectra of carbon fibers and SiC fibers through structural transformations caused by heat treatment. Raman spectra of the SiC fibers indicate that the fibers consist of amorphous or microcrystalline SiC and graphitic microcrystals. We discuss the correlation between the tensile strength of the fibers and their microscopic structure deduced from the Raman data.

  7. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  8. Raman Spectroscopy and instrumentation for monitoring soil carbon systems.

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.

    2003-12-08

    This work describes developments in the application of Raman scattering and surface-enhanced Raman scattering (SERS) towards the assessment/characterization of carbon in soil. In the past, the nonspecific total carbon mass content of soil samples has generally been determined through mass loss techniques and elemental analysis. However, because of the concern over CO{sub 2} buildup in the atmosphere and its possible role in the ''Greenhouse Effect,'' there is a need for better-defined models of global cycling of carbon. As a means towards this end, there is a need to know more about the structure and functionality of organic materials in soil. Raman spectroscopy may therefore prove to be an exceptional tool in soil carbon analysis. Based on vibrational transitions of irradiated molecules, it provides structural information that is often suitable for sample identification. Furthermore, Raman scattering yields very fine spectral features which offer the potential for multicomponent sample analysis with minimal or no sample pretreatment. Although the intensity of Raman scattering is generally extremely low, the surface-enhanced Raman scattering (SERS) effect can greatly enhance Raman signals (10{sup 6}-10{sup 8} range) through the adsorption of compounds on specially roughened metal surfaces. In our laboratory, we have investigated copper, gold and silver as possible substrate metals in the fabrication of SERS substrates. These substrates have included metal-coated microparticles, metal island films, and redox-roughened metal foils. We have evaluated several laser excitation sources spanning the 515-785 nm range for both Raman and SERS analysis. For this particular study, we have selected fulvic and humic acids as models for establishing the feasibility of using Raman and SERS in soil carbon analysis. Our studies thus far have demonstrated that copper substrates perform best in the SERS detection of humic and fulvic acids, particularly when coupled

  9. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    Science.gov (United States)

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Raman and SERS recognition of β-carotene and haemoglobin fingerprints in human whole blood

    Science.gov (United States)

    Casella, Michele; Lucotti, Andrea; Tommasini, Matteo; Bedoni, Marzia; Forvi, Elena; Gramatica, Furio; Zerbi, Giuseppe

    2011-09-01

    The present work reports on Raman and Surface Enhanced Raman Scattering (SERS) vibrational fingerprints of β-carotene and haemoglobin in fresh whole blood (i.e. right after blood test) with different laser excitations, i.e. visible (514 nm) and near-infrared (NIR, 785 nm). The use of colloidal silver nanoparticles significantly increases the Raman signal, thus providing a clear SERS spectrum of blood. The collected spectra have been examined and marker bands of β-carotene and of the haem prosthetic group of haemoglobin have been found. In particular, the fundamental features of β-carotene (514 nm excitation), blood proteins and haem molecules (785 nm excitation) were recognized and assigned. Moreover haemoglobin SERS signals can be identified and related with its oxygenation state (oxy-haemoglobin). The data reported show the prospects of Raman and SERS techniques to detect important bio-molecules in a whole blood sample with no pre-treatment.

  11. Improving Lidar Turbulence Estimates for Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.; Klein, Petra

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidars were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.

  12. Theory of Spatial Coherence in Near-Field Raman Scattering

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Cançado

    2014-09-01

    Full Text Available A theoretical study describing the coherence properties of near-field Raman scattering in two- and one-dimensional systems is presented. The model is applied to the Raman modes of pristine graphene and graphene edges. Our analysis is based on the tip-enhanced Raman scheme, in which a sharp metal tip located near the sample surface acts as a broadband optical antenna that transfers the information contained in the spatially correlated (but nonpropagating near field to the far field. The dependence of the scattered signal on the tip-sample separation is explored, and the theory predicts that the signal enhancement depends on the particular symmetry of a vibrational mode. The model can be applied to extract the correlation length L_{c} of optical phonons from experimentally recorded near-field Raman measurements. The coherence properties of optical phonons have been broadly explored in the time and frequency domains, and the spatially resolved approach presented here provides a complementary methodology for the study of local material properties at the nanoscale.

  13. Raman spectroscopy-compatible inactivation method for pathogenic endospores.

    Science.gov (United States)

    Stöckel, S; Schumacher, W; Meisel, S; Elschner, M; Rösch, P; Popp, J

    2010-05-01

    Micro-Raman spectroscopy is a fast and sensitive tool for the detection, classification, and identification of biological organisms. The vibrational spectrum inherently serves as a fingerprint of the biochemical composition of each bacterium and thus makes identification at the species level, or even the subspecies level, possible. Therefore, microorganisms in areas susceptible to bacterial contamination, e.g., clinical environments or food-processing technology, can be sensed. Within the scope of point-of-care-testing also, detection of intentionally released biosafety level 3 (BSL-3) agents, such as Bacillus anthracis endospores, or their products is attainable. However, no Raman spectroscopy-compatible inactivation method for the notoriously resistant Bacillus endospores has been elaborated so far. In this work we present an inactivation protocol for endospores that permits, on the one hand, sufficient microbial inactivation and, on the other hand, the recording of Raman spectroscopic signatures of single endospores, making species-specific identification by means of highly sophisticated chemometrical methods possible. Several physical and chemical inactivation methods were assessed, and eventually treatment with 20% formaldehyde proved to be superior to the other methods in terms of sporicidal capacity and information conservation in the Raman spectra. The latter fact has been verified by successfully using self-learning machines (such as support vector machines or artificial neural networks) to identify inactivated B. anthracis-related endospores with adequate accuracies within the range of the limited model database employed.

  14. Raman measurement of carotenoid composition in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  15. Rapid identification of single microbes by various Raman spectroscopic techniques

    Science.gov (United States)

    Rösch, Petra; Harz, Michaela; Schmitt, Michael; Peschke, Klaus-Dieter; Ronneberger, Olaf; Burkhardt, Hans; Motzkus, Hans-Walter; Lankers, Markus; Hofer, Stefan; Thiele, Hans; Popp, Jürgen

    2006-02-01

    A fast and unambiguous identification of microorganisms is necessary not only for medical purposes but also in technical processes such as the production of pharmaceuticals. Conventional microbiological identification methods are based on the morphology and the ability of microbes to grow under different conditions on various cultivation media depending on their biochemical properties. These methods require pure cultures which need cultivation of at least 6 h but normally much longer. Recently also additional methods to identify bacteria are established e.g. mass spectroscopy, polymerase chain reaction (PCR), flow cytometry or fluorescence spectroscopy. Alternative approaches for the identification of microorganisms are vibrational spectroscopic techniques. With Raman spectroscopy a spectroscopic fingerprint of the microorganisms can be achieved. Using UV-resonance Raman spectroscopy (UVRR) macromolecules like DNA/RNA and proteins are resonantly enhanced. With an excitation wavelength of e.g. 244 nm it is possible to determine the ratio of guanine/cytosine to all DNA bases which allows a genotypic identification of microorganisms. The application of UVRR requires a large amount of microorganisms (> 10 6 cells) e.g. at least a micro colony. For the analysis of single cells micro-Raman spectroscopy with an excitation wavelength of 532 nm can be used. Here, the obtained information is from all type of molecules inside the cells which lead to a chemotaxonomic identification. In this contribution we show how wavelength dependent Raman spectroscopy yields significant molecular information applicable for the identification of microorganisms on a single cell level.

  16. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber.

    Science.gov (United States)

    Mridha, M K; Novoa, D; Bauerschmidt, S T; Abdolvand, A; St J Russell, P

    2016-06-15

    We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  17. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  18. Surface-enhanced Raman spectroscopy bioanalytical, biomolecular and medical applications

    CERN Document Server

    Procházka, Marek

    2016-01-01

    This book gives an overview of recent developments in RS and SERS for sensing and biosensing considering also limitations, possibilities and prospects of this technique. Raman scattering (RS) is a widely used vibrational technique providing highly specific molecular spectral patterns. A severe limitation for the application of this spectroscopic technique lies in the low cross section of RS. Surface-enhanced Raman scattering (SERS) spectroscopy overcomes this problem by 6-11 orders of magnitude enhancement compared with the standard RS for molecules in the close vicinity of certain rough metal surfaces. Thus, SERS combines molecular fingerprint specificity with potential single-molecule sensitivity. Due to the recent development of new SERS-active substrates, labeling and derivatization chemistry as well as new instrumentations, SERS became a very promising tool for many varied applications, including bioanalytical studies and sensing. Both intrinsic and extrinsic SERS biosensing schemes have been employed to...

  19. Surface-Enhanced Raman Scattering in Molecular Junctions.

    Science.gov (United States)

    Iwane, Madoka; Fujii, Shintaro; Kiguchi, Manabu

    2017-08-18

    Surface-enhanced Raman scattering (SERS) is a surface-sensitive vibrational spectroscopy that allows Raman spectroscopy on a single molecular scale. Here, we present a review of SERS from molecular junctions, in which a single molecule or molecules are made to have contact from the top to the bottom of metal surfaces. The molecular junctions are nice platforms for SERS as well as transport measurement. Electronic characterization based on the transport measurements of molecular junctions has been extensively studied for the development of miniaturized electronic devices. Simultaneous SERS and transport measurement of the molecular junctions allow both structural (geometrical) and electronic information on the single molecule scale. The improvement of SERS measurement on molecular junctions open the door toward new nanoscience and nanotechnology in molecular electronics.

  20. Development and integration of Raman imaging capabilities to Sandia National Laboratories hyperspectral fluorescence imaging instrument.

    Energy Technology Data Exchange (ETDEWEB)

    Timlin, Jerilyn Ann; Nieman, Linda T.

    2005-11-01

    Raman spectroscopic imaging is a powerful technique for visualizing chemical differences within a variety of samples based on the interaction of a substance's molecular vibrations with laser light. While Raman imaging can provide a unique view of samples such as residual stress within silicon devices, chemical degradation, material aging, and sample heterogeneity, the Raman scattering process is often weak and thus requires very sensitive collection optics and detectors. Many commercial instruments (including ones owned here at Sandia National Laboratories) generate Raman images by raster scanning a point focused laser beam across a sample--a process which can expose a sample to extreme levels of laser light and requires lengthy acquisition times. Our previous research efforts have led to the development of a state-of-the-art two-dimensional hyperspectral imager for fluorescence imaging applications such as microarray scanning. This report details the design, integration, and characterization of a line-scan Raman imaging module added to this efficient hyperspectral fluorescence microscope. The original hyperspectral fluorescence instrument serves as the framework for excitation and sample manipulation for the Raman imaging system, while a more appropriate axial transmissive Raman imaging spectrometer and detector are utilized for collection of the Raman scatter. The result is a unique and flexible dual-modality fluorescence and Raman imaging system capable of high-speed imaging at high spatial and spectral resolutions. Care was taken throughout the design and integration process not to hinder any of the fluorescence imaging capabilities. For example, an operator can switch between the fluorescence and Raman modalities without need for extensive optical realignment. The instrument performance has been characterized and sample data is presented.