WorldWideScience

Sample records for vibrational peak intensity

  1. Modeling Vibration Intensity of Aircraft Bevel Gears

    Directory of Open Access Journals (Sweden)

    V. V. Golovanov

    2017-01-01

    Full Text Available The subject is the aircraft bevel gears, which are part of the drive systems of gas turbine engines and helicopter transmissions. The article deals with defect specifics of the aircraft conical gears with a circular tooth as compared to the conical gear wheels of general engineering. The finite element method has been used to find by calculation that the main reason for destruction of aircraft bevel gears is a resonant vibration excitation of the gear wheel rim due to its nodal diameter eigenvibrations happened to be within the operating range of the transmission rotation frequencies. A parametric finite element model has been developed. It allows us to investigate the impact of modification parameters of the drive side of gear wheels on the function of the kinematic transmission error at different values of transmitted torque. Using the method of main coordinates, a reduced dynamic model of the bevel gear has been developed to allow simulating the vibration intensity of bevel gears with various parameters of the working profile modification. Within the framework of evaluation test of the dynamic model, amplitude-frequency characteristics have been constructed for the main parameters of transmission oscillations, including vibrational stresses in the teeth space. It is found that modification parameters of the transmission drive side have a significant effect on the vibration intensity of the bevel gears in the entire operating range. The main factor affecting the vibration stress amplitude in the gear wheel is the amplitude of the kinematic error function with the corresponding torque transmitted. The obtained research results can be used when designing the new aircraft drives and modernizing the existing ones. As part of the further development, it is expected to create a technique for recording the damage accumulation in the conical gears, taking into account the typical flight profile of a gas turbine engine or a helicopter.

  2. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  3. Remote Sensing and Modeling of Cyclone Monica near Peak Intensity

    Directory of Open Access Journals (Sweden)

    Stephen L. Durden

    2010-07-01

    Full Text Available Cyclone Monica was an intense Southern Hemisphere tropical cyclone of 2006. Although no in situ measurements of Monica’s inner core were made, microwave, infrared, and visible satellite instruments observed Monica before and during peak intensity through landfall on Australia’s northern coast. The author analyzes remote sensing measurements in detail to investigate Monica’s intensity. While Dvorak analysis of its imagery argues that it was of extreme intensity, infrared and microwave soundings indicate a somewhat lower intensity, especially as it neared landfall. The author also describes several numerical model runs that were made to investigate the maximum possible intensity for the observed environmental conditions; these simulations also suggest a lower intensity than estimates from Dvorak analysis alone. Based on the evidence from the various measurements and modeling, the estimated range for the minimum sea level pressure at peak intensity is 900 to 920 hPa. The estimated range for the one-minute averaged maximum wind speed at peak intensity is 72 to 82 m/s. These maxima were likely reached about 24 hours prior to landfall, with some weakening occurring afterward.

  4. Peptide mass fingerprinting peak intensity prediction: extracting knowledge from spectra.

    Science.gov (United States)

    Gay, Steven; Binz, Pierre-Alain; Hochstrasser, Denis F; Appel, Ron D

    2002-10-01

    Matrix-assisted laser desorption/ionization-time of flight mass spectrometry has become a valuable tool in proteomics. With the increasing acquisition rate of mass spectrometers, one of the major issues is the development of accurate, efficient and automatic peptide mass fingerprinting (PMF) identification tools. Current tools are mostly based on counting the number of experimental peptide masses matching with theoretical masses. Almost all of them use additional criteria such as isoelectric point, molecular weight, PTMs, taxonomy or enzymatic cleavage rules to enhance prediction performance. However, these identification tools seldom use peak intensities as parameter as there is currently no model predicting the intensities based on the physicochemical properties of peptides. In this work, we used standard datamining methods such as classification and regression methods to find correlations between peak intensities and the properties of the peptides composing a PMF spectrum. These methods were applied on a dataset comprising a series of PMF experiments involving 157 proteins. We found that the C4.5 method gave the more informative results for the classification task (prediction of the presence or absence of a peptide in a spectra) and M5' for the regression methods (prediction of the normalized intensity of a peptide peak). The C4.5 result correctly classified 88% of the theoretical peaks; whereas the M5' peak intensities had a correlation coefficient of 0.6743 with the experimental peak intensities. These methods enabled us to obtain decision and model trees that can be directly used for prediction and identification of PMF results. The work performed permitted to lay the foundations of a method to analyze factors influencing the peak intensity of PMF spectra. A simple extension of this analysis could lead to improve the accuracy of the results by using a larger dataset. Additional peptide characteristics or even PMF experimental parameters can also be taken into

  5. Vibrationally cold CO{sup 2+} probed by intense femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, J; Sayler, A M; Gaire, B; Johnson, Nora G; Zohrabi, M; Anis, F; Carnes, K D; Esry, B D; Ben-Itzhak, I [J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, Kansas 66506 (United States); Lev, U, E-mail: ibi@phys.ksu.ed [Department of Particle Physics, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2009-11-01

    Using a novel approach, we produce a vibrationally cold CO{sup 2+} beam for study in an intense ultrashort laser field. We observe perpendicular dissociation of the simple two-level CO v = 0 ion, and above-threshold dissociation peaks spaced by the photon energy.

  6. Adaptations of mouse skeletal muscle to low intensity vibration training

    Science.gov (United States)

    McKeehen, James N.; Novotny, Susan A.; Baltgalvis, Kristen A.; Call, Jarrod A.; Nuckley, David J.; Lowe, Dawn A.

    2013-01-01

    Purpose We tested the hypothesis that low intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. Methods We subjected C57BL/6J mice to 6 wk, 5 d·wk−1, 15 min·d−1 of sham or low intensity vibration (45 Hz, 1.0 g) while housed in traditional cages (Sham-Active, n=8; Vibrated-Active, n=10) or in small cages to restrict physical activity (Sham-Restricted, n=8; Vibrated-Restricted, n=8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine effects of vibration and physical inactivity. Results Vibration training resulted in a 10% increase in maximal isometric torque (P=0.038) and 16% faster maximal rate of relaxation (P=0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, with the exception of greater rates of contraction in Vibrated-Restricted mice compared to Vibrated-Active and Sham-Restricted mice (P=0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P=0.057) and maximal relaxation was 20% faster (P=0.005) in Vibrated compared to Sham mice. Restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not impact muscle fatigability or any indicator of cellular adaptation investigated (P≥0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Conclusion Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations. PMID:23274599

  7. GRB physics and cosmology with peak energy-intensity correlations

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, Disha, E-mail: sawant@fe.infn.it [University of Ferrara, Via Saragat-1, Block C, Ferrara 44122 (Italy); University of Nice, 28 Avenue Valrose, Nice 06103 (France); IRAP Erasmus PhD Program, European Union and INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); Amati, Lorenzo, E-mail: amati@iasfbo.inaf.it [INAF - IASF Bologna, Via P. Gobetti 101, Bologna 41125 (Italy); ICRANet, Piazzale Aldo Moro-5, Rome 00185 (Italy)

    2015-12-17

    Gamma Ray Bursts (GRBs) are immensely energetic explosions radiating up to 10{sup 54} erg of energy isotropically (E{sub iso}) and they are observed within a wide range of redshift (from ∼ 0.01 up to ∼ 9). Such enormous power and high redshift point at these phenomena being highly favorable to investigate the history and evolution of our universe. The major obstacle in their application as cosmological study-tools is to find a way to standardize the GRBs, for instance similar to SNe Ia. With respect to this goal, the correlation between spectral peak energy (E{sub p,i}) and the “intensity” is a positively useful and investigated criterion. Moreover, it has been demonstrated that, through the E{sub p,i} – E{sub iso} correlation, the current data set of GRBs can already contribute to the independent evidence of the matter density Ω{sub M} being ∼ 0.3 for a flat universe scenario. We try to inspect and compare the correlations of E{sub p,i} with different intensity indicators (e.g., radiated energy, average and peak luminosity, bolometric vs. monochromatic quantities, etc.) both in terms of intrinsic dispersion and precise estimation of Ω{sub M}. The outcome of such studies are further analyzed in verifying the reliability of the correlations for both GRB physics and their standardization for cosmology.

  8. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    Science.gov (United States)

    Yeung, Ella W.; Lau, Cheuk C.; Kwong, Ada P.K.; Sze, Yan M.; Zhang, Wei Y.; Yeung, Simon S.

    2014-01-01

    The acute effect of whole-body vibration (WBV) training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD)] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF) and vastus lateralis (VL; p = 0.934 and 0.935, respectively) EMD of RF and VL (p = 0.474 and 0.551, respectively) and peak torque production (p = 0.483) measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults. Key Points There is no acute potentiation of stretch reflex right after whole body vibration. Acute whole body vibration does not improve mus-cle peak torque performance in healthy young adults. PMID:24570602

  9. Relating Solar Energetic Particle Event Fluences to Peak Intensities

    Science.gov (United States)

    Kahler, Stephen W.; Ling, Alan G.

    2018-02-01

    Recently we (Kahler and Ling, Solar Phys. 292, 59, 2017: KL) have shown that time-intensity profiles [I(t)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [α and β]. We now look for a simple correlation between an event peak energy intensity [Ip] and the time integral of I(t) over the event duration: the fluence [F]. We first ask how the ratio of F/Ip varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both F and Ip were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4 - 13 MeV band to E > 100 MeV. Within each group of SEP events, we find a very robust correlation (CC > 0.90) in log-log plots of F versus Ip over four decades of Ip. The ratio increases from western to eastern longitudes. From the value of Ip for a given event, F can be estimated to within a standard deviation of a factor of {≤} 2. Log-log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of { 10 MeV to {>} 100 MeV. This difference is not explained.

  10. Acute Whole-Body Vibration does not Facilitate Peak Torque and Stretch Reflex in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Ella W. Yeung

    2013-03-01

    Full Text Available The acute effect of whole-body vibration (WBV training may enhance muscular performance via neural potentiation of the stretch reflex. The purpose of this study was to investigate if acute WBV exposure affects the stretch induced knee jerk reflex [onset latency and electromechanical delay (EMD] and the isokinetic knee extensor peak torque performance. Twenty-two subjects were randomly assigned to the intervention or control group. The intervention group received WBV in a semi-squat position at 30° knee flexion with an amplitude of 0.69 mm, frequency of 45 Hz, and peak acceleration of 27.6 m/s2 for 3 minutes. The control group underwent the same semii-squatting position statically without exposure of WBV. Two-way mixed repeated measures analysis of variance revealed no significant group effects differences on reflex latency of rectus femoris (RF and vastus lateralis (VL; p = 0.934 and 0.935, respectively EMD of RF and VL (p = 0.474 and 0.551, respectively and peak torque production (p = 0.483 measured before and after the WBV. The results of this study indicate that a single session of WBV exposure has no potentiation effect on the stretch induced reflex and peak torque performance in healthy young adults.

  11. The effect of the training with the different combinations of frequency and peak-to-peak vibration displacement of whole-body vibration on the strength of knee flexors and extensors

    Directory of Open Access Journals (Sweden)

    M Stania

    2017-01-01

    Full Text Available Whole-body vibration training has become a popular method used in sports and physiotherapy. The study aimed to evaluate the effect of different vibration frequency and peak-to-peak displacement combinations on men knee flexors and extensors strength in isokinetic conditions. The sample consisted of 49 male subjects randomly allocated to seven comparative groups, six of which exercised on a vibration platform with parameters set individually for the groups. The experimental groups were exposed to vibrations 3 times a week for 4 weeks. The pre- and post- isokinetic strength tests, with the angular velocities of 240°/s and 30°/s, were recorded prior to and 2 days after the training. After 4 weeks of whole-body vibration training, a significant increase was noted regarding the mean values of peak torque, average peak torque and total work for knee flexors at high angular velocity in Groups I (60 Hz/ 4 mm and V (40 Hz/ 2 mm (p<0.05. The mean percentage values of post-training changes to study parameters suggest that the training had the most beneficial effect in Groups I (60 Hz/4 mm and IV (60 Hz/2 mm (p<0.05. Whole-body vibrations during static exercise beneficially affected knee flexor strength profile in young men at high angular velocity. The combinations of 60 Hz/4 mm seem to have the most advantageous effects on muscle strength parameters.

  12. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.

    Science.gov (United States)

    Civale, John; Rivens, Ian; Shaw, Adam; Ter Haar, Gail R

    2018-02-13

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound (HIFU) transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1W), moderate (~10W) and high (20 - 70W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% overestimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak

  13. Surface plasmon peak intensity dependence on the oxygen coverage at metal surfaces

    NARCIS (Netherlands)

    Voskoboinikov, A.; Voskoboinikov, A.; Nakhodkin, N.; Kryn'ko, Y.; Kulik, S.; Melnik, P.; Sheka, D.

    1994-01-01

    The dependence of the surface plasmon peak intensity on a submonolayer coverage of oxygen in the reflection electron energy loss spectra has been investigated for non-monocrystalline aluminium, magnesium, and indium surfaces. It will be shown that the decrease of the surface plasmon peaks can be

  14. [High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT].

    Science.gov (United States)

    Espinoza Salinas, Alexis; Aguilera Eguía, Raúl; Cofre Bolados, Cristian; Zafra Santos, Edson; Pavéz Von Martens, Gustavo

    2014-06-06

    A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR), low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. To verify the validity and applicability of using high intensity interval training (HIIT) in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91). In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  15. Whole-body vibration therapy in intensive care patients: A feasibility and safety study.

    Science.gov (United States)

    Boeselt, Tobias; Nell, Christoph; Kehr, Katahrina; Holland, Angélique; Dresel, Marc; Greulich, Timm; Tackenberg, Björn; Kenn, Klaus; Boeder, Johannes; Klapdor, Benjamin; Kirschbaum, Andreas; Vogelmeier, Claus; Alter, Peter; Koczulla, Andreas Rembert

    2016-03-01

    Admission to the intensive care unit is associated with sustained loss of muscle mass, reduced quality of life and increased mortality. Early rehabilitation measures may counteract this process. New approaches to rehabilitation while the patient remains in bed are whole-body vibration alone and whole-body vibration with a dumbbell. The aims of this study are to determine the safety of whole-body vibration for patients admitted to the intensive care unit, and to compare the effects of these techniques in intensive care unit patients and healthy subjects. Twelve intensive care unit patients and 12 healthy subjects using whole-body vibration for the first time were examined while lying in bed. First both groups performed whole body vibration over 3 min. In a second step whole body vibration with dumbbell was performed. In order to determine the safety of the training intensity, heart rate, oxygen saturation and blood pressure were measured. The study was approved by the Marburg ethics committee. There were minor reversible and transient increases in diastolic blood pressure (p = 0.005) and heart rate (p = 0.001) in the control group with whole-body vibration with a dumbbell. In intensive care patients receiving whole-body vibration alone, there were increases in diastolic blood pressure (p = 0.011) and heart rate (p vibration and whole-body vibration with a dumbbell for intensive care unit in-bed patients. No clinically significant safety problems were found. Whole-body vibration and whole-body vibration with a dumbbell might therefore be alternative methods for use in early in-bed rehabilitation, not only for hospitalized patients.

  16. Adaptations of mouse skeletal muscle to low-intensity vibration training.

    Science.gov (United States)

    McKeehen, James N; Novotny, Susan A; Baltgalvis, Kristen A; Call, Jarrod A; Nuckley, David J; Lowe, Dawn A

    2013-06-01

    We tested the hypothesis that low-intensity vibration training in mice improves contractile function of hindlimb skeletal muscles and promotes exercise-related cellular adaptations. We subjected C57BL/6J mice to 6 wk, 5 d·wk, 15 min·d of sham or low-intensity vibration (45 Hz, 1.0g) while housed in traditional cages (Sham-Active, n = 8; Vibrated-Active, n = 10) or in small cages to restrict physical activity (Sham-Restricted, n = 8; Vibrated-Restricted, n = 8). Contractile function and resistance to fatigue were tested in vivo (anterior and posterior crural muscles) and ex vivo on the soleus muscle. Tibialis anterior and soleus muscles were evaluated histologically for alterations in oxidative metabolism, capillarity, and fiber types. Epididymal fat pad and hindlimb muscle masses were measured. Two-way ANOVAs were used to determine the effects of vibration and physical inactivity. Vibration training resulted in a 10% increase in maximal isometric torque (P = 0.038) and 16% faster maximal rate of relaxation (P = 0.030) of the anterior crural muscles. Posterior crural muscles were unaffected by vibration, except greater rates of contraction in Vibrated-Restricted mice compared with Vibrated-Active and Sham-Restricted mice (P = 0.022). Soleus muscle maximal isometric tetanic force tended to be greater (P = 0.057), and maximal relaxation was 20% faster (P = 0.005) in vibrated compared with sham mice. The restriction of physical activity induced muscle weakness but was not required for vibration to be effective in improving strength or relaxation. Vibration training did not affect muscle fatigability or any indicator of cellular adaptation investigated (P ≥ 0.431). Fat pad but not hindlimb muscle masses were affected by vibration training. Vibration training in mice improved muscle contractility, specifically strength and relaxation rates, with no indication of adverse effects to muscle function or cellular adaptations.

  17. Various performance-enhancing effects from the same intensity of whole-body vibration training

    Directory of Open Access Journals (Sweden)

    Paohung Chung

    2017-09-01

    Conclusion: All frequency and amplitude settings in the 8-week whole-body vibration training increased muscle strength, but different settings resulted in various neuromuscular adaptations despite the same intensity.

  18. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    OpenAIRE

    Alexis Espinoza Salinas; Raúl Aguilera Eguía; Cristian Cofre Bolados; Edson Zafra Santos; Gustavo Pavéz Von Martens

    2014-01-01

    Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR), low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT) in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxyg...

  19. Low-Intensity Vibration as a Treatment for Traumatic Muscle Injury

    Science.gov (United States)

    2015-08-01

    that LIV reduces fibrosis and enhances muscle fiber growth following traumatic muscle injury in mice. Our data also indicate that LIV increases numbers...1 AWARD NUMBER: W81XWH-14-1-0281 TITLE: Low-Intensity Vibration as a Treatment for Traumatic Muscle Injury PRINCIPAL INVESTIGATOR: Dr...2. REPORT TYPE Annual 3. DATES COVERED 08/01/2014-07/31/2015 4. TITLE AND SUBTITLE Low-Intensity Vibration as a Treatment for Traumatic Muscle

  20. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    Directory of Open Access Journals (Sweden)

    Alexis Espinoza Salinas

    2014-06-01

    Full Text Available Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR, low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? Method The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Results Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91. Conclusion In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  1. Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-01-01

    Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.

  2. [Short-term memory characteristics of vibration intensity tactile perception on human wrist].

    Science.gov (United States)

    Hao, Fei; Chen, Li-Juan; Lu, Wei; Song, Ai-Guo

    2014-12-25

    In this study, a recall experiment and a recognition experiment were designed to assess the human wrist's short-term memory characteristics of tactile perception on vibration intensity, by using a novel homemade vibrotactile display device based on the spatiotemporal combination vibration of multiple micro vibration motors as a test device. Based on the obtained experimental data, the short-term memory span, recognition accuracy and reaction time of vibration intensity were analyzed. From the experimental results, some important conclusions can be made: (1) The average short-term memory span of tactile perception on vibration intensity is 3 ± 1 items; (2) The greater difference between two adjacent discrete intensities of vibrotactile stimulation is defined, the better average short-term memory span human wrist gets; (3) There is an obvious difference of the average short-term memory span on vibration intensity between the male and female; (4) The mechanism of information extraction in short-term memory of vibrotactile display is to traverse the scanning process by comparison; (5) The recognition accuracy and reaction time performance of vibrotactile display compares unfavourably with that of visual and auditory. The results from this study are important for designing vibrotactile display coding scheme.

  3. Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks.

    Directory of Open Access Journals (Sweden)

    Franco Mangussi

    Full Text Available In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined.

  4. How would peak rainfall intensity affect runoff predictions using conceptual water balance models?

    Directory of Open Access Journals (Sweden)

    B. Yu

    2015-06-01

    Full Text Available Most hydrological models use continuous daily precipitation and potential evapotranspiration for streamflow estimation. With the projected increase in mean surface temperature, hydrological processes are set to intensify irrespective of the underlying changes to the mean precipitation. The effect of an increase in rainfall intensity on the long-term water balance is, however, not adequately accounted for in the commonly used hydrological models. This study follows from a previous comparative analysis of a non-stationary daily series of stream flow of a forested watershed (River Rimbaud in the French Alps (area = 1.478 km2 (1966–2006. Non-stationarity in the recorded stream flow occurred as a result of a severe wild fire in 1990. Two daily models (AWBM and SimHyd were initially calibrated for each of three distinct phases in relation to the well documented land disturbance. At the daily and monthly time scales, both models performed satisfactorily with the Nash–Sutcliffe coefficient of efficiency (NSE varying from 0.77 to 0.92. When aggregated to the annual time scale, both models underestimated the flow by about 22% with a reduced NSE at about 0.71. Exploratory data analysis was undertaken to relate daily peak hourly rainfall intensity to the discrepancy between the observed and modelled daily runoff amount. Preliminary results show that the effect of peak hourly rainfall intensity on runoff prediction is insignificant, and model performance is unlikely to improve when peak daily precipitation is included. Trend analysis indicated that the large decrease of precipitation when daily precipitation amount exceeded 10–20 mm may have contributed greatly to the decrease in stream flow of this forested watershed.

  5. Sound-Intensity Feedback During Running Reduces Loading Rates and Impact Peak.

    Science.gov (United States)

    Tate, Jeremiah J; Milner, Clare E

    2017-08-01

    Study Design Controlled laboratory study, within-session design. Background Gait retraining has been proposed as an effective intervention to reduce impact loading in runners at risk of stress fractures. Interventions that can be easily implemented in the clinic are needed. Objective To assess the immediate effects of sound-intensity feedback related to impact during running on vertical impact peak, peak vertical instantaneous loading rate, and vertical average loading rate. Methods Fourteen healthy, college-aged runners who ran at least 9.7 km/wk participated (4 male, 10 female; mean ± SD age, 23.7 ± 2.0 years; height, 1.67 ± 0.08 m; mass, 60.9 ± 8.7 kg). A decibel meter provided real-time sound-intensity feedback of treadmill running via an iPad application. Participants were asked to reduce the sound intensity of running while receiving continuous feedback for 15 minutes, while running at their self-selected preferred speed. Baseline and follow-up ground reaction force data were collected during overground running at participants' self-selected preferred running speed. Results Dependent t tests indicated a statistically significant reduction in vertical impact peak (1.56 BW to 1.13 BW, P≤.001), vertical instantaneous loading rate (95.48 BW/s to 62.79 BW/s, P = .001), and vertical average loading rate (69.09 BW/s to 43.91 BW/s, P≤.001) after gait retraining, compared to baseline. Conclusion The results of the current study support the use of sound-intensity feedback during treadmill running to immediately reduce loading rate and impact force. The transfer of within-session reductions in impact peak and loading rates to overground running was demonstrated. Decreases in loading were of comparable magnitude to those observed in other gait retraining methods. J Orthop Sports Phys Ther 2017;47(8):565-569. Epub 6 Jul 2017. doi:10.2519/jospt.2017.7275.

  6. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  7. The acute effects of local muscle vibration frequency on peak torque, rate of torque development, and EMG activity.

    Science.gov (United States)

    Pamukoff, Derek N; Ryan, Eric D; Blackburn, J Troy

    2014-12-01

    Vibratory stimuli enhance muscle activity and may be used for rehabilitation and performance enhancement. Efficacy of vibration varies with the frequency of stimulation, but the optimal frequency is unclear. The purpose of this study was to examine the effects of 30 Hz and 60 Hz local muscle vibration (LMV) on quadriceps function. Twenty healthy volunteers (age = 20.4 ± 1.4 years, mass = 68.1 ± 11.0 kg, height = 170.1 ± 8.8 cm, males = 9) participated. Isometric knee extensor peak torque (PT), rate of torque development (RTD), and electromyography (EMG) of the quadriceps were assessed followed by one of the three LMV treatments (30 Hz, 60 Hz, control) applied under voluntary contraction, and again immediately, 5, 15, and 30 min post-treatment in three counterbalanced sessions. Dependent variables were analyzed using condition by time repeated-measures ANOVA. The condition × time interaction was significant for EMG amplitude (p = 0.001), but not for PT (p=0.324) or RTD (p = 0.425). The increase in EMG amplitude following 30 Hz LMV was significantly greater than 60 Hz LMV and control. These findings suggest that 30 Hz LMV may elicit an improvement in quadriceps activation and could be used to treat quadriceps dysfunction resulting from knee pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Low-Intensity Vibration as a Treatment for Traumatic Muscle Injury

    Science.gov (United States)

    2017-08-01

    contralateral leg. iii. We have completed histological analysis of muscles harvested on day 23 post -injury from both LIV-treated and sham-treated mice. a. No...AWARD NUMBER: W81XWH-14-1-0281 TITLE: Low-Intensity Vibration as a Treatment for Traumatic Muscle Injury PRINCIPAL INVESTIGATOR: Dr...Intensity Vibration as a Treatment for Traumatic Muscle Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0281 5c. PROGRAM ELEMENT NUMBER 6

  9. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  10. The effect of large amplitude motions on the vibrational intensities in hydrogen bonded complexes

    DEFF Research Database (Denmark)

    Mackeprang, Kasper; Hänninen, Vesa; Halonen, Lauri

    2015-01-01

    We have developed a model to calculate accurately the intensity of the hydrogen bonded XH-stretching vibrational transition in hydrogen bonded complexes. In the Local Mode Perturbation Theory (LMPT) model, the unperturbed system is described by a local mode (LM) model, which is perturbed...... by the intermolecular modes of the hydrogen bonded system that couple with the intramolecular vibrations of the donor unit through the potential energy surface. We have applied the model to three complexes containing water as the donor unit and different acceptor units, providing a series of increasing complex binding...... of the fundamental hydrogen bonded OH-stretching transition relative to the simpler LM model....

  11. Effect of high intensity exercise on peak oxygen uptake and endothelial function in long-term heart transplant recipients

    DEFF Research Database (Denmark)

    Hermann, T S; Dall, C H; Christensen, S B

    2011-01-01

    ) ) and endothelial function in heart transplant (HT) recipients. Twenty-seven long-term HT recipients were randomized to either 8-weeks high intensity aerobic exercise or no training. Flow mediated dilation of the brachial artery (FMD) was measured by ultrasound and VO(2 peak) by the analysis of expired air. Blood......Coronary allograft vasculopathy is a well-known long-term complication after cardiac transplantation. Endothelial dysfunction is involved and may be prevented by aerobic exercise. The purpose of this study was to examine whether high intensity aerobic exercise improves peak oxygen uptake (VO(2 peak......). High intensity aerobic exercise reduces systolic blood pressure and improves endothelial function in HT recipients....

  12. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    National Research Council Canada - National Science Library

    Espinoza Salinas, Alexis; Aguilera Eguía, Raúl; Cofre Bolados, Cristian; Zafra Santos, Edson; Pavéz Von Martens, Gustavo

    2014-01-01

    ...: Can HIIT improve peak oxygen consumption? The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed...

  13. A novel vision-based mold monitoring system in an environment of intense vibration

    Science.gov (United States)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-10-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration.

  14. Accurate acoustic power measurement for low-intensity focused ultrasound using focal axial vibration velocity

    Science.gov (United States)

    Tao, Chenyang; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong; Hu, Jimin

    2017-07-01

    Low-intensity focused ultrasound is a form of therapy that can have reversible acoustothermal effects on biological tissue, depending on the exposure parameters. The acoustic power (AP) should be chosen with caution for the sake of safety. To recover the energy of counteracted radial vibrations at the focal point, an accurate AP measurement method using the focal axial vibration velocity (FAVV) is proposed in explicit formulae and is demonstrated experimentally using a laser vibrometer. The experimental APs for two transducers agree well with theoretical calculations and numerical simulations, showing that AP is proportional to the square of the FAVV, with a fixed power gain determined by the physical parameters of the transducers. The favorable results suggest that the FAVV can be used as a valuable parameter for non-contact AP measurement, providing a new strategy for accurate power control for low-intensity focused ultrasound in biomedical engineering.

  15. Acute effects of whole-body vibration on peak isometric torque, muscle twitch torque and voluntary muscle activation of the knee extensors.

    Science.gov (United States)

    Jordan, M; Norris, S; Smith, D; Herzog, W

    2010-06-01

    The purpose of this investigation was to compare the acute effects of whole-body vibration (WBV) with a static squat on resting muscle twitch torque, peak isometric torque and voluntary muscle activation of the knee extensors during an isometric maximal voluntary contraction (MVC). Twenty-four healthy, strength-trained males were recruited for this randomized, cross-over design investigation. The WBV treatment consisted of three sets of 60 s of vibration (30 Hz, +/-4 mm) while standing in a semi-squat position. Voluntary muscle activation, peak isometric torque during MVC and resting muscle twitch torque (RTT) through percutaneous femoral nerve stimulation were obtained before and following the treatment. Change in peak isometric torque, voluntary muscle activation and the RTT were calculated as the difference between pre- and post-treatment values. There was no observable post-activation potentiation of muscle twitch torque or enhancement in voluntary muscle activation or peak isometric torque. However, decreases in the peak isometric torque (P=0.0094) and voluntary muscle activation (P=0.0252) were significantly smaller post WBV interventions compared with the control treatment. Based on the current data, it is unclear whether or not this was attributable to the effects of WBV but further research into this possibility is warranted.

  16. Relative vibrational overtone intensity of cis-cis and trans-perp peroxynitrous acid

    Science.gov (United States)

    Matthews, Jamie; Sinha, Amitabha; Francisco, Joseph S.

    2004-06-01

    The vibrational overtone spectrum of HOONO is examined in the region of the 2νOH and 3νOH bands using action spectroscopy in conjunction with ab initio intensity calculations. The present measurements indicate that the oscillator strength associated with the higher energy trans-perp conformer of HOONO is stronger relative to the lower energy cis-cis conformer for both these vibrational overtone levels. Ab initio intensity calculations carried out at the QCISD level of theory suggest that this disparity in oscillator strength apparently arises from differences in the second derivative of the transition dipole moment function of the two isomers. The calculations indicate that the oscillator strength for the trans-perp isomer is ˜5.4 times larger than that of the cis-cis isomer for the 2νOH band and ˜2 times larger for 3νOH band. The band positions and intensities predicted by the calculations are used to aid in the assignment of features in the experimental action spectra associated with the OH stretching overtones of HOONO. The observed relative intensities in the experimental action spectra when normalized to the calculated oscillator strengths appears to suggest that the concentration of the higher energy trans-perp isomer is comparable to the concentration of the cis-cis isomer in these room temperature experiments.

  17. Propagation of Solar Energetic Particles in Three-dimensional Interplanetary Magnetic Fields: Radial Dependence of Peak Intensities

    Science.gov (United States)

    He, H.-Q.; Zhou, G.; Wan, W.

    2017-06-01

    A functional form {I}\\max (R)={{kR}}-α , where R is the radial distance of a spacecraft, was usually used to model the radial dependence of peak intensities {I}\\max (R) of solar energetic particles (SEPs). In this work, the five-dimensional Fokker-Planck transport equation incorporating perpendicular diffusion is numerically solved to investigate the radial dependence of SEP peak intensities. We consider two different scenarios for the distribution of a spacecraft fleet: (1) along the radial direction line and (2) along the Parker magnetic field line. We find that the index α in the above expression varies in a wide range, primarily depending on the properties (e.g., location and coverage) of SEP sources and on the longitudinal and latitudinal separations between the sources and the magnetic foot points of the observers. Particularly, whether the magnetic foot point of the observer is located inside or outside the SEP source is a crucial factor determining the values of index α. A two-phase phenomenon is found in the radial dependence of peak intensities. The “position” of the break point (transition point/critical point) is determined by the magnetic connection status of the observers. This finding suggests that a very careful examination of the magnetic connection between the SEP source and each spacecraft should be taken in the observational studies. We obtain a lower limit of {R}-1.7+/- 0.1 for empirically modeling the radial dependence of SEP peak intensities. Our findings in this work can be used to explain the majority of the previous multispacecraft survey results, and especially to reconcile the different or conflicting empirical values of the index α in the literature.

  18. A 5-week whole body vibration training improves peak torque performance but has no effect on stretch reflex in healthy adults: a randomized controlled trial.

    Science.gov (United States)

    Yeung, S S; Yeung, E W

    2015-05-01

    This study aimed to investigate the neuromuscular adaptation following a 5-week high frequency and low amplitude whole body vibration (WBV) exercise training. The study is a prospective, double blind, randomized controlled intervention design with a total of 19 subjects volunteered to participate in the study. They were randomly assigned either to WBV exercise training or control group. Both groups participated in a 5-week training program. The intervention group received WBV in semi-squat position on a device with an amplitude of 0.76 mm, frequency of 40Hz, and peak acceleration of 23.9 m/s2. Each vibration training session consisted of 6 series of 60s on with 30s rest period in between. The control group underwent the same statically mini-squatting position without exposure to WBV. The effectiveness of the vibration program was evaluated by vertical jump test and the isokinetic knee extensor peak torque. The possible neural factors that contributed to the improved muscular performance were evaluated by the stretch induced knee jerk reflex. WBV training significantly enhanced the isokinetic knee extensor peak torque performance. Two-way mixed repeated measures analysis of variance revealed significant time effect of the changes in the peak torque (P=0.043) and the effect was significantly different between the intervention and control group (P=0.042). WBV did not affect vertical jump height, reflex latency of VL, EMGVL, and knee jerk angle. The results of this study do not support the hypothesis that the improvement in the muscular performance when subjects exposed to WBV training is attributed by neuromuscular efficiency via modulation of the muscle spindle sensitivity.

  19. Enhancement Of Free Exciton Peak Intensity In Reactively Sputtered ZnO Thin Films On (0001) Al2O3

    Science.gov (United States)

    Tüzemen, S.; Gür, Emre; Yildirim, T.; Xiong, G.; Williams, R. T.

    2007-04-01

    Wide bandgap materials such as GaN with its direct bandgap structure have been developed rapidly for applications in short wavelength light emission. ZnO, II-VI oxide semiconductor, is also promising for various technological applications, especially for optoelectronic light emitting devices in the visible and ultraviolet (UV) range of the electromagnetic spectrum. Above-band-edge absorption spectra of reactively sputtered Zn- and O-rich samples exhibit free exciton (FX) and neutral acceptor bound exciton (A°X) features. It is shown that the residual acceptors which bind excitons with an energy of 75 meV reside about 312 meV above the valence band, according to effective mass theory. An intra-bandgap absorption feature peaking at 2.5 eV shows correlation with the characteristically narrow A-free exciton peak intensity. Relevant annealing processes are presented as a function of time and temperature dependently for both Zn- and O- rich thin films. Enhancement of the free exciton peak intensity is observed without disturbing the residual shallow acceptor profile which is necessary for at least background p-type conductivity.

  20. Binomial probability distribution model-based protein identification algorithm for tandem mass spectrometry utilizing peak intensity information.

    Science.gov (United States)

    Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu

    2013-01-04

    Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .

  1. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  2. Spectral intensities in cubic systems. I. Progressions based upon parity vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Vasquez, S.O. [Department of Basic Chemistry, Faculty of Physical and Mathematical Sciences, University of Chile. Tupper 2069, Casilla 2777, Santiago, Chile (Chile); Meruane, T. [Department of Chemistry, Universidad Metropolitana de Ciencias de la Educacion. Av. J.P. Alessandri 774, Casilla 147, C. Santiago, Chile (Chile); Poblete, V. [Department of Nuclear Materials, Lo Aguirre, Comision Chilena de Energia Nuclear. Amunategui 95, Casilla 188-D, Santiago, Chile (Chile); Pozo, J. [Facultad de Ciencias de la Ingenieria. Universidad Diego Portales. Casilla 298-V, Santiago, Chile (Chile)

    1998-12-01

    The well-resolved emission and absorption spectra of centrosymmetric coordination compounds of the transition metal ions have been used widely to provide the experimental data against which to test theoretical models of vibronic intensities. With reference to the {sup 2} E{sub g} {yields} {sup 4} A{sub 2g} luminescence transition, at a perfect octahedral site in Cs{sub 2}SiF{sub 6}, over than one hundred vibronic lines are observed with line widths of a few wavenumber spread over some 3000 cm{sup -1}. This paper reports a through examination of both the electronic and vibrational factors, which influences the observed vibronic intensities of the various assigned and identified lines in the spectra of the MnF{sub 6} {sup 2-} complex ion in the Cs{sub 2}SiF{sub 6} cubic lattice. The origin and nature of higher order vibronic interactions are analysed on the basis of a symmetrized vibronic crystal field-ligand polarization model. (Author)

  3. S-matrix analysis of vibrational and alignment effects in intense-field multiphoton ionization of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Requate, A.

    2007-03-15

    Theoretical analysis of the vibrational excitation of small molecules during multiphoton ionization in intense laser fields of optical and infrared frequencies. Analysis of the alignment dependence of the electron impact ionization of diatomic molecules in the presence of an intense laser field as the final step in the process of Nonsequential Double Ionization. Quantum mechanical description using S-matrix theory in Strong Field Approximation (SFA), i.e. beyond perturbation theory. (orig.)

  4. Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1.

    Science.gov (United States)

    Zorn, Reiner; Yin, Huajie; Lohstroh, Wiebke; Harrison, Wayne; Budd, Peter M; Pauw, Brian R; Böhning, Martin; Schönhals, Andreas

    2018-01-17

    Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering.

  5. Effect of whole body vibration on lactate level recovery and heart rate recovery in rest after intense exercise.

    Science.gov (United States)

    Kang, Seung Rok; Min, Jin-Young; Yu, Changho; Kwon, Tae-Kyu

    2017-07-20

    In this paper, we investigated the recovery of the lactate level, muscular fatigue, and heart rate recovery (HRR) with respect to whole body vibration (WBV) during the rest stage after a gait exercise. A total of 24 healthy subjects with no medical history of exercise injury participated. The participants were divided into a training group with vibration during rest and a control group with the same conditions but without vibration. The subjects performed a gait exercise with a slope of 15% and velocity of 4 km/h to consume 450 kcal in 30 min. Then, they rested on a vibrating chair or on a chair without vibrations for 30 min. The vibration protocol consists of a frequency of 10 Hz and amplitude of 5 mm. To estimate the recovery effect, we measured the lactate levels in blood, spectral edge frequency (SEF) of MVIC, and HRR before, immediately after exercise, and after rest. The results showed that the lactate level in the training group decreased more (93.8%) than in the control group (32.8%). Also, HRR showed a similar trend with a recovery of 88.39% in the training group but 64.72% in the control group. We considered that whole-body vibrations during rest would help remove lactic acid by improving the level of lactic acid oxidation with stimulated blood vessels in the muscles and by helping to maintain blood flow. Also, WBV would lead to compensation to actively decrease the fast excess post-exercise oxygen consumption from blood circulation. We suggest that whole-body vibrations during rest can provide fast, efficient fatigue recovery as a cool down exercise for women, the elderly, and patients without other activity after intense exercise.

  6. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    Directory of Open Access Journals (Sweden)

    Gunes Uzer

    Full Text Available The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43 mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1% or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  7. Adenosine-5'-triphosphate (ATP supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets

    Directory of Open Access Journals (Sweden)

    Rathmacher John A

    2012-10-01

    Full Text Available Abstract Background Intracellular concentrations of adenosine-5’-triphosphate (ATP are many times greater than extracellular concentrations (1–10 mM versus 10–100 nM, respectively and cellular release of ATP is tightly controlled. Transient rises in extracellular ATP and its metabolite adenosine have important signaling roles; and acting through purinergic receptors, can increase blood flow and oxygenation of tissues; and act as neurotransmitters. Increased blood flow not only increases substrate availability but may also aid in recovery through removal of metabolic waste products allowing muscles to accomplish more work with less fatigue. The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise. Methods Sixteen participants (8 male and 8 female; ages: 21–34 years were enrolled in a double-blinded, placebo-controlled study using a crossover design. The participants received either supplemental ATP (400 mg/d divided into 2 daily doses or placebo for 15 d. After an overnight fast, participants underwent strength and fatigue testing, consisting of 3 sets of 50 maximal knee extensions performed on a Biodex® leg dynamometer. Results No differences were detected in high peak torque, power, or total work with ATP supplementation; however, low peak torque in set 2 was significantly improved (p Conclusions Supplementation with 400 mg ATP/d for 15 days tended to reduce muscle fatigue and improved a participant’s ability to maintain a higher force output at the end of an exhaustive exercise bout.

  8. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury.

    Science.gov (United States)

    Brurok, Berit; Helgerud, Jan; Karlsen, Trine; Leivseth, Gunnar; Hoff, Jan

    2011-05-01

    The aim of this study was to determine the effect of high-intensity interval training during combined arm cycling exercise (ACE) and functional electrical stimulation leg cycling (hybrid exercise), on peak stroke volume and peak oxygen consumption in individuals with spinal cord injury (SCI). A baseline control trial at an outpatient SCI clinic (St. Olav's University Hospital, Norway) was conducted. Participants included six men with SCI in stable neurologic recovery (ASIA Impairment Scale grade A). The study intervention included aerobic high-intensity hybrid exercise training three times a week for 8 wks preceded by a 7-wk control period of regular daily activity. Main outcome measures were peak stroke volume during hybrid cycling and peak oxygen consumption during hybrid cycling, ACE, and functional electrical stimulation leg cycling. The tests were conducted at three time points: 1, baseline; 2, control; and 3, post-training. Data are presented as mean (SD). From control to post-training tests, a significant increase in peak stroke volume by 33% (P = 0.004), from 77.7 (9.9) to 103.4 (17.1) ml/beat, was found. Furthermore, between control and post-training tests, hybrid peak oxygen consumption increased by 24.4%, from 24.6 (3.9) to 30.6 (5.2) ml kg (-1) min (-1) (P = 0.003), and peak oxygen consumption during isolated ACE and functional electrical stimulation cycling increased by 25.9% (P = 0.001) and 23.5% (P = 0.007), respectively. Training aerobic high-intensity hybrid intervals at 85%-95% of peak Watt was feasible for this group of SCI men and significantly increased peak stroke volume and peak oxygen uptake. Because aerobic capacity is directly linked to mortality and morbidity, the present study may be useful for designing training programs sufficient to reverse the risk of cardiovascular disease in SCI.

  9. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response...

  10. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    Science.gov (United States)

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  11. Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

    Science.gov (United States)

    Seiffert, Gary; Sutcliffe, Chris

    2015-01-01

    Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906

  12. Monitoring the intensity of mechanical vibration during the processing of chrome steel 14109

    Directory of Open Access Journals (Sweden)

    Š. Salokyová

    2017-01-01

    Full Text Available Article deals with the examination of the effect of cutting parameters on the occurrence and size of mechanical vibration on three selected measured points during the processing of chrome steel. It also includes execution, experiment evaluation in this field and comparison of measured vibrations acceleration amplitude values according to the standards. The results of the measurement serve for early identification of a defect, which has great effect on the smoothness and efficiency of the machine. The article concludes with the proposed new findings from the measured values evaluation and formulated new recommendations for the operation in production system with lathe turning technology. The measured experimental values of the acceleration amplitude of mechanical vibrations were compared with theoretical values.

  13. Ab initio calculations of anharmonic vibrational circular dichroism intensities of trans-2,3-dideuteriooxirane

    DEFF Research Database (Denmark)

    Bak, KL; Bludsky, O.; Jorgensen, P

    1995-01-01

    A priori theory is derived for anharmonic calculations of vibrational circular dichroism (VCD). The anharmonic VCD expression is gauge origin independent and reduce to the magnetic field perturbation theory expression in the double-harmonic approximation. The theory has been implemented using...... for the atomic axial tensors and using second-order Moller-Plesset theory for the atomic polar tensors and the force fields, The changes of the vibrational rotatory strengths from anharmonicities are small, and do not explain the previously observed large discrepancies between the double-harmonic results...

  14. Acid-hemolytic stability of erythrocytes of intense erythropoiesis under conditions of low-frequency vibration

    Directory of Open Access Journals (Sweden)

    O. I. Dotsenko

    2014-04-01

    Full Text Available This paper deals with the peculiarities of functioning of murine erythron system under vibrational stress on the basis of experimental data about erythrocytes acid resistance. Experiments were made on the outbred male mice at about one age and weight that were maintained in vivarium conditions on usual diet. Animals were divided into 5 groups. Animals of 1–4 groups were exposed to daily thirty-minute vibration at frequencies of 8, 16, 24 and 32 Hz respectively, with amplitude of 0.8 ±0.12 mmduring 14 days. Animal exposure to vibration was provided by the electromechanical converter connected to the generator of low frequency signals. The fifth group of animals was not exposed to vibration and it was used as a control. Kinetic dependences of acid hemolysis of erythrocytes was registered daily, from the 1st to the 5th day, and further at the 7th, 9th and 14th days of experiment. Blood for analysis was taken from tail veins in 15–20 min after stopping of vibration. As the basic indicators characterizing resistance of erythrocytes to the hemolytic agent influence we used the hemolysis rate constant, i.e. the value inverse to cell half-life time. For analysis of acid erythrograms we also used such indicators as hemolysis duration, maximum erythrogram’s time and width of the interval of erythrocyte group dominating in the population. We processed the results of research statistically. The study showed that acid resistance of erythrocytes decreased during the first five days of vibration influence at frequencies of 8–16 Hz. Besides, erythrocytes were divided into fractions that indicated the erythrocytes aging and strengthening of the population heterogeneity. On the fifth day of 16 Hz influence the emission of reticulocytes was recorded. At 8 Hz influence these processes were registered on the 7th day of the experiment. During the subsequent days the hemolysis curves were slightly displaced in relation to the control. Increase in hemolysis

  15. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States

    Science.gov (United States)

    Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H.

    2017-01-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today’s technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual. PMID:28167756

  16. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women

    OpenAIRE

    Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer

    2017-01-01

    The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk−1) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxy...

  17. AB-INITIO CALCULATIONS OF ANHARMONIC VIBRATIONAL TRANSITION INTENSITIES OF TRANS-2,3-DIDEUTERIOOXIRANE

    DEFF Research Database (Denmark)

    Bludsky, O.; Bak, Keld L.; JORGENSEN, P

    1995-01-01

    The quartic force field and the cubic dipole moment surface are calculated for trans-2,3-dideuteriooxirane at the self-consistent field and the second order Moller-Plesset levels of theory using a triple zeta plus two polarization functions basis set. Contact transformation theory is used...... to determine the corresponding anharmonic vibrtional frequencies and intensities. Inclusion of anharmonicity improves agreement of the calculated frequencies and intensities with their experimental counterparts. The anharmonic corrections are much more sensitive to correlation effects for intensities than...

  18. Vapor deposition of polystyrene thin films by intense laser vibrational excitation

    DEFF Research Database (Denmark)

    Bubb, D.M.; Papantonakis, M.R.; Horwitz, J.S.

    2002-01-01

    -induced damage to the target can be seen. RIR-PLD is a fundamentally new approach to polymer thin film growth as the absorption of radiation resonant with vibrational modes allow the energy to be deposited into the polymer and transfers between macromolecules in such a way as to promote efficient, non......Polystyrene films were deposited using resonant infrared pulsed laser depositions (RIR-PLD). Thin films were grown on Si(1 1 1) wafers and NaCl substrates and analyzed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The depositions were carried out...... in vacuum (10(-4)-10(-5) Torr) at wavelengths 3.28, 3.30, 3.42 and 3.48 mum which are resonant with CH2 stretching modes in the polymer. We also attempted to deposit a films using non-resonant infrared (RIR) excitation (2.90 mum). At this wavelength no films were deposited, and evidence for laser...

  19. Effect of high-intensity training versus moderate training on peak oxygen uptake and chronotropic response in heart transplant recipients

    DEFF Research Database (Denmark)

    Dall, C H; Snoer, M; Christensen, S

    2014-01-01

    In heart transplant (HTx) recipients, there has been reluctance to recommend high-intensity interval training (HIIT) due to denervation and chronotropic impairment of the heart. We compared the effects of 12 weeks' HIIT versus continued moderate exercise (CON) on exercise capacity and chronotropic...... effect on oxygen uptake, and led to an unexpected increase in HRpeak accompanied by a faster HRrecovery . This indicates that the benefits of HIIT are partly a result of improved chronotropic response....

  20. Can socioeconomic factors account for "atypical" correlations between timing, peak velocity, and intensity of adolescent growth in Taiwanese girls?

    Science.gov (United States)

    Floyd, B.

    2000-01-01

    This study uses longitudinal height records of girls in two urban and one rural area in Taiwan. Individual height records were modeled with the Preece-Baines Model 1 (PB1) function to test two related hypotheses: 1) Taiwanese students who experienced a relatively stable, affluent growth environment from an early age, as judged from parental education and stability of residence type, will have a pattern of correlations for the timing and intensity of the growth spurt similar to those of European and American females; and 2) those students whose parents gained the wherewithal to move from single-story to multi-story dwellings while they were in primary school will have the most atypical patterns. The extent to which these and other sociodemographic factors influence pubertal spurt velocities and increments of adolescent growth were explored as well using multiple regression analyses. Results support the view that rapid socioeconomic change in Taiwan influenced the relationship between the timing and intensity of adolescent growth in stature. Children in the more stable environments in both urban areas had patterns of correlations typical of population samples from developed countries. The most atypical correlations in both areas were found among those who likely experienced the greatest improvement in socioeconomic status during primary school. These represent positive values previously unreported in the literature. Differences in amounts of growth, though in accord with these patterns, were quite small. Am. J. Hum. Biol. 12:102-117, 2000. Copyright 2000 Wiley-Liss, Inc.

  1. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    Science.gov (United States)

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, Ptraining effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  2. Effects of a 6-Week Upper Extremity Low-Volume, High Intensity Interval Training on Oxygen Uptake, Peak Power Output and Total Exercise Time.

    Science.gov (United States)

    Pinto, Nicole; Salassi, James W; Donlin, Ayla; Schroeder, Jan; Rozenek, Ralph

    2017-05-30

    The purpose of this study was to compare the effects of upper extremity (UE) high intensity interval training (HIIT) to UE continuous training (CT) when training at a similar intensity. 20 participants (mean age = 23 ± 3 yrs) were randomly assigned to either a HIIT (n = 10) or CT (n = 10) group. Participants completed a graded exercise test utilizing arm cranking prior to and following 6 wks (2 sessions · wk-1) of UE training. During sessions, HIIT performed 10 repetitions of 60 s of work at 92.3 ± 1.0% of the arm HRpeak (%aHRpeak) and 60 s of passive recovery (%aHRpeak = 73.0 ± 4.0%) yielding an average training intensity of 82.6 ± 1.5 %aHRpeak. CT exercised for 20 min. at an average intensity of 81.9 ± 2.2 %aHRpeak. Following training HIIT showed greater improvement in V[Combining Dot Above]O2peak compared to CT (Δ = 4.1 ml · min-¹ · kg-¹, 95%CI: 1.3 - 6.9 ml · min-¹ · kg-¹, p = .007). Total exercise time during the post-test GXT was also improved as a result of HIIT (Δ = 1.4 min, 95%CI: 0.4 - 2.3 min, p = .008). Both groups improved peak power output, but no difference was observed between them (Δ = 3.3 W, 95%CI: -3.3 - 9.9 W, p = .305). For a similar time investment, HIIT appeared to improve cardiopulmonary capacity and exercise time to a greater extent than CT and may be a time-efficient alternative for those who incorporate UE aerobic activity into a training program.

  3. Tracking molecular structure deformation of nitrobenzene and its torsion-vibration coupling by intense pumping CARS

    Science.gov (United States)

    Wang, Chang; Wu, Hong-Lin; Song, Yun-Fei; He, Xing; Yang, Yan-Qiang; Tan, Duo-Wang

    2016-11-01

    The structural deformation induced by intense laser field of liquid nitrobenzene (NB) molecule, a typical molecule with restricting internal rotation, is tracked by time- and frequency-resolved coherent anti-Stokes. Raman spectroscopy (CARS) technique with an intense pump laser. The CARS spectra of liquid NB show that the NO2 torsional mode couples with the NO2 symmetric stretching mode, and the NB molecule undergoes ultrafast structural deformation with a relaxation time of 265 fs. The frequency of NO2 torsional mode in liquid NB (42 cm-1) at room temperature is found from the sum and difference combination bands involving the NO2 symmetric stretching mode and torsional mode in time- and frequency-resolved CARS spectra. Project supported by the National Natural Science Foundation of China (Grant Nos. 21173063 and 21203047), the Foundation of Heilongjiang Bayi Agricultural University, China (Grant No. XZR2014-16), NSAF (Grant No. U1330106), and the Special Research Project of National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics (Grant No. 2012-S-07).

  4. Functional High-Intensity Circuit Training Improves Body Composition, Peak Oxygen Uptake, Strength, and Alters Certain Dimensions of Quality of Life in Overweight Women.

    Science.gov (United States)

    Sperlich, Billy; Wallmann-Sperlich, Birgit; Zinner, Christoph; Von Stauffenberg, Valerie; Losert, Helena; Holmberg, Hans-Christer

    2017-01-01

    The effects of circuit-like functional high-intensity training (CircuitHIIT) alone or in combination with high-volume low-intensity exercise (Circuitcombined) on selected cardio-respiratory and metabolic parameters, body composition, functional strength and the quality of life of overweight women were compared. In this single-center, two-armed randomized, controlled study, overweight women performed 9-weeks (3 sessions·wk(-1)) of either CircuitHIIT (n = 11), or Circuitcombined (n = 8). Peak oxygen uptake and perception of physical pain were increased to a greater extent (p functioning, role of physical limitations, vitality, role of emotional limitations, and mental health to a similar extent (all p training can be employed to improve body composition, selected variables of functional strength, and certain dimensions of quality of life in overweight women. However, CircuitHIIT improves peak oxygen uptake to a greater extent, but with more perception of pain, whereas Circuitcombined results in better perception of general health.

  5. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing.

    Science.gov (United States)

    McAuley, J H; Rothwell, J C; Marsden, C D

    1997-05-01

    The output from the central nervous system to muscles may be rhythmic in nature. Previous recordings investigating peripheral manifestations of such rhythmic activity are conflicting. This study attempts to resolve these conflicts by employing a novel arrangement to measure and correlate rhythms in tremor, electromyographic (EMG) activity and muscle vibration sounds during steady index finger abduction. An elastic attachment of the index finger to a strain gauge allowed a strong but relatively unfixed abducting contraction of the first dorsal interosseous (1DI). An accelerometer attached to the end of the finger recorded tremor, surface electrodes over 1DI recorded EMG signals and a heart-sounds monitor placed over 1DI recorded vibration. This arrangement enabled maintenance of a constant overall muscle contraction strength while still allowing measurement of the occurrence of tremulous movements of the finger. Ten normal subjects were studied with the index finger first extended at rest and then contracting 1DI to abduct the index finger against three different steady forces up to 50% of maximal voluntary contraction (MVC). Power spectral analysis of tremor, EMG activity and muscle vibration signals each revealed three frequency peaks occurring together at around 10 Hz, 20 Hz and 40 Hz. Coherence analysis showed that the same three peaks were present in the three signals. Phase analysis indicated a fixed time lag of tremor behind EMG of around 6.5 ms. This is compared with previous measurements of electromechanical delay. Other experiments indicated that the three peaks were of central nervous origin. Introducing mechanical perturbations or extra loading to the finger and making recordings under partial anaesthesia of the hand and forearm demonstrated preservation of all the peaks, suggesting that they did not originate from mechanical resonances or peripheral feedback loop resonances. It is concluded that, at least for a small hand muscle, there exist not one but

  6. Femtochemistry in the electronic ground state: Dynamic Stark control of vibrational dynamics

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Thomas, Esben Folger; Henriksen, Niels Engholm

    2017-01-01

    We study the interplay of vibrational and rotational excitation in a diatomic molecule due to the non-resonant dynamic Stark effect. With a fixed peak intensity, optimal Gaussian pulse durations for maximizing vibrational or rotational transitions are obtained analytically and confirmed numerically...

  7. Ultrasonic Transducer Peak-to-Peak Optical Measurement

    Directory of Open Access Journals (Sweden)

    Pavel Skarvada

    2012-01-01

    Full Text Available Possible optical setups for measurement of the peak-to-peak value of an ultrasonic transducer are described in this work. The Michelson interferometer with the calibrated nanopositioner in reference path and laser Doppler vibrometer were used for the basic measurement of vibration displacement. Langevin type of ultrasonic transducer is used for the purposes of Electro-Ultrasonic Nonlinear Spectroscopy (EUNS. Parameters of produced mechanical vibration have to been well known for EUNS. Moreover, a monitoring of mechanical vibration frequency shift with a mass load and sample-transducer coupling is important for EUNS measurement.

  8. Temperature dependence of the intensity of the vibration-rotational absorption band ν2 of H2O trapped in an argon matrix

    Science.gov (United States)

    Pitsevich, G.; Doroshenko, I.; Malevich, A..; Shalamberidze, E.; Sapeshko, V.; Pogorelov, V.; Pettersson, L. G. M.

    2017-02-01

    Using two sets of effective rotational constants for the ground (000) and the excited bending (010) vibrational states the calculation of frequencies and intensities of vibration-rotational transitions for J″ = 0 - 2; and J‧ = 0 - 3; was carried out in frame of the model of a rigid asymmetric top for temperatures from 0 to 40 K. The calculation of the intensities of vibration-rotational absorption bands of H2O in an Ar matrix was carried out both for thermodynamic equilibrium and for the case of non-equilibrium population of para- and ortho-states. For the analysis of possible interaction of vibration-rotational and translational motions of a water molecule in an Ar matrix by 3D Schrödinger equation solving using discrete variable representation (DVR) method, calculations of translational frequencies of H2O in a cage formed after one argon atom deleting were carried out. The results of theoretical calculations were compared to experimental data taken from literature.

  9. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.; Williams, S. D.

    2018-02-01

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.

  10. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  11. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings

    Science.gov (United States)

    Allen, Trevor I.; Wald, David J.

    2009-01-01

    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  12. Pareto optimality between width of central lobe and peak sidelobe intensity in the far-field pattern of lossless phase-only filters for enhancement of transverse resolution.

    Science.gov (United States)

    Mukhopadhyay, Somparna; Hazra, Lakshminarayan

    2015-11-01

    Resolution capability of an optical imaging system can be enhanced by reducing the width of the central lobe of the point spread function. Attempts to achieve the same by pupil plane filtering give rise to a concomitant increase in sidelobe intensity. The mutual exclusivity between these two objectives may be considered as a multiobjective optimization problem that does not have a unique solution; rather, a class of trade-off solutions called Pareto optimal solutions may be generated. Pareto fronts in the synthesis of lossless phase-only pupil plane filters to achieve superresolution with prespecified lower limits for the Strehl ratio are explored by using the particle swarm optimization technique.

  13. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  14. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H2O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  15. Transmission of low-intensity vibration through the axial skeleton of persons with spinal cord injury as a potential intervention for preservation of bone quantity and quality.

    Science.gov (United States)

    Asselin, Pierre; Spungen, Ann M; Muir, Jesse W; Rubin, Clinton T; Bauman, William A

    2011-01-01

    Persons with spinal cord injury (SCI) develop marked bone loss from paralysis and immobilization. Low-intensity vibration (LIV) has shown to be associated with improvement in bone mineral density in post-menopausal women and children with cerebral palsy. We investigated the transmissibility of LIV through the axial skeleton of persons with SCI as an initial approach to determine whether LIV may be used as a clinical modality to preserve skeletal integrity. Transmission of a plantar-based LIV signal (0.27 +/- 0.11 g; 34 Hz) from the feet through the axial skeleton was evaluated as a function of tilt-table angle (15, 30, and 45 degrees) in seven non-ambulatory subjects with SCI and ten able-bodied controls. Three SCI and five control subjects were also tested at 0.44 +/- 0.18 g and 34 Hz. Transmission was measured using accelerometers affixed to a bite-bar to determine the percentage of LIV signal transmitted through the body. The SCI group transmitted 25, 34, and 43% of the LIV signal, and the control group transmitted 28, 45, and 57% to the cranium at tilt angles of 15, 30, and 45 degrees, respectively. No significant differences were noted between groups at any of the three angles of tilt. SCI and control groups demonstrated equivalent transmission of LIV, with greater signal transmission observed at steeper angles of tilt. This work supports the possibility of the utility of LIV as a means to deliver mechanical signals in a form of therapeutic intervention to prevent/reverse skeletal fragility in the SCI population.

  16. Vibrational lineshapes of adsorbates on solid surfaces

    Science.gov (United States)

    Ueba, H.

    A review is presented of the current activity in vibrational spectroscopy of adsorbates on metal surfaces. A brief introduction of the representative spectroscopies is given to demonstrate the rich information contained in vibrational spectra, which are characterized by their intensity, peak position and width. Analysis of vibrational spectra enables us to gain the deep insight into not only the local character of adsorption site or geometry, but also the dynamical interaction between the adsorbates or between the adsorbate and the substrate. Some recent instructive experimental results, mostly of a CO molecule adsorbed on various metal surfaces, are accompanied by the corresponding theoretical recipe for vibrational excitation mechanisms. Wide spread experimental results of the C-O stretching frequency of CO adsorbed on metal surfaces are discussed in terms of the chemical effect involving the static and dynamic charge transfers between the chemisorbed CO and metal, and also of the electrostatic dipole-dipole interaction between the molecules. The central subject of this review is directed to the linshapes characterized by the vibrational relaxation processes of adsorbates. A simple and transparent model is introduced to show that the characteristic decay time of the correlation function for the vibrational coordinates is the key quantity to determine the spectral lineshapes. Recent experimental results focused on a search for an intrinsic broadening mechanism are reviewed in the light of the so-called T1 (energy) and T2 (phase) relaxation processesof the vibrational excited states of adsorbates. Those are the vibrational energy dissipation into the elementary excitation, such as phonons or electron-hole pairs in the metal substrate, and pure dephasing due to the energy exchange with the sorroundings. The change of width and frequency by varying the experimental variables, such as temperature or isotope effect, provides indispensable knowledge for the dynamical

  17. Response characteristics of vibration-sensitive neurons in the midbrain of the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1989-01-01

    of best frequencies (BF's) was bimodal with peaks at 10 and 100 Hz and the thresholds ranged from 0.02 to 1.28 cm/s2 at the BF. Twenty-three neurons showed phasic-tonic and 11 neurons phasic responses. The dynamic range of seismic intensity for most neurons was 20-30 dB. In contrast to the sharp phase...... response characteristics expressed by inhibition of their spontaneous activity by vibration or by bi- and trimodal sensory sensitivities. In conclusion, the vibration sensitive cells in the midbrain of the grassfrog can encode the frequency, intensity, onset and cessation of vibration stimuli. Seismic...... stimuli probably play a role in communication and detection of predators and the vibration-sensitive midbrain neurons may be involved in the central processing of such behaviorally significant stimuli....

  18. Optically active vibrational modes of PPV derivatives on textile substrate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.A.T. da, E-mail: seaquinhos@uel.br [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Dias, I.F.L. [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Santos, E.P. dos; Martins, A.A. [Departamento de Fisica, Universidade Vale do Paraiba-UNIVAP, Avenida Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, Sao Paulo (Brazil); Duarte, J.L.; Laureto, E.; Reis, G.A. dos [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Guimaraes, P.S.S.; Cury, L.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte, CEP 30123-970 Minas Gerais (Brazil)

    2013-02-15

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on 'dirty' textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I{sub (01)}/I{sub (00)}, were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: Black-Right-Pointing-Pointer MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. Black-Right-Pointing-Pointer Their properties were studied by photoluminescence and Raman techniques. Black-Right-Pointing-Pointer We observed inversion of first vibrational band in relation to purely electronic peak. Black-Right-Pointing-Pointer Optically active vibrational modes of PPV derivatives were studied.

  19. Peak flow meter (image)

    Science.gov (United States)

    A peak flow meter is commonly used by a person with asthma to measure the amount of air that can be ... become narrow or blocked due to asthma, peak flow values will drop because the person cannot blow ...

  20. An examination of the vibration transmissibility of the hand-arm system in three orthogonal directions

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The objective of this study is to enhance the understanding of the vibration transmission in the hand-arm system in three orthogonal directions (X, Y, and Z). For the first time, the transmitted vibrations distributed on the entire hand-arm system exposed in the three orthogonal directions via a 3-D vibration test system were measured using a 3-D laser vibrometer. Seven adult male subjects participated in the experiment. This study confirms that the vibration transmissibility generally decreased with the increase in distance from the hand and it varied with the vibration direction. Specifically, to the upper arm and shoulder, only moderate vibration transmission was measured in the test frequency range (16 to 500 Hz), and virtually no transmission was measured in the frequency range higher than 50 Hz. The resonance vibration on the forearm was primarily in the range of 16–30 Hz with the peak amplitude of approximately 1.5 times of the input vibration amplitude. The major resonance on the dorsal surfaces of the hand and wrist occurred at around 30–40 Hz and, in the Y direction, with peak amplitude of more than 2.5 times of the input amplitude. At higher than 50 Hz, vibration transmission was effectively limited to the hand and fingers. A major finger resonance was observed at around 100 Hz in the X and Y directions and around 200 Hz in the Z direction. In the fingers, the resonance magnitude in the Z direction was generally the lowest, and the resonance magnitude in the Y direction was generally the highest with the resonance amplitude of 3 times the input vibration, which was similar to the transmissibility at the wrist and hand dorsum. The implications of the results are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration could result in hand-arm vibration syndrome. While the syndrome's precise mechanisms remain unclear, the characterization of the vibration transmissibility of the system in the three orthogonal

  1. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  2. Why is the diffraction peak a peak?

    CERN Document Server

    Cornille, H

    1975-01-01

    It is proved that the high-energy differential cross section for an elastic process has a maximum exactly in the forward direction and that the slope of the diffraction peak is at most (log s)/sup 2/. The widths of the diffraction peaks defined by the absorptive part and the differential cross section are compared. The assumptions are that the amplitude is dominated by the even signature amplitude and that the total cross section, if it decreases, decreases less fast than s/sup -1/2/. Strictly speaking, the results hold only for a sequence of energies approaching infinity. The proofs are given for the spin-O- spin-O case, but it is not unreasonable to hope that they can be generalized to arbitrary spins. (13 refs).

  3. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    We wish to report the occurrence of vibrational resonance in certain discrete systems like sine square map and sine circle map, in a unique fashion, comprising of multiple resonant peaks which pave the way for enrichment. As the systems of our choice are capable of exhibiting vibrational resonance behaviour unlike the ...

  4. Enriched vibrational resonance in certain discrete systems

    Indian Academy of Sciences (India)

    system [10], bistable systems [1,11,12], time-delayed system [13] and also in a few low- dimensional maps [14] due to its ... the driving force, has attracted much attention in recent years. The study of vibrational ... odic trigonometric functions, one can expect the recurrence of multiple resonant peaks due to vibrational ...

  5. The geomorphic structure of the runoff peak

    Directory of Open Access Journals (Sweden)

    R. Rigon

    2011-06-01

    Full Text Available This paper develops a theoretical framework to investigate the core dependence of peak flows on the geomorphic properties of river basins. Based on the theory of transport by travel times, and simple hydrodynamic characterization of floods, this new framework invokes the linearity and invariance of the hydrologic response to provide analytical and semi-analytical expressions for peak flow, time to peak, and area contributing to the peak runoff. These results are obtained for the case of constant-intensity hyetograph using the Intensity-Duration-Frequency (IDF curves to estimate extreme flow values as a function of the rainfall return period. Results show that, with constant-intensity hyetographs, the time-to-peak is greater than rainfall duration and usually shorter than the basin concentration time. Moreover, the critical storm duration is shown to be independent of rainfall return period as well as the area contributing to the flow peak. The same results are found when the effects of hydrodynamic dispersion are accounted for. Further, it is shown that, when the effects of hydrodynamic dispersion are negligible, the basin area contributing to the peak discharge does not depend on the channel velocity, but is a geomorphic propriety of the basin. As an example this framework is applied to three watersheds. In particular, the runoff peak, the critical rainfall durations and the time to peak are calculated for all links within a network to assess how they increase with basin area.

  6. Both Inter- and Intramolecular Coupling of O-H Groups Determine the Vibrational Response of the Water/Air Interface

    CERN Document Server

    Schaefer, Jan; Nagata, Yuki; Bonn, Mischa

    2016-01-01

    Vibrational coupling is relevant not only for dissipation of excess energy after chemical reactions but also for elucidating molecular structure and dynamics. It is particularly important for OH stretch vibrational spectra of water, for which it is known that in bulk both intra- and intermolecular coupling alter the intensity and line shape of the spectra. In contrast with bulk, the unified picture of the inter/intra-molecular coupling of OH groups at the water-air interface has been lacking. Here, combining sum-frequency generation experiments and simulation for isotopically diluted water and alcohols, we unveil effects of inter- and intramolecular coupling on the vibrational spectra of interfacial water. Our results show that both inter- and intramolecular coupling contribute to the OH stretch vibrational response of the neat H2O surface, with intramolecular coupling generating a double-peak feature, while the intermolecular coupling induces a significant red shift in the OH stretch response.

  7. Phase shift cavity ring down and Fourier transform infrared measurements of C-H vibrational transitions, energy levels, and intensities of (CH3)3Si-C≡C-H

    Science.gov (United States)

    Barroso, Jenny Z.; Perez-Delgado, Yasnahir; Manzanares, Carlos E.

    2013-07-01

    Phase shift cavity ring down and Fourier transform IR techniques have been used to observe the C-H stretch fundamental and overtone absorptions of the acetylenic (Δυ = 1-5) and methyl (Δυ = 1-6) C-H bonds of trimethyl-silyl-acetylene [(CH3)3CSi≡CH] at 295 K. Harmonic frequencies ω(ν1), ωa, and ωs and anharmonicities x(ν1), ωaxa, ωsxs were calculated for the acetylenic, methyl out-of-plane, and methyl in-plane C-H bonds, respectively. The harmonically coupled anharmonic oscillator (HCAO) model was used to determine the overtone energy levels and assign the absorption bands to vibrational transitions of methyl C-H bonds. A hot band, assigned as υν1 + ν24 - ν24 is observed for transitions with Δυ = 1-5 in a region near the acetylenic stretch. The intensity of the hot band is reduced considerably at 240 K. The strength of a Fermi resonance between C-Ha transition (υνa) and the combination band ((υ-1)νa + 2νbend) with (υ = 3-6) was calculated using the experimental perturbed energies and relative intensities. The main bands are separated by computer deconvolution and are integrated at each level to get the experimental band strengths. For methyl absorptions, the dipole moment function is expanded as a function of two C-H stretching coordinates and the intensities are calculated in terms of the HCAO model where only the C-H modes are considered. Acetylenic intensities are derived with a one dimensional dipole moment function. The expansion coefficients are obtained from molecular orbital calculations. The intensities are calculated without using adjustable parameters and they are of the same order of magnitude of the experimental intensities for all C-H transitions.

  8. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available Silver-doped hydroxyapatite (Ag:HAp was obtained by coprecipitation method. Transmission electron microscopy (TEM, infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The most intense peak Raman spectrum is the narrow band observed at 960 cm−1. In this article Ag:HAp-NPs were also evaluated for their antimicrobial activities against gram-positive, gram-negative, and fungal strains. The specific antimicrobial activity revealed by the qualitative assay demonstrates that our compounds are interacting differently with the microbial targets.

  9. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Quantum-Phase Resolved Mapping of Ground-State Vibrational D2 Wave Packets via Selective Depletion in Intense Laser Pulses

    Science.gov (United States)

    Ergler, Th.; Feuerstein, B.; Rudenko, A.; Zrost, K.; Schröter, C. D.; Moshammer, R.; Ullrich, J.

    2006-09-01

    Applying 7 fs pump-probe pulses (780nm, 4×1014W/cm2) we observe electronic ground-state vibrational wave packets in neutral D2 with a period of T=11.101(70)fs by following the internuclear separation (R-)dependent ionization with a sensitivity of Δ⟨R⟩≤0.02Å. The absolute phase of the wave packet’s motion provides evidence for R-dependent depletion of the ground state by nonlinear ionization, to be the dominant preparation mechanism. A phase shift of about π found between pure ionization (D2+) and dissociation (D++D) channels opens a pathway of quantum control.

  11. Anharmonic Calculation of the Structure, Vibrational Frequencies, and Intensities of the NH3···cis-HONO and NH3···cis-DONO Complexes.

    Science.gov (United States)

    Bulychev, V P; Buturlimova, M V; Tokhadze, K G

    2016-08-25

    The geometrical parameters, the frequencies, and absolute intensities for transitions between vibrational states of NH3···cis-HONO and NH3···cis-DONO hydrogen-bonded complexes are calculated using the approach earlier tested in calculations of isolated molecules of nitrous acid and the NH3···trans-HONO and NH3··trans-DONO complexes. Vibrational wave functions and energy values of the complexes are derived from variational solutions of anharmonic equations in one to four dimensions. The equilibrium nuclear configuration and potential energy surfaces are calculated by the MP2/aug-cc-pVTZ method with the basis set superposition error taken into account. Comparison of the obtained results with the analogous data calculated in the same approximation for isolated cis- and trans-HONO (DONO) molecules and the NH3···trans-HONO (DONO) complexes provides information about the changes in the spectroscopic and geometrical parameters of nitrous acid upon cis-trans transition, H/D substitution, and H-bond formation.

  12. Bioelectrical activity of the pelvic floor muscles during synchronous whole-body vibration--a randomized controlled study.

    Science.gov (United States)

    Stania, Magdalena; Chmielewska, Daria; Kwaśna, Krystyna; Smykla, Agnieszka; Taradaj, Jakub; Juras, Grzegorz

    2015-10-24

    More and more frequently stress urinary incontinence affects young healthy women. Hence, early implementation of effective preventive strategies in nulliparous continent women is essential, including pelvic floor muscle training. An initial evaluation based on the bioelectrical activity of the pelvic floor muscles (PFM) during whole-body vibration (WBV) would help to devise the best individualized training for prevention of stress urinary incontinence in woman. We hypothesized that synchronous WBV enhances bioelectrical activity of the PFM which depends on vibration frequency and peak-to-peak vibration displacement. The sample consisted of 36 nulliparous continent women randomly allocated to three comparative groups. Group I and II subjects participated in synchronous whole-body vibrations on a vibration platform; the frequency and peak-to-peak displacement of vibration were set individually for each group. Control participants performed exercises similar to those used in the study groups but without the concurrent application of vibrations. Pelvic floor surface electromyography (sEMG) activity was recorded using a vaginal probe during three experimental trials limited to 30s, 60s and 90 s. The mean amplitude and variability of the signal were normalized to the Maximal Voluntary Contraction - MVC. Friedman's two-way ANOVA revealed a statistically significant difference in the mean normalized amplitudes (%MVC) of the sEMG signal from the PFM during 60s- and 90 s-trials between the group exposed to high-intensity WBV and control participants (p pelvic floor muscle fatigue. The trial was registered in the Australian and New Zealand Clinical Trials Registry (no. ACTRN12615000966594); registration date: 15/09/2015.

  13. Peak Experience Project

    Science.gov (United States)

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  14. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  15. Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-04

    Defects are ubiquitous in carbon nanotubes (CNTs), despite their large formation energies, and have astounding effects on their physicochemical properties. In this study, we employ density-functional theory (DFT) calculations to study systematically the atomic structure, stability, and characteristic vibrations of pristine and defected zigzag CNTs, where the defects are of the form of Stone-Wales (SW) and diatom vacancies (DV). The DFT optimized structures and the phonon modes are subsequently used in conjunction with a semiempirical bond-polarization model to study the nonresonant Raman spectra. For each defect type, we find two CNT structures with defects parallel or oblique to the tube axis. For the SW defects, the two structures have similar formation energies, whereas for the DV defect, only defects parallel to the tube axis are likely to exist. The results show that the defects induce a blue shift in the radial breathing mode (RBM) of metallic CNTs, whereas this mode is not shifted for semiconducting CNTs. However, the RBM shift or its Raman profile is not sensitive to the defect type. The G-band showed more sensitivity to the defects in the form of a red/blue shift in the frequency, or a partial/complete defragmentation of the G bands.

  16. Observation of a universal donor-dependent vibrational mode in graphene.

    Science.gov (United States)

    Fedorov, A V; Verbitskiy, N I; Haberer, D; Struzzi, C; Petaccia, L; Usachov, D; Vilkov, O Y; Vyalikh, D V; Fink, J; Knupfer, M; Büchner, B; Grüneis, A

    2014-01-01

    Electron-phonon coupling and the emergence of superconductivity in intercalated graphite have been studied extensively. Yet, phonon-mediated superconductivity has never been observed in the 2D equivalent of these materials, doped monolayer graphene. Here we perform angle-resolved photoemission spectroscopy to try to find an electron donor for graphene that is capable of inducing strong electron-phonon coupling and superconductivity. We examine the electron donor species Cs, Rb, K, Na, Li, Ca and for each we determine the full electronic band structure, the Eliashberg function and the superconducting critical temperature Tc from the spectral function. An unexpected low-energy peak appears for all dopants with an energy and intensity that depend on the dopant atom. We show that this peak is the result of a dopant-related vibration. The low energy and high intensity of this peak are crucially important for achieving superconductivity, with Ca being the most promising candidate for realizing superconductivity in graphene.

  17. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  18. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    Science.gov (United States)

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  19. Peak-interviewet

    DEFF Research Database (Denmark)

    Raalskov, Jesper; Warming-Rasmussen, Bent

    Peak-interviewet er en særlig effektiv metode til at gøre ubevidste menneskelige ressourcer bevidste. Fokuspersonen (den interviewede) interviewes om en selvvalgt, personlig succesoplevelse. Terapeuten/coachen (intervieweren) spørger ind til processen, som ledte hen til denne succes. Herved afdæk...

  20. Automated asteroseismic peak detections

    Science.gov (United States)

    de Montellano, A. García Saravia Ortiz; Hekker, S.; Themeßl, N.

    2018-01-01

    Space observatories such as Kepler have provided data that can potentially revolutionise our understanding of stars. Through detailed asteroseismic analyses we are capable of determining fundamental stellar parameters and reveal the stellar internal structure with unprecedented accuracy. However, such detailed analyses, known as peak bagging, have so far been obtained for only a small percentage of the observed stars while most of the scientific potential of the available data remains unexplored. One of the major challenges in peak bagging is identifying how many solar-like oscillation modes are visible in a power density spectrum. Identification of oscillation modes is usually done by visual inspection which is time-consuming and has a degree of subjectivity. Here, we present a peak detection algorithm specially suited for the detection of solar-like oscillations. It reliably characterises the solar-like oscillations in a power density spectrum and estimates their parameters without human intervention. Furthermore, we provide a metric to characterise the false positive and false negative rates to provide further information about the reliability of a detected oscillation mode or the significance of a lack of detected oscillation modes. The algorithm presented here opens the possibility for detailed and automated peak bagging of the thousands of solar-like oscillators observed by Kepler.

  1. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree-Fock and density functional theory calculations

    Science.gov (United States)

    Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile

    2007-06-01

    The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.

  2. Full dimensional Franck-Condon factors for the acetylene tilde{{A}} 1Au—{tilde{X}} {^1Σ _g^+} transition. I. Method for calculating polyatomic linear—bent vibrational intensity factors and evaluation of calculated intensities for the gerade vibrational modes in acetylene

    Science.gov (United States)

    Park, G. Barratt

    2014-10-01

    Franck-Condon vibrational overlap integrals for the tilde{A} {^1A_u}—{tilde{X}} {^1Σ _g^+} transition in acetylene have been calculated in full dimension in the harmonic normal mode basis. The calculation uses the method of generating functions first developed for polyatomic Franck-Condon factors by Sharp and Rosenstock [J. Chem. Phys. 41(11), 3453-3463 (1964)], and previously applied to acetylene by Watson [J. Mol. Spectrosc. 207(2), 276-284 (2001)] in a reduced-dimension calculation. Because the transition involves a large change in the equilibrium geometry of the electronic states, two different types of corrections to the coordinate transformation are considered to first order: corrections for axis-switching between the Cartesian molecular frames and corrections for the curvilinear nature of the normal modes at large amplitude. The angular factor in the wavefunction for the out-of-plane component of the trans bending mode, ν _4^' ' }, is treated as a rotation, which results in an Eckart constraint on the polar coordinates of the bending modes. To simplify the calculation, the other degenerate bending mode, ν _5^' ' }, is integrated in the Cartesian basis and later transformed to the constrained polar coordinate basis, restoring the conventional v and l quantum numbers. An updated tilde{A}-state harmonic force field obtained recently in the R. W. Field research group is evaluated. The results for transitions involving the gerade vibrational modes are in qualitative agreement with experiment. Calculated results for transitions involving ungerade modes are presented in Paper II of this series [G. B. Park, J. H. Baraban, and R. W. Field, "Full dimensional Franck-Condon factors for the acetylene tilde{A} {^1A_u}—{tilde{X}} {^1Σ _g^+} transition. II. Vibrational overlap factors for levels involving excitation in ungerade modes," J. Chem. Phys. 141, 134305 (2014)].

  3. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  4. Vibrational dynamics of crystalline L-alanine

    Energy Technology Data Exchange (ETDEWEB)

    Bordallo, H.N.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Univ. Montpellier II (France)

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  5. Size variation of infrared vibrational spectra from molecules to hydrogenated diamond nanocrystals: a density functional theory study

    Directory of Open Access Journals (Sweden)

    Mudar A. Abdulsattar

    2013-04-01

    Full Text Available Infrared spectra of hydrogenated diamond nanocrystals of one nanometer length are calculated by ab initio methods. Positions of atoms are optimized via density functional theory at the level of the generalized gradient approximation of Perdew, Burke and Ernzerhof (PBE using 3-21G basis states. The frequencies in the vibrational spectrum are analyzed against reduced masses, force constants and intensities of vibration. The spectrum can be divided into two regions depending on the properties of the vibrations or the gap separating them. In the first region, results show good matching to several experimentally obtained lines. The 500 cm−1 broad-peak acoustical branch region is characterized by pure C–C vibrations. The optical branch is centered at 1185 cm−1. Calculations show that several C–C vibrations are mixed with some C–H vibrations in the first region. In the second region the matching also extends to C–H vibration frequencies that include different modes such as symmetric, asymmetric, wagging, scissor, rocking and twisting modes. In order to complete the picture of the size dependence of the vibrational spectra, we analyzed the spectra of ethane and adamantane. The present analysis shows that acoustical and optical branches in diamond nanocrystals approach each other and collapse at 963 cm−1 in ethane. Variation of the highest reduced-mass-mode C–C vibrations from 1332 cm−1 of bulk diamond to 963 cm−1 for ethane (red shift is shown. The analysis also shows the variation of the radial breathing mode from 0 cm−1 of bulk diamond to 963 cm−1 for ethane (blue shift. These variations compare well with experiment. Experimentally, the above-mentioned modes appear shifted from their exact positions due to overlap with neighboring modes.

  6. National surveillance of pandemic influenza A(H1N1) infection-related admissions to intensive care units during the 2009-10 winter peak in Denmark: two complementary approaches

    DEFF Research Database (Denmark)

    Gubbels, S; Perner, A; Valentiner-Branth, Palle

    2010-01-01

    Surveillance of 2009 pandemic influenza A(H1N1) in Denmark was enhanced during the 2009–10 winter season with a system monitoring the burden of the pandemic on intensive care units (ICUs), in order to inform policymakers and detect shortages in ICUs in a timely manner. Between week 46 of 2009...... to be useful for monitoring the burden of the pandemic on ICUs....

  7. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  8. Kitt Peak speckle camera.

    Science.gov (United States)

    Breckinridge, J B; McAlister, H A; Robinson, W G

    1979-04-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  9. Peak-Finding Algorithms.

    Science.gov (United States)

    Hung, Jui-Hung; Weng, Zhiping

    2017-03-01

    Microarray and next-generation sequencing technologies have greatly expedited the discovery of genomic DNA that can be enriched using various biochemical methods. Chromatin immunoprecipitation (ChIP) is a general method for enriching chromatin fragments that are specifically recognized by an antibody. The resulting DNA fragments can be assayed by microarray (ChIP-chip) or sequencing (ChIP-seq). This introduction focuses on ChIP-seq data analysis. The first step of analyzing ChIP-seq data is identifying regions in the genome that are enriched in a ChIP sample; these regions are called peaks. © 2017 Cold Spring Harbor Laboratory Press.

  10. Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity.

    Science.gov (United States)

    Soganci, Ibrahim M; Nizamoglu, Sedat; Mutlugun, Evren; Akin, Onur; Demir, Hilmi V

    2007-10-29

    Using metallic nanoislands, we demonstrate the localized plasmonic control and modification of the spontaneous emission from closely-packed nanocrystal emitters, leading to significant changes in their collective emission characteristics tuned spectrally and spatially by plasmon coupling. Using randomly-distributed silver nanoislands, we show that the emission linewidth of proximal CdSe/ZnS core-shell quantum dots is reduced by 22% and their peak emission wavelength is shifted by 14nm, while their ensemble photoluminescence is enhanced via radiative energy transfer by 21.6 and 15.1 times compared to the control groups of CdSe/ZnS nanocrystals with identical nano-silver but no dielectric spacer and the same nanocrystals alone, respectively.

  11. Neurofeedback training for peak performance.

    Science.gov (United States)

    Graczyk, Marek; Pąchalska, Maria; Ziółkowski, Artur; Mańko, Grzegorz; Łukaszewska, Beata; Kochanowicz, Kazimierz; Mirski, Andrzej; Kropotov, Iurii D

    2014-01-01

    One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs). The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  12. Neurofeedback training for peak performance

    Directory of Open Access Journals (Sweden)

    Marek Graczyk

    2014-11-01

    Full Text Available [b]aim[/b]. One of the applications of the Neurofeedback methodology is peak performance in sport. The protocols of the neurofeedback are usually based on an assessment of the spectral parameters of spontaneous EEG in resting state conditions. The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change the brain functioning reflected in changes in spontaneous EEG and event related potentials (ERPs. [b]case study[/b]. The case is presented of an Olympic athlete who has lost his performance confidence after injury in sport. He wanted to resume his activities by means of neurofeedback training. His QEEG/ERP parameters were assessed before and after 4 intensive sessions of neurotherapy. Dramatic and statistically significant changes that could not be explained by error measurement were observed in the patient. [b]conclusion[/b]. Neurofeedback training in the subject under study increased the amplitude of the monitoring component of ERPs generated in the anterior cingulate cortex, accompanied by an increase in beta activity over the medial prefrontal cortex. Taking these changes together, it can be concluded that that even a few sessions of neurofeedback in a high performance brain can significantly activate the prefrontal cortical areas associated with increasing confidence in sport performance.

  13. Amplification of postwildfire peak flow by debris

    Science.gov (United States)

    Kean, Jason W.; McGuire, Luke; Rengers, Francis; Smith, Joel B.; Staley, Dennis M.

    2016-01-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  14. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins

    Science.gov (United States)

    Noda, Isao

    2017-12-01

    A tutorial is provided for the generalized two-dimensional correlation spectroscopy (2DCOS), which is applicable to the vibrational spectroscopic study of proteins and related systems. In 2DCOS, similarity or dissimilarity among variations of spectroscopic intensities, which are induced by applying an external perturbation to the sample, is examined by constructing correlation spectra defined by two independent spectral variable axes. By spreading congested or overlapped peaks along the second dimension, apparent spectral resolution is enhanced and interpretation of complex spectra becomes simplified. A set of simple rules for the intensities and signs of correlation peaks is used to extract insightful information. Simulated IR spectra for a model protein are used to demonstrate the specific utility of 2DCOS. Additional tools useful in the 2DCOS analysis of proteins, such as data segmentation assisted with moving-window analysis, 2D codistribution analysis, Pareto scaling, and null-space projection are also discussed.

  15. A interferência da posição corporal na transmissibilidade vibratória durante o treinamento com plataforma vibratória

    OpenAIRE

    Roberta Pires Vasconcellos; Gustavo Ricardo Schütz; Saray Giovana dos Santos

    2014-01-01

    Whole-body vibration training on vibrating platforms is widely used for physical exercise, health promotion and physical rehabilitation. The position on the platform is one of the factors responsible for the transmission of vibrations to the body segments of individuals. Therefore, the objective of this study was to compare the characteristics of vibrations transmitted to the body segments of adults between two body positions and different vibration intensities. Twenty intentionally selected ...

  16. Flexural vibrations and resonance of piezoelectric cantilevers with a nonpiezoelectric extension.

    Science.gov (United States)

    Shen, Zuyan; Shih, Wan Y; Shih, Wei-Heng

    2007-10-01

    A piezoelectric cantilever (PEC) is a flexural transducer consisting of a piezoelectric layer [e.g., lead zirconate titanate (PZT)] bonded to a nonpiezoelectric layer (e.g., stainless steel). A PEC with a thin nonpiezoelectric extension has two distinctive sections, each with a different thickness, different axial density, and elastic-modulus profiles and has been increasingly used as an in-situ biosensor. It has the advantages of dipping only the nonpiezoelectric extension part in an aqueous solution without electrically insulating the piezoelectric section as well as serving as the bonding pad for receptor immobilization. In this study, we examined the effect of the thin nonpiezoelectric extension on the flexural resonance spectrum and resonance vibration waveforms of PEC; in particular, how the length ratio between the piezoelectric section and the nonpiezoelectric extension section affects the resonance frequencies and resonance peak intensities of PEC. Theoretical resonance frequencies and resonance vibration waveforms were obtained using an analytical transcendental equation we derived by solving the flexural wave equation. Both experimental and theoretical results showed that the two-section structure distorted the flexural vibration waveforms from those of PEC without an extension. As a result, the higher-mode resonance peaks of PEC with a nonpiezoelectric extension could be higher than the first resonance peak due to the two-section structure. With PEC that has a piezoelectric section of 0.25-mm thick PZT bonded to 0.07 mm thick stainless steel of various length 11 and a 0.07-mm thick nonpiezoelectric extension of length l2, we showed that the first-mode-to-second-mode resonance peak intensity ratio had a maximum of 5.6 at l1/l2 = 0.75 and the first-mode-to-second-mode resonance frequency ratio a minimum of 2.2 at 11/12 = 1.8. These findings will undoubtedly help optimize the design and performance of PEC.

  17. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  18. A near infrared line list for \\NH: Analysis of a Kitt Peak spectrum after 35 years

    CERN Document Server

    Barton, Emma J; Tennyson, Jonathan; Béguier, S; Campargue, A

    2016-01-01

    A Fourier Transform (FT) absorption spectrum of room temperature NH3 in the region 7400 - 8600 cm-1 is analysed using a variational line list and ground state energies determined using the MARVEL procedure. The spectrum was measured by Dr Catherine de Bergh in 1980 and is available from the Kitt Peak data center. The centers and intensities of 8468 ammonia lines were retrieved using a multiline fitting procedure. 2474 lines are assigned to 21 bands providing 1692 experimental energies in the range 7000 - 9000 cm-1. The spectrum was assigned by the joint use of the BYTe variational line list and combination differences. The assignments and experimental energies presented in this work are the first for ammonia in the region 7400 - 8600 cm-1, considerably extending the range of known vibrational-excited states

  19. INVESTIGATION OF PIPELINES INTEGRITY ASSOCIATED WITH PUMP MODULES VIBRATION FOR PUMPING STATION 9 OF ALYESKA PIPELINE SERVICE COMPANY

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL

    2009-09-01

    Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures and the associated

  20. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...

  1. Large amplitude forced vibration analysis of cross-beam system ...

    African Journals Online (AJOL)

    Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...

  2. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  3. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  4. Vibration mode shape control by prestressing

    Science.gov (United States)

    Holnicki-Szulc, Jan; Haftka, Raphael T.

    1992-01-01

    A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.

  5. Peak flow meter use - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100202.htm Peak flow meter use - Series—Peak flow meter use - part one To use the sharing ... slide 7 out of 7 Overview A peak flow meter helps you check how well your asthma ...

  6. Molecular structure, vibrational spectral analysis, NBO, HOMO-LUMO and conformational studies of ninhydrin

    Science.gov (United States)

    Arivazhagan, M.; Anitha Rexalin, D.

    2013-03-01

    The FT-IR and FT-Raman vibrational spectra of ninhydrin have been recorded in the range 4000-400 cm-1and 3600-50 cm-1, respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state are calculated using ab initio HF and density functional B3LYP methods with 6-311++G(d,p) basis set combination. In order to find the most optimized geometry, the energy calculations are carried out for various possible conformers. Keto and enol forms of ninhydrin are also studied. The condensed summary of the principal NBOs shows the occupancy, orbital energy and the qualitative pattern of delocalization interactions of ninhydrin. The calculated HOMO-LUMO energies reveal that charge transfer occurs within the molecule. The predicted first hyperpolarizability also shows that the ninhydrin molecule have good optical quality and nonlinear optical (NLO) behavior. With the help of specific scaling procedures, the observed vibrational wave numbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecule.

  7. Intensity and pressure dependence of resonance fluorescence of OH induced by a tunable UV laser

    Science.gov (United States)

    Killinger, D. K.; Wang, C. C.; Hanabusa, M.

    1976-01-01

    The intensity and pressure dependence of the fluorescence spectrum of OH in the presence of N2 and H2O molecules was studied. Saturation of the absorption transition was observed at low pressures, and the corresponding fluorescence signal was found to vary as the square root of the exciting intensity. This observed dependence agreed with the predicted dependence which took into account the presence of laser modes in the spectrum of the exciting radiation. With full laser power incident, a saturation parameter as high as 3 x 10 to the 5th was observed. The fluorescence spectrum was found to peak at 3145 and at 3090 A, with the relative peak intensities dependent upon gas pressures and upon the particular rotational electronic transition used for excitation. It is concluded that vibrational relaxation of the electronically excited OH due to water vapor in the system plays a dominant role in determining the observed fluorescence spectrum.

  8. Tectonics, Climate and Earth's highest peaks

    Science.gov (United States)

    Robl, Jörg; Prasicek, Günther; Hergarten, Stefan

    2016-04-01

    of about 5000 m suggesting that the topography is fairly well supported by local isostasy. In contrast, the highest peaks of the India-Asia collision zone seam the plateau rim and exceed the surface elevation predicted by crustal thickness and local isostasy. They are likely supported by the lithospheric strength of the northern and southern foreland basins and further uplifted by spatially variable unloading of the orogen due to major rivers and glaciers. Peak altitude, landscape dissection and the long-term impact of erosion on crustal thickness increase from the center of the Tibetan Plateau to the rim. However, we found evidence for a similar trend on a global scale from mid- to high-latitude orogens. Towards high latitudes, peaks of similar height are characterized by a more dissected landscape and supported by a thinner crust compared to mid-latitude mountain ranges. This however, would imply that the recent glacial period has already influenced orogens on their crustal level. We propose that long-term glacial erosion in high latitudes may have already thinned the orogenic crust and conclude that (a) over-thickened crust in zones of plate convergence can buffer intense erosion and maintain high mountain topography over millions of years even in heavily glaciated orogens, (b) high peaks may persist or may even be uplifted due to glacial erosion and (c) glacial erosion limiting mountain topography may NOT work as simple as a buzz-saw applied to fluvial topography supported by a thick mountain root.

  9. The normal modes of lattice vibrations of ice XI

    Science.gov (United States)

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-01-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm−1 and 310 cm−1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder. PMID:27375199

  10. New explanation of Raman peak redshift in nanoparticles

    Science.gov (United States)

    Meilakhs, A. P.; Koniakhin, S. V.

    2017-10-01

    In this letter, we propose a new model that explains the Raman peak downshift observed in nanoparticles with respect to bulk materials. The proposed model takes into account discreteness of the vibrational spectra of nanoparticles. For crystals with a cubic lattice (Diamond, Silicon, Germanium) we give a relation between the displacement of Raman peak position and the size of nanoparticles. The proposed model does not include any uncertain parameters, unlike the conventionally used phonon confinement model (PCM), and can be employed for unambiguous nanoparticles size estimation.

  11. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  12. CITY LOGISTICS DURING THE PEAK INTENSITY OF PILGRIMAGE TOURISM

    OpenAIRE

    STEFAN NOWAK; ROBERT ŠTEFKO; AGNIESZKA ULFIK

    2014-01-01

    Czestochowa and located in the area sanctuary is a place of worship of Mary. Every year, more than 4.5 million pilgrims visit the sanctuary, which the local authorities are obliged to ensure adequate logistical support. The influx of many thousands of pilgrims is an opportunity for the development of the city and also difficulty in daily life of its inhabitants. The article discusses the issues of the factors limiting the efficiency of local public transport, and identifies the main causes of...

  13. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  14. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  15. PEAK SHAVING CONSIDERING STREAMFLOW UNCERTAINTIES

    African Journals Online (AJOL)

    user

    The main thrust of this paper is peak shaving with a Stochastic hydro model. In peak sharing, the amount of hydro energy scheduled may be a minimum but it serves to replace less efficient thermal units. The sample system is die Kainji .... ni = average number of times the system load is in state Li in period k. 5. Numerical ...

  16. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  17. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  18. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  19. Relevance of motion artifact in electromyography recordings during vibration treatment.

    Science.gov (United States)

    Fratini, Antonio; Cesarelli, Mario; Bifulco, Paolo; Romano, Maria

    2009-08-01

    Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (+/-0.9%) of the total power prior to vibration and 29% (+/-13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment.

  20. Infrared absorption peaks in nitrogen doped CZ silicon

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)]. E-mail: inouen@riast.osakafu-u.ac.jp; Nakatsu, M. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, H. [Japan Fine Ceramics Center, 2-4-3 Nishi-shinbashi, Minato-ku, Tokyo 105-0003 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Inoue, Y. [Tokyo University of Education, Bunkyo-ku, Tokyo 117-0002 (Japan)

    2006-10-15

    Dependences on annealing temperature and nitrogen concentration were examined for new local vibration mode infrared absorption peaks at 856, 973, 984 and 1002 cm{sup -1} in nitrogen-doped CZ silicon crystal. The new absorption peaks were so weak that two sets of samples were examined for temperature and concentration dependences, respectively, to get reliable results. The peak at 1002 cm{sup -1} behaved similarly for annealing, though much weaker, to the known peaks at 810 and 1018 cm{sup -1} which are attributed to interstitial N pair accompanied by the two oxygen interstitials (NNO {sub i}O {sub i}). This suggests that the origin contains 2 O {sub i} also. It was strong in low concentration regime, which is similar to the behavior of shallow thermal donors. This suggests that the structure contains one nitrogen rather than two (N-O interstitial pair). The results were compared with the electronic transition absorption by shallow thermal donors (STD). The absorptions at 1002 and 240 cm{sup -1} behaved similarly. These suggest that the peak at 1002 cm{sup -1} is likely due to NOO {sub i}O {sub i} which is the candidate for STD. The temperature dependence of the other new peaks was slightly different from each other. Origin of the other peaks is not clear yet.

  1. Anharmonicity of lattice vibrations induced by charged nickel additions in A sup 2 B sup 6 semiconductors

    CERN Document Server

    Sokolov, V I; Shirokov, E A; Kislov, A N

    2002-01-01

    Paper presents the results of investigations into lattice vibrations induced by nickel impurities charged negatively as to the lattice in ZnSe:Ni, ZnO:Ni, ZnS:Ni, CdS:Ni semiconductors. To investigate into vibrations one applies a sensitive technique of field exciton-oscillation spectroscopy. One observes experimentally oscillating reiterations of the impurity exciton head line including the intensive peaks of combined repetitions up to the 8-th order. The experimental results are discussed on the basis of the model estimations of oscillations of a lattice with a charged impurity centre, as well as, on the ground of calculations for oscillations of monoatomic chain with high anharmonicity. Charged impurity centres are shown to induce new oscillations of lattice - impurity anharmonic modes

  2. Vibrations in glasses and Euclidean random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Grigera, T.S.; Martin-Mayor, V.; Parisi, G. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); INFN Sezione di Roma - INFM Unita di Roma, Rome (Italy); Verrocchio, P. [Dipartimento di Fisica, Universita di Trento, Povo, Trento (Italy); INFM Unita di Trento, Trento (Italy)

    2002-03-11

    We study numerically and analytically a simple off-lattice model of scalar harmonic vibrations by means of Euclidean random matrix theory. Since the spectrum of this model shares the most puzzling spectral features with the high-frequency domain of glasses (non-Rayleigh broadening of the Brillouin peak, boson peak and secondary peak), Euclidean random matrix theory provides a single and fairly simple theoretical framework for their explanation. (author)

  3. Ultrafast dynamics in iron tetracarbonyl olefin complexes investigated with two-dimensional vibrational spectroscopy.

    Science.gov (United States)

    Panman, Matthijs R; Newton, Arthur C; Vos, Jannie; van den Bosch, Bart; Bocokić, Vladica; Reek, Joost N H; Woutersen, Sander

    2013-01-28

    The dynamics of iron tetracarbonyl olefin complexes has been investigated using two-dimensional infrared (2D-IR) spectroscopy. Cross peaks between all CO-stretching bands show that the CO-stretch modes are coupled, and from the cross-peak anisotropies we can confirm previous assignments of the absorption bands. From the pump-probe delay dependence of the diagonal peaks in the 2D-IR spectrum we obtain a correlation time of ∼3 ps for the spectral fluctuations of the CO-stretch modes. We observe a multi-exponential pump-probe delay dependence of the cross-peak intensities, with rate constants ranging from 0.1 ps(-1) to 0.6 ps(-1). To determine whether this delay dependence originates from fluxionality of the complex or from intramolecular vibrational relaxation (IVR), we modulate the free-energy barrier of fluxional rearrangement by varying the pi-backbonding capacities of the olefin ligand in two iron tetracarbonyl olefin complexes: Fe(CO)(4)(cinnamic acid) and Fe(CO)(4)(dimethyl fumarate). Since the pi-backbonding strongly influences the rate of fluxionality, comparing the dynamics in the two complexes allows us to determine to what extent the observed dynamics is caused by fluxionality. We conclude that on the time scale of our experiments (up to 100 ps) the cross-peak dynamics in the iron complexes is determined by intramolecular vibrational energy relaxation. Hence, in contrast to previously investigated irontricarbonyl and ironpentacarbonyl complexes, iron tetracarbonyl olefin complexes exhibit no fluxionality on the picosecond time scale.

  4. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts.

    Science.gov (United States)

    Cloak, Ross; Lane, Andrew; Wyon, Matthew

    2016-03-01

    Acute whole body vibration (WBV) is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m). Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement) or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP) of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p amateur players. A significant difference (p amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players. Key pointsAcute WBV improves knee extensor peak isometric force output and PAP amongst professional and not amateur soccer playersProfessional players perceived acute WBV as more beneficial to performance than amateur playersIsometric strength,vibration intensity and duration appear to influence results

  5. Geometry optimization and vibrational frequencies of tetracene ...

    African Journals Online (AJOL)

    Tetracene is an organic semiconductor with chemical formula C18H12 used in organic field effecttransistor (OFET) and organic light emitting diode (OLED). In this work, the molecular geometry (optimized bond lengths and bond angles), vibrational frequencies and intensities, HOMO-LUMO Energy gap and Atomic charge ...

  6. Fault Detection Enhancement in Rolling Element Bearings via Peak-Based Multiscale Decomposition and Envelope Demodulation

    OpenAIRE

    Hua-Qing Wang; Wei Hou; Gang Tang; Hong-Fang Yuan; Qing-Liang Zhao; Xi Cao

    2014-01-01

    Vibration signals of rolling element bearings faults are usually immersed in background noise, which makes it difficult to detect the faults. Wavelet-based methods being used commonly can reduce some types of noise, but there is still plenty of room for improvement due to the insufficient sparseness of vibration signals in wavelet domain. In this work, in order to eliminate noise and enhance the weak fault detection, a new kind of peak-based approach combined with multiscale decomposition and...

  7. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  8. Package security recorder of vibration

    Science.gov (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de

    2013-08-01

    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  9. Automatic peak selection by a Benjamini-Hochberg-based algorithm.

    Science.gov (United States)

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.

  10. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    KAUST Repository

    Abbas, Ahmed

    2013-01-07

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into p-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. © 2013

  11. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansurov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2010-02-15

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm{sup -1} and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  12. Analysis of Vibration Generated by the Rubbing of Flat Surfaces

    Directory of Open Access Journals (Sweden)

    Zahrul Fuadi

    2015-02-01

    Full Text Available Among the phenomena that occur as a result of contact between two surfaces is friction sound, in which surface roughness is of great importance. In this study, the parameter of contact stiffness is used to explain the frequency characteristic of vibration generated by the rubbing of flat surfaces under a small load. A 3-disk configuration rubbing method was used, which provides a unique characteristic of the system's frequency response function containing specific information about the rubbing vibrations. It is shown that the peak frequency of the rubbing vibration can be explained by using a two-degrees-of-freedom model incorporating the parameter of contact stiffness. A quantitative relationship between the surface roughness and the peak frequency of the rubbing vibrations was established.

  13. Optomechanical proposal for monitoring microtubule mechanical vibrations

    Science.gov (United States)

    Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, M.; Simon, C.

    2017-07-01

    Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.

  14. Hubbert's Peak: A Physicist's View

    Science.gov (United States)

    McDonald, Richard

    2011-11-01

    Oil and its by-products, as used in manufacturing, agriculture, and transportation, are the lifeblood of today's 7 billion-person population and our 65T world economy. Despite this importance, estimates of future oil production seem dominated by wishful thinking rather than quantitative analysis. Better studies are needed. In 1956, Dr. M.King Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Thus, the peak of oil production is referred to as ``Hubbert's Peak.'' Prof. Al Bartlett extended this work in publications and lectures on population and oil. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. This paper extends this line of work to include analyses of individual countries, inclusion of multiple Gaussian peaks, and analysis of reserves data. While this is not strictly a predictive theory, we will demonstrate a ``closed'' story connecting production, oil-in-place, and reserves. This gives us the ``most likely'' estimate of future oil availability. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  15. Evolution of microstructure and residual stress under various vibration modes in 304 stainless steel welds.

    Science.gov (United States)

    Hsieh, Chih-Chun; Wang, Peng-Shuen; Wang, Jia-Siang; Wu, Weite

    2014-01-01

    Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ -ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator.

  16. Nightglow vibrational distributions in the A3Σu+ and A'3Δu states of O2 derived from astronomical sky spectra

    Directory of Open Access Journals (Sweden)

    T. G. Slanger

    2004-09-01

    Full Text Available Astronomical sky spectra from the Keck I telescope on Mauna Kea have been used to obtain vibrational distributions in the O2A3Σu+ and O2(A'3Δu states from rotationally-resolved Herzberg I and Chamberlain band emissions in the terrestrial nightglow. The A3Σu+ distribution is similar to that presented in earlier publications, with the exception that there is significant population in the previously undiscerned v=0 level. The vibrational distributions of the A'3Δu and A3Σu+ states are essentially the same when comparison is made in terms of the level energies. The intensity of Chamberlain band emission at the peak of the distribution is about one-fourth that of the Herzberg I emission, as previously shown, and may be related primarily to radiative efficiency. The peaks in both population distributions are about 0.25eV below the O(3P+O(3P dissociation limit. We compare these Herzberg state distributions with that of the O2(b1Σg+ state, concurring with others that the intense nightglow emission associated with b1Σg+(v=0 is a reflection of direct transfer from the Herzberg states. This process takes place following O2 collisions, with simultaneous production of very high a1Δg and b1Σg+ vibrational levels.

  17. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  18. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  19. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  20. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  1. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  2. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  3. Study of vibrational spectra of polyaniline doped with sulfuric acid and phosphoric acid.

    Science.gov (United States)

    Arora, M; Luthra, V; Singh, R; Gupta, S K

    2001-01-01

    Vibrational spectra of insulator emeraldine base (EB) form of polyaniline and electrical conductive sulfuric acid- and phosphoric acid-doped emeraldine salts (ES) were studied in the region of 4000-400 cm(-1) at ambient temperature by Fourier transform infrared spectroscopy. Infrared transmittance spectra of EB and ES were investigated to understand the bonding behavior of different organic and inorganic groups present in the polymeric chains and their structural variations on protonation by sulfate or phosphate ion inclusion in the polymer salt network. These studies revealed the para-coupling of deformed disubstituted benzenoid (B) and quinoid (Q) rings with ends capped predominantly by (B4Q1) units. The deformation of B and Q rings was confirmed by the appearance of many weak bands, very weak bands, and satellite structures in strong transmittance peaks of polymeric chain-constituting groups. Protonation takes place at the nitrogen sites of Q rings and forms semiquinone radical ions in ES. The vibrational bands pertaining to B rings, Q rings, B4Q1 units, semiquinone segment, sulfate ions, and phosphate ions were observed and assigned from these measurements. The shift in peak position of some bands with gain or loss in intensity and appearance of some new bands were observed in sulfuric acid- and phosphoric acid-doped ES spectra. These variations are attributed to the formation of new structural groups in ES on protonation and a change in crystalline field by sulfate and phosphate ion doping for crosslinking the polymeric chains.

  4. Damping Transversal Vibrations of the Offset Cylinder of the Offset Press

    Directory of Open Access Journals (Sweden)

    Eglė Šalvienė

    2012-01-01

    Full Text Available Investigation into the influence of a dynamic vibration damper on the intensity of the absolute forced transversal vibrations of the blanket cylinder of the web printing offset press was performed. The analytical and numerical examination of the dynamic model of the cylinder was done. The obtained results have disclosed that the application of the damper decreases the intensity of printing cylinder vibrations.Article in Lithuanian

  5. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  6. Neurofeedback training for peak performance

    National Research Council Canada - National Science Library

    Graczyk, Marek; Pąchalska, Maria; Ziółkowski, Artur; Mańko, Grzegorz; Łukaszewska, Beata; Kochanowicz, Kazimierz; Mirski, Andrzej; Kropotov, Iurii D

    2014-01-01

    .... The aim of the paper was to study whether the intensive neurofeedback training of a well-functioning Olympic athlete who has lost his performance confidence after injury in sport, could change...

  7. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...... peaks in the nonlinear frequency response for a large range of forcing amplitudes. An analytical tuning procedure is developed and provides the load-deflection characteristic of the NLTVA. Based on this prescribed relation, the NLTVA design is performed by two different approaches, namely thanks to (i...

  8. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  9. An Electromagnetic MEMS Energy Harvester Array with Multiple Vibration Modes

    Directory of Open Access Journals (Sweden)

    Huicong Liu

    2015-07-01

    Full Text Available This paper reports the design, micromachining and characterization of an array of electromagnetic energy harvesters (EHs with multiple frequency peaks. The authors present the combination of three multi-modal spring-mass structures so as to realize at least nine resonant peaks within a single microelectromechanical systems (MEMS chip. It is assembled with permanent magnet to show an electromagnetic-based energy harvesting capability. This is the first demonstration of multi-frequency MEMS EH existing with more than three resonant peaks within a limited frequency range of 189 to 662 Hz. It provides a more effective approach to harvest energy from the vibration sources of multiple frequency peaks.

  10. Drivers of peak sales for pharmaceutical brands

    NARCIS (Netherlands)

    Fischer, Marc; Leeflang, Peter S. H.; Verhoef, Peter C.

    2010-01-01

    Peak sales are an important metric in the pharmaceutical industry. Specifically, managers are focused on the height-of-peak-sales and the time required achieving peak sales. We analyze how order of entry and quality affect the level of peak sales and the time-to-peak-sales of pharmaceutical brands.

  11. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  12. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  13. Incorporation of topside half peak density anchor point in IRI

    Science.gov (United States)

    Gulyaeva, T. L.

    2004-01-01

    The F2 layer peak density ( N mF2) and height ( h mF2) are used by the International Reference Ionosphere as anchor point fitted by the electron density profile. The shape of the bottomside Ne( h) distribution is formulated with the help of profile sub-peak semithickness taken as a distance between the peak height and the bottom half-peak density height h05 bot. In a similar manner relevant procedure allowing to fit IRI topside electron density profile to additional anchor point — the half-peak density height h05 top at electron density equal to 0.5 × N mF2 above the F2 peak is included in the IRI ionosphere-plasmasphere model. Two types of :input are used with IRI code for 14 intense magnetic storms during 1999-2003: ionosonde derived data ( ƒoF2, h mF2 and hO5 bot) and Global Positioning System (GPS)-based total electron content (TEC) observation. It is shown that topside half-peak height h05 top and topside scale height can be inferred from the GPS-TEC measurements with an iteration procedure applied to IRI profiling algorithm. The proposed technique is validated with incoherent scatter ionospheric electron content, ITEC, provided by EISCAT electron density profiles. Good correlation is obtained between the height h05 top and the equivalent slab thickness τ, representing ratio of TEC to N mF2. This approach allowed us to reveal a highly variable topside scale height for intense space weather storms at mid latitudes with peaks up to 800 km during the peaks of magnetic activity.

  14. Whole body vibration in sport: a critical review.

    Science.gov (United States)

    Costantino, C; Gimigliano, R; Olvirri, S; Gimigliano, F

    2014-12-01

    Whole body vibration training is a recent area of study in athletic conditioning, health and rehabilitation. This paper provides a review of the effectiveness of this type of training in sport. A search was conducted across several electronic databases and studies on effects of whole body vibration training on sport performance were reviewed. Thirteen articles were included in the final analysis. The following variables were considered: participants investigated (sex and age), characteristics of the vibration (frequency and amplitude), training (type of sport, exposure time and intensity, tests used, type of study, effects examined and results obtained). This review considers proposed neural mechanisms and identifies studies that have demonstrated the effectiveness of WBV in sports. It considers where WBV might act and suggests that vibration can be an effective training stimulus. Future studies should focus on evaluating the long-term effects of vibration training and identify optimum frequency and amplitude, improve strength and muscular performance.

  15. [Vibrational physical exercises as the rehabilitation in gerontology].

    Science.gov (United States)

    Piatin, V F; Shirolapov, I V; Nikitin, O L

    2009-01-01

    Vibration biomechanical stimulation as the physiological basis of vibration physical exercises (whole body vibration) causes reflecting muscle contractions like tonic vibration reflex. This type of intervention leads to high intensive stimulation of proprioceptors as called muscle spindles which result in alteration in parameters of activity and developments of human physiological functions. This type of training has broad positive influence on organism. Acceleration physical exercises improve muscle performance, flexibility, nervous function, significantly increase bone mineral density, physiological secretion of anabolic hormones, growth and anti-aging factors; normalize/decrease cortisol as anti-stress effect and are beneficial for balance and mobility as well. It is showed acceleration training caused by vibration stimulus is beneficial for people suffering from osteoporosis and obesity, for rehabilitation of nervous and motor function in patients with Parkinson's disease, multiple sclerosis and stroke.

  16. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  17. Spatial peak-load pricing

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, M. Soledad; Serra, Pablo [Universidad de Chile, Dept. of Industrial Engineering, Santiago (Chile)

    2007-03-15

    This article extends the traditional electricity peak-load pricing model to include transmission costs. In the context of a two-node, two-technology electric power system, where suppliers face inelastic demand, we show that when the marginal plant is located at the energy-importing center, generators located away from that center should pay the marginal capacity transmission cost; otherwise, consumers should bear this cost through capacity payments. Since electric power transmission is a natural monopoly, marginal-cost pricing does not fully cover costs. We propose distributing the revenue deficit among users in proportion to the surplus they derive from the service priced at marginal cost. (Author)

  18. Experimental Study on Interfacial Area Transport of Two-Phase Flow under Vibration Conditions

    Directory of Open Access Journals (Sweden)

    Xiu Xiao

    2017-01-01

    Full Text Available An experimental study on air-water two-phase flow under vibration condition has been conducted using double-sensor conductivity probe. The test section is an annular geometry with hydraulic diameter of 19.1 mm. The vibration frequency ranges from 0.47 Hz to 2.47 Hz. Local measurements of void fraction, interfacial area concentration (IAC, and Sauter mean diameter have been performed along one radius in the vibration direction. The result shows that local parameters fluctuate continuously around the base values in the vibration cycle. Additional bubble force due to inertia is used to explain lateral bubble motions. The fluctuation amplitudes of local void fraction and IAC increase significantly with vibration frequency. The radial distribution of local parameters at the maximum vibration displacement is specifically analyzed. In the void fraction and IAC profiles, the peak near the inner wall is weakened or even disappearing and a strong peak skewed to outer wall is gradually observed with the increase of vibration frequency. The nondimensional peak void fraction can reach a maximum of 49% and the mean relative variation of local void fraction can increase to more than 29% as the vibration frequency increases to 2.47 Hz. But the increase of vibration frequency does not bring significant change to bubble diameter.

  19. Factors influencing peak expiratory flow in teenage boys | van ...

    African Journals Online (AJOL)

    Further details were provid by means of a questionnaire. Results. PEF ranged from 350 to 760 1/min, with a mean (± standard deviation (SD» of 539 ± 681/min. Factors expected to influence PEF included height and mass, where is unexpected factors included sport intensity and academic grade. A trend to reduced peak ...

  20. The Peak Pairs algorithm for strain mapping from HRTEM images

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, Pedro L. [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)], E-mail: pedro.galindo@uca.es; Kret, Slawomir [Institute of Physics, PAS, AL. Lotnikow 32/46, 02-668 Warsaw (Poland); Sanchez, Ana M. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Laval, Jean-Yves [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, Paris (France); Yanez, Andres; Pizarro, Joaquin; Guerrero, Elisa [Departamento de Lenguajes y Sistemas Informaticos, CASEM, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain); Ben, Teresa; Molina, Sergio I. [Departamento de Ciencia de los Materiales e Ing. Metalurgica y Q. Inorganica, Facultad de Ciencias, Universidad de Cadiz, Pol. Rio San Pedro s/n. 11510, Puerto Real, Cadiz (Spain)

    2007-11-15

    Strain mapping is defined as a numerical image-processing technique that measures the local shifts of image details around a crystal defect with respect to the ideal, defect-free, positions in the bulk. Algorithms to map elastic strains from high-resolution transmission electron microscopy (HRTEM) images may be classified into two categories: those based on the detection of peaks of intensity in real space and the Geometric Phase approach, calculated in Fourier space. In this paper, we discuss both categories and propose an alternative real space algorithm (Peak Pairs) based on the detection of pairs of intensity maxima in an affine transformed space dependent on the reference area. In spite of the fact that it is a real space approach, the Peak Pairs algorithm exhibits good behaviour at heavily distorted defect cores, e.g. interfaces and dislocations. Quantitative results are reported from experiments to determine local strain in different types of semiconductor heterostructures.

  1. Granular flows down inclined and vibrated planes: influence of basal friction

    Science.gov (United States)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2017-06-01

    We present an experimental study about granular avalanches when external mechanical vibrations are applied. The results of the flow properties highlight the existence of two distinct regimes: (i) a gravity-driven regime at large angles where scaling laws are in agreement with those reported in the literature for non-vibrating granular flows and (ii) a vibration-driven regime at small angles where no flow occurs without applied vibrations. The flow in this regime is well described by a vibrationinduced activated process. We also propose an empirical law to capture the evolution of the thickness of the deposits as a function of the vibration intensity and the inclination angle.

  2. Ultrasound source using a rectangular vibrating plate combined with rigid walls

    Science.gov (United States)

    Sato, Ryo; Asami, Takuya; Miura, Hikaru

    2017-07-01

    Ultrasound sources that use a stripe-mode rectangular vibrating plate radiate strong ultrasound waves in the air. In this study, we investigated the design strategy for combining the vibrating plate with rigid walls and evaluated the intense ultrasound waves radiated by the sound source. First, we examined the design method for a rectangular transverse vibrating plate with both ends fixed and the vibration amplitude distribution of the vibrating plate. Second, we measured the sound pressure distribution in the formation of the standing wave field. Finally, we clarified the relationship between the input power and sound pressure of the standing wave field antinodes.

  3. Noninvasive monitoring of vocal fold vertical vibration using the acoustic Doppler effect.

    Science.gov (United States)

    Tao, Chao; Jiang, Jack J; Wu, Dan; Liu, Xiaojun; Chodara, Ann

    2012-11-01

    To validate a proposed method of noninvasively monitoring vocal fold vertical vibration through utilization of the acoustic Doppler effect and the waveguide property of the vocal tract. Validation case-control study. In this device, an ultrasound beam is generated and directed into the mouth. The vocal tract, acting as a natural waveguide, guides the ultrasound beam toward the vibrating vocal folds. The vertical velocity of vocal fold vibration is then recovered from the Doppler frequency of the reflected ultrasound. One subject (age 32, male) was studied and measurements were taken under three modes of vocal fold vibration: breathing (no vibration), whispering (irregular vibration), and normal phonation (regular vibration). The peak-to-peak amplitude of the measured velocity of vocal fold vertical vibration was about 0.16 m/s, and the fundamental frequency was 172 Hz; the extracted velocity information showed a reasonable waveform and value in comparison with the previous studies. In all three modes of phonation, the Doppler frequencies derived from the reflected ultrasound corresponded with the vertical velocity of vocal fold vibration as expected. The proposed method can accurately represent the characteristics of different phonation modes such as no phonation, whisper and normal phonation. The proposed device could be used in daily monitoring and assessment of vocal function and vocal fold vibration. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  4. Corona discharge ionization of paracetamol molecule: Peak assignment

    Science.gov (United States)

    Bahrami, H.; Farrokhpour, H.

    2015-01-01

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.

  5. Focal muscle vibration: evaluation of physical properties and his applications

    Directory of Open Access Journals (Sweden)

    Filippo Camerota

    2014-03-01

    Full Text Available Vibration is the sensation produced by sinusoidal oscillation of objects placed against the skin. The vibratory frequency is signaled bythe frequency of action potentials fired by the sensory nerves and the total number of active sensory nerves is linearly related to theamplitude of vibration. In the last years many works were done evaluating the different clinical applications of the focal musclevibration; the aim of this work is to analyze the interaction between the vibratory application and the skin. For this study theapparatus of focal muscle vibration analyzed was firstly calibrated by measuring the actual peak to peak displacement of the tip as afunction of the power supplied to the shaker; then were measured the Direct Component (DC of the force by which the shaker ispushed against the patient’s skin and the Alternate Component (AC. We observed that from displacements imposed by the tipranging from 0 to about 200 micrometers, the applied load increases monotonically, but non linearly, with the displacement; abovethis value, any further increase of the peak to peak displacements actually does not lead to an effective increase of the amplitude of themechanical stimulation. We can conclude that with this focal muscle vibration applied to the muscle we are able to stimulate thespindles that respond to 200 micrometers amplitude that are probably ones able to generate a proprioceptive signal.

  6. DFT studies on the vibrational and electronic spectra of acetylsalicylic acid

    Science.gov (United States)

    Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu

    2016-05-01

    The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.

  7. Vibration Analysis of a Residential Building

    Directory of Open Access Journals (Sweden)

    Sampaio Regina Augusta

    2015-01-01

    Full Text Available The aim of this paper is to present the results of a study regarding vibration problems in a 17 storey residential building during pile driving in its vicinity. The structural design of the building was checked according to the Brazilian standards NBR6118 and NBR6123, and using commercial finite element software. An experimental analysis was also carried out using low frequency piezo-accelerometers attached to the building structure. Structure vibrations were recorded under ambient conditions. Four monitoring tests were performed on different days. The objective of the first monitoring test was an experimental modal analysis. To obtain de modal parameters, data was processed in the commercial software ARTEMIS employing two methods: the Stochastic Subspace Identification and the Frequency Domain Decomposition. Human comfort was investigated considering the International Standard ISO 2631. The Portuguese standard, NP2074, was also used as a reference, since it aims to limit the adverse effects of vibrations in structures caused by pile driving in the vicinity of the structure. The carried out experimental tests have shown that, according to ISO2301, the measure vibration levels are above the acceptance limits. However, velocity peaks are below the limits established by NP2074. It was concluded that, although the structure has adequate capacity to resist internal forces according to normative criteria, it has low horizontal stiffness, which could be verified by observing the vibration frequencies and mode shapes obtained with the finite element models, and its similarity with the experimental results. Thus, the analyses indicate the occurrence of discomfort by the residents.

  8. Noise-Induced Building Vibrations Caused by Concorde and Conventional Aircraft Operations at Dulles and Kennedy International Airports

    Science.gov (United States)

    Mayes, W. H.; Stephens, D. G.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Deloach, R.; Cawthorn, J. M.; Finley, T. D.; Lynch, J. W.

    1978-01-01

    Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded, as were the associated vibration levels in the walls, windows, and floors at building test sites. In addition, limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Representative peak levels of aircraft noise-induced building vibrations are reported and comparisons are made with structural damage criteria and with vibration levels induced by common domestic events. In addition, results of a pilot study are reported which indicate the human detection threshold for noise-induced floor vibrations.

  9. Vibrational anomalies and marginal stability of glasses

    KAUST Repository

    Marruzzo, Alessia

    2013-01-01

    The experimentally measured vibrational spectrum of glasses strongly deviates from that expected in Debye\\'s elasticity theory: The density of states deviates from Debye\\'s ω2 law ("boson peak"), the sound velocity shows a negative dispersion in the boson-peak frequency regime, and there is a strong increase in the sound attenuation near the boson-peak frequency. A generalized elasticity theory is presented, based on the model assumption that the shear modulus of the disordered medium fluctuates randomly in space. The fluctuations are assumed to be uncorrelated and have a certain distribution (Gaussian or otherwise). Using field-theoretical techniques one is able to derive mean-field theories for the vibrational spectrum of a disordered system. The theory based on a Gaussian distribution uses a self-consistent Born approximation (SCBA),while the theory for non-Gaussian distributions is based on a coherent-potential approximation (CPA). Both approximate theories appear to be saddle-point approximations of effective replica field theories. The theory gives a satisfactory explanation of the vibrational anomalies in glasses. Excellent agreement of the SCBA theory with simulation data on a soft-sphere glass is reached. Since the SCBA is based on a Gaussian distribution of local shear moduli, including negative values, this theory describes a shear instability as a function of the variance of shear fluctuations. In the vicinity of this instability, a fractal frequency dependence of the density of states and the sound attenuation ∝ ω1+a is predicted with a ≲ 1/2. Such a frequency dependence is indeed observed both in simulations and in experimental data. We argue that the observed frequency dependence stems from marginally stable regions in a glass and discuss these findings in terms of rigidity percolation. © 2013 EDP Sciences and Springer.

  10. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  11. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  12. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  13. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  14. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  15. Facility Location with Double-peaked Preferences

    DEFF Research Database (Denmark)

    Filos-Ratsikas, Aris; Li, Minming; Zhang, Jie

    2015-01-01

    We study the problem of locating a single facility on a real line based on the reports of self-interested agents, when agents have double-peaked preferences, with the peaks being on opposite sides of their locations. We observe that double-peaked preferences capture real-life scenarios and thus...... complement the well-studied notion of single-peaked preferences. We mainly focus on the case where peaks are equidistant from the agents’ locations and discuss how our results extend to more general settings. We show that most of the results for single-peaked preferences do not directly apply to this setting...

  16. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  17. Peaking of world oil production: Impacts, mitigation, & risk management

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  18. Peak bone mass and affecting factors in Korean women.

    Science.gov (United States)

    Lim, S K; Lee, N H; Lee, J H; Choi, M S; Chung, Y S; Ahn, K J; Lee, H C; Huh, K B

    1993-03-01

    Maximizing peak bone mass is advocated as a way to prevent osteoporosis. To evaluate the peak bone mass and the affecting factors in Korean women, we analyzed bone stiffness in 116 middle school students, 118 high school students and 115 female college students by using the Achilles densitometer (Lunar Corporation). Peak bone stiffness of Korean women was relatively lower than that of white women (94% of white women) and a rapid rise of bone stiffness was observed in those subjects 3-4 years after menarche. In adolescent females without menstruation, the bone stiffness was lower than that of adolescent girls with menstruation. The factors affecting the peak bone mass was similar to the risk factors of post menopausal osteoporosis: menstruation status, calcium intake and physical activity. The amount of calcium intake in Korean girls at the critical age (3-4 years after menarche) was lower than the RDA (requirement of daily allowance) at this age. To improve any program aimed at maximizing peak bone mass, further intensive study will be required to evaluate some other common factors affecting peak bone mass in Korean.

  19. The Study of Vibration Processes in Oil Flooded Screw Compressors

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2014-01-01

    Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control

  20. Lower Arm Muscle Activation during Indirect-Localized Vibration: The Influence of Skill Levels When Applying Different Acceleration Loads.

    Science.gov (United States)

    Padulo, Johnny; Di Giminiani, Riccardo; Dello Iacono, Antonio; Zagatto, Alessandro M; Migliaccio, Gian M; Grgantov, Zoran; Ardigò, Luca P

    2016-01-01

    We investigated the electromyographic response to synchronous indirect-localized vibration interventions in international and national table tennis players. Twenty-six male table tennis players, in a standing position, underwent firstly an upper arms maximal voluntary contraction and thereafter two different 30-s vibration interventions in random order: high acceleration load (peak acceleration = 12.8 g, frequency = 40 Hz; peak-to-peak displacement = 4.0 mm), and low acceleration load (peak acceleration = 7.2 g, frequency = 30 Hz, peak-to-peak displacement = 4.0 mm). Surface electromyography root mean square from brachioradialis, extensor digitorum, flexor carpi radialis, and flexor digitorum superficialis recorded during the two vibration interventions was normalized to the maximal voluntary contraction recording. Normalized surface electromyography root mean square was higher in international table tennis players with respect to national ones in all the interactions between muscles and vibration conditions (P 0.05). The difference in normalized surface electromyography root mean square between international table tennis players and national ones increased in all the muscles with high acceleration load (P 0.05). The muscle activation during indirect-localized vibration seems to be both skill level and muscle dependent. These results can optimize the training intervention in table tennis players when applying indirect-localized vibration to lower arm muscles. Future investigations should discriminate between middle- and long-term adaptations in response to specific vibration loads.

  1. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  2. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  3. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  4. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  5. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  6. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  7. Development of peak performance in track cycling.

    Science.gov (United States)

    Schumacher, Y O; Mueller, P; Keul, J

    2001-06-01

    Retrospective analysis of peak performances can be a usefull tool for the estimation of future trends in high performance sports. The purpose of this study was to investigate the evolution of performance in track cycling from 1979 to 1999 and to asses age- and gender-related differences. We studied the results of the world track cycling championships for this period in 200 m, 1000 m, individual and team pursuit races for elite and junior athletes. Overall trends, performance differences between rank 1 and 5, gender- and age-related differences were calculated. They show a significant (ptrack cycling endurance disciplines. New technical developments show no statistical significant impact. The performance gap between male and female athletes is constant, independent of discipline or race distance and comparable to observations in other sports. Age-related differences in performance is most visible in disciplines requiring short, high intensity power output. Based on these data, estimation of possible winning times and adaptation of training programs for future track cycling competitions might be facilitated.

  8. Osteoporosis: Peak Bone Mass in Women

    Science.gov (United States)

    ... Home Osteoporosis Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the ... No. 15-7891 Last Reviewed 2015-06 NIH Osteoporosis and Related Bone Diseases ~ National Resource Center 2 ...

  9. On C4H versus vibrationally excited CO in IRC + 10216

    Science.gov (United States)

    Cummins, S. E.; Morris, M.; Thaddeus, P.

    1980-01-01

    The identification of the 114,221-MHz line in the spectrum of the evolved carbon star IRC +10216 with a blend of the rotational transition of C4H and the first rotational transition of vibrationally excited CO is investigated. A spectrum of the source was obtained using an 11-m telescope in the range covering the N = 12 to 11 and 11 to 10 spin-doublet rotational transitions of C4H. Two peaks of equal intensity and width are found in each band, suggesting a spin rotation constant of 1.06 for the 12 to 11 doublet and 1.09 for the 11 to 10 doublet, and excluding the possibility that vibrationally excited CO made any contribution to the 12 to 11 doublet. An additional survey of the regions from 103.8 to 107.5 and 113.3 to 117.0 GHz has revealed no new lines stronger than 0.1 K in the spectrum of IRC +10216.

  10. Vibrational properties of the Au-(√{3 }×√{3 } )/Si(111) surface reconstruction

    Science.gov (United States)

    Halbig, B.; Liebhaber, M.; Bass, U.; Geurts, J.; Speiser, E.; Räthel, J.; Chandola, S.; Esser, N.; Krenz, M.; Neufeld, S.; Schmidt, W. G.; Sanna, S.

    2018-01-01

    The vibrational properties of the Au-induced (√{3 }×√{3 })R 30∘ reconstruction of the Si(111) surface are investigated by polarized surface Raman spectroscopy and density-functional theory. The Raman measurements are performed in situ at room temperature as well as 20 K, and they reveal the presence of vibrational eigenmodes in the spectral range from 20 to 450 cm-1. In particular, two peaks of E symmetry at 75 and 183 cm-1 dominate the spectra. No substantial difference between room- and low-temperature spectra is observed, suggesting that the system does not undergo a phase transition down to 20 K. First-principles calculations are performed based on the structural models discussed in the literature. The thermodynamically stable conjugate honeycomb-chained-trimer model (CHCT) [Surf. Sci. 275, L691 (1992), 10.1016/0039-6028(92)90785-5] leads to phonon eigenvalues compatible with the experimental observations in the investigated spectral range. On the basis of the phonon eigenfrequencies, symmetries, and Raman intensities, we assign the measured spectral features to the calculated phonon modes. The good agreement between measured and calculated modes provides a strong argument in favor of the CHCT model.

  11. Effect of Ultrasonic Vibration on Proliferation and Differentiation of Cells

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2016-12-01

    Full Text Available The effect of mechanical stimulation of vibration on proliferation and differentiation of cells has been studied in vitro. To apply the vibration on the cells, a piezoelectric element was attached on the outside surface of the bottom of the culture plate of six wells. The piezoelectric element was vibrated by sinusoidally alternating voltage at 1.0 MHz generated by a function generator. Five kinds of cells were used in the experiment: C2C12 (mouse myoblast cell, L929 (fibroblast connective tissue of mouse, Hepa1-6 (mouse hepatoma cell, HUVEC (human umbilical vein endothelial cell, and Neuro-2a (mouse neural crest-derived cell line. After the incubation for 24 hours, cells were exposed to the ultrasonic vibration intermittently for three days: for thirty minutes per day. At the end of the experiment, the number of cells was counted by colorimetric method with a microplate photometer. In the case of Neuro-2a, the total length of the neurite was calculated at the microscopic image. The experimental study shows following results. Cells are exfoliated by the strong vibration. Proliferation and differentiation of cells are accelerated with mild vibration. The optimum intensity of vibration depends on the kind of cells.

  12. A model to forecast peak spreading.

    Science.gov (United States)

    2012-04-01

    As traffic congestion increases, the K-factor, defined as the proportion of the 24-hour traffic volume that occurs during the peak hour, may decrease. This behavioral response is known as peak spreading: as congestion grows during the peak travel tim...

  13. Electric field generated by axial longitudinal vibration modes of microtubule.

    Science.gov (United States)

    Cifra, M; Pokorný, J; Havelka, D; Kucera, O

    2010-05-01

    Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. We calculated electric field generated by axial longitudinal vibration modes of microtubules for random, and coherent excitation. In case of coherent excitation of vibrations, the electric field intensity is highest at the end of microtubule. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of microtubule polymerization via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play an important role in biological self-organization. 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Acoustical analysis of gear housing vibration

    Science.gov (United States)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.; Oswald, Fred B.

    1991-01-01

    The modal and acoustical analysis of the NASA gear-noise rig is described. Experimental modal analysis techniques were used to determine the modes of vibration of the transmission housing. The resulting modal data were then used in a boundary element method (BEM) analysis to calculate the sound pressure and sound intensity on the surface of the housing as well as the radiation efficiency of each mode. The radiation efficiencies of the transmission housing modes are compared with theoretical results for finite, baffled plates. A method that uses the measured mode shapes and the BEM to predict the effect of simple structural changes on the sound radiation efficiency of the modes of vibration is also described.

  15. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  16. Peak expiratory flow at increased barometric pressure: comparison of peak flow meters and volumetric spirometer.

    Science.gov (United States)

    Thomas, P S; Ng, C; Bennett, M

    2000-01-01

    Increasing numbers of patients are receiving hyperbaric oxygen therapy as an intensive care treatment, some of whom have pre-existing airway obstruction. Spirometers are the ideal instruments for measuring airway obstruction, but peak flow meters are useful and versatile devices. The behaviour of both types of device was therefore studied in a hyperbaric unit under conditions of increased pressure. It is important to have a non-electrical indicator of airway obstruction, to minimize the fire risk in the hyperoxic environment. The hypothesis was tested that, assuming that dynamic resistance is unchanged, both the Wright's standard and mini-peak flow meters would over-read peak expiratory flow (PEF) under increased pressure when compared with a volumetric spirometer, as the latter is unaffected by air density. It was postulated that a correction factor could be derived so that PEF meters could be used in this setting. Seven normal subjects performed volume-dependent spirometry to derive PEF, and manoeuvres using both standard and mini PEF meters at sea level, under hyperbaric conditions at 303, 253 and 152 kPa (3, 2.5 and 1.5 atmospheres respectively; 1 atmosphere absolute=101.08 kPa), and again at sea level. There was a progressive and significant decline in PEF with increasing pressure as measured by the spirometer (69.46+/-0.8% baseline at 303 kPa compared with 101 kPa), while the PEF meters showed a progressive increase in their readings (an increase of 7.86+/-1.69% at 303 kPa with the mini PEF meter). Using these data points, a correction factor was derived which allows appropriate values to be calculated from the Wright's meter readings under these conditions.

  17. Whole-body vibration slows the acquisition of fat in mature female rats

    Science.gov (United States)

    Maddalozzo, GF; Iwaniec, UT; Turner, RT; Rosen, CJ; Widrick, JJ

    2008-01-01

    Objective To evaluate the effects of whole-body vibration on fat, bone, leptin and muscle mass. Methods/Design Thirty 7-month-old female 344 Fischer rats were randomized by weight into three groups (baseline, vibration or control; n=7–10 per group). Rats in the vibration group were placed inside individual compartments attached to a Pneu-Vibe vibration platform (Pneumex, Sandpoint, ID, USA) and vibrated at 30–50 Hz (6mm peak to peak) for 30 min per day, 5 days per week, for 12 weeks. The vibration intervention consisted of six 5-min cycles with a 1-min break between cycles. Results There were significant body composition differences between the whole-body vibration and the control groups. The whole-body vibration group weighed approximately 10% less (mean ± s.d.; 207 ± 10 vs 222 ± 15 g, Pbody fat (20.8 ± 3.8 vs 26.8 ± 5.9 g, Pbody fat (10.2 ± 1.7 vs 12 ± 2.0%, Pbody vibration group had significantly greater BMC (0.33 ± 0.05 vs 0.26 ± 0.03 g, Pbody vibration reduced body fat accumulation and serum leptin without affecting whole body BMC, BMD or lean mass. However, the increase in vertebral BMC and BMD suggests that vibration may have resulted in local increases in bone mass and density. Also, whole-body vibration did not affect muscle function or food consumption. PMID:18663370

  18. Electronic and Vibrational Coherences in Algal Light-Harvesting Proteins

    Directory of Open Access Journals (Sweden)

    Scholes Gregory D.

    2013-03-01

    Full Text Available We present broadband two-dimensional electronic spectra of a lightharvesting protein from photosynthetic algae. Analysis of the spectra show that the amplitude of the main cross peak oscillates as a function of the waiting time period. Both electronic coupling and intramolecular vibrational modes, and their mixture, can lead to such oscillations. Using predictions based on models of four-level systems, we describe ways to distinguish electronic from vibrational contributions to the coherence and find that both types of coupling contribute to the measured dynamics.

  19. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  20. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  1. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  2. EVALUATION OF VIBRATION LOAD ON COMMON RAIL FUEL SYSTEM COMPONENTS FOR DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. M. Kuharonak

    2014-01-01

    Full Text Available The objective of the paper is to develop a program, a methodology and execute vibration load tests of Common Rail fuel system components for a diesel engine. The paper contains an analysis of parameters that characterize vibration activity of research object and determine its applicability as a part of the specific mechanical system. A tests program has been developed that includes measurements of general peak values of vibration acceleration in the fuel system components, transformation of the obtained data while taking into account the fact that peak vibration acceleration values depend on crank-shaft rotation frequency and spectrum of vibration frequency, comparison of these dependences with the threshold limit values obtained in the process of component tests with the help of vibration shaker. The investigations have been carried out in one of the most stressed elements of the Common Rail fuel system that is a RDS 4.2-pressure sensor in a fuel accumulator manufactured by Robert Bosch GmbH and mounted on the MMZ D245.7E4-engines.According to the test methodology measurements have been performed on an engine test bench at all fullload engine curves. Vibration measurements have resulted in time history of the peak vibration acceleration values in three directions from every accelerometer and crank-shaft rotation frequency.It has been proposed to increase a diameter of mounting spacers of the fuel accumulator and install a damping clamp on high pressure tubes from a high pressure fuel pump to the fuel accumulator that permits to reduce a maximum peak vibration acceleration value on the pressure sensor in the fuel accumulator by 400 m/s2 and ensure its application in the given engine.

  3. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  4. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  5. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  6. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  7. Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis

    NARCIS (Netherlands)

    Sulyanova, Elena A.; Shabalin, Anatoly; Zozulya, Alexey V.; Meijer, Janne-Mieke|info:eu-repo/dai/nl/325780277; Dzhigaev, Dmitry; Gorobtsov, Oleg; Kurta, Ruslan P.; Lazarev, Sergey; Lorenz, Ulf; Singer, Andrej; Yefanov, Oleksandr; Zaluzhnyy, Ivan; Besedin, Ilya; Sprung, Michael; Petukhov, A. V.|info:eu-repo/dai/nl/304829196; Vartanyants, Ivan A.

    2015-01-01

    In situ X-ray diffraction studies of structural evolution of colloidal crystal films formed by polystyrene spherical particles upon incremental heating are reported. The Bragg peak parameters, such as peak position, integrated intensity, and radial and azimuthal widths were analyzed as a function of

  8. Effect of different mechanical vibration on blood parameters of one ...

    African Journals Online (AJOL)

    Mechanical vibrations are congenital to any system of transportation. In poultry industry, the higher or lower intensity of this agent during the transportation of eggs and chickens can increase the production losses and decrease the efficiency of the system as a whole. This study was carried out to investigate the effects of ...

  9. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  10. PROBABILISTIC ESTIMATION OF VIBRATION INFLUENCE ON SENSITIVE SYSTEM ELEMENTS

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2009-01-01

    Full Text Available The paper considers a problem pertaining to an estimation of vibration influence on sensitive system elements. Dependences of intensity and probability of a process exit characterizing a condition of a system element for the preset range that allow to estimate serviceability and no-failure operation of the system have been obtained analytically in the paper

  11. Energy harvesting from wood floor vibration using a piezoelectric generator

    Science.gov (United States)

    Jiangming Kan; Robert J. Ross; Xiping Wang; Wenbin Li

    2017-01-01

    Vibration can occur in wood floor systems as a consequence of a variety of human activities, ranging from common daily movements associated with individuals living in homes to high-intensity activities associated with sporting events that are held in large sports arenas. For example, the potential for harvesting energy from a wooden floor system in public buildings...

  12. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  13. Enroute to investigating protein dynamics under selective vibrational excitation at the THz FEL FELBE

    Science.gov (United States)

    Bauer, C.; Gensch, M.; Heberle, J.

    2012-05-01

    We aim at investigating proteins under irradiation with intense THz radiation tuned into resonance to specific vibrational modes. This approach is much in analogy to recent experiments that showed selective vibrational control in Complex materials [1, 2, 3]. To achieve the necessary sensitivity for protein dynamics we combine a novel time-resolved IR difference spectroscopic setup with uniquely intense, tuneable narrow bandwidth THz radiation (1.2 - 75 THz) of the free electron laser FELBE.

  14. Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm

    Science.gov (United States)

    Samareh, Hossein; Khoshrou, Seyed Hassan; Shahriar, Kourosh; Ebadzadeh, Mohammad Mehdi; Eslami, Mohammad

    2017-09-01

    When particle's wave velocity resulting from mining blasts exceeds a certain level, then the intensity of produced vibrations incur damages to the structures around the blasting regions. Development of mathematical models for predicting the peak particle velocity (PPV) based on the properties of the wave emission environment is an appropriate method for better designing of blasting parameters, since the probability of incurred damages can considerably be mitigated by controlling the intensity of vibrations at the building sites. In this research, first out of 11 blasting and geo-mechanical parameters of rock masses, four parameters which had the greatest influence on the vibrational wave velocities were specified using regression analysis. Thereafter, some models were developed for predicting the PPV by nonlinear regression analysis (NLRA) and artificial neural network (ANN) with correlation coefficients of 0.854 and 0.662, respectively. Afterward, the coefficients associated with the parameters in the NLRA model were optimized using optimization particle swarm-genetic algorithm. The values of PPV were estimated for 18 testing dataset in order to evaluate the accuracy of the prediction and performance of the developed models. By calculating statistical indices for the test recorded maps, it was found that the optimized model can predict the PPV with a lower error than the other two models. Furthermore, considering the correlation coefficient (0.75) between the values of the PPV measured and predicted by the optimized nonlinear model, it was found that this model possesses a more desirable performance for predicting the PPV than the other two models.

  15. The peak response distributions of structure-DVA systems with nonlinear damping

    Science.gov (United States)

    Love, J. S.; Tait, M. J.

    2015-07-01

    Dynamic vibration absorbers (DVAs) with nonlinear damping are often modelled using a power-law equivalent viscous damping relationship. There is currently not a method available to predict the peak response of this type of nonlinear DVA without resorting to computationally expensive nonlinear simulations. Since the peak response of the DVA is required during the design process, it is advantageous to have a simplified method to estimate the peak response. In this study, statistical linearization is employed to represent the nonlinear damping as amplitude-dependent viscous damping and predict the rms response of the structure-DVA system. Subsequently, statistical nonlinearization is used to describe the probability density function of the DVA response amplitude. A probability density function is developed, which enables the peak response expected during an interval of time (e.g. 1-h) to be estimated from the rms response of the structure-DVA system. Higher power-law damping exponents are shown to result in smaller peak factors. Results of nonlinear simulations reveal that the model can estimate the peak structural and DVA responses with acceptable accuracy. A plot is developed to show the peak factors for nonlinear DVAs as a function of the number of system cycles for several power-law damping exponents. This plot can be used to estimate the peak response of a nonlinear DVA as a function of its rms response.

  16. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    Science.gov (United States)

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  17. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  18. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  19. Inter-plant vibrational communication in a leafhopper insect.

    Directory of Open Access Journals (Sweden)

    Anna Eriksson

    Full Text Available Vibrational communication is one of the least understood channels of communication. Most studies have focused on the role of substrate-borne signals in insect mating behavior, where a male and a female establish a stereotyped duet that enables partner recognition and localization. While the effective communication range of substrate-borne signals may be up to several meters, it is generally accepted that insect vibrational communication is limited to a continuous substrate. Until now, interplant communication in absence of physical contact between plants has never been demonstrated in a vibrational communicating insect. With a laser vibrometer we investigated transmission of natural and played back vibrational signals of a grapevine leafhopper, Scaphoideus titanus, when being transmitted between leaves of different cuttings without physical contact. Partners established a vibrational duet up to 6 cm gap width between leaves. Ablation of the antennae showed that antennal mechanoreceptors are not essential in detection of mating signals. Our results demonstrate for the first time that substrate discontinuity does not impose a limitation on communication range of vibrational signals. We also suggest that the behavioral response may depend on the signal intensity.

  20. Inter-plant vibrational communication in a leafhopper insect.

    Science.gov (United States)

    Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Virant-Doberlet, Meta; Mazzoni, Valerio

    2011-05-05

    Vibrational communication is one of the least understood channels of communication. Most studies have focused on the role of substrate-borne signals in insect mating behavior, where a male and a female establish a stereotyped duet that enables partner recognition and localization. While the effective communication range of substrate-borne signals may be up to several meters, it is generally accepted that insect vibrational communication is limited to a continuous substrate. Until now, interplant communication in absence of physical contact between plants has never been demonstrated in a vibrational communicating insect. With a laser vibrometer we investigated transmission of natural and played back vibrational signals of a grapevine leafhopper, Scaphoideus titanus, when being transmitted between leaves of different cuttings without physical contact. Partners established a vibrational duet up to 6 cm gap width between leaves. Ablation of the antennae showed that antennal mechanoreceptors are not essential in detection of mating signals. Our results demonstrate for the first time that substrate discontinuity does not impose a limitation on communication range of vibrational signals. We also suggest that the behavioral response may depend on the signal intensity.

  1. Inter-Plant Vibrational Communication in a Leafhopper Insect

    Science.gov (United States)

    Eriksson, Anna; Anfora, Gianfranco; Lucchi, Andrea; Virant-Doberlet, Meta; Mazzoni, Valerio

    2011-01-01

    Vibrational communication is one of the least understood channels of communication. Most studies have focused on the role of substrate-borne signals in insect mating behavior, where a male and a female establish a stereotyped duet that enables partner recognition and localization. While the effective communication range of substrate-borne signals may be up to several meters, it is generally accepted that insect vibrational communication is limited to a continuous substrate. Until now, interplant communication in absence of physical contact between plants has never been demonstrated in a vibrational communicating insect. With a laser vibrometer we investigated transmission of natural and played back vibrational signals of a grapevine leafhopper, Scaphoideus titanus, when being transmitted between leaves of different cuttings without physical contact. Partners established a vibrational duet up to 6 cm gap width between leaves. Ablation of the antennae showed that antennal mechanoreceptors are not essential in detection of mating signals. Our results demonstrate for the first time that substrate discontinuity does not impose a limitation on communication range of vibrational signals. We also suggest that the behavioral response may depend on the signal intensity. PMID:21573131

  2. Effects Of Whole Body Vibration On Vertical Jump Performance Following Exercise Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2014-01-01

    Full Text Available Enhancing vertical jump performance is critical for many sports. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD. Many recovery modalities have been tested with conflicting results. The purpose of this investigation was to determine the effect of whole-body vibration (WBV on vertical jump performance following EIMD. 27 females volunteered for 7 sessions and were randomly assigned to a treatment or control group and administered each testing day. Vertical jump performance was assessed via vertical jump height (VJH, peak power output (PPO, rate of force development (RFD, relative ground reaction force (GRFz, and peak activation ratio of the vastus medialis (VM via electromyography (EMG before and after 3 days of EIMD via split squats. Two testing sets were collected each day, consisting of pre measures followed by WBV or control, and then post second measures. A 2x8 (group x time mixed factor analysis of variance (ANOVA was conducted for each variable. No significant interactions or group differences were found in any variable. Significant main effects for time were found in any variable, indicating performance declined following muscle damage. These results indicate that WBV does not aid in muscle recovery or vertical jump performance following EIMD.

  3. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  4. Analysis of micro vibration in gas film of aerostatic guide way based on molecule collision theory

    Directory of Open Access Journals (Sweden)

    Yang Shao Hua

    2016-01-01

    Full Text Available Micro vibration of the aerostatic guide way has a significant impact on its dynamic characteristics and stability, which limits the development of pneumatic component. High pressure gas molecules have been collided with the supporting surface and the internal surface of the throttle during the flow process. Variable impulse of the surfaces aside for the gas film are affected by the changes of impulse which formed irregular impact force in horizontal and vertical direction. Micro-vibration takes place based on the natural frequency of the system and its frequency doubling. In this paper, the vibration model was established to describe the dynamic characteristics of the gas film, and the formation mechanism of micro vibration in the film is defined. Through the simulation analysis and experimental comparison, formation mechanism of the micro vibration in the gas film is confirmed. It was proposed that the micro vibration of gas film can be produced no matter whether there is a gas chamber or not in the throttle. Under the same conditions, the micro vibration of the guide way with air chamber is greater than that without any chamber. The frequency points of the vibration peaks are almost the same, as well as the vibration pattern in the frequency domain.

  5. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  6. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  7. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  8. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study

    Science.gov (United States)

    Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang

    2016-01-01

    Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm−1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1–2 wall layered nanotubes and monolayer flat sheets. PMID:27620879

  9. Peak distortion effects in analytical ion chromatography.

    Science.gov (United States)

    Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A

    2014-01-07

    The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.

  10. PeakRanger: A cloud-enabled peak caller for ChIP-seq data

    Directory of Open Access Journals (Sweden)

    Grossman Robert

    2011-05-01

    Full Text Available Abstract Background Chromatin immunoprecipitation (ChIP, coupled with massively parallel short-read sequencing (seq is used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets, most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance on large data sets, and ability to distinguish closely-spaced peaks. Results In this paper, we introduce PeakRanger, a peak caller software package that works equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers, and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world usages of PeakRanger, including peak-calling in the modENCODE project. Conclusions Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In addition, PeakRanger offers significant improvements in run time when running on a single processor system, and very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project: http://www.modencode.org/software/ranger/

  11. Algorithm for systematic peak extraction from atomic pair distribution functions.

    Science.gov (United States)

    Granlund, L; Billinge, S J L; Duxbury, P M

    2015-07-01

    The study presents an algorithm, ParSCAPE, for model-independent extraction of peak positions and intensities from atomic pair distribution functions (PDFs). It provides a statistically motivated method for determining parsimony of extracted peak models using the information-theoretic Akaike information criterion (AIC) applied to plausible models generated within an iterative framework of clustering and chi-square fitting. All parameters the algorithm uses are in principle known or estimable from experiment, though careful judgment must be applied when estimating the PDF baseline of nanostructured materials. ParSCAPE has been implemented in the Python program SrMise. Algorithm performance is examined on synchrotron X-ray PDFs of 16 bulk crystals and two nanoparticles using AIC-based multimodeling techniques, and particularly the impact of experimental uncertainties on extracted models. It is quite resistant to misidentification of spurious peaks coming from noise and termination effects, even in the absence of a constraining structural model. Structure solution from automatically extracted peaks using the Liga algorithm is demonstrated for 14 crystals and for C60. Special attention is given to the information content of the PDF, theory and practice of the AIC, as well as the algorithm's limitations.

  12. Climate Change Impacts on Peak Electricity Consumption: US vs. Europe.

    Science.gov (United States)

    Auffhammer, M.

    2016-12-01

    It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond. This finding is at odds with the relatively modest increase in climate driven impacts on consumption. Comprehensive high frequency load balancing authority level data have not been used previously to parameterize the relationship between electric demand and temperature for any major economy. Using statistical models we analyze multi-year data from load balancing authorities in the United States of America and the European Union, which are responsible for more than 90% of the electricity delivered to residential, industrial, commercial and agricultural customers. We couple the estimated response functions between total daily consumption and daily peak load with an ensemble of downscaled GCMs from the CMIP5 archive to simulate climate change driven impacts on both outcomes. We show moderate and highly spatially heterogeneous changes in consumption. The results of our peak load simulations, however, suggest significant changes in the intensity and frequency of peak events throughout the United States and Europe. As the electricity grid is built to endure maximum load, which usually occurs on the hottest day of the year, our findings have significant implications for the construction of costly peak generating and transmission capacity.

  13. Fluid Surface Damping: A Technique for Vibration Suppression of Beams

    Directory of Open Access Journals (Sweden)

    Hany Ghoneim

    1997-01-01

    Full Text Available A fluid surface damping (FSD technique for vibration suppression of beamlikestructures is proposed. The technique is a modification of the surface layer damping method. Two viscoelastic surface layers containing fluid-filled cavities are attached symmetrically to the opposite surfaces of the beam. The cavities on one side are attached to the corresponding cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped back and forth through the connecting passages. Therefore, in addition to the viscoelastic damping provided by the surface layers, the technique offers viscous damping due to the fluid flow through the passage. A mathematical model for the proposed technique is developed, normalized, and solved in the frequency domain to investigate the effect of various parameters on the vibration suppression of a cantilever beam. The steady-state frequency response for a base white-noise excitation is calculated at the beam's free tip and over a frequency range containing the first five resonant frequencies. The parameters investigated are the flow-through passage viscous resistance, the length and location of the layers, the hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic inertance. Results indicate that the proposed technique has promising potential in the field of vibration suppression of beamlike structures. With two FSD elements, all peak vibration amplitudes can be well suppressed over the entire frequency spectrum studied.

  14. Effect of vibration frequency on biopsy needle insertion force.

    Science.gov (United States)

    Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei

    2017-05-01

    Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Vibrational energy transport in acetylbenzonitrile described by an ab initio-based quantum tier model

    Science.gov (United States)

    Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard

    2017-01-01

    Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.

  16. Low Intensity Vibration as a Treatment for Traumatic Muscle Injury

    Science.gov (United States)

    2016-08-01

    treatment that will help to restore normal muscle and joint function to injured military personnel. The proposed animal and cell culture studies will...the methods required for work on Specific Aim 3. Mr. Corbiere was also trained on cell culture work and will be planning experiments to perform at...which showed that cultured macrophages are responsive to LIV by downregulating expression of pro-inflammatory markers and upregulating expression of

  17. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  18. An investigation on wind turbine resonant vibrations

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Kim, Taeseong; Larsen, Torben J.

    2016-01-01

    Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind...... turbine loads also at low turbulence intensity wind conditions to identify the presence of resonances; and the wind turbine response because of external excitations. In the first analysis, three different wind turbine models are analysed with respect to the frequency and damping of the aeroelastic modes....... Fatigue loads on the same models are then investigated with two different turbulence intensities to analyse the wind turbine response. In the second analysis, a wind turbine model is excited with an external force. This analysis helps in identifying the modes that might be excited, and therefore...

  19. Intense-laser-field ionization of the hydrogen molecular ions H2+ and D2+ at critical internuclear distances.

    Science.gov (United States)

    Pavicić, D; Kiess, A; Hänsch, T W; Figger, H

    2005-04-29

    Fragmentation of H2+ and D2+ in ion beams has been studied with short intense laser pulses (100 fs, I=5x10(13)-1x10(15) W/cm2) and by a high-resolution two-dimensional velocity imaging technique. In the Coulomb explosion channel, at intensities just above the threshold for this process, we observe a clear structure in the kinetic energy spectra not previously found or predicted. The peaks can be attributed to single vibrational levels. We interpret this observation as a dissociative allocation of the electron to a proton followed by enhanced ionization at a well-defined "critical" overstretched internuclear distance. When using longer pulses we observe three separate Coulomb explosion velocity groups corresponding to critical distances of about 8, 11, and 15 a.u.

  20. Vibrational relaxation beyond the linear damping limit in two-dimensional optical spectra of molecular aggregates

    Science.gov (United States)

    Perlík, Václav; Šanda, František

    2017-08-01

    We present a computational model for the spectra of molecular aggregates with signatures of vibronic progression. Vibronic dynamics is implemented by coupling the dynamics of Frenkel excitons with underdamped vibrations. Vibrational dynamics includes linear damping resulting in the exponential decay and quadratic damping inducing subexponential or power law relaxation and increasing vibrational decoherence as demonstrated on lineshapes of the absorption spectrum. Simulations of the third-order coherent response account for bath reorganization during excitonic transport, which allows us to study the line-shape evolution of cross peaks of 2D spectra.

  1. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  2. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  3. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  4. Heterogeneous shear elasticity of glasses: The origin of the boson peak

    KAUST Repository

    Marruzzo, Alessia

    2013-03-08

    The local elasticity of glasses is known to be inhomogeneous on a microscopic scale compared to that of crystalline materials. Their vibrational spectrum strongly deviates from that expected from Debye\\'s elasticity theory: The density of states deviates from Debye\\'s law, the sound velocity shows a negative dispersion in the boson-peak frequency regime and there is a strong increase of the sound attenuation near the boson-peak frequency. By comparing a mean-field theory of shear-elastic heterogeneity with a large-scale simulation of a soft-sphere glass we demonstrate that the observed anomalies in glasses are caused by elastic heterogeneity. By observing that the macroscopic bulk modulus is frequency independent we show that the boson-peak-related vibrational anomalies are predominantly due to the spatially fluctuating microscopic shear stresses. It is demonstrated that the boson-peak arises from the steep increase of the sound attenuation at a frequency which marks the transition from wave-like excitations to disorder-dominated ones.

  5. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  6. Ultrafast, ultrahigh-peak power Ti:sapphire laser system

    Energy Technology Data Exchange (ETDEWEB)

    Yamakawa, Koichi; Aoyama, Makoto; Matsuoka, Shinichi; Akahane, Yutaka; Kase, Teiji; Nakano, Fumihiko; Sagisaka, Akito [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan)

    2001-01-01

    We review progress in the generation of multiterawatt optical pulses in the 10-fs range. We describe a design, performance and characterization of a Ti:sapphire laser system based on chirped-pulse amplification, which has produced a peak power in excess of 100-TW with sub-20-fs pulse durations and an average power of 19-W at a 10-Hz repetition rate. We also discuss extension of this system to the petawatt power level and potential applications in the relativistic, ultrahigh intensity regimes. (author)

  7. Bayesian Peak Picking for NMR Spectra

    Directory of Open Access Journals (Sweden)

    Yichen Cheng

    2014-02-01

    Full Text Available Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  8. Peak Vegetation Growth 1993 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1993 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  9. Peak Vegetation Growth 1995 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1995 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  10. Peak Vegetation Growth 2004 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2004 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  11. Peak Vegetation Growth 1991 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1991 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  12. Peak Vegetation Growth 1998 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1998 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  13. Peak Vegetation Growth 1997 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 1997 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  14. Peak Vegetation Growth 2000 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2000 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  15. Peak Vegetation Growth 2003 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2003 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  16. Peak Vegetation Growth 2005 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map layer is a grid map of 2005 peak vegetation growth for Alaska and the conterminous United States. The nominal spatial resolution is 1 kilometer and the map...

  17. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  18. Global Earthquake Hazard Distribution - Peak Ground Acceleration

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Earthquake Hazard Distribution-peak ground acceleration is a 2.5 minute grid of global earthquake hazards developed using Global Seismic Hazard Program...

  19. Global Earthquake Hazard Distribution - Peak Ground Acceleration

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Earthquake Hazard Distribution-Peak Ground Acceleration is a 2.5 by 2.5 minute grid of global earthquake hazards developed using Global Seismic Hazard Program...

  20. Fewer peak trials per session facilitate acquisition of peak responding despite elimination of response rate differences.

    Science.gov (United States)

    Kaiser, Daren H

    2009-01-01

    It has been shown in previous research [Kaiser, D.H., 2008. The proportion of fixed interval trials to probe trials affects acquisition of the peak procedure fixed interval timing task. Behav. Process., 77 (1), 100-108] that rats acquired peak responding sooner when fewer peak trials were presented during sessions of training with the peak procedure timing task. One potential problem with that research was that there were large differences in response rates among the groups. The present experiment attempted to examine the effect of proportion of peak trials when differences in response rate were controlled. Two groups of rats were each simultaneously tested with two versions of the peak procedure. One group was tested with 10% peak trials per session, and the other group was tested with 50% peak trials per session. For both of the groups, one of the panel lights and levers was associated with the traditional peak procedure. The other panel light and lever was associated with a similar peak procedure; however, reinforcement was provided at the end of each peak trial. This manipulation eliminated differences in response rate among the groups, however, Group 10% acquired peak responding more quickly than Group 50%, effectively replicating previous work in the absence of a response bias.

  1. Improved peak shape fitting in alpha spectra

    OpenAIRE

    POMME Stefaan; CARO MARROYO BELEN

    2014-01-01

    Peak overlap is a recurrent issue ina lpha-particle spectrometry, not only in routine analyses but also in the high-resolution spectra from which reference values for alpha emission probabilities are derived. In this work, improved peak shape formulae are presented for the deconvolution of alpha-particle spectra. They have been implemented as fit functions in a spreadsheet application and optimum fit parameters were searched with built-in optimisation routines. Deconvolution results are shown...

  2. Non-linear optical crystal vibration sensing device

    Energy Technology Data Exchange (ETDEWEB)

    Kalibjian, R.

    1992-12-31

    The report describes a non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam . The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal.

  3. Non-linear optical crystal vibration sensing device

    Science.gov (United States)

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  4. Time-series analysis of vibrational nuclear wave packet dynamics

    Science.gov (United States)

    Thumm, Uwe; Niederhausen, Thomas; Feuerstein, Bernold

    2008-10-01

    We discuss the extent to which measured time-dependent fragment kinetic energy release (KER) spectra and calculated nuclear probability densities can reveal 1) the transition frequencies between stationary vibrational states, 2) the nodal structure of stationary vibrational states, 3) the ground-state adiabatic electronic potential curve of the molecular ion, and 4) the progression of decoherence induced by random interactions with the environment. We illustrate our discussion with numerical simulations for the time-dependent nuclear motion of vibrational wave packets in the D2^+ molecular ion caused by the ionization of its neutral D2 parent molecule with an intense pump laser pulse. Based on a harmonic time-series analysis, we suggest a general scheme for the full reconstruction, up to an overall phase factor, of the initial wave packets based on measured KER spectra, cf., Phys. Rev. A 77, 063401 (2008).

  5. Degassing of molten alloys with the assistance of ultrasonic vibration

    Science.gov (United States)

    Han, Qingyou; Xu, Hanbing; Meek, Thomas T.

    2010-03-23

    An apparatus and method are disclosed in which ultrasonic vibration is used to assist the degassing of molten metals or metal alloys thereby reducing gas content in the molten metals or alloys. High-intensity ultrasonic vibration is applied to a radiator that creates cavitation bubbles, induces acoustic streaming in the melt, and breaks up purge gas (e.g., argon or nitrogen) which is intentionally introduced in a small amount into the melt in order to collect the cavitation bubbles and to make the cavitation bubbles survive in the melt. The molten metal or alloy in one version of the invention is an aluminum alloy. The ultrasonic vibrations create cavitation bubbles and break up the large purge gas bubbles into small bubbles and disperse the bubbles in the molten metal or alloy more uniformly, resulting in a fast and clean degassing.

  6. Sunlight-Initiated Photochemistry: Excited Vibrational States of Atmospheric Chromophores

    Directory of Open Access Journals (Sweden)

    Veronica Vaida

    2008-01-01

    Full Text Available Atmospheric chemical reactions are often initiated by ultraviolet (UV solar radiation since absorption in that wavelength range coincides to typical chemical bond energies. In this review, we present an alternative process by which chemical reactions occur with the excitation of vibrational levels in the ground electronic state by red solar photons. We focus on the O–H vibrational manifold which can be an atmospheric chromophore for driving vibrationally mediated overtone-induced chemical reactions. Experimental and theoretical O–H intensities of several carboxylic acids, alcohols, and peroxides are presented. The importance of combination bands in spectra at chemically relevant energies is examined in the context of atmospheric photochemistry. Candidate systems for overtone-initiated chemistry are provided, and their lowest energy barrier for reaction and the minimum quanta of O–H stretch required for reaction are calculated. We conclude with a discussion of the major pathways available for overtone-induced reactions in the atmosphere.

  7. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  8. Sound intensity

    DEFF Research Database (Denmark)

    Crocker, Malcolm J.; Jacobsen, Finn

    1998-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  9. Sound Intensity

    DEFF Research Database (Denmark)

    Crocker, M.J.; Jacobsen, Finn

    1997-01-01

    This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....

  10. Energy expenditure and substrate utilization during whole body vibration

    Directory of Open Access Journals (Sweden)

    Ravena Santos Raulino

    2015-04-01

    Full Text Available INTRODUCTION AND OBJECTIVE: the aim of this study was to investigate whether the addition of vibration during interval training would raise oxygen consumption VO2 to the extent necessary for weight management and to evaluate the influence of the intensity of the vibratory stimulus for prescribing the exercise program in question. METHODS: VO2, measured breath by breath, was evaluated at rest and during the four experimental conditions to determine energy expenditure, metabolic equivalent MET, respiratory exchange ratio RER, % Kcal from fat, and rate of fat oxidation. Eight young sedentary females age 22±1 years, height 163.88± 7.62 cm, body mass 58.35±10.96 kg, and VO2 max 32.75±3.55 mLO2.Kg-1.min-1 performed interval training duration = 13.3 min to the upper and lower limbs both with vibration 35 Hz and 2 mm, 40 Hz and 2 mm, 45 Hz and 2 mm and without vibration. The experimental conditions were randomized and balanced at an interval of 48 hours. RESULTS: the addition of vibration to exercise at 45 Hz and 2 mm resulted in an additional increase of 17.77±12.38% of VO2 compared with exercise without vibration. However, this increase did not change the fat oxidation rate p=0.42 because intensity of exercise 29.1±3.3 %VO2max, 2.7 MET was classified as mild to young subjects. CONCLUSION: despite the influence of vibration on VO2 during exercise, the increase was insufficient to reduce body weight and did not reach the minimum recommendation of exercise prescription for weight management for the studied population.

  11. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  12. High Intensity Physics

    Science.gov (United States)

    Marklund, M.; Brodin, G.; Lundin, J.; Ilderton, A.

    2009-11-01

    The capability to produce high field strengths, and thereby obtain a new means for doing fundamental physics, has over the last thirty years taken great leaps forward. Both superconducting cavities as well ultra-intense lasers can now reach field strengths of the order 50 MV/m (stationary) and 1012 V/m (peak value, time-dependent field), respectively. Here we will describe a collection of problems that catches the flavor of the nonlinear quantum vacuum and the possibility to use high field strengths as a low-energy probe of fundamental physics.

  13. Predicting Peak Flows following Forest Fires

    Science.gov (United States)

    Elliot, William J.; Miller, Mary Ellen; Dobre, Mariana

    2016-04-01

    Following forest fires, peak flows in perennial and ephemeral streams often increase by a factor of 10 or more. This increase in peak flow rate may overwhelm existing downstream structures, such as road culverts, causing serious damage to road fills at stream crossings. In order to predict peak flow rates following wildfires, we have applied two different tools. One is based on the U.S.D.A Natural Resource Conservation Service Curve Number Method (CN), and the other is by applying the Water Erosion Prediction Project (WEPP) to the watershed. In our presentation, we will describe the science behind the two methods, and present the main variables for each model. We will then provide an example of a comparison of the two methods to a fire-prone watershed upstream of the City of Flagstaff, Arizona, USA, where a fire spread model was applied for current fuel loads, and for likely fuel loads following a fuel reduction treatment. When applying the curve number method, determining the time to peak flow can be problematic for low severity fires because the runoff flow paths are both surface and through shallow lateral flow. The WEPP watershed version incorporates shallow lateral flow into stream channels. However, the version of the WEPP model that was used for this study did not have channel routing capabilities, but rather relied on regression relationships to estimate peak flows from individual hillslope polygon peak runoff rates. We found that the two methods gave similar results if applied correctly, with the WEPP predictions somewhat greater than the CN predictions. Later releases of the WEPP model have incorporated alternative methods for routing peak flows that need to be evaluated.

  14. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  15. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    vibrational effects have a profound influence on the transport characteristics of a single-molecule contact and play therefore a fundamental role in this transport problem. Our findings demonstrate that vibrationally coupled electron transport through a molecular junction involves two types of processes: (i) transport processes, where an electron tunnels through the molecular bridge from one lead to the other, and (ii) electron-hole pair creation processes, where an electron tunnels from one of the leads onto the molecular bridge and back to the same lead again. Transport processes directly contribute to the electrical current flowing through a molecular contact and involve both excitation and deexcitation processes of the vibrational modes of the junction. Electron-hole pair creation processes do not directly contribute to the electrical current and typically involve only deexcitation processes. Nevertheless, they constitute a cooling mechanism for the vibrational modes of a single-molecule junction that is as important as cooling by transport processes. As the level of vibrational excitation determines the efficiency of electron transport processes, they have an indirect influence on the electrical current flowing through the junction. As we show, however, this influence can be substantial, in particular, if the molecule is coupled asymmetrically to the leads. Accounting for all these processes and their complex interrelationship, we analyze a number of intriguing transport phenomena, including rectification, negative differential resistance, anomalous peak broadening, mode-selective vibrational excitation and vibrationally induced decoherence. Moreover, we show that higher levels of vibrational excitation are obtained for weaker electronic-vibrational coupling. Thus, based on physical grounds, we establish a relation between the weak electronic-vibrational coupling limit and the limit of large bias voltages, where the level of vibrational excitation in a molecular junction

  16. Acceleration of the reaction OH + CO → H + CO2 by vibrational excitation of OH.

    Science.gov (United States)

    Kohno, Nanase; Izumi, Mari; Kohguchi, Hiroshi; Yamasaki, Katsuyoshi

    2011-05-19

    The collision complex formed from a vibrationally excited reactant undergoes redissociation to the reactant, intramolecular vibrational relaxation (randomization of vibrational energy), or chemical reaction to the products. If attractive interaction between the reactants is large, efficient vibrational relaxation in the complex prevents redissociation to the reactants with the initial vibrational energy, and the complex decomposes to the reactants with low vibrational energy or converts to the products. In this paper, we have studied the branching ratios between the intramolecular vibrational relaxation and chemical reaction of an adduct HO(v)-CO formed from OH(X(2)Π(i)) in different vibrational levels v = 0-4 and CO. OH(v = 0-4) generated in a gaseous mixture of O(3)/H(2)/CO/He irradiated at 266 nm was detected with laser-induced fluorescence (LIF) via the A(2)Σ(+)-X(2)Π(i) transition, and H atoms were probed by the two-photon excited LIF technique. From the kinetic analysis of the time-resolved LIF intensities of OH(v) and H, we have found that the intramolecular vibrational relaxation is mainly governed by a single quantum change, HO(v)-CO → HO(v-1)-CO, followed by redissociation to OH(v-1) and CO. With the vibrational quantum number v, chemical process from the adduct to H + CO(2) is accelerated, and vibrational relaxation is decelerated. The countertrend is elucidated by the competition between chemical reaction and vibrational relaxation in the adduct HOCO.

  17. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  18. Distributed Fiber-Optic Sensors for Vibration Detection

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  19. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  20. Distributed Fiber-Optic Sensors for Vibration Detection

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  1. Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.

    Directory of Open Access Journals (Sweden)

    Jian Cui

    Full Text Available In liquid chromatography-mass spectrometry (LC-MS, parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.

  2. Hydrogen Bonding and Vibrational Spectroscopy: A Theoretical Study

    Science.gov (United States)

    Chaban, Galina M.

    2005-01-01

    Effects of hydrogen bonding on vibrational spectra are studied for several hydrogen-bonded complexes, in which hydrogen bonding ranges from weak (25 kcal/mol). The systems studied include complexes of inorganic acids and salts with water and ammonia, as well as complexes of several organic molecules (nitriles and amino acids) with water. Since anharmonic effects are very strong in hydrogen-bonded systems, anharmonic vibrational frequencies and infrared intensities are computed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. The most common spectral effects induced by hydrogen bonding are red shifts of stretching vibrational frequencies ranging from approx.200/cm to over 2000/cm and significant increases of infrared intensities for those bonds that participate in hydrogen bonding. However, some systems (e.g. nitrile-water complexes) exhibit shifts in the opposite direction (to the blue) upon formation of hydrogen bonds.

  3. Ambient Vibration Test on Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Idris Nurul Shazwin

    2016-01-01

    Full Text Available An investigation was carried out to determine dynamic characteristic of reinforced concrete (RC bridges by using ambient vibration test (AVT. The ambient vibration sources on bridges may come from traffic, wind, wave motion and seismic events. AVT describes the dynamic characteristics of the bridge and ground by measuring the natural frequencies using highly sensitive seismometer sensor. This test is beneficial due to light weight equipment and smaller number of operator required, cheap and easy to be handled. It is able to give a true picture of the bridge dynamic behavior without any artificial force excitation when vibration data is recorded. A three-span reinforced concrete bridge located in Sri Medan, Batu Pahat, Johor was measured by using microtremor equipment consist of three units of 1 Hz eigenfrequency passive sensors used in this test was performed in normal operating condition without excitation required from any active sources or short period noise perturbations. Ten measurements were conducted on the bridge deck and ten measurements on the ground surface in order to identify the natural frequencies of the bridge. Several peak frequencies were identified from three components of Fourier Amplitude Spectra (FAS in transverse (North-South, longitudinal (East-West and vertical (Up-Down direction as well as squared average Horizontal to Vertical Spectral Ratio (HVSR of ground response, computed by using Geopsy software. From the result, it was expected the bridge have five vibration modes frequencies in the range of 1.0 Hz and 7.0 Hz with the first two modes in the transverse and longitudinal direction having a frequency 1.0 Hz, the third mode is 2.2 Hz in transverse direction, fourth and fifth mode is 5.8 Hz and 7.0 Hz. For ground natural frequencies are in range 1.0 Hz to 1.3 Hz for North-South direction and 1.0 Hz to 1.6 Hz for East-West direction. Finally the results are compared with several empirical formulas for simple

  4. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  5. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  6. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  7. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  8. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  9. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  10. Vibrational analysis of dibenzo-18-crown-6. Effect of dispersion correction on the calculated vibrational spectra

    Science.gov (United States)

    Al-Jallal, Nada A.; El-Azhary, Adel A.

    2017-09-01

    We report for the first time a detailed vibrational analysis of dibenzo-18-crown-6, db18c6. The experimental IR and Raman spectra of db18c6 were measured. The assignment of the fundamental vibrational frequencies of db18c6 was aided by using scaled quantum mechanical force fields calculated at the B3LYP/6-311G** and CAM-B3LYP/6-311G** levels. Comparison between the experimental and calculated spectra of some of the important conformations of db18c6 led to the conclusion that db18c6 in the solid phase exists in a C2 conformation that is similar to that predicted by X-ray, for also the solid phase. The effect of inclusion of the atom pair-wise dispersion correction to the B3LYP method, known as the B3LYP-D3 method, on the calculated IR and Raman spectra of db18c6 at the B3LYP level was also investigated. It was concluded that the effect of inclusion of the dispersion correction on the calculated vibrational frequencies and intensities is negligible.

  11. A new record peak luminosity for the LHC

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Two weeks of dedicated machine development paid off last weekend when the LHC ran for physics with three nominal intensity (∼1011 protons) bunches in each beam.   This brought a new record peak luminosity of around 8×1029 cm-2 s-1, and allowed the LHC to double the integrated luminosity delivered to the experiments since 30 March from 16 to 32 inverse nanobarns over the weekend. After a few more fills in this configuration, the number of bunches will be raised to six per beam, which will in turn allow the peak luminosity to break the 1030 cm-2 s-1 barrier for the first time, well on the way to achieving the 2010 objective of 1032 cm-2 s-1. This peak luminosity goal requires 800 nominal bunches per beam squeezed to a beta of 3.5 metres. The plan for 2011 is to run the LHC in this configuration over about 10 months, thus achieving the objective of recording one inverse femtobarn of data in total. The machine development period also allowed the TOTEM detectors to be set up with 45...

  12. Vibrational spectroscopy and analysis of pseudo-tetrahedral complexes with metal imido bonds.

    Science.gov (United States)

    Mehn, Mark P; Brown, Steven D; Jenkins, David M; Peters, Jonas C; Que, Lawrence

    2006-09-04

    A number of assignments have been previously posited for the metal-nitrogen stretch (nu(M-NR)), the N-R stretch (nu(MN-R)), and possible ligand deformation modes associated with terminally bound imides. Here we examine mononuclear iron(III) and cobalt(III) imido complexes of the monoanionic tridentate ligand [PhBP3] ([PhBP3] = [PhB(CH2PPh2)3]-) to clarify the vibrational features for these trivalent metal imides. We report the structures of [PhBP3]FeNtBu and [PhBP3]CoNtBu. Pseudo-tetrahedral metal imides of these types exhibit short bond lengths (ca. 1.65 A) and nearly linear angles about the M-N-C linkages, indicative of multiple bond character. Furthermore, these compounds give rise to intense, low-energy visible absorptions. Both the position and the intensity of the optical bands in the [PhBP3]MNR complexes depend on whether the substituent is an alkyl or aryl group. Excitation into the low-energy bands of [PhBP3]FeNtBu gives rise to two Raman features at 1104 and 1233 cm(-1), both of which are sensitive to 15N and 2H labeling. The isotope labeling suggests the 1104 cm(-1) mode has the greatest Fe-N stretching character, while the 1233 cm(-1) mode is affected to a lesser extent by (15)N substitution. The spectra of the deuterium-labeled imides further support this assertion. The data demonstrate that the observed peaks are not simple diatomic stretching modes but are extensively coupled to the vibrations of the ancillary organic group. Therefore, describing these complexes as simple diatomic or even triatomic oscillators is an oversimplification. Analogous studies of the corresponding cobalt(III) complex lead to a similar set of isotopically sensitive resonances at 1103 and 1238 cm(-1), corroborating the assignments made in the iron imides. Very minimal changes in the vibrational frequencies are observed upon replacement of cobalt(III) for iron(III), suggesting similar force constants for the two compounds. This is consistent with the previously proposed

  13. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    Science.gov (United States)

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  14. A beam-synchronous gated peak-detector for the LHC beam observation system

    CERN Document Server

    Levens, T E; Wehrle, U

    2013-01-01

    Measurements of the bunch peak amplitude using the longitudinal wideband wall-current monitor are a vital tool used in the Large Hadron Collider (LHC) beam observation system. These peak-detected measurements can be used to diagnose bunch shape oscillations, for example coherent quadrupole oscillations, that occur at injection and during beam manipulations. Peak-detected Schottky diagnostics can also be used to obtain the synchrotron frequency distribution and other parameters from a bunched beam under stable conditions. For the LHC a beam-synchronous gated peak detector has been developed to allow individual bunches to be monitored without the influence of other bunches circulating in the machine. The requirement for the observation of both low intensity pilot bunches and high intensity bunches for physics requires a detector front-end with a high bandwidth and a large dynamic range while the usage for Schottky measurements requires low noise electronics. This paper will present the design of this detector s...

  15. GROUND VIBRATIONS LEVEL CHARACTERIZATION THROUGH THE GEOLOGICAL STRENGTH INDEX (GSI

    Directory of Open Access Journals (Sweden)

    Josip Mesec

    2017-01-01

    Full Text Available This paper analyses the results of trial, construction and quarry blasting, carried out in sediment rock deposits, mainly limestone and dolomite, at diff erent locations in the Republic of Croatia. The division of the three test groups was based on the lithology changes and GSI values of the rock units at these locations. The peak particle velocity measurements with 246 recorded events, was conducted during a long period of six years. Based on the results of seismic measurements, the empirical relationships between peak particle velocity and scaled distance were established for each group. In order to establish a useful relationship between peak particle velocity and scaled distance, simple regression analysis was conducted with the Blastware software program from Instantel. The results of this study can be used to characterize ground vibration levels to the environment, through the geological strength index (GSI.

  16. Thermoluminescence solid-state nanodosimetry—the peak 5A/5 dosemeter

    Science.gov (United States)

    Fuks, E.; Horowitz, Y. S.; Horowitz, A.; Oster, L.; Marino, S.; Rainer, M.; Rosenfeld, A.; Datz, H.

    2011-01-01

    The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following 90Sr/90Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ∼5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly ‘single-glow peak’ curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ∼15 % (1 SD) compared with ∼25 % for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for 90Sr/90Y low-ionisation density irradiations to a maximum value of ∼0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1–1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a ‘nanoscopic’ mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5. PMID:21149323

  17. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  18. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  19. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  20. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  1. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  2. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  3. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    CERN Document Server

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  4. Fault Detection Enhancement in Rolling Element Bearings via Peak-Based Multiscale Decomposition and Envelope Demodulation

    Directory of Open Access Journals (Sweden)

    Hua-Qing Wang

    2014-01-01

    Full Text Available Vibration signals of rolling element bearings faults are usually immersed in background noise, which makes it difficult to detect the faults. Wavelet-based methods being used commonly can reduce some types of noise, but there is still plenty of room for improvement due to the insufficient sparseness of vibration signals in wavelet domain. In this work, in order to eliminate noise and enhance the weak fault detection, a new kind of peak-based approach combined with multiscale decomposition and envelope demodulation is developed. First, to preserve effective middle-low frequency signals while making high frequency noise more significant, a peak-based piecewise recombination is utilized to convert middle frequency components into low frequency ones. The newly generated signal becomes so smoother that it will have a sparser representation in wavelet domain. Then a noise threshold is applied after wavelet multiscale decomposition, followed by inverse wavelet transform and backward peak-based piecewise transform. Finally, the amplitude of fault characteristic frequency is enhanced by means of envelope demodulation. The effectiveness of the proposed method is validated by rolling bearings faults experiments. Compared with traditional wavelet-based analysis, experimental results show that fault features can be enhanced significantly and detected easily by the proposed method.

  5. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  6. [Synthesis, characterization and study on vibration spectra of potassium triborate].

    Science.gov (United States)

    Zhang, Jin-Ping; Sun, Yong; Yang, Gang; Li, Zuo-Hu

    2007-07-01

    Potassium triborate was synthesized with potassium carbonate and boric acid by controlling suitable feed mixture ratio, reaction temperature and dehydration temperature in the self-designed boiling reactor. According to chemical analysis, the formula of the synthetics was monohydrate potassium triborate (KB3O5 x H2O). It's structure was characterized by XRD, FTIR, Raman and TG, and it was found by XRD analysis that the synthetics was amorphous solid. FTIR and Raman spectroscopy anal-ysis show that three coordination B(3) -O bond, four coordination B(4) -O bond, and hydroxy and triborate anions existed in the formula of the synthetics. Thermogravimetric (TG) analysis show that the groups which can lose mono-water existed in the formula of the synthetics, and structural formula of the synthetics was deduced as K[B3O4 (OH)2]. Vibration spectra of the synthetics were studied, including FTIR and Raman spectroscopy. Vibration absorption peaks of some main groups of the synthetics were investigated, including three coordination B(3) -O bond and four coordination B(4) -O bond that are the main existing forms of boron atoms in the synthetics as well as other groups, and each vibration absorption peak was assigned.

  7. X-ray diffraction peak profiles from threading dislocations in GaN epitaxial films

    OpenAIRE

    Kaganer, V M; Brandt, O.; Trampert, A.; Ploog, K. H.

    2004-01-01

    We analyze the lineshape of x-ray diffraction profiles of GaN epitaxial layers with large densities of randomly distributed threading dislocations. The peaks are Gaussian only in the central, most intense part of the peak, while the tails obey a power law. The $q^{-3}$ decay typical for random dislocations is observed in double-crystal rocking curves. The entire profile is well fitted by a restricted random dislocation distribution. The densities of both edge and screw threading dislocations ...

  8. Electrostatic MEMS vibration energy harvester for HVAC applications

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2015-12-01

    This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.

  9. Damage to surface structures due to blast vibration

    Energy Technology Data Exchange (ETDEWEB)

    P.K. Singh; M.P. Roya [Central Institute of Mining and Fuel Research, Dhanbad (India). Blasting Research Group

    2010-09-15

    This paper describes effect of blast produced ground vibration on damage potential to residential structures to determine safe levels of ground vibration for the residential structures and other buildings in mining areas. Impacts of 341 blasts detonated at two mines were monitored at the test structures and 1871 blast vibrations signatures were recorded on or near the test structures. Cosmetic cracks in a native brick-mud-cement house were detected at peak particle velocities (PPV) between 51.6 and 56.3 mm/s. The reinforced concrete and cement mortar (RCC) structure experienced cosmetic cracks at PPVs of 68.6-71.3 mm/s at the first floor, whereas at second floor it was detected at PPV levels of 71.2-72.2 mm/s. Minor damage in brick-mud-cement house was recorded at PPV levels of 81.0-89.7 mm/s. The RCC structure at first and second floors experienced minor damage at PPV levels of 104 and 98.3-118 mm/s, respectively. The brick-mud-cement house experienced major damage at PPV level of 99.6-113.0 mm/s, while major damage was recorded in RCC structure on first floor at PPV of 122 mm/s, the second floor at PPV levels of 128.9-161 mm/s. Recommended threshold limits of vibrations for the different type of structures is based on these measurements and observations.

  10. Hurricane Mitch: Peak Discharge for Selected River Reachesin Honduras

    Science.gov (United States)

    Smith, Mark E.; Phillips, Jeffrey V.; Spahr, Norman E.

    2002-01-01

    Hurricane Mitch began as a tropical depression in the Caribbean Sea on 22 October 1998. By 26 October, Mitch had strengthened to a Category 5 storm as defined by the Saffir-Simpson Hurricane Scale (National Climate Data Center, 1999a), and on 27 October was threatening the northern coast of Honduras (fig. 1). After making landfall 2 days later (29 October), the storm drifted south and west across Honduras, wreaking destruction throughout the country before reaching the Guatemalan border on 31 October. According to the National Climate Data Center of the National Oceanic and Atmospheric Administration (National Climate Data Center, 1999b), Hurricane Mitch ranks among the five strongest storms on record in the Atlantic Basin in terms of its sustained winds, barometric pressure, and duration. Hurricane Mitch also was one of the worst Atlantic storms in terms of loss of life and property. The regionwide death toll was estimated to be more than 9,000; thousands of people were reported missing. Economic losses in the region were more than $7.5 billion (U.S. Agency for International Development, 1999). Honduras suffered the most widespread devastation during the storm. More than 5,000 deaths, and economic losses of more than $4 billion, were reported by the Government of Honduras. Honduran officials estimated that Hurricane Mitch destroyed 50 years of economic development. In addition to the human and economic losses, intense flooding and landslides scarred the Honduran landscape - hydrologic and geomorphologic processes throughout the country likely will be affected for many years. As part of the U.S. Government's response to the disaster, the U.S. Geological Survey (USGS) conducted post-flood measurements of peak discharge at 16 river sites throughout Honduras (fig. 2). Such measurements, termed 'indirect' measurements, are used to determine peak flows when direct measurements (using current meters or dye studies, for example) cannot be made. Indirect measurements of

  11. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  12. Design Optimization of a Mecanum Wheel to Reduce Vertical Vibrations by the Consideration of Equivalent Stiffness

    Directory of Open Access Journals (Sweden)

    Jong-Jin Bae

    2016-01-01

    Full Text Available Mecanum wheels are capable of moving a vehicle to any direction instantaneously by the combination of independent wheel rotations. Because the mecanum wheel is composed of a hub and rollers, however, it has unavoidable drawbacks such as vertical and horizontal vibrations due to the sequential contacts between rollers and ground. In order to investigate the dynamic characteristics of a mecanum wheel, we made a prototype and performed experiments to measure the vertical vibrations. Interestingly, it was observed that the vertical accelerations were asymmetric with respect to the average value of signals; the vibration signals of upward and downward directions show quite different shape. This asymmetric phenomenon was confirmed through the dynamic simulations performed by RecurDyn. In addition, the peak-to-peak and RMS values of the displacements and accelerations were calculated to investigate the effects of the curvature of rollers on the vertical vibrations of the vehicle. Furthermore, we proposed a mecanum wheel having a spring to attenuate the vibrations. It was also noted that the significant reduction of the vertical accelerations was observed due to the absence of the spring. Finally, considering the equivalent stiffness of the mecanum wheel for several different fillet radii, we found the optimal geometric design which minimizes the vertical vibration of a mecanum wheel.

  13. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.

    Science.gov (United States)

    Zhang, Qiang; Shi, Shengjun; Chen, Weishan

    2016-03-01

    An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer is proposed. The transducer is a Langevin type transducer which is composed of an exponential horn, four groups of PZT ceramics and a back beam. The exponential horn can focus the vibration energy, and can enlarge vibration amplitude and velocity efficiently. A bending vibration model of the transducer is first constructed, and subsequently an electromechanical coupling model is constructed based on the vibration model. In order to obtain the most suitable excitation position of the PZT ceramics, the effective electromechanical coupling coefficient is optimized by means of the quadratic interpolation method. When the effective electromechanical coupling coefficient reaches the peak value of 42.59%, the optimal excitation position (L1=22.52 mm) is found. The FEM method and the experimental method are used to validate the developed analytical model. Two groups of the FEM model (the Group A center bolt is not considered, and but the Group B center bolt is considered) are constructed and separately compared with the analytical model and the experimental model. Four prototype transducers around the peak value are fabricated and tested to validate the analytical model. A scanning laser Doppler vibrometer is employed to test the bending vibration shape and resonance frequency. Finally, the electromechanical coupling coefficient is tested indirectly through an impedance analyzer. Comparisons of the analytical results, FEM results and experiment results are presented, and the results show good agreement. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. How to use your peak flow meter

    Science.gov (United States)

    ... discharge COPD - control drugs COPD - quick-relief drugs COPD - what to ask your doctor Exercise-induced asthma Exercising and asthma at school Make peak flow a habit! Signs of an asthma attack Stay away from asthma triggers Review Date 2/15/2016 Updated by: Neil K. ...

  15. Some Phenomenological Aspects of the Peak Experience

    Science.gov (United States)

    Rosenblatt, Howard S.; Bartlett, Iris

    1976-01-01

    This article relates the psychological dynamics of "peak experiences" to two concepts, intentionality and paradoxical intention, within the philosophical orientation of phenomenology. A review of early philosophical theories of self (Kant and Hume) is presented and compared with the experiential emphasis found in the phenomenology of Husserl.…

  16. Amplifying vibrational circular dichroism by manipulation of the electronic manifold.

    Science.gov (United States)

    Domingos, Sérgio R; Panman, Matthijs R; Bakker, Bert H; Hartl, Frantisek; Buma, Wybren J; Woutersen, Sander

    2012-01-11

    Vibrational circular dichroism is a powerful technique to study the stereochemistry of chiral molecules, but often suffers from small signal intensities. Electrochemical modulation of the energies of the electronically excited state manifold is now demonstrated to lead to an order of magnitude enhancement of the differential absorption. Quantum-chemical calculations show that increased mixing between ground and excited states is at the origin of this amplification. This journal is © The Royal Society of Chemistry 2012

  17. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  18. Vibrational modes of the Cu(100)-c(2x2)-Pd surface

    DEFF Research Database (Denmark)

    Stoltze, Per; Hannon, J.B.; Ibach, H.

    1996-01-01

    The vibrational modes of the surface have been measured using electron-energy loss spectroscopy. The measured mode energies are compared to dynamical models with parameters taken from effective medium theory. Strong Pd-Cu interplanar bonding gives rise to nearly degenerate Pd and Cu vibrations (95...... cm(-1)) at the (X) over bar point, despite the large mass difference of the ions. Upon low-temperature annealing of the surface, overlayer islands of pure Cu coalesce and order. These overlayer islands are characterized by a high-energy vibrational mode near 128 cm(-1) which grows in intensity upon...

  19. Off-resonant vibrational excitation: Orientational dependence and spatial control of photofragments

    DEFF Research Database (Denmark)

    Machholm, Mette; Henriksen, Niels Engholm

    2000-01-01

    -dependent response to the IR fields is due to the anharmonicity of the potential. A subsequent ultraviolet laser pulse in resonance at the outer turning point of the vibrational motion can then dissociate the oscillating molecules, all with the same orientation, leading to spatial control of the photofragment......Off-resonant and resonant vibrational excitation with short intense infrared (IR) laser pulses creates localized oscillating wave packets, but differs by the efficiency of the excitation and surprisingly by the orientational dependence. Orientational selectivity of the vibrational excitation...

  20. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function.

    Science.gov (United States)

    Reddy, Sandeep K; Moberg, Daniel R; Straight, Shelby C; Paesani, Francesco

    2017-12-28

    The structure of liquid water as a function of temperature is investigated through the modeling of infrared and Raman spectra along with structural order parameters calculated from classical and quantum molecular dynamics simulations with the MB-pol many-body potential energy function. The magnitude of nuclear quantum effects is also monitored by comparing the vibrational spectra obtained from classical and centroid molecular dynamics, both in intensities and peak positions. The observed changes in spectral activities are shown to reflect changes in the underlying structure of the hydrogen-bond network and are found to be particularly sensitive to many-body effects in the representation of the electrostatic interactions. Overall, good agreement is found with the experimental spectra, which provides further evidence for the accuracy of MB-pol in predicting the properties of water.

  1. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function

    Science.gov (United States)

    Reddy, Sandeep K.; Moberg, Daniel R.; Straight, Shelby C.; Paesani, Francesco

    2017-12-01

    The structure of liquid water as a function of temperature is investigated through the modeling of infrared and Raman spectra along with structural order parameters calculated from classical and quantum molecular dynamics simulations with the MB-pol many-body potential energy function. The magnitude of nuclear quantum effects is also monitored by comparing the vibrational spectra obtained from classical and centroid molecular dynamics, both in intensities and peak positions. The observed changes in spectral activities are shown to reflect changes in the underlying structure of the hydrogen-bond network and are found to be particularly sensitive to many-body effects in the representation of the electrostatic interactions. Overall, good agreement is found with the experimental spectra, which provides further evidence for the accuracy of MB-pol in predicting the properties of water.

  2. Development and comparison of different intensity duration ...

    African Journals Online (AJOL)

    This paper is aimed at developing and comparing different intensity duration frequency models. Twenty three years peak rainstorm intensity data with their corresponding durations was collected from the Nigerian Meteorological Agency, Calabar, Nigeria. Microsoft Excel software was used to develop exponential, ...

  3. Effect of Vibration on Pain Response to Heel Lance: A Pilot Randomized Control Trial.

    Science.gov (United States)

    McGinnis, Kate; Murray, Eileen; Cherven, Brooke; McCracken, Courtney; Travers, Curtis

    2016-12-01

    Applied mechanical vibration in pediatric and adult populations has been shown to be an effective analgesic for acute and chronic pain, including needle pain. Studies among the neonatal population are lacking. According to the Gate Control Theory, it is expected that applied mechanical vibration will have a summative effect with standard nonpharmacologic pain control strategies, reducing behavioral and physiologic pain responses to heel lancing. To determine the safety and efficacy of mechanical vibration for relief of heel lance pain among neonates. In this parallel design randomized controlled trial, eligible enrolled term or term-corrected neonates (n = 56) in a level IV neonatal intensive care unit were randomized to receive either sucrose and swaddling or sucrose, swaddling, and vibration for heel lance analgesia. Vibration was applied using a handheld battery-powered vibrator (Norco MiniVibrator, Hz = 92) to the lateral aspect of the lower leg along the sural dermatome throughout the heel lance procedure. Neonatal Pain, Agitation, and Sedation Scale (N-PASS) scores, heart rate, and oxygen saturations were collected at defined intervals surrounding heel lancing. Infants in the vibration group (n = 30) had significantly lower N-PASS scores and more stable heart rates during heel stick (P = .006, P = .037) and 2 minutes after heel lance (P = .002, P = .016) than those in the nonvibration group. There were no adverse behavioral or physiologic responses to applied vibration in the sample. Applied mechanical vibration is a safe and effective method for managing heel lance pain. This pilot study suggests that mechanical vibration warrants further exploration as a nonpharmacologic pain management tool among the neonatal population.

  4. Evaluation of hand-arm vibration reducing effect of anti-vibration glove

    OpenAIRE

    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎

    2015-01-01

    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  5. Modelling the Environmental Effects of Railway Vibrations from Different Types of Rolling Stock: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Georges Kouroussis

    2015-01-01

    (normalised metric, defined as the ratio between the peak particle velocity and the nominal axle load, is introduced for a comparison of dynamic excitation. It is concluded that rolling stock dynamics have a significant influence on the free field vibrations at low frequencies, whereas high frequencies are dominated by the presence of track unevenness.

  6. Active Lubrication: Feasibility and Limitations on Reducing Vibration in Rotating Machinery

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    In the present work, experimental results show the feasibility of reducing the amplitude of resonance peaks in rotor-bearing test rig, in the frequency domain, by using active lubricated bearings. The most important consequence of this vibration reduction in rotating machines is the feasibility...

  7. Intensive mobilities

    DEFF Research Database (Denmark)

    Vannini, Phillip; Bissell, David; Jensen, Ole B.

    which relate to transport, housing and employment. Yet we argue that the experiential dimensions of long distance mobilities have not received the attention that they deserve within geographical research on mobilities. This paper combines ideas from mobilities research and contemporary social theory......This paper explores the intensities of long distance commuting journeys as a way of exploring how bodily sensibilities are being changed by the mobilities that they undertake. The context of this paper is that many people are travelling further to work than ever before owing to a variety of factors...... with fieldwork conducted in Canada, Denmark and Australia to develop our understanding of the experiential politics of long distance workers. Rather than focusing on the extensive dimensions of mobilities that are implicated in patterns and trends, our paper turns to the intensive dimensions of this experience...

  8. Evaluation of selected sidewalk pavement surfaces for vibration experienced by users of manual and powered wheelchairs.

    Science.gov (United States)

    Cooper, Rory A; Wolf, Erik; Fitzgerald, Shirley G; Kellerher, Annmarie; Ammer, William; Boninger, Michael L; Cooper, Rosemarie

    2004-01-01

    Obstacles such as bumps, curb descents, and uneven driving surfaces cause vibrations that affect the wheelchair, and in turn, the wheelchair user. Chronic exposure can cause low-back pain, disk degeneration, and other harmful effects. Little research has been conducted to assess the vibrations experienced by wheelchair users. The purpose of this study was to conduct an evaluation of the vibration exposure during electric-powered wheelchair driving and mechanical energy requirements for manual wheelchair propulsion over selected sidewalk surfaces. The goal was to determine the criteria for a wheelchair-pedestrian access route that does not require excessive propulsive work or expose wheelchair users to potentially harmful vibrations. Ten unimpaired individuals participated in this study. Six sidewalk surfaces were tested. Measured variables included power of the acceleration per octave, mechanical work to propel over surfaces, peak acceleration, and frequency at which peak acceleration occurs. For both the manual and electric-powered wheelchair, at 1 m/s, significant differences were found in peak accelerations between the seat and footrest (P < 0.0001) and between the sidewalk surfaces (P = 0.004). The greatest risk for injury caused by shock and vibration exposure occurs at frequencies near the natural frequency of seated humans (4-15 Hz). The values for work required to propel over the surfaces tested were not statistically significantly different. Besides appearance and construction, the only distinguishing characteristic was surface roughness caused by the joints. When treating the poured concrete sidewalk as the standard, surfaces 2, 3, 5, and 6 compared most favorably in terms of vibration exposure, whereas surface 4 produced mixed results. Surfaces 2, 3, 5, and 6 yielded results that were similar to the poured concrete sidewalk and could be considered acceptable for wheelchair users. In conclusion, surfaces other than the traditional poured concrete can be

  9. Rotational spectra of vibrationally excited CCH and CCD.

    Science.gov (United States)

    Killian, T C; Gottlieb, C A; Thaddeus, P

    2007-09-21

    The millimeter-wave rotational spectra of the lowest bending and stretching vibrational levels of CCH and CCD were observed in a low pressure discharge through acetylene and helium. The rotational, centrifugal distortion, and fine structure constants were determined for the (02(0)0) and (02(2)0) bending states, the (100) and (001) stretching levels, and the (011) combination level of CCH. The same pure bending and stretching levels, and the (110) combination level were observed in CCD. Apparent anomalies in the spectroscopic constants in the bending states were shown to be due to l-type resonances. Hyperfine constants, which in CCH are sensitive to the degree of admixture of the A 2Pi excited electronic state, were determined in the excited vibrational levels of both isotopic species. Theoretical Fermi contact and dipole-dipole hyperfine constants calculated by Peric et al. [J. Mol. Spectrosc. 150, 70 (1991)] were found to be in excellent agreement with the measured constants. In CCD, new rotational lines tentatively assigned to the (100) level largely on the basis of the observed hyperfine structure support the assignment of the C-H stretching fundamental (nu1) by Stephens et al. [J. Mol. Struct. 190, 41 (1988)]. Rotational lines in the excited vibrational levels of CCH are fairly intense in our discharge source because the vibrational excitation temperatures of the bending vibrational levels and the (110) and (011) combination levels are only about 100 K higher than the gas kinetic temperature, unlike the higher frequency stretching vibrations, where the excitation temperatures are five to ten times higher.

  10. Noise and vibration analysis for automotive radiator cooling fan

    Science.gov (United States)

    Razak, N. F. D.; Sani, M. S. M.; Azmi, W. H.; Zhang, B.

    2017-10-01

    This paper aims to analyse the noise and vibration of the automotive radiator specifically focused on its cooling fan for different fan conditions and different coolants used namely Ethylene Glycol (EG) water-based and Titanium Oxide (TiO2) nanofluid. Noise source identification is carried out by utilizing the sound intensity mapping method while an accelerometer is used to measure the vibration results. Both of these experiments are conducted when the fan was both in static and working conditions. The maximum cooling fan speed for the working fan detected by a tachometer for EG water-based is 1990 rpm while TiO2 nanofluid is 2030 rpm. The difference in speed is due to the different physical properties such viscosity of each coolant has where TiO2 nanofluid has lower viscosity than EG water-based. The maximum sound power level produced by EG water-based is 53.73 dB while TiO2 nanofluid is 101.94 dB. Meanwhile, the vibration frequencies of EG water-based are higher than TiO2 nanofluid. The noise level increases with the cooling fan speed but decreases with the vibration frequency. Apart from studying the noise and vibration of the automotive radiator, this research also analysed the potential application using nanofluid due to its great properties according to its major use in the heat transfer enhancement. As a conclusion, nanofluid as a radiator coolant could improve heat transfer rate, and could also reduce the presence of vibration in the automotive cooling system.

  11. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    Science.gov (United States)

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  12. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    Science.gov (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  13. Improved peak shape fitting in alpha spectra.

    Science.gov (United States)

    Pommé, S; Caro Marroyo, B

    2015-02-01

    Peak overlap is a recurrent issue in alpha-particle spectrometry, not only in routine analyses but also in the high-resolution spectra from which reference values for alpha emission probabilities are derived. In this work, improved peak shape formulae are presented for the deconvolution of alpha-particle spectra. They have been implemented as fit functions in a spreadsheet application and optimum fit parameters were searched with built-in optimisation routines. Deconvolution results are shown for a few challenging spectra with high statistical precision. The algorithm outperforms the best available routines for high-resolution spectrometry, which may facilitate a more reliable determination of alpha emission probabilities in the future. It is also applicable to alpha spectra with inferior energy resolution. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Peak oil, food systems, and public health.

    Science.gov (United States)

    Neff, Roni A; Parker, Cindy L; Kirschenmann, Frederick L; Tinch, Jennifer; Lawrence, Robert S

    2011-09-01

    Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all.

  15. Displacement of polarons by vibrational modes in doped conjugated polymers

    Science.gov (United States)

    Anderson, M.; Ramanan, C.; Fontanesi, C.; Frick, A.; Surana, S.; Cheyns, D.; Furno, M.; Keller, T.; Allard, S.; Scherf, U.; Beljonne, D.; D'Avino, G.; von Hauff, E.; Da Como, E.

    2017-10-01

    Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p -doped conjugated homo- and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors.

  16. Ten Reasons to Take Peak Oil Seriously

    Directory of Open Access Journals (Sweden)

    Robert J. Brecha

    2013-02-01

    Full Text Available Forty years ago, the results of modeling, as presented in The Limits to Growth, reinvigorated a discussion about exponentially growing consumption of natural resources, ranging from metals to fossil fuels to atmospheric capacity, and how such consumption could not continue far into the future. Fifteen years earlier, M. King Hubbert had made the projection that petroleum production in the continental United States would likely reach a maximum around 1970, followed by a world production maximum a few decades later. The debate about “peak oil”, as it has come to be called, is accompanied by some of the same vociferous denials, myths and ideological polemicizing that have surrounded later representations of The Limits to Growth. In this review, we present several lines of evidence as to why arguments for a near-term peak in world conventional oil production should be taken seriously—both in the sense that there is strong evidence for peak oil and in the sense that being societally unprepared for declining oil production will have serious consequences.

  17. Revisiting Twomey's approximation for peak supersaturation

    Directory of Open Access Journals (Sweden)

    B. J. Shipway

    2015-04-01

    Full Text Available Twomey's seminal 1959 paper provided lower and upper bound approximations to the estimation of peak supersaturation within an updraft and thus provides the first closed expression for the number of nucleated cloud droplets. The form of this approximation is simple, but provides a surprisingly good estimate and has subsequently been employed in more sophisticated treatments of nucleation parametrization. In the current paper, we revisit the lower bound approximation of Twomey and make a small adjustment that can be used to obtain a more accurate calculation of peak supersaturation under all potential aerosol loadings and thermodynamic conditions. In order to make full use of this improved approximation, the underlying integro-differential equation for supersaturation evolution and the condition for calculating peak supersaturation are examined. A simple rearrangement of the algebra allows for an expression to be written down that can then be solved with a single lookup table with only one independent variable for an underlying lognormal aerosol population. While multimodal aerosol with N different dispersion characteristics requires 2N+1 inputs to calculate the activation fraction, only N of these one-dimensional lookup tables are needed. No additional information is required in the lookup table to deal with additional chemical, physical or thermodynamic properties. The resulting implementation provides a relatively simple, yet computationally cheap, physically based parametrization of droplet nucleation for use in climate and Numerical Weather Prediction models.

  18. The Hong Kong Peak Tram Illusion

    Directory of Open Access Journals (Sweden)

    Ping-Hui Chiu

    2011-05-01

    Full Text Available Hong Kong Peak Tram Illusion is the perceived slant of buildings towards the peak away from the vertical while observers travel on the Hong Kong peak tram. We measured the perceived tilt of the buildings from true vertical (illusion size using a rotary pitch while an identical pitch read the slope of the hill. The illusion was hypothesized to be jointly determined by at least four factors: (i the reclining position of the observer, (ii the frame of the tram window, (iii the direction of motion, and (iv additional reference cues from outside the window. Our results showed that the illusion: (i was reduced by up to 20% when observers sat with a wedge on their back and up to 40% when they stood up. (ii remained even when observers moved closer to the window to avoid the effect of the frame. (iii was 20% larger when the tram was descending, as opposed to ascending. (iv was less apparent during the day. The illusion appears to be due to integration of the above sensory information as it cannot be accounted for by each factor alone. The illusion provides a unique venue to study cross-modal sensory interaction in the nature setting.

  19. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H

    2014-06-14

    This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.

  20. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    Directory of Open Access Journals (Sweden)

    Lindsey T. Funch

    2017-11-01

    Full Text Available The purpose of the study was to examine the changes in peak oxygen consumption ( V ˙O2peak and running economy (RE following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years were divided into two training groups, matched from baseline V ˙O2peak: High Intensity Training (HITrun; n = 8 and High Intensity Interval Training (HIIT; n = 6. Participants completed 12 training sessions. HITrun consisted of 30 min of high-intensity running, while HIIT consisted of a series of whole-body high intensity Tabata-style intervals (75–85% of age predicted maximum heart rate for a total of four minutes. In addition to the interval training, the off-season training included six resistance training sessions, three team practices, and concluded with a team scrimmage. V ˙O2peak was measured pre- and post-training to determine the effectiveness of the training program. A two-way mixed (group × time ANOVA showed a main effect of time with a statistically significant difference in V ˙O2peak from pre- to post-testing, F(1, 12 = 12.657, p = 0.004, partial η2 = 0.041. Average (±SD V ˙O2peak increased from 44.64 ± 3.74 to 47.35 ± 3.16 mL·kg−1·min−1 for HIIT group and increased from 45.39 ± 2.80 to 48.22 ± 2.42 mL·kg−1·min−1 for HITrun group. Given the similar improvement in aerobic power, coaches and training staff may find the time saving element of HIIT-type conditioning programs attractive.

  1. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  2. Improving EEG signal peak detection using feature weight learning ...

    Indian Academy of Sciences (India)

    Asrul Adam

    the combination of eye gaze and EEG for brain–machine interfacing have ... first and second half waves, peak width, ascending peak slope of the ... half wave. Acir et al [1] introduced an additional feature of peak amplitude, defined as the peak-to-peak amplitude of the second half wave, and also two addition features of the.

  3. Hand vibration: non-contact measurement of local transmissibility.

    Science.gov (United States)

    Scalise, Lorenzo; Rossetti, Francesco; Paone, Nicola

    2007-10-01

    Grip and push forces required for the use of vibrating tools are considered important influencing inputs for the assessment of hand-vibration transmissibility (TR). At present TR measurements are usually referred to the palm of the hand The aims of the present paper are: to present an original measurement procedure for non-contact assessment of the transmissibility of fingers; to report TR data measured on six points of the hand of nine subjects; to correlate TR with: grip, push, hand volume and BMI. Tests have been carried out using a cylindrical handle mounted on an shaker. A laser Doppler vibrometer is used to measure the vibration velocity. Push force is measured using a force platform, whereas grip force is measured using a capacitive pressure sensor matrix wrapped around the handle. Tests have been conducted on nine healthy subjects. Proximal and distal regions of the second, fourth and fifth fingers have been investigated. Tests were carried out using a push force of: 25, 50 and 75 N. The excitation signal was a broadband random vibration in the band 16-400 Hz with un-weighted rms acceleration level of 6 m/s(2). Results show how in general TR values measured on distal points are higher respect to the proximal points. A resonance peak is present for all the measured points in the band 55-80 Hz. ANOVA analysis showed that TR is not significantly dependent on: BMI, hand volume and push force alone. While TR is significantly dependent on: grip force alone, measurement positions and grip and push force together. The proposed procedure shows the advantage to allow local vibration measurement directly on the fingers without the necessity to apply any contact sensor. Results demonstrate how the transmissibility is significantly different on the point where the acceleration is measured.

  4. Investigation of structure and vibrational properties of cyclobutane pirimidine dimer

    Directory of Open Access Journals (Sweden)

    Petković Milena M.

    2013-01-01

    Full Text Available We performed a theoretical analysis of the structure and vibrational properties of cyclobutane pyrimidine dimer, which is the main product in a photochemical reaction involving two molecules of 1-methylthymine. Thymine is a pyrimidine base that has the highest yield of the dimerization photoproducts. Methylation in position one was chosen because in this position thymine is linked to sugar in DNA. The calculations were performed at the B3LYP/cc-pVTZ level with a Gaussian program package. All molecular geometries were optimized without symmetry constraints in vacuum and D2O. Vibrational frequencies were calculated in the harmonic approximation. It was shown that there are two stable isomers, CPD(cis-syn and CPD(trans-syn. CPD(trans-syn is more stable both in vacuum and in D2O. By dissolving these molecules in D2O, both structures become more stable, although the stabilization of the less stable isomer is more pronounced due to its larger dipole moment. Thus, the difference in stability of the two isomers in D2O is almost two times lower than in vacuum. Because of the similarity of the two isomers’ structures, the difference in their vibrational spectra is not pronounced. Within the harmonic approximation, there is only a slight difference in the C=O and C-H stretching region. The difference in the N-H stretching region is more pronounced; in the CPD(cis-syn molecule the two bonds vibrate separately, whereas in the CPD(trans-syn the two modes couple, and this coupling results in symmetric and asymmetric N-H stretching. The observation shows that a slight difference in geometry can be reflected in the shape of the infrared spectra. A more detailed analysis of the vibrational properties would involve computation of anharmonic coupling terms, which would enable a more precise determination of the peak positions.

  5. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  6. Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak EnergyndashPeak Luminosity Relation

    OpenAIRE

    Yonetoku, D.; Murakami, T.; Nakamura, T.; Yamazaki, Ryo; Inoue, A.K.; Ioka, K.

    2004-01-01

    We estimate a gamma-ray burst (GRB) formation rate based on the new relation between the spectral peak energy (Ep) and the peak luminosity. The new relation is derived by combining the data of Ep and the peak luminosities by BeppoSAX and BATSE, and it looks considerably tighter and more reliable than the relations suggested by the previous works. Using the new Ep-luminosity relation, we estimate redshifts of the 689 GRBs without known distances in the BATSE catalog and derive a GRB formation ...

  7. Investigation and analysis the vibration of handles of chainsaw without cutting

    Directory of Open Access Journals (Sweden)

    M Feyzi

    2016-04-01

    (VMI-192. The accelerometer mounted on an adapter inserted between the handle and accelerometer. The experiments were conducted in split plot completely randomized design. Ninety tests in two handles, three speeds of engine, three perpendicular axes and five repeats were conducted. The vibration acceleration at various conditions was measured and the root mean square of vibration acceleration was calculated based on acceleration-time spectrum. To investigate the characteristics of vibration in different speeds, the vibration spectrums in time domain were converted to spectrums in frequency domain. The frequency weighted RMS acceleration at 1/3rd octave bands from 6.3Hz to 1250Hz and the vibration total value was calculated from frequency spectrum. To analyze the obtained data, SAS software was used. Furthermore, the Duncan's multiple range tests were used to compare the RMS values. Results and Discussion: Main source of vibration of chainsaw was single cylinder engine. The acceleration spectra of employed chainsaw had peaks in frequencies in accordance with the speed of engine. These peaks in 2800 rpm, 10000 rpm and 13300 rpm speeds of engine occurred in 46.5Hz, 166.5Hz and 221.5Hz, respectively. To achieve a safe design for handle of portable tools, identifying the frequency which leads to the maximum value of vibration acceleration is very useful. To avoid the resonance phenomenon, the natural frequency of handle must be far from dominant frequency of engine. The results of ANOVA showed that the RMS acceleration in different axes and different speeds were significant at 1% level. The maximum value of vibration acceleration, at idling engine speed, occurred in the lateral axis. In addition, the mentioned variable was maximized in normal and axial axes at nominal and racing speeds, respectively. The total value of vibration was increased when the speed of engine moving away from nominal speed. This increase in rear handle is very larger than front handle. The total

  8. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  9. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  10. Absolute intensities of spectral lines in carbon dioxide bands near 2050/cm

    Science.gov (United States)

    Rinsland, C. P.; Benner, D. C.

    1984-01-01

    The absolute intensities of individual lines of eleven relatively weak bands of (C-12)(O-16)2, (C-13)(O-16)2, (O-16)(C-12)(O-18), and (O-16)(C-12)(O-17) near 2050/cm were measured and recorded at room temperature and 0.01/cm resolution with the Fourier transform spectrometer located in the McMath solar telescope complex located at the National Solar Observatory on Kitt Peak. Each spectrum was obtained with an integration time of one hour, the temperature and pressure were monitored during this time, and the signal-to-rms noise in the 5 micron region was approximately 4000 for all scans. The intensities were determined from analysis of 1-2/cm segments of spectra using nonlinear least-squares spectral curve fitting, and analyzed to determine the vibrational band intensity and F-factor coefficients for each of the bands. The results are pertinent to a wide variety of problems in atmospheric physics and for the analysis of remote-sensing data.

  11. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  12. The Lowest Vibrational States of Urea from the Rotational Spectrum

    Science.gov (United States)

    Kisiel, Zbigniew; Thomas, Jessica; Medvedev, Ivan

    2014-06-01

    The urea molecule, (NH_2)_2CO, has a complex potential energy surface resulting from a combination of the NH_2 torsion and NH_2 inversion motions. This leads to a distribution of lowest vibrational states that is expected to be significantly different from the more familiar picture from simple inversion or normal mode models. The broadband 207-500 GHz spectrum of urea recorded in Dayton has signal to noise sufficient for assignment of rotational transitions in excited vibrational states up to at least 500 cm-1. In addition to the previously reported analysis of the ground and the lowest excited state we have been able to assign transitions in at least five other excited vibrational states. Strongly perturbed transitions in a close doublet of such states have been fitted to within experimental accuracy with a coupled fit and a splitting in the region of 1 cm-1. These assignments combined with vibrational energy estimates from relative intensity measurements allow for empirical discrimination between different models for the energy level manifestation of the large amplitude motions in urea.^b P.D.Godfrey, R.D.Brown, A.N.Hunter J. Mol. Struct., 413-414, 405-414 (1997). N.Inostroza, M.L.Senent, Chem. Phys. Lett., 524, 25 (2012).

  13. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  14. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  15. Vibrational Collapse of Hexapod Packings

    Science.gov (United States)

    Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Zheng, Hu; Dierichs, Karola; Menges, Achim; Behringer, Robert

    2017-06-01

    Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from non-convex grains can be stable without external support. In the current experiments, we investigate the effect of vibration on destroying such columns. The change of column height during vertical vibration, can be well characterized by stretched exponential relaxation when the column is short, which is in agreement with previous work, while a faster collapse happens when the column is tall. We investigate the collapse after the fast process including its dependence on column geometry, and on interparticle and basal friction.

  16. Innovative Techniques Simplify Vibration Analysis

    Science.gov (United States)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  17. Factors affecting perception thresholds of vertical whole-body vibration in recumbent subjects: Gender and age of subjects, and vibration duration

    Science.gov (United States)

    Matsumoto, Y.; Maeda, S.; Iwane, Y.; Iwata, Y.

    2011-04-01

    Some factors that may affect human perception thresholds of the vertical whole-body vibrations were investigated in two laboratory experiments with recumbent subjects. In the first experiment, the effects of gender and age of subjects on perception were investigated with three groups of 12 subjects, i.e., young males, young females and old males. For continuous sinusoidal vibrations at 2, 4, 8, 16, 31.5 and 63 Hz, there were no significant differences in the perception thresholds between male and female subjects, while the thresholds of young subjects tended to be significantly lower than the thresholds of old subjects. In the second experiment, the effect of vibration duration was investigated by using sinusoidal vibrations, at the same frequencies as above, modulated by the Hanning windows with different lengths (i.e., 0.5, 1.0, 2.0 and 4.0 s) for 12 subjects. It was found that the peak acceleration at the threshold tended to decrease with increasing duration of vibration. The perception thresholds were also evaluated by the running root-mean-square (rms) acceleration and the fourth power acceleration method defined in the current standards. The differences in the threshold of the transient vibrations for different durations were less with the fourth power acceleration method. Additionally, the effect of the integration time on the threshold was investigated for the running rms acceleration and the fourth power acceleration. It was found that the integration time that yielded less differences in the threshold of vibrations for different durations depended on the frequency of vibration.

  18. Harmonic generation at high peak power

    Energy Technology Data Exchange (ETDEWEB)

    Summers, M.A.; Williams, J.D.; Johnson, B.C.; Eimerl, D.

    1985-12-13

    This report reviews progress made in recent years in frequency conversion of laser radiation. By using a material such as potassium dihydrogen phosphate (KDP), intense, coherent light is made available at wavelengths unavailable from the source laser medium. Tests were performed on an array of KDP crystals at the Nova Facility. The tests revealed unexpected losses due to various non-linear effects. (JDH)

  19. Wavelets, vibrations and scalings

    CERN Document Server

    Meyer, Yves

    1997-01-01

    Physicists and mathematicians are intensely studying fractal sets of fractal curves. Mandelbrot advocated modeling of real-life signals by fractal or multifractal functions. One example is fractional Brownian motion, where large-scale behavior is related to a corresponding infrared divergence. Self-similarities and scaling laws play a key role in this new area. There is a widely accepted belief that wavelet analysis should provide the best available tool to unveil such scaling laws. And orthonormal wavelet bases are the only existing bases which are structurally invariant through dyadic dilations. This book discusses the relevance of wavelet analysis to problems in which self-similarities are important. Among the conclusions drawn are the following: 1) A weak form of self-similarity can be given a simple characterization through size estimates on wavelet coefficients, and 2) Wavelet bases can be tuned in order to provide a sharper characterization of this self-similarity. A pioneer of the wavelet "saga", Meye...

  20. WaVPeak: Picking NMR peaks through wavelet-based smoothing and volume-based filtering

    KAUST Repository

    Liu, Zhi

    2012-02-10

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. The Author(s) 2012. Published by Oxford University Press.

  1. A Vibrational Circular Dichroism Microsampling Accessory: Mapping Enhanced Vibrational Circular Dichroism in Amyloid Fibril Films.

    Science.gov (United States)

    Lu, Xuefang; Li, Honggang; Nafie, Jordan W; Pazderka, Tomáš; Pazderková, Markéta; Dukor, Rina K; Nafie, Laurence A

    2017-06-01

    We report the first vibrational circular dichroism (VCD) measurement of spatial heterogeneity in a sample using infrared (IR) microsampling. Vibrational circular dichroism spectra are typically measured using a standard IR cell with an IR beam diameter of 10 mm or greater making it impossible to investigate the spatial heterogeneity of a solid film sample. We have constructed a VCD sampling assembly with either 3 mm or 1 mm spatial resolution. An XY-translation stage was used to measure spectra at different spatial locations producing IR and VCD maps of the sample. In addition, a rotating sample stage was employed using a dual photoelastic modulator (PEM) setup to suppress artifacts due to linear birefringence in solid-phase or film samples. Infrared and VCD mapping of an insulin fibril film has been carried out at both 3 and 1 mm spatial resolution, and lysozyme films were mapped at 1 mm resolution. The IR spectra of different spots vary in intensity due primarily to sample thickness. The changes in the VCD intensity across the map largely correlate to corresponding changes in the IR map. Closer inspection of the insulin map revealed changes in the relative intensities of the VCD spectra not present in the parent IR spectra, which indicated differences in the degree of supramolecular chirality of the fibrils in the various spatial regions. For lysozyme films, in addition to different degrees of supramolecular chirality, reversal of the net fibril chirality was observed. The large signal-to-noise ratio observed at 1 mm resolution implies the feasibility of further increasing the spatial resolution by one or two orders of magnitude for protein fibril film samples.

  2. Ratio of peak height to peak area as selection criterion for solid standards in soil analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gerwinski, W.

    1985-12-01

    The shapes of extinction curves in atomic absorption spectroscopy with direct analysis of solid samples show remarkable differences between different types of samples. The influence of matrix components on this phenomenon has been investigated. The precision of analytical results performed with the aid of reference materials and preceded by calibration with both liquid and solid standards has been compared. Furthermore, the correlation between the precision of analytical results and the ratio of peak height to peak area has been investigated.

  3. LARAMIE PEAK WILDERNESS STUDY AREA, WYOMING.

    Science.gov (United States)

    Segerstrom, Kenneth; Weisner, R.C.

    1984-01-01

    On the basis of a mineral survey, most of the Laramie Peak Wilderness study area in Wyoming was concluded to have little promise for the occurrence of mineral or energy resources. Only three small areas in the northern part, one extending outside the study area to Esterbrook, were found to have probable mineral-resource potential for copper and lead. The geologic setting precludes the presence of fossil-fuel resources in the study area. There are no surface indications that geothermal energy could be developed within or near the study area.

  4. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  5. Energy peaks: A high energy physics outlook

    Science.gov (United States)

    Franceschini, Roberto

    2017-12-01

    Energy distributions of decay products carry information on the kinematics of the decay in ways that are at the same time straightforward and quite hidden. I will review these properties and discuss their early historical applications, as well as more recent ones in the context of (i) methods for the measurement of masses of new physics particle with semi-invisible decays, (ii) the characterization of Dark Matter particles produced at colliders, (iii) precision mass measurements of Standard Model particles, in particular of the top quark. Finally, I will give an outlook of further developments and applications of energy peak method for high energy physics at colliders and beyond.

  6. Vibrations of wind power plants; Schwingungen von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the meeting of the department vibration engineering of the Association of German Engineers (Duesseldorf, Federal Republic of Germany) between 3rd and 4th February, 2010 in Hanover (Federal Republic of Germany) the following lectures are presented: (1) Reduction of forced strengths generated by wagging and snaking of the rotor in the power strain of wind power plants (F. Mitsch); (2) Reduction of vibrations at wind power plants by means of active additional systems (S. Katz, S. Pankoke, N. Loix); (3) Reduction of vibrations by means of balancing and alignment (E. Becker, M. Kenzler); (4) Active absorber for reducing tonal emissions of vibration at wind power plants (R. Neugebauer, M. Linke, H. Kunze, M. Ulrich); (5) Control structures for damping torsion vibrations and peak loads in the power strain of wind power converters (C. Sourkounis); (6) Possibilities of a non-contact investigation of vibrations at wind power plants (R. Behrendt, E. Reimers, H. Wiegers); (7) Influences on the loadability of CMS statements (R. Wirth); (8) Recording modal structural properties with sensor grids and methods of operational modal analysis (A. Friedmann, D. Mayer, M. Koch, M. Kauba, T. Melz); (9) Early failure detection of damages of roller bearings in wind power gear units with variable speed (B. Hacke, G. Poll); (10) Condition monitoring in wind power plants - structure monitoring and life time monitoring of wind power plants (SCMS and LCMS) (H. Lange); (11) Development of a model-based structural health monitoring system for condition monitoring of rotor blades (C. Ebert, H. Friedmann, F.O. Henkel, B. Frankenstein, L. Schubert); (12) Efficient remote monitoring at wind power plants by means of an external diagnosis centre (G. Ceglarek); (13) Accurate turbine modelling at component and assembly level for durability and acoustic analysis (D. v. Werner, W. Hendricx); (14) Possibilities of the investigation of the dynamic behaviour of power strains in wind power plants by

  7. Exercise intensity and blood pressure during sleep.

    Science.gov (United States)

    Jones, H; George, K; Edwards, B; Atkinson, G

    2009-02-01

    Exercise, of appropriate intensity and duration, could help maintain normotension if post-exercise hypotension persists over subsequent everyday activities. Therefore, we monitored ambulatory blood pressure (BP) for 24 h following four separate exercise bouts which differed in intensity, duration and total work completed. At 08:00 h, six normotensive males completed a no exercise control and, in two further trials, 30 min of cycling at 70 % V O (2 peak) and 40 % V O (2 peak). A fourth trial involved cycling at 40 % V O (2 peak) for a time which equated total work with that in the most intense exercise trial. Between 20 min and 24 h after exercise, ambulatory BP, heart rate (HR) and wrist-activity were compared between trials using general linear models. Participants slept normally at night. Post-exercise changes in BP and HR were not affected by exercise intensity or total work completed from 20 min after exercise until nocturnal sleep-onset (p > 0.21). During sleep, mean arterial BP was lower following exercise at 70 % V O (2 peak) compared to the other trials (p = 0.03), including the 40 % V O (2 peak) trial equated for total work (90 % CI for difference = - 22.1 to - 0.1). We conclude that daytime exercise can elicit a physiologically meaningful lower BP during sleep and exercise intensity is the most important factor in this phenomenon.

  8. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  9. Free-space optical communications with peak and average constraints: High SNR capacity approximation

    KAUST Repository

    Chaaban, Anas

    2015-09-07

    The capacity of the intensity-modulation direct-detection (IM-DD) free-space optical channel with both average and peak intensity constraints is studied. A new capacity lower bound is derived by using a truncated-Gaussian input distribution. Numerical evaluation shows that this capacity lower bound is nearly tight at high signal-to-noise ratio (SNR), while it is shown analytically that the gap to capacity upper bounds is a small constant at high SNR. In particular, the gap to the high-SNR asymptotic capacity of the channel under either a peak or an average constraint is small. This leads to a simple approximation of the high SNR capacity. Additionally, a new capacity upper bound is derived using sphere-packing arguments. This bound is tight at high SNR for a channel with a dominant peak constraint.

  10. Nutritional enrichment increases courtship intensity and improves mating success in male spiders

    DEFF Research Database (Denmark)

    Lomborg, Johannes Peter; Toft, Søren

    2009-01-01

    The development of male sexual ornaments and the intensity of male courtship behavior are often used by females as criteria for mate choice and by other males to evaluate the strength of a rival. We tested the hypotheses that courtship intensity and mating success depend on the males' nutritional...... status (enriched or deficient) and that courtship intensity predicts mating success in males of the same nutritional status. We used wolf spiders, Pardosa prativaga, which have an elaborate display of courtship behaviors, including encircling, palp vibrations, abdomen vibrations, hopping, etc. Viability...... indicated that diet effects on courtship intensity were indirect, through its effect on size. In competition tests between males of equal mass and the same diet treatment, the previously most active male (high levels of palp vibrating, abdomen vibrating, and hopping) had the highest mating success, though...

  11. Outreach Plans for Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.

  12. NITPICK: peak identification for mass spectrometry data

    Directory of Open Access Journals (Sweden)

    Steen Hanno

    2008-08-01

    Full Text Available Abstract Background The reliable extraction of features from mass spectra is a fundamental step in the automated analysis of proteomic mass spectrometry (MS experiments. Results This contribution proposes a sparse template regression approach to peak picking called NITPICK. NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to Senko's well-known averagine model, and on a modified version of sparse, non-negative least angle regression, for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK is the deconvolution of overlapping mixture mass spectra. Conclusion Extensive comparative evaluation has been carried out and results are provided for simulated and real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy feature extraction routine. NITPICK is available as software package for the R programming language and can be downloaded from http://hci.iwr.uni-heidelberg.de/mip/proteomics/.

  13. Peak heart rates at extreme altitudes

    DEFF Research Database (Denmark)

    Lundby, C; Van Hall, Gerrit

    2001-01-01

    We have measured maximal heart rate during a graded maximal bicycle exercise test to exhaustion in five healthy climbers before and during an expedition to Mt. Everest. Maximal heart rates at sea level were 186 (177-204) beats/min(-1) at sea level and 170 (169-182) beats/min(-1) with acute hypoxia....... After 1, 4 and 6 weeks of acclimatization to 5400 m, maximal heart rates were 155 (135-182), 158 (144-182), and 155 (140-183) beats/min(-1), respectively. Heart rates of two of the climbers were measured during their attempt to reach the summit of Mt. Everest without the use of supplemental oxygen....... The peak heart rates at 8,750 m for the two climbers were 142 and 144 beats/min(-1), which were similar to their maximal heart rates during exhaustive bicycle exercise at 5,400 m, the values being 144 and 148 beats/min(-1), respectively. The peak heart rates at 8,750 m are in agreement with other field...

  14. Low-energy isovector quadrupole vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Faessler, A.; Nojarov, R.

    1986-01-23

    The low-lying isovector quadrupole vibrations are described by an extension of the vibrational model allowing independent proton and neutron vibrations coupled by the symmetry energy. The recently detected low-lying isovector states in nearly spherical nuclei with N=84 are described well concerning their energies and E2/M1 mixing ratios. (orig.).

  15. Ground Vibration Measurements at LHC Point 4

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, Kirk; /SLAC; Gaddi, Andrea; /CERN

    2012-09-17

    Ground vibration was measured at Large Hadron Collider (LHC) Point 4 during the winter shutdown in February 2012. This report contains the results, including power and coherence spectra. We plan to collect and analyze vibration data from representative collider halls to inform specifications for future linear colliders, such as ILC and CLIC. We are especially interested in vibration correlations between final focus lens locations.

  16. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  17. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  18. 14 CFR 27.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 27.907 Section 27.907... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant General § 27.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The addition of the...

  19. 14 CFR 29.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 29.251 Section 29.251... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 29.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  20. 14 CFR 29.907 - Engine vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine vibration. 29.907 Section 29.907... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant General § 29.907 Engine vibration. (a) Each engine must be installed to prevent the harmful vibration of any part of the engine or rotorcraft. (b) The...

  1. 14 CFR 27.251 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 27.251 Section 27.251... STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Miscellaneous Flight Requirements § 27.251 Vibration. Each part of the rotorcraft must be free from excessive vibration under each appropriate speed and power...

  2. 49 CFR 178.608 - Vibration standard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...

  3. 49 CFR 178.985 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  4. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.

    1998-01-01

    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  5. Vibrations in a moving flexible robot arm

    Science.gov (United States)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  6. , Recorded at Ladron Peak, Central New Mexico

    Science.gov (United States)

    Ricketts, J. W.; Kelley, S.; Read, A. S.; Karlstrom, K. E.

    2010-12-01

    Ladron Peak, situated on the western flank of the Rio Grande rift ~30 miles NW of Socorro, NM, is composed of Precambrian granitic and metamorphic assemblages that have been faulted and uplifted during the late Tertiary formation of the rift. The area is bounded on three sides by normal faults, including the anomalously low-angle (~26°) Jeter fault to the east, which places Precambrian rocks in the footwall against Paleozoic and Mesozoic fault slivers, and mainly Cenozoic Santa Fe Group basin fill in the hanging wall. New apatite fission track (AFT) thermochronological data collected at 22 locations along the NE and SE margins of Ladron Peak give a range of ages from 10.9 ± 1.9 to 20.4 ± 8.6 Ma. Samples within the footwall include granitic and metasedimentary rocks that have mean track lengths of 13.1 to 14.1 μm; one quartzite sample has a mean track length of 12.5 μm, suggesting time in the partial annealing zone. Within the hanging wall block, new AFT ages from the Permian Bursum and Abo Formations give cooling ages of 23.1 ± 3.3 Ma. and 59.9 ± 12.4 Ma., respectively. The Bursum Formation sample, with a track length of 13.7 μm, cooled below the 110°C isotherm during the Miocene, while the Abo Formation sample, with a track length of 11.2 μm, was only partially reset prior to rift-related deformation. Mylonitized granitic and metamorphic rocks in the immediate footwall preserve dip-slip lineations that are parallel to slip on the Jeter fault. This suggests that strain associated with exhumation was recorded by both brittle and ductile deformation. Although this type of deformation is common within metamorphic core complexes in highly extended terranes, ductile normal faulting has not been recognized within the Rio Grande rift in New Mexico, though there is some suggestion of ductile deformation around Blanca Peak in the San Luis Valley in Colorado. These observations imply one or both of the following: (1) Ductile deformation at Ladron Peak was

  7. Vibration Theory, Vol. 1A

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present collection of solved problems has been published as a supplement to the textbook Svingningsteori. Bind 1. Lineær svingningsteori,Aalborg tekniske Universitetsforlag, 1991, whicj is used in the introductory course on linear vibration theory that is being given on th e8th semester...

  8. Vibration Damping Circuit Card Assembly

    Science.gov (United States)

    Hunt, Ronald Allen (Inventor)

    2016-01-01

    A vibration damping circuit card assembly includes a populated circuit card having a mass M. A closed metal container is coupled to a surface of the populated circuit card at approximately a geometric center of the populated circuit card. Tungsten balls fill approximately 90% of the metal container with a collective mass of the tungsten balls being approximately (0.07) M.

  9. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  10. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  11. Effect of shelf aging on vibration transmissibility of anti-vibration gloves.

    Science.gov (United States)

    Shibata, Nobuyuki

    2017-10-05

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  12. Acute effects of shock-type vibration transmitted to the hand-arm system.

    Science.gov (United States)

    Schäfer, N; Dupuis, H; Hartung, E

    1984-01-01

    The aim of the project was to find out whether shock-type vibration of hand-tools compared to non-impulsive vibration has stronger acute effects on the hand-arm system and therefore needs a stricter evaluation from the occupational health point of view in comparison with the requirements of the Draft International Standard ISO-DIS 5349. Under laboratory conditions, subjects were exposed to simulated vibration of hand-tools (grinder, chain saw, hammer-drill, pneumatic hammer, rivet hammer and nailer). The following evaluation criteria were used: biomechanical transmissibility of the hand-arm system (wrist, elbow joint, shoulder joint); muscle-activity (m. flexor carpi ulnaris, m. biceps, m. triceps); peripheral circulation (skin temperature) and subjective perception (comparison of intensity of standard and test vibrations). The results show no significant difference in acute effects on the hand-arm system between impulsive and non-impulsive type vibrations of the hand-tools tested with respect to the chosen vibration level, short-time exposure (up to 8 min) and evaluation criteria. In summary, therefore, it may be concluded that for the evaluation of shock-type vibration of the hand-tools tested, it is justified to use the existing Draft International Standard ISO-DIS 5349.

  13. A new compound control method for sine-on-random mixed vibration test

    Science.gov (United States)

    Zhang, Buyun; Wang, Ruochen; Zeng, Falin

    2017-09-01

    Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.

  14. Neonatal head and torso vibration exposure during inter-hospital transfer.

    Science.gov (United States)

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-02-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is [Formula: see text]. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes.

  15. Peak Wind Tool for General Forecasting

    Science.gov (United States)

    Barrett, Joe H., III

    2010-01-01

    The expected peak wind speed of the day is an important forecast element in the 45th Weather Squadron's (45 WS) daily 24-Hour and Weekly Planning Forecasts. The forecasts are used for ground and space launch operations at the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45 WS also issues wind advisories for KSC/CCAFS when they expect wind gusts to meet or exceed 25 kt, 35 kt and 50 kt thresholds at any level from the surface to 300 ft. The 45 WS forecasters have indicated peak wind speeds are challenging to forecast, particularly in the cool season months of October - April. In Phase I of this task, the Applied Meteorology Unit (AMU) developed a tool to help the 45 WS forecast non-convective winds at KSC/CCAFS for the 24-hour period of 0800 to 0800 local time. The tool was delivered as a Microsoft Excel graphical user interface (GUI). The GUI displayed the forecast of peak wind speed, 5-minute average wind speed at the time of the peak wind, timing of the peak wind and probability the peak speed would meet or exceed 25 kt, 35 kt and 50 kt. For the current task (Phase II ), the 45 WS requested additional observations be used for the creation of the forecast equations by expanding the period of record (POR). Additional parameters were evaluated as predictors, including wind speeds between 500 ft and 3000 ft, static stability classification, Bulk Richardson Number, mixing depth, vertical wind shear, temperature inversion strength and depth and wind direction. Using a verification data set, the AMU compared the performance of the Phase I and II prediction methods. Just as in Phase I, the tool was delivered as a Microsoft Excel GUI. The 45 WS requested the tool also be available in the Meteorological Interactive Data Display System (MIDDS). The AMU first expanded the POR by two years by adding tower observations, surface observations and CCAFS (XMR) soundings for the cool season months of March 2007 to April 2009. The POR was expanded

  16. Neuromuscular fatigue induced by whole-body vibration exercise.

    Science.gov (United States)

    Maffiuletti, Nicola A; Saugy, Jonas; Cardinale, Marco; Micallef, Jean-Paul; Place, Nicolas

    2013-06-01

    The aim of this study was to examine the magnitude and the origin of neuromuscular fatigue induced by half-squat static whole-body vibration (WBV) exercise, and to compare it to a non-WBV condition. Nine healthy volunteers completed two fatiguing protocols (WBV and non-WBV, randomly presented) consisting of five 1-min bouts of static half-squat exercise with a load corresponding to 50 % of their individual body mass. Neuromuscular fatigue of knee and ankle muscles was investigated before and immediately after each fatiguing protocol. The main outcomes were maximal voluntary contraction (MVC) torque, voluntary activation, and doublet peak torque. Knee extensor MVC torque decreased significantly (P fatiguing protocols. Doublet peak torque decreased significantly and to a similar extent following WBV and non-WBV exercise, for both knee extensors (-25 %; P fatigue and did not change its causative factors compared to non-WBV half-squat resistive exercise in recreationally active subjects.

  17. Peak Pc Prediction in Conjunction Analysis: Conjunction Assessment Risk Analysis. Pc Behavior Prediction Models

    Science.gov (United States)

    Vallejo, J.J.; Hejduk, M.D.; Stamey, J. D.

    2015-01-01

    Satellite conjunction risk typically evaluated through the probability of collision (Pc). Considers both conjunction geometry and uncertainties in both state estimates. Conjunction events initially discovered through Joint Space Operations Center (JSpOC) screenings, usually seven days before Time of Closest Approach (TCA). However, JSpOC continues to track objects and issue conjunction updates. Changes in state estimate and reduced propagation time cause Pc to change as event develops. These changes a combination of potentially predictable development and unpredictable changes in state estimate covariance. Operationally useful datum: the peak Pc. If it can reasonably be inferred that the peak Pc value has passed, then risk assessment can be conducted against this peak value. If this value is below remediation level, then event intensity can be relaxed. Can the peak Pc location be reasonably predicted?

  18. The Effects of Nuclear Weapons on Post WWII US/USSR Confrontations intensity Peak Levels

    Science.gov (United States)

    1975-06-06

    Event» of 19li6 New York: Punk & Wagnalla Company, 19ii7, pp. 30Ö-309. * ’ 88 ■■■■■■ ■■■■■■ ■. US Government officials were more...34’ ’* ’ (e) October 1961 10th. $0,000 new Soviet and 10,000 Polish troops were re- ported to have moved into East Germany for maneuvers

  19. Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes

    NARCIS (Netherlands)

    Loriaux, J.M.; Lenderink, Geert; Siebesma, A.P.

    2016-01-01

    Research on relations between atmospheric conditions and extreme precipitation is important to understand and model present-day climate extremes and assess how precipitation extremes might evolve in a future climate. Here we present a statistical analysis of the relation between large-scale

  20. Whole body vibration exposures in forklift operators: comparison of a mechanical and air suspension seat.

    Science.gov (United States)

    Blood, Ryan P; Ploger, James D; Johnson, Peter W

    2010-11-01

    Using a repeated measures design, this study compared differences in whole body vibration (WBV) exposures when 12 forklift operators drove the same forklift with a mechanical suspension and an air suspension seat. A portable PDA-based WBV data acquisition system collected and analysed time-weighted and raw WBV data per ISO 2631-1 and 2631-5 WBV measurement standards. Tri-axial measurements of weighted vibration (A(w)), crest factor, vibration dose values, time-weighted average-peak, raw (+) peak, raw (-) peak and static compression dose (S(ed)) were compared between seats. There were significant differences in z-axis WBV exposures with the air suspension seat, yielding lower WBV exposures. In addition, there were differences between seats in how they attenuated WBV exposures based on the driver's weight. In the mechanical suspension seat, WBV exposures were weight-dependent, with lighter drivers having higher WBV exposures, whereas with the air suspension seat, the same trends were not as prevalent. STATEMENT OF RELEVANCE: This study contributes to the understanding of how different seat suspensions can influence WBV transmission and how some components of vibration transmission are dependent on the weight of the driver. Additional systematic studies are needed to quantify how various factors can influence WBV exposures.

  1. Emissions Scenarios and Fossil-fuel Peaking

    Science.gov (United States)

    Brecha, R.

    2008-12-01

    Intergovernmental Panel on Climate Change (IPCC) emissions scenarios are based on detailed energy system models in which demographics, technology and economics are used to generate projections of future world energy consumption, and therefore, of greenhouse gas emissions. Built into the assumptions for these scenarios are estimates for ultimately recoverable resources of various fossil fuels. There is a growing chorus of critics who believe that the true extent of recoverable fossil resources is much smaller than the amounts taken as a baseline for the IPCC scenarios. In a climate optimist camp are those who contend that "peak oil" will lead to a switch to renewable energy sources, while others point out that high prices for oil caused by supply limitations could very well lead to a transition to liquid fuels that actually increase total carbon emissions. We examine a third scenario in which high energy prices, which are correlated with increasing infrastructure, exploration and development costs, conspire to limit the potential for making a switch to coal or natural gas for liquid fuels. In addition, the same increasing costs limit the potential for expansion of tar sand and shale oil recovery. In our qualitative model of the energy system, backed by data from short- and medium-term trends, we have a useful way to gain a sense of potential carbon emission bounds. A bound for 21st century emissions is investigated based on two assumptions: first, that extractable fossil-fuel resources follow the trends assumed by "peak oil" adherents, and second, that little is done in the way of climate mitigation policies. If resources, and perhaps more importantly, extraction rates, of fossil fuels are limited compared to assumptions in the emissions scenarios, a situation can arise in which emissions are supply-driven. However, we show that even in this "peak fossil-fuel" limit, carbon emissions are high enough to surpass 550 ppm or 2°C climate protection guardrails. Some

  2. Series of "fractional" peaks in multiple paramagnetic resonance Raman scattering by (Cd,Mn)Te quantum wells

    Science.gov (United States)

    Koudinov, A. V.; Knapp, A.; Karczewski, G.; Geurts, J.

    2017-12-01

    In typical conditions of the observation of multiple paramagnetic Raman resonance in model heterostructures containing manganese ions, we observed a never-reported series of Raman peaks, showing up in a narrow range of applied magnetic fields. These weak "fractional" peaks are located close to the middle between the strong "integer" Mn spin-flip peaks, and they reveal a remarkably weak dependence of the intensity on the peak number, in a pronounced contrast with the "integer" series. We discuss conditions to observe the "fractional" series as well as pathways for further exploration of the effect.

  3. First international symposium on Flow Induced Noise and Vibration Issues and Aspects

    CERN Document Server

    Rosa, Sergio; Franco, Francesco; Guyader, Jean-Louis; Hambric, Stephen; Flinovia - Flow Induced Noise and Vibration Issues and Aspects

    2015-01-01

    Flow induced vibration and noise (FIVN) remains a critical research topic. Even after over 50 years of intensive research, accurate and cost-effective FIVN simulation and measurement techniques remain elusive. This book gathers the latest research from some of the most prominent experts in the field. It describes methods for characterizing wall pressure fluctuations, including subsonic and supersonic turbulent boundary layer flows over smooth and rough surfaces using computational methods like Large Eddy Simulation;
for inferring wall pressure fluctuations using inverse techniques based on panel vibrations or holographic pressure sensor arrays;
for calculating the resulting structural vibrations and radiated sound using traditional finite element methods, as well as advanced methods like Energy Finite Elements;
for using scaling approaches to universally collapse flow-excited vibration and noise spectra; and for computing time histories of structural response, including alternating stresses. This book p...

  4. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration.

    Science.gov (United States)

    Huang, Yu; Griffin, Michael J

    2012-06-01

    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  5. Interferometer with bismuth silicon oxide crystal for vibration measurement

    Science.gov (United States)

    Zhang, Bin; Feng, Qibo; Liang, Yunfeng

    2016-09-01

    We present a small-amplitude, high-frequency vibration measurement system. This system is based on the reflective holographic grating in a crystal of bismuth silicon oxide without applying an external electric field. A quarter-wave plate is applied in the reference beam path, with a polarizer after the crystal, to fulfill the quadrature condition when no electric field is applied to the crystal. A reflection configuration is used to obtain a good overlapping of the interference beams, which increases the beam coupling. The factors that affect the diffraction efficiency, including the signal-to-reference-beam intensity ratio and the recording angle, has been investigated. The experimental results coincide with the theoretical results, and the optimal conditions are obtained. The results of comparisons of our system with the vibrometer TEMPO show that the nanometer vibrations of a piezoelectric transducer can be reliably detected.

  6. Conformational analysis and vibrational spectroscopic studies on dapsone

    Science.gov (United States)

    Ildiz, Gulce Ogruc; Akyuz, Sevim

    2012-11-01

    In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.

  7. Tim Peake and Britain's road to space

    CERN Document Server

    Seedhouse, Erik

    2017-01-01

    This book puts the reader in the flight suit of Britain’s first male astronaut, Tim Peake. It chronicles his life, along with the Principia mission and the down-to-the-last-bolt descriptions of life aboard the ISS, by way of the hurdles placed by the British government and the rigors of training at Russia’s Star City military base. In addition, this book discusses the learning curves required in astronaut and mission training and the complexity of the technologies required to launch an astronaut and keep them alive for months on end. This book underscores the fact that technology and training, unlike space, do not exist in a vacuum; complex technical systems, like the ISS, interact with the variables of human personality, and the cultural background of the astronauts. .

  8. Peak Electric Load Relief in Northern Manhattan

    Directory of Open Access Journals (Sweden)

    Hildegaard D. Link

    2014-08-01

    Full Text Available The aphorism “Think globally, act locally,” attributed to René Dubos, reflects the vision that the solution to global environmental problems must begin with efforts within our communities. PlaNYC 2030, the New York City sustainability plan, is the starting point for this study. Results include (a a case study based on the City College of New York (CCNY energy audit, in which we model the impacts of green roofs on campus energy demand and (b a case study of energy use at the neighborhood scale. We find that reducing the urban heat island effect can reduce building cooling requirements, peak electricity loads stress on the local electricity grid and improve urban livability.

  9. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water

    NARCIS (Netherlands)

    Besemer, M.; Bloemenkamp, R.; Ariese, F.; van Manen, H.J.

    2016-01-01

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable

  10. Transient vibration of wind turbine blades

    Science.gov (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng

    2017-09-01

    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  11. Comparison of five portable peak flow meters

    Directory of Open Access Journals (Sweden)

    Glaucia Nency Takara

    2010-01-01

    Full Text Available OBJECTIVE: To compare the measurements of spirometric peak expiratory flow (PEF from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. METHODS: Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05, Spearman's correlation test and Bland-Altman's agreement test. RESULTS: The median and interquartile ranges for the spirometric values and the Air Zone®, Assess®, Galemed®, Personal Best® and Vitalograph® meters were 428 (263-688 L/min, 450 (350-800 L/min, 420 (310-720 L/min, 380 (300-735 L/min, 400 (310-685 L/min and 415 (335-610 L/min, respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone® (p<0.001 and Galemed ® (p<0.01 meters. There was no agreement between the spirometric values and the five PEF meters. CONCLUSIONS: The results suggest that the values recorded from Galemed® meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone® meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  12. Comparison of five portable peak flow meters.

    Science.gov (United States)

    Takara, Glaucia Nency; Ruas, Gualberto; Pessoa, Bruna Varanda; Jamami, Luciana Kawakami; Di Lorenzo, Valéria Amorim Pires; Jamami, Mauricio

    2010-05-01

    To compare the measurements of spirometric peak expiratory flow (PEF) from five different PEF meters and to determine if their values are in agreement. Inaccurate equipment may result in incorrect diagnoses of asthma and inappropriate treatments. Sixty-eight healthy, sedentary and insufficiently active subjects, aged from 19 to 40 years, performed PEF measurements using Air Zone, Assess, Galemed, Personal Best and Vitalograph peak flow meters. The highest value recorded for each subject for each device was compared to the corresponding spirometric values using Friedman's test with Dunn's post-hoc (p<0.05), Spearman's correlation test and Bland-Altman's agreement test. The median and interquartile ranges for the spirometric values and the Air Zone, Assess, Galemed, Personal Best and Vitalograph meters were 428 (263-688 L/min), 450 (350-800 L/min), 420 (310-720 L/min), 380 (300-735 L/min), 400 (310-685 L/min) and 415 (335-610 L/min), respectively. Significant differences were found when the spirometric values were compared to those recorded by the Air Zone(R) (p<0.001) and Galemed (p<0.01) meters. There was no agreement between the spirometric values and the five PEF meters. The results suggest that the values recorded from Galemed meters may underestimate the actual value, which could lead to unnecessary interventions, and that Air Zone meters overestimate spirometric values, which could obfuscate the need for intervention. These findings must be taken into account when interpreting both devices' results in younger people. These differences should also be considered when directly comparing values from different types of PEF meters.

  13. Sample distribution in peak mode isotachophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Shimon [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Schwartz, Ortal [Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa (Israel); Bercovici, Moran, E-mail: mberco@technion.ac.il [Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa (Israel); Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa (Israel)

    2014-01-15

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify and validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.

  14. Surface vibrational modes in disk-shaped resonators.

    Science.gov (United States)

    Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P

    2014-03-01

    The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  16. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    Science.gov (United States)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  17. Preparation of spherical particles by vibrating orifice technique

    Science.gov (United States)

    Shibata, Shuichi; Tomizawa, Atsushi; Yoshikawa, Hidemi; Yano, Tetsuji; Yamane, Masayuki

    2000-05-01

    Preparation of micrometer-sized spherical particles containing Rhodamine 6G (R6G) has been investigated for the spherical cavity micro-laser. Using phenyl triethoxy silane (PTES) as a starting material, R6G-doped monodisperse spherical particles were prepared by the vibrating orifice technique. Processing consists of two major processes: (1) Hydrolysis and polymerization of PTES and (2) Droplet formation from PTES oligomers by vibrating orifice technique. A cylindrical liquid jet passing through the orifice of 10 and 20 micrometers in diameter breaks up into equal- sized droplets by mechanical vibration. Alcohol solvent of these droplets was evaporated during flying with carrier gas and subsequently solidified in ammonium water trap. For making smooth surface and god shaped particles, control of molecular weight of PTES oligomer was essential. R6G-doped hybrid spherical particles of 4 to 10 micrometers size of cavity structure were successfully obtained. The spherical particles were pumped by a second harmonic pulse of Q- switched Nd:YAG laser and laser emission peaks were observed at wavelengths which correspond to the resonance modes.

  18. Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals

    Directory of Open Access Journals (Sweden)

    Masae Takahashi

    2014-03-01

    Full Text Available The development of terahertz technology in the last few decades has made it possible to obtain a clear terahertz (THz spectrum. THz vibrations clearly show the formation of weak bonds in crystals. The simultaneous progress in the code of first-principles calculations treating noncovalent interactions has established the position of THz spectroscopy as a powerful tool for detecting the weak bonding in crystals. In this review, we are going to introduce, briefly, the contribution of weak bonds in the construction of molecular crystals first, and then, we will review THz spectroscopy as a powerful tool for detecting the formation of weak bonds and will show the significant contribution of advanced computational codes in treating noncovalent interactions. From the second section, following the Introduction, to the seventh section, before the conclusions, we describe: (1 the crystal packing forces, the hydrogen-bonded networks and their contribution to the construction of organic crystals; (2 the THz vibrations observed in hydrogen-bonded molecules; (3 the computational methods for analyzing the THz vibrations of hydrogen-bonded molecules; (4 the dispersion correction and anharmonicity incorporated into the first-principles calculations and their effect on the peak assignment of the THz spectrum (5 the temperature dependence; and (6 the polarization dependence of the THz spectrum.

  19. Fuzzy Semiactive Vibration Control of Structures Using Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Xuan Bao Nguyen

    2017-01-01

    Full Text Available In this research, a novel variable stiffness vibration isolator that uses magnetorheological elastomers (MREs accompanied with a fuzzy semiactive vibration control was developed. Firstly, the viscoelastic characteristics of MREs in shear mode were clarified systematically in order to achieve a mathematical basis for the controller development. Secondly, the fuzzy semiactive vibration control with a strategy based on the Lyapunov theory and dynamic characteristic of MREs was proposed for minimizing the movement of the isolator. In the conventional semiactive algorithm, the command applied current of MRE-based isolator is set at either minimum or maximum value which causes high acceleration and jerk peaks periodically, thus leading to the degeneration of the overall system quality. However, the fuzzy semiactive algorithm presented here is able to produce the sufficient applied current and thus viscoelastic force is desirably produced. The effectiveness of the developed isolator was evaluated numerically by MATLAB simulation and experimentally in comparison with the performances of a passive system and a system with on-off type semiactive controller. The results showed that the developed controller was successful in overcoming the disadvantages of conventional on-off semiactive control.

  20. Vibration of Cracked Circular Plates at Resonance Frequencies

    Science.gov (United States)

    HUANG, CHI-HUNG; MA, CHIEN-CHING

    2000-09-01

    It is well known that the presence of cracks will affect the dynamic characteristics of the vibrating plate. Such a problem is complicated because it combines the field of vibration analysis and fracture mechanics. In this study, an optical system called the AF-ESPI method with the out-of-plane displacement measurement is employed to investigate the vibration characteristics of a free circular plate with a radial crack emanating from the edge. The boundary conditions along the circular edge are free. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally at the same time by the proposed AF-ESPI method. Numerical finite element calculations are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. The vibrating mode shapes obtained in this study can be classified into two types, symmetric and antisymmetric modes with respect to the crack line. The influence of crack length on resonant frequencies is also investigated in terms of the dimensionless frequency parameter (λ2) versus crack length ratio (a/D). We find that if the crack face displacement is out of phase, i.e., the antisymmetric type, a large value of stress intensity factor may be induced and the cracked circular plate will be dangerous, from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, i.e., the symmetric type, which yields a zero stress intensity factor and the cracked plate will be safe.

  1. Influence of Wheel Eccentricity on Vertical Vibration of Suspended Monorail Vehicle: Experiment and Simulation

    Directory of Open Access Journals (Sweden)

    Kaikai Lv

    2017-01-01

    Full Text Available This paper investigates the influence of wheel eccentricity on vertical vibration of suspended monorail vehicle based on experiment and simulation. Two sets of tests are conducted in the first Chinese suspended monorail, and the tested acceleration is analyzed and exhibited. A multibody dynamic model of the suspended monorail vehicle is established to simulate the vertical vibration of car body excited by wheel eccentricity. The results show that there are three factors which may cause an abnormal vibration considering the track and the vehicle system. The influence of wheel eccentricity on the car body vibration was firstly analyzed. Simulated acceleration of car body has a great accordance with test. The wheel eccentricity could excite the resonance of car body at the speed of 21 km/h, and the vertical acceleration would increase considerably. Decreasing the secondary stiffness can effectively reduce the vertical vibration caused by wheel eccentricity, especially at the resonant speed. In the secondary test, the peak of car body acceleration at speed of 20 km/h is not appearing when only renewing the wheels, and the acceleration is decreasing obviously at the domain frequency. It is further determined that the abnormal vibration is mainly caused by the wheel eccentricity.

  2. Adsorption-induced symmetry reduction of metal-phthalocyanines studied by vibrational spectroscopy

    Science.gov (United States)

    Sforzini, J.; Bocquet, F. C.; Tautz, F. S.

    2017-10-01

    We investigate the vibrational properties of Pt- and Pd-phthalocyanine (PtPc and PdPc) molecules on Ag(111) with high-resolution electron energy loss spectroscopy (HREELS). In the monolayer regime, both molecules exhibit long-range order. The vibrational spectra prove a flat adsorption geometry. The redshift of specific vibrational modes suggests a moderate interaction of the molecules with the substrate. The presence of asymmetric vibrational peaks indicates an interfacial dynamical charge transfer (IDCT). The molecular orbital that is involved in IDCT is the former Eg lowest unoccupied molecular orbital (LUMO) of the molecules that becomes partially occupied upon adsorption. A group-theoretical analysis of the IDCT modes, based on calculated vibrational frequencies and line shape fits, provides proof for the reduction of the symmetry of the molecule-substrate complex from fourfold D4 h to C2 v(σv) , Cs(σv) , or C2 and the ensuing lifting of the degeneracy of the former LUMO of the molecule. The vibration-based analysis of orbital degeneracies, as carried out here for PtPc/Ag(111) and PdPc/Ag(111), is particularly useful whenever the presence of multiple molecular in-plane orientations at the interface makes the analysis of orbital degeneracies with angle-resolved photoemission spectroscopy difficult.

  3. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy.

    Science.gov (United States)

    He, Xuemei; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2017-10-12

    Ultrafast vibrational relaxation and structural dynamics of indigo carmine in dimethyl sulfoxide were examined using femtosecond pump-probe infrared and two-dimensional infrared (2D IR) spectroscopies. Using the intramolecularly hydrogen-bonded C═O and delocalized C═C stretching modes as infrared probes, local structural and dynamical variations of this blue dye molecule were observed. Energy relaxation of the vibrationally excited C═O stretching mode was found to occur through covalent bond to the delocalized aromatic vibrational modes on the time scale of a few picoseconds or less. Vibrational quantum beating was observed in magic-angle pump-probe, anisotropy, and 2D IR cross-peak dynamics, showing an oscillation period of ca. 1010 fs, which corresponds to the energy difference between the C═O and C═C transition frequency (33 cm-1). This confirms a resonant vibrational energy transfer happened between the two vibrators. However, a more efficient energy-accepting mode of the excited C═O stretching was believed to be a nearby combination and/or overtone mode that is more tightly connected to the C═O species. On the structural aspect, dynamical-time-dependent 2D IR spectra reveal an insignificant inhomogeneous contribution to time-correlation relaxation for both the C═O and C═C stretching modes, which is in agreement with the generally believed structural rigidity of such conjugated molecules.

  4. Influence of Blasting Vibration on Young Concrete Bridge: A Case Study of Yesanhe Super Large Bridge

    Directory of Open Access Journals (Sweden)

    Ming Chen

    2017-01-01

    Full Text Available Influence of blasting vibration on young concrete structure is an important issue in the field of hydropower engineering, transportation, and so forth. Based on influence of blasting excavation on concrete pouring progress of box girder in nearby Yesanhe Super Large Bridge, which is located in Hubei Province of China, a method combining field test and numerical simulation is used to study influence of blasting vibration on young concrete super large bridge. The results show that blasting excavation of nearby Yesanhe Hydropower Station induced vibration response on Yesanhe Bridge and peak particle velocity (PPV on the bridge was quite small under test conditions. Monitoring data and numerical simulation both indicate that PPV of box girder is 1 to 4 times larger than that of pier foundation; with the extension of bridge cantilever casting section, velocity amplification factors of different parts of the box girder have different changes and duration of vibration in vertical direction increases. Three days after concrete pouring, the impact of concrete ageing on PPV and damage distribution of the bridge is not obvious. When vibration velocity of pier foundation is within 2 cm/s, the maximum tensile and compressive stress of box girder concrete are less than the tensile and compressive strength of concrete, so that blasting vibration unlikely gives impact on the safety of bridge.

  5. Note: A kinematic shaker system for high amplitude, low frequency vibration testing.

    Science.gov (United States)

    Swaminathan, Anand; Poese, Matthew E; Smith, Robert W M; Garrett, Steven L

    2015-11-01

    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  6. Peak expiratory flow rate and Pulse Pressure values during the ...

    African Journals Online (AJOL)

    This study assessed the peak expiratory flow rate and pulse pressure during the luteal and menstruation phases of the menstrual cycle. The peak expiratory flow rate and pulse pressure were measured using the Wright's Peak Flow Meter and Mercury Sphygmomanometer respectively. The peak expiratory flow rate and ...

  7. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  8. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value......There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...

  9. Peak-valley-peak pattern of histone modifications delineates active regulatory elements and their directionality

    DEFF Research Database (Denmark)

    Pundhir, Sachin; Bagger, Frederik Otzen; Lauridsen, Felicia Kathrine Bratt

    2016-01-01

    Formation of nucleosome free region (NFR) accompanied by specific histone modifications at flanking nucleosomes is an important prerequisite for enhancer and promoter activity. Due to this process, active regulatory elements often exhibit a distinct shape of histone signal in the form of a peak......-valley-peak (PVP) pattern. However, different features of PVP patterns and their robustness in predicting active regulatory elements have never been systematically analyzed. Here, we present PARE, a novel computational method that systematically analyzes the H3K4me1 or H3K4me3 PVP patterns to predict NFRs. We show...

  10. Low-SNR Capacity of MIMO Optical Intensity Channels

    KAUST Repository

    Chaaban, Anas

    2017-09-18

    The capacity of the multiple-input multiple-output (MIMO) optical intensity channel is studied, under both average and peak intensity constraints. We focus on low SNR, which can be modeled as the scenario where both constraints proportionally vanish, or where the peak constraint is held constant while the average constraint vanishes. A capacity upper bound is derived, and is shown to be tight at low SNR under both scenarios. The capacity achieving input distribution at low SNR is shown to be a maximally-correlated vector-binary input distribution. Consequently, the low-SNR capacity of the channel is characterized. As a byproduct, it is shown that for a channel with peak intensity constraints only, or with peak intensity constraints and individual (per aperture) average intensity constraints, a simple scheme composed of coded on-off keying, spatial repetition, and maximum-ratio combining is optimal at low SNR.

  11. In Situ Three-Dimensional Reciprocal-Space Mapping of Diffuse Scattering Intensity Distribution and Data Analysis for Precursor Phenomenon in Shape-Memory Alloy

    Science.gov (United States)

    Cheng, Tian-Le; Ma, Fengde D.; Zhou, Jie E.; Jennings, Guy; Ren, Yang; Jin, Yongmei M.; Wang, Yu U.

    2012-01-01

    Diffuse scattering contains rich information on various structural disorders, thus providing a useful means to study the nanoscale structural deviations from the average crystal structures determined by Bragg peak analysis. Extraction of maximal information from diffuse scattering requires concerted efforts in high-quality three-dimensional (3D) data measurement, quantitative data analysis and visualization, theoretical interpretation, and computer simulations. Such an endeavor is undertaken to study the correlated dynamic atomic position fluctuations caused by thermal vibrations (phonons) in precursor state of shape-memory alloys. High-quality 3D diffuse scattering intensity data around representative Bragg peaks are collected by using in situ high-energy synchrotron x-ray diffraction and two-dimensional digital x-ray detector (image plate). Computational algorithms and codes are developed to construct the 3D reciprocal-space map of diffuse scattering intensity distribution from the measured data, which are further visualized and quantitatively analyzed to reveal in situ physical behaviors. Diffuse scattering intensity distribution is explicitly formulated in terms of atomic position fluctuations to interpret the experimental observations and identify the most relevant physical mechanisms, which help set up reduced structural models with minimal parameters to be efficiently determined by computer simulations. Such combined procedures are demonstrated by a study of phonon softening phenomenon in precursor state and premartensitic transformation of Ni-Mn-Ga shape-memory alloy.

  12. Identification of two quanta simultaneous vibrational transitions in the dimer water trapped in inert matrices

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, B. [UPMC Universite Pierre et Marie Curie, UMR 7075, Laboratoire de Dynamique, Interactions et Reactivite (LADIR), F-75005 Paris (France); CNRS, UMR 7075, Laboratoire de Dynamique, Interactions et Reactivite (LADIR), F-75005 Paris (France); Bouteiller, Y. [Universite Paris-Nord, CNRS, Laboratoire de Physique des lasers, UMR 7538, 93430 Villetaneuse (France); Perchard, J.P., E-mail: jpp@spmol.jussieu.fr [UPMC Universite Pierre et Marie Curie, UMR 7075, Laboratoire de Dynamique, Interactions et Reactivite (LADIR), F-75005 Paris (France); CNRS, UMR 7075, Laboratoire de Dynamique, Interactions et Reactivite (LADIR), F-75005 Paris (France)

    2011-04-28

    Graphical abstract: Simultaneous vibrational transitions of both proton donor and proton acceptor molecules of the water dimer trapped in Ne, Ar and N{sub 2} matrices have been identified. Display Omitted Research highlights: {yields} Observation of simultaneous vibrational transition (ST) within the water dimer. {yields} Proof of resonances involving ST's using {sup 18}O/{sup 16}O isotopic mixtures. {yields} The experimental resonance parameters agree with the predictions of ab initio calculations. - Abstract: Two quanta transitions involving the vibrational excitation of both proton donor (PD) and proton acceptor (PA) molecules of the water dimer trapped in inert matrices, a particular case of similtaneous transitions, have been identified. They are characterized by weaker intensity and smaller anharmonicity than the usual combinations of PD or PA. In some cases their intensity is strongly enhanced by quasi perfect resonances with PD combinations, as proved by decoupling effects in {sup 18}O/{sup 16}O isotopic mixtures.

  13. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  14. Vibrationally resolved high-resolution NEXAFS and XPS spectra of phenanthrene and coronene

    Energy Technology Data Exchange (ETDEWEB)

    Fronzoni, Giovanna; Baseggio, Oscar; Stener, Mauro, E-mail: stener@univ.trieste.it [Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Unita’ di Trieste, I-34127 Trieste (Italy); Hua, Weijie; Tian, Guangjun [Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); Luo, Yi [Department of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm (Sweden); National Synchrotron Radiation Laboratory and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Apicella, Barbara; Alfé, Michela [Istituto di Ricerche sulla Combustione, IRC-CNR, P.le Tecchio, 80, 80125 Napoli (Italy); Simone, Monica de; Kivimäki, Antti [CNR-IOM, Laboratorio TASC, 34149 Trieste (Italy); Coreno, Marcello [CNR-IMIP, 00016 Montelibretti (Italy)

    2014-07-28

    We performed a combined experimental and theoretical study of the C1s Near-Edge X-ray Absorption Fine-Structure (NEXAFS) spectroscopy and X-ray Photoelectron Spectroscopy in the gas phase of two polycyclic aromatic hydrocarbons (phenanthrene and coronene), typically formed in combustion reactions. In the NEXAFS of both molecules, a double-peak structure appears in the C1s → LUMO region, which differ by less than 1 eV in transition energies. The vibronic coupling is found to play an important role in such systems. It leads to weakening of the lower-energy peak and strengthening of the higher-energy one because the 0 − n (n > 0) vibrational progressions of the lower-energy peak appear in nearly the same region of the higher-energy peak. Vibrationally resolved theoretical spectra computed within the Frank-Condon (FC) approximation and linear coupling model agree well with the high-resolution experimental results. We find that FC-active normal modes all correspond to in-plane vibrations.

  15. Vibrational damping of composite materials

    Science.gov (United States)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  16. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  17. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  18. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  19. A night with good vibrations

    CERN Multimedia

    2002-01-01

    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  20. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity

    Science.gov (United States)

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-01-01

    Purpose: At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study…

  1. OccuPeak: ChIP-Seq peak calling based on internal background modelling

    NARCIS (Netherlands)

    de Boer, Bouke A.; van Duijvenboden, Karel; van den Boogaard, Malou; Christoffels, Vincent M.; Barnett, Phil; Ruijter, Jan M.

    2014-01-01

    ChIP-seq has become a major tool for the genome-wide identification of transcription factor binding or histone modification sites. Most peak-calling algorithms require input control datasets to model the occurrence of background reads to account for local sequencing and GC bias. However, the

  2. Improving Robustness of Tuned Vibration Absorbers Using Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Mohammad H. Elahinia

    2005-01-01

    Full Text Available A conventional passive tuned vibration absorber (TVA is effective when it is precisely tuned to the frequency of a vibration mode; otherwise, it may amplify the vibrations of the primary system. In many applications, the frequency often changes over time. For example, adding or subtracting external mass on the existing primary system results in changes in the system’s natural frequency. The frequency changes of the primary system can significantly degrade the performance of TVA. To cope with this problem, many alternative TVAs (such as semiactive, adaptive, and active TVAs have been studied. As another alternative, this paper investigates the use of Shape Memory Alloys (SMAs in passive TVAs in order to improve the robustness of the TVAs subject to mass change in the primary system. The proposed SMA-TVA employs SMA wires, which exhibit variable stiffness, as the spring element of the TVA. This allows us to tune effective stiffness of the TVA to adapt to the changes in the primary system's natural frequency. The simulation model, presented in this paper, contains the dynamics of the TVA along with the SMA wire model that includes phase transformation, heat transfer, and the constitutive relations. Additionally, a PID controller is included for regulating the applied voltage to the SMA wires in order to maintain the desired stiffness. The robustness analysis is then performed on both the SMA-TVA and the equivalent passive TVA. For our robustness analysis, the mass of the primary system is varied by ± 30% of its nominal mass. The simulation results show that the SMA-TVA is more robust than the equivalent passive TVA in reducing peak vibrations in the primary system subject to change of its mass.

  3. Classification of peaked spectrum sources by using neural networks

    Science.gov (United States)

    Vera, R. J. C.; Tornikoski, M.; Lähteenmäki, A.

    2017-07-01

    Compact steep-spectrum sources (CSS), high frequency peakers (HFP), and gigahertz-peaked spectrum sources (GPS) are compact radio sources with an intense emission (O'Dea 1998, and references therein). Morphological studies, dense gas analyses, and surveys suggesting the absence of a halo diffusion emission, suggest the idea that peaked spectrum sources (PSS) are young AGN (see, Fanti et al. 1995; Readhead et al. 1996; Stanghellini et al. 1997; Bicknell et al. 1997). Previously, Torniainen et al. (2008) carried out a study of GPS sources, finding that those sources do not follow a distinct morphological classification. In addition, they found that many blazars in a flaring state are misclassified as GPS sources (Torniainen et al. 2005). These findings compromised the simple vision of the g alaxy-quasar dualism, and the amount of genuine GPS sources. For this reason, we endeavour a new classification of 363 sources with the aim to find new insights about their spectral properties using neural networks. Through clustering methods, we have grouped galaxies that present a set of similar physical properties. In total, 18 physical variables were used for this purpose. In particular, we used Multi-dimensional Scaling (MDS) and t-distributed Stochastic Neighbour Embedding (t-SNE) analyses. Those analyses proved to be robust for analysing data of the order of hundreds of data. From our analyses, we were unable to find a clear classification for PSS. Moreover, new galaxies presented a flat spectra emission, or high variability in the radio emission, compromising their classification as genuine PSS.

  4. Vibration Control in Periodic Structures

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker

    2017-01-01

    Within the framework of periodic structures, the calibration of RL shunted piezoelectric inclusions is investigated with respect to maximum damping of a particular wave form. A finite element setting is assumed, with local shunted inclusions inside the unit cell. The effect of the shunts is repre....... The presentation contains dispersion diagrams and vibration amplitude curves for the optimally calibrated RL shunt system in a 1-D periodic structure with local piezoelectric inclusions....

  5. Training prescription in patients on beta-blockers: percentage peak exercise methods or self-regulation?

    Science.gov (United States)

    Zanettini, Renzo; Centeleghe, Paola; Ratti, Fosco; Benna, Stefania; Di Tullio, Laura; Sorlini, Nadia

    2012-04-01

    Exercise prescription based on percentage of peak exercise variables has many limitations in patients taking beta-blockers. The aim of this study was to evaluate efficacy and safety of a training protocol based on the rating of perceived exercise (RPE) in patients taking beta-blockers after cardiac surgical revascularization. 71 patients treated with beta-blockers after recent coronary artery bypass grafting were randomly allocated to two different programmes with training intensity adjusted to keep heart rate close to first ventilatory threshold (36 subjects, AeT group) or RPE between grades 4 and 5 of 10-point category-ratio BORG scale (35 subjects, RPE group). In the RPE group, mean training workloads and heart rate values were significantly higher than in the AeT group; during the last week of the programme, six RPE patients were training very close to anaerobic threshold. Aerobic peak capacity increased similarly in the two groups. Considering the potential effects on training intensity of prescriptions based on percentages of peak exercise variables, we found that only percentage heart rate reserve and peak workload methods were reliable in defining a safe upper limit of training intensity, with values of 50% and 65% respectively. Self-regulation of exercise training intensity between grades 4 and 5 of the 10-point category-ratio BORG scale is effective but may promote overtraining in some patients without significant functional advantages. For these reasons, RPE method should be integrated with objective indices based on percentage of heart rate reserve or of peak workload.

  6. Human behavioral complexity peaks at age 25

    Science.gov (United States)

    Brugger, Peter

    2017-01-01

    Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953

  7. Efficacy of Whole-Body Vibration Board Training on Strength in Athletes After Anterior Cruciate Ligament Reconstruction: A Randomized Controlled Study.

    Science.gov (United States)

    Costantino, Cosimo; Bertuletti, Silvia; Romiti, Davide

    2017-06-22

    To evaluate whether an 8-week whole-body vibration training program may improve recovery of knee flexion/extension muscular strength in athletes after arthroscopic anterior cruciate ligament (ACL) reconstruction. Randomized controlled trial. Single outpatient rehabilitation center. Thirty-eight female volleyball/basketball players (aged between 20 and 30), randomized into 2 treatment groups. During a standardized six-month rehabilitation program, from week 13 to week 20 after surgery, the whole-body vibration group (n = 19) and the control group (n = 19) performed additional static knee flexor/extensor exercises on a vibration platform. For the whole-body vibration group, the vibration platform was set to 2.5 mm of amplitude and 26 Hz of frequency. The control group followed the same whole-body vibration board training with no vibrations. All patients were evaluated using an isokinetic strength test with a Biodex dynamometer at the beginning and at the end of the additional treatment protocol. The parameters tested were the peak torque and the maximum power of knee flexor and extensor muscles performing strength and endurance tests. No vibration-related side effects were observed. Improvements were noticed in both groups, but increase in knee muscle isokinetic strength values was statistically significant in the whole-body vibration group when compared with the control group (differences in extension: peak torque 11.316/10.263 N·m and maximum power 13.684/11.211 W; flexion: peak torque 9.632/11.105 N·m and maximum power 10.158/9.474 W; P < 0.001). When combined with a standardized rehabilitation program, whole-body vibration may increase muscular strength and be an effective additional treatment option in the rehabilitation of athletes after ACL arthroscopic reconstruction.

  8. Formation of aerial standing wave field using ultrasonic sources consisting of multiple stripe-mode transverse vibrating plates

    Science.gov (United States)

    Naito, Koki; Asami, Takuya; Miura, Hikaru

    2015-07-01

    Intense aerial acoustic waves can be produced by an ultrasonic source consisting of a transverse vibrating plate and an external jutting driving point. Previously, we studied the dimensional parameters of vibrating plates to produce stripe-mode patterns and thereby determine the plate dimensions that generate high-quality patterns. In this research, we use four transverse vibrating plates as ultrasonic sources to produce intense standing wave fields in air. As a result, an aerial standing wave field was formed in the field surrounded by four vibrating plates. Furthermore, for a total input power of 30 W for the two ultrasonic sources, a very strong (sound pressure level, 167 dB) wave field is obtained.

  9. Can we distinguish emotions from faces? Investigation of implicit and explicit processes of peak facial expressions

    Directory of Open Access Journals (Sweden)

    Yanmei Wang

    2016-08-01

    Full Text Available Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes

  10. Can We Distinguish Emotions from Faces? Investigation of Implicit and Explicit Processes of Peak Facial Expressions.

    Science.gov (United States)

    Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei

    2016-01-01

    Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the

  11. Sharp or broad pulse peak for high resolution instruments? Choice of moderator performance

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Watanabe, N.; Teshigawara, M. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-03-01

    We demonstrate a concept how we should choose moderator performance to realize required performance for instruments. Neutron burst pulse can be characterized with peak intensity, peak width and tail. Those can be controllable by designing moderator, i.e. material, temperature, shape, decoupling, poisoning and having premoderator. Hence there are large number of variable parameters to be determined. Here we discuss the required moderator performance for some typical examples, i.e. high resolution powder instrument, chopper instrument, high resolution back scattering machine. (author)

  12. Vibration based blind identification of bearing failures for autonomous wireless sensor nodes

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Bregon, A.; Daigle, M.J.

    2014-01-01

    Despite all the attention received by maintainers, undetected roller bearings failures are still a major source of concern in relation with reliability losses and high maintenance costs. Because of that, bearing condition assessment through vibration monitoring remains an intensive topic of

  13. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies.

    Science.gov (United States)

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark

    2014-07-01

    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations.

  14. Cardiovascular response to peak voluntary exercise in males with cervical spinal cord injury.

    Science.gov (United States)

    Machač, Stanislav; Radvanský, Jiří; Kolář, Pavel; Kříž, Jiří

    2016-07-01

    Traumatic damage to the cervical spinal cord is usually associated with a disruption of the autonomic nervous system (ANS) and impaired cardiovascular control both during and following exercise. The magnitude of the cardiovascular dysfunction remains unclear. The aim of the current study was to compare cardiovascular responses to peak voluntary exercise in individuals with tetraplegia and able-bodied participants. A case-control study. Twenty males with cervical spinal cord injury (SCI) as the Tetra group and 27 able-bodied males as the Control group were included in the study. Blood pressure (BP) response one minute after the peak exercise, peak heart rate (HRpeak), and peak oxygen consumption (VO2peak) on an arm crank ergometer were measured. In the second part of the study, 17 individuals of the Control group completed the Tetra group's workload protocol with the same parameters recorded. There was no increase in BP in response to the exercise in the Tetra group. Able-bodied individuals exhibited significantly increased post-exercise systolic BP after the maximal graded exercise test (123±16%) and after completion of the Tetra group's workload protocol (114±11%) as compared to pre-exercise. The Tetra group VO2peak was 59% and the HRpeak was 73% of the Control group VO2peak and HRpeak, respectively. BP did not increase following maximal arm crank exercise in males with a cervical SCI unlike the increases observed in the Control group. Some males in the Tetra group appeared to be at risk of severe hypotension following high intensity exercise, which can limit the ability to progressive increase and maintain high intensity exercise.

  15. The effects of isomerism on the vibrational spectra and thermodynamic characteristics of biuret in the gas phase

    Science.gov (United States)

    Korolevich, M. V.; Lastochkina, V. A.; Frenkel, M. L.; Kabo, G. Ya.; Zhbankov, R. G.

    1991-03-01

    A theoretical study of the IR spectra of cis- and trans-isomers of biuret, based on coupled calculations of vibrational frequencies as a valence force field approximation and of absorption band intensities by the CNDO/2 method, is reported. Calculated thermodynamic functions for biuret agreed with experimental thermochemical data. For calculating the vibrations of an isolated biuret molecule, the experimental vapour-phase IR absorption spectra were used.

  16. Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

    Directory of Open Access Journals (Sweden)

    Dae-Seung Cho

    2010-06-01

    Full Text Available The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

  17. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  18. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do an activity. When using relative intensity, people pay attention to how physical activity affects their heart rate ...

  19. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    Science.gov (United States)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  20. Preparation and measurement of TFBG based vibration sensor

    Science.gov (United States)

    Helan, Radek; Urban, Frantisek; Mikel, Bretislav; Urban, Frantisek

    2014-08-01

    We present vibration fiber sensor set up based on tilted fiber Bragg grating (TFBG) and fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. Comparative measurements were made using optical spectrum analyzer and superluminiscent diode as broadband light source. We present dependence between intensity of recoupled ghost mode and sensor deflection.

  1. Atomic packing and low energy vibrations in B2O3 glasses, compacted under GPa pressures

    Directory of Open Access Journals (Sweden)

    Giovanni Carini Jr.

    2017-06-01

    Full Text Available Vibrational properties of crystals are well described by Debye's theory. This doesn't hold for vitreous systems, where an excess density of low frequency vibrational states, called Boson peak, appears. In this work we study glassy boron trioxide (B2O3, a prototype system widely used as basic element of multi component glasses. Our aim is to get some insight into the dependence of mechanical and vibrational properties on the structure of glasses, i.e., on the atomic packing. For this reason, samples were compacted by using a multi anvil press up to pressures of 10 GPa. A comparative analysis of light Raman scattering and mechanical characteristics have been performed on densified samples. The results show that either Raman spectra and elastic constants are affected by the densification process owing to the hardening of the elastic continuum.

  2. How thin should a vitreous silica layer be for boson peak measurement? (Conference Presentation)

    Science.gov (United States)

    Hung, Tsung-Chi; Huang, Yu-Ru; Sheu, Jinn-Kong; Sun, Chi-Kuang

    2017-02-01

    Amorphous materials, such as glasses, polymers, gels, or even bio-tissues, are an indispensable part of our lives. Unlike crystalline solids, amorphous materials exhibit some anomalous thermal properties that are still under debate. The reduced density of vibrational states versus sound frequency near 1THz disobeys the Debye model and shows a peak, usually termed the boson peak. This excess density of states is often related to a plateau in thermal conductivity and a maximum in the reduced heat capacity around 1-10 Kelvin. This boson peak is expected to provide extra acoustic attenuation for propagating acoustic waves with a frequency around 1THz. In this presentation, we discuss the optimal thickness of a vitreous silica layer in which the THz acoustic waves will propagate through to render the acoustic attenuation constant measurement. In this potential experiment, the thickness of the vitreous silica layer becomes a critical issue. It can't be too thick because the attenuation will be so high that the THz acoustic wave may be completely depleted; while it can't be too thin because the wavelength (several nanometers) of the THz acoustic wave can be much longer than the layer thickness and the resulted measurement accuracy will be compromised. In this study, by using femtosecond acoustics with a bandwidth over 1THz, we explore the sample thickness issue of this much-needed experiment. Results with different layer thickness will be presented and will be compared with the current direct or indirect measurement results.

  3. Combining hypoxic methods for peak performance.

    Science.gov (United States)

    Millet, Gregoire P; Roels, B; Schmitt, L; Woorons, X; Richalet, J P

    2010-01-01

    . The intensity of hypoxic exercise might play a role on adaptations at the molecular level in skeletal muscle tissue. There is clear evidence that intense exercise at high altitude stimulates to a greater extent muscle adaptations for both aerobic and anaerobic exercises and limits the decrease in power. So although IHT induces no increase in VO(2max) due to the low 'altitude dose', improvement in athletic performance is likely to happen with high-intensity exercise (i.e. above the ventilatory threshold) due to an increase in mitochondrial efficiency and pH/lactate regulation. We propose a new combination of hypoxic method (which we suggest naming Living High-Training Low and High, interspersed; LHTLHi) combining LHTL (five nights at 3000 m and two nights at sea level) with training at sea level except for a few (2.3 per week) IHT sessions of supra-threshold training. This review also provides a rationale on how to combine the different hypoxic methods and suggests advances in both their implementation and their periodization during the yearly training programme of athletes competing in endurance, glycolytic or intermittent sports.

  4. Peak alignment of NMR signals by means of a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Forshed, Jenny; Schuppe-Koistinen, Ina; Jacobsson, Sven P

    2003-07-08

    Nuclear magnetic resonance (NMR) analysis of complex samples, such as biofluid samples is accompanied by variations in peak position and peak shape not directly related to the sample. This is due to variations in the background matrix of the sample and to instrumental instabilities. These variations complicate and limit the interpretation and analysis of NMR data by multivariate methods. Alignment of the NMR signals may circumvent these limitations and is an important preprocessing step prior to multivariate analysis. Previous aligning methods reduce the spectral resolution, are very computer-intensive for this kind of data (65k data points in one spectrum), or rely on peak detection. The method presented in this work requires neither data reduction nor preprocessing, e.g. peak detection. The alignment is achieved by taking each segment of the spectrum individually, shifting it sidewise, and linearly interpolating it to stretch or shrink until the best correlation with a corresponding reference spectrum segment is obtained. The segments are automatically picked out with a routine, which avoids cutting in a peak, and the optimization process is accomplished by means of a genetic algorithm (GA). The peak alignment routine is applied to NMR metabonomic data.

  5. Short Duration Bioastronautics Investigation 1904: Human Factors Assessment of Vibration Effects on Visual Performance during Launch

    Science.gov (United States)

    Thompson, Shelby; Holden, Kritina; Ebert, Douglas; Root, Phillip; Adelstein, Bernard; Jones, Jeffery

    2009-01-01

    The primary objective of the Short Duration Bioastronautics Investigation (SDBI) 1904 was to determine visual performance limits during Shuttle operational vibration and g-loads, specifically through the determination of minimal usable font sizes using Orion-type display formats. Currently there is little to no data available to quantify human visual performance under the extreme g- and vibration conditions of launch. Existing data on shuttle vibration magnitude and frequency is incomplete and does not address human visual performance. There have been anecdotal reports of performance decrements from shuttle crews, but no structured data have been collected. Previous work by NASA on the effects of vibration and linear g-loads on human performance was conducted during the Gemini era, but these experiments were performed using displays and controls that are dramatically different than current concepts being considered by the Constellation Program. Recently, three investigations of visual performance under vibration have been completed at NASA Ames Research Center: the first examining whole-body vibration, the second employing whole-body vibration coupled with a sustained g-load, and a third examining the effects of peak versus extended duration vibration. However, all of these studies were conducted using only a single x-axis direction (eyeballs in/out). Estimates of thrust oscillations from the Constellation Ares-I first stage are driving the need for realistic human performance requirements. SDBI 1904 was an opportunity to address the need for requirements by conducting a highly focused and applied evaluation in a relevant spaceflight environment. The SDBI was a companion effort to Detailed Test Objective (DTO) 695, which measured shuttle seat accelerations (vibration) during ascent. Data from the SDBI will serve an important role in interpreting the DTO vibration data. Both SDBI 1904 and DTO 695 were low impact with respect to flight resources, and combined, they

  6. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  7. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  8. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    Science.gov (United States)

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  9. Dynamic Characteristics of Buildings from Signal Processing of Ambient Vibration

    Science.gov (United States)

    Dobre, Daniela; Sorin Dragomir, Claudiu

    2017-10-01

    The experimental technique used to determine the dynamic characteristics of buildings is based on records of low intensity oscillations of the building produced by various natural factors, such as permanent agitation type microseismic motions, city traffic, wind etc. The possibility of recording these oscillations is provided by the latest seismic stations (Geosig and Kinemetrics digital accelerographs). The permanent microseismic agitation of the soil is a complex form of stationary random oscillations. The building filters the soil excitation, selects and increases the components of disruptive vibrations corresponding to its natural vibration periods. For some selected buildings, with different instrumentation schemes for the location of sensors (in free-field, at basement, ground floor, roof level), a correlation between the dynamic characteristics resulted from signal processing of ambient vibration and from a theoretical analysis will be presented. The interpretation of recording results could highlight the behavior of the whole structure. On the other hand, these results are compared with those from strong motions, or obtained from a complex dynamic analysis, and they are quite different, but they are explicable.

  10. Vibrational Power Flow Analysis of Rods and Beams

    Science.gov (United States)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  11. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  12. Study of flow induce vibration inside 3.5 inch hard disk drives

    Directory of Open Access Journals (Sweden)

    Wichitpon Seepangmon

    2014-06-01

    Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].

  13. Chest vibration redistributes intra-airway CO2 during tracheal insufflation in ventilatory failure.

    Science.gov (United States)

    Eckmann, D M; Gavriely, N

    1996-03-01

    To determine if high-frequency external chest wall vibration added to low flow intratracheal fresh gas insufflation alters the intra-airway CO2 distribution and the resistance to CO2 transport from the lungs. Prospective study. Experimental laboratory. Six adult anesthesized and paralyzed mongrel dogs (mean weight 24.3+/- 4.4 kg). Dogs were ventilated by three methods: a) intermittent positive pressure ventilation; b) intermittent positive pressure ventilation with tracheal insufflation of fresh gas (FIO2 of 0.4) flowing at 0.15 L/kg/min through a catheter positioned at the carina; and c) intermittent positive pressure ventilation with tracheal insufflation and with external high-frequency chest wall vibration of the dependent hemithorax. We measured arterial blood gas values as an index of global gas exchange, and intrapulmonary airway CO2 concentrations as an index of local gas exchange. Intra-airway CO2 concentrations along the axis of the airways were measured via a sampling catheter. Airway axial concentration profiles were constructed and resistances to gas transport were calculated from the measured data. Vibration increased intraluminal CO2 concentrations from 1.1% to 2.5% mouthward of the insufflation catheter tip. Peak resistance to CO2 transport decreased by 65% during vibration relative to the insufflation-only value. Vibration displaced peak transport resistance from second- to fourth-generation airways. Global gas exchange improves during ventilation by chest wall vibration with low flow insufflation. Local gas exchange in the central airways is also improved due to increased intraluminal mixing and CO2 elimination. This ventilation technique may confer therapeutic advantages over conventional mechanical ventilation in the treatment of ventilatory failure.

  14. Aerial Ultrasonic Source Using Stripe-Mode Transverse Vibrating Plate with Jutting Driving Point

    Science.gov (United States)

    Miura, Hikaru; Ishikawa, Hitoshi

    2009-07-01

    Ultrasonic sources using a stripe-mode rectangular transverse vibrating plate have been used as acoustic sources emitting intense acoustic waves in air. Because these sources are based on the resonance of transverse vibration, their electric-acoustic conversion rate is as high as 90%, which is a merit. In this study, a vibrating plate with a unique shape was developed to enhance the effectiveness of acoustic sources. It is called a stripe-mode transverse vibrating plate with a jutting driving point. The advantage of this plate shape is that the acoustic source does not interfere with the emission of acoustic waves since the driving point is outside the plate, and there is no need to distinguish between the front and back sides of the vibrating plate. The conditions effective for driving the stripe-mode transverse vibrating plate were clarified. That is, the length of the side parallel to the node lines of the plate is an odd number times the length between the nodes in the stripe mode, and the length of the side perpendicular is at least 6 times but not a multiple of 3 greater than or equal to 15 times, subtracted by 0.5 times, the length between the nodes. Moreover, the length between the driving point and the edge of the plate is a positive integer with a noninteger value of 0.9.

  15. High force vibration testing with wide frequency range

    Science.gov (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  16. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  17. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  18. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    KAUST Repository

    Es-sebbar, Et-touhami

    2014-01-01

    Propylene, a by-product of biomass burning, thermal cracking of hydrocarbons and incomplete combustion of fossil fuels, is a ubiquitous molecule found in the environment and atmosphere. Accurate infrared (IR) cross-sections and integrated band intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500cm-1 and at gas temperatures between 296 and 460K. We recorded these spectra at spectral resolutions ranging from 0.08 to 0.5cm-1 and measured the integrated band intensities for a number of vibrational bands in certain spectral regions. We then compared the integrated band intensities measured at room temperature with values derived from the National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) databases. Our results agreed well with the results reported in the two databases with a maximum deviation of about 4%. The peak cross-sections for the primary bands decreased by about 20-54% when the temperature increased from 296 to 460K. Moreover, we determined the integrated band intensities as a function of temperature for certain features in various spectral regions; we found no significant temperature dependence over the range of temperatures considered here. We also studied the effect of temperature on absorption cross-section using a Difference Frequency Generation (DFG) laser system. We compared the DFG results with those obtained from the FTIR study at certain wavenumbers over the 2850-2975cm-1 range and found a reasonable agreement with less than 10% discrepancy. © 2013 Elsevier Ltd.

  19. A vibrational analysis of the O2 (A 3Sigma/+/u) Herzberg I system using rocket data

    Science.gov (United States)

    Siskind, David E.; Sharp, William E.

    1990-01-01

    An observation of the UV nightglow between 2670 and 3040 A was conducted over White Sands Missile Range on October 22, 1984. A 1/4-m spectrometer operating at 3.5-A resolution viewed the earth's limb at tangent heights between 90 and 110 km for 120 sec. A total of 41 spectral scans of the nightglow were obtained with the brightest feature being the O2 Herzberg I bands. The data were sorted into two groups, one from the top side of the layer and one containing the emission peak, and compared with synthetic spectra. The deduced vibrational distributions indicate that, at low altitudes, the higher vibrational levels (v-prime greater than 6) were relatively depleted; however, the magnitude of the vibrational shift is much less than that predicted from theories of vibrational relaxation. It is shown that increasing the electronic quenching with respect to the vibrational quenching can reduce the vibrational shift in the model and qualitatively explain the observations; however, several details of the vibrational distribution are not well reproduced.

  20. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells.

    Science.gov (United States)

    Tirkkonen, Laura; Halonen, Heidi; Hyttinen, Jari; Kuokkanen, Hannu; Sievänen, Harri; Koivisto, Anna-Maija; Mannerström, Bettina; Sándor, George K B; Suuronen, Riitta; Miettinen, Susanna; Haimi, Suvi

    2011-12-07

    Mechanical stimulation is an essential factor affecting the metabolism of bone cells and their precursors. We hypothesized that vibration loading would stimulate differentiation of human adipose stem cells (hASCs) towards bone-forming cells and simultaneously inhibit differentiation towards fat tissue. We developed a vibration-loading device that produces 3g peak acceleration at frequencies of 50 and 100 Hz to cells cultured on well plates. hASCs were cultured using either basal medium (BM), osteogenic medium (OM) or adipogenic medium (AM), and subjected to vibration loading for 3 h d(-1) for 1, 7 and 14 day. Osteogenesis, i.e. differentiation of hASCs towards bone-forming cells, was analysed using markers such as alkaline phosphatase (ALP) activity, collagen production and mineralization. Both 50 and 100 Hz vibration frequencies induced significantly increased ALP activity and collagen production of hASCs compared with the static control at 14 day in OM. A similar trend was detected for mineralization, but the increase was not statistically significant. Furthermore, vibration loading inhibited adipocyte differentiation of hASCs. Vibration did not affect cell number or viability. These findings suggest that osteogenic culture conditions amplify the stimulatory effect of vibration loading on differentiation of hASCs towards bone-forming cells.