WorldWideScience

Sample records for vibrational nonequilibrium effects

  1. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  2. Nonequilibrium effects in Isoscaling

    International Nuclear Information System (INIS)

    Dorso, C. O.; Lopez, J. A.

    2007-01-01

    In this work we study within a simple model different properties of the system that allow us to understand the properties of the isoscaling observable. We first show that isoscaling is a general property of fragmenting systems. We show this by using a simple generalized percolation model. We show that the usual isoscaling property can be obtained in the case of bond percolation in bichromatic lattices with any regular topology. In this case the probabilities of each color (isospin) are independent. We then explore the effect of introducing 'non-equilibrium' effects

  3. Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating-cooling cycle.

    Science.gov (United States)

    Deshmukh, Sanket A; Kamath, Ganesh; Suthar, Kamlesh J; Mancini, Derrick C; Sankaranarayanan, Subramanian K R S

    2014-03-14

    Molecular dynamics simulations in conjunction with finite element calculations are used to explore the conformational dynamics of a thermo-sensitive oligomer, namely poly(N-isopropylacrylamide) (PNIPAM), subjected to an ultra-fast heating-cooling cycle. Finite element (FE) calculations were used to predict the temperature profile resulting from laser-induced heating of the polymer-aqueous system. The heating rate (∼0.6 K ps(-1)) deduced from FE calculations was used to heat an aqueous solution of PNIPAM consisting of 30 monomeric units (30-mer) from 285 K to 315 K. Non-equilibrium effects arising from the ultra-fast heating-cooling cycle results in a hysteresis during the coil-to-globule transition. The corresponding atomic scale conformations were characterized by monitoring the changes in the vibrational spectra, which provided a reliable metric to study the coil-to-globule transition in PNIPAM and vice-versa across the LCST. The vibrational spectra of bonds involving atoms from the oligomer backbone and the various side-groups (amide I, amide II, and the isopropyl group of PNIPAM) of the oligomers were analyzed to study the conformational changes in the oligomer corresponding to the observed hysteresis. The differences in the vibrational spectra calculated at various temperatures during heating and cooling cycles were used to understand the coil-to-globule and globule-to-coil transitions in the PNIPAM oligomer and identify the changes in the relative interactions between various atoms in the backbone and in the side groups of the oligomer with water. The shifts in the computed vibrational spectral peaks and the changes in the intensity of peaks for the different regions of PNIPAM, seen across the LCST during the heating cycle, are in good agreement with previous experimental studies. The changes in the radius of gyration (Rg) and vibrational spectra for amide I and amide II regions of PNIPAM suggest a clear coil-to-globule transition at ∼301 K during the

  4. Non-equilibrium vibrational and chemical kinetics in shock heated carbon dioxide

    Science.gov (United States)

    Kosareva, A. A.

    2018-05-01

    The flows of CO2/CO/O2/O/C and CO2/CO/O mixtures behind shock waves are studied in the three-temperature, two-temperature and one-temperature approximations. The influence of the vibrational relaxation and chemical reactions on the flow composition, temperature and velocity is investigated. It is shown that the vibrational non-equilibrium has a significant effect on the macroscopic parameters of the flow near the front of the shock wave. It was found that the composition of the mixture has the greatest effect on the numerical density of CO molecules and O atoms. Also, significant differences between the values of the vibrational temperature of the asymmetric regime have been revealed.

  5. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    Science.gov (United States)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  6. Fundamental kinetics and innovative applications of nonequilibrium atomic vibration in thermal energy transport and conversion

    Science.gov (United States)

    Shin, Seungha

    All energy conversion inefficiencies begin with emission of resonant atomic motions, e.g., vibrations, and are declared as waste heat once these motions thermalize to equilibrium. The nonequilibrium energy occupancy of the vibrational modes can be targeted as a harvestable, low entropy energy source for direct conversion to electric energy. Since the lifetime of these resonant vibrations is short, special nanostructures are required with the appropriate tuning of the kinetics. These in turn require multiscale, multiphysics treatments. Atomic vibration is described with quasiparticle phonon in solid, and the optical phonon emission is dominant relaxation channel in semiconductors. These optical modes become over-occupied when their emission rate becomes larger than their decay rate, thus hindering energy relaxation and transport in devices. Effective removal of these phonons by drifting electrons is investigated by manipulating the electron distribution to have higher population in the low-energy states, thus allowing favorable phonon absorption. This is done through introduction, design and analysis of a heterobarrier conducting current, where the band gap is controlled by alloying, thus creating a spatial variation which is abrupt followed by a linear gradient (to ensure directed current). Self-consistent ensemble Monte Carlo simulations based on interaction kinetics between electron and phonon show that up to 19% of the phonon energy is converted to electric potential with an optimized GaAs/AlxGa1-xAs barrier structure over a range of current and electron densities, and this system is also verified through statistical entropy analysis. This direct energy conversion improves the device performance with lower operation temperature and enhances overall energy conversion efficiency. Through this study, the paradigm for harvesting the resonant atomic vibration is proposed, reversing the general role of phonon as only causing electric potential drop. Fundamentals

  7. Link prediction based on nonequilibrium cooperation effect

    Science.gov (United States)

    Li, Lanxi; Zhu, Xuzhen; Tian, Hui

    2018-04-01

    Link prediction in complex networks has become a common focus of many researchers. But most existing methods concentrate on neighbors, and rarely consider degree heterogeneity of two endpoints. Node degree represents the importance or status of endpoints. We describe the large-degree heterogeneity as the nonequilibrium between nodes. This nonequilibrium facilitates a stable cooperation between endpoints, so that two endpoints with large-degree heterogeneity tend to connect stably. We name such a phenomenon as the nonequilibrium cooperation effect. Therefore, this paper proposes a link prediction method based on the nonequilibrium cooperation effect to improve accuracy. Theoretical analysis will be processed in advance, and at the end, experiments will be performed in 12 real-world networks to compare the mainstream methods with our indices in the network through numerical analysis.

  8. Transport processes and sound velocity in vibrationally non-equilibrium gas of anharmonic oscillators

    Science.gov (United States)

    Rydalevskaya, Maria A.; Voroshilova, Yulia N.

    2018-05-01

    Vibrationally non-equilibrium flows of chemically homogeneous diatomic gases are considered under the conditions that the distribution of the molecules over vibrational levels differs significantly from the Boltzmann distribution. In such flows, molecular collisions can be divided into two groups: the first group corresponds to "rapid" microscopic processes whereas the second one corresponds to "slow" microscopic processes (their rate is comparable to or larger than that of gasdynamic parameters variation). The collisions of the first group form quasi-stationary vibrationally non-equilibrium distribution functions. The model kinetic equations are used to study the transport processes under these conditions. In these equations, the BGK-type approximation is used to model only the collision operators of the first group. It allows us to simplify derivation of the transport fluxes and calculation of the kinetic coefficients. Special attention is given to the connection between the formulae for the bulk viscosity coefficient and the sound velocity square.

  9. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  10. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  11. Mechanism of laser and rf plasma in vibrational nonequilibrium CO-N2 gas mixture

    International Nuclear Information System (INIS)

    Lou Guofeng; Adamovich, Igor V.

    2009-01-01

    This paper investigates the mechanism of plasma created by focused CO laser and rf electric field. The plasma is created in a CO/N 2 environment, at a total pressure of 600 torr. Ionization of the gases occurs by an associative ionization mechanism, in collisions of two highly vibrationally excited molecules. These highly vibrationally excited states are populated by resonance absorption of the CO radiation followed by anharmonic vibration-vibration (V-V) pumping. Moreover N 2 also becomes vibrationally excited due to collisions with vibrationally excited CO. The coupled rf reduced electric field E/N is sufficiently low to prevent electron impact ionization that may create plasma individually, so when a subbreakdown rf field is applied to the plasma, collisions between the free electrons heated by the field and the diatomic species create additional vibrational excitation both in the region occupied by the CO laser beam and outside of the laser beam region. The numerical results show plasma created in both regions (in and out of the CO laser beam region) with the associative ionization mechanism. This suggests a method for creating a stable nonequilibrium plasma. The calculation result is verified by comparison the synthetic spectrum to a measured one.

  12. Non-dissipative effects in nonequilibrium systems

    CERN Document Server

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  13. Non-equilibrium effects in the plasmas

    International Nuclear Information System (INIS)

    Einfeld, D.

    1975-01-01

    Radial dependences of non-equilibrium effects of a He plasma were studied in a wall-stabilized short-time discharge. The electron density (nsub(e) = 2.5 x 10 22 m -3 ), the electron temperature and the equilibrium shift were determined by calculations of the continuum beam density and the beam densities of one He-I and one He-II line, respectively. In the discharge axis, the overpopulation factors of the ground state of He-I and He-II are about 75. As the distance to the axis increases, they increase for He-I and decrease for He-II. Except for the usual errors of measurement, the overpopulation factors found here correspond to those calculated from the balance equations (Drawin). (orig./AK) [de

  14. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  15. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  16. Nonequilibrium thermodynamics of the Kovacs effect

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J. S.

    We present a thermodynamic theory of the Kovacs effect based on the idea that the configurational degrees of freedom of a glass-forming material are driven out of equilibrium with the heat bath by irreversible thermal contraction and expansion. We assume that the slowly varying configurational subsystem, i.e. the part of the system that is described by inherent structures, is characterized by an effective temperature, and contains a volume-related internal variable. We examine mechanisms by which irreversible dynamics of the fast, kinetic-vibrational degrees of freedom can cause the entropy and the effective temperature of the configurational subsystem to increase during sufficiently rapid changes in the bath temperature. We then use this theory to interpret the numerical simulations by Mossa and Sciortino (MS), who observe the Kovacs effect in more detail than is feasible in laboratory experiments. Our analysis highlights two mechanisms for the equilibration of internal variables. In one of these, an internal variable first relaxes toward a state of quasi-equilibrium determined by the effective temperature, and then approaches true thermodynamic equilibrium as the effective temperature slowly relaxes toward the bath temperature. In the other mechanism, an internal variable directly equilibrates with the bath temperature on intermediate timescales, without equilibrating with the effective temperature at any stage. Both mechanisms appear to be essential for understanding the MS results.

  17. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  18. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  19. Effects of vacancies on overshooting in nonequilibrium ordering processes

    DEFF Research Database (Denmark)

    Gilhøj, Henriette; Jeppesen, Claus; Mouritsen, Ole G.

    1996-01-01

    The effects of annealed site dilution on the nonequilibrium ordering process in the two-dimensional Ising model with a nonconserved order parameter have been studied using Monte Carlo simulation. It is found that the transient development of a local order that is larger than the equilibrium order...

  20. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    International Nuclear Information System (INIS)

    Adamovich, Igor V.

    2014-01-01

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

  1. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  2. Effects of Nonequilibrium Plasmas on Eukaryotic Cells

    Science.gov (United States)

    2009-05-01

    effects of the plasma bullets on bacteria of dental relevance, Streptococcus mutans , which is implicated in the onset and progression of dental caries...Hynes " Experimental Investigations of Plasma Bullets and their Effects on Streptococcus mutans ", In Proc. 2nd Int. Conf. Plasma Medicine, San...S. mutans is a cariogenic organism that contributes to caries in infants, children and adults. S. mutans alone are not difficult to destroy; however

  3. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    Science.gov (United States)

    Kachan, Devin Michael

    speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain

  4. Nonequilibrium electron-vibration coupling and conductance fluctuations in a C60 junction

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Frederiksen, Thomas; Brandbyge, Mads

    2012-01-01

    displacement. Combined with a vibrational heating mechanism we construct a model from our results that explain the polarity-dependent two-level conductance fluctuations observed in recent scanning tunneling microscopy (STM) experiments [N. Ne´el et al., Nano Lett. 11, 3593 (2011)]. These findings highlight...

  5. Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows

    Science.gov (United States)

    2014-01-01

    important pro- cess in a wide range of high speed flows. High temperature shock layers that form in front of hypersonic vehicles can lead to significant...continuum flows for use in traditional Computational Fluid Dynamics ( CFD ) and non-continuum flows for use with rarefied flow de- scriptions, such as the...145 .98 4396 V. Summary and Conclusions The form of two vibrational relaxation models that are commonly used in DSMC and CFD simula- tions have been

  6. Nonequilibrium fluctuations in micro-MHD effects on electrodeposition

    International Nuclear Information System (INIS)

    Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki

    2010-01-01

    In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.

  7. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  8. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  9. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...... for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value...

  10. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  11. Nonequilibrium effects on shock-layer radiometry during earth entry.

    Science.gov (United States)

    Arnold, J. O.; Whiting, E. E.

    1973-01-01

    Radiative enhancement factors for the CN violet and N2(+) first negative band systems caused by nonequilibrium thermochemistry in the shock layer of a blunt-nosed vehicle during earth entry are reported. The results are based on radiometric measurements obtained with the aid of a combustion-driven shock tube. The technique of converting the shock-tube measurements into predictions of the enhancement factors for the blunt-body case is described, showing it to be useful for similar applications of other shock-tube measurements.

  12. Effects of nonequilibrium adsorption on nuclide transport in a porous rock

    International Nuclear Information System (INIS)

    Shi-Ping Teng; Ching-Hor Lee

    1994-01-01

    An analytical solution covering the entire range of adsorption properties of rock has been derived for the migration of radionuclide in a porous rock matrix. The analysis takes into account the advective transport, hydrodynamic dispersion, adsorption between solid phase and liquid phase, and the radioactive decay. For adsorption of nuclide within the rock, the effects of no adsorption, linear nonequilibrium adsorption, and linear equilibrium adsorption are integrated into a generic transient analytical solution. The results indicate that the assumption of equilibrium adsorption can result in underestimation of the concentration profile in the early stages of migration. However, both the equilibrium and nonequilibrium profiles eventually approach the same value. It is also noted that for the case of nonequilibrium adsorption, plateaus appear in the concentration profile of the breakthrough curves. The effects of different adsorption rates are also analyzed

  13. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  14. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2011-01-01

    Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  15. Effect of non-equilibrium flow chemistry and surface catalysis on surface heating to AFE

    Science.gov (United States)

    Stewart, David A.; Henline, William D.; Chen, Yih-Kanq

    1991-01-01

    The effect of nonequilibrium flow chemistry on the surface temperature distribution over the forebody heat shield on the Aeroassisted Flight Experiment (AFE) vehicle was investigated using a reacting boundary-layer code. Computations were performed by using boundary-layer-edge properties determined from global iterations between the boundary-layer code and flow field solutions from a viscous shock layer (VSL) and a full Navier-Stokes solution. Surface temperature distribution over the AFE heat shield was calculated for two flight conditions during a nominal AFE trajectory. This study indicates that the surface temperature distribution is sensitive to the nonequilibrium chemistry in the shock layer. Heating distributions over the AFE forebody calculated using nonequilibrium edge properties were similar to values calculated using the VSL program.

  16. Calculations of Non-equilibrium Effects in Nano-conductors

    DEFF Research Database (Denmark)

    Christensen, Rasmus Bjerregaard

    This thesis is concerned with the interplay between electrical current and vibrational and plasmonic excitations. The development of nano-scale devices for electronics relies on the ability to identify individual atoms and molecules as well as their geometry and electronic structure. In this thes...

  17. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  18. The effect of pure state structure on nonequilibrium dynamics

    International Nuclear Information System (INIS)

    Newman, C M; Stein, D L

    2008-01-01

    Motivated by short-range Ising spin glasses, we review some rigorous results and their consequences for the relation between the number/nature of equilibrium pure states and nonequilibrium dynamics. Two of the consequences for spin glass dynamics following an instantaneous deep quench to a temperature with broken spin flip symmetry are: (1) almost all initial configurations lie on the boundary between the basins of attraction of multiple pure states; (2) unless there are uncountably many pure states with almost all pairs having zero overlap, there can be no equilibration to a pure state as time t → ∞. We discuss the relevance of these results to the difficulty of equilibration of spin glasses. We also review some results concerning the 'nature versus nurture' problem of whether the large-t behavior of both ferromagnets and spin glasses following a deep quench is determined more by the initial configuration (nature) or by the dynamics realization (nurture)

  19. No Telescoping Effect with Dual Tendon Vibration.

    Directory of Open Access Journals (Sweden)

    Valeria Bellan

    Full Text Available The tendon vibration illusion has been extensively used to manipulate the perceived position of one's own body part. However, findings from previous research do not seem conclusive sregarding the perceptual effect of the concurrent stimulation of both agonist and antagonist tendons over one joint. On the basis of recent data, it has been suggested that this paired stimulation generates an inconsistent signal about the limb position, which leads to a perceived shrinkage of the limb. However, this interesting effect has never been replicated. The aim of the present study was to clarify the effect of a simultaneous and equal vibration of the biceps and triceps tendons on the perceived location of the hand. Experiment 1 replicated and extended the previous findings. We compared a dual tendon stimulation condition with single tendon stimulation conditions and with a control condition (no vibration on both 'upward-downward' and 'towards-away from the elbow' planes. Our results show a mislocalisation towards the elbow of the position of the vibrated arm during dual vibration, in line with previous results; however, this did not clarify whether the effect was due to arm representation contraction (i.e., a 'telescoping' effect. Therefore, in Experiment 2 we investigated explicitly and implicitly the perceived arm length during the same conditions. Our results clearly suggest that in all the vibration conditions there was a mislocalisation of the entire arm (including the elbow, but no evidence of a contraction of the perceived arm length.

  20. Nonequilibrium effects and structure of X-ray lines in tokamak plasma

    Science.gov (United States)

    Gontis, V. G.; Lisitsa, V. S.

    1986-02-01

    The sensitivity of X-ray spectra to a number of typical non-equilibrium effects occurring in modern tokamaks is examined. Experimental data from the T-10 and ST Tokamaks are cited to illustrate the degree of deviation from coronal equilibrium. The analysis exploits recent atomic data for radiation and autoionization line widths; standard semiempirical formulas are used to calculate the rates of collision processes. Ion diffusion and impurity distribution by degrees of ionization are investigated. The sensitivity of K radiation to electron nonequilibrium and ion charge exchange is examined.

  1. Nonequilibrium capillarity effects in two?phase flow through porous media at different scales

    NARCIS (Netherlands)

    Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.

    2011-01-01

    A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two?phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments

  2. Nonequilibrium capillarity effects in two-phase flow through porous media at different scales

    NARCIS (Netherlands)

    Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.

    2011-01-01

    A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments

  3. Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure

    NARCIS (Netherlands)

    van Duijn, C. J.; Mitra, K.; Pop, I. S.

    2018-01-01

    The Richards equation is a mathematical model for unsaturated flow through porous media. This paper considers an extension of the Richards equation, where non-equilibrium effects like hysteresis and dynamic capillarity are incorporated in the relationship that relates the water pressure and the

  4. The immediate effect of vibration therapy on flexibility in female ...

    African Journals Online (AJOL)

    The immediate effect of vibration therapy on flexibility in female junior elite gymnasts. ... Therefore, the aim of this study was to investigate the acute effects of vibration therapy on the flexibility of female gymnasts. A pre-test ... Keywords: Static stretching, vibration training, vibration therapy, acute effect, artistic gymnastics.

  5. Simultaneous spectral and temporal analyses of kinetic energies in nonequilibrium systems: theory and application to vibrational relaxation of O-D stretch mode of HOD in water.

    Science.gov (United States)

    Jeon, Jonggu; Lim, Joon Hyung; Kim, Seongheun; Kim, Heejae; Cho, Minhaeng

    2015-05-28

    A time series of kinetic energies (KE) from classical molecular dynamics (MD) simulation contains fundamental information on system dynamics. It can also be analyzed in the frequency domain through Fourier transformation (FT) of velocity correlation functions, providing energy content of different spectral regions. By limiting the FT time span, we have previously shown that spectral resolution of KE evolution is possible in the nonequilibrium situations [Jeon and Cho, J. Chem. Phys. 2011, 135, 214504]. In this paper, we refine the method by employing the concept of instantaneous power spectra, extending it to reflect an instantaneous time-correlation of velocities with those in the future as well as with those in the past, and present a new method to obtain the instantaneous spectral density of KE (iKESD). This approach enables the simultaneous spectral and temporal resolution of KE with unlimited time precision. We discuss the formal and novel properties of the new iKESD approaches and how to optimize computational methods and determine parameters for practical applications. The method is specifically applied to the nonequilibrium MD simulation of vibrational relaxation of the OD stretch mode in a hydrated HOD molecule by employing a hybrid quantum mechanical/molecular mechanical (QM/MM) potential. We directly compare the computational results with the OD band population relaxation time profiles extracted from the IR pump-probe measurements for 5% HOD in water. The calculated iKESD yields the OD bond relaxation time scale ∼30% larger than the experimental value, and this decay is largely frequency-independent if the classical anharmonicity is accounted for. From the integrated iKESD over intra- and intermolecular bands, the major energy transfer pathways were found to involve the HOD bending mode in the subps range, then the internal modes of the solvent until 5 ps after excitation, and eventually the solvent intermolecular modes. Also, strong hydrogen

  6. Effects of Vibration Therapy in Pediatric Immunizations.

    Science.gov (United States)

    Benjamin, Arika L; Hendrix, Thomas J; Woody, Jacque L

    2016-01-01

    A randomized clinical trial of 100 children (52 boys, 48 girls) ages 2 months to 7 years was conducted to evaluate the effect of vibration therapy without cold analgesia on pain. A convenience sample was recruited at two sites: a publicly funded, free immunization clinic and a private group pediatric practice. Participants were randomly assigned to receive vibration therapy via a specialized vibrating device or standard care. All children regardless of intervention group were allowed to be distracted and soothed by the parent. Pain was evaluated using the FLACC score, which two nurses assessed at three points in time: prior to, during, and after the injection(s). Data were analyzed using a two-independent samples-paired t-test. Results show that vibration therapy had no effect on pain scores in the younger age groups studied (2 months ≤ 1 year, > 1 year ≤ 4 years). In the oldest age group (> 4 to 7 years of age), a heightened pain reading was found in the period from preinjection to post-injection periods (p = 0.045). These results indicate that the addition of vibration therapy (without cold analgesia) to standard soothing techniques is no more effective in reducing immunization pain than standard soothing techniques alone, and thus, is not indicated for use with immunization pain. Recommendations include further evaluation of interventions.

  7. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  8. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  9. Non-equilibrium effects in the magnetic behavior of Co_3O_4 nanoparticles

    OpenAIRE

    Bisht, Vijay; Rajeev, K. P.

    2011-01-01

    We report detailed studies on non-equilibrium magnetic behavior of antiferromagnetic Co_3O_4 nanoparticles. Temperature and field dependence of magnetization, wait time dependence of magnetic relaxation (aging), memory effects and temperature dependence of specific heat have been investigated to understand the magnetic behavior of these particles. We find that the system shows some features characteristic of nanoparticle magnetism such as bifurcation of field cooled (FC) and zero field cooled...

  10. Investigation of the effect of water exposed to nonequilibrium contact plasma onto saccharomyces cerevisiae yeast

    Directory of Open Access Journals (Sweden)

    S. Mykolenko

    2015-05-01

    Full Text Available Introduction. Additional treatment of water by nonequilibrium contact plasma allows improving consumer characteristics of bakery goods considerably. Determination of the effect of plasma-chemically activated water on morphological, cultural and physiological properties of Saccharomyces cerevisiae yeast is important from the technological point of view. Materials and Methods. Experimental investigations were carried out in the conditions of bacteriological laboratory by seeding the culture of yeasts of ТМ “Lvivski” and “Kryvorizki” on Sabouraud dense liquid nutrient media. The quantity of viable cells of microorganisms was determined by the method of Gould sector seeds. Morphology of the yeast was investigated by phase-contrast microscopy. Biotechnological properties of yeasts were determined on Giss media. Results. The paper establishes the effect of water exposed to nonequilibrium contact plasma on the sensitivity of Saccharomyces cerevisiae and shows absence of suppressive action of treated water with regard to cultural properties of microorganisms. The experiments prove that with the use of plasma-chemically activated water morphological characteristics and biochemical properties of bakery yeasts produced by Lviv and Kryvyi Rig yeast plants are preserved. Culturing of Saccharomyces cerevisiae yeast on the nutrient media prepared with the use of water exposed to nonequilibrium contact plasm resulted in 6,5–15 times’ increase in quantity of viable microorganisms compared with the control on the mains drinking water. Conclusions. Physiological properties of Saccharomyces cerevisiae yeast improved owing to use water exposed to nonequilibrium contact plasma. Results of investigations are recommended for using in yeast production and bread making.

  11. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  12. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  13. Simulation and experimental investigation of mechanical and thermal non-equilibrium effect on choking flow at low pressure

    International Nuclear Information System (INIS)

    Yoon, H.J.; Ishii, M.; Revankar, S.T.

    2004-01-01

    The prediction of two-phase choking flow at low pressure (<1MPa) is much more difficult than at relatively higher pressure due to the large density ratio and relatively large thermal and mechanical non-equilibrium between the phases. At low pressure currently available choking flow models are not reliable and satisfactory. In view of this, separate effect tests were conducted to systematically investigate the effects of mechanical and thermal non-equilibrium on the two-phase choking flow in a pipe. The systematic studies is not available in literature, therefore no clear understanding of these effects has been attained until now. A scaled integral facility called PUMA was used for these tests with specific boundary condition with several unique in-;line instruments. The mechanical non-equilibrium effect was studied with air-water choking flow. Subcooled water two-phase choking flow was studied to identify the effects of mechanical and thermal non-equilibrium. A typical nozzle and orifice were used as the choking flow section to evaluate the degree of non-equilibrium due to geometry. The slip ratio, which is a key parameter to express the mechanical non-equilibrium, is obtained upstream of the choking section in the air-water test. The measured choking mass flux for the nozzle was higher than the orifice at low flow quality (<0.05) for the same upstream flow quality indicating that there is a strong mechanical non-equilibrium at the choking plane. The thermal non-equilibrium effect was very strong at low pressure, however, no major influence of the geometry on this effect was observed. Experimental data were compared with RELAP5/MOD3.2.1.2, MOD3.3 beta and TRAC-M code predictions. The code predictions in general were not in agreement with the air-water choking flow test data. This indicated that the mechanical non-equilibrium effects were not properly modeled in the codes. The test data for subcooled water showed moderate decrease of choking mass flux with decrease

  14. Studying effects of non-equilibrium radiative transfer via HPC

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-24

    This report presents slides on Ph.D. Research Goals; Local Thermodynamic Equilibrium (LTE) Implications; Calculating an Opacity; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Collisional Radiative Modeling; Radiative and Collisional Excitation; Photo and Electron Impact Ionization; Autoionization; The Rate Matrix; Example: Total Photoionization rate; The Rate Coefficients; inlinlte version 1.1; inlinlte: Verification; New capabilities: Rate Matrix – Flexibility; Memory Option Comparison; Improvements over previous DCA solver; Inter- and intra-node load balancing; Load Balance – Full Picture; Load Balance – Full Picture; Load Balance – Internode; Load Balance – Scaling; Description; Performance; xRAGE Simulation; Post-process @ 2hr; Post-process @ 4hr; Post-process @ 8hr; Takeaways; Performance for 1 realization; Motivation for QOI; Multigroup Er; Transport and NLTE large effects (1mm, 1keV); Transport large effect, NLTE lesser (1mm, 750eV); Blastwave Diagnostici – Description & Performance; Temperature Comparison; NLTE has effect on dynamics at wall; NLTE has lesser effect in the foam; Global Takeaways; The end.

  15. Numerical simulation of nonequilibrium effects in an argon plasma jet

    International Nuclear Information System (INIS)

    Chang, C.H.; Ramshaw, J.D.

    1994-01-01

    Departures from thermal (translational), ionization, and excitation equilibrium in an axisymmetric argon plasma jet have been studied by two-dimensional numerical simulations. Electrons, ions, and excited and ground states of neutral atoms are represented as separate chemical species in the mixture. Transitions between excited states, as well as ionization/recombination reactions due to both collisional and radiative processes, are treated as separate chemical reactions. Resonance radiation transport is represented using Holstein escape factors to simulate both the optically thin and optically thick limits. The optically thin calculation showed significant underpopulation of excited species in the upstream part of the jet core, whereas in the optically thick calculation this region remains close to local thermodynamic equilibrium, consistent with previous experimental observations. Resonance radiation absorption is therefore an important effect. The optically thick calculation results also show overpopulations (relative to equilibrium) of excited species and electron densities in the fringes and downstream part of the jet core. In these regions, however, the electrons and ions are essentially in partial local thermodynamic equilibrium with the excited state at the electron temperature, even though the ionized and excited states are no longer in equilibrium with the ground state. Departures from partial local thermodynamic equilibrium are observed in the outer fringes and far downstream part of the jet. These results are interpreted in terms of the local relative time scales for the various physical and chemical processes occurring in the plasma

  16. The effect of SNR structure on non-equilibrium X-ray spectra

    International Nuclear Information System (INIS)

    Hamilton, A.J.S.; Sarazin, C.L.

    1983-01-01

    A technique is presented for characterizing the ionization structure and consequent thermal X-ray emission of a SNR when non-equilibrium ionization effects are important. The technique allows different theoretical SNR models to be compared and contrasted rapidly in advance of detailed numerical computations. In particular it is shown that the spectrum of a Sedov remnant can probably be applied satisfactorily in a variety of SNR structures, including the reverse shock model advocated by Chevalier (1982) for Type I SN, the isothermal similarity solution of Solinger, Rappaport and Buff (1975), and various inhomogenous or 'messy' structures. (Auth.)

  17. Vibrational mechanics nonlinear dynamic effects, general approach, applications

    CERN Document Server

    Blekhman, Iliya I

    2000-01-01

    This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat

  18. The Health Effects and Keep Down of Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2014-04-01

    Full Text Available Vibration was defined that oscillation of the body according to the reference point. The tools that are used in industry and are the source of vibration cause diseases. For this reason, the vibration has been one of the factors that affect the health and of the most widely researched in the field of ergonomics. The perceived intensity and health effects of vibration depend on the vibration frequency, intensity, direction, acceleration, duration of exposure, vibration affects the region, age, gender, posture, distance from the source person, activity, time of day and the person\\s overall health condition. The one of the most common health effects of whole body vibration is impact on musculoskeletal system. In many studies, indicated that whole-body vibration effect waist, back, shoulder and neck especially. There were varied studies that hormone levels were not changed as well there were varied studies that hormone levels were increased or decreased. There were varied studies about the digestive and circulatory system. In these studies, digestive system complaints, peptic ulcer, gastritis, varicose veins and hemorrhoids were determined frequently. For protection the health effect of vibration, Directives of the European Commission, Turkish Standards, Assessment and Management of Environmental Noise and Vibration Regulations were published. For the control of vibration are need technical and medical measures and education [TAF Prev Med Bull 2014; 13(2.000: 177-186

  19. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  20. Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Min; Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook National Univeristy, Daegu (Korea, Republic of); Jeon, Heung Kyun [Daegu Health College, Daegu (Korea, Republic of)

    2014-12-15

    The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At T{sub 0}=298 K and α=3°, the lift coefficients for M{sub ∞}=0.78 and 0.81 decreased monotonically with increasing Φ{sub 0}. In contrast, for M{sub ∞} corresponding to the Mach number of the force break, CL increased with Φ{sub 0}. For α=3° and Φ{sub 0}=0%, CD increased markedly as M{sub ∞} increased. However, at Φ{sub 0}=60% and α=3°, which corresponded to the case of the condensation having a large influence, CD increased slightly as M{sub ∞} increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At Φ{sub 0}=0%, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When Φ{sub 0}>50%, the coefficient of the wave drag decreased as α and M{sub ∞} increased. Lowering Φ{sub 0} and increasing M{sub ∞} increased the maximum Mach number.

  1. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    Science.gov (United States)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  2. Nonequilibrium Spin Dynamics in a Trapped Fermi Gas with Effective Spin-Orbit Interactions

    International Nuclear Information System (INIS)

    Stanescu, Tudor D.; Zhang Chuanwei; Galitski, Victor

    2007-01-01

    We consider a trapped atomic system in the presence of spatially varying laser fields. The laser-atom interaction generates a pseudospin degree of freedom (referred to simply as spin) and leads to an effective spin-orbit coupling for the fermions in the trap. Reflections of the fermions from the trap boundaries provide a physical mechanism for effective momentum relaxation and nontrivial spin dynamics due to the emergent spin-orbit coupling. We explicitly consider evolution of an initially spin-polarized Fermi gas in a two-dimensional harmonic trap and derive nonequilibrium behavior of the spin polarization. It shows periodic echoes with a frequency equal to the harmonic trapping frequency. Perturbations, such as an asymmetry of the trap, lead to the suppression of the spin echo amplitudes. We discuss a possible experimental setup to observe spin dynamics and provide numerical estimates of relevant parameters

  3. Nonequilibrium Transport and the Bernoulli Effect of Electrons in a Two-Dimensional Electron Gas

    Science.gov (United States)

    Kaya, Ismet I.

    2013-02-01

    Nonequilibrium transport of charged carriers in a two-dimensional electron gas is summarized from an experimental point of view. The transport regime in which the electron-electron interactions are enhanced at high bias leads to a range of striking effects in a two-dimensional electron gas. This regime of transport is quite different than the ballistic transport in which particles propagate coherently with no intercarrier energy transfer and the diffusive transport in which the momentum of the electron system is lost with the involvement of the phonons. Quite a few hydrodynamic phenomena observed in classical gasses have the electrical analogs in the current flow. When intercarrier scattering events dominate the transport, the momentum sharing via narrow angle scattering among the hot and cold electrons lead to negative resistance and electron pumping which can be viewed as the analog of the Bernoulli-Venturi effect observed classical gasses. The recent experimental findings and the background work in the field are reviewed.

  4. Zero-point vibrational effects on optical rotation

    DEFF Research Database (Denmark)

    Ruud, K.; Taylor, P.R.; Åstrand, P.-O.

    2001-01-01

    We investigate the effects of molecular vibrations on the optical rotation in two chiral molecules, methyloxirane and trans-2,3-dimethylthiirane. It is shown that the magnitude of zero-point vibrational corrections increases as the electronic contribution to the optical rotation increases....... Vibrational effects thus appear to be important for an overall estimate of the molecular optical rotation, amounting to about 20-30% of the electronic counterpart. We also investigate the special case of chirality introduced in a molecule through isotopic substitution. In this case, the zero-point vibrational...

  5. Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport

    Science.gov (United States)

    Kershaw, Vincent F.; Kosov, Daniel S.

    2017-12-01

    We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.

  6. Effective temperature of the non-equilibrium electrons in a degenerate semiconductor at low lattice temperature

    Energy Technology Data Exchange (ETDEWEB)

    Das, B.; Basu, A.; Das, J.; Bhattacharya, D.P., E-mail: d_p_bhattacharya@rediffmail.com

    2015-10-01

    The energy balance equation for the electron–phonon system is recast taking the degeneracy of the carrier ensemble into account. The effect of degeneracy on the field dependence of the temperature of the non-equilibrium carriers has been studied by solving the same equation. The high field distribution function of the carriers is assumed to be given by the Fermi Dirac function at the field dependent carrier temperature. The distribution function has been approximated in a way that facilitates analytical solution of the problem without any serious loss of accuracy. The field dependence of the electron temperature thus obtained seems to be significantly different from what follows had the degeneracy not been taken into account. The agreement of the results obtained from the present analysis with the available experimental data for Ge and InSb are quite satisfactory. The scope of further refinement of the present theory is highlighted.

  7. Emergence of currents as a transient quantum effect in nonequilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Er' el; Marchewka, Avi [Department of Electrical and Electronics Engineering, Ariel University Center of Samaria, Ariel (Israel)

    2011-09-15

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  8. Emergence of currents as a transient quantum effect in nonequilibrium systems

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2011-01-01

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  9. Emergence of currents as a transient quantum effect in nonequilibrium systems

    Science.gov (United States)

    Granot, Er'El; Marchewka, Avi

    2011-09-01

    Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.

  10. Laserlike Vibrational Instability in Rectifying Molecular Conductors

    DEFF Research Database (Denmark)

    Lu, Jing Tao; Hedegård, Per; Brandbyge, Mads

    2011-01-01

    We study the damping of molecular vibrations due to electron-hole pair excitations in donor-acceptor (D-A) type molecular rectifiers. At finite voltage additional nonequilibrium electron-hole pair excitations involving both electrodes become possible, and contribute to the stimulated emission....... We investigate the effect in realistic molecular rectifier structures using first-principles calculations....

  11. Effect of low-frequency vibrations on speckle interferometry fringes

    International Nuclear Information System (INIS)

    Vikram, C.S.; Pechersky, M.J.

    1998-01-01

    The effects of low-frequency vibrations on speckle correlation fringes have been investigated. The relatively short capture time of the camera in the low-frequency case may yield usable fringe contrast in spite of vibration. It has been shown that the fringes also shift due to the vibration. The study is in agreement with experimental observations of good-contrast correlation fringes even if the object is not on a vibration-isolated table. Some such experimental observations are also presented. copyright 1998 Society of Photo-Optical Instrumentation Engineers

  12. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  13. Modeling the nonequilibrium effects in a nonquasi-equilibrium thermodynamic cycle based on steepest entropy ascent and an isothermal-isobaric ensemble

    International Nuclear Information System (INIS)

    Li, Guanchen; Spakovsky, Michael R. von

    2016-01-01

    Conventional first principle approaches for studying nonequilibrium or far-from-equilibrium processes depend on the mechanics of individual particles or quantum states. They also require many details of the mechanical features of a system to arrive at a macroscopic property. In contrast, thermodynamics provides an approach for determining macroscopic property values without going into these details, because the overall effect of particle dynamics results, for example, at stable equilibrium in an invariant pattern of the “Maxwellian distribution”, which in turn leads to macroscopic properties. However, such an approach is not generally applicable to a nonequilibrium process except in the near-equilibrium realm. To adequately address these drawbacks, steepest-entropy-ascent quantum thermodynamics (SEAQT) provides a first principle, thermodynamic-ensemble approach applicable to the entire nonequilibrium realm. Based on prior developments by the authors, this paper applies the SEAQT framework to modeling the nonquasi-equilibrium cycle, which a system with variable volume undergoes. Using the concept of hypoequilibrium state and nonequilibrium intensive properties, this framework provides a complete description of the nonequilibrium evolution in state of the system. Results presented here reveal how nonequilibrium effects influence the performance of the cycle. - Highlights: • First-principles nonequilibrium model of thermodynamic cycles. • Study of thermal efficiency losses due to nonequilibrium effects. • Study of systems undergoing nonquasi-equilibrium processes. • Study of the coupling of system relaxation and interaction with a reservoir.

  14. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  15. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  16. Effect of mechanical vibration generated in oscillating/vibratory ...

    African Journals Online (AJOL)

    Background: Whole body vibration (WBV) exercise has been used in health sciences. Authors have reported that changes on the concentration of plasma biomarkers could be associated with the WBV effects. The aim of this investigation is to assess the consequences of exposition of 25 Hz mechanical vibration generated ...

  17. Effect of nonequilibrium degree on separation factor in carbon isotope separation by CO2 microwave discharge

    International Nuclear Information System (INIS)

    Masaaki Suzuki; Shinsuke Mori; Noritaka Matsumoto; Hiroshi Akatsuka

    1999-01-01

    The local separation factor and the local nonequilibrium degree just behind the plasma region were obtained. The plasma gas compositions measured by the enthalpy probe system were substantially thermodynamic nonequilibrium conditions, when the input energy was 4 J/cm 3 . The measured maximum value of the separation factor was 1.01, although it changed locally. The measured separation factor and its nonequilibrium condition were discussed. Anyway, the only small value obtained in this experiments is similar to the recent data obtained by Kurchatov group and is less than published data, which is measured spectroscopically [ru

  18. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  19. The Effect of Non-equilibrium Kinetics on Oxygen Chemistry in the Interstellar Medium

    Science.gov (United States)

    Naduvalath, Balakrishnan

    2006-01-01

    It has been suggested that in photon-dominated regions, oxygen chemistry is initiated by the O+H2 yields OH+H reaction. The reaction has an energy barrier of about 0.4 eV with ground state reactants and it is slow at low temperatures. There is strong experimental evidence that vibrational excitation of the H2 molecule increases the reactivity significantly. We present extensive quantum calculations of cross sections and rate coefficients for the O+H2(v) reaction for v = 0 - 3 of the H2 molecule and show that the vibrational excitation of the molecule has a significant effect on reactivity, especially at low temperatures.

  20. Nonequilibrium entropies

    International Nuclear Information System (INIS)

    Maes, Christian

    2012-01-01

    In contrast to the quite unique entropy concept useful for systems in (local) thermodynamic equilibrium, there is a variety of quite distinct nonequilibrium entropies, reflecting different physical points. We disentangle these entropies as they relate to heat, fluctuations, response, time asymmetry, variational principles, monotonicity, volume contraction or statistical forces. However, not all of those extensions yield state quantities as understood thermodynamically. At the end we sketch how aspects of dynamical activity can take over for obtaining an extended Clausius relation.

  1. Effects of Cutting Tool Parameters on Vibration

    Directory of Open Access Journals (Sweden)

    Ince Mehmet Alper

    2016-01-01

    Full Text Available This paper presents of the influence on vibration of Co28Cr6Mo medical alloy machined on a CNC lathe based on cutting parameters (rotational speed, feed rate, depth of cut and tool tip radius. The influences of cutting parameters have been presented in graphical form for understanding. To achieve the minimum vibration, the optimum values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 318 rpm, 0.25 mm/rev, 0.9 mm and 0.8 mm. Maximum vibration has been revealed the values obtained for rpm, feed rate, depth of cut and tool tip radius were respectively, 636 rpm, 0.1 mm/rev, 0,5 mm and 0.8 mm.

  2. Incorporation of coupled nonequilibrium chemistry into a two-dimensional nozzle code (SEAGULL)

    Science.gov (United States)

    Ratliff, A. W.

    1979-01-01

    A two-dimensional multiple shock nozzle code (SEAGULL) was extended to include the effects of finite rate chemistry. The basic code that treats multiple shocks and contact surfaces was fully coupled with a generalized finite rate chemistry and vibrational energy exchange package. The modified code retains all of the original SEAGULL features plus the capability to treat chemical and vibrational nonequilibrium reactions. Any chemical and/or vibrational energy exchange mechanism can be handled as long as thermodynamic data and rate constants are available for all participating species.

  3. Energy evaluation of protection effectiveness of anti-vibration gloves.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-09-01

    This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.

  4. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  5. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  6. Effect of Ultrasonic Vibration on Proliferation and Differentiation of Cells

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2016-12-01

    Full Text Available The effect of mechanical stimulation of vibration on proliferation and differentiation of cells has been studied in vitro. To apply the vibration on the cells, a piezoelectric element was attached on the outside surface of the bottom of the culture plate of six wells. The piezoelectric element was vibrated by sinusoidally alternating voltage at 1.0 MHz generated by a function generator. Five kinds of cells were used in the experiment: C2C12 (mouse myoblast cell, L929 (fibroblast connective tissue of mouse, Hepa1-6 (mouse hepatoma cell, HUVEC (human umbilical vein endothelial cell, and Neuro-2a (mouse neural crest-derived cell line. After the incubation for 24 hours, cells were exposed to the ultrasonic vibration intermittently for three days: for thirty minutes per day. At the end of the experiment, the number of cells was counted by colorimetric method with a microplate photometer. In the case of Neuro-2a, the total length of the neurite was calculated at the microscopic image. The experimental study shows following results. Cells are exfoliated by the strong vibration. Proliferation and differentiation of cells are accelerated with mild vibration. The optimum intensity of vibration depends on the kind of cells.

  7. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    International Nuclear Information System (INIS)

    Fan Kai; Liu Feng; Yang Gencang; Zhou Yaohe

    2011-01-01

    Highlights: → The solid solubility of Si atom in α-Ni matrix increased with undercooling in the as-solidified sample. → The effect of non-equilibrium solidification on precipitation has been theoretically described. → The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. → The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to ∼350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni 3 Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in α-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  8. Precipitation in as-solidified undercooled Ni-Si hypoeutectic alloy: Effect of non-equilibrium solidification

    Energy Technology Data Exchange (ETDEWEB)

    Fan Kai [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Liu Feng, E-mail: liufeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Yang Gencang; Zhou Yaohe [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2011-08-25

    Highlights: {yields} The solid solubility of Si atom in {alpha}-Ni matrix increased with undercooling in the as-solidified sample. {yields} The effect of non-equilibrium solidification on precipitation has been theoretically described. {yields} The nucleation density, the real-time particle size and the precipitation rate are all increased upon annealing. {yields} The precipitate process can be artificially controlled by modifying the initial melt undercooling and the annealing time. - Abstract: Applying glass fluxing and cyclic superheating, high undercooling up to {approx}350 K was achieved for Ni-Si hypoeutectic alloy melt. By isothermally annealing the as-solidified alloy subjected to different undercoolings, precipitation behavior of Ni{sub 3}Si particle, at 973 K, was systematically studied. It was found that, the nucleation density and the real-time particle size, as well as the precipitation rate, were all increased, provided the sample was solidified subjected to higher undercooling. This was ascribed mainly to the increased solid solubility of Si atom in {alpha}-Ni matrix upon non-equilibrium solidification. On this basis, the non-equilibrium dendrite growth upon solidification and the soft impingement prevailing upon solid-state precipitation have been quantitatively connected. As such, the effect of liquid/solid transformation on subsequent precipitation was described.

  9. Electronic Rydberg wavepacket effects on molecular vibration

    International Nuclear Information System (INIS)

    Hughes, I.G.; Meacher, D.R.

    1994-01-01

    Electronic wavepacket states of molecular hydrogen are considered which represent the situation of a spectator electron orbiting a molecular core. A quantum defect theory approach is used to determine the energy level structure, wavefunctions and molecular potentials, which is valid in regions where the quantum defects approach zero. In such a region the orbital motion of the wavepacket leads to a periodic variation in the molecular vibration frequency of the order of 100 cm -1 . Possible detection schemes are discussed. (author)

  10. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  11. Non-equilibrium effects of core-cooling and time-dependent internal heating on mantle flush events

    Directory of Open Access Journals (Sweden)

    D. A. Yuen

    1995-01-01

    Full Text Available We have examined the non-equilibrium effects of core-cooling and time-dependent internal-heating on the thermal evolution of the Earth's mantle and on mantle flush events caused by the two major phase transitions. Both two- and three-dimensional models have been employed. The mantle viscosity responds to the secular cooling through changes in the averaged temperature field. A viscosity which decreases algebraically with the average temperature has been considered. The time-dependent internal-heating is prescribed to decrease exponentially with a single decay time. We have studied the thermal histories with initial Rayleigh numbers between 2 x 107 and 108 . Flush events, driven by the non-equilibrium forcings, are much more dramatic than those produced by the equilibrium boundary conditions and constant internal heating. Multiple flush events are found under non-equilibrium conditions in which there is very little internal heating or very fast decay rates of internal-heating. Otherwise, the flush events take place in a relatively continuous fashion. Prior to massive flush events small-scale percolative structures appear in the 3D temperature fields. Time-dependent signatures, such as the surface heat flux, also exhibits high frequency oscillatory patterns prior to massive flush events. These two observations suggest that the flush event may be a self-organized critical phenomenon. The Nusselt number as a function of the time-varying Ra does not follow the Nusselt vs. Rayleigh number power-law relationship based on equilibrium (constant temperature boundary conditions. Instead Nu(t may vary non-monotonically with time because of the mantle flush events. Convective processes in the mantle operate quite differently under non-equilibrium conditions from its behaviour under the usual equilibrium situations.

  12. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  13. Effects of different vibration exercises on bench press.

    Science.gov (United States)

    Marín, P J; Torres-Luque, G; Hernández-García, R; García-López, D; Garatachea, N

    2011-10-01

    This study was undertaken to analyze the effects of different vibration recovery strategies via feet or hands on the number of repetitions performed and on mean velocity, peak velocity and blood lactate concentration during consecutive bench-press sets. 9 elite judo athletes performed 3 sets of bench press at 60% of one-repetition maximum (1RM), leading to failure and allowing a 180 s rest period between sets. During the rest period, 1 of the 3 following procedures was performed: 150 s rest plus 30 s push-up vibration exercise (Push-up), 150 s rest plus 30 s squat vibration exercise (Squat) or 180 s only rest (Passive). Statistical analysis revealed that the Squat condition resulted in a significant increase in the number of repetitions achieved, in comparison with all other rest strategies. However, kinematic parameters and blood lactate concentration were not affected by vibration. These data suggest that a vibration stimulus applied to the feet, between sets, can result in positive improvements in upper body resistance exercise performance. Although the mechanisms are not fully understood, this positive effect of vibration could be due to an increased motor cortex excitability and voluntary drive. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Effect of magnetic field on charge imbalance relaxation of non-equilibrium superconductivity

    International Nuclear Information System (INIS)

    Tsuboi, Kazuki; Yagi, Ryuta

    2010-01-01

    We have studied relaxation of charge imbalance of non-equilibrium superconductivity in magnetic field. We found that excess current due to charge imbalance showed striking dependence on magnitude of magnetic field and its orientation. We discussed origin of the relaxation.

  15. Nonequilibrium Thermodynamics of Driven Disordered Materials

    Science.gov (United States)

    Bouchbinder, Eran

    2011-03-01

    We present a nonequilibrium thermodynamic framework for describing the dynamics of driven disordered solids (noncrystalline solids near and below their glass temperature, soft glassy materials such as colloidal suspensions and heavily dislocated polycrystalline solids). A central idea in our approach is that the set of mechanically stable configurations, i.e. the part of the system that is described by inherent structures, evolves slowly as compared to thermal vibrations and is characterized by an effective disorder temperature. Our thermodynamics-motivated equations of motion for the flow of energy and entropy are supplemented by coarse-grained internal variables that carry information about the relevant microscopic physics. Applications of this framework to amorphous visco-plasticity (Shear-Transformation-Zone theory), glassy memory effects (the Kovacs effect) and dislocation-mediated polycrystalline plasticity will be briefly discussed.

  16. The effect of mechanical vibration on orthodontically induced root resorption.

    Science.gov (United States)

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Kalajzic, Zana; Nanda, Ravindra

    2016-09-01

    To investigate the effect of low-frequency mechanical vibration (LFMV) on orthodontically induced root resorption. Forty male CD1, 12-week-old mice were used for the study. The mice were randomly divided into five groups: group 1 (baseline)-no spring and no mechanical vibration, group 2-orthodontic spring but no vibration, group 3-orthodontic spring and 5 Hz of vibration applied to the maxillary first molar, group 4-orthodontic spring and 10 Hz of vibration applied to maxillary first molar, and group 5-orthodontic spring and 20 Hz of vibration applied to maxillary first molar. In the different experimental groups, the first molar was moved mesially for 2 weeks using a nickel-titanium coil spring delivering 10 g of force. LFMVs were applied at 5 Hz, 10 Hz, and 20 Hz. Microfocus X-ray computed tomography imaging was used to analyze root resorption. Additionally, to understand the mechanism, we applied LFMV to MC3T3 cells, and gene expression analyses were done for receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). Orthodontic tooth movement leads to decreased root volume (increased root resorption craters). Our in vivo experiments showed a trend toward increase in root volume with different frequencies of mechanical vibration. In vitro gene expression analyses showed that with 20 Hz of mechanical vibration, there was a significant decrease in RANKL and a significant increase in OPG expression. There was a trend toward decreased root resorption with different LFMVs (5 Hz, 10 Hz, and 20 Hz); however, it was not more statistically significant than the orthodontic-spring-only group.

  17. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  18. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  19. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  20. Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems

    Science.gov (United States)

    Morozov, V. G.

    2018-01-01

    We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.

  1. Non-equilibrium effects on the two-phase flow critical phenomenon

    International Nuclear Information System (INIS)

    Sami, S.M.

    1988-01-01

    In the present study, the choking criterion for nonhomogeneous nonequilibrium two phase flow is obtained by solving the two-fluid model conservation equations. The method of characteristics is employed to predict the critical flow conditions. Critical flow is established after the magnitude of the characteristic slopes (velocities). Critical flow conditions are reached when the smallest characteristic slope becomes equal to zero. Several expression are developed to determine the nonequilibrium mass and heat exchanges in terms of the system dependent parameters derivatives. In addition, comprehensive transition flow regime maps are employed in the calculation of interfacial heat and momentum transfer rates. Numerical results reveal that the proposed model reliably predicts the critical two-phase flow phenomenon under different inlet conditions and compares well with other existing models

  2. Nonequilibrium behavior of fission gas bubbles with emphasis on the effects of the equation of state

    International Nuclear Information System (INIS)

    Steele, W.G.

    1976-12-01

    The paper presents a computer code designed to estimate fission gas behavior during transient fuel conditions, allowing for nonequilibrium bubble states, with emphasis on equation of state sensitivity. The computer code is a modification of the original code by R. G. Esteves, A. R. Wazzan, and D. Okrent, which in its present form includes the following: resolution, coalescence, leakage to the grain boundary, bubble volume adjustment from a nonequilibrium state by vacancy diffusion, a choice of equation of state between the Van der Waals and the perfect gas equation, the incorporation of hydrostatic pressure values, if known, and conservation of gas atoms. Also, there is a version of the code that allows the existence of single gas atoms in solution in the lattice. The original code is discussed to provide a model of the physical processes and to show a general numerical approach to the estimation of the fission gas behavior. The incorporation of various new features into the original work, such as the option of the Van der Waals gas equation, is described. The various physical models are examined for sensitivity to equation of state for both the equilibrium and nonequilibrium bubble descriptions. Selected computer results of a transient simulation are also presented and general conclusions are drawn upon these results

  3. Effect on the vibration of the suspension system

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2017-01-01

    Full Text Available In order to determine the damping effect of shock absorbs in vehicles, different vehicles acceleration values were measured while they were passing over speed bumps at different speeds. The vehicles’ vibration magnitudes caused by road roughness were analyzed. In this study the measurements were conducted with two different vehicles, multiple drivers and at different speeds. The vibration valves were determined with a HVM 100 device, in different field conditions and at 20 - 40 and 60 km/h by transferring the results to the system. According to the results of statistical analysis damping effect of the shock absorbers in the vehicles changed in different speed ranges and field conditions and it was seen that driver’s performance was significantly affected due to the vibration.

  4. Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms

    Science.gov (United States)

    2016-08-28

    resolved temperature measurements, by pure rotational picosecond broadband Coherent Anti-Stokes Raman Spectroscopy ( CARS ), and kinetic modeling...rotational ps CARS for thermometry measurements in highly transient nonequilibrium plasmas. Rotational-translational temperatures are measured for time...primarily on localized flow heating on sub-acoustic time scale, and for assessing feasibility of high-speed aerodynamic flow control by vibrational

  5. Nonequilibrium Kondo effect by the equilibrium numerical renormalization group method: The hybrid Anderson model subject to a finite spin bias

    Science.gov (United States)

    Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng

    2018-06-01

    We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].

  6. Influence of Penning effect on the plasma features in a non-equilibrium atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhengshi; Zhang, Guanjun [School of Electrical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang, Nan; Cao, Zexian, E-mail: zxcao@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-03-14

    Non-equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications. The influence of Penning effect on the formation, propagation, and other physical properties of the plasma bullets in APPJ remains a debatable topic. By using a 10 cm wide active electrode and a frequency of applied voltage down to 0.5 Hz, the Penning effect caused by preceding discharges can be excluded. It was found that the Penning effect originating in a preceding discharge helps build a conductive channel in the gas flow and provide seed electrons, thus the discharge can be maintained at a low voltage which in turn leads to a smaller propagation speed for the plasma bullet. Photographs from an intensified charge coupled device reveal that the annular structure of the plasma plume for He is irrelevant to the Penning ionization process arising from preceding discharges. By adding NH{sub 3} into Ar to introduce Penning effect, the originally filamentous discharge of Ar can display a rather extensive plasma plume in ambient as He. These results are helpful for the understanding of the behaviors of non-equilibrium APPJs generated under distinct conditions and for the design of plasma jet features, especially the spatial distribution and propagation speed, which are essential for application.

  7. Nonequilibrium emergent phenomena in organic molecular solids

    Energy Technology Data Exchange (ETDEWEB)

    Mitrano, Matteo

    2015-07-15

    The manipulation of matter with ultrashort laser pulses is a relevant research field from both a fundamental and an applied perspective, owing to the efficient coupling to the electronic degrees of freedom on femtosecond timescales and the ability to induce transient phases that cannot be realized in equilibrium scenarios. Strongly correlated materials are a natural environment for the observation of such novel and emergent out-of-equilibrium physics because small modifications to the electron-electron interactions can induce transitions between remarkably different macroscopic phases. One of the most effective means of modifying the effective electron-electron interactions is to perturb the crystal structure through pressure, strain or even light. However, it remains largely unexplored how perturbing the structural degrees of freedom affects the electron dynamics of the transiently driven states and how the interplay of correlations and electron-lattice interactions determine the intrinsic timescales of these nonequilibrium states. This thesis investigates how to control the light-induced nonequilibrium electronic properties in strongly correlated organics, that are highly tunable with moderate variations of external parameters, by perturbing their structural degrees of freedom, either via static pressures or vibrational excitation. We study the role of correlations in determining the relaxation rate of holes (holons) and double occupancies (doublons) in a solid state Mott insulator, the ET-F{sub 2}TCNQ, driven across a transient insulator-to-metal transition. By mapping holon-doublon lifetimes onto the ground-state electronic interactions, we found that the decay rate of the photoinjected quasiparticles depends on the degree of correlation between carriers and is affected by the presence of a competition between local recombination and delocalization of holon-doublon pairs. By optically controlling the effective correlations in organic molecular crystals through

  8. Effect of vibration versus suspension therapy on balance in children ...

    African Journals Online (AJOL)

    Most cerebral palsy children have deficits in balance, co-ordination, and gait throughout childhood and adulthood. So, it is essential to seek an ideal physical therapy program to help in solving such widespread problem. The present study was conducted to compare between the effect of vibration training and suspension ...

  9. The effect of whole body vibration exercise on muscle activation ...

    African Journals Online (AJOL)

    African Journal for Physical Activity and Health Sciences ... The effect of whole body vibration exercise (WBV) on muscle activation has recently been a topic for discussion amongst some researchers. ... Participants then performed two different exercises: standing calf raises and prone bridging, without and with WBV.

  10. Nonequilibrium chemical potential in a two-dimensional electron gas in the quantum-Hall-effect regime

    Energy Technology Data Exchange (ETDEWEB)

    Pokhabov, D. A., E-mail: pokhabov@isp.nsc.ru; Pogosov, A. G.; Budantsev, M. V.; Zhdanov, E. Yu.; Bakarov, A. K. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2016-08-15

    The nonequilibrium state of a two-dimensional electron gas in the quantum-Hall-effect regime is studied in Hall bars equipped with additional inner contacts situated within the bar. The magnetic-field dependence of the voltage drop between different contact pairs are studied at various temperatures. It was found that the voltage between the inner and outer contacts exhibits peaks of significant amplitude in narrow magnetic-field intervals near integer filling factors. Furthermore, the magnetic-field dependence of the voltage in these intervals exhibits a hysteresis, whereas the voltage between the outer contacts remains zero in the entire magnetic-field range. The appearance of the observed voltage peaks and their hysteretic behavior can be explained by an imbalance between the chemical potentials of edge and bulk states, resulting from nonequilibrium charge redistribution between the edge and bulk states when the magnetic field sweeps under conditions of the quantum Hall effect. The results of the study significantly complement the conventional picture of the quantum Hall effect, explicitly indicating the existence of a significant imbalance at the edge of the two-dimensional electron gas: the experimentally observed difference between the electrochemical potentials of the edge and bulk exceeds the distance between Landau levels by tens of times.

  11. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  12. Effect of electron-electron collisions on the phase transition and kinetics of nonequilibrium superconductors

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kashurnikov, V.A.; Kondrashov, V.E.; Shamraev, B.N.

    1983-01-01

    An explicit expression is obtained for the distribution function of excess quasiparticles, taking into account electron-electron collisions in nonequilibrium superconductors. It is shown that the character of the phase transition may change at a definite ratio of the electron-electron and electron-phonon interaction constants: the dependence of the order parameter on the power of the source becomes single-valued. In addition, diffusion instability and paramagnetism of the superconductors arise. The multiplication factor of the excess quasiparticles due to electron-electron collisions and to reabsorption of phonons is calculated

  13. Effects of ship's vibration and motion on plant parameters

    International Nuclear Information System (INIS)

    Kakuta, Tsunemi; Kitamura, Toshikatsu; Mizushima, Toshihiko; Yamazaki, Hiroshi; Nakahara, Takeshi; Kamiya, Eisei; Kudou, Takahiro; Naitoh, Akira; Tominaga, Mineo.

    1992-03-01

    Present report was written about the study of the effects of ship's vibration and motion on reactor plant performances measured and analyzed to confirm the total balance for control systems of reactor to propulsion. On July 10, 1990, or on the first day of the first voyage for the power up test, the sea trials of MUTSU, nuclear ship made first in Japan, started from the anchoring test. The trial tests had finished through the third voyage between October 30 and November 9 to the fourth voyage between 7 and 14 of December. The trial tests had been conducted over ten items or so containing in-house tests of the measurements of ship's vibration and motion in order to research the effects on reactor performance. We here call the in-house tests the plant correlation tests. In regard to the correlation with ship's vibration, we confirmed that the inherent vibrations of hull and reactor containment arisen from ship structure had precisely been measured and that the plant correlations due to the hull and local vibrations arising from propeller revolutions are very small. Concerning the correlation with ship's motion, it was shown that her rolling motion strongly had affected on the propulsion system such as shaft power and shaft revolutions. About the correlation with reactor systems it was found that her pitching motion had given effect on the water level in pressurizer, primary coolant average temperature, ε-signal of the auto-control of reactor power and primary coolant pressure etc, particularly, most-strongly on the water level in pressurizer; her rolling and pitching motions had given effect on nuclear characteristics such as reactivity and startup rate; in addition the fluctuation of 0.06 Hz, we think the response inherent in (MUTSU) reactor systems, had been observed on her reactor parameters like reactivity and startup rate, and her propulsion systems like shaft horse power. (author)

  14. Gravity Effects on the Free Vibration of a Graphite Column

    International Nuclear Information System (INIS)

    Ki, Dong-Ok; Kim, Jong-Bum; Park, Keun-Bae; Lee, Won-Jae

    2006-01-01

    The gravity effects on the free vibration of a graphite column are studied. Graphite block is a key component of a HTGR (High Temperature Gas Cooled Reactor). The major core elements, such as the fuel blocks and neutron reflector blocks, of HTTR (High Temperature Test Reactor, Japan) and GT-MHR (Gas Turbine- Modular Helium Reactor, USA) consist of stacked hexagonal graphite blocks forming a group of columns. The vibration of the columns induced by earthquakes may lead to solid impacts between graphite blocks and structural integrity problems. The study of free vibration characteristics of the graphite block column is the first step in the core internal structure dynamic analysis. Gravity force bring a negative stiffness term to the transverse vibration analysis of heavy long column structures, and results in natural frequency reductions. Generally it is not considered in the not so tall structure cases, because the gravity term makes the analysis and design complicated. Therefore it is important to check whether the gravity effect is severe or not

  15. Vibrational nonadiabaticity and tunneling effects in transition state theory

    International Nuclear Information System (INIS)

    Marcus, R.A.

    1979-01-01

    The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered

  16. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  17. Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators

    Science.gov (United States)

    Chen, Yih-Kanq; Gokcen, Tahir

    2012-01-01

    This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.

  18. Nonlinear free vibration of piezoelectric nanobeams incorporating surface effects

    International Nuclear Information System (INIS)

    Hosseini-Hashemi, Shahrokh; Nahas, Iman; Fakher, Mahmood; Nazemnezhad, Reza

    2014-01-01

    In this study, the nonlinear free vibration of piezoelectric nanobeams incorporating surface effects (surface elasticity, surface tension, and surface density) is studied. The governing equation of the piezoelectric nanobeam is derived within the framework of Euler–Bernoulli beam theory with the von Kármán geometric nonlinearity. In order to satisfy the balance conditions between the nanobeam bulk and its surfaces, the component of the bulk stress, σ zz , is assumed to vary linearly through the nanobeam thickness. An exact solution is obtained for the natural frequencies of a simply supported piezoelectric nanobeam in terms of the Jacobi elliptic functions using the free vibration mode shape of the corresponding linear problem. Then, the influences of the surface effects and the piezoelectric field on the nonlinear free vibration of nanobeams made of aluminum and silicon with positive and negative surface elasticity, respectively, have been studied for various properties of the piezoelectric field, various nanobeam sizes and amplitude ratios. It is observed that if the Young’s modulus of a nanobeam is lower, the effect of the piezoelectric field on the frequency ratios (FRs) of the nanobeam will be greater. In addition, it is seen that by increasing the nanobeam length so that the nanobeam cross section is set to be constant, the surface effects and the piezoelectric field with negative voltage values increases the FRs, whereas it is the other way around when the nanobeam cross section is assumed to be dependent on the length of the nanobeam. (paper)

  19. Optically thick model for radiative and collisional effects in nonequilibrium argon plasma flows in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1984-01-01

    Experimental and theoretical studies were made to gain a deeper understanding of the radiative properties of nonequilibrium argon plasma flows in a circular tube. The self-absorption effects were taken into account as rigorously as possible. Experimentally, the radial profiles of the population densities of argon atoms at the excited 4s, 4p, 5p, and 5d levels were obtained from the lateral distributions of the absolute intensities of ArI spectral lines originating from these levels. On the other hand, theoretical profiles of the population densities for the same levels were calculated based on the optically thick model for collisional and radiative processes proposed by Bates et al. and experimentally measured atom temperature, electron temperature, electron density and gas pressure. Comparison of the experimental and theoretical results showed a reasonably good agreement and the importance of the self-absorption effects. (author)

  20. Geometric Filtering Effect of Vertical Vibrations in Railway Vehicles

    Directory of Open Access Journals (Sweden)

    Mădălina Dumitriu

    2012-09-01

    Full Text Available The paper herein examines the geometric filtering effect coming from the axle base of a railway vehicle upon the vertical vibrations behavior, due to the random irregularities of the track. For this purpose, the complete model of a two-level suspension and flexible carbody vehicle has been taken into account. Following the modal analysis, the movement equations have been treated in an original manner and brought to a structure that points out at the symmetrical and anti-symmetrical decoupled movements of vehicle and their excitation modes. There has been shown that the geometric filtering has a selective behavior in decreasing the level of vibrations, and its contribution is affected by the axle base magnitude, rolling speed and frequency range.

  1. Numerical analysis of the air chemical non-equilibrium effect in combustion for a semi-sphere with opposing jet

    Science.gov (United States)

    Zhao, Fa-Ming; Wang, Jiang-Feng; Li, Long-Fei

    2018-05-01

    The air chemical non-equilibrium effect (ACNEE) on hydrogen-air combustion flow fields at Mach number of 10 is numerically analyzed for a semi-sphere with a sonic opposing-hydrogen jet. The 2D axisymmetric multi-components N-S equations are solved by using the central scheme with artificial dissipation and the S-A turbulence model. Numerical results show that as compared to the result without ACNEE, the ACNEE has little influence on the structure of flow field, but has a considerable impact on fluid characteristics which reduces the maximum value of mass fraction of water in the flow field and increases the maximum value of mass fraction of water on solid surface, as well as the maximum surface temperature.

  2. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Science.gov (United States)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  3. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    International Nuclear Information System (INIS)

    Zhang Yanzong; Zheng Jingtang; Qu Xianfeng; Yu Weizhao; Chen Honggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H 2 O 2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  4. Simple model for vibration-translation exchange at high temperatures: effects of multiquantum transitions on the relaxation of a N2 gas flow behind a shock.

    Science.gov (United States)

    Aliat, A; Vedula, P; Josyula, E

    2011-02-01

    In this paper a simple model is proposed for computation of rate coefficients related to vibration-translation transitions based on the forced harmonic oscillator theory. This model, which is developed by considering a quadrature method, provides rate coefficients that are in very good agreement with those found in the literature for the high temperature regime (≳10,000 K). This model is implemented to study a one-dimensional nonequilibrium inviscid N(2) flow behind a plane shock by considering a state-to-state approach. While the effects of ionization and chemical reactions are neglected in our study, our results show that multiquantum transitions have a great influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on vibrational distributions of high levels. All vibrational states are influenced by multiquantum processes, but the effective number of transitions decreases inversely according to the vibrational quantum number. For the initial conditions considered in this study, excited electronic states are found to be weakly populated and can be neglected in modeling. Moreover, the computing time is considerably reduced with the model described in this paper compared to others found in the literature. ©2011 American Physical Society

  5. EFFECT OF VIBRATION AND HEAT COMBINATION ON PRIMARY DYSMENORRHEA

    Directory of Open Access Journals (Sweden)

    M. Hoseini

    2015-03-01

    Full Text Available Background: Primary dysmenorrhoea is a common, idiopathic, chronic pelvic pain syndrome, with unknown aetiology which ‎about 50% of women with regular menstrual period suffer. This study was designed to determine the effect of vibration and heat on primary dysmenorrhea. Materials and Methods: In this clinical trial, 75 female students aged 18-22 years old were evaluated for two menstrual cycles. At the first cycle the participants received the routine pain-relief method (synthetic or herbal medicine and traditional remedies. At the second cycle for each participant combined vibration-heat device was applied for ten minutes during ‎menstrual pain. The average of perceived leg pain, lumbar pain and abdominal pain scores at two cycles were determined. The data were analyzed based on Wilcoxon and T tests by using SPSS (v 16.0 for Windows. Results: The average of all perceived pain scores at two cycles were significantly different before pain relief and after both routine methods and using the device (p<0.001. Those were more significantly reduced after using the device in comparison of using routine methods (p<0.001. Conclusion: Since “vibration-heat” is an effective pain relief method, it can be used as a complementary alternative medicine in primary dysmenorrhea reduction.

  6. Characterization of nonequilibrium states of trapped Bose–Einstein condensates

    Science.gov (United States)

    Yukalov, V. I.; Novikov, A. N.; Bagnato, V. S.

    2018-06-01

    The generation of different nonequilibrium states in trapped Bose–Einstein condensates is studied by numerically solving the nonlinear Schrödinger equation. Inducing nonequilibrium states by shaking a trap creates the following states: weak nonequilibrium, the state of vortex germs, the state of vortex rings, the state of straight vortex lines, the state of deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. A characterization of nonequilibrium states is advanced by introducing effective temperature, Fresnel number, and Mach number.

  7. The effects of acoustic vibration on fibroblast cell migration.

    Science.gov (United States)

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Enhancing vibration measurements by Mössbauer effect

    Science.gov (United States)

    Pasquevich, G. A.; Veiga, A.; Zélis, P. Mendoza; Martínez, N.; van Raap, M. Fernández; Sánchez, F. H.

    2014-01-01

    The measurement of the Mössbauer effect in a system excited with a periodic perturbation can provide information about it. For that purpose, the Mössbauer absorption of a source-absorber set which hyperfine parameters are well known, is measured at a constant relative velocity (i.e. at a defined spectral energy). The resulting Mössbauer absorption periodic signal provides information of the sample ac perturbation response. This approach has been used time ago to measure small tympanic vibrations (mechanical perturbations). In this work we present an extension of the vibration experiments, by measuring them at various absorber-source relative velocities within a constant-velocity strategy. As a demonstration test, the frequency response of a piezoelectric diaphragm in the 100 Hz-5 kHz range is obtained with a custom electronic counter. The experiments are performed using a 57Co( Rh) source and a 25-m-thick stainless-steel absorber fixed to a piezoelectric diaphragm. Phase shifts and amplitude vibrations with velocities in the range from 1.5 m/s to 20 mm/s are well characterized, extending the linearity limit well beyond the earlier suggested one of 1 mm/s.

  9. The effect of vibration on bed voidage behaviors in fluidized beds with large particles

    Directory of Open Access Journals (Sweden)

    H. Jin

    2007-09-01

    Full Text Available The effects of vibration parameters, operating conditions and material properties on bed voidage were investigated using an optical fiber probe approach in a vibrating fluidized bed with a diameter of 148 mm. Variables studied included frequency (0-282 s-1, amplitude (0 mm-1 mm, bed height (0.1 m-0.4 m as well as four kinds of particles (belonging to Geldart's B and D groups. The axial and radial voidage distribution with vibration is compared with that without vibration, which shows vibration can aid in the fluidization behaviors of particles. For a larger vibration amplitude, the vibration seriously affects bed voidage. The vibration energy can damp out for particle layers with increasing the bed height. According to analysis of experimental data, an empirical correlation for predicting bed voidage, giving good agreement with the experimental data and a deviation within ±15%, was proposed.

  10. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    Science.gov (United States)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  11. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective.

    Science.gov (United States)

    Wand, Amir; Kallush, Shimshon; Shoshanim, Ofir; Bismuth, Oshrat; Kosloff, Ronnie; Ruhman, Sanford

    2010-03-07

    The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small

  12. Vibration Effect of Earthquakes in Abandoned Medieval Mine

    Czech Academy of Sciences Publication Activity Database

    Lednická, Markéta; Kaláb, Zdeněk

    2013-01-01

    Roč. 48, č. 3 (2013), s. 221-234 ISSN 2213-5812 R&D Projects: GA ČR GA105/09/0089; GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : vibration effect of earthquake * Nový Kostel focal zone * Jeroným Mine Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) Impact factor: 0.394, year: 2013 http://link.springer.com/article/10.1007/s40328-013-0018-4

  13. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    Science.gov (United States)

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  14. Combined effect of noise and vibration produced by high-speed trains on annoyance in buildings.

    Science.gov (United States)

    Lee, Pyoung Jik; Griffin, Michael J

    2013-04-01

    The effects of noise and vibration on annoyance in buildings during the passage of a nearby high-speed train have been investigated in a laboratory experiment with recorded train noise and 20 Hz vibration. The noises included the effects of two types of façade: windows-open and windows-closed. Subjects were exposed to six levels of noise and six magnitudes of vibration, and asked to rate annoyance using an 11-point numerical scale. The experiment consisted of four sessions: (1) evaluation of noise annoyance in the absence of vibration, (2) evaluation of total annoyance from simultaneous noise and vibration, (3) evaluation of noise annoyance in the presence of vibration, and (4) evaluation of vibration annoyance in the absence of noise. The results show that vibration did not influence ratings of noise annoyance, but that total annoyance caused by combined noise and vibration was considerably greater than the annoyance caused by noise alone. The noise annoyance and the total annoyance caused by combined noise and vibration were associated with subject self-ratings of noise sensitivity. Two classical models of total annoyance due to combined noise sources (maximum of the single source annoyance or the integration of individual annoyance ratings) provided useful predictions of the total annoyance caused by simultaneous noise and vibration.

  15. Experimental Study on the Vibration Control Effect of Long Elastic Sleeper Track in Subways

    Directory of Open Access Journals (Sweden)

    Xiaopei Cai

    2018-01-01

    Full Text Available The vibration effect of urban rail transit has gained attention from both academia and the industry sector. Long Elastic Sleeper Track (LEST is a new structure for vibration reduction which has recently been designed and applied to Chinese subways. However, little research has been devoted to its vibration reduction effect. In this study, field tests were conducted during peak transit hours on Beijing Subway Line 15 to examine the vibration reduction effects of the common ballastless track and LEST on both straight and curved sections. The results demonstrate that although LEST increases the wheel-rail vertical forces, rail vertical displacements, and rail accelerations to some extent, these effects do not threaten subway operational safety, and vibrations of track bed and tunnel wall are positively mitigated. LEST has an obvious vibration reduction effect at frequencies above 40 Hz. In straight track, the vibration of bottom of the tunnel wall measured in one-third octave bands is reduced by 10.52 dB, while the vibration at point on the tunnel wall at 1.5 m height is reduced by 9.60 dB. For the curved track, the vibrations at those two points are reduced by 9.35 dB and 8.44 dB, respectively. This indicates that LEST reduces vibrations slightly more for the straight track than for the curved track.

  16. Non-Equilibrium Thermodynamic Analysis of Double Diffusive, Nanofluid Forced Convection in Catalytic Microreactors with Radiation Effects

    Directory of Open Access Journals (Sweden)

    Lilian Govone

    2017-12-01

    Full Text Available This paper presents a theoretical investigation of the second law performance of double diffusive forced convection in microreactors with the inclusion of nanofluid and radiation effects. The investigated microreactors consist of a single microchannel, fully filled by a porous medium. The transport of heat and mass are analysed by including the thick walls and a first order, catalytic chemical reaction on the internal surfaces of the microchannel. Two sets of thermal boundary conditions are considered on the external surfaces of the microchannel; (1 constant temperature and (2 constant heat flux boundary condition on the lower wall and convective boundary condition on the upper wall. The local thermal non-equilibrium approach is taken to thermally analyse the porous section of the system. The mass dispersion equation is coupled with the transport of heat in the nanofluid flow through consideration of Soret effect. The problem is analytically solved and illustrations of the temperature fields, Nusselt number, total entropy generation rate and performance evaluation criterion (PEC are provided. It is shown that the radiation effect tends to modify the thermal behaviour within the porous section of the system. The radiation parameter also reduces the overall temperature of the system. It is further demonstrated that, expectedly, the nanoparticles reduce the temperature of the system and increase the Nusselt number. The total entropy generation rate and consequently PEC shows a strong relation with radiation parameter and volumetric concentration of nanoparticles.

  17. Ab initio vibrations in nonequilibrium nanowires

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Engelund, Mads; Markussen, T

    2010-01-01

    We review recent results on electronic and thermal transport in two different quasi one-dimensional systems: Silicon nanowires (SiNW) and atomic gold chains. For SiNW's we compute the ballistic electronic and thermal transport properties on equal footing, allowing us to make quantitative predicti...

  18. Study of thermochemical nonequilibrium flow in the radiative shock layer of the simulated atmosphere of Titan

    International Nuclear Information System (INIS)

    Koffi-Kpante, Kossi

    1996-01-01

    Inviscid flow of the N 2 -CH 4 -Ar gas mixture in thermochemical nonequilibrium has been studied. We have specially modelled the thermal and the chemical processes, such as vibrational excitation, dissociation, ionization and radiation which can occur in the hypersonic flows. Different vibrational models are tested and the effects of kinetic-vibration coupling modeling are studied on the flow-field properties. Therefore, the intensity of spontaneous emission of CN molecule from B 2 Σ + → X 2 Σ + electronic transition of the violet band, where Δν = 0 is computed. So, comparison is made between experimental and numerical results on: 1) The spontaneous emission of CN, 2) the rotational temperature of CN B state and 3) the vibrational temperature of CN B state. Because of the profiles of the measured intensity and the disagreement between numerical results and measurements, especially on the spontaneous emission and in the thermodynamic size, the inviscid flow and the unsteady boundary layer interaction study is made. Last, the thermal and the chemical processes models described in the first part of this thesis are used to compute the inviscid nonequilibrium flow around the Huygens probe. The equations system has been solved with a finite volume method, in with the fluxes have been split with Van-Leer methods. (author) [fr

  19. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  20. Size effects on free vibration of heterogeneous beams

    Directory of Open Access Journals (Sweden)

    Hassanati Bahman

    2018-01-01

    Full Text Available In this paper the influence of microstructure on the free vibration of geometrically similar heterogeneous beams with free-free boundary conditions was numerically investigated by detailed finite element analysis (FEA to identify and quantify any effect of beam size on transverse modal frequencies when the microstructural scale is comparable to the overall size. ANSYS Mechanical APDL was used to generate specific unit cells at the microstructural scale comprised of two isotropic materials with different material properties. Unit cell variants containing voids and inclusions were considered. At the macroscopic scale, four beam sizes consisting of one, two, three or four layers of defined unit cells were represented by repeatedly regenerating the unit cell as necessary. In all four beam sizes the aspect ratio was kept constant. Changes to the volume fractions of each material were introduced while keeping the homogenized properties of the beam fixed. The influence of the beam surface morphology on the results was also investigated. The ANSYS results were compared with the analytical results from solution to Timoshenko beam and nonlocal Timoshenko beam as well as numerical results for a Micropolar beam. In nonlocal Timoshenko beams the Eringen’s small length scale coefficients were estimated for some of the studied models. Numerical analyses based on Micropolar theory were carried out to study the modal frequencies and a method was suggested to estimate characteristic length in bending and coupling number via transverse vibration which verifies the use of Micropolar elasticity theory in dynamic analysis.

  1. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    Science.gov (United States)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  2. [Psychological effects of long-term occupational whole body vibration].

    Science.gov (United States)

    Schneider, H; Wall, H

    1989-04-01

    Long-term effects of occupational whole-body vibration (WBV) on psychic performance and on well-being have hardly been described in the literature to date. However, they cannot be excluded, since numerous findings exist on impairments of performance and of well-being in experimentally conditioned short-term effects. Within the framework of comprehensive clearing-up diagnostics in occupational health, 20 male subjects with many years of occupational exposure to WBV were investigated according to a standardized psychodiagnostic programme of methods. The highest rate of pathological findings resulted in the areas of visual perception speed and subtle motory speed of movements. Furthermore, the results are evidence for an interrelation between the duration of exposure and disturbances in the areas of attention, as well as of sensomotory selection responses. As a whole, the results essentially affect the same psychological variables as the results of the short-term studies, but are to be evaluated with reservations on methodological grounds.

  3. Particular aspects regarding the effects of whole body vibration exposure

    Directory of Open Access Journals (Sweden)

    Picu Mihaela

    2018-01-01

    Full Text Available This paper analyses the influence of whole-body vibrations on human performance; for this it was investigated how a group of men (20-29 years of age and a group of woman (21–31 years of age answered to specific requirements after being subjected to vertical vibrations under controlled laboratory conditions for 10-25 min. The vibrations were generated by a vibrant system with known amplitudes and frequencies. Accelerations were measured with NetdB - complex system for measuring and analysing human vibration and they were found in the range 0.4 - 3.1m/s2. The subjects’ performances were determined for each vibration level using specific tests. It can be concluded that exposure to vibrations higher than those recommended by ISO 2631 significantly disrupts how subjects responded to tests requirements.

  4. Nonequilibrium Phenomena in Plasmas

    CERN Document Server

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  5. The effect of whole body vibration on fracture healing – a systematic review

    Directory of Open Access Journals (Sweden)

    J Wang

    2017-09-01

    Full Text Available This systematic review examines the efficacy and safety of whole body vibration (WBV on fracture healing. A systematic literature search was conducted with relevant keywords in PubMed and Embase, independently, by two reviewers. Original animal and clinical studies about WBV effects on fracture healing with available full-text and written in English were included. Information was extracted from the included studies for review. In total, 19 articles about pre-clinical studies were selected. Various vibration regimes are reported; of those, the frequencies of 35 Hz and 50 Hz show better results than others. Most of the studies show positive effects on fracture healing after vibration treatment and the responses to vibration are better in ovariectomised (OVX animals than non-OVX ones. However, several studies provide insufficient evidence to support an improvement of fracture healing after vibration and one study even reports disruption of fracture healing after vibration. In three studies, vibration results in positive effects on angiogenesis at the fracture site and surrounding muscles during fracture healing. No serious complications or side effects of vibration are found in these studies. WBV is suggested to be beneficial in improving fracture healing in animals without safety problem reported. In order to apply vibration on fractured patients, more well-designed randomised controlled clinical trials are needed to examine its efficacy, regimes and safety.

  6. Effects of Proof Mass Geometry on Piezoelectric Vibration Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Abdul Hafiz Alameh

    2018-05-01

    Full Text Available Piezoelectric energy harvesters have proven to have the potential to be a power source in a wide range of applications. As the harvester dimensions scale down, the resonance frequencies of these devices increase drastically. Proof masses are essential in micro-scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this work, the effects of proof mass geometry on piezoelectric energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. A piezoelectric energy harvester has been fabricated and tested operating at a frequency of about 4 kHz within the audible range. The responses of various prototypes were studied, and an optimized T-shaped piezoelectric vibration energy harvester design is presented for improved performance.

  7. Transport through a vibrating quantum dot: Polaronic effects

    International Nuclear Information System (INIS)

    Koch, T; Alvermann, A; Fehske, H; Loos, J; Bishop, A R

    2010-01-01

    We present a Green's function based treatment of the effects of electron-phonon coupling on transport through a molecular quantum dot in the quantum limit. Thereby we combine an incomplete variational Lang-Firsov approach with a perturbative calculation of the electron-phonon self energy in the framework of generalised Matsubara Green functions and a Landauer-type transport description. Calculating the ground-state energy, the dot single-particle spectral function and the linear conductance at finite carrier density, we study the low-temperature transport properties of the vibrating quantum dot sandwiched between metallic leads in the whole electron-phonon coupling strength regime. We discuss corrections to the concept of an anti-adiabatic dot polaron and show how a deformable quantum dot can act as a molecular switch.

  8. Numerical Study on the Effect of Non-Equilibrium Condensation on Drag Divergence Mach Number in a Transonic Moist Air Flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Min [GyeongBuk Technopark, Gyeongsan (Korea, Republic of); Kang, Hui Bo; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook Nat’l Univ., Daegu (Korea, Republic of)

    2016-12-15

    In the present study, the effects of non-equilibrium condensation on the drag divergence Mach number with the angle of attack in a transonic 2D moist air flow of NACA0012 are investigated using the TVD finite difference scheme. For the same α, the maximum upstream Mach number of the shock wave, Mmax, and the size of supersonic bubble decrease with the increase in Φ{sub 0}. For the same M{sub ∞}, Φ{sub 0}, and T{sub 0}, the length of the non-equilibrium condensation zone Δ{sub z} decreases with increasing Φ{sub 0}. On the other hand, because of the attenuating effect of non-equilibrium condensation on wave drag, which is related to the interaction between the shock wave and the boundary layer, the drag coefficient C{sub D} decreases with an increase in Φ{sub 0} for the same M{sub ∞} and α. For the same α, M{sub D} increases with increasing Φ{sub 0}, while M{sub D} decreases with an increase in α.

  9. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  10. Turbulence Generation Using Localized Sources of Energy: Direct Numerical Simulations and the Effects of Thermal Non-Equilibrium

    Science.gov (United States)

    Maqui, Agustin Francisco

    Turbulence in high-speed flows is an important problem in aerospace applications, yet extremely difficult from a theoretical, computational and experimental perspective. A main reason for the lack of complete understanding is the difficulty of generating turbulence in the lab at a range of speeds which can also include hypersonic effects such as thermal non-equilibrium. This work studies the feasibility of a new approach to generate turbulence based on laser-induced photo-excitation/dissociation of seeded molecules. A large database of incompressible and compressible direct numerical simulations (DNS) has been generated to systematically study the development and evolution of the flow towards realistic turbulence. Governing parameters and the conditions necessary for the establishment of turbulence, as well as the length and time scales associated with such process, are identified. For both the compressible and incompressible experiments a minimum Reynolds number is found to be needed for the flow to evolve towards fully developed turbulence. Additionally, for incompressible cases a minimum time scale is required, while for compressible cases a minimum distance from the grid and limit on the maximum temperature introduced are required. Through an extensive analysis of single and two point statistics, as well as spectral dynamics, the primary mechanisms leading to turbulence are shown. As commonly done in compressible turbulence, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Finally, a large database of forced isotropic turbulence has been generated to study the effect of internal degrees of freedom on the evolution of turbulence.

  11. Effect of multi axis vibration and subject postures on sketching ...

    African Journals Online (AJOL)

    Sedentary activities such as reading, writing, sketching, etc. are affected due to the train vibrations. Therefore, the present study investigates the extent of perceived difficulty and distortion in a sketching task by seated subjects in two postures under low frequency, multi axial random vibrations. Thirty male voluntary subjects ...

  12. Review of vibration effect during piling installation to adjacent structure

    Science.gov (United States)

    Rahman, Nurul Aishah Abd; Musir, Adhilla Ainun; Dahalan, Nurol Huda; Ghani, Abdul Naser Abdul; Khalil, Muhamad Kasimi Abd

    2017-12-01

    Basically, many major structures across the world such as towers, high rise building, houses and bridges utilize pile as a support material. The use of pile is important to strengthen the structures. However, this has led to another problem to the nearest surrounding structures resulted from pile driving. As part of a construction work, unavoidable pile driving activity generates a vibration towards the surrounding structures if uncontrolled may cause damage to the adjacent structure. As the current construction works are frequently located in urban areas where the distance between the nearest building structures is not far, vibration may cause damage to nearby structures. Knowing which part of the building that is mostly affected by various vibration patterns from the impact of pile driving is crucial. Thus, it is very important to predict the impact of vibration during piling installation work. This paper reviews the vibrations generated by piling activity toward surrounding structures in terms sources of vibration, impact of piling installation, pile-soil interaction, and factors affecting the vibration impact of building as well as to study the parameters involved in vibration generation during piling works.

  13. Effect of vibrational states on nuclear level density

    International Nuclear Information System (INIS)

    Plujko, V. A.; Gorbachenko, O. M.

    2007-01-01

    Simple methods to calculate a vibrational enhancement factor of a nuclear level density with allowance for damping of collective state are considered. The results of the phenomenological approach and the microscopic quasiparticle-phonon model are compared. The practical method of calculation of a vibrational enhancement factor and level density parameters is recommended

  14. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  15. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.

    Science.gov (United States)

    Armenise, Iole; Kustova, Elena

    2018-05-21

    A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.

  16. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  17. Effect of structural design on traffic-induced building vibrations

    DEFF Research Database (Denmark)

    Persson, Peter; Andersen, Lars Vabbersgaard; Persson, Kent

    2017-01-01

    Population growth and urbanization results in densified cities, where new buildings are being built closer to existing vibration sources such as road-, tram- and rail traffic. In addition, new transportation systems are constructed closer to existing buildings. Potential disturbing vibrations...... are one issue to consider in planning urban environment and densification of cities. Vibrations can be disturbing for humans but also for sensitive equipment in, for example, hospitals. In determining the risk for disturbing vibrations, the distance between the source and the receiver, the ground...... properties, and type and size of the building are governing factors. In the paper, a study is presented aiming at investigating the influence of various parameters of the building's structural design on vibration levels in the structure caused by ground surface loads, e.g. traffic. Parameters studied...

  18. Large electron transfer rate effects from the Duschinsky mixing of vibrations

    DEFF Research Database (Denmark)

    Sando, Gerald M.; Spears, Kenneth G; Hupp, Joseph T

    2001-01-01

    vibrations are very important. The Duschinsky effect arises when two electronic states have vibrational normal mode coordinate systems that are rotated and translated relative to each other. We use a conventional quantum rate model for ET, and the examples include 6-8 vibrations, where two vibrational modes...... are mixed with different amounts of coordinate rotation. The multidimensional Franck-Condon factors (FCF) are computed with standard algorithms and recently developed recursion relations. When displaced, totally symmetric modes are involved, rates with Duschinsky mixing can increase several orders...

  19. Non-equilibrium effects on the chemistry of nebular condensates - Implications for the planets and asteroids

    Science.gov (United States)

    Blander, M.

    1979-01-01

    Kinetic effects, for example nucleation constraints and slow reactions, should have been important in nebular condensation. Consideration of these effects leads to the prediction of pressure-dependent compositions and physical properties of nebular condensates which is consistent with (1) the differences between different classes of chondritic meteorites, (2) some of the differences between planets, and (3) the presence of oxidized iron on the moon and in the eucrite parent body (presumably an asteroid) despite the low abundance of volatiles. Diffusion effects appear to be important for understanding oxygen isotope anomalies in refractory inclusions in Allende. The consideration of kinetic effects leads to more information concerning nebular processes than if equilibrium is assumed.

  20. Coupled radiative gasdynamic interaction and non-equilibrium dissociation for large-scale returned space vehicles

    International Nuclear Information System (INIS)

    Surzhikov, S.

    2012-01-01

    Graphical abstract: It has been shown that different coupled vibrational dissociation models, being applied for solving coupled radiative gasdynamic problems for large size space vehicles, exert noticeable effect on radiative heating of its surface at orbital entry on high altitudes (h ⩾ 70 km). This influence decreases with decreasing the space vehicles sizes. Figure shows translational (solid lines) and vibrational (dashed lines) temperatures in shock layer with (circle markers) and without (triangles markers) radiative-gasdynamic interaction for one trajectory point of entering space vehicle. Highlights: ► Nonequilibrium dissociation processes exert effect on radiation heating of space vehicles (SV). ► The radiation gas dynamic interaction enhances this influence. ► This influence increases with increasing the SV sizes. - Abstract: Radiative aerothermodynamics of large-scale space vehicles is considered for Earth orbital entry at zero angle of attack. Brief description of used radiative gasdynamic model of physically and chemically nonequilibrium, viscous, heat conductive and radiative gas of complex chemical composition is presented. Radiation gasdynamic (RadGD) interaction in high temperature shock layer is studied by means of numerical experiment. It is shown that radiation–gasdynamic coupling for orbital space vehicles of large size is important for high altitude part of entering trajectory. It is demonstrated that the use of different models of coupled vibrational dissociation (CVD) in conditions of RadGD interaction gives rise temperature variation in shock layer and, as a result, leads to significant variation of radiative heating of space vehicle.

  1. The effects of an inserted linear carbon chain on the vibration of a carbon nanotube

    International Nuclear Information System (INIS)

    Hu, Z L; Guo, X M; Ru, C Q

    2007-01-01

    An elastic string-elastic shell model is developed to study the coupled vibration of a carbon nanowire made of a linear carbon chain (C-chain) inserted inside a carbon nanotube (CNT). It is shown that the vibration of the inserted C-chain is coupled with vibration of the CNT only for vibration modes with circumferential wavenumber n = 1. In other cases, such as axisymmetric modes (n = 0) or higher-order vibration modes with n≥2, total resultant van der Waals (vdW) force acting on the C-chain due to the innermost tube always vanishes, and therefore vibration of the CNT does not cause vibration of the inserted C-chain, although the existence of the C-chain does have an effect on the vibration of the CNT through the chain-CNT vdW forces acting on the innermost tube. The present model predicts that non-coaxial vibration between the C-chain and the innermost tube does not occur due to negligible bending rigidity of the C-chain. In addition, it is found that the C-chain has most significant effect on the lowest frequency associated with the radial vibration mode for circumferential wavenumber 2 (n = 2). In particular, the effect of the C-chain on the axisymmetric radial breathing frequencies (n = 0) predicted by the present model is found to be in reasonable agreement with known experimental and modeling results available in the literature. The present work offers systematic modeling results on the effects of an inserted C-chain on the vibration of CNTs

  2. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.

    Science.gov (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren

    2017-05-01

    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.

  3. Effect of vibration on microstructures and mechanical properties of 304 stainless steel GTA welds

    Science.gov (United States)

    Hsieh, Chih-Chun; Lai, Chien-Hong; Wu, Weite

    2013-07-01

    This study investigates the microstructures and mechanical properties of 304 stainless steel at various vibration frequencies during simultaneous vibration welding. The experimental results demonstrated that simultaneous vibration welding could accelerate the nucleation and grain refinement of the microstructures. The effect of the grain refinement was more evident at the resonant frequency (375 Hz) and a minimum content of residual δ-ferrite (4.0%). The γ phase grew in the preferential orientation of the (111) direction with and without vibration. The full width at half maximum of the diffraction peak widened after the vibration, which was attributed to the grain refinement. The residual stress could be efficiently removed through simultaneous vibration welding when the amplitude of the vibration was increased. Furthermore, the lowest residual stress (139 MPa) was found when the vibration frequency was 375 Hz. The hardness and Young's modulus exhibited slight increases with low and medium frequencies. The hardness values were increased by 7.6% and Young's modulus was increased by 15% when the vibration frequency was resonant (375 Hz).

  4. Squeal vibrations, glass sounds, and the stick-slip effect

    International Nuclear Information System (INIS)

    Patitsas, A.J.

    2010-01-01

    The origin of the squeal acoustic emissions when a chalk is rubbed on a blackboard or better on a ceramic plate, and those when a wet finger is rubbed on a smooth surface, such as a glass surface, is sought in the stick-slip effect between the rubbing surfaces. In the case of the squealing chalk, the stick-slip effect is anchored by shear modes of vibration in about a 0.3 mm thick chalk powder band at the rubbing interface, while in the case of the wet finger on glass, by such modes in a band comprising the finger skin. Furthermore, there are the interfacial bands at the contact areas that result in the decrease of the friction coefficient with relative velocity of slide, i.e., the condition for the stick-slip effect to occur. Such bands are basically composed of the asperities on the surface of the chalk band and of the epidermis ridges and the water layer, respectively. (author)

  5. Effect of longitudinal vibration of fluid-filled pipe with elastic wall on sound transmission character

    Directory of Open Access Journals (Sweden)

    DONG Peng

    2017-01-01

    Full Text Available When one end of a fluid-filled pipe with an elastic wall is fixed and a harmonic force effect acts on the other end,a steady longitudinal vibration will be produced. Compared to the pipeline resonance mode,the amplitude of the steady longitudinal vibration of an elastic pipe is greater,and the effect on the sound is also greater. The study of the steady longitudinal vibration of pipes can better describe the effects of fluid-filled pipelines on the radiation sound field of the pipe opening. Through the contrast between the analysis calculation of the equivalent beam model and the experimental results,the accuracy of the equivalent beam model for the calculation of the steady longitudinal vibration of pipelines is verified,and a method of isolating the steady longitudinal vibration state is proposed and verified.

  6. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  7. Effect of Vibration on Pain Response to Heel Lance: A Pilot Randomized Control Trial.

    Science.gov (United States)

    McGinnis, Kate; Murray, Eileen; Cherven, Brooke; McCracken, Courtney; Travers, Curtis

    2016-12-01

    Applied mechanical vibration in pediatric and adult populations has been shown to be an effective analgesic for acute and chronic pain, including needle pain. Studies among the neonatal population are lacking. According to the Gate Control Theory, it is expected that applied mechanical vibration will have a summative effect with standard nonpharmacologic pain control strategies, reducing behavioral and physiologic pain responses to heel lancing. To determine the safety and efficacy of mechanical vibration for relief of heel lance pain among neonates. In this parallel design randomized controlled trial, eligible enrolled term or term-corrected neonates (n = 56) in a level IV neonatal intensive care unit were randomized to receive either sucrose and swaddling or sucrose, swaddling, and vibration for heel lance analgesia. Vibration was applied using a handheld battery-powered vibrator (Norco MiniVibrator, Hz = 92) to the lateral aspect of the lower leg along the sural dermatome throughout the heel lance procedure. Neonatal Pain, Agitation, and Sedation Scale (N-PASS) scores, heart rate, and oxygen saturations were collected at defined intervals surrounding heel lancing. Infants in the vibration group (n = 30) had significantly lower N-PASS scores and more stable heart rates during heel stick (P = .006, P = .037) and 2 minutes after heel lance (P = .002, P = .016) than those in the nonvibration group. There were no adverse behavioral or physiologic responses to applied vibration in the sample. Applied mechanical vibration is a safe and effective method for managing heel lance pain. This pilot study suggests that mechanical vibration warrants further exploration as a nonpharmacologic pain management tool among the neonatal population.

  8. Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations

    Science.gov (United States)

    Kuzemsky, A. L.

    2018-01-01

    We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.

  9. Nonequilibrium absorption in semiconductors and the dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1997-01-01

    We theoretically study free electron light absorption for a sample which is placed in a strong, time-dependent uniform electric field. In the case of static fields one observes the Franz-Keldysh effect: finite absorption for photon energies below the band gap. We refer to this phenomenon as the F...

  10. Effects of distribution function nonequilibrium tails on relaxation and transfer processes in rarefied gases

    International Nuclear Information System (INIS)

    Grigoryev, Yu.N.; Mikhalitsyn, A.N.; Yanenko, N.N.

    1984-01-01

    Quantitative characteristics of the nonmonotone relaxation process are studied in a gas of pseudo-Maxwell molecules. Basic results are obtained by a direct numerical integration of the nonlinear Boltzmann equation. The evolution of initial distributions being finite or having exponential asymptotics of tails was researched. In particular, initial data obtained by selective excitation (absorption) against the Maxwell background encountered in laser physics problems have been considered. It is shown that under conditions of a developed effect of nonmonotone relaxation the overpopulation in the velocity range 4 <= upsilon <= 10 exceeds on the average 2-3 times the equilibrium value. For the given particles energy the excitation is preserved during t = 5/6 and the total relaxation time of the overpopulation wave reaches t asymptotically equals 20. The amplitudes and the relaxation time of overpopulation in the ''cupola'' region of distribution are substantially lower than in the case of a developed effect in the tail. The influence of the effect on the kinetics of threshold chemical reaction is studied. From the results it follows that in the process of nonmonotone relaxation the mean rates of binary threshold reactions can exceed more than twice the equilibrium values. This estimate is valid for all power like intermolecular repulsive potentials from the pseudo-Maxwell model up to rigid spheres. Time intervals over which the mean reaction rate exceeds considerably the equilibrium one make from 5 to 15 mean free path times increasing with the decrease in the potential ''rigidity''. (author)

  11. Minimizing Load Effects on NA4 Gear Vibration Diagnostic Parameter

    Science.gov (United States)

    Dempsey, Paula J.; Zakrajsek, James J.

    2001-01-01

    NA4 is a vibration diagnostic parameter, developed by researchers at NASA Glenn Research Center, for health monitoring of gears in helicopter transmissions. The NA4 reacts to the onset of gear pitting damage and continues to react to the damage as it spreads. This research also indicates NA4 reacts similarly to load variations. The sensitivity of NA4 to load changes will substantially affect its performance on a helicopter gearbox that experiences continuously changing load throughout its flight regimes. The parameter NA4 has been used to monitor gear fatigue tests at constant load. At constant load, NA4 effectively detects the onset of pitting damage and tracks damage severity. Previous research also shows that NA4 reacts to changes in load applied to the gears in the same way it reacts to the onset of pitting damage. The method used to calculate NA4 was modified to minimize these load effects. The modified NA4 parameter was applied to four sets of experimental data. Results indicate the modified NA4 is no longer sensitive to load changes, but remains sensitive to pitting damage.

  12. Density profile evolution and nonequilibrium effects in partial and full spreading measurements of surface diffusion

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2001-01-01

    in D-C(theta) depend on the initial density gradient and the initial state from which the spreading starts. To this end, we carry out extensive Monte Carlo simulations for a lattice-gas model of the O/W(110) system. Studies of submonolayer spreading from an initially ordered p(2x1) phase at theta = 1....../2 reveal that the spreading and diffusion rates in directions parallel and perpendicular to rows of oxygen atoms are significantly different within the ordered phase. Aside from this effect, we find that the degree of ordering in the initial phase has a relatively small impact on the overall behavior of D...

  13. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    Directory of Open Access Journals (Sweden)

    Tsukahara Y

    2016-01-01

    Full Text Available Yuka Tsukahara, Jun Iwamoto, Kosui Iwashita, Takuma Shinjo, Koichiro Azuma, Hideo MatsumotoInstitute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan Background: Whole-body vibration (WBV exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives: The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods: Twelve healthy volunteers (age: 22–34 years were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900 with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results: Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion: This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. Keywords: whole-body vibration exercise, upper

  14. Understanding non-equilibrium collisional and expansion effects in the solar wind with Parker Solar Probe

    Science.gov (United States)

    Korreck, K. E.; Klein, K. G.; Maruca, B.; Alterman, B. L.

    2017-12-01

    The evolution of the solar wind from the corona to the Earth and throughout the heliosphere is a complex interplay between local micro kinetics and large scale expansion effects. These processes in the solar wind need to be separated in order to understand and distinguish the dominant mechanism for heating and acceleration of the solar wind. With the upcoming launch in 2018 of Parker Solar Probe and the launch of Solar Orbiter after, addressing the local and global phenomena will be enabled with in situ measurements. Parker Solar Probe will go closer to the Sun than any previous mission enabling the ability to examine the solar wind at an early expansion age. This work examines the predictions for what will be seen inside of the 0.25 AU (54 solar radii) where Parker Solar Probe will take measurements and lays the groundwork for disentangling the expansion and collisional effects. In addition, methods of thermal plasma data analysis to determine the stability of the plasma in the Parker Solar Probe measurements will be discussed.

  15. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao; Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan

    2009-01-01

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  16. Combined Effects of High-Speed Railway Noise and Ground Vibrations on Annoyance.

    Science.gov (United States)

    Yokoshima, Shigenori; Morihara, Takashi; Sato, Tetsumi; Yano, Takashi

    2017-07-27

    The Shinkansen super-express railway system in Japan has greatly increased its capacity and has expanded nationwide. However, many inhabitants in areas along the railways have been disturbed by noise and ground vibration from the trains. Additionally, the Shinkansen railway emits a higher level of ground vibration than conventional railways at the same noise level. These findings imply that building vibrations affect living environments as significantly as the associated noise. Therefore, it is imperative to quantify the effects of noise and vibration exposures on each annoyance under simultaneous exposure. We performed a secondary analysis using individual datasets of exposure and community response associated with Shinkansen railway noise and vibration. The data consisted of six socio-acoustic surveys, which were conducted separately over the last 20 years in Japan. Applying a logistic regression analysis to the datasets, we confirmed the combined effects of vibration/noise exposure on noise/vibration annoyance. Moreover, we proposed a representative relationship between noise and vibration exposures, and the prevalence of each annoyance associated with the Shinkansen railway.

  17. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    Science.gov (United States)

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Analysis of fluid induced vibration of cryogenic pipes in consideration of the cooling effect

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Kim, Young Ki; Choi, Jung Woon

    2008-01-01

    The purpose of system analysis using fluid induced vibration is to identify the problems of the system in advance by analyzing the vibration behavior of the system excited by fluid flow. Fluid-induced vibration analysis methods, developed so far, generally use the numerical analysis method to analyze the fluid flowing inside the pipe and the infinitesimal elements at normal temperature on the basis of the governing equation obtained by applying Newton's Second Law and the momentum equation. However, as the fluid temperature changes greatly at low temperature, fluid-induced vibration analysis methods for normal temperature cannot be applied. This study investigated methods of analyzing fluid-induced vibration in consideration of the cooling effect. In consideration of the changes in the properties of the fluid and system relative to temperature, vibration behavior was analyzed numerically by means of the equation of motion. As a result, the natural frequency of the system tends to change because of the changes of the properties of materials even when the flux is constant inside the pipe, and the vibration behavior of the system was compared to that in case of normal temperature to analyze how much influence the cooling effect has on the vibration behavior of the system

  19. The vibrational Jahn–Teller effect in E⊗e systems

    Energy Technology Data Exchange (ETDEWEB)

    Thapaliya, Bishnu P.; Dawadi, Mahesh B.; Ziegler, Christopher; Perry, David S., E-mail: dperry@uakron.edu

    2015-10-16

    Highlights: • The vibrational Jahn–Teller effect is documented for three E⊗e molecular systems. • The spontaneous vibrational Jahn–Teller distortion is very small. • Vibrational Jahn–Teller splittings are substantial (1–60 cm{sup −1}). • Vibrational conical intersections in CH{sub 3}OH are accessible at low energies. - Abstract: The Jahn–Teller theorem is applied in the vibrational context where degenerate high-frequency vibrational states (E) are considered as adiabatic functions of low-frequency vibrational coordinates (e). For CH{sub 3}CN and Cr(C{sub 6}H{sub 6})(CO){sub 3}, the global minimum of the non-degenerate electronic potential energy surface occurs at the C{sub 3v} geometry, but in CH{sub 3}OH, the equilibrium geometry is far from the C{sub 3v} reference geometry. In the former cases, the computed spontaneous Jahn–Teller distortion is exceptionally small. In methanol, the vibrational Jahn–Teller interaction results in the splitting of the degenerate E-type CH stretch into what have been traditionally assigned as the distinct ν{sub 2} and ν{sub 9} vibrational bands. The ab initio vibrational frequencies are fit precisely by a two-state high-order Jahn–Teller Hamiltonian (Viel and Eisfeld, 2004). The presence of vibrational conical intersections, including 7 for CH{sub 3}OH, has implications for spectroscopy, for geometric phase, and for ultrafast localized non-adiabatic energy transfer.

  20. Study on the application of ambient vibration tests to evaluate the effectiveness of seismic retrofitting

    Science.gov (United States)

    Liang, Li; Takaaki, Ohkubo; Guang-hui, Li

    2018-03-01

    In recent years, earthquakes have occurred frequently, and the seismic performance of existing school buildings has become particularly important. The main method for improving the seismic resistance of existing buildings is reinforcement. However, there are few effective methods to evaluate the effect of reinforcement. Ambient vibration measurement experiments were conducted before and after seismic retrofitting using wireless measurement system and the changes of vibration characteristics were compared. The changes of acceleration response spectrum, natural periods and vibration modes indicate that the wireless vibration measurement system can be effectively applied to evaluate the effect of seismic retrofitting. The method can evaluate the effect of seismic retrofitting qualitatively, it is difficult to evaluate the effect of seismic retrofitting quantitatively at this stage.

  1. Nonequilibrium statistical physics

    CERN Document Server

    Röpke, Gerd

    2013-01-01

    Authored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines.Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications

  2. Effect of nonlinearity of connecting dampers on vibration control of connected building structures

    Directory of Open Access Journals (Sweden)

    Masatoshi eKasagi

    2016-01-01

    Full Text Available The connection of two building structures with dampers is one of effective vibration control systems. In this vibration control system, both buildings have to possess different vibration properties in order to provide a higher vibration reduction performance. In addition to such condition of different vibration properties of both buildings, the connecting dampers also play an important role in the vibration control mechanism. In this paper, the effect of nonlinearity of connecting dampers on the vibration control of connected building structures is investigated in detail. A high-damping rubber damper and an oil damper with and without relief mechanism are treated. It is shown that, while the high-damping rubber damper is effective in a rather small deformation level, the linear oil damper is effective in a relatively large deformation level. It is further shown that, while the oil dampers reduce the response in the same phase as the case without dampers, the high-damping rubber dampers change the phase. The merit is that the high-damping rubber can reduce the damper deformation and keep the sufficient space between both buildings. This can mitigate the risk of building pounding.

  3. Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan

    2018-05-01

    Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Effect of degree of order of silicon dioxide on localization processes of non-equilibrium charge carriers under the influence of gamma-radiation

    CERN Document Server

    Garibov, A A; Agaev, T N

    1999-01-01

    The effect of the degree of order of SiO sub 2 on the localization process of non-equilibrium charge carriers (NCC) when exposed to gamma-quanta at 77 K has been investigated. It has been found that with decreasing SiO sub 2 structure degree of order, a localization probability of NCC increases. A contribution of surface defect states in SiO sub 2 to localization, migration and recombination annihilation processes of NCC induced by ionizing radiation has been determined.

  5. Effect of deuteration on the vibrational spectra of organic molecules

    International Nuclear Information System (INIS)

    Billes, Ferenc; Endredi, Henrietta; Varady, Balazs

    2001-01-01

    The stable isotope substitution of organic compounds deforms their vibrational spectra. The modifications of the spectra appear as band shifts and changes in intensities and shapes of the bands. The magnitude of the effect depends on the ratio of the masses of the new and old isotopes and on the atom active position. According to these mentioned reasons large effects can be observed only if hydrogen atoms are substituted. With the effect of the substitution we dealt already in a former lecture. In this lecture we concentrate on the effect of the change of hydrogen to deuterium. We investigate the changes both experimentally and theoretically. There are two possibilities: - the hydrogen atom is in an active position, its interaction with the environment is strong, either it can dissociate or move on the skeleton of the molecule (tautomerism, resonance) and it can build hydrogen bond, (e.g. it is connected to nitrogen and oxygen atoms); - the hydrogen atom is in an indifferent position in the molecule, its interaction with the environment is weak (e.g. it joins carbon atom). When building the hydrogen bond besides the hydrogen donors also acceptors exist, namely, oxygen and nitrogen atoms having non-bonded electron pairs. When comparing the experimental and theoretical (calculated) effects of this type of isotope changes one must take into account that the calculations refer to the isolated molecule while the experimental spectra characterize the compound. The hydrogen bond is a very strong intermolecular interaction and produces tremendous changes in the infrared spectrum of the molecule in comparison to the imagined theoretical spectrum of the molecule. Some bands disappear, appear, or shift and deform drastically. The H/D change diminishes these effects. Of course, these changes entail the shift of several bands. The Raman spectrum is less sensitive to the large dipole moment changes therefore the deuteration effect is there less dramatic. Deuteration of hydrogen

  6. The Effect of Flowing Water on Turbine Rotor Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Ida

    2010-07-01

    There is a lack of standardized rules on how the fluid in the turbine should be included in rotor models of hydraulic machinery. This thesis is an attempt to shed some light on this issue. We approach the problem from two viewpoints, situated at place at a hydropower plant and by mathematical analysis. One goal of the thesis is to develop a measurement system that monitors the instantaneous pressure at several locations of a runner blade on a 10 MW Kaplan prototype in Porjus along Lule river. Paper A outlines the development of the measurement system and the instrumentation of the runner blade. Miniature piezo-resistive pressure transducers were mounted flush to the surface. If instrumentation is successful, the pressure field of the runner blade could be measured simultaneously as the loads and displacements of the guide bearings and the generator. The second objective is concerned with how the motion-induced fluid force affects the dynamic behaviour of the rotor. Inertia and angular momentum of the fluid and shrouding are expected to influence the dynamic behaviour of the turbine. Paper B scrutinizes this assumption by presenting a simple fluid-rotor model that captures the effects of inertia and angular momentum of the fluid on the motion of a confined cylinder. The simplicity of the model allows for powerful analytical solution methods. The results show that fluid inertia, angular momentum and shrouding of hydraulic turbines could have substantial effects on lateral rotor vibrations. This calls for further investigation with a more complex fluid-rotor model that accounts for flexural bending modes.

  7. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  8. Nonequilibrium thermodynamics of nucleation

    NARCIS (Netherlands)

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  9. Effect of the adiabatic vibrational coupling on the fusion of the 16O-238U interaction

    International Nuclear Information System (INIS)

    Ismail, M.; Osman, M.; Ramadan, Kh.A.; Seif, W.

    2003-01-01

    The effect of both rotation and vibration of a deformed target nucleus on the fusion cross-section and barrier distributions was studied. This was done in the framework of the microscopically derived heavy-ion (HI) potential. Moreover, the effect of target deformation up to β 6 and the density dependence of the NN force on the fusion process was studied in the presence of vibrational excitations of the target. The results obtained were compared with experimental data. (author)

  10. A stability investigation of two-dimensional surface waves on evaporating, isothermal or condensing liquid films - Part I, Thermal non-equilibrium effects on wave velocity

    International Nuclear Information System (INIS)

    Chunxi, L.; Xuemin, Y.

    2004-01-01

    The temporal stability equation of the two-dimensional traveling waves of evaporating or condensing liquid films falling down on an inclined wall is established based on the Prandtl boundary layer theory and complete boundary conditions. The model indicates that the wave velocity is related to the effects of evaporating, isothermal and condensing states, thermo-capillarity, Reynolds number, fluid property and inclined angle, and the effects of above factors are distinctly different under different Reynolds numbers. The theoretical studies show that evaporation process induces the wave velocity to increase slightly compared with the isothermal case, and condensation process induces the wave velocity to decrease slightly. Furthermore, the wave velocity decreases because of the effects of thermo-capillarity under evaporation and increases because of the effects of thermo-capillarity under condensation. The effects of thermal non-equilibrium conditions have relatively obvious effects under lower Reynolds numbers and little effects under higher Reynolds numbers

  11. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  12. Transmission of vibration through gloves: effects of contact area.

    Science.gov (United States)

    Md Rezali, Khairil Anas; Griffin, Michael J

    2017-01-01

    For three samples of material (12.5, 25.0 and 37.5 mm diameter) from each of three gloves, the dynamic stiffnesses and the vibration transmissibilities of the materials (to both the palm of the hand and the thenar eminence) were measured at frequencies from 10 to 300 Hz. Additional measurements showed the apparent masses of the hand at the palm and the thenar eminence were independent of contact area at frequencies less than about 40 Hz, but increased with increasing area at higher frequencies. The stiffness and damping of the glove materials increased with increasing area. These changes caused material transmissibilities to the hand to increase with increasing area. It is concluded that the size of the area of contact has a large influence on the transmission of vibration through a glove to the hand. The area of contact should be well-defined and controlled when evaluating the transmission of vibration through gloves. Practitioner Summary: The transmission of vibration through gloves depends on both the dynamic stiffness of glove material and the dynamic response of the hand. Both of these depend on the size of the contact area between a glove material and the hand, which should be taken into account when assessing glove transmissibility.

  13. Thermal effect on transverse vibrations of double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y Q; Liu, X; Liu, G R

    2007-01-01

    Based on the theory of thermal elasticity mechanics, a double-elastic beam model is developed for transverse vibrations of double-walled carbon nanotubes with large aspect ratios. The thermal effect is incorporated in the formulation. With this double-elastic beam model, explicit expressions are derived for natural frequencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported double-walled carbon nanotubes. The influence of temperature change on the properties of transverse vibrations is discussed. It is demonstrated that some properties of transverse vibrations of double-walled carbon nanotubes are dependent on the change of temperature

  14. Effect of some additives on mass transfer coefficient at a vibrating horizontal screen

    Energy Technology Data Exchange (ETDEWEB)

    Nosier, S.A.; El-Abd, M.Z. [Chemical Engineering Dept., Faculty of Engineering, Alexandria Univ. (Egypt); Zaki, M.M. [Environmental Engineering Dept., Faculty of Engineering, Zagazig Univ. (Egypt)

    1998-01-01

    The addition of small amounts of high molecular weight substances, such as polymers and surface-active agents, to fluids can produce significant reduction of friction in turbulent flow. The objectiv of the present work is to study the effect of drag-reducing additives such as Polyox WSR 301 and sodium lauryl sulfate (anionic surfactant) on the rate of mass transfer at a vibrating horizontal screen. The variables studied were the concentration of polymer and surfactant, frequency of vibration and amplitude of vibration. (orig.)

  15. Effect of detector size and position on measured vibration spectra of strings and rods

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Por, G.

    1993-04-01

    Weight functions of string and rod vibrations are described by standing and travelling wave models. The effects of detector size and position on the measured vibration spectra was investigated, and the main characteristics of the transfer function were calculated by a simple standing wave model. The theoretical results were compared with data from laboratory rod vibration experiments, and with pressure fluctuation spectra obtained at the Paks Nuclear Power Plant. In addition, some fundamental physical consequences can be made using the theory of superposition of travelling waves and their reflection on clamped rod ends. (R.P.) 5 refs.; 10 figs

  16. Effects of train noise and vibration on human heart rate during sleep: an experimental study.

    Science.gov (United States)

    Croy, Ilona; Smith, Michael G; Waye, Kerstin Persson

    2013-05-28

    Transportation of goods on railways is increasing and the majority of the increased numbers of freight trains run during the night. Transportation noise has adverse effects on sleep structure, affects the heart rate (HR) during sleep and may be linked to cardiovascular disease. Freight trains also generate vibration and little is known regarding the impact of vibration on human sleep. A laboratory study was conducted to examine how a realistic nocturnal railway traffic scenario influences HR during sleep. Case-control. Healthy participants. 24 healthy volunteers (11 men, 13 women, 19-28 years) spent six consecutive nights in the sleep laboratory. All participants slept during one habituation night, one control and four experimental nights in which train noise and vibration were reproduced. In the experimental nights, 20 or 36 trains with low-vibration or high-vibration characteristics were presented. Polysomnographical data and ECG were recorded. The train exposure led to a significant change of HR within 1 min of exposure onset (p=0.002), characterised by an initial and a delayed increase of HR. The high-vibration condition provoked an average increase of at least 3 bpm per train in 79% of the participants. Cardiac responses were in general higher in the high-vibration condition than in the low-vibration condition (p=0.006). No significant effect of noise sensitivity and gender was revealed, although there was a tendency for men to exhibit stronger HR acceleration than women. Freight trains provoke HR accelerations during sleep, and the vibration characteristics of the trains are of special importance. In the long term, this may affect cardiovascular functioning of persons living close to railways.

  17. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Science.gov (United States)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  18. Acute effect of whole body vibration on postural control in congenitally blind subjects: a preliminary evidence.

    Science.gov (United States)

    di Cagno, Alessandra; Giombini, Arrigo; Iuliano, Enzo; Moffa, Stefano; Caliandro, Tiziana; Parisi, Attilio; Borrione, Paolo; Calcagno, Giuseppe; Fiorilli, Giovanni

    2017-07-11

    The purpose of this study was to investigate the acute effects of whole body vibration at optimal frequency, on postural control in blind subjects. Twenty-four participants, 12 congenital blind males (Experimental Group), and 12 non-disabled males with no visual impairment (Control Groups) were recruited. The area of the ellipse and the total distance of the center of pressure displacements, as postural control parameters, were evaluated at baseline (T0), immediately after the vibration (T1), after 10 min (T10) and after 20 min (T20). Whole body vibration protocol consisted into 5 sets of 1 min for each vibration, with 1 min rest between each set on a vibrating platform. The total distance of center of pressure showed a significant difference (p < 0.05) amongst groups, while the area remained constant. No significant differences were detected among times of assessments, or in the interaction group × time. No impairments in static balance were found after an acute bout of whole body vibration at optimal frequency in blind subjects and, consequently, whole body vibration may be considered as a safe application in individuals who are blind.

  19. Simultaneous effects of mechanical vibration and inoculation with niobium on the solidification structure of aluminium

    International Nuclear Information System (INIS)

    Mello, J.D.B. de; Arruda, A.C.F. de

    1980-01-01

    This study concerns the effect of mechanical vibration applied simultaneously with inoculation (0,05% Nb) on the solidification structure of aluminium, with a view to refining the grain size. The results shows that the method used is an efficient way to control the final structure of the aluminium. The best results were found for low values of the frequencies of vibration and for the small amplitudes. (Author) [pt

  20. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  1. Combined effect of non-equilibrium solidification and thermal annealing on microstructure evolution and hardness behavior of AZ91 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z.Z.; Yang, W., E-mail: weiyang@mail.nwpu.edu.cn; Chen, S.H.; Yu, H.; Xu, Z.F.

    2014-06-15

    Non-equilibrium solidification of commercial AZ91 magnesium alloy was performed by copper mold spray-casting technique and the thermal stability property of as-formed meta-stable microstructure was investigated by subsequent annealing at different temperatures and times. Remarkable grain refinement appears with increasing cooling rate during solidification process, which is accompanied by a visible cellular/dendrite transition for the grain morphology of primary phase. Moreover, the non-equilibrium solidified alloy exhibits obvious precipitation hardening effect upon annealing at 200 °C, and the precipitation mode of β-Mg{sub 17}Al{sub 12} phase changes from discontinuous to continuous with extending isothermal time from 4 h to 16 h, which generates an increase of resultant micro-hardness value. After solid solution treatment at the elevated temperature of 420 °C, the volume fraction of β-Mg{sub 17}Al{sub 12} phase decreases and a notable grain growth phenomenon occurs, which give rise to a reduction of hardness in comparison with that of as-quenched alloy.

  2. Computational and theoretical modeling of pH and flow effects on the early-stage non-equilibrium self-assembly of optoelectronic peptides

    Science.gov (United States)

    Mansbach, Rachael; Ferguson, Andrew

    Self-assembling π-conjugated peptides are attractive candidates for the fabrication of bioelectronic materials possessing optoelectronic properties due to electron delocalization over the conjugated peptide groups. We present a computational and theoretical study of an experimentally-realized optoelectronic peptide that displays triggerable assembly in low pH to resolve the microscopic effects of flow and pH on the non-equilibrium morphology and kinetics of assembly. Using a combination of molecular dynamics simulations and hydrodynamic modeling, we quantify the time and length scales at which convective flows employed in directed assembly compete with microscopic diffusion to influence assembly. We also show that there is a critical pH below which aggregation proceeds irreversibly, and quantify the relationship between pH, charge density, and aggregate size. Our work provides new fundamental understanding of pH and flow of non-equilibrium π-conjugated peptide assembly, and lays the groundwork for the rational manipulation of environmental conditions and peptide chemistry to control assembly and the attendant emergent optoelectronic properties. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0011847, and by the Computational Science and Engineering Fellowship from the University of Illinois at Urbana-Champaign.

  3. The short-term effects of plantar vibration on balance disorder after stroke

    Directory of Open Access Journals (Sweden)

    Soofia Naghdi

    2013-05-01

    Full Text Available Background: Balance disorders are common in patients following stroke. There are a number of physiotherapy modalities to treat balance impairments, one of which is vibration. The effects of vibration on balance disorders after stroke have not been investigated. This case report demonstrates the short-term effects of plantar vibration on the balance impairment of a patient with stroke. Case presentation: A 72-years-old man with right hemiplegia resulted from stroke was admitted for vibration therapy after not responding to standard rehabilitation interventions. He complained of balance problems despite walking independently. Main studied outcomes were timed up and go test and posturography. Foot sensation, ankle plantar flexor spasticity, and the passive range of ankle dorsiflexion were assessed, as well. Vibration with a frequency of 100 Hz was introduced to the sole of the affected foot for 5 minutes. After intervention, all tests were improved compared to the baselines. Conclusion: This case showed that the vibration was effective for improving balance disorder after stroke.

  4. High-speed kymography identifies the immediate effects of voiced vibration in healthy vocal folds

    Directory of Open Access Journals (Sweden)

    Pimenta, Regina Aparecida

    2013-01-01

    Full Text Available Introduction: The effects of voiced vibration technique can be assessed by laryngeal imaging. Kymographic images derived from high-speed videoendoscopy allow actual visualization of vocal folds vibration. Purpose: The aim of this study is to identify the immediate effects of the voiced vibration technique in healthy vocal folds using high-speed digital laryngeal imaging. Methods: Samples were obtained from 15 healthy subjects with no history of voice disorders (6 men and 9 women aged 21 to 43 years. High-speed videoendoscopy recordings were performed before and after the voiced vibration technique. Kymographic images were obtained using high-speed videoendoscopy. The vocal folds were examined in their open and closed positions and the characteristics of the opening and closing phases were determined. A customize computational routine was used quantify these parameters. The closing, opening, and speed quotients were also calculated. Results: In this study, women displayed statistically significant differences in opened phase (P= 0.05*, closed phase (P= 0.046*, and closing phase (P= 0.026* phase characteristics. Men displayed the highest difference rate in opening time characteristics (P= 0.06. The closing and opening quotients for the female group showed significant differences (P= 0.029* and P= 0.049*, respectively. The speed quotient exhibited statistically significant differences in the male group (P= 0.048*. Conclusion: The kymographic images indicated that the immediate effect of the voiced vibration technique was smooth contact in healthy vocal fold vibration.

  5. A thin-shock-layer solution for nonequilibrium, inviscid hypersonic flows in earth, Martian, and Venusian atmospheres

    Science.gov (United States)

    Grose, W. L.

    1971-01-01

    An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.

  6. Acute effects of a vibration-like stimulus during knee extension exercise.

    Science.gov (United States)

    Mileva, Katya N; Naleem, Asif A; Biswas, Santonu K; Marwood, Simon; Bowtell, Joanna L

    2006-07-01

    This study was conducted to test whether a low-frequency vibration-like stimulus (rapid variable resistance) applied during a single session of knee extension exercise would alter muscle performance. Torque, knee joint angle, EMG activity of rectus femoris (RF) and vastus lateralis (VL) muscles, and VL muscle oxygenation status (near-infrared spectroscopy) were recorded during metronome-guided knee extension exercise. Nine healthy adults completed four trials exercising at contraction intensities of 35% (L) or 70% (H) of one-repetition maximum (1RM) in control (no vibration, Vb-) or vibrated condition (superimposed 10-Hz vibration-like stimulus, Vb+). Maximum voluntary contraction and 1RM were tested pre- and postexercise. During 1RM tests, muscle dynamic strength (P=0.02) and power (P=0.05) were significantly higher during vibrated rather than nonvibrated trials, and strength was significantly higher post- than preexercise (P=0.002), except during LVb- trial. Median spectral frequency of VL and RF EMG activity was significantly higher during postexercise than preexercise 1RM test in the vibration trials but unchanged in the control trials (Pvibration superimposition tended to speed muscle deoxygenation rate (P=0.065, 36% effect size) particularly during L trials. Vibration superimposition during knee extension exercise at low contraction intensity enhanced muscle performance. This effect appears to result from adaptation of neural factors such as motor unit excitability (recruitment and firing frequency, conduction velocity of excitation) in response to sensory receptor stimulation. Muscle vibration may increase the training effects derived from light-to-moderate exercise.

  7. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  8. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  9. Combined effects of noise, vibration, and low temperature on the physiological parameters of labor employees

    Directory of Open Access Journals (Sweden)

    Pao-Chiang Chao

    2013-10-01

    Full Text Available Noise, vibration, and low temperature render specific occupational hazards to labor employees. The purpose of this research was to investigate the combined effects of these three physical hazards on employees' physiological parameters. The Taguchi experimental method was used to simulate different exposure conditions caused by noise, vibration, and low temperature, and their effects on the physiological parameters of the test takers were measured. The data were then analyzed using statistical methods to evaluate the combined effects of these three factors on human health. Results showed that the factor that influenced the finger skin temperature, manual dexterity, and mean artery pressure (MAP most was air temperature, and exposure time was the second most influential factor. Noise was found to be the major factor responsible for hearing loss; in this case, hand–arm vibration and temperature had no effect at all. During the study, the temperature was confined in the 5–25°C range (which was not sufficient to study the effects at extremely high- and low-temperature working conditions because the combined effects of even two factors were very complicated. For example, the combined effects of hand–arm vibration and low temperature might lead to occupational hazards such as vibration-induced white finger syndrome in working labors. Further studies concerning the occupational damage caused by the combined effects of hazardous factors need to be conducted in the future.

  10. Effect of room temperature lattice vibration on the electron transport in graphene nanoribbons

    Science.gov (United States)

    Liu, Yue-Yang; Li, Bo-Lin; Chen, Shi-Zhang; Jiang, Xiangwei; Chen, Ke-Qiu

    2017-09-01

    We observe directly the lattice vibration and its multifold effect on electron transport in zigzag graphene nanoribbons in simulation by utilizing an efficient combined method. The results show that the electron transport fluctuates greatly due to the incessant lattice vibration of the nanoribbons. More interestingly, the lattice vibration behaves like a double-edged sword that it boosts the conductance of symmetric zigzag nanoribbons (containing an even number of zigzag chains along the width direction) while weakens the conductance of asymmetric nanoribbons. As a result, the reported large disparity between the conductances of the two kinds of nanoribbons at 0 K is in fact much smaller at room temperature (300 K). We also find that the spin filter effect that exists in perfect two-dimensional symmetric zigzag graphene nanoribbons is destroyed to some extent by lattice vibrations. Since lattice vibrations or phonons are usually inevitable in experiments, the research is very meaningful for revealing the important role of lattice vibrations play in the electron transport properties of two-dimensional materials and guiding the application of ZGNRs in reality.

  11. Vibration properties of a rotating piezoelectric energy harvesting device that experiences gyroscopic effects

    Science.gov (United States)

    Lu, Haohui; Chai, Tan; Cooley, Christopher G.

    2018-03-01

    This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.

  12. Statistical mechanics of nonequilibrium liquids

    CERN Document Server

    Evans, Denis J; Craig, D P; McWeeny, R

    1990-01-01

    Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,

  13. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect

    Science.gov (United States)

    Ni, Yan-Chun; Zhang, Feng-Liang

    2018-05-01

    Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm

  14. Effect of vibration loading on the fatigue life of part-through notched pipe

    International Nuclear Information System (INIS)

    Mittal, Rahul; Singh, P.K.; Pukazhendi, D.M.; Bhasin, V.; Vaze, K.K.; Ghosh, A.K.

    2011-01-01

    A systematic experimental and analytical study has been carried out to investigate the effect of vibration loading on the fatigue life of the piping components. Three Point bend (TPB) specimens machined from the actual pipe have been used for the evaluation of Paris constants by carrying out the experiments under vibration + cyclic and cyclic loading as per the ASTM Standard E647. These constants have been used for the prediction of the fatigue life of the pipe having part-through notch of a/t = 0.25 and aspect ratio (2c/a) of 10. Predicted results have shown the reduction in fatigue life of the notched pipe subjected to vibration + cyclic loading by 50% compared to that of cyclic loading. Predicted results have been validated by carrying out the full-scale pipe (with part-through notch) tests. Notched pipes were subjected to loading conditions such that the initial stress-intensity factor remains same as that of TPB specimen. Experimental results of the full-scale pipe tests under vibration + cyclic loading has shown the reduction in fatigue life by 70% compared to that of cyclic loading. Fractographic examination of the fracture surface of the tested specimens subjected to vibration + cyclic loading have shown higher presence of brittle phases such as martensite (in the form of isolated planar facets) and secondary micro cracks. This could be the reason for the reduction of fatigue life in pipe subjected to vibration + cyclic loading. - Highlights: → Vibration loading affects fatigue crack growth rate. → Crack initiation life depends on crack tip radius. → Crack initiation life depends on the characteristic distance. → Characteristic distance depends on the loading conditions. → Vibration + cyclic load gives lower fatigue life.

  15. Effect of top ligament blanking on reducing flow induced vibration of protective grid

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Kyong Bo; Ryu, Joo Young; Kwon, Oh Joon; Park, Joon Kyoo; Jeon, Sang Youn; Suh, Jung Min [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    The protective grid is a Inconel 718 spacer grid located just above the bottom nozzle in many kinds of fuel assemblies for PWR. The purpose of using protective grid is to capture debris before they flow up into the fuel assembly and get trapped by the other grids causing fuel rod damages as well as to provide support at the lower end plugs of fuel rods. Recently, it has been reported that strap failure has occurred in the protective grids and the flow induced vibration of the strap has resulted in the strap fatigue failure. After the root cause of the protective grid failure was found to be the flow induced vibration of the strap, KEPCO NF has made an effort to find the vibration tendencies of grid strap and draw vibration mitigation concepts of the protective grid strap. The vibration tendency and the effect of the vibration mitigation concept of the protective grid which have been found by the results of the loop tests and simulations in KEPCO NF are presented herein.

  16. Cross transfer acute effects of foam rolling with vibration on ankle dorsiflexion range of motion.

    Science.gov (United States)

    García-Gutiérrez, María Teresa; Guillén-Rogel, Paloma; Cochrane, Darryl J; Marín, Pedro J

    2018-06-01

    Foam roller is a device used as a massage intervention for rehabilitation and fitness performance. To examine the effects on the ankle dorsiflexion mobility of the foam roller as well as the combination of foam roller and vibration applied to the ankle plantarflexors muscles, and to observe the possible cross-effect. Thirty-eight undergraduate students participated in the study (19 males and 19 females). This study investigated. Three conditions (3 sets of 20 s) were performed in a randomized order (independent variables): 1) foam roller (Roller), 2) foam roller and vibration (Roller+VIB), and 3) no foam roller or vibration (Control). to determine whether of foam roller with or without vibration would benefit ankle dorsiflexion mobility. Ankle dorsiflexion ROM and plantar flexor were measured in both legs before and immediately after the treatment. A cross-effect was found in the non-stimulated leg. There was a significant effect on ankle mobility of Roller and Roller+VIB conditions (6% and 7%, pFoam roller massage and vibration stimulus' foam roller massage increase ankle mobility producing a cross-effect.

  17. VIBRATION DIAGNOSTICS AND VIBRATION ALIGNMENT – EFFECTIVE TOOL TO REDUCE THE COST OF REPAIRS AND MAINTENANCE OF EQUIPMENT

    Directory of Open Access Journals (Sweden)

    Yu. V. Parkhomenko

    2017-01-01

    Full Text Available The article discribes the following types of adjusting rotary equipment such as: balancing in own bearings, on-center alignment and shaft alignment, elimination of soft foot. The vibration alignment is based on the results of vibration diagnostics at production run of OJSC «BSW – Management Company of Holding «BMC». 

  18. Vibration diagnostics and vibration alignment – effective tool to reduce the cost of repairs and maintenance of equipment

    OpenAIRE

    Пархоменко, Ю. В.

    2017-01-01

    The article discribes the following types of adjusting rotary equipment such as: balancing in own bearings, on-center alignment and shaft alignment, elimination of soft foot. The vibration alignment is based on the results of vibration diagnostics at production run of OJSC «BSW – Management Company of Holding «BMC». 

  19. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  20. The acute effects of stretching with vibration on dynamic flexibility in young female gymnasts.

    Science.gov (United States)

    Johnson, Aaron W; Warcup, Caisa N; Seeley, Matthew K; Eggett, Dennis; Feland, Jeffery B

    2018-01-10

    While stretching with vibration has been shown to improve static flexibility; the effect of stretching with vibration on dynamic flexibility is not well known. The purpose of this study was to examine the effectiveness of stretching with vibration on acute dynamic flexibility and jump height in novice and advanced competitive female gymnasts during a split jump. Female gymnast (n=27, age: 11.5 ± 1.7 years, Junior Olympic levels 5-10) participated in this cross-over study. Dynamic flexibility during gymnastic split jumps were video recorded and analyzed with Dartfish software. All participants completed both randomized stretching protocols with either the vibration platform turned on (VIB) (frequency of 30 Hz and 2 mm amplitude) or off (NoVIB) separated by 48 h. Participants performed 4 sets of three stretches on the vibration platform. Each stretch was held for 30 s with 5 s rest for a total of 7 min of stretch. Split jump flexibility decreased significantly from pre to post measurement in both VIB (-5.8°±5.9°) (p<0.001) and NoVIB (-2.6°±6.1°) (p=0.041) conditions (adjusted for gymnast level). This effect was greatest in lower skill level gymnasts (p=0.003), while the highest skill level gymnasts showed no significant decrease in the split jump (p=0.105). Jump height was not significantly different between conditions (p=0.892) or within groups (p=0.880). An acute session of static stretching with or without vibration immediately before performance does not alter jump height. Stretching with vibration immediately prior to gymnastics competition decreases split jump flexibility in lower level gymnasts more than upper level gymnasts.

  1. Postural stability effects of random vibration at the feet of construction workers in simulated elevation.

    Science.gov (United States)

    Simeonov, P; Hsiao, H; Powers, J; Ammons, D; Kau, T; Amendola, A

    2011-07-01

    The risk of falls from height on a construction site increases under conditions which degrade workers' postural control. At elevation, workers depend heavily on sensory information from their feet to maintain balance. The study tested two hypotheses: "sensory enhancement"--sub-sensory (undetectable) random mechanical vibrations at the plantar surface of the feet can improve worker's balance at elevation; and "sensory suppression"--supra-sensory (detectable) random mechanical vibrations can have a degrading effect on balance in the same experimental settings. Six young (age 20-35) and six aging (age 45-60) construction workers were tested while standing in standard and semi-tandem postures on instrumented gel insoles. The insoles applied sub- or supra-sensory levels of random mechanical vibrations to the feet. The tests were conducted in a surround-screen virtual reality system, which simulated a narrow plank at elevation on a construction site. Upper body kinematics was assessed with a motion-measurement system. Postural stability effects were evaluated by conventional and statistical mechanics sway measures, as well as trunk angular displacement parameters. Analysis of variance did not confirm the "sensory enhancement" hypothesis, but provided evidence for the "sensory suppression" hypothesis. The supra-sensory vibration had a destabilizing effect, which was considerably stronger in the semi-tandem posture and affected most of the sway variables. Sensory suppression associated with elevated vibration levels on a construction site may increase the danger of losing balance. Construction workers at elevation, e.g., on a beam or narrow plank might be at increased risk of fall if they can detect vibrations under their feet. To reduce the possibility of losing balance, mechanical vibration to supporting structures used as walking/working surfaces should be minimized when performing construction tasks at elevation. Published by Elsevier Ltd.

  2. [Farmacological effect of retabolil on aldosterone level and arterial pressure in rats under the action of vibrations].

    Science.gov (United States)

    Obut, T A; Ovsiukova, M V; Egorova, S A; Érdynieva, T A; Dement'eva, T Iu; Obut, E T

    2014-01-01

    The experiments were performed on male rats, which were subjected to single and multiply repeated vibrations (low-frequency, horizontal, high-amplitude) analogous to the action of motor transport vibrations. It is established that the administration of retabolil produces a hypotensive effect and blocks the vibration-induced increase in the level of hypertensive hormone aldosterone. Under conditions of the multiply repeated action of vibrations, both effects were realized via micro-opioid receptors. In the case of a single action, these receptors were only involved in a hypotensive effect but not mediated in aldosterone suppression. Both these effects were absent in the control group of animals (not subjected to vibrations). Therefore, retabolil can be used as a hypotensive and aldosterone-blocking drug for vibration-induced hypertension in animals and, probably, in humans.

  3. Effects of ambient vibrations on heritage buildings: overview and wireless dynamic monitoring application

    International Nuclear Information System (INIS)

    Monti, G.; Quaranta, G.; Fumagalli, F.; Marano, G.C.; Rea, R.; Nazzaro, B.

    2015-01-01

    Growing awareness of the negative effects due to ambient vibrations caused by transportations infrastructures in Historical centres is attributable to the high vulnerability of heritage buildings as a consequence of deterioration phenomena and damages that reduced the structural capacity of such valuable constructions over the past centuries. As the mobility demand increases, several cities hosting heritage buildings are subjected to raising traffic loadings, so that constructions of new infrastructures is often required. Hence, assessing the effects of short-term vibrations due to construction activities or the consequences of the long-term vibrations caused by traffic is very important for the preservation of cultural heritage. An operative approach for evaluating the effects of ambient vibrations based on experimental measurements is a useful tool when a new infrastructure is being built, and can support strategic decisions for the elaboration of transportation plans at the urban level. Therefore, an overview is here presented of existing studies, guidelines and codes that provide pertinent information on this topic. Of special importance is the analysis of existing proposed thresholds, i.e. limit values that, if compiled with, damage due to ambient vibrations is not likely to occur. On the basis of such overview, the selection of threshold values for the Flavian Amphitheater is discussed, along with current efforts towards a wireless dynamic monitoring of its dynamic response.

  4. To the vibrational over wetting and liquefaction effects in moistured soils

    International Nuclear Information System (INIS)

    Karimov, F.H.; Oripov, G.O.; Saidov, R.M.; Tojibekov, M.

    2003-01-01

    There is a lot of evidence of the dynamical effects in soils when they become wetted or during or after the earthquakes or explosions. There are some quantitative estimates for the vibrational wetting and liquefaction of soils under consideration. For the models in the present research the moistured sands and weak soils like losses are accepted. The first model is focusing on soil fractures sliding down under the action of vibrations, tightening of a hard phase, squeezing water phase out and thus bringing to soil liquefaction. The second is based on soil fractures plunging at the action of vibrations into the aquatic background. This mechanism seems to be more effective for the high degree moistured soils. The third mechanism is based on capillary phenomena in moistured porous medium. When inertia forces are large enough the resultant force, consisting of sliding down gravity component and inertia forces, overcomes friction and fracture becomes unstable. Both vibrations amplitude and frequency are the stability controlling factors, playing an important role in the vibrational wetting and liquefaction effects through porous water phase squeezing out or capillary lifting phenomena leading to the wetting or liquefaction of the medium. (author)

  5. Effects of whole-body vibration training in patients with multiple sclerosis: A systematic review.

    Science.gov (United States)

    Castillo-Bueno, I; Ramos-Campo, D J; Rubio-Arias, J A

    2016-07-19

    Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system. MS is characterised by nerve demyelination that can alter nerve transmission and lead to such symptoms as fatigue, muscle weakness, and impaired motor function. There are 47 000 people with MS in Spain. Vibration training can be an effective and complementary alternative to traditional exercise to treat patients with MS. The aim of this study was to analyse the effectiveness of vibration training programmes in patients with MS. We searched 5 electronic databases (PubMed, SPORTDiscus, SciELO, Lilacs, IBECS, and ISI Web of Knowledge) in August 2015. By using a set of keywords, we found studies linking vibration training and MS and included randomised controlled trials that applied vibration training to patients with MS. Our search yielded 71 studies. Only 9 of them were included after removing duplicate studies and those which were not relevant according to our selection criteria. These studies obtained different outcomes. Some studies found improvements in muscle strength, functional capacity, coordination, resistance, balance, and some areas of MSSS-88. However, we identified limitations in some of these studies and there are still few publications on vibration training and multiple sclerosis to ensure training effectiveness. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Effect of angle on flow-induced vibrations of pinniped vibrissae.

    Directory of Open Access Journals (Sweden)

    Christin T Murphy

    Full Text Available Two types of vibrissal surface structures, undulated and smooth, exist among pinnipeds. Most Phocidae have vibrissae with undulated surfaces, while Otariidae, Odobenidae, and a few phocid species possess vibrissae with smooth surfaces. Variations in cross-sectional profile and orientation of the vibrissae also exist between pinniped species. These factors may influence the way that the vibrissae behave when exposed to water flow. This study investigated the effect that vibrissal surface structure and orientation have on flow-induced vibrations of pinniped vibrissae. Laser vibrometry was used to record vibrations along the whisker shaft from the undulated vibrissae of harbor seals (Phoca vitulina and northern elephant seals (Mirounga angustirostris and the smooth vibrissae of California sea lions (Zalophus californianus. Vibrations along the whisker shaft were measured in a flume tank, at three orientations (0°, 45°, 90° to the water flow. The results show that vibration frequency and velocity ranges were similar for both undulated and smooth vibrissae. Angle of orientation, rather than surface structure, had the greatest effect on flow-induced vibrations. Vibration velocity was up to 60 times higher when the wide, flat aspect of the whisker faced into the flow (90°, compared to when the thin edge faced into the flow (0°. Vibration frequency was also dependent on angle of orientation. Peak frequencies were measured up to 270 Hz and were highest at the 0° orientation for all whiskers. Furthermore, CT scanning was used to quantify the three-dimensional structure of pinniped vibrissae that may influence flow interactions. The CT data provide evidence that all vibrissae are flattened in cross-section to some extent and that differences exist in the orientation of this profile with respect to the major curvature of the hair shaft. These data support the hypothesis that a compressed cross-sectional profile may play a key role in reducing self

  7. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  8. The nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1992-03-01

    MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments

  9. Instabilities and nonequilibrium structures

    International Nuclear Information System (INIS)

    Tirapegui, E.; Villarroel, D.

    1987-01-01

    Physical systems can be studied both near to and far from equilibrium where instabilities appear. The behaviour in these two regions is reviewed in this book, from both the theoretical and application points of view. The influence of noise in these situations is an essential feature which cannot be ignored. It is therefore discussed using phenomenological and theoretical approaches for the numerous problems which still remain in the field. This volume should appeal to mathematicians and physicists interested in the areas of instability, bifurcation theory, dynamical systems, pattern formation, nonequilibrium structures and statistical mechanics. (Auth.)

  10. Radiometric and ultrasonic testing of vibrating roller compacting effects

    International Nuclear Information System (INIS)

    Prikryl, F.; Habarta, J.; Kovarikova, E.

    1977-01-01

    A hole was filled with two layers of concrete mixture. Each layer was compacted using a Dynapac CA 25 vibrating roller 10,000 kg in weight, operating with a frequency of 30 Hz. A concrete block thus produced had dimensions of 11.0x2.5 m and a height of 1.6 m. After the concrete block hardening (roughly 120 days) drill cores were bored and bulk density was determined using nondestructive methods. Bulk density determination of the concrete between the drill cores was conducted using a 137 Cs emitter of an activity of 89 GBq, a FHZ-88b Geiger-Mueller counter was used as the detector. The emitter and detector were placed to touch the bore wall and were lowered to different depths in 10 cm increments. 10 count rate values were measured in each depth. The measurement time was chosen such that the decay statistical error did not exceed 1;. Bulk density of the individual segments of the drill cores was determined using 60 Co of an activitBy of 55 Mq as the radiation source and a TESLA 20/100 GWl GM counter as the detector. The detector operating voltage was 1240 V. Ultrasonic measurements were conducted using the USME-5 instrument. The measured bulk density values show that the compacting of a concrete layer 80 cm in thickness using a vibrating roller is sufficiently efficient. Both nondestructive methods were well proven, the results show that bulk density values in different depths differ due to concrete moisture content. (J.P.)

  11. Study of the Vibration Effect on the Cutting Forces and Roughness of Slub Milling

    Science.gov (United States)

    Germa, S.; Estrems Amestoy, M.; Sánchez Reinoso, H. T.; Franco Chumillas, P.

    2009-11-01

    For the planning process of slab milling operations, the vibration of the tool is the main factor to be considered. Under vibration conditions, the effect of the small displacements of the cutting tool and the cutting forces on the chip thickness must be minimized in order to avoid undesirable consequences, such as the fast flank wear, superficial defects and roughness increase. In this work, a mathematical model is developed to take into account the combined effect of the cutting tool and workpiece oscillation, as well as the axial errors of different milling tool tips. As a result, the model estimates the variation of the cutting forces and the ideal surface roughness.

  12. Potential effects of whole-body vibration exercises on blood flow ...

    African Journals Online (AJOL)

    Feasible clinical strategies such as whole-body vibration exercise (WBVE) are being used without a clear understanding of its effects. The aim of the present study is to review the effects of the WBVE on blood flow kinetics and its feasibility in different populations. Material and Methods: The level of evidence (LE) of selected ...

  13. Effectiveness of new vibration delivery system on pain associated with injection of local anesthesia in children

    Directory of Open Access Journals (Sweden)

    Mangalampally Shilpapriya

    2015-01-01

    Full Text Available Aim: Pain is highly subjective and it is neurologically proven that stimulation of larger diameter fibers - e.g., using appropriate coldness, warmth, rubbing, pressure or vibration - can close the neural "gate" so that the central perception of itch and pain is reduced. This fact is based upon "gate control" theory of Melzack and Wall. The present study was carried out to investigate the effects of vibration stimuli on pain experienced during local anesthetic injections. Materials and Methods: Thirty patients aged 6-12 years old of both the genders with Frankel′s behavior rating scale as positive and definitely positive requiring bilateral local anesthesia injections for dental treatment were included in the split-mouth cross over design. Universal pain assessment tool was used to assess the pain with and without vibration during the administration of local anesthesia and the results obtained were tabulated and statistically analyzed. Results: Local anesthetic administration with vibration resulted in significantly less pain (P = 0.001 compared to the injections without the use of vibe. Conclusion: The results suggest that vibration can be used as an effective method to decrease pain during dental local anesthetic administration.

  14. Effectiveness of new vibration delivery system on pain associated with injection of local anesthesia in children.

    Science.gov (United States)

    Shilpapriya, Mangalampally; Jayanthi, Mungara; Reddy, Venumbaka Nilaya; Sakthivel, Rajendran; Selvaraju, Girija; Vijayakumar, Poornima

    2015-01-01

    Pain is highly subjective and it is neurologically proven that stimulation of larger diameter fibers - e.g., using appropriate coldness, warmth, rubbing, pressure or vibration - can close the neural "gate" so that the central perception of itch and pain is reduced. This fact is based upon "gate control" theory of Melzack and Wall. The present study was carried out to investigate the effects of vibration stimuli on pain experienced during local anesthetic injections. Thirty patients aged 6-12 years old of both the genders with Frankel's behavior rating scale as positive and definitely positive requiring bilateral local anesthesia injections for dental treatment were included in the split-mouth cross over design. Universal pain assessment tool was used to assess the pain with and without vibration during the administration of local anesthesia and the results obtained were tabulated and statistically analyzed. Local anesthetic administration with vibration resulted in significantly less pain (P = 0.001) compared to the injections without the use of vibe. The results suggest that vibration can be used as an effective method to decrease pain during dental local anesthetic administration.

  15. Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.

    Science.gov (United States)

    Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo

    2012-10-18

    Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.

  16. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  17. The effect of vibrationally excited nitrogen on the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    B. Jenkins

    1997-11-01

    Full Text Available The first five vibrationally excited states of molecular nitrogen have been included in the Sheffield University plasmasphere ionosphere model. Vibrationally excited molecular nitrogen reacts much more strongly with atomic oxygen ions than ground-state nitrogen; this means that more O+ ions are converted to NO+ ions, which in turn combine with the electrons to give reduced electron densities. Model calculations have been carried out to investigate the effect of including vibrationally excited molecular nitrogen on the low-latitude ionosphere. In contrast to mid-latitudes, a reduction in electron density is seen in all seasons during solar maximum, the greatest effect being at the location of the equatorial trough.

  18. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    Science.gov (United States)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.

    2018-01-01

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.

  19. Effect of electromagnetic vibration on the microstructure of direct chill cast Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Zuo, Y; Fu, X; Zhu, Q; Li, L; Wang, P; Cui, J

    2016-01-01

    An electromagnetic vibration was achieved by the combined application of an alternating magnetic field and a stationary magnetic field during direct chill (DC) casting process. The ingots with 200 mm in diameter were prepared under the influence of electromagnetic vibration. The effect of electromagnetic vibration on the microstructure of an Al-Zn-Mg-Cu alloy was studied. The results showed that electromagnetic vibration has a significant effect on the solidification behaviour, under the influence of electromagnetic vibration during DC casting process, the microstructure is significantly refined and the uniformity of microstructure is evidently improved. This paper introduces the DC casting technology with the application of electromagnetic vibration, presents these results and gives corresponding discussions. (paper)

  20. The effect of inclined soil layers on surface vibration from underground railways using a semi-analytical approach

    International Nuclear Information System (INIS)

    Jones, S; Hunt, H

    2009-01-01

    Ground vibration due to underground railways is a significant source of disturbance for people living or working near the subways. The numerical models used to predict vibration levels have inherent uncertainty which must be understood to give confidence in the predictions. A semi-analytical approach is developed herein to investigate the effect of soil layering on the surface vibration of a halfspace where both soil properties and layer inclination angles are varied. The study suggests that both material properties and inclination angle of the layers have significant effect (± 10dB) on the surface vibration response.

  1. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  2. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  3. Strouhal number effect on synchronized vibration range of a circular cylinder in cross flow

    International Nuclear Information System (INIS)

    Kawamura, T.; Nakao, T.; Hayashi, M.; Murayama, K.

    2001-01-01

    Synchronized vibrations were measured for a circular cylinder subjected to a water cross flow in the subcritical Reynolds numbers in order to compare the synchronized vibration range between the subcritical and supercritical regions and clarify the effect of the Strouhal number on it. A small peak vibration in the lift direction was found when the Karman vortex shedding frequency was about 1/5 of the cylinder natural frequency in only the subcritical region. The ratio of the Karman vortex frequency to the natural frequency where the self-excited vibration in the drag direction by the symmetrical vortices began was about 1/4 in the subcritical region, and increased to 0,32 at the Strouhal number of 0,29 in the supercritical region. The frequency ratio at the beginning of the lock-in vibration in the drag direction by the Karman vortex was about 1/2, and that in the lift direction decreased from 1 to about 0,8 with decreasing Strouhal number. (author)

  4. Free vibration of elastically supported thin cylinders including gyroscopic effects

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-10-29

    Full Text Available [ The equations D[R[ 747723 JSV 106:2 "Issue# MS 1560 VIBRATION OF THIN CYLINDERS 442 required for this procedure\\ including the gyroscopic terms\\ are included in Appendix A[ The displacement functions can then be written as follows] W"x# C0 cosh a0xa C1 sinh a0... xa C2 cos g1xa C3 sin g1xa epx:a0C4 cos qxa C5 sin qxa 1 e px:a0C6 cos qxa C7 sin qxa 1 "6a# V"x# A0C0 cosh a0xa A0C1 sinh a0xa A2C2 cos g1xa A2C3 sin g1xa epx:a$"A4C4 A5C5# cos qxa "A4C5 A5C4# sin qxa % e px:a$"A4C6 A5C7# cos...

  5. Effect and kinetic mechanism of ultrasonic vibration on solidification of 7050 aluminum alloy

    Directory of Open Access Journals (Sweden)

    Ripeng Jiang

    2014-07-01

    Full Text Available The work described in this paper dealt with the effect of ultrasonic vibration on the solidification of 7050 aluminum alloy. Two experiments were carried out through introducing ultrasound into the semi-continuous direct-chill (DC casting of aluminum alloy and into alloy solidifying in a crucible, respectively. Results show that ultrasonic vibration can refine grains in the whole cross-section of a billet in the first experiment and is able to increase the cooling rate within the temperature range from 625 °C to 590 °C in the other one. The mechanism of particle resonance caused by ultrasonic vibration was illustrated on the basis of theoretical analysis of the kinetics and energy conversion during the solidification. It is demonstrated that the kinetic energy of resonant particles are mainly from the latent heat energy of solidification, which can shorten the cooling time, inhibit the crystal growth and then lead to the grain refinement.

  6. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  7. On thermal vibration effects in diffusion model calculations of blocking dips

    International Nuclear Information System (INIS)

    Fuschini, E.; Ugozzoni, A.

    1983-01-01

    In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions

  8. Effect of loose spring skirt mounting position on vibration damping in a multi segment hanging cantilever

    International Nuclear Information System (INIS)

    Nazeer, M.M.; Khan, A.F.; Shah, R.H; Afzal, M.; Ahmed, N.

    2001-01-01

    The loose spring skirt clearance is the major factor effecting the damping and amplitude control of randomly excited vibrations in a vertically hanging cantilever. However, the spring's mounting position also has an important role to play. In this work, the results of computational model as well as that of experimental set-up for various spring mounting positions having optimum annular clearance between skirted member and the skirt are presented and their vibration damping response is analyzed. It is observed that lower is the mounting position, the better is the damping and its maximum value is attained when the bottom end of spring skirt and the hanging cantilever are mutually flushed. (author)

  9. Small and inconsistent effects of whole body vibration on athletic performance : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Lesinski, Melanie; Fernandez-del-Olmo, Miguel; Granacher, Urs

    We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 % acute effect on maximal voluntary

  10. Effect of Space Vehicle Structure Vibration on Control Moment Gyroscope Dynamics

    Science.gov (United States)

    Dobrinskaya, Tatiana

    2008-01-01

    Control Moment Gyroscopes (CMGs) are used for non-propulsive attitude control of satellites and space stations, including the International Space Station (ISS). CMGs could be essential for future long duration space missions due to the fact that they help to save propellant. CMGs were successfully tested on the ground for many years, and have been successfully used on satellites. However, operations have shown that the CMG service life on the ISS is significantly shorter than predicted. Since the dynamic environment of the ISS differs greatly from the nominal environment of satellites, it was important to analyze how operations specific to the station (dockings and undockings, huge solar array motion, crew exercising, robotic operations, etc) can affect the CMG performance. This task became even more important since the first CMG failure onboard the ISS. The CMG failure resulted in the limitation of the attitude control capabilities, more propellant consumption, and additional operational issues. Therefore, the goal of this work was to find out how the vibrations of a space vehicle structure, caused by a variety of onboard operations, can affect the CMG dynamics and performance. The equations of CMG motion were derived and analyzed for the case when the gyro foundation can vibrate in any direction. The analysis was performed for unbalanced CMG gimbals to match the CMG configuration on ISS. The analysis showed that vehicle structure vibrations can amplify and significantly change the CMG motion if the gyro gimbals are unbalanced in flight. The resonance frequencies were found. It was shown that the resonance effect depends on the magnitude of gimbal imbalance, on the direction of a structure vibration, and on gimbal bearing friction. Computer modeling results of CMG dynamics affected by the external vibration are presented. The results can explain some of the CMG vibration telemetry observed on ISS. This work shows that balancing the CMG gimbals decreases the effect

  11. The vibration of a layered rotating planet and Bryan’s effect

    CSIR Research Space (South Africa)

    Shatalov, MY

    2011-12-01

    Full Text Available As among other seismological observations, it is important to be able to predict the location of the vibrating pattern of an earthquake. In this chapter, the authors take the first tentative steps towards including "Bryan’s effect" in a mathematical...

  12. Effects of whole-body vibration on muscle strength and power of elderly: A systematic review

    Directory of Open Access Journals (Sweden)

    Monique Opuszcka Campos

    2014-02-01

    Full Text Available The aim of this systematic review was to summarize available scientific evidence on the utilization of whole body vibration as an alternative method to promote effective modifications on muscle strength and power in the aging population.  Scientific studies were retrieved from the following databases: Medline, Scielo, Lillacs, Cochrane Library, PEDro and Science Citation Index. The PEDro scale was used to assess the quality of the included studies, while content went through a critical analysis. From the 91 studies retrieved, 75 were excluded and 16 attended the selection criteria. From the16, the majority (68.8% presented from moderate to high methodological quality. Whole-body vibration associated to both isometric and dynamic exercises seemed to constitute an alternative for therapeutic intervention to improve muscular strength and power of healthy elderly. However, due to the characteristics of the designs of the studies reviewed and the threats to their internal validity (i.e., the absence of the control condition to the vibratory stimulus it was challenging to establish the additional effects of the whole-body vibration on the target population. Divergent findings were found for the whole-body vibration effect on muscular power. It is still necessary to conduct randomized control trials to establish the real effectiveness of this kind of intervention.

  13. Effect of whole-body vibration on muscle strength, spasticity, and ...

    African Journals Online (AJOL)

    CP) and is characterized by spasticity and muscle weakness of both lower limbs resulting in decreased walking ability. The purpose of this study was to evaluate the effect of whole body vibration (WBV) training on muscle strength, spasticity, and ...

  14. Effects of heat exchange and nonlinearity on acoustic streaming in a vibrating cylindrical cavity.

    Science.gov (United States)

    Gubaidullin, Amir A; Yakovenko, Anna V

    2015-06-01

    Acoustic streaming in a gas filled cylindrical cavity subjected to the vibration effect is investigated numerically. Both thermally insulated walls and constant temperature walls are considered. The range of vibration frequencies from low frequencies, at which the process can be described by an approximate analytical solution, to high frequencies giving rise to strong nonlinear effects is studied. Frequencies lower than the resonant one are chosen, and nonlinearity is achieved due to the large amplitude. The problem is solved in an axisymmetric statement. The dependence of acoustic streaming in narrow channels at vibration frequencies lower than the resonant one on the type of thermal boundary conditions is shown. The streaming vortices' directions of rotation in the case of constant temperature walls are found to be opposite to those in the case of thermally insulated walls. Different nonlinear effects, which increase with the frequency of vibration, are obtained. Nonlinear effects manifesting as the nonuniformity of average temperature, pressure, and density are in turn found to be influencing the streaming velocity and streaming structure.

  15. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  16. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  17. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)

    2016-03-15

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  18. Definition of Nonequilibrium Entropy of General Systems

    OpenAIRE

    Mei, Xiaochun

    1999-01-01

    The definition of nonequilibrium entropy is provided for the general nonequilibrium processes by connecting thermodynamics with statistical physics, and the principle of entropy increment in the nonequilibrium processes is also proved in the paper. The result shows that the definition of nonequilibrium entropy is not unique.

  19. Nonequilibrium recombination after a curved shock wave

    Science.gov (United States)

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  20. Effect of warm footbath with vibration on arteriovenous fistula puncture-related pain in hemodialysis patients

    OpenAIRE

    Zahra Abbas Ali Madadi; Jalil Azimian; Farzaneh Falahatpishe; Mahmoud Alipour Heidari

    2017-01-01

    Background: Pain and stress of hemodialysis are experienced by more than 50% of patients who are suffering from renal disease; hence decreasing a part of these adverse effects can be effective on individual’s long term coping with hemodialysis. The current study was done to determine the effect of warm footbath with vibration on arteriovenous fistula puncture-related pain in hemodialysis patients. Methods: This clinical trial was conducted on 31 hemodialysis patients in 2014. The patients ...

  1. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures

    Science.gov (United States)

    Fang, Xue-Qian; Zhu, Chang-Song; Liu, Jin-Xi; Liu, Xiang-Lin

    2018-01-01

    Combining Goldenveizer-Novozhilov shell theory, thin plate theory and electro-elastic surface theory, the size-dependent vibration of nano-sized piezoelectric double-shell structures under simply supported boundary condition is presented, and the surface energy effect on the natural frequencies is discussed. The displacement components of the cylindrical nano-shells and annular nano-plates are expanded as the superposition of standard Fourier series based on Hamilton's principle. The total stresses with consideration of surface energy effect are derived, and the total energy function is obtained by using Rayleigh-Ritz energy method. The free vibration equation is solved, and the natural frequency is analyzed. In numerical examples, it is found that the surface elastic constant, piezoelectric constant and surface residual stress show different effects on the natural frequencies. The effect of surface piezoelectric constant is the maximum. The effect of dimensions of the double-shell under different surface material properties is also examined.

  2. Effects of vibration training on force production in female basketball players.

    Science.gov (United States)

    Fernandez-Rio, Javier; Terrados, Nicolas; Fernandez-Garcia, Benjamin; Suman, Oscar E

    2010-05-01

    The goal of this research project was to investigate the long-term effects of whole-body vibration (WBV) training on force production. Thirty-one female basketball players were randomly distributed in an experimental group: VG (vibration) and a control group: CG (no vibration). Both groups participated in the same training program; however, the experimental group (VG) performed a set of exercises on a vibration platform (Power Plate) at 30- to 35-Hz frequency and 4 mm amplitude, whereas the CG performed the same exercises at 0 Hz. Muscle performance of the legs was tested on a contact-time platform (Ergojump, Finland) through several tests: squat jump (SJ), countermovement jump (CMJ), and 15-second maximal performance jump; squat leg power (knee extension) was also evaluated using an Ergopower machine (Bosco, Italy). After 14 weeks, there was a significant increase (p training has no additive or discernible effect on the strength development of female basketball players after several weeks of use, suggesting that the application of this technology has no advantages over traditional strength training methods.

  3. Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.

    Science.gov (United States)

    Yang, Feng; Munoz, Jose; Han, Long-Zhu; Yang, Fei

    2017-05-24

    This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of oxygen atoms dissociated by non-equilibrium plasma on flame of methane oxygen and argon pre-mixture gas

    Science.gov (United States)

    Akashi, Haruaki; Yoshinaga, Tomokazu; Sasaki, Koichi

    2014-10-01

    For more efficient way of combustion, plasma-assisted combustion has been investigated by many researchers. But it is very difficult to clarify the effect of plasma even on the flame of methane. Because there are many complex chemical reactions in combustion system. Sasaki et al. has reported that the flame length of methane and air premixed burner shortened by irradiating microwave power. They also measured emission from Second Positive Band System of nitrogen during the irradiation. The emission indicates existence of high energy electrons which are accelerated by the microwave. The high energy electrons also dissociate oxygen molecules easily and oxygen atom would have some effects on the flame. But the dissociation ratio of oxygen molecules by the non-equilibrium plasma is significantly low, compared to that in the combustion reaction. To clarify the effect of dissociated oxygen atoms on the flame, dependence of dissociation ratio of oxygen on the flame has been examined using CHEMKIN. It is found that in the case of low dissociation ratio of 10-6, the ignition of the flame becomes slightly earlier. It is also found that in the case of high dissociation ratio of 10-3, the ignition time becomes significantly earlier by almost half. This work was supported by KAKENHI (22340170).

  5. Spin-polarization and spin-dependent logic gates in a double quantum ring based on Rashba spin-orbit effect: Non-equilibrium Green's function approach

    International Nuclear Information System (INIS)

    Eslami, Leila; Esmaeilzadeh, Mahdi

    2014-01-01

    Spin-dependent electron transport in an open double quantum ring, when each ring is made up of four quantum dots and threaded by a magnetic flux, is studied. Two independent and tunable gate voltages are applied to induce Rashba spin-orbit effect in the quantum rings. Using non-equilibrium Green's function formalism, we study the effects of electron-electron interaction on spin-dependent electron transport and show that although the electron-electron interaction induces an energy gap, it has no considerable effect when the bias voltage is sufficiently high. We also show that the double quantum ring can operate as a spin-filter for both spin up and spin down electrons. The spin-polarization of transmitted electrons can be tuned from −1 (pure spin-down current) to +1 (pure spin-up current) by changing the magnetic flux and/or the gates voltage. Also, the double quantum ring can act as AND and NOR gates when the system parameters such as Rashba coefficient are properly adjusted

  6. Density-functional method for nonequilibrium electron transport

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Mozos, J.L.; Ordejon, P.

    2002-01-01

    the contact and the electrodes on the same footing. The effect of the finite bias (including self-consistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. We relate the nonequilibrium Green's function expressions to the more transparent scheme...... wires connected to aluminum electrodes with extended or finite cross section, (ii) single atom gold wires, and finally (iii) large carbon nanotube systems with point defects....

  7. Nonequilibrium Quantum Phase Transition in a Hybrid Atom-Optomechanical System

    Science.gov (United States)

    Mann, Niklas; Bakhtiari, M. Reza; Pelster, Axel; Thorwart, Michael

    2018-02-01

    We consider a hybrid quantum many-body system formed by a vibrational mode of a nanomembrane, which interacts optomechanically with light in a cavity, and an ultracold atom gas in the optical lattice of the out-coupled light. The adiabatic elimination of the light field yields an effective Hamiltonian which reveals a competition between the force localizing the atoms and the membrane displacement. At a critical atom-membrane interaction, we find a nonequilibrium quantum phase transition from a localized symmetric state of the atom cloud to a shifted symmetry-broken state, the energy of the lowest collective excitation vanishes, and a strong atom-membrane entanglement arises. The effect occurs when the atoms and the membrane are nonresonantly coupled.

  8. The Influence of the Optical Phonons on the Non-equilibrium Spin Current in the Presence of Spin-Orbit Couplings

    Science.gov (United States)

    Hasanirokh, K.; Phirouznia, A.; Majidi, R.

    2016-02-01

    The influence of the electron coupling with non-polarized optical phonons on magnetoelectric effects of a two-dimensional electron gas system has been investigated in the presence of the Rashba and Dresselhaus spin-orbit couplings. Numerical calculations have been performed in the non-equilibrium regime. In the previous studies in this field, it has been shown that the Rashba and Dresselhaus couplings cannot generate non-equilibrium spin current and the spin current vanishes identically in the absence of other relaxation mechanisms such as lattice vibrations. However, in the current study, based on a semiclassical approach, it was demonstrated that in the presence of electron-phonon coupling, the spin current and other magnetoelectric quantities have been modulated by the strength of the spin-orbit interactions.

  9. Nonequilibrium constitutive models for RELAP5/MOD2

    International Nuclear Information System (INIS)

    Lin, J.C.; Trapp, J.A.; Riemke, R.A.; Ransom, V.H.

    1983-01-01

    RELAP5/MOD2 is a new version of RELAP5 containing improved modeling features that provide a generic pressurized-water transient simulation capability. In particular, the nonequilibrium modeling capability has been generalized to include conditions that occur in operational transients including repressurization and emergency-feed-water injection with loss-of-coolant accidents. The improvements include addition of a second energy equation to the hydrodynamic model, addition of nonequilibrium heat-transfer models, and the associated nonequilibrium vapor-generation models. The objective of this paper is to describe these models and to report the developmental assessment results obtained from similar of several separate effects experiments. The assessment shows that RELAP5 calculated results are in good agreement with data and the nonequilibrium phenomena are properly modeled

  10. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation

    Science.gov (United States)

    Yang, W. W.; Zhao, T. S.

    A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.

  11. Performance and Design Considerations of a Novel Dual-Material Gate Carbon Nanotube Field-Effect Transistors: Nonequilibrium Green's Function Approach

    Science.gov (United States)

    Arefinia, Zahra; Orouji, Ali A.

    2009-02-01

    The concept of dual-material gate (DMG) is applied to the carbon nanotube field-effect transistor (CNTFET) with doped source and drain extensions, and the features exhibited by the resulting new structure, i.e., the DMG-CNTFET structure, have been examined for the first time by developing a two-dimensional (2D) full quantum simulation. The simulations have been done by the self-consistent solution of 2D Poisson-Schrödinger equations, within the nonequilibrium Green's function (NEGF) formalism. The results show DMG-CNTFET decreases significantly leakage current and drain conductance and increases on-off current ratio and voltage gain as compared to the single material gate counterparts CNTFET. It is seen that short channel effects in this structure are suppressed because of the perceivable step in the surface potential profile, which screens the drain potential. Moreover, these unique features can be controlled by engineering the workfunction and length of the gate metals. Therefore, this work provides an incentive for further experimental exploration.

  12. Large scale vibration tests on pile-group effects using blast-induced ground motion

    International Nuclear Information System (INIS)

    Katsuichirou Hijikata; Hideo Tanaka; Takayuki Hashimoto; Kazushige Fujiwara; Yuji Miyamoto; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site. Ground motions induced by large-scale blasting operations were used as excitation forces for vibration tests. The main objective of this research is to investigate the dynamic behavior of pile-supported structures, in particular, pile-group effects. Two test structures were constructed in an excavated 4 m deep pit. Their test-structures were exactly the same. One structure had 25 steel piles and the other had 4 piles. The test pit was backfilled with sand of appropriate grain size distributions to obtain good compaction, especially between the 25 piles. Accelerations were measured at the structures, in the test pit and in the adjacent free field, and pile strains were measured. Dynamic modal tests of the pile-supported structures and PS measurements of the test pit were performed before and after the vibration tests to detect changes in the natural frequencies of the soil-pile-structure systems and the soil stiffness. The vibration tests were performed six times with different levels of input motions. The maximum horizontal acceleration recorded at the adjacent ground surface varied from 57 cm/s 2 to 1,683 cm/s 2 according to the distances between the test site and the blast areas. (authors)

  13. Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyeong Min; Park, Ke Un [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2013-10-15

    Micro-speaker diaphragms play an important role in generating desired sound responses, and are designed to have thin membrane shapes for flexibility in the axial direction. The micro-speaker diaphragms are formed from thin polymer film through the thermoforming process, in which local thickness reductions occur due to strain localization. This thickness reduction results in a change in vibration characteristics of the diaphragm and different sound responses from that of the original design. In this study, the effect of this thickness change in the diaphragm on its vibration characteristics is numerically investigated by coupling thermoforming simulation, structural analysis and modal analysis. Thus, the thickness change in the diaphragm is calculated from the thermoforming simulation, and reflected in the further structural and modal analyses in order to estimate the relevant stiffness and vibration modes. Comparing these simulation results with those from a diaphragm with the uniform thickness, it is found that a local thickness reduction results in the stiffness reduction and the relevant change in the natural frequencies and the corresponding vibration modes.

  14. Numerical investigation on vibration characteristics of a micro-speaker diaphragm considering thermoforming effects

    International Nuclear Information System (INIS)

    Kim, Kyeong Min; Park, Ke Un

    2013-01-01

    Micro-speaker diaphragms play an important role in generating desired sound responses, and are designed to have thin membrane shapes for flexibility in the axial direction. The micro-speaker diaphragms are formed from thin polymer film through the thermoforming process, in which local thickness reductions occur due to strain localization. This thickness reduction results in a change in vibration characteristics of the diaphragm and different sound responses from that of the original design. In this study, the effect of this thickness change in the diaphragm on its vibration characteristics is numerically investigated by coupling thermoforming simulation, structural analysis and modal analysis. Thus, the thickness change in the diaphragm is calculated from the thermoforming simulation, and reflected in the further structural and modal analyses in order to estimate the relevant stiffness and vibration modes. Comparing these simulation results with those from a diaphragm with the uniform thickness, it is found that a local thickness reduction results in the stiffness reduction and the relevant change in the natural frequencies and the corresponding vibration modes.

  15. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    International Nuclear Information System (INIS)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH 3 I → CH 3 + IBr (ΔH 0 0 = 13 kcal/mole) and Br + CF 3 I → CF 3 + IBr (ΔH 0 0 = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF 3 I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF 3 I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF 3 I

  16. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Daniel Collado-Mateo

    2015-01-01

    Full Text Available Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials.

  17. Effects of reagent translational and vibrational energy on the dynamics of endothermic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Krajnovich, D.; Zhang, Z.; Huisken, F.; Shen, Y.R.; Lee, Y.T.

    1981-07-01

    The endothermic reactions Br + CH/sub 3/I ..-->.. CH/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 13 kcal/mole) and Br + CF/sub 3/I ..-->.. CF/sub 3/ + IBr (..delta..H/sub 0//sup 0/ = 11 kcal/mole) have been studied by the crossed molecular beams method. Detailed center-of-mass contour maps of the IBr product flux as a function of recoil velocity and scattering angle are derived. For both systems it is found that the IBr product is sharply backward scattered with respect to the incident Br dirction, and that most of the available energy goes into product translation. Vibrational enhancement of the Br + CF/sub 3/I reaction was investigated by using the infrared multiphoton absorption process to prepare highly vibrationally excited CF/sub 3/I. At a collision energy of 31 kcal/mole (several times the barrier height), reagent vibrational energy appears to be less effective than an equivalent amount of (additional) translational energy in promoting reaction. More forward scattered IBr is produced in reactions of Br with vibrationally hot CF/sub 3/I.

  18. The Effect of a Vibration Absorber on the Damping Properties of Alpine Skis

    Directory of Open Access Journals (Sweden)

    Stefan Schwanitz

    2018-02-01

    Full Text Available Coupled bending-torsion vibrations at the shovel are a severe problem when running an alpine ski at high velocities on hard or icy slopes. Thus, a major goal for ski manufacturers is to dampen vibrations through a proper multi-material design and/or additional absorbers. The aim of this study was to examine the effectiveness of a particular vibration absorber on a commercial slalom ski through a series of laboratory tests as well as a subjective field evaluation. Therefore, two identical pairs of ski were used and the absorber was deactivated on one pair. Laboratory tests revealed reductions of 5% to 49% of bending vibrations on skis with activated absorber. Subjective evaluation by 6 subjects suggested minor differences in the mean of the evaluated criteria turnablity, edge grip, steering behavior and stability towards a better performance of the skis with activated absorber. Subjects were able to identify the absorber mode with a success rate of 61.1%.

  19. Effect of magneto rheological damper on tool vibration during hard turning

    Science.gov (United States)

    Paul, P. Sam; Varadarajan, A. S.

    2012-12-01

    Recently, the concept of hard turning has gained considerable attention in metal cutting as it can apparently replace the traditional process cycle of turning, heat treating, and finish grinding for assembly of hard wear resistant steel parts. The present investigation aims at developing a magneto rheological (MR) fluid damper for suppressing tool vibration and promoting better cutting performance during hard turning. The magneto rheological Fluid acts as a viscoelastic spring with non-linear vibration characteristics that are controlled by the composition of the magneto rheological fluid, the shape of the plunger and the electric parameters of the magnetizing field. Cutting experiments were conducted to arrive at a set of electrical, compositional and shape parameters that can suppress tool vibration and promote better cutting performance during turning of AISI 4340 steel of 46 HRC with minimal fluid application using hard metal insert with sculptured rake face. It was observed that the use of MR fluid damper reduces tool vibration and improves the cutting performance effectively. Also commercialization of this idea holds promise to the metal cutting industry.

  20. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  1. Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.

    Science.gov (United States)

    Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang

    2012-07-11

    From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.

  2. Effect of vibration during fatiguing resistance exercise on subsequent muscle activity during maximal voluntary isometric contractions.

    Science.gov (United States)

    McBride, Jeffrey M; Porcari, John P; Scheunke, Mark D

    2004-11-01

    This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.

  3. Vibration sensing in flexible structures using a distributed-effect modal domain optical fiber sensor

    Science.gov (United States)

    Reichard, Karl M.; Lindner, Douglas K.; Claus, Richard O.

    1991-01-01

    Modal domain optical fiber sensors have recently been employed in the implementation of system identification algorithms and the closed-loop control of vibrations in flexible structures. The mathematical model of the modal domain optical fiber sensor used in these applications, however, only accounted for the effects of strain in the direction of the fiber's longitudinal axis. In this paper, we extend this model to include the effects of arbitrary stress. Using this sensor model, we characterize the sensor's sensitivity and dynamic range.

  4. Nonequilibrium Green's function method for quantum thermal transport

    Science.gov (United States)

    Wang, Jian-Sheng; Agarwalla, Bijay Kumar; Li, Huanan; Thingna, Juzar

    2014-12-01

    This review deals with the nonequilibrium Green's function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

  5. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method

    Science.gov (United States)

    Panesi, M.; Munafò, A.; Magin, T. E.; Jaffe, R. L.

    2014-07-01

    A rovibrational collisional model is developed to study the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow. The reaction rate coefficients are obtained from the ab initio database of the NASA Ames Research Center. The master equation is coupled with a one-dimensional flow solver to study the nonequilibrium phenomena encountered in the gas during a hyperbolic reentry into Earth's atmosphere. The analysis of the populations of the rovibrational levels demonstrates how rotational and vibrational relaxation proceed at the same rate. This contrasts with the common misconception that translational and rotational relaxation occur concurrently. A significant part of the relaxation process occurs in non-quasi-steady-state conditions. Exchange processes are found to have a significant impact on the relaxation of the gas, while predissociation has a negligible effect. The results obtained by means of the full rovibrational collisional model are used to assess the validity of reduced order models (vibrational collisional and multitemperature) which are based on the same kinetic database. It is found that thermalization and dissociation are drastically overestimated by the reduced order models. The reasons of the failure differ in the two cases. In the vibrational collisional model the overestimation of the dissociation is a consequence of the assumption of equilibrium between the rotational energy and the translational energy. The multitemperature model fails to predict the correct thermochemical relaxation due to the failure of the quasi-steady-state assumption, used to derive the phenomenological rate coefficient for dissociation.

  6. Assessment of the effects of noise and vibration from offshore wind farms on marine wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Vella, G; Rushforth, I; Mason, E; Hough, A; England, R; Styles, P; Holt, T; Thorne, P

    2001-07-01

    This study involved a review of relevant studies and information on the effects of noise and vibration on marine wildlife from the construction and operation of offshore wind farms, and the identification of gaps and uncertainties in existing knowledge, recommendations for further studies to fill the gaps in knowledge, and the preparation of an inventory of planned and ongoing studies relating to the effects of offshore wind farms. The UK government's commitment to renewable energy, and the lifecycle of an offshore wind farm and potential locations are discussed. The mechanisms of noise propagation, physical noise and vibration, the use of sound by marine species such as whales and seals, the response of marine organisms to anthropogenic noise, and the colonisation of artificial reefs are examined. The behavioural response of seals and whales, the effects on fish population dynamics, and the need for further monitoring are considered.

  7. Assessment of the effects of noise and vibration from offshore wind farms on marine wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Vella, G.; Rushforth, I.; Mason, E.; Hough, A.; England, R.; Styles, P.; Holt, T.; Thorne, P.

    2001-07-01

    This study involved a review of relevant studies and information on the effects of noise and vibration on marine wildlife from the construction and operation of offshore wind farms, and the identification of gaps and uncertainties in existing knowledge, recommendations for further studies to fill the gaps in knowledge, and the preparation of an inventory of planned and ongoing studies relating to the effects of offshore wind farms. The UK government's commitment to renewable energy, and the lifecycle of an offshore wind farm and potential locations are discussed. The mechanisms of noise propagation, physical noise and vibration, the use of sound by marine species such as whales and seals, the response of marine organisms to anthropogenic noise, and the colonisation of artificial reefs are examined. The behavioural response of seals and whales, the effects on fish population dynamics, and the need for further monitoring are considered.

  8. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  9. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  10. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  11. Effects of surface relaxation and reconstruction on the vibration characteristics of nanobeams

    International Nuclear Information System (INIS)

    Zhang, Wen-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang; Yang, Bin

    2016-01-01

    Surface effects on the free vibration characteristics of nanobeams are investigated by a modified continuum model. In this paper, the relationship between the parameters of the modified continuum model of surface effects including surface elasticity, surface density, and residual surface stresses, and the parameters of the atomistic lattice model such as surface relaxation and reconstruction in nanobeams is characterized by an atomistic lattice model. The surface effects are incorporated into nanobeams to develop a modified continuum model depicting the free vibrational behavior of nanobeams. The model is validated with the experimental data of an effective size-dependent Young’s modulus and the previous theoretical results. The results demonstrate that both surface elasticity and surface density vary exponentially with surface layer thickness. Therefore, surface elasticity and density can be affected by surface relaxation and residual surface stresses can be induced by surface reconstruction. The natural frequencies of doubly clamped nanobeams can be affected by the dimensions of the nanobeams, surface layer thickness, and residual surface stress. This work may be helpful for understanding surface effects and their influence on the vibrational behavior of nanobeams. (paper)

  12. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  13. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  14. Effect of Vibration on Bacterial Growth and Antibiotic Resistance

    Science.gov (United States)

    Juergensmeyer, Elizabeth A.; Juergensmeyer, Margaret A.

    2004-01-01

    The purpose of this research grant was to provide a fundamental, systematic investigation of the effects of oscillatory acceleration on bacterial proliferation and their responses to antibiotics in a liquid medium.

  15. Study on the separation effect of high-speed ultrasonic vibration cutting.

    Science.gov (United States)

    Zhang, Xiangyu; Sui, He; Zhang, Deyuan; Jiang, Xinggang

    2018-07-01

    High-speed ultrasonic vibration cutting (HUVC) has been proven to be significantly effective when turning Ti-6Al-4V alloy in recent researches. Despite of breaking through the cutting speed restriction of the ultrasonic vibration cutting (UVC) method, HUVC can also achieve the reduction of cutting force and the improvements in surface quality and cutting efficiency in the high-speed machining field. These benefits all result from the separation effect that occurs during the HUVC process. Despite the fact that the influences of vibration and cutting parameters have been discussed in previous researches, the separation analysis of HUVC should be conducted in detail in real cutting situations, and the tool geometry parameters should also be considered. In this paper, three situations are investigated in details: (1) cutting without negative transient clearance angle and without tool wear, (2) cutting with negative transient clearance angle and without tool wear, and (3) cutting with tool wear. And then, complete separation state, partial separation state and continuous cutting state are deduced according to real cutting processes. All the analysis about the above situations demonstrate that the tool-workpiece separation will take place only if appropriate cutting parameters, vibration parameters, and tool geometry parameters are set up. The best separation effect was obtained with a low feedrate and a phase shift approaching 180 degrees. Moreover, flank face interference resulted from the negative transient clearance angle and tool wear contributes to an improved separation effect that makes the workpiece and tool separate even at zero phase shift. Finally, axial and radial transient cutting force are firstly obtained to verify the separation effect of HUVC, and the cutting chips are collected to weigh the influence of flank face interference. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Characterizing Chemical Similarity with Vibrational Spectroscopy: New Insights into the Substituent Effects in Monosubstituted Benzenes.

    Science.gov (United States)

    Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi

    2017-10-26

    A novel approach is presented to assess chemical similarity based the local vibrational mode analysis developed by Konkoli and Cremer. The local mode frequency shifts are introduced as similarity descriptors that are sensitive to any electronic structure change. In this work, 59 different monosubstituted benzenes are compared. For a subset of 43 compounds, for which experimental data was available, the ortho-/para- and meta-directing effect in electrophilic aromatic substitution reactions could be correctly reproduced, proving the robustness of the new similarity index. For the remaining 16 compounds, the directing effect was predicted. The new approach is broadly applicable to all compounds for which either experimental or calculated vibrational frequency information is available.

  17. The effect of axial loads on free vibration of symmetric frame structures using continuous system method

    Directory of Open Access Journals (Sweden)

    Elham Ghandi

    2016-09-01

    Full Text Available The free vibration of frame structures has been usually studied in literature without considering the effect of axial loads. In this paper, the continuous system method is employed to investigate this effect on the free flexural and torsional vibration of two and three dimensional symmetric frames. In the continuous system method, in approximate analysis of buildings, commonly, the structure is replaced by an equivalent beam which matches the dominant characteristics of the structure. Accordingly, the natural frequencies of the symmetric frame structures are obtained through solving the governing differential equation of the equivalent beam whose stiffness and mass are supposed to be uniformly distributed along the length. The corresponding axial load applied to the replaced beam is calculated based on the total weight and the number of stories of the building. A numerical example is presented to show the simplicity and efficiency of the proposed solution.

  18. Free Vibrations of a Cantilevered SWCNT with Distributed Mass in the Presence of Nonlocal Effect

    Directory of Open Access Journals (Sweden)

    M. A. De Rosa

    2015-01-01

    Full Text Available The Hamilton principle is applied to deduce the free vibration frequencies of a cantilever single-walled carbon nanotube (SWCNT in the presence of an added mass, which can be distributed along an arbitrary part of the span. The nonlocal elasticity theory by Eringen has been employed, in order to take into account the nanoscale effects. An exact formulation leads to the equations of motion, which can be solved to give the frequencies and the corresponding vibration modes. Moreover, two approximate semianalytical methods are also illustrated, which can provide quick parametric relationships. From a more practical point of view, the problem of detecting the mass of the attached particle has been solved by calculating the relative frequency shift due to the presence of the added mass: from it, the mass value can be easily deduced. The paper ends with some numerical examples, in which the nonlocal effects are thoroughly investigated.

  19. Picosecond dissociation of amyloid fibrils with infrared laser: A nonequilibrium simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Viet, Man; Roland, Christopher, E-mail: cmroland@ncsu.edu; Sagui, Celeste, E-mail: sagui@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam)

    2015-10-21

    Recently, mid-infrared free-electron laser technology has been developed to dissociate amyloid fibrils. Here, we present a theoretical framework for this type of experiment based on laser-induced nonequilibrium all-atom molecular dynamics simulations. We show that the fibril is destroyed due to the strong resonance between its amide I vibrational modes and the laser field. The effects of laser irradiation are determined by a balance between fibril formation and dissociation. While the overall rearrangements of the fibril finish over short time scales, the interaction between the peptides and the solvent continues over much longer times indicating that the waters play an important role in the dissociation process. Our results thus provide new insights into amyloid fibril dissociation by laser techniques and open up new venues to investigate the complex phenomena associated with amyloidogenesis.

  20. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  1. Effect of whole-body vibration on bone properties in aging mice.

    Science.gov (United States)

    Wenger, Karl H; Freeman, James D; Fulzele, Sadanand; Immel, David M; Powell, Brian D; Molitor, Patrick; Chao, Yuh J; Gao, Hong-Sheng; Elsalanty, Mohammed; Hamrick, Mark W; Isales, Carlos M; Yu, Jack C

    2010-10-01

    Recent studies suggest that whole-body vibration (WBV) can improve measures of bone health for certain clinical conditions and ages. In the elderly, there also is particular interest in assessing the ability of physical interventions such as WBV to improve coordination, strength, and movement speed, which help prevent falls and fractures and maintain ambulation for independent living. The current study evaluated the efficacy of WBV in an aging mouse model. Two levels of vibration--0.5 and 1.5g--were applied at 32Hz to CB57BL/6 male mice (n=9 each) beginning at age 18 months and continuing for 12 weeks, 30 min/day, in a novel pivoting vibration device. Previous reports indicate that bone parameters in these mice begin to decrease substantially at 18 months, equivalent to mid-fifties for humans. Micro-computed tomography (micro-CT) and biomechanical assessments were made in the femur, radius, and lumbar vertebra to determine the effect of these WBV magnitudes and durations in the aging model. Sera also were collected for analysis of bone formation and breakdown markers. Mineralizing surface and cell counts were determined histologically. Bone volume in four regions of the femur did not change significantly, but there was a consistent shift toward higher mean density in the bone density spectrum (BDS), with the two vibration levels producing similar results. This new parameter represents an integral of the conventional density histogram. The amount of high density bone statistically improved in the head, neck, and diaphysis. Biomechanically, there was a trend toward greater stiffness in the 1.5 g group (p=0.139 vs. controls in the radius), and no change in strength. In the lumbar spine, no differences were seen due to vibration. Both vibration groups significantly reduced pyridinoline crosslinks, a collagen breakdown marker. They also significantly increased dynamic mineralization, MS/BS. Furthermore, osteoclasts were most numerous in the 1.5 g group (p≤ 0

  2. Influence of vibration on structure rheological properties of a highly concentrated suspension

    Science.gov (United States)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  3. The Effect of Friction on the Nonlinear Vibration of the Cracked One-Stage Power Transmission

    Directory of Open Access Journals (Sweden)

    M. Rezaee

    2016-01-01

    Full Text Available : The gear systems are widely used in industry to transmit the power or change the direction of the torque. Due to the extensive usage of the gears, the detailed designing and the subsequent maintenance of these systems are more and more evident. System recognition can be achieved through modeling the system, investigating the system behavior, and comparing the results obtained through the model with the actual system behavior. Up to now, the effect of dry friction has not been taken into account in nonlinear vibration analysis and modeling of a cracked one-stage gear power transmission system. In this paper, the nonlinear vibration of a pair of cracked spur-gear system in presence of dry friction, static transmission error, clearance and time-variant mesh stiffness is investigated. To this end, the time-variant mesh stiffness of an intact tooth is calculated analytically. Then, the tooth root crack is modeled as a cracked cantilever beam. The governing nonlinear equation of motion is extracted accordingly, and in order to consider the effect of dry friction, the governing equation solved by Rung- Kutta method in three separate time spans. Finally, the frequency response and bifurcation diagrams are used to study the effect of the friction and tooth root crack on the nonlinear vibration behavior of the system.

  4. Immediate effects of whole body vibration on patellar tendon properties and knee extension torque.

    Science.gov (United States)

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-03-01

    Reports about the immediate effects of whole body vibration (WBV) exposure upon torque production capacity are inconsistent. However, the changes in the torque-angle relationship observed by some authors after WBV may hinder the measurement of torque changes at a given angle. Acute changes in tendon mechanical properties do occur after certain types of exercise but this hypothesis has never been tested after a bout of WBV. The purpose of the present study was to investigate whether tendon compliance is altered immediately after WBV, effectively shifting the optimal angle of peak torque towards longer muscle length. Twenty-eight subjects were randomly assigned to either a WBV (n = 14) or a squatting control group (n = 14). Patellar tendon CSA, stiffness and Young's modulus and knee extension torque-angle relationship were measured using ultrasonography and dynamometry 1 day before and directly after the intervention. Tendon CSA was additionally measured 24 h after the intervention to check for possible delayed onset of swelling. The vibration intervention had no effects on patellar tendon CSA, stiffness and Young's modulus or the torque-angle relationship. Peak torque was produced at ~70° knee angle in both groups at pre- and post-test. Additionally, the knee extension torque globally remained unaffected with the exception of a small (-6%) reduction in isometric torque at a joint angle of 60°. The present results indicate that a single bout of vibration exposure does not substantially alter patellar tendon properties or the torque-angle relationship of knee extensors.

  5. Nonequilibrium states of high tc YBCO superconductors under tunnel injection of quasiparticles

    International Nuclear Information System (INIS)

    Iguchi, I.; Wang, Q.; Lee, K.; Yoshida, K.

    1995-01-01

    The nonequilibrium states of high Tc superconductors are investigated by means of tunnel injection of quasiparticles using Pb(or Au)/MgO/YBCO tunnel junctions. The effective critical-current reduction due to tunnel injection is observed, whose behaviour is different from simple heating. The observed results suggest that the resultant nonequilibrium states may also differ from those described by conventional nonequilibrium models

  6. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  7. The effect of gas and fluid flows on nonlinear lateral vibrations of rotating drill strings

    Science.gov (United States)

    Khajiyeva, Lelya; Kudaibergenov, Askar; Kudaibergenov, Askat

    2018-06-01

    In this work we develop nonlinear mathematical models describing coupled lateral vibrations of a rotating drill string under the effect of external supersonic gas and internal fluid flows. An axial compressive load and a torque also affect the drill string. The mathematical models are derived by the use of Novozhilov's nonlinear theory of elasticity with implementation of Hamilton's variation principle. Expressions for the gas flow pressure are determined according to the piston theory. The fluid flow is considered as added mass inside the curved tube of the drill string. Using an algorithm developed in the Mathematica computation program on the basis of the Galerkin approach and the stiffness switching method the numerical solution of the obtained approximate differential equations is found. Influences of the external loads, drill string angular speed of rotation, parameters of the gas and fluid flows on the drill string vibrations are shown.

  8. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    Science.gov (United States)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  9. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  10. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    International Nuclear Information System (INIS)

    Ju, S; Chae, S H; Choi, Y; Jun, S; Park, S M; Lee, S; Ji, C-H; Lee, H W

    2013-01-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken

  11. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    Science.gov (United States)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  12. Hydraulic noise in reactor circuits and loops, and its effect on nuclear fuel vibration

    International Nuclear Information System (INIS)

    Card, D.C.

    This paper reports the results of an investigation at WNRE to monitor noise levels in reactor circuits and loops, so as to characterize the systems and establish the importance of this noise on fuel and pressure tube vibration. Some of the techniques necessary for in-reactor installations of pressure transducers have been developed and measurements have been obtained in the vertical fuel channels of a very noisy out-reactor loop as well as in the WR-1 reactor circuits. A very quiet out-reactor loop has been constructed to study the vibration behaviour of 37-element fuel bundles in the horizontal CANDU pressurized-heavy water reactor systems. In this facility various types and levels of hydraulic noise are being generated to study their effect on the fuel bundles and flow tube at flow velocities up to approximately 13 m/s. (author)

  13. See-saw motion of thermal boundary layer under vibrations: An implication of forced piston effect

    Science.gov (United States)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    The phenomenon of piston effect is well known in supercritical fluids wherein the thermal homogenization of the bulk occurs on a very short time scale due to pressure change caused by expansion or contraction of the fluid in the thermal boundary layer. In this article, we highlight an interesting phenomenon wherein by the application of external forces (vibration) normal to the temperature gradient, see-saw motion of the thermal boundary layer is observed in weightlessness conditions. This is attributed to the thermomechanical coupling caused by the temperature change due to external forces. We term this change in the temperature field due to external forces as forced piston effect (FPE). A detailed investigation of this intriguing behavior shows that the see-saw motion is attributed to the variation of the relative thickness of the thermal boundary layer, defined on the basis of relative local bulk temperature, along the direction of vibration. This change in the temperature field, which is observed to be caused by FPE in vibration, is shown to depend on the compressibility (and thus proximity to the critical point), the imposed acceleration and the cell size. It is also found that see-saw motion persists in the presence of gravity and thus is described ubiquitous in nature for all conditions. A plot illustrating the maximum change in the temperature as a function of these parameters is further proposed.

  14. Fermi resonance effects on the vibration modes of hydrogen-passivated boron in silicon

    International Nuclear Information System (INIS)

    Watkins, G.D.; Fowler, W.B.; Deleo, G.G.; Stavola, M.; Kozuch, D.M.; Pearton, S.J.; Lopata, J.

    1990-01-01

    10 B - 11 B isotope shifts have been reported recently for the vibrational frequencies of hydrogen (H) and its isotope deuterium (D) in the H-B complex in silicon. The D- 10 B-D 11 B shift was found to be anomalously large. The authors show that this effect finds a natural explanation in a phenomenon called Fermi resonance, arising from a weak anharmonic coupling between the second harmonic of the transverse B vibration and the longitudinal D vibration. The authors present a simple classical explanation of the effect in terms of a parametric oscillator, or a child pumping a swing. They outline a simple quantum mechanical treatment that provides a satisfactory quantitative explanation of the results. The author's calculations also predict infrared absorption at the boron second harmonic frequencies. These are observed for both 10 B and 11 B with intensities and polarization as predicted, providing direct confirmation of the interpretation. The Pankove Si-H-B model, therefore, remains intact

  15. Curvature Effects on the Vibration Characteristics of Doubly Curved Shallow Shells with General Elastic Edge Restraints

    Directory of Open Access Journals (Sweden)

    Hui Shi

    2015-01-01

    Full Text Available Effects of curvature upon the vibration characteristics of doubly curved shallow shells are assessed in this paper. Boundary conditions of the shell are generally specified in terms of distributed elastic restraints along the edges. The classical homogeneous boundary supports can be easily simulated by setting the stiffnesses of restraining springs to either zero or infinite. Vibration problems of the shell are solved by a modified Fourier series method that each of the displacements is invariably expressed as a simple trigonometric series which converges uniformly and acceleratedly over the solution domain. All the unknown expansion coefficients are treated equally as a set of independent generalized coordinates and solved using the Rayleigh-Ritz technique. The current method provides a unified solution to the vibration problems of curved shallow shells involving different geometric properties and boundary conditions with no need of modifying the formulations and solution procedures. Extensive tabular and graphical results are presented to show the curvature effects on the natural frequencies of the shell with various boundary conditions.

  16. Isotope enrichment effect of gaseous mixtures in standing sound vibration

    International Nuclear Information System (INIS)

    Knesebeck, R.L.

    1984-01-01

    When standing acoustic waves are excited in a tube containing a mixture of two gases, a partial zonal fractioning of the components arises as consequence of mass transport by diffusion, driven by the thermal and pressure gradients which are associeted with the standing waves. This effect is present in each zone corresponding to a quarter wavelength, with the heavier component becoming enriched at the nodes fo the standing waves and deplected at the crests. The magnitude of the enrichment in one of the components of a binary gas mixture is given by Δω=ap 2 /lambda [b + (1-bω)] 2 . Where ω is the mass concentration of the component in the mixture, a and b are parameters which are related to molecular proprieties of the gases, p is the relative pressure amplitude of the standing wave and lambda is its wavelength. For a natural mixture of uranium hexafluorate, with 0.715% of the uranium isotope 340 an enrichment of about 2 x 10 -6 % in the concentration of this isotope is theorecticaly attainable per stage consisting of a quarter wavelenght, when a standing acoustical wave of relative pressure amplitude of 0,2 and wavelenght of 20 cm is used. Since standing acoustical waves are easely excited in gas columns, an isotope enrichment plant made of a cascade of tubes in which standing waves are excited, is presumably feasible with relatively low investment and operation costs. (Author) [pt

  17. Partial admission effect on the performance and vibration of a supersonic impulse turbine

    Science.gov (United States)

    Lee, Hang Gi; Shin, Ju Hyun; Choi, Chang-Ho; Jeong, Eunhwan; Kwon, Sejin

    2018-04-01

    This study experimentally investigates the effects of partial admission on the performance and vibration outcomes of a supersonic impulse turbine with circular nozzles. The turbine of a turbopump for a gas-generator-type liquid rocket engine in the Korea Space Launch Vehicle-II is of the supersonic impulse type with the partial admission configuration for obtaining a high specific power. Partial admission turbines with a low-flow-rate working gas exhibit benefits over turbines with full admission, such as loss reduction, ease of controllability of the turbine power output, and simple turbine configurations with separate starting sections. However, the radial force of the turbine rotor due to the partial admission causes an increase in turbine vibration. Few experimental studies have previously been conducted regarding the partial admission effects on supersonic impulse turbines with circular nozzles. In the present study, performance tests of supersonic impulse turbines with circular nozzles were conducted for various partial admission ratios using a turbine test facility with high-pressure air in order to investigate the resulting aerodynamic performance and vibration. Four types of turbines with partial admission ratios of 0.17, 0.42, 0.75 and 0.83 were tested. Results show that the efficiencies at the design point increase linearly as the partial admission ratios increase. Moreover, as the velocity ratios increase, the difference in efficiency from the reference turbine with a partial admission ratio of 0.83 becomes increasingly significant, and the magnitudes of these differences are proportional to the square of the velocity ratios. Likewise, the decrease in the partial admission ratio results in an increase in the turbine vibration level owing to the increase in the radial force.

  18. Effect of vibrational excitation on the dynamics of ion-molecule reactions

    International Nuclear Information System (INIS)

    Anderson, S.L.

    1981-11-01

    A new experimental technique for the study of vibrational effects on ion-molecule reaction cross sections is described. Vibrational and collision energy dependent cross sections are presented for proton and H atom transfer, charge transfer and collision induced dissociation reactions in various isotopic H 2 + + H 2 systems. Charge and proton transfer cross sections are presented for the reactions of H 2 + and D 2 + with Ar, N 2 , CO, and O 2 . All the reactions are shown to be highly influenced by avoided crossings between the ground and first excited potential energy surfaces. Because of the nature of the crossings, vibrational motion of the systems can cause both adiabatic and non-adiabatic behavior of the system. This makes the vibrational dependences of the various cross sections a very sensitive probe of the dynamics of the collisions particularly, their behavior in the region of the crossings. Evidence is seen for charge transfer between reagents as they approach each other, transition to and in some cases reactions on excited potential energy surfaces, competition between different channels, and strong coupling of proton and charge transfer channels which occurs only for two of the systems studied (H 2 + + Ar, N 2 ). Oscillatory structure is observed in the collision energy dependence of the endoergic H 2 + (v = 0) + Ar charge transfer reaction for the first time, and a simple model which is commonly used for atom-atom charge transfer is used to fit the peaks. Finally a simple model is used to assess the importance of energy resonance and Franck-Condon effects on molecular charge transfer

  19. Effect of longitudinal and transverse vibrations of an upstream square cylinder on vortex shedding behind two inline square cylinders

    International Nuclear Information System (INIS)

    Patil, Pratish P; Tiwari, Shaligram

    2009-01-01

    The characteristics of unsteady wakes behind a stationary square cylinder and another upstream vibrating square cylinder have been investigated numerically with the help of a developed computational code. The effect of longitudinal as well as transverse vibrations of the upstream cylinder is studied on the coupled wake between the two cylinders, which is found to control the vortex shedding behavior behind the downstream stationary cylinder. Computations are carried out for a fixed value of Reynolds number (Re = 200) and three different values of excitation frequencies of the upstream cylinder, namely less than, equal to and greater than the natural frequency of vortex shedding corresponding to flow past a stationary square cylinder. The vortex shedding characteristics of the unsteady wakes behind the vibrating and stationary cylinders are found to differ significantly for longitudinal and transverse modes of vibration of the upstream cylinder. The wake of the downstream stationary cylinder is found to depict a synchronization behavior with the upstream cylinder vibration. The spacing between the two cylinders has been identified to be the key parameter influencing the synchronization phenomenon. The effect of cylinder spacing on the wake synchronization and the hydrodynamic forces has been examined. In addition, a comparison of the drag forces for flow past transversely vibrating square and circular cylinders for similar amplitudes and frequencies of cylinder vibration has been presented while employing the tested computational code.

  20. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  1. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects

    Science.gov (United States)

    Zhao, Yaobing; Huang, Chaohui; Chen, Lincong; Peng, Jian

    2018-03-01

    The aim of this paper is to investigate temperature effects on the nonlinear vibration behaviors of suspended cables under two-frequency excitation. For this purpose, two combination and simultaneous resonances are chosen and studied in detail. First of all, based on the assumptions of the temperature effects, the partial differential equations of the in-plane and out-of-plane motions with thermal effects under multi-frequency excitations are obtained. The Galerkin method is adopted to discretize the nonlinear dynamic equations, and the single-mode planar discretization is considered. Then, in the absence of the primary and internal resonances, the frequency response equations are obtained by using the multiple scales method. The stability analyses are conducted via investigating the nature of the singular points of equations. After that, temperature effects on nonlinear vibration characteristics of the first symmetric mode are studied. Parametric investigations of temperature effects on corresponding non-dimensional factors and coefficients of linear and nonlinear terms are performed. Numerical results are presented to show the temperature effects via the frequency-response curves and detuning-phase curves of four different sag-to-span ratios. It is found out that effects of temperature variations would lead to significant quantitative and/or qualitative changes of the nonlinear vibration properties, and these effects are closely related to the sag-to-span ratio and the degree of the temperature variation. Specifically, the softening/hardening-type spring behaviors, the response amplitude, the range of the resonance, the intersection and number of branches, the number and phase of the steady-state solutions are all affected by the temperature changes.

  2. Effect of mechanical vibrations on the wear behavior of AZ91 Mg alloy

    Science.gov (United States)

    Chaturvedi, V.; Pandel, U.; Sharma, A.

    2018-02-01

    AZ91 Mg alloy is the most promising alloy used for structural applications. The vibration induced methods are effective and economic viable in term of mechanical properties. Sliding wear tests were performed on AZ91 Mg alloy using a pin-on- disc configuration. Wear rates were measured at 5 N and 10N at a sliding velocity of 1m/s for varied frequency within the range of 5- 25Hz and a constant amplitude of 2mm. Microstructures of worn surfaces and wear debris were characterized by field emission scanning electron microscopy (FESEM). It is observed that wear resistance of vibrated AZ91 alloy at 15Hz frequency ad 2mm amplitude was superior than cast AZ91 Mg alloy. Finer grain size and equiaxed grain shape both are important parameters for better wear resistance in vibrated AZ91 Mg alloys. FESEM analysis revealed that wear is considerably affected due to frictional heat generated by the relative motion between AZ91 Mg alloy and EN31 steel surface. No single mechanism was responsible for material loss.

  3. Vibration Diagnostics as an effective Tool for Testing Engines of Internal Combustion

    Directory of Open Access Journals (Sweden)

    Ferenc Dömötör

    2017-10-01

    Full Text Available There are several methods of automotive diagnostics used in services to detect a large variety of faults and damages of various parts of engines of internal combustion. Undoubtedly, they are effective, but they are simply unable to find all types of mechanical faults occurring during the operation. This is the reason why authors of this paper tried to use a special tool, which has been proven for years for detecting faults of rolling element bearing in rotating machinery. During their research, the authors tried to find valuable results by measuring vibration of various parts of engines. Three items were tested, a Diesel engine and two Otto motors. A large number of measurements have been taken at various speed, at different points, in different directions, with different parameter setup, etc. However, there was one setup which has been applied to all three engines. It is the measurement setup of vibration velocity, in the frequency range of 2 Hz-300 Hz. Valuable consequences have been found regarding the clogging of the air filters and the exhaust systems. As a conclusion the authors expressed their opinion, that, apart from the traditional diagnostic methods used in services, vibration measurements can also be useful, especially for detecting faults of rolling element bearings.

  4. Whole-body vibration training effects on the physical performance of basketball players.

    Science.gov (United States)

    Colson, Serge S; Pensini, Manuela; Espinosa, Julien; Garrandes, Frederic; Legros, Patrick

    2010-04-01

    The aim of this study was to investigate the influence of 4 weeks of whole-body vibration training added to the conventional training of basketball players. Eighteen competitive basketball players (13 male symbol, 5 female symbol, 18-24 years old) were randomly assigned to a whole-body vibration group (WBVG, n = 10; 7 male symbol and 3 female symbol) or a control group (CG, n = 8; 6 male symbol and 2 female symbol). During the 4-week period, all subjects maintained their conventional basketball training program. The members of WBVG were additionally trained 3 times a week for 20 minutes on a vibration platform (10 unloaded static lower limb exercises, 40-Hz, 4-mm, Silverplate). Testing was performed before and after the 4-week period and comprised strength assessment, vertical jump performance, and a 10-m sprint test. The maximal voluntary isometric strength of the knee extensors significantly increased (p training, as did squat jump (SJ) height (p training program added to the conventional training of basketball players during the preseason is an effective short-term stimulus to enhance knee extensor strength and slightly SJ performance.

  5. SHAPE EFFECT OF ANNULAR CONCENTRATOR IN ULTRASONIC SYSTEM ON AMPLIFICATION FACTOR OF VIBRATIONS AMPLITUDE

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2016-01-01

    Full Text Available The paper contains a theoretical underpinning on creation of ultrasonic vibration concentrators based on annular elastic elements with non-circular (ellipse-like eccentric shape of internal contour. Shape of internal contour in polar coordinates is described by Fourier series relative to angular coordinate that consists of a constant term and first and second harmonics. An effect of geometric parameters of the concentrator on amplification factor and natural vibration frequencies has been investigated with the help of a finite element method. The paper reveals the possibility to control an amplification factor of annular concentrators while varying eccentricity of internal contour and mean value of cross-section thickness. The amplification factor satisfies a condition K < N, where N is thickness ratio of amplifier input and output sections, and it is decreasing with increase of vibration mode order. The similar condition has been satisfied for conical bar concentrator with the difference that in the case of bar concentrators an amplification is ensured due to variation of diameter and N will represent ratio of diameters. It has been proved that modification of internal contour shape makes it possible to carry out a wide-band tuning of natural frequencies of concentrator vibrations without alteration of its overall dimensions and substantial change of amplification factor, which is important for frequency matching of the concentrator and ultrasonic vibratory system. Advantages of the proposed concentrators include simplicity of design and manufacturing, small overall dimensions, possibility for natural frequency tuning by means of static load variation. The developed concentrators can find their application in ultrasonic devices and instruments for technological and medical purposes.

  6. Effect of non-equilibrium flow chemistry on the heating distribution over the MESUR forebody during a Martian entry

    Science.gov (United States)

    Chen, Yih-Kang

    1992-01-01

    Effect of flow field properties on the heating distribution over a 140 deg blunt cone was determined for a Martian atmosphere using Euler, Navier-Stokes (NS), viscous shock layer (VSL), and reacting boundary layer (BLIMPK) equations. The effect of gas kinetics on the flow field and the surface heating distribution were investigated. Gas models with nine species and nine reactions were implemented into the codes. Effects of surface catalysis on the heating distribution were studied using a surface kinetics model having five reactions.

  7. A predictive analytic model for high-performance tunneling field-effect transistors approaching non-equilibrium Green's function simulations

    International Nuclear Information System (INIS)

    Salazar, Ramon B.; Appenzeller, Joerg; Ilatikhameneh, Hesameddin; Rahman, Rajib; Klimeck, Gerhard

    2015-01-01

    A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach

  8. Effect of Longitudinal Magnetic Field on Vibration Characteristics of Single-Walled Carbon Nanotubes in a Viscoelastic Medium

    Science.gov (United States)

    Zhang, D. P.; Lei, Y.; Shen, Z. B.

    2017-12-01

    The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.

  9. Open problems in non-equilibrium physics

    International Nuclear Information System (INIS)

    Kusnezov, D.

    1997-01-01

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions

  10. Open problems in non-equilibrium physics

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  11. Common Vocal Effects and Partial Glottal Vibration in Professional Nonclassical Singers.

    Science.gov (United States)

    Caffier, Philipp P; Ibrahim Nasr, Ahmed; Ropero Rendon, Maria Del Mar; Wienhausen, Sascha; Forbes, Eleanor; Seidner, Wolfram; Nawka, Tadeus

    2018-05-01

    To multidimensionally investigate common vocal effects in experienced professional nonclassical singers, to examine their mechanism of production and reproducibility, to demonstrate the existence of partial glottal vibration, and to assess the potential of damage to the voice from nonclassical singing. Individual cohort study. Ten male singers aged between 25 and 46 years (34 ± 7 years [mean ± SD]) with different stylistic backgrounds were recruited (five pop/rock/metal, five musical theater). Participants repeatedly presented the usual nonclassical vocal effects and techniques in their repertoire. All performances were documented and analyzed using established instruments (eg, auditory-perceptual assessment, videolaryngostroboscopy, electroglottography, voice function diagnostics). The vocal apparatus of all singers was healthy and capable of high performance. Typical nonclassical vocal effects were breathy voice, creaky voice, vocal fry, grunting, distortion, rattle, belt, and twang. All effects could be easily differentiated from each other. They were intraindividually consistently repeatable and also interindividually produced in a similar manner. A special feature in one singer was the first evidence of partial glottal vibration when belting in the high register. The unintended transition to this reduced voice quality was accompanied by physical fatigue and inflexible respiratory support. The long-lasting use of the investigated nonclassical vocal effects had no negative impact on trained singers. The possibility of long-term damage depends on the individual constitution, specific use, duration, and extent of the hyperfunction. The incidence of partial glottal vibration and its consequences require continuing research to learn more about efficient and healthy vocal function in nonclassical singing. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  12. Lock threshold deterioration induced by antenna vibration and signal coupling effects in hypersonic vehicle carrier tracking system of Ka band

    Directory of Open Access Journals (Sweden)

    Congying ZHU

    2018-04-01

    Full Text Available The envelope of a hypersonic vehicle is affected by severe fluctuating pressure, which causes the airborne antenna to vibrate slightly. This vibration mixes with the transmitted signals and thus introduces additional multiplicative phase noise. Antenna vibration and signal coupling effects as well as their influence on the lock threshold of the hypersonic vehicle carrier tracking system of the Ka band are investigated in this study. A vibration model is initially established to obtain phase noise in consideration of the inherent relationship between vibration displacement and electromagnetic wavelength. An analytical model of the Phase-Locked Loop (PLL, which is widely used in carrier tracking systems, is established. The coupling effects on carrier tracking performance are investigated and quantitatively analyzed by imposing the multiplicative phase noise on the PLL model. Simulation results show that the phase noise presents a Gaussian distribution and is similar to vibration displacement variation. A large standard deviation in vibration displacement exerts a significant effect on the lock threshold. A critical standard deviation is observed in the PLL of Binary Phase Shift Keying (BPSK and Quadrature Phase Shift Keying (QPSK signals. The effect on QPSK signals is more severe than that on BPSK signals. The maximum tolerable standard deviations normalized by the wavelength of the carrier are 0.04 and 0.02 for BPSK and QPSK signals, respectively. With these critical standard deviations, lock thresholds are increased from −12 and −4 dB to 3 and −2 dB, respectively. Keywords: Antenna vibration, Carrier tracking performance, Lock threshold, Phase locked loop, Tracking Telemetry and Command (TT&C signals

  13. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  14. Rheology via nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1982-10-01

    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference

  15. Lifetime-vibrational interference effects in resonantly excited x-ray emission spectra of CO

    Energy Technology Data Exchange (ETDEWEB)

    Skytt, P.; Glans, P.; Gunnelin, K. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    The parity selection rule for resonant X-ray emission as demonstrated for O{sub 2} and N{sub 2} can be seen as an effect of interference between coherently excited degenerate localized core states. One system where the core state degeneracy is not exact but somewhat lifted was previously studied at ALS, namely the resonant X-ray emission of amino-substituted benzene (aniline). It was shown that the X-ray fluorescence spectrum resulting from excitation of the C1s at the site of the {open_quotes}aminocarbon{close_quotes} could be described in a picture separating the excitation and the emission processes, whereas the spectrum corresponding to the quasi-degenerate carbons could not. Thus, in this case it was necessary to take interference effects between the quasi-degenerate intermediate core excited states into account in order to obtain agreement between calculations and experiment. The different vibrational levels of core excited states in molecules have energy splittings which are of the same order of magnitude as the natural lifetime broadening of core excitations in the soft X-ray range. Therefore, lifetime-vibrational interference effects are likely to appear and influence the band shapes in resonant X-ray emission spectra. Lifetime-vibrational interference has been studied in non-resonant X-ray emission, and in Auger spectra. In this report the authors discuss results of selectively excited soft X-ray fluorescence spectra of molecules, where they focus on lifetime-interference effects appearing in the band shapes.

  16. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    Science.gov (United States)

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  17. Effects of interset whole-body vibration on bench press resistance training in trained and untrained individuals.

    Science.gov (United States)

    Timon, Rafael; Collado-Mateo, Daniel; Olcina, Guillermo; Gusi, Narcis

    2016-03-01

    Previous studies have demonstrated positive effects of acute vibration exercise on concentric strength and power, but few have observed the effects of vibration exposure on resistance training. The aim of this study was to verify the effects of whole body vibration applied to the chest via hands on bench press resistance training in trained and untrained individuals. Nineteen participants (10 recreationally trained bodybuilders and 9 untrained students) performed two randomized sessions of resistance training on separate days. Each strength session consisted of 3 bench press sets with a load of 75% 1RM to failure in each set, with 2 minutes' rest between sets. All subjects performed the same strength training with either, vibration exposure (12 Hz, 4 mm) of 30 seconds immediately before each bench press set or without vibration. Number of total repetitions, kinematic parameters, blood lactate and perceived exertion were analyzed. In the untrained group, vibration exposure caused a significant increase in the mean velocity (from 0.36±0.02 to 0.39±0.03 m/s) and acceleration (from 0.75±0.10 to 0.86±0.09 m/s2), as well as a decrease in perceived effort (from 8±0.57 to 7.35±0.47) in the first bench press set, but no change was observed in the third bench press set. In the recreationally trained bodybuilders, vibration exposure did not cause any improvement on the performance of bench press resistance training. These results suggest that vibration exposure applied just before the bench press exercise could be a good practice to be implemented by untrained individuals in resistance training.

  18. Thermochemical nonequilibrium analysis of O2+Ar based on state-resolved kinetics

    International Nuclear Information System (INIS)

    Kim, Jae Gang; Boyd, Iain D.

    2015-01-01

    Highlights: • Thermochemical nonequilibrium studies for three lowest lying electronic states of O 2 . • The complete sets of the rovibrational state-to-state transition rates of O 2 +Ar. • Rovibrational relaxations and coupled chemical reactions of O 2 . • Nonequilibrium reaction rates of O 2 derived from the quasi-steady state assumption. - Abstract: The thermochemical nonequilibrium of the three lowest lying electronic states of molecular oxygen, O 2 (X 3 Σ g - ,a 1 Δ g ,b 1 Σ g + ), through interactions with argon is studied in the present work. The multi-body potential energy surfaces of O 2 +Ar are evaluated from the semi-classical RKR potential of O 2 in each electronic state. The rovibrational states and energies of each electronic state are calculated by the quantum mechanical method based on the present inter-nuclear potential of O 2 . Then, the complete sets of the rovibrational state-to-state transition rate coefficients of O 2 +Ar are calculated by the quasi-classical trajectory method including the quasi-bound states. The system of master equations constructed by the present state-to-state transition rate coefficients are solved to analyze the thermochemical nonequilibrium of O 2 +Ar in various heat bath conditions. From these studies, it is concluded that the vibrational relaxation and coupled chemical reactions of each electronic state needs to be treated as a separate nonequilibrium process, and rotational nonequilibrium needs to be considered at translational temperatures above 10,000 K

  19. Time-dependent view of an isotope effect in electron-nuclear nonequilibrium dynamics with applications to N2.

    Science.gov (United States)

    Ajay, Jayanth S; Komarova, Ksenia G; Remacle, Francoise; Levine, R D

    2018-05-21

    Isotopic fractionation in the photodissociation of N 2 could explain the considerable variation in the 14 N/ 15 N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N 2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.

  20. EFFECT OF PARTICLE SIZE AND PACKING RATIO OF PID ON VIBRATION AMPLITUDE OF BEAM

    Directory of Open Access Journals (Sweden)

    P.S. Kachare

    2013-06-01

    Full Text Available Everything in the universe that has mass possesses stiffness and intrinsic damping. Owing to the stiffness property, mass will vibrate when excited and its intrinsic damping property will act to stop the vibration. The particle impact damper (PID is a very interesting damper that affects impact and friction effects of particles by means of energy dissipation. PID is a means for achieving high structural damping by using a particle-filled enclosure attached to a structure. The particles absorb the kinetic energy of the structure and convert it into heat through inelastic collisions between the particles themselves and between the particles and the walls of the enclosure. In this work, PID is measured for a cantilever mild steel beam with an enclosure attached to its free end; copper particles are used in this study. The PID is found to be highly nonlinear. The most useful observation is that for a very small weight penalty (about 7% to 8 %, the maximum damped amplitude of vibration at resonance with a PID, is about 9 to 10 times smaller than that without a PID. It is for more than that of with only intrinsic material damping of a majority of structural metals. A satisfactory comparison of damping with and without particles through experimentation is observed. The effect of the size of the particles on the damping performance of the beam and the effective packing ratio can be identified. It is also shown that as the packing ratio changes, the contributions of the phenomena of impact and friction towards damping also change. It is encouraging that despite its deceptive simplicity, the model captures the essential physics of PID.

  1. Deviant vocal fold vibration as observed during videokymography : the effect on voice quality

    NARCIS (Netherlands)

    Verdonck-de Leeuw, I M; Festen, J.M.; Mahieu, H.F.

    Videokymographic images of deviant or irregular vocal fold vibration, including diplophonia, the transition from falsetto to modal voice, irregular vibration onset and offset, and phonation following partial laryngectomy were compared with the synchronously recorded acoustic speech signals. A clear

  2. Extension of CE/SE method to non-equilibrium dissociating flows

    KAUST Repository

    Wen, C.Y.

    2017-12-08

    In this study, the hypersonic non-equilibrium flows over rounded nose geometries are numerically investigated by a robust conservation element and solution element (CE/SE) code, which is based on hybrid meshes consisting of triangular and quadrilateral elements. The dissociating and recombination chemical reactions as well as the vibrational energy relaxation are taken into account. The stiff source terms are solved by an implicit trapezoidal method of integration. Comparison with laboratory and numerical cases are provided to demonstrate the accuracy and reliability of the present CE/SE code in simulating hypersonic non-equilibrium flows.

  3. Effect of intense vibration treatment on the powder fine structure and reaction ability during sintering

    International Nuclear Information System (INIS)

    Pribytkov, G.A.; Chzhan Khajfen; Yuj Baokhaj; Khu Zoangchi

    2003-01-01

    Effects of a vibration grinding treatment of TiC-Ni and TiC-Ni-Cr titanium carbide-metal powder composition on the size of X-ray coherent scattering zones as well as the melt and crystallization temperatures under liquid-phase sintering have been investigated. Hardness and strength of composites sintered from the blends grinded for 4 h and more are found to be decreased that is explained by high porosity due to oxygen contamination of powder blends during a dry grinding treatment [ru

  4. Effects of Non-Equilibrium Chemistry and Darcy-Forchheimer Flow of Pyrolysis Gas for a Charring Ablator

    Science.gov (United States)

    Chen, Yih-Kanq; Milos, Frank S.

    2011-01-01

    The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.

  5. Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1980-01-01

    Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility

  6. Image quality analysis of vibration effects In C-arm-flat panel X-ray imaging

    NARCIS (Netherlands)

    Snoeren, R.M.; Kroon, J.N.; With, de P.H.N.

    2011-01-01

    The motion of C-arm scanning X-ray systems may result in vibrations of the imaging sub-system. In this paper, we connect C-arm system vibrations to Image Quality (IQ) deterioration for 2D angiography and 3D cone beam X-ray imaging, using large Flat Panel detectors. Vibrations will affect the

  7. Effects of focal vibration on bone mineral density and motor performance of postmenopausal osteoporotic women.

    Science.gov (United States)

    Brunetti, O; Botti, F M; Brunetti, A; Biscarini, A; Scarponi, A M; Filippi, G M; Pettorossi, V E

    2015-01-01

    This randomized double blind controlled study is aimed at determining the effect of repeated vibratory stimuli focally applied to the contracted quadriceps muscles (repeated muscle vibration=rMV) on bone mineral density, leg power and balance of postmenopausal osteoporotic women. The study has been conducted on 40 voluntary postmenopausal osteoporotic women, randomised at 2 groups for rMV treatment and for control. The treatment group underwent rMV (100Hz, 300-500 μm; three applications per day, each lasting 10-minutes, for 3 consecutive days) applied to voluntary contracted quadriceps (VC=vibrated and contracted group). The control group, received a sham stimulation on contracted quadriceps (NV=non vibrated group). Bone mineral density T-score of proximal femur of the participants, was evaluated in two weeks before and 360 days after intervention; body balance and explosive leg power were measured 1 day before, 30 days and 360 days after treatment. VC group T-score at one year didn't change significantly relative to baseline values (pretreatment: -2.61±0.11, post-treatment -2.62±0.13); conversely in NV subjects T-score decreased significantly from -2.64 ± 0.15 SD down to -2.99 ± 0.28 SD. A significant improvement of balance and explosive leg power was observed only in VC group at 30 and 360 days after the intervention. We conclude that rMV is a safe, short-lasting and non-invasive treatment that can significantly and persistently improve muscle performance and can effectively counteract progressive demineralisation in postmenopausal and osteoporotic women.

  8. A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Won; Kwon, Young Doo; Kwon, Soon Bum [Kyungpook Nat' l Univ., Daegu (Korea, Republic of); Jeon, Heung Kyun [Daegu Health College, Daegu (Korea, Republic of)

    2014-03-15

    In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of α=0 .deg., the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of M{sub ∞}=0.87 and φ{sub 0}=60%, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of φ{sub 0}=30% amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in C{sub D} become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher.

  9. A Numerical Study of the Effect of Non-equilibrium Condensation on the Oscillation of Shock Wave in a Transonic Airfoil Flow

    International Nuclear Information System (INIS)

    Kim, In Won; Kwon, Young Doo; Kwon, Soon Bum; Jeon, Heung Kyun

    2014-01-01

    In this study, to find the characteristics of the oscillation of a terminating shock wave in a transonic airfoil flow with non-equilibrium condensation, a NACA00-12,14,15 airfoil flow with non-equilibrium condensation is investigated through numerical analysis of TVD scheme. Transonic free stream Mach number of 0.81-0.90 with the variation of stagnation relative humidity and airfoil thickness is tested. For the free stream Mach number 0.87 and attack angle of α=0 .deg., the increase in stagnation relative humidity attenuates the strength of the terminating shock wave and inactivates the oscillation of the terminating shock wave. For the case of M ∞ =0.87 and φ 0 =60%, the decreasing rate in the frequency of the shock oscillation caused by non-equilibrium condensation to that of φ 0 =30% amounts to 5%. Also, as the stagnation relative humidity gets larger, the maximum coefficient of drag and the difference between the maximum and minimum in C D become smaller. On the other hand, as the thickness of the airfoil gets larger, the supersonic bubble size becomes bigger and the oscillation of the shock wave becomes higher

  10. Effect of whole-body vibration exercise in preventing falls and fractures

    DEFF Research Database (Denmark)

    Jepsen, Ditte Beck; Thomsen, Katja; Hansen, Stinus

    2017-01-01

    OBJECTIVE: To investigate the effect of whole-body vibration exercise (WBV) on fracture risk in adults ≥50 years of age. DESIGN: A systematic review and meta-analysis calculating relative risk ratios, fall rate ratio and absolute weighted mean difference using random effects models. Heterogeneity...... of retrieved publications. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Randomised controlled trials examining the effect of WBV on fracture risk in adults ≥50 years of age. The primary outcomes were fractures, fall rates and the proportion of participants who fell. Secondary outcomes were bone mineral density......2=24%) (low quality of evidence). Finally, moderate to low quality of evidence showed no overall effect on BMD and only sparse data were available regarding microarchitecture parameters, bone turnover markers and BUA. CONCLUSIONS: WBV reduces fall rate but seems to have no overall effect on BMD...

  11. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  12. The effect of track load correlation on ground-borne vibration from railways

    Science.gov (United States)

    Ntotsios, Evangelos; Thompson, David; Hussein, Mohammed

    2017-08-01

    In predictions of ground-borne vibration from railways, it is generally assumed that the unevenness profile of the wheel and rail is fully correlated between the two rails and the two wheels of an axle. This leads to identical contact forces at the two rails and can allow further simplifications of the vehicle model, the track model and the track/ground interface conditions. In the present paper, the level of correlation of the track loading at the wheel/rail interface due to rail unevenness and its influence on predictions of ground vibration is investigated. The extent to which the unevenness of the two rails is correlated has been estimated from measurements of track geometry obtained with track recording vehicles for four different tracks. It was found that for wavelengths longer than about 3 m the unevenness of the two rails can be considered to be strongly correlated and in phase. To investigate the effect of this on ground vibration, an existing model expressed in the wavenumber-frequency domain is extended to include separate inputs on the two rails. The track is modelled as an infinite invariant linear structure resting on an elastic stratified half-space. This is excited by the gravitational loading of a passing train and the irregularity of the contact surfaces between the wheels and the rails. The railway model is developed in this work to be versatile so that it can account or discard the effect of load correlations on the two rails beside the effects of variation of the tractions across the width of the track-ground interface and the vehicle sprung mass, as well as the roll motion of the sleepers and the axle. A comparative analysis is carried out on the influence of these factors on the response predictions using numerical simulations. It is shown that, when determining the vibration in the free field, it is important to include in the model the traction variation across the track-ground interface and the non-symmetrical loading at the two rails that

  13. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-03-12

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  14. Effects of music in combination with vibration in acupuncture points on the treatment of fibromyalgia.

    Science.gov (United States)

    Weber, Augusto; Werneck, Lineu; Paiva, Eduardo; Gans, Paulo

    2015-02-01

    Fibromyalgia (FM) is a disease that causes widespread pain and increased sensitivity to pain because of a dysfunction in the central nervous system. This study investigated the effect of music combined with vibration on acupuncture points for the treatment of FM. A total of 120 patients with FM were allocated randomly to four groups (30 patients each). One group listened to a sequence of Bach's compositions. The second group was subjected to vibratory stimuli on a combination of acupuncture points on the skin. The third group (complete) underwent both procedures in a simultaneous and synchronized manner, with inclusion of binaural beats. The fourth group (control) received no stimulation. The participants underwent the experimental procedure during five sessions performed on alternate days. They were assessed by the Fibromyalgia Impact Questionnaire (FIQ) and the Health Assessment Questionnaire (HAQ) before the first session and after the last session (20 days). All groups showed a significant improvement in FIQ and HAQ scores at the evaluation after the intervention. The complete group exhibited the best result on both the FIQ and HAQ (p<0.001), and the improvement in HAQ score was significant (p<0.004). The results suggest that the placebo effect in FM may be substantial. However, comparison between groups revealed that the complete group had the greatest reduction in both FIQ and HAQ, with a significant improvement in HAQ, suggesting that the combined use of music and vibration exerts a greater effect on FM symptoms.

  15. Investigating the engine vibration in MF285 tractor effected by different blends of biodiesel fuel using statistical methods and ANFIS

    Directory of Open Access Journals (Sweden)

    A Safrangian

    2017-05-01

    Full Text Available Introduction Vibrations include a wide range of engineering sciences and discuss from different aspects. One of the aspects is related to various types of engines vibrations, which are often used as power sources in agriculture. The created vibrations can cause lack of comfort and reduce effective work and have bad influence on the health and safety. One of the important parameters of the diesel engine that has the ability to create vibration and knocking is the type of fuel. In this study, the effects of different blends of biodiesel, bioethanol and diesel on the engine vibration were investigated. As a result, a blend of fuels such as synthetic fuel that creates less vibration engine can be identified and introduced. Materials and Methods In this study, canola oil and methanol alcohol with purity of 99.99% and the molar ratio of 6:1 and sodium hydroxide catalyst with 1% by weight of oil were used for biodiesel production. Reactor configurations include: maintaining the temperature at 50 ° C, the reaction time of 5 minutes and the intensity of mixing (8000 rpm, and pump flow, 0.83 liters per minute. A Massey Ferguson (MF 285 tractor with single differential (2WD, built in 2012 at Tractor factory of Iran was used for the experiment. To measure the engine vibration signals, an oscillator with model of VM120 British MONITRAN was used. Vibration signals were measured at three levels of engine speed (2000, 1600, 1000 rpm in three directions (X, Y, Z. The analysis performed by two methods in this study: statistical data analysis and data analysis using Adaptive neuro-fuzzy inference system (ANFIS. Statistical analysis of data: a factorial experiment of 10×3 based on completely randomized design with three replications was used in each direction of X, Y and Z that conducted separately. Data were compiled and analyzed by SPSS 19 software. Ten levels of fuel were including of biodiesel (5, 15 and 25% and bioethanol (2, 4 and 6%, and diesel fuel. Data

  16. Effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties.

    Science.gov (United States)

    Abral, Hairul; Putra, Genda J; Asrofi, Mohammad; Park, Ji-Won; Kim, Hyun-Joong

    2018-01-01

    This article reports effect of vibration duration of high ultrasound applied to bio-composite while gelatinized on its properties. The bio-composite consists of mixing of both the tapioca starch based bioplastic and oil palm empty fruit bunch (OPEFB) fibers with high volume fraction. Gelatinization of the bio-composite sample was poured into a rectangular glass mold placed then in an ultrasonic bath with 40kHz, and 250watt in different duration for 0, 15, 30, 60min respectively. The results show that vibration during gelatinization has changed the characterisation of the bio-composite. SEM photograph displayed different fracture surface of tensile sample. For vibration duration of 60min, tensile strength (TM), and tensile modulus (TM) was improved to 64.4, 277.4%, respectively, meanwhile strain was decreased to 35.1% in comparison without vibration. Fourier Transform Infrared Spectroscopy (FTIR), and XRD diffraction of the bio-composite has changed due to various vibration duration. Moisture absorption of the vibrated bio-composite was lower than that of the untreated one. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Study of vibration and its effect on health of the motorcycle rider

    Directory of Open Access Journals (Sweden)

    Shivakumara BS

    2010-07-01

    Full Text Available The motorcycle riders are subjected to extreme vibrations due to the vibrations of its engine, improper structural design of the motorcycle and the bad road conditions. The literature review reveals that the vibrations are most hazardous to the health if it exceeds the limit. The experiments were conducted to measure the magnitude of the vibrations acting on the rider during motorcycle riding under various road conditions. Experimental values of accelerations and frequencies which are beyond permissible limits according to the literature confirm that vibration certainly affects health of the motorcycle rider

  18. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    International Nuclear Information System (INIS)

    Zhao, Yanhua; Sun, Jie; Li, Jianfeng

    2014-01-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La 2 O 3 mixed powder. The effect of La 2 O 3 on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La 2 O 3 on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La 2 O 3 content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La 2 O 3 are improved significantly; and (c) the machining vibrations of laser cladding layer with La 2 O 3 are obviously reduced and the chatter is effectively avoided occurring

  19. Effect of rare earth oxide on the properties of laser cladding layer and machining vibration suppressing in side milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanhua, E-mail: zhaoyanhua_007@163.com [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Sun, Jie, E-mail: sunjie@sdu.edu.cn [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China); Li, Jianfeng [School of Mechanical Engineering, Shandong University, Jinan 250061 (China); Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University, Jinan 250061 (China)

    2014-12-01

    Highlights: • A novel laser cladding powder is developed which can reduce the machining vibration. • The machining vibrations of coating are reduced and the chatter is avoided occurring. • The vibration-suppressing mechanism is analyzed. • The hardness and wear resistance of coatings are improved significantly. - Abstract: Laser cladding, which can increase the hardness and wear resistance of the used components, is widely used in remanufacture and sustainable manufacturing field. Generally, laser cladding layer should to be machined to meet the function as well as the assembly requirements. Milling is an effective mean for precision machining. However, there exist great differences of physical and mechanical performances between laser cladding layer and substrate material, including microstructure, hardness, wear resistance, etc. This produces some new milling problems for laser cladding layer, such as machining vibration which may lead to low productivity and worse surface integrity. Thus, it is necessary to develop a novel laser cladding powder which can improve the surface hardness and wear resistance, while reducing the machining vibration in milling. Laser cladding layer was prepared by FeCr alloy and La{sub 2}O{sub 3} mixed powder. The effect of La{sub 2}O{sub 3} on the coating properties was investigated. Signal analysis methods of the time and frequency domain were used to evaluate the effect of the La{sub 2}O{sub 3} on machining vibration in the side milling laser cladding layer. The key findings of this study are: (a) with the La{sub 2}O{sub 3} content increasing, the grain size decreases dramatically and the microstructure of laser cladding layer are refine; (b) the hardness and wear resistance of the coatings with La{sub 2}O{sub 3} are improved significantly; and (c) the machining vibrations of laser cladding layer with La{sub 2}O{sub 3} are obviously reduced and the chatter is effectively avoided occurring.

  20. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects

    International Nuclear Information System (INIS)

    Yan, Z; Jiang, L Y

    2011-01-01

    In this work, the influence of surface effects, including residual surface stress, surface elasticity and surface piezoelectricity, on the vibrational and buckling behaviors of piezoelectric nanobeams is investigated by using the Euler-Bernoulli beam theory. The surface effects are incorporated by applying the surface piezoelectricity model and the generalized Young-Laplace equations. The results demonstrate that surface effects play a significant role in predicting these behaviors. It is found that the influence of the residual surface stress and the surface piezoelectricity on the resonant frequencies and the critical electric potential for buckling is more prominent than the surface elasticity. The nanobeam boundary conditions are also found to influence the surface effects on these parameters. This study also shows that the resonant frequencies can be tuned by adjusting the applied electrical load. The present study is envisaged to provide useful insights for the design and applications of piezoelectric-beam-based nanodevices.

  1. Balance, gait and quality of life in Parkinson's disease: Effects of whole body vibration treatment

    Directory of Open Access Journals (Sweden)

    Ludmylla Teixeira Soares

    Full Text Available Introduction Parkinson's disease (PD is a neurodegenerative disorder, which triggers limitations and disability in people. Therefore, rehabilitation therapy is widely recommended in patients with PD, especially those who do not respond to pharmacological treatment.Objective Evaluate the effect of a protocol of Whole-body Vibration (WBV in balance, gait and Quality of Life (QOL of patients with PD, who do not respond to pharmacological treatment.Methods It was performed 12 sessions of a protocol WBV (squat, plantar flexion, isometric contraction of members and single-leg balance, with three sets each, at a vibrating platform (2mm and 35Hz in 10 PD patients. By the first 3 sessions, patients underwent 20 seconds of exercise and 20 seconds of rest. After the third session, the treatment was 40 seconds of exercise and 20 seconds of rest. The Tinetti Test was applied before and after treatment to assess balance and gait, and the Parkinson's Disease Quality of Life-questionnaire (PDQL-BR, to evaluate the PDQL-BR and its subcategories: Parkinson, Systemic, Social and Emotional.Results Treatment did not significantly change the balance (p = 0.438, QOL issue in Emotional (p = 0.450 and Social (p = 0.171, but improved gait (p = 0.003, the Tinetti (p ≤ 0.001, the quality of life in items Parkinson (p ≤ 0.001, Systemic (p ≤ 0.001 and PDQL-BR (p ≤ 0.001.Conclusions WBV exercises on the vibrating platform, according to the parameters used, showed promising results that encourage its use to improve the clinical conditions related to disorders of gait, balance and QOL in patients with PD.

  2. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  3. Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Panichi, Roberto; Botti, Fabio Massimo; Biscarini, Andrea; Filippi, Guido Maria; Schieppati, Marco

    2015-10-01

    To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to

  4. INFLUENCE OF ADDITIONAL VIBRATION IMPACT ON THE EFFECTIVENESS OF ELECTRICAL STIMULATION PROCEDURE

    Directory of Open Access Journals (Sweden)

    M. G. Kiselev

    2017-01-01

    Full Text Available An experimental instrument complex which includes hardware for performing complex procedures using electrical shock massager frictional action was performed. The aim of the study was to influence the additional vibration effect on the efficiency of the procedure of electrostimulation.In order to increase the efficiency of the procedure electrostimulation authors proposed to carry it out with using of massager shock-friction action. The changes of muscular indicator on different stimulation treatments was shown after a series of seven treatments .Results of the processing of the experimental data and its subsequent analysis found that the use of the vibration exposure is accompanied by increase of load parameters in untrained volunteers. The increase in contact area due to decrease in the distance between the nozzle and the axis of rotation of the tumbler body surface, increases the electrical efficiency of the procedure.On the basis of a generalized analysis of data reflecting the effect of inappropriate electrical stimulation, it was established that, in order to achieve the best results, oscillatory systems providing shock-friction mode of its interaction with the skin surface, in particular a shock-frictional massager, were used.

  5. Unusual motions due to nonlinear effects in a driven vibrating string

    Science.gov (United States)

    Hanson, Roger J.

    2005-09-01

    Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.

  6. Effects of a whole body vibration training program on strength, power, and functional tests in the physically active elderly

    Directory of Open Access Journals (Sweden)

    Renata Gonçalves da Silva

    2009-04-01

    Full Text Available The aim of this study was to investigate the effect of a whole body vibration training program on knee extensor isokinetic peak torque, average power, and functional tests in the physically active elderly. Forty-seven subjects, who participated in a training program for the elderly, were recruited. The subjects were divided into two groups: whole body vibration group (WBV (n=24, 70.7±5.8 years, 62.7±12.3 kg and 155.9±8.0 cm and control group (n=23. 70.0±5.7 years, 65.3±10.7 kg and 157.9±6.6 cm. The WBS group underwent whole body vibration exercise and their regular training program for 13 weeks, 2 times per week, whereas the control group performed the regular training program only. Whole body vibration training was not effective in increasing isokinetic peak torque, average power, or performance in the functional tests. On the other hand, the regular training program was effective in increasing elbow flexor strength endurance, distance covered in the 6-min walk test, and speed in the timed up and go test. The results suggest that vibration training is not effective in modifying functionality or muscle strength and power in the physically active elderly.

  7. Application of perturbation theory to the non-linear vibration analysis of a string including the bending moment effects

    International Nuclear Information System (INIS)

    Esmaeilzadeh Khadem, S.; Rezaee, M.

    2001-01-01

    In this paper the large amplitude and non-linear vibration of a string is considered. The initial tension, lateral vibration amplitude, diameter and the modulus of elasticity of the string have main effects on its natural frequencies. Increasing the lateral vibration amplitude makes the assumption of constant initial tension invalid. In this case, therefore, it is impossible to use the classical equation of string with small amplitude transverse motion assumption. On the other hand, by increasing the string diameter, the bending moment effect will increase dramatically, and acts as an impressive restoring moment. Considering the effects of the bending moments, the nonlinear equation governing the large amplitude transverse vibration of a string is derived. The time dependent portion of the governing equation has the from of Duff ing equation is solved using the perturbation theory. The results of the analysis are shown in appropriate graphs, and the natural frequencies of the string due to the non-linear factors are compared with the natural frequencies of the linear vibration os a string without bending moment effects

  8. Nonequilibrium mesoscopic transport: a genealogy

    International Nuclear Information System (INIS)

    Das, Mukunda P; Green, Frederick

    2012-01-01

    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems. (topical review)

  9. Nonequilibrium statistical mechanics ensemble method

    CERN Document Server

    Eu, Byung Chan

    1998-01-01

    In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium Audience This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena

  10. Nonequilibrium quantum fluctuations of work.

    Science.gov (United States)

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  11. Relaxation dynamics in quantum dissipative systems: The microscopic effect of intramolecular vibrational energy redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Uranga-Piña, L. [Facultad de Física, Universidad de la Habana, San Lázaro y L, Vedado, 10400 Havana (Cuba); Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany); Tremblay, J. C., E-mail: jean.c.tremblay@gmail.com [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)

    2014-08-21

    We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It

  12. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    Science.gov (United States)

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ≤ 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the

  13. Time Dependent Hartree Fock Equation: Gateway to Nonequilibrium Plasmas

    International Nuclear Information System (INIS)

    Dufty, James W.

    2007-01-01

    This is the Final Technical Report for DE-FG02-2ER54677 award 'Time Dependent Hartree Fock Equation - Gateway to Nonequilibrium Plasmas'. Research has focused on the nonequilibrium dynamics of electrons in the presence of ions, both via basic quantum theory and via semi-classical molecular dynamics (MD) simulation. In addition, fundamental notions of dissipative dynamics have been explored for models of grains and dust, and for scalar fields (temperature) in turbulent edge plasmas. The specific topics addressed were Quantum Kinetic Theory for Metallic Clusters, Semi-classical MD Simulation of Plasmas , and Effects of Dissipative Dynamics.

  14. Nonequilibrium fermion production in quantum field theory

    International Nuclear Information System (INIS)

    Pruschke, Jens

    2010-01-01

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  15. Nonequilibrium fermion production in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pruschke, Jens

    2010-06-16

    The creation of matter in the early universe or in relativistic heavy-ion collisions is inevitable connected to nonequilibrium physics. One of the key challenges is the explanation of the corresponding thermalization process following nonequilibrium instabilities. The role of fermionic quantum fields in such scenarios is discussed in the literature by using approximations of field theories which neglect important quantum corrections. This thesis goes beyond such approximations. A quantum field theory where scalar bosons interact with Dirac fermions via a Yukawa coupling is analyzed in the 2PI effective action formalism. The chosen approximation allows for a correct description of the dynamics including nonequilibrium instabilities. In particular, fermion-boson loop corrections allow to study the interaction of fermions with large boson fluctuations. The applied initial conditions generate nonequilibrium instabilities like parametric resonance or spinodal instabilities. The equations of motion for correlation functions are solved numerically and major characteristics of the fermion dynamics are described by analytical solutions. New mechanisms for the production of fermions are found. Simulations in the case of spinodal instability show that unstable boson fluctuations induce exponentially growing fermion modes with approximately the same growth rate. If the unstable regime lasts long enough a thermalization of the infrared part of the fermion occupation number occurs on time scales much shorter than the time scale on which bosonic quantum fields thermalize. Fermions acquire an excess of occupation in the ultraviolet regime compared to a Fermi-Dirac statistic characterized by a power-law with exponent two. The fermion production mechanism via parametric resonance is found to be most efficient after the instability ends. Quantum corrections then provide a very efficient particle creation mechanism which is interpreted as an amplification of decay processes. The ratio

  16. Computer simulation of nonequilibrium processes

    International Nuclear Information System (INIS)

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  17. State-to-state modeling of non-equilibrium air nozzle flows

    Science.gov (United States)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  18. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  19. Difference between individuals with left and right hemiparesis in the effect of gluteus medius vibration on body weight shifting.

    Science.gov (United States)

    Bonan, I; Butet, S; Jamal, K; Yelnik, A; Tasseel Ponche, S; Leplaideur, S

    2017-12-01

    To test the effect of gluteus medius (GM) vibration on the reduction of asymmetric body weight distribution in individuals with hemiparesis (HP) at two stages of postural recovery. The effects of GM vibration according to the shift of the body weight (%Shift) onto the paretic leg during GM vibration were registered while standing on a force-platform in 40 HP (19 left and 21 right; mean age 54.7±10.6years, mean time after stroke 2.0±1.3months), as soon as they could stand without assistance and 4 to 6 weeks later, and in 40 control subjects (mean age 54.7±10.5years). Without vibration, baseline body weight (BW) distribution was characterized by underloading of the paretic limb (mean BW on the paretic limb 37.2%±13.1%). At the early stage of balance recovery, % shift toward the paretic limb induced by GM vibration differed significantly between left and right HP (P=0.049) and between left HP and controls (C) (P=0.022) and was related to BW asymmetry (r=0.437, P=0.004). Later, GM vibration reduced asymmetric BW distribution in most HP and no difference was found between left and right HP and between left and C. At an advanced stage of postural recovery, GM vibration could help encourage HP to put weight on the affected limb. Interestingly, a behavioral difference was initially observed between right and left HP that could probably be explained by a different strategy due to the baseline severity of the BW asymmetry. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Effect of groove on socket welds under the condition of vibration fatigue

    International Nuclear Information System (INIS)

    Xiu, Junjie; Jing, Hongyang; Han, Yongdian; Zhao, Lei; Xu, Lianyong

    2013-01-01

    Root failures of socket welds in small bore piping caused by vibration mainly occur at nuclear power plants (NPPs). It was observed that at higher stress level failures tended to originate at the toe while for the case of lower stress failures tended to occur at the root. The groove can increase the penetration depth (PD) of root, which is beneficial to the fatigue life. The effect of groove was also investigated by finite element method (FEM). The simulation results show that groove can decline the stress distribution, stress triaxiality and maximum principal plastic strain in the weld root, and the 5 mm groove suffering σ max (the highest stress of root failure) is almost same as no groove subjecting to σ f (fatigue limit). The test results show that the socket weld with groove can increase the natural frequency and damping of specimen, which make the system more difficult to vibrate. Moreover, the groove can also improve the fatigue property of specimen which do not exist the root failure even under high cycle fatigue (HCF)

  1. The effect of beam inclination on the performance of a passive vibration isolator using buckled beams

    International Nuclear Information System (INIS)

    Mori, H; Waters, T; Saotome, N; Nagamine, T; Sato, Y

    2016-01-01

    Passive vibration isolators are desired to have both high static stiffness to support large static load and low local stiffness to reduce the displacement transmissibility at frequencies greater than resonance. Utilization of a vertical buckled beam as a spring component is one way to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static stiffness than that of a linear spring. This paper investigates the behaviour of a vibration isolator using inclined beams as well as vertical ones and examines the effect of beam inclination for the purpose of improving the isolation performance. The experimental system investigated has an isolated mass which is supported by a combination of two types of beams: buckled beams and constraining beams. The buckled beams can be inclined from the vertical by attachment devices, and the constraining beams are employed to prevent off-axis motion of the isolated mass. The results demonstrate that the inclination of the buckled beams reduces the resonance frequency and improves the displacement transmissibility at frequencies greater than resonance. (paper)

  2. Inhibitory effect of cervical trachea and chest wall vibrations on cough reflex sensitivity and perception of urge-to-cough in healthy male never-smokers

    OpenAIRE

    Kashiwazaki, Naohiro; Ebihara, Satoru; Gui, Peijun; Katayama, Norihiro; Ito, Kumiko; Sato, Ryuhei; Oyama, Chika; Ebihara, Takae; Kohzuki, Masahiro

    2013-01-01

    Background Non-pharmacological options for symptomatic management of cough are desired. Although chest wall mechanical vibration is known to ameliorate cough reflex sensitivity, the effect of mechanical vibrations on perceptions of urge-to-cough has not been studied. Therefore, we investigated the effect of mechanical vibration of cervical trachea, chest wall and femoral muscle on cough reflex sensitivity, perceptions of urge-to-cough as well as dyspnea. Methods Twenty-four healthy male never...

  3. Experimental Investigation of Effects of Vibration upon Elastic and Cohesive Properties of Beds of Wet Sand

    Directory of Open Access Journals (Sweden)

    S. Alsop

    1995-01-01

    Full Text Available The transmission of sinusoidal vibrations through beds of cohesive particulate solids was measured. Results were interpreted in terms of a critical state model to predict the elastic swelling constant k, and the cohesive stress C. Factorial experimental design was used to identify significant parameters. Factors that affect k include percent moisture, bulk density, sample size, sample shape, the presence of a supporting membrane, and loading order. Factors that affect C include percent moisture and particle size distribution. Factors affecting k were interpreted in terms of their effects upon bed structure and factors affecting C in terms of an equivalent pore water pressure due to capillary and liquid bridge effects. The critical state model was modified to incorporate general relationships between axial and radial strains.

  4. Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.

    Directory of Open Access Journals (Sweden)

    Zhihua Cui

    Full Text Available The shear swirling flow vibration cementing (SSFVC technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1 the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2 the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.

  5. Effects of adding whole body vibration to squat training on isometric force/time characteristics.

    Science.gov (United States)

    Lamont, Hugh S; Cramer, Joel T; Bemben, Debra A; Shehab, Randa L; Anderson, Mark A; Bemben, Michael G

    2010-01-01

    Resistance training interventions aimed at increasing lower-body power and rates of force development have produced varying results. Recent studies have suggested that whole-body low-frequency vibration (WBLFV) may elicit an acute postactivation potentiation response, leading to acute improvements in power and force development. Potentially, the use of WBLFV between sets of resistance training rather than during training itself may lead to increased recruitment and synchronization of high-threshold motor units, minimize fatigue potential, and facilitate the chronic adaptation to resistance exercise. The purpose of this study was to determine the effects of applying TriPlaner, WBLFV, prior to and then intermittently between sets of Smith machine squats on short-term adaptations in explosive isometric force expression. Thirty recreationally resistance trained men aged 18-30 were randomly assigned to 1 of 3 groups: resistance training only (SQT, n = 11), resistance plus whole-body vibration (SQTV, n = 13), or active control (CON, n = 6). An isometric squat test was performed prior to and following a 6-week periodized Smith machine squat program. Whole-body low-frequency vibration was applied 180 seconds prior to the first work set (50 Hz, 2-4 mm, 30 seconds) and intermittently (50 Hz, 4-6 mm, 3 x 10 seconds, 60 seconds between exposures) within a 240-second interset rest period. Subjects were instructed to assume a quarter squat posture while positioning their feet directly under their center of mass, which was modified using a handheld goniometer to a knee angle of 135 +/- 5 degrees . Instructions were given to subjects to apply force as fast and as hard as possible for 3.5 seconds. Isometric force (N) and rates of force development (N.s(-1)) were recorded from the onset of contraction (F(0)) to time points corresponding to 30, 50, 80, 100, 150, and 250 milliseconds, as well as the peak isometric rate of force development (PISORFD), and rate of force development to

  6. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    Science.gov (United States)

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  7. Effects of real and sham whole-body mechanical vibration on spinal excitability at rest and during muscle contraction

    NARCIS (Netherlands)

    Hortobagyi, T.; Rider, P.; DeVita, P.

    2014-01-01

    We examined the effects of whole-body mechanical vibration (WBV) on indices of motoneuronal excitability at rest and during muscle contraction in healthy humans. Real and sham WBV at 30Hz had no effect on reflexes measured during muscle contraction. Real WBV at 30 and 50Hz depressed the H-reflex

  8. Nonequilibrium dynamical mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  9. Nonequilibrium dynamical mean-field theory

    International Nuclear Information System (INIS)

    Eckstein, Martin

    2009-01-01

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  10. Effects of high power ultrasonic vibration on temperature distribution of workpiece in dry creep feed up grinding.

    Science.gov (United States)

    Paknejad, Masih; Abdullah, Amir; Azarhoushang, Bahman

    2017-11-01

    Temperature history and distribution of steel workpiece (X20Cr13) was measured by a high tech infrared camera under ultrasonic assisted dry creep feed up grinding. For this purpose, a special experimental setup was designed and fabricated to vibrate only workpiece along two directions by a high power ultrasonic transducer. In this study, ultrasonic effects with respect to grinding parameters including depth of cut (a e ), feed speed (v w ), and cutting speed (v s ) has been investigated. The results indicate that the ultrasonic vibration has considerable effect on reduction of temperature, depth of thermal damage of workpiece and width of temperature contours. Maximum temperature reduction of 25.91% was reported at condition of v s =15m/s, v w =500mm/min, a e =0.4mm in the presence of ultrasonic vibration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of rotation and magnetic field on free vibrations in a spherical non-homogeneous embedded in an elastic medium

    Science.gov (United States)

    Bayones, F. S.; Abd-Alla, A. M.

    2018-06-01

    The prime objective of the present paper is to analyze the effect of magnetic field and rotation on the free vibrations of an elastic hollow sphere. The one-dimensional equation of motion is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free and fixed boundary conditions. The determination is concerned with the eigenvalues of the natural frequency of the free vibrations in the case of harmonic vibrations. The natural frequencies and the mode shapes are calculated numericall and the effects of rotation and magnetic field are discussed. It was shown that the dispersion curves of waves were significantly influenced by the magnetic field and rotation of the elastic sphere.

  12. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  13. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT.

    Science.gov (United States)

    Beinert, K; Preiss, S; Huber, M; Taube, W

    2015-12-01

    Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all Ppain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain

  14. Supersymmetric Field Theory of Non-Equilibrium Thermodynamic System

    OpenAIRE

    Olemskoi, Alexander I.; Brazhnyi, Valerii A.

    1998-01-01

    On the basis of Langevin equation the optimal SUSY field scheme is formulated to discribe a non-equilibrium thermodynamic system with quenched disorder and non-ergodicity effects. Thermodynamic and isothermal susceptibilities, memory parameter and irreversible response are determined at different temperatures and quenched disorder intensities.

  15. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  16. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  17. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  18. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  19. Numerical simulation of nonequilibrium flows by using the state-to-state approach in commercial software

    Science.gov (United States)

    Kunova, O. V.; Shoev, G. V.; Kudryavtsev, A. N.

    2017-01-01

    Nonequilibrium flows of a two-component oxygen mixture O2/O behind a shock wave are studied with due allowance for the state-to-state vibrational and chemical kinetics. The system of gas-dynamic equations is supplemented with kinetic equations including contributions of VT (TV)-exchange and dissociation processes. A method of the numerical solution of this system with the use of the ANSYS Fluent commercial software package is proposed, which is used in a combination with the authors' code that takes into account nonequilibrium kinetics. The computed results are compared with parameters obtained by solving the problem in the shock-fitting formulation. The vibrational temperature is compared with experimental data. The numerical tool proposed in the present paper is applied to study the flow around a cylinder.

  20. No specific effect of whole-body vibration training in chronic stroke: a double-blind randomized controlled study.

    Science.gov (United States)

    Brogårdh, Christina; Flansbjer, Ulla-Britt; Lexell, Jan

    2012-02-01

    To evaluate the effects of whole-body vibration (WBV) training in individuals after stroke. A double-blind randomized controlled study with assessments pre- and posttraining. A university hospital rehabilitation department. Participants (N=31; mean age ± SD, 62±7 y; 6-101 mo poststroke) were randomized to an intervention group or a control group. Supervised WBV training (2 sessions/wk for 6wk; 12 repetitions of 40-60s WBV per session). The intervention group trained on a vibrating platform with a conventional amplitude (3.75 mm) and the control group on a "placebo" vibrating platform (0.2mm amplitude); the frequency was 25Hz on both platforms. All participants and examiners were blinded to the amplitudes of the 2 platforms. Primary outcome measures were isokinetic and isometric knee muscle strength (dynamometer). Secondary outcome measures were balance (Berg Balance Scale), muscle tone (Modified Ashworth Scale), gait performance (Timed Up & Go, comfortable gait speed, fast gait speed, and six-minute walk tests), and perceived participation (Stroke Impact Scale). There were no significant differences between the 2 groups after the WBV training. Significant but small improvements (Pnormative variation. Six weeks of WBV training on a vibration platform with conventional amplitude was not more efficient than a placebo vibrating platform. Therefore, the use of WBV training in individuals with chronic stroke and mild to moderate disability is not supported. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Isotopic and chemical dilution effects on the vibrational relaxation rate of some totally symmetric motions of liquid acetonitrile

    International Nuclear Information System (INIS)

    Marri, E.; Morresi, A.; Paliani, G.; Cataliotti, R.S.; Giorgini, M.G.

    1999-01-01

    The vibrational dephasing of the ν 1 (C-H, C-D stretching) and ν 3 (C-H, C-D bending) symmetric motions of liquid acetonitrile in its light and fully deuterated forms has been studied in the frame of the vibrational time correlation functions obtained as Fourier transforms of the isotropic Raman spectral distributions and interpreted within the Kubo theory. In addition, the experimental isotropic profiles have been analysed within the bandshape approach formulated by analytical Fourier transformation of the Kubo vibrational time correlation functions in order to derive the relaxation parameters in the frequency domain. The effects of the isotopic (CH 3 CN/CD 3 CN and vice versa) and chemical (CCl 4 ) dilution on the bandshapes and on the vibrational relaxation parameters have been studied. It was observed that the decay rate of ν 1 mode is insensitive to the isotopic dilution but varies appreciably with chemical (CCl 4 ) dilution. The vibrational dephasing of ν 3 mode is qualitatively, but not quantitatively, affected in the same way by chemical dilution and shows a slower modulation regime than that exhibited by the stretching mode. Unlikely from the latter, the ν 3 mode results are slightly affected by the isotopic dilution. Phase relaxation mechanisms of these two motions of acetonitrile in the liquid state are proposed on the basis of these data, and a comparison is made with the results earlier published. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Assessment of exposure to hand-arm vibration and its related health effects in workers employed in stone cutting workshops of Hamadan city

    Directory of Open Access Journals (Sweden)

    Roya Bayat

    2016-06-01

    Full Text Available Introduction: The workers employed in stone cutting workplace are exposed to hand-arm vibration and its complications. The aim of this study was to evaluate the exposure to hand-arm vibration and its health effects on workers in the stone cutting workshops. Methods: In this descriptive-analytic study, 40 workers of Hamadan city stone cutting who worked with stone cutting machines were examined. Measuring exposure to hand-arm vibration was performed by standard methods ISO 5349. Symptoms related hand-arm vibration syndrome using a questionnaire construction was studied. Data were analyzed using SPSS software. Results: Results showed that 8-hour equivalent acceleration of hand-arm vibration exposure in stonecuttingworkers was exceeds the permissible exposure levels of country (Pv<0.05. Most average hand and arm vibration acceleration was measured in the Z axis. The average vibration acceleration hand-arm and cutting transverse and longitudinal cutting significant difference was observed (Pv<0.05. Conclusion: In regard to exposure level of stone cutting workers compared with the national exposure limit, the training of health care, non-smoking, and use of anti-vibration gloves, work rotations canthe effective in reducing the risk of health effects. Furthermore, it seems essential to track the health effects associated with human vibration by use of screening tests in the work place seem.

  3. The effects of substrate layer thickness on piezoelectric vibration energy harvesting with a bimorph type cantilever

    Science.gov (United States)

    Palosaari, Jaakko; Leinonen, Mikko; Juuti, Jari; Jantunen, Heli

    2018-06-01

    In this research four piezoelectric bimorph type cantilevers for energy harvesting were manufactured, measured and analyzed to study the effects of substrate layer thickness on energy harvesting efficiency and durability under different accelerations. The cantilevers had the same dimensions of the piezoelectric ceramic components, but had different thicknesses of the steel substrate (no steel, 30 μm, 50 μm and 75 μm). The cantilevers were tuned to the same resonance frequency with different sizes of tip mass (2.13 g, 3.84 g, 4.17 g and 5.08 g). The energy harvester voltage outputs were then measured across an electrical load near to the resonance frequency (∼40 Hz) with sinusoidal vibrations under different accelerations. The stress exhibited by the four cantilevers was compared and analyzed and their durability was tested with accelerations up to 2.5 g-forces.

  4. Effect of whole body vibration exercise on muscle strength and proprioception in females with knee osteoarthritis

    DEFF Research Database (Denmark)

    Trans, T; Aaboe, J; Henriksen, M

    2009-01-01

    status was measured using WOMAC. It was found that muscle strength increased significantly (pIsometric knee-extension significantly increased (p=0.021) in VibM compared to Con. TDPM was significantly improved (p=0.033) in VibF compared to Con, while there was a tendency......The purpose of this study was to assess the effect of whole body vibration (WBV) exercise on muscle strength and proprioception in female patients with osteoarthritis in the knee (knee-OA). A single blinded, randomised, controlled trial was performed in an outpatient clinic on 52 female patients...... groups trained twice a week for 8 weeks, with a progressively increasing intensity. The WBV groups performed unloaded static WBV exercise. The following were measured: knee muscle strength (extension/flexion) and proprioception (threshold for detection of passive movement (TDPM)). Self-reported disease...

  5. Effects of whole-body vibration applied to lower extremity muscles during decline bench press exercise.

    Science.gov (United States)

    García-Gutiérrez, M T; Hazell, T J; Marín, P J

    2016-09-07

    To evaluate the effects of whole-body vibration (WBV) on skeletal muscle activity and power performance of the upper body during decline bench press exercise at different loads. Forty-seven healthy young and active male students volunteered. Each performed dynamic decline bench press repetitions with and without WBV (50 Hz, 2.2 mm) applied through a hamstring bridge exercise at three different loads of their 1-repetition maximum (1RM): 30%, 50%, and 70% 1RM. Muscle activity of the triceps brachii (TB), biceps brachii (BB), pectoralis major (PM), and biceps femoris (BF) was measured with surface electromyography electrodes and kinetic parameters of the repetitions were measured with a rotary encoder. WBV increased peak power (PP) output during the 70% 1RM condition (pbench press and this augmentation contributes to an increased peak power at higher loads and increased peak acceleration at lower loads.

  6. Effect of α variation on the vibrational spectrum of Sr2

    International Nuclear Information System (INIS)

    Beloy, K.; Hauser, A. W.; Borschevsky, A.; Schwerdtfeger, P.; Flambaum, V. V.

    2011-01-01

    We consider the effect of α variation on the vibrational spectrum of Sr 2 in the context of a planned experiment to test the stability of μ≡m e /m p using optically trapped Sr 2 molecules [Zelevinsky et al., Phys. Rev. Lett. 100, 043201 (2008); Kotochigova et al., Phys. Rev. A 79, 012504 (2009)]. We find the prospective experiment to be 3 to 4 times less sensitive to fractional variation in α as it is to fractional variation in μ. Depending on the precision ultimately achieved by the experiment, this result may give justification for the neglect of α variation or, alternatively, may call for its explicit consideration in the interpretation of experimental results.

  7. New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2018-01-01

    Full Text Available The question of whether mesospheric OH(v rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(v rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-v vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(v rotational population distributions. Rapid OH(high-v + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-v rotational distributions. The effective rotational temperatures of mesospheric OH(v are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. Dedicated to Tom G. Slanger in celebration of his 5 decades of research in aeronomy.

  8. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  9. Effect of slow, small movement on the vibration-evoked kinesthetic illusion.

    Science.gov (United States)

    Cordo, P J; Gurfinkel, V S; Brumagne, S; Flores-Vieira, C

    2005-12-01

    The study reported in this paper investigated how vibration-evoked illusions of joint rotation are influenced by slow (0.3 degrees /s), small (2-4 degrees ) passive rotation of the joint. Normal human adults (n=15) matched the perceived position of the left ("reference") arm with the right ("matching") arm while vibration (50 pps, 0.5 mm) was applied for 30 s to the relaxed triceps brachii of the reference arm. Both arms were constrained to rotate horizontally at the elbow. Three experimental conditions were investigated: (1) vibration of the stationary reference arm, (2) slow, small passive extension or flexion of the reference arm during vibration, and (3) slow, small passive extension or flexion of the reference arm without vibration. Triceps brachii vibration at 50 pps induced an illusion of elbow flexion. The movement illusion began after several seconds, relatively fast to begin with and gradually slowing down to a stop. On average, triceps vibration produced illusory motion at an average latency of 6.3 s, amplitude of 9.7 degrees , velocity of 0.6 degrees /s, and duration of 16.4 s. During vibration, slow, small ( approximately 0.3 degrees /s, 1.3 degrees ) passive rotations of the joint dramatically enhanced, stopped, or reversed the direction of illusory movement, depending on the direction of the passive joint rotation. However, the subjects' perceptions of these passive elbow rotations were exaggerated: 2-3 times the size of the actual movement. In the absence of vibration, the subjects accurately reproduced these passive joint rotations. We discuss whether the exaggerated perception of slow, small movement during vibration is better explained by contributions of non muscle spindle Ia afferents or by changes in the mechanical transmission of vibration to the receptor.

  10. Vibration of a rotating shaft on hydrodynamic bearings: multi-scales surface effects

    International Nuclear Information System (INIS)

    Rebufa, Jocelyn

    2016-01-01

    The hydrodynamic bearing provides good damping properties in rotating machineries. However, the performances of rotor-bearings systems are highly impacted by nonlinear effects that are difficult to analyze. The rotor dynamics prediction requires advanced models for the flow in the bearings. The surface of the bearings seems to have a strong impact on the lubricant flow, acting on the static and dynamic properties of the rotating parts. This study aims to enhance the simulation of the bearings' surface state effect on the motion of the rotating shaft. The flexible shaft interacts with textured hydrodynamic bearings. Multi-scales homogenization is used in a multi-physics algorithm in order to describe the fluid-structure interaction. Different models are used to account for the cavitation phenomenon in the bearings. Nonlinear harmonic methods allow efficient parametric studies of periodic solutions as well as their stability. Moreover, a test rig has been designed to compare predictions to real measurements. Several textured shaft samples modified with femto-seconds LASER surface texturing are tested. In most cases the experimental study showed similar results than the simulation. Enhancements of the vibration behaviors of the rotor-bearing system have been revealed for certain texturing patterns. The self-excited vibration, also known as 'oil whirl' phenomenon, is stabilized on a wide rotating frequency range. However, the simulation tool does not predict well the enhancements that are observed. Vortices in surface texturing patterns have been revealed numerically with Navier-Stokes equation resolution. These results are opposed to the classical lubrication hypothesis. It is also a possible explanation of the enhancements that are experimentally measured with textured bearings. (author) [fr

  11. Nonadiabatic effects on surfaces: Kohn anomaly, electronic damping of adsorbate vibrations, and local heating of single molecules

    International Nuclear Information System (INIS)

    Kroeger, J

    2008-01-01

    Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered

  12. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    Science.gov (United States)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  13. Experimental investigation of a non-equilibrium expansion flow after hydrogen/air combustion in hypersonic ramjet engines; Experimentelle Untersuchungen zur Nichtgleichgewichtsexpansionsstroemung nach Wasserstoff/Luft-Verbrennung in Hyperschall-Staustrahltriebwerken

    Energy Technology Data Exchange (ETDEWEB)

    Weisgerber, H.

    2002-03-01

    The exhaust gas flow in the model thrust nozzle under investigation is characterized by chemical and thermal (vibrational) non-equilibrium which is experimentally detected by differing rotational and vibrational temperatures in the supersonic region of the nozzle. An analytical method to determine the vibrational relaxation time from expansion experiments is presented and validated using literature data. The nitrogen vibrational temperature at the nozzle exit strongly depends on the relaxation time of collisions with water molecules; for this process a correlation from the literature is selected. The measurements are completed by an experimental and numerical analysis of velocimetry tracer particle motion in flows with strong velocity gradients and an experimental investigation of the causes and effects of laser beam distortions occurring in high enthalpy flows. So a reliable database is presented for a reacting flow in a model nozzle of rectangular cross-section which was already used to validate a CFD code including the model of thermal non-equilibrium effects. (orig.) [German] Die Stroemung eines Abgases in der untersuchten Modellschubduese ist charakterisiert durch chemisches und thermisches (vibratorisches) Nichtgleichgewicht, das durch die Abweichung der Vibrations- von der Rotationstemperatur des Stickstoffmolekuels im Ueberschallteil der Duese experimentell belegt wird. Eine Methode zur analytischen Ermittlung der Vibrationsrelaxationszeit aus Expansionsexperimenten wird vorgestellt und anhand von Literaturdaten validiert. Die entscheidende Groesse fuer die Vibrationstemperatur des Stickstoffs am Duesenaustritt ist die Relaxationszeit beim Stoss mit einem Wassermolekuel; aus den fuer diesen Vorgang vorliegenden Literaturangaben wird eine Korrelation ausgewaehlt. Zur Absicherung der Messungen wird zum einen das Folgeverhalten von zur Geschwindigkeitsmessung zugefuegten Partikeln in Stroemungen mit starken Geschwindigkeitsgradienten experimentell und

  14. Nonequilibrium theory of flame propagation

    International Nuclear Information System (INIS)

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  15. Nonequilibrium two-dimensional Ising model with stationary uphill diffusion

    Science.gov (United States)

    Colangeli, Matteo; Giardinà, Cristian; Giberti, Claudio; Vernia, Cecilia

    2018-03-01

    Usually, in a nonequilibrium setting, a current brings mass from the highest density regions to the lowest density ones. Although rare, the opposite phenomenon (known as "uphill diffusion") has also been observed in multicomponent systems, where it appears as an artificial effect of the interaction among components. We show here that uphill diffusion can be a substantial effect, i.e., it may occur even in single component systems as a consequence of some external work. To this aim we consider the two-dimensional ferromagnetic Ising model in contact with two reservoirs that fix, at the left and the right boundaries, magnetizations of the same magnitude but of opposite signs.We provide numerical evidence that a class of nonequilibrium steady states exists in which, by tuning the reservoir magnetizations, the current in the system changes from "downhill" to "uphill". Moreover, we also show that, in such nonequilibrium setup, the current vanishes when the reservoir magnetization attains a value approaching, in the large volume limit, the magnetization of the equilibrium dynamics, thus establishing a relation between equilibrium and nonequilibrium properties.

  16. Effect of vibrating drawing on the mechanical properties of tungsten wire

    International Nuclear Information System (INIS)

    Shapoval, A.N.; Izotov, V.M.; Mosolev, V.D.

    1986-01-01

    Mechanical properties of tungsten wire produced according to different versions of drawing are investigated. It is established that a wire produced by means of drawing through two draw plates vibrating in contrast phases possesses a lower (by 90 %) ultimate strength and a higher (by 10 %) ductility characteristic as compared with a wire produced without vibration

  17. Vibration Characteristics of a Mistuned Bladed Disk considering the Effect of Coriolis Forces

    Directory of Open Access Journals (Sweden)

    Xuanen Kan

    2016-01-01

    Full Text Available To investigate the influence of Coriolis force on vibration characteristics of mistuned bladed disk, a bladed disk with 22 blades is employed and the effects of different rotational speeds and excitation engine orders on the maximum forced response are discussed considering the effects of Coriolis forces. The results show that if there are frequency veering regions, the largest split of double natural frequencies of each modal family considering the effects of Coriolis forces appears at frequency veering region. In addition, the amplitude magnification factor considering the Coriolis effects is increased by 1.02% compared to the system without considering the Coriolis effects as the rotating speed is 3000 rpm, while the amplitude magnification factor is increased by 2.76% as the rotating speed is 10000 rpm. The results indicate that the amplitude magnification factor may be moderately enhanced with the increasing of rotating speed. Moreover, the position of the maximum forced response of bladed disk may shift from one blade to another with the increasing of the rotational speed, when the effects of Coriolis forces are considered.

  18. Eight-week vibration training of the elbow flexors by force modulation : effects on dynamic and isometric strength

    NARCIS (Netherlands)

    Xu, L.; Cardinale, M.; Rabotti, C.; Beju, B.; Mischi, M.

    2016-01-01

    Vibration exercise (VE) has been suggested as an effective method to improve strength and power capabilities. However, the underlying mechanisms in response to VE are still unclear. A pulley-like VE system, characterized by sinusoidal force applications has been developed and tested for proof of

  19. Simulation of the effects of translational and vibrational energy on H and D atom reactions with HCl and DCl

    International Nuclear Information System (INIS)

    Valencich, T.; Hsieh, J.; Kwan, J.; Stewart, T.; Lenhardt, T.

    1976-01-01

    Agreement with experimental rate measurements for vibrational and translational effects on reactivity are shown to place stringent requirements on empirical potential energy surfaces. Classical trajectory dynamics on various surfaces show that Cl exchange reactions between isotopes of hydrogen require a barrier to agree with laser induced fluorescence experiments as well as molecular beam and thermal data. (orig.) [de

  20. Short-term effects of whole-body vibration on postural control in unilateral chronic stroke patients: preliminary evidence.

    NARCIS (Netherlands)

    Nes, I.J.W. van; Geurts, A.C.H.; Hendricks, H.T.; Duysens, J.E.J.

    2004-01-01

    The short-term effects of whole-body vibration as a novel method of somatosensory stimulation on postural control were investigated in 23 chronic stroke patients. While standing on a commercial platform, patients received 30-Hz oscillations at 3 mm of amplitude in the frontal plane. Balance was

  1. Estimation of the effects of rain-wind induced vibration in the design stage of inclined stay cables

    NARCIS (Netherlands)

    Geurts, C.P.W.; Staalduinen, P.C. van

    1999-01-01

    Rain-wind induced vibration of stay cables is a great concern for the designers of cable stayed bridges. Despite numerous experimental investigations, an accurate quantitative prediction of this effect in the design stage is not feasible without extensive experiments. This paper presents a model to

  2. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  3. Magnetic polarons in a nonequilibrium polariton condensate

    Science.gov (United States)

    Mietki, Paweł; Matuszewski, Michał

    2017-09-01

    We consider a condensate of exciton polaritons in a diluted magnetic semiconductor microcavity. Such a system may exhibit magnetic self-trapping in the case of sufficiently strong coupling between polaritons and magnetic ions embedded in the semiconductor. We investigate the effect of the nonequilibrium nature of exciton polaritons on the physics of the resulting self-trapped magnetic polarons. We find that multiple polarons can exist at the same time, and we derive a critical condition for self-trapping that is different from the one predicted previously in the equilibrium case. Using the Bogoliubov-de Gennes approximation, we calculate the excitation spectrum and provide a physical explanation in terms of the effective magnetic attraction between polaritons, mediated by the ion subsystem.

  4. Surface Effect on Vibration of Y-SWCNTs Embedded on Pasternak Foundation Conveying Viscose Fluid

    Directory of Open Access Journals (Sweden)

    A. Ghorbanpour-Arani

    2015-01-01

    Full Text Available Surface and small scale effects on free transverse vibration of a single-walled carbon nanotube (SWCNT fitted with Y-junction at downstream end conveying viscose fluid is investigated in this article based on Euler-Bernoulli beam (EBB model. Nonlocal elasticity theory is employed to consider small scale effects due to its simplicity and efficiency. The energy method and Hamilton’s principle are used to establish the corresponding motion equation. To discretize and solve the governing equation of motion the Galerkin method is applied. Moreover, the small-size effect, angle of Y-junction, surface layer and Pasternak elastic foundation are studied in detail. Regarding fluid flow effects, it has been concluded that the fluid flow is an effective factor on increasing the instability of Y-SWCNT. Results show that increasing the angle of Y-junction enhances the flutter fluid velocity where the first and second modes are merged. This work could be used in medical application and design of nano-electromechanical devices such as measuring the density of blood flowing through such nanotubes.

  5. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  6. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2007-01-01

    We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate

  7. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  8. An experimental and analytical investigation into the effects of process vibrations on material removal rates during polishing

    Science.gov (United States)

    Mullany, B.; Mainuddin, M.; Williams, W.; Keanini, R.

    2013-06-01

    Experimental testing, using both commercially available polishing machines and a specially built test platform, demonstrates that material removal rates (MRRs) observed during polishing of fused silica are strongly affected by nanometer-scale vibration amplitudes. Specifically, a nanometer level increase in system vibrations can produce MRRs approximately 150% higher than on an inherently smoother running machine. Moreover the higher spatial frequency surface roughness values are little-effected by the spectral content of the polishing machine. Polishing under controlled conditions, using the test platform, shows that for vibration amplitudes, A ≲ 1.6 μm, and over a fairly wide range of vibration frequencies, MRR increases almost linearly with increasing input power. By contrast, for A ≳ 10 μm, MRR exhibits a rapid decay with increasing A. Order of magnitude analyses and physical arguments are presented in order to explain the qualitatively distinct MRR trends observed. In the small-amplitude limit, A ≲ 1.6 μm, two arguments are presented which suggest that the total observed removal rate, MRRtot, reflects the superposed action of chemical-mechanical removal, MRRcm, and vibration-driven, flow-induced removal, MRRflow, i.e., MRRtot=MRRcm+MRRflow. The analyses further indicate that MRRflow primarily reflects cyclic viscous shears and pressure gradients extant within the thin, non-Newtonian slurry film that exists between the polishing tool and workpiece. Shears and pressure gradients, and corresponding flow-induced MRRs, are, in turn, found to scale as √A /do ω, where A is the vibration amplitude, do is the characteristic gap thickness between the tool and workpiece, and ω is the vibration frequency. In the large-amplitude limit, A ≳ 5 μm, experimental measurements and a simple scaling argument show that the polishing slurry film becomes thick enough that the workpiece and polishing tool lose direct contact. In this limit, observed MRRs thus reflect

  9. Research on Effective Electric-Mechanical Coupling Coefficient of Sandwich Type Piezoelectric Ultrasonic Transducer Using Bending Vibration Mode

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2015-01-01

    Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.

  10. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  11. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  12. Effects of surface topography and vibrations on wetting: Superhydrophobicity, icephobicity and corrosion resistance

    Science.gov (United States)

    Ramachandran, Rahul

    Concrete and metallic materials are widely used in construction and water industry. The interaction of both these materials with water and ice (or snow) produces undesirable results and is therefore of interest. Water that gets absorbed into the pores of dry concrete expands on freezing and can lead to crack formation. Also, the ice accretion on concrete surfaces such as roadways can have disastrous consequence. Metallic components used in the water industry undergo corrosion due to contact with aqueous corrosive solutions. Therefore, it is desirable to make concrete water/ice-repellent, and to make metallic surfaces corrosion-resistant. Recent advances in micro/nanotechnology have made it possible to design functional micro/nanostructured surfaces with micro/nanotopography providing low adhesion. Some examples of such surfaces are superhydrophobic surfaces, which are extremely water repellent, and icephobic surfaces, which have low ice adhesion, repel incoming water droplets before freezing, or delay ice nucleation. This dissertation investigates the effects of surface micro/nanotopography and small amplitude fast vibrations on the wetting and adhesion of concrete with the goal of producing hydrophobic and icephobic concrete, and on the wetting of metallic surfaces to prevent corrosion. The relationship between surface micro/nanotopography and small fast vibrations is established using the method of separation of motions. Both these small scale effects can be substituted by an effective force or energy. The structure-property relationships in materials and surfaces are established. Both vibrations as well as surface micro/nanopatterns can affect wetting properties such as contact angle and surface free energy. Hydrophobic engineered cementitious composite samples are produced by controlling their surface topography and surface free energy. The surface topography is controlled by varying the concrete mixture composition. The surface free energy of concrete is

  13. Effect of Location of Delamination on Free Vibration of Cross-Ply Conical Shells

    Directory of Open Access Journals (Sweden)

    Sudip Dey

    2012-01-01

    Full Text Available Location of delamination is a triggering parameter for structural instability of laminated composites. In this paper, a finite element method is employed to determine the effects of location of delamination on free vibration characteristics of graphite-epoxy cross-ply composite pre-twisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting Coriolis effect for moderate rotational speeds. The formulation is exercised by using an eight noded isoparametric plate bending element based on Mindlin's theory. Multi-point constraint algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Finite element codes are developed to obtain the numerical results concerning the effects of location of delamination, twist angle and rotational speed on the natural frequencies of cross-ply composite shallow conical shells. The mode shapes are also depicted for a typical laminate configuration. Numerical results obtained from parametric studies of both symmetric and anti-symmetric cross-ply laminates are the first known non-dimensional natural frequencies for the type of analyses carried out here.

  14. Vibrations and spatial patterns in biomimetic surfaces: using the shark-skin effect to control blood clotting.

    Science.gov (United States)

    Ramachandran, Rahul; Maani, Nazanin; Rayz, Vitaliy L; Nosonovsky, Michael

    2016-08-06

    We study the effect of small-amplitude fast vibrations and small-amplitude spatial patterns on various systems involving wetting and liquid flow, such as superhydrophobic surfaces, membranes and flow pipes. First, we introduce a mathematical method of averaging the effect of small spatial and temporal patterns and substituting them with an effective force. Such an effective force can change the equilibrium state of a system as well as a phase state, leading to surface texture-induced and vibration-induced phase control. Vibration and patterns can effectively jam holes in vessels with liquid, separate multi-phase flow, change membrane properties, result in propulsion and locomotion and lead to many other multi-scale, nonlinear effects including the shark-skin effect. We discuss the application of such effects to blood flow for novel biomedical 'haemophobic' applications which can prevent blood clotting and thrombosis by controlling the surface pattern at a wall of a vessel (e.g. a catheter or stent).This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  15. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  16. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients

    International Nuclear Information System (INIS)

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations

  17. Optical orientation of the homogeneous nonequilibrium Bose-Einstein condensate of exciton polaritons

    Science.gov (United States)

    Korenev, V. L.

    2012-07-01

    A simple model, describing the steady state of the nonequilibrium polarization of a homogeneous Bose-Einstein condensate of exciton polaritons, is considered. It explains the suppression of spin splitting of a nonequilibrium polariton condensate in an external magnetic field, the linear polarization, the linear-to-circular polarization conversion, and the unexpected sign of the circular polarization of the condensate all on equal footing. It is shown that inverse effects are possible, to wit, spontaneous circular polarization and the enhancement of spin splitting of a nonequilibrium condensate of polaritons.

  18. Analysis of nonlinear vibrations and stability of rotating asymmetrical nano-shafts incorporating surface energy effects

    Science.gov (United States)

    Ghodousi, Maryam; Shahgholi, Majid; Payganeh, Gholamhassan

    2018-03-01

    The objective of the present work is to investigate the nonlinear vibrations of the rotating asymmetrical nano-shafts by considering surface effect. In order to compute the surface stress tensor, the surface elasticity theory is used. The governing nonlinear equations of motion are obtained with the aid of variational approach. Bubnov-Galerkin is a very effective method for exploiting the reduced-order model of the equations of motion. The averaging method is employed to analyze the reduced-order model of the system. For this purpose, the well-known Van der Pol transformation in the complex form and angle-action transformation are utilized. The effect of surface stress on the forward and backward speeds, steady state responses of the system, fixed points, close orbits and stability of the solutions is examined. The preliminary results of the research show that the absolute values of forward and backward whirling speeds in the presence of surface effect with positive residual surface stress are higher than those of regarding the system without surface effect and in the presence of surface effect with negative residual surface stress. In addition, it is seen that the undamped rotating asymmetrical nano-shaft, for specified value of detuning parameter, in the absence or presence of surface effect has various number of stable and unstable periodic solutions. Besides, there is different number of separatrix (homoclinic orbit type). Furthermore, bifurcations, number of solutions and their stability for damped rotating asymmetrical nano-shaft are investigated. Also, the above results have been obtained for rotating symmetrical nano-shaft.

  19. INTRODUCTION: Nonequilibrium Processes in Plasmas

    Science.gov (United States)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early

  20. On microscopic stress nonequilibrium: Application to the magnetopause

    International Nuclear Information System (INIS)

    Wu, Z.J.

    1986-01-01

    The main purpose of this paper is to propose the concept of microscopic stress nonequilibrium (or simply micro-nonequilibrium) in plasma physics. This concept arises as a consequence of the insolubility of the steady-state Vlasov-Maxwell equations (or the kinetic-field equations in general) under certain conditions. In what follows: (1) A general stress equilibrium condition for tangential plasma discontinuities is derived from the Maxwell tensor and the plasma stress tensor. (2) An equivalent equilibrium condition, which takes the form of equations of motion of a ''fictitious particle'', is also derived from the above condition. (3) A general solution of the distribution functions is derived according to Jeans's theorem or Liouville's theorem for the solar wind particles in a tangential magnetopause. (4) This solution is applied to the equilibrium condition to investigate the equilibrium state of the tangential magnetopause. Both Parker's tail-region and Wu's dawn-side ''nonequilibria''are confirmed to be micro-nonequilibria because of the violation of the above equilibrium condition. (5) The effects of various factors in micro-nonequilibria are discussed. It is found that randomly trapped particles and inwards electric field in the magnetopause layer generally cannot relieve the dawn-side or tail-region micro-nonequilibria; and that a northward magnetic field in the solar wind generally can suppress the dawn-side nonequilibrium, while a southward field can jeopardize a dusk-side Vlasov equilibrium. (6) Discussion: The concept of ''micro-nonequilibrium'' may become of importance in basic plasma dynamics. It is also possible that the micro-nonequilibrium may play a fundamental role in solar wind particles entering the magnetopause and in magnetospheric substorms

  1. Various performance-enhancing effects from the same intensity of whole-body vibration training

    Directory of Open Access Journals (Sweden)

    Paohung Chung

    2017-09-01

    Conclusion: All frequency and amplitude settings in the 8-week whole-body vibration training increased muscle strength, but different settings resulted in various neuromuscular adaptations despite the same intensity.

  2. NATO Advanced Study Institute on Nonequilibrium Phonon Dynamics

    CERN Document Server

    1985-01-01

    Phonons are always present in the solid state even at an absolute temperature of 0 K where zero point vibrations still abound. Moreover, phonons interact with all other excitations of the solid state and, thereby, influence most of its properties. Historically experimental information on phonon transport came from measurements of thermal conductivity. Over the past two decades much more, and much more detailed, information on phonon transport and on many of the inherent phonon interaction processes have come to light from experiments which use nonequilibrium phonons to study their dynamics. The resultant research field has most recently blossomed with the development of ever more sophisticated experimental and theoretical methods which can be applied to it. In fact, the field is moving so rapidly that new members of the research community have difficulties in keeping up to date. This NATO Advanced Study Institute (ASI) was organized with the objective of overcoming the information barrier between those expert...

  3. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  4. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  5. EFFECTS OF WHOLE BODY VIBRATION ON STRENGTH AND JUMPING PERFORMANCE IN VOLLEYBALL AND BEACH VOLLEYBALL PLAYERS

    Science.gov (United States)

    Zmijewski, P.; Jimenez-Olmedo, J.M.; Jové-Tossi, M.A.; Martínez-Carbonell, A.; Suárez-Llorca, C.; Andreu-Cabrera, E.

    2014-01-01

    The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (pvolleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players. PMID:25187676

  6. Investigations on the Effects of Vortex-Induced Vibration with Different Distributions of Lorentz Forces

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2017-01-01

    Full Text Available The control of vortex-induced vibration (VIV in shear flow with different distributions of Lorentz force is numerically investigated based on the stream function–vorticity equations in the exponential-polar coordinates exerted on moving cylinder for Re = 150. The cylinder motion equation coupled with the fluid, including the mathematical expressions of the lift force coefficient C l , is derived. The initial and boundary conditions as well as the hydrodynamic forces on the surface of cylinder are also formulated. The Lorentz force applied to suppress the VIV has no relationship with the flow field, and involves two categories, i.e., the field Lorentz force and the wall Lorentz force. With the application of symmetrical Lorentz forces, the symmetric field Lorentz force can amplify the drag, suppress the flow separation, decrease the lift fluctuation, and then suppress the VIV while the wall Lorentz force decreases the drag only. With the application of asymmetrical Lorentz forces, besides the above-mentioned effects, the field Lorentz force can increase additional lift induced by shear flow, whereas the wall Lorentz force can counteract the additional lift, which is dominated on the total effect.

  7. Effects Of Whole Body Vibration On Vertical Jump Performance Following Exercise Induced Muscle Damage

    Directory of Open Access Journals (Sweden)

    Nicole C. Dabbs

    2014-01-01

    Full Text Available Enhancing vertical jump performance is critical for many sports. Following high intensity training, individuals often experience exercise induced muscle damage (EIMD. Many recovery modalities have been tested with conflicting results. The purpose of this investigation was to determine the effect of whole-body vibration (WBV on vertical jump performance following EIMD. 27 females volunteered for 7 sessions and were randomly assigned to a treatment or control group and administered each testing day. Vertical jump performance was assessed via vertical jump height (VJH, peak power output (PPO, rate of force development (RFD, relative ground reaction force (GRFz, and peak activation ratio of the vastus medialis (VM via electromyography (EMG before and after 3 days of EIMD via split squats. Two testing sets were collected each day, consisting of pre measures followed by WBV or control, and then post second measures. A 2x8 (group x time mixed factor analysis of variance (ANOVA was conducted for each variable. No significant interactions or group differences were found in any variable. Significant main effects for time were found in any variable, indicating performance declined following muscle damage. These results indicate that WBV does not aid in muscle recovery or vertical jump performance following EIMD.

  8. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia.

    Science.gov (United States)

    Hoffmann, Daniel B; Griesel, Markus H; Brockhusen, Bastian; Tezval, Mohammad; Komrakova, Marina; Menger, Bjoern; Wassmann, Marco; Stuermer, Klaus Michael; Sehmisch, Stephan

    2016-01-01

    Background. 8-Prenylnaringenin (8-PN) is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α), which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV). Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc) of 8-PN (1.77 mg/kg) for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm). Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones.

  9. Effects of 8-Prenylnaringenin and Whole-Body Vibration Therapy on a Rat Model of Osteopenia

    Directory of Open Access Journals (Sweden)

    Daniel B. Hoffmann

    2016-01-01

    Full Text Available Background. 8-Prenylnaringenin (8-PN is the phytoestrogen with the highest affinity for estrogen receptor-α (ER-α, which is required to maintain BMD. The osteoprotective properties of 8-PN have been demonstrated previously in tibiae. We used a rat osteopenia model to perform the first investigation of 8-PN with whole-body vertical vibration (WBVV. Study Design. Ovariectomy was performed on 52 of 64 Sprague-Dawley rats. Five weeks after ovariectomy, one group received daily injections (sc of 8-PN (1.77 mg/kg for 10 weeks; a second group was treated with both 8-PN and WBVV (twice a day, 15 min, 35 Hz, amplitude 0.47 mm. Other groups received either only WBVV or no treatment. Methods. The rats were sacrificed 15 weeks after ovariectomy. Lumbar vertebrae and femora were removed for biomechanical and morphological assessment. Results. 8-PN at a cancer-safe dose did not cause fundamental improvements in osteoporotic bones. Treatment with 8-PN caused a slight increase in uterine wet weight. Combined therapy using WBVV and 8-PN showed no significant improvements in bone structure and biomechanical properties. Conclusion. We cannot confirm the osteoprotective effects of 8-PN at a cancer-safe dose in primary affected osteoporotic bones. Higher concentrations of 8-PN are not advisable for safety reasons. Adjunctive therapy with WBVV demonstrates no convincing effects on bones.

  10. Effects of immobilization and whole-body vibration on rat serum Type I collagen turnover.

    Science.gov (United States)

    Dönmez, Gürhan; Doral, Mahmut Nedim; Suljevic, Şenay; Sargon, Mustafa Fevzi; Bilgili, Hasan; Demirel, Haydar Ali

    2016-08-01

    The aim of this study was to investigate the effects of short-term, high-magnitude whole-body vibration (WBV) on serum type I collagen turnover in immobilized rats. Thirty Wistar albino rats were randomly divided into the following 5 groups: immobilization (IS), immobilization + remobilization (IR), immobilization + WBV (IV), control (C), and WBV control (CV). Immobilization was achieved by casting from the crista iliaca anterior superior to the lower part of the foot for 2 weeks. The applied WBV protocol involved a frequency of 45 Hz and amplitude of 3 mm for 7 days starting a day after the end of the immobilization period. Serum type I collagen turnover markers were measured by using ELISA kits. Serum NH2-terminal propeptide of type I collagen (PINP) levels were significantly lower in the immobilization groups (p immobilization groups. Similarly, serum COOH-terminal telopeptide of type I collagen (CTX) levels were higher in the WBV controls than their own controls (p Immobilization led to deterioration of tendon tissue, as observed by histopathological analysis with a transmission electron microscope. Although 1 week of WBV had a positive effect on type I collagen turnover in controls, it is not an efficient method for repairing tissue damage in the early stage following immobilization. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  11. Effect of rotary inertia of concentrated masses on the natural vibration of fluid conveying pipes

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    1999-01-01

    Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are π, 2π, and 3π for the simply supported pipe and 2π, 8.99 and 12.57 for the clamped-clamped pipe. (author). 16 refs., 7 figs., 3 tabs

  12. Measurement of the effect of an oil additive on vibration, noise and smokiness

    International Nuclear Information System (INIS)

    Dimitrovski, M.

    1999-01-01

    The contents of this article provides a analysis of vibration, noise and smokiness in compression ignition engines. Further explanation has been given on types of lubrication and oils with their characteristic. Series of experiments has been conducted on vibration. Noise and smokiness before and after adding additive. Presentation has been given of data obtained from examination of the vehicle. At the end comparison of data analysis and conclusion has been done. (Author)

  13. Effect of Attitudinal, Situational and Demographic Factors on Annoyance Due to Environmental Vibration and Noise from Construction of a Light Rapid Transit System

    Directory of Open Access Journals (Sweden)

    Daniel Wong-McSweeney

    2016-12-01

    Full Text Available The aim of this paper is to determine what non-exposure factors influence the relationship between vibration and noise exposure from the construction of a Light Rapid Transit (LRT system and the annoyance of nearby residents. Noise and vibration from construction sites are known to annoy residents, with annoyance increasing as a function of the magnitude of the vibration and noise. There is not a strong correlation between exposure and levels of annoyance suggesting that factors not directly related to the exposure may have an influence. A range of attitudinal, situational and demographic factors are investigated with the aim of understanding the wide variation in annoyance for a given vibration exposure. A face-to-face survey of residents (n = 350 near three sites of LRT construction was conducted, and responses were compared to semi-empirical estimates of the internal vibration within the buildings. It was found that annoyance responses due to vibration were strongly influenced by two attitudinal variables, concern about property damage and sensitivity to vibration. Age, ownership of the property and the visibility of the construction site were also important factors. Gender, time at home and expectation of future levels of vibration had much less influence. Due to the measurement methods used, it was not possible to separate out the effects of noise and vibration on annoyance; as such, this paper focusses on annoyance due to vibration exposure. This work concludes that for the most cost-effective reduction of the impact of construction vibration and noise on the annoyance felt by a community, policies should consider attitudinal factors.

  14. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    Science.gov (United States)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  15. Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear

    Science.gov (United States)

    Melhus, Martin Frederic

    2011-07-01

    Granular materials exhibit bulk properties that are distinct from conventional solids, liq- uids, and gases, due to the dissipative nature of the inter-granular forces. Understanding the fundamentals of granular materials draws upon and gives insight into many fields at the current frontiers of physics, such as plasticity of solids, fracture and friction, com- plex systems such as colloids, foams and suspensions, and a variety of biological systems. Particulate flows are widespread in geophysics, and are also essential to many industries. Despite the importance of these phenomena, we lack a theoretical model that explains most behaviors of granular materials. Since granular assemblies are highly dissipative, they are often far from mechanical equilibrium, making most classical analyses inappli- cable. A theory for dilute granular systems exists, but for dense granular systems (by far the majority of granular systems in the real world) no comparable theory is accepted. We approach this problem by examining the fluidization, or transition from solid to liquid, in dense granular systems. In this study, the separate effects of random noise and vibration on the static to flowing transition of a dense granular assembly under planar shear is studied numerically using soft contact particle dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise or vibration, and determine the statistics of the shear required for the onset of flow. We find that the applied power is the key parameter in determining the magnitude of the effects of the noise or vibration, with vibration frequency also having an influence. Similarities and differences between noise and vibration are determined, and the results compare favorably with a two phase model for dense granular flow.

  16. Nanoscale hotspots due to nonequilibrium thermal transport

    International Nuclear Information System (INIS)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of the additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  17. Effect of Tendon Vibration on Hemiparetic Arm Stability in Unstable Workspaces.

    Directory of Open Access Journals (Sweden)

    Megan O Conrad

    Full Text Available Sensory stimulation of wrist musculature can enhance stability in the proximal arm and may be a useful therapy aimed at improving arm control post-stroke. Specifically, our prior research indicates tendon vibration can enhance stability during point-to-point arm movements and in tracking tasks. The goal of the present study was to investigate the influence of forearm tendon vibration on endpoint stability, measured at the hand, immediately following forward arm movements in an unstable environment. Both proximal and distal workspaces were tested. Ten hemiparetic stroke subjects and 5 healthy controls made forward arm movements while grasping the handle of a two-joint robotic arm. At the end of each movement, the robot applied destabilizing forces. During some trials, 70 Hz vibration was applied to the forearm flexor muscle tendons. 70 Hz was used as the stimulus frequency as it lies within the range of optimal frequencies that activate the muscle spindles at the highest response rate. Endpoint position, velocity, muscle activity and grip force data were compared before, during and after vibration. Stability at the endpoint was quantified as the magnitude of oscillation about the target position, calculated from the power of the tangential velocity data. Prior to vibration, subjects produced unstable, oscillating hand movements about the target location due to the applied force field. Stability increased during vibration, as evidenced by decreased oscillation in hand tangential velocity.

  18. Study on the Effect of Reciprocating Pump Pipeline System Vibration on Oil Transportation Stations

    Directory of Open Access Journals (Sweden)

    Hongfang Lu

    2018-01-01

    Full Text Available Due to the periodic movement of the piston in the reciprocating pump, the fluid will cause a pressure pulsation, and the resulting pipeline vibration may lead to instrument distortion, pipe failure and equipment damage. Therefore, it is necessary to study the vibration phenomena of reciprocating pump pipelines based on pressure pulsation theory. This paper starts from the reciprocating pump pipe pressure pulsation caused by a fluid, pressure pulsation in the pipeline and the unbalanced exciting force is calculated under the action of the reciprocating pump. Then, the numerical simulation model is established based on the pipe beam model, and the rationality of the numerical simulation method is verified by indoor experiments. Finally, a case study is taken as an example to analyze the vibration law of the pipeline system, and vibration reduction measures are proposed. The following main conclusions are drawn from the analysis: (1 unbalanced exciting forces are produced in the elbows or tee joints, and it can also influence the straight pipe to different levels; (2 in actual engineering, it should be possible to prevent the simultaneous settlement of multiple places; (3 the vibration amplitude increases with the pipe thermal stress, and when the oil temperature is higher than 85 °C, it had a greater influence on the vertical vibration amplitude of the pipe.

  19. Effects of wrist tendon vibration on arm tracking in people poststroke.

    Science.gov (United States)

    Conrad, Megan O; Scheidt, Robert A; Schmit, Brian D

    2011-09-01

    The goal of this study was to evaluate the influence of wrist tendon vibration on a multijoint elbow/shoulder tracking task. We hypothesized that tendon vibration applied at the wrist musculature would improve upper arm tracking performance in chronic stroke survivors through increased, Ia-afferent feedback to the central nervous system (CNS). To test this hypothesis, 10 chronic stroke and 5 neurologically intact subjects grasped the handle of a planar robot as they tracked a target through a horizontal figure-8 pattern. A total of 36 trials were completed by each subject. During the middle trials, 70-Hz tendon vibration was applied at the wrist flexor tendons. Position, velocity, and electromyography data were evaluated to compare the quality of arm movements before, during, and after trials with concurrent vibration. Despite tracking a target that moved at a constant velocity, hand trajectories appeared to be segmented, displaying alternating intervals of acceleration and deceleration. Segments were identifiable in tangential velocity data as single-peaked, bell-shaped speed pulses. When tendon vibration was applied at the wrist musculature, stroke subjects experienced improved tracking performance in that hand path lengths and peak speed variability decreased, whereas movement smoothness increased. These performance improvements were accompanied by decreases in the muscle activity during movement. Possible mechanisms behind improved movement control in response to tendon vibration may include improved sensorimotor integration or improved cortical modulation of spinal reflex activity.

  20. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    Science.gov (United States)

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  1. Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets

    International Nuclear Information System (INIS)

    Williams, K.A.

    1984-01-01

    The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced

  2. Effective seat-to-head transmissibility in whole-body vibration: Effects of posture and arm position

    Science.gov (United States)

    Rahmatalla, Salam; DeShaw, Jonathan

    2011-12-01

    Seat-to-head transmissibility is a biomechanical measure that has been widely used for many decades to evaluate seat dynamics and human response to vibration. Traditionally, transmissibility has been used to correlate single-input or multiple-input with single-output motion; it has not been effectively used for multiple-input and multiple-output scenarios due to the complexity of dealing with the coupled motions caused by the cross-axis effect. This work presents a novel approach to use transmissibility effectively for single- and multiple-input and multiple-output whole-body vibrations. In this regard, the full transmissibility matrix is transformed into a single graph, such as those for single-input and single-output motions. Singular value decomposition and maximum distortion energy theory were used to achieve the latter goal. Seat-to-head transmissibility matrices for single-input/multiple-output in the fore-aft direction, single-input/multiple-output in the vertical direction, and multiple-input/multiple-output directions are investigated in this work. A total of ten subjects participated in this study. Discrete frequencies of 0.5-16 Hz were used for the fore-aft direction using supported and unsupported back postures. Random ride files from a dozer machine were used for the vertical and multiple-axis scenarios considering two arm postures: using the armrests or grasping the steering wheel. For single-input/multiple-output, the results showed that the proposed method was very effective in showing the frequencies where the transmissibility is mostly sensitive for the two sitting postures and two arm positions. For multiple-input/multiple-output, the results showed that the proposed effective transmissibility indicated higher values for the armrest-supported posture than for the steering-wheel-supported posture.

  3. Statistical thermodynamics of nonequilibrium processes

    CERN Document Server

    Keizer, Joel

    1987-01-01

    The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo­ dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com­ bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...

  4. Nonequilibrium fluctuations in a resistor.

    Science.gov (United States)

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  5. Linewidths in OCS: Isotope effects, vibrational effects, temperature dependence, and T1/T2

    International Nuclear Information System (INIS)

    Creswell, R.A.; Brown, S.R.; Schwendeman, R.H.

    1976-01-01

    A computer-controlled microwave spectrometer has been used to record the frequency dependence of the absorption of the J=2reverse arrow1 transition of OCS under varying conditions of pressure, temperature, and microwave power. From least-squares fits of the data to Lorentzian line shapes, a variety of linewidths and linewidth parameters have been deduced. The linewidth parameter for the J=2reverse arrow1 transition of 16 O 12 C 32 S in the ground vibrational state has been determined to be 6.03+-0.05 MHz/torr. The ratios of linewidth parameters for this transition for several other species to that for the ground state of 16 O 12 C 32 S are: 16 O 12 C 34 S, ground state, 0.987+-0.003; 16 O 13 C 32 S, ground state, 0.991+-0.005; 18 O 12 C 32 S, ground state, 0.966+-0.018; 16 O 12 C 32 S, v 3 =1, 1.024+-0.026; 16 O 12 C 32 S, v 2 /subl/=2degree, 0.978+-0.003. The linewidth parameter for the ground state of the parent species was determined to be inversely proportional to the absolute temperature in the range 297--346 K. From comparison of theoretical and experimental power-broadened lineshapes it is shown that T 1 /T 2 =1.04+-0.10 for the transition

  6. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    Science.gov (United States)

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that

  7. Perturbative treatment of anharmonic vibrational effects on bond distances: an extended Langevin dynamics method.

    Science.gov (United States)

    Shen, Tonghao; Su, Neil Qiang; Wu, Anan; Xu, Xin

    2014-03-05

    In this work, we first review the perturbative treatment of an oscillator with cubic anharmonicity. It is shown that there is a quantum-classical correspondence in terms of mean displacement, mean-squared displacement, and the corresponding variance in the first-order perturbation theory, provided that the amplitude of the classical oscillator is fixed at the zeroth-order energy of quantum mechanics EQM (0). This correspondence condition is realized by proposing the extended Langevin dynamics (XLD), where the key is to construct a proper driving force. It is assumed that the driving force adopts a simple harmonic form with its amplitude chosen according to EQM (0), while the driving frequency chosen as the harmonic frequency. The latter can be improved by using the natural frequency of the system in response to the potential if its anharmonicity is strong. By comparing to the accurate numeric results from discrete variable representation calculations for a set of diatomic species, it is shown that the present method is able to capture the large part of anharmonicity, being competitive with the wave function-based vibrational second-order perturbation theory, for the whole frequency range from ∼4400 cm(-1) (H2 ) to ∼160 cm(-1) (Na2 ). XLD shows a substantial improvement over the classical molecular dynamics which ceases to work for hard mode when zero-point energy effects are significant. Copyright © 2013 Wiley Periodicals, Inc.

  8. Simulation analyses of vibration tests on pile-group effects using blast-induced ground motions

    International Nuclear Information System (INIS)

    Takayuki Hashimoto; Kazushige Fujiwara; Katsuichirou Hijikata; Hideo Tanaka; Kohji Koyamada; Atsushi Suzuki; Osamu Kontani

    2005-01-01

    Extensive vibration tests have been performed on pile-supported structures at a large-scale mining site to promote better understanding of the dynamic behavior of pile-supported structures, especially pile-group effects. Two test structures were constructed in an excavated pit. One structure was supported on 25 tubular steel piles and the other on 4. The test pit was backfilled with sand of an appropriate grain size distribution to ensure good compaction. Ground motions induced by large-scale blasting operations were used as excitation forces for the tests. The 3D Finite Element Method (3D FEM)and a Genetic Algorithm (GA) were employed to identify the shear wave velocities and damping factors of the compacted sand, especially of the surface layer. A beam-interaction spring model was employed to simulate the test results of the piles and the pile-supported structures. The superstructure and pile foundation were modeled by a one-stick model comprising lumped masses and beam elements. The pile foundations were modeled just as they were, with lumped masses and beam elements to simulate the test results showing that, for the 25-pile structure, piles at different locations showed different responses. It was confirmed that the analysis methods employed were very useful for evaluating the nonlinear behavior of the soil-pile-structure system, even under severe ground motions. (authors)

  9. Safety and Effectiveness of Vibration Massage by Deep Oscillations: A Prospective Observational Study

    Directory of Open Access Journals (Sweden)

    Karin Kraft

    2013-01-01

    Full Text Available The objective of this study is to assess the safety of treatment with vibration massage using a deep oscillation device and the effects on symptom severity and quality of life in patients with primary fibromyalgia syndrome (FMS. Outpatients with FMS performed an observational prospective study with visits 2–4 weeks after the last treatment (control and after further 2 months (follow-up. Patients were treated with 10 sessions of 45 min deep oscillation massage, 2/week. Primary outcome parameters were safety and tolerability (5-level Likert scale (1 = very good (after each treatment session and at control visit. Secondary outcome parameters were symptom severity (Fibromyalgia Impact Questionnaire (FIQ, pain and quality of life (SF-36. Seventy patients (97.1% females were included. At control visit, 41 patients (58.6% reported 63 mild and short-lasting adverse events, mainly worsening of prevalent symptoms such as pain and fatigue. Tolerability was rated as 1.8 (95% confidence interval: 1.53; 2.07. Symptoms and quality of life were significantly improved at both control and follow-up visits (at least P<0.01. In conclusion, deep oscillation massage is safe and well tolerated in patients with FMS and might improve symptoms and quality of life rather sustained.

  10. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates.

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M; Bačić, Zlatko

    2018-04-14

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H 2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H 2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H 2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H 2 inside a hydrate domain is assumed to be pairwise additive. The H 2 -H 2 O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H 2 , v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H 2 -H 2 O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H 2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H 2 change very little with the domain size, unlike the H 2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H 2 O molecules in the first three complete hydration shells around H 2 .

  11. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  12. Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.

    Science.gov (United States)

    Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V

    2015-09-01

    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.

  13. Effect of foundation flexibility on the vibrational stability of the National Ignition Facility optical system support structures

    International Nuclear Information System (INIS)

    McCallen, D.

    1997-01-01

    Alignment requirements for the National Ignition Facility (NIF) optical components will require a number of support structures which minimize the system displacements and deformations. The stringent design requirements for this facility will result in a system in which vibrations due to ambient environmental loads (e.g. foundation motion due to typical traffic loads, microseisms or nearby equipment) will have a significant, and perhaps predominant, influence on the design of the supporting structures. When considering the total deformations and displacements of the structural systems, the contribution of the foundation to the overall system flexibility must be addressed. Classical fixed-base structural analyses, which are predicated on an assumption of an infinitely rigid foundation system, neglect the influence of foundation flexibility and for the vibration regime in which the NIF structures reside, may result in significant underestimation of the system ambient vibration displacements. In the work described herein, parametric studies were performed in order to understand the potential contributions of soil-structure- interaction (SSI) to optical system displacements. Time domain finite element analyses were employed to quantify the effect of wave scattering by the mat foundation and the effects of inertial SSI due to the rocking of the massive shear wall support structures. A simplified procedure is recommended for accounting for SSI effects in the design of the special equipment structures. The simplified approach consists of applying a scale factor to displacements obtained from fixed base analyses to approximately account for the effects of soil-structure interaction and variable support input motion

  14. Effects of whole-body vibration on balance and mobility in institutionalized older adults: a randomized controlled trial.

    Science.gov (United States)

    Lam, Freddy Mh; Chan, Philip Fl; Liao, L R; Woo, Jean; Hui, Elsie; Lai, Charles Wk; Kwok, Timothy Cy; Pang, Marco Yc

    2018-04-01

    To investigate whether a comprehensive exercise program was effective in improving physical function among institutionalized older adults and whether adding whole-body vibration to the program conferred additional therapeutic benefits. A single-blinded randomized controlled trial was conducted. This study was carried out in residential care units. In total, 73 older adults (40 women, mean age: 82.3 ± 7.3 years) were enrolled into this study. Participants were randomly allocated to one of the three groups: strength and balance program combined with whole-body vibration, strength and balance program without whole-body vibration, and social and recreational activities consisting of upper limb exercises only. All participants completed three training sessions per week for eight weeks. Assessment of mobility, balance, lower limb strength, walking endurance, and self-perceived balance confidence were conducted at baseline and immediately after the eight-week intervention. Incidences of falls requiring medical attention were recorded for one year after the end of the training period. A significant time × group interaction was found for lower limb strength (five-times-sit-to-stand test; P = 0.048), with the exercise-only group showing improvement (pretest: 35.8 ± 16.1 seconds; posttest: 29.0 ± 9.8 seconds), compared with a decline in strength among controls (pretest: 27.1 ± 10.4 seconds; posttest: 28.7 ± 12.3 seconds; P = 0.030). The exercise with whole-body vibration group had a significantly better outcome in balance confidence (pretest: 39.2 ± 29.0; posttest: 48.4 ± 30.6) than the exercise-only group (pretest: 35.9 ± 24.8; posttest: 38.2 ± 26.5; P = 0.033). The exercise program was effective in improving lower limb strength among institutionalized older adults but adding whole-body vibration did not enhance its effect. Whole-body vibration may improve balance confidence without enhancing actual balance performance.

  15. Dynamics of nonequilibrium conductivity of dielectrics with polaration properties controlled by in ection

    International Nuclear Information System (INIS)

    Arkhipov, V.I.; Rudenko, A.I.

    1979-01-01

    The effect of changes of radiation stimulation permittivity on nonequilibrium conductivity of dielectrics and high-resistance conductors in a radiation field has been studied theoretically. The plane-parallel sample under the constant voltage has been irradiated by penetrating radiation. The uniform radiation caused the transfer the current carriers from traps to the conduction band. The dependence of permittivity on charged traps concentration is shown to lead to negative nonequilibrium conductivity of high-resistance materials

  16. Optical orientation of the homogeneous non-equilibrium Bose-Einstein condensate of bright excitons (polaritons)

    OpenAIRE

    Korenev, V. L.

    2011-01-01

    A simple model, describing the dynamics of the non-equilibrium pseudospin of a homogeneous Bose-Einstein condensate of exciton polaritons, has been formulated. It explains the suppression of spin splitting of a non-equilibrium polariton condensate in an external magnetic field, the optical alignment, and the conversion of alignment into orientation of polaritons. It has been shown that inverse effects are possible, to wit, the spontaneous circular polarization and the enhancement of spin spli...

  17. Non-equilibrium dynamics of open systems and fluctuation-dissipation theorems

    Czech Academy of Sciences Publication Activity Database

    Špička, Václav; Velický, B.; Kalvová, Anděla

    2017-01-01

    Roč. 65, 6-8 (2017), s. 1-23, č. článku 1700032. ISSN 0015-8208 Institutional support: RVO:68378271 Keywords : non-equilibrium * fluctuation-dissipation theorems * non-equilibrium Greens function * transient and steady state magnetic current * molecular bridge Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.434, year: 2016

  18. Metabolic effect of bodyweight whole-body vibration in a 20-min exercise session: A crossover study using verified vibration stimulus.

    Directory of Open Access Journals (Sweden)

    Chiara Milanese

    Full Text Available The ability of whole body vibration (WBV to increase energy expenditure (EE has been investigated to some extent in the past using short-term single exercises or sets of single exercises. However, the current practice in WBV training for fitness is based on the execution of multiple exercises during a WBV training session for a period of at least 20 min; nevertheless, very limited and inconsistent data are available on EE during long term WBV training session. This crossover study was designed to demonstrate, in an adequately powered sample of participants, the ability of WBV to increase the metabolic cost of exercise vs. no vibration over the time span of a typical WBV session for fitness (20 min. Twenty-two physically active young males exercised on a vibration platform (three identical sets of six different exercises using an accelerometer-verified vibration stimulus in both the WBV and no vibration condition. Oxygen consumption was measured with indirect calorimetry and expressed as area under the curve (O2(AUC. Results showed that, in the overall 20-min training session, WBV increased both the O2(AUC and the estimated EE vs. no vibration by about 22% and 20%, respectively (P<0.001 for both, partial eta squared [η2] ≥0.35 as well as the metabolic equivalent of task (+5.5%, P = 0.043; η2 = 0.02 and the rate of perceived exertion (+13%, P<0.001; ŋ2 = 0.16. Results demonstrated that vibration is able to significantly increase the metabolic cost of exercise in a 20-min WBV training session.

  19. Nonequilibrium molecular dynamics: The first 25 years

    International Nuclear Information System (INIS)

    Hoover, W.G.

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments

  20. Acute effects of whole-body vibration on the motor function of patients with stroke: a randomized clinical trial.

    Science.gov (United States)

    Silva, Adriana Teresa; Dias, Miqueline Pivoto Faria; Calixto, Ruanito; Carone, Antonio Luis; Martinez, Beatriz Bertolaccini; Silva, Andreia Maria; Honorato, Donizeti Cesar

    2014-04-01

    The aim of this study was to investigate the acute effects of whole-body vibration on the motor function of patients with stroke. The present investigation was a randomized clinical trial studying 43 individuals with hemiparesis after stroke, with 33 subjects allocated to the intervention group and 10 subjects allocated to the control group. The intervention group was subjected to one session of vibration therapy (frequency of 50 Hz and amplitude of 2 mm) comprising four 1-min series with 1-min rest intervals between series in three body positions: bipedal stances with the knees flexed to 30 degrees and 90 degrees and a unipedal stance on the paretic limb. The analytical tests were as follows: simultaneous electromyography of the affected and unaffected tibialis anterior and rectus femoris muscles bilaterally in voluntary isometric contraction; the Six-Minute Walk Test; the Stair-Climb Test; and the Timed Get-Up-and-Go Test. The data were analyzed by independent and paired t tests and by analysis of covariance. There was no evidence of effects on the group and time interaction relative to variables affected side rectus femoris, unaffected side rectus femoris, affected side tibialis anterior, unaffected side tibialis anterior, and the Stair-Climb Test (P > 0.05). There was evidence of effects on the group interaction relative to variables Six-Minute Walk Test and Timed Get-Up-and-Go Test (P < 0.05). Whole-body vibration contributed little to improve the functional levels of stroke patients.

  1. Effects of zero point vibration on the reaction dynamics of water dimer cations following ionization.

    Science.gov (United States)

    Tachikawa, Hiroto

    2017-06-30

    Reactions of water dimer cation (H2O)2+ following ionization have been investigated by means of a direct ab initio molecular dynamics method. In particular, the effects of zero point vibration and zero point energy (ZPE) on the reaction mechanism were considered in this work. Trajectories were run on two electronic potential energy surfaces (PESs) of (H2O)2+: ground state ( 2 A″-like state) and the first excited state ( 2 A'-like state). All trajectories on the ground-state PES lead to the proton-transferred product: H 2 O + (Wd)-H 2 O(Wa) → OH(Wd)-H 3 O + (Wa), where Wd and Wa refer to the proton donor and acceptor water molecules, respectively. Time of proton transfer (PT) varied widely from 15 to 40 fs (average time of PT = 30.9 fs). The trajectories on the excited-state PES gave two products: an intermediate complex with a face-to-face structure (H 2 O-OH 2 ) + and a PT product. However, the proton was transferred to the opposite direction, and the reverse PT was found on the excited-state PES: H 2 O(Wd)-H 2 O + (Wa) → H 3 O + (Wd)-OH(Wa). This difference occurred because the ionizing water molecule in the dimer switched between the ground and excited states. The reaction mechanism of (H2O)2+ and the effects of ZPE are discussed on the basis of the results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Analysis of the effect of vibrations on the bentonite buffer in the canister hole

    International Nuclear Information System (INIS)

    Jonsson, Martin; Hakami, Hossein; Ekneligoda, Thushan

    2009-09-01

    During the construction of a final repository for spent nuclear fuel in crystalline rock, blasting activities in certain deposition tunnels will occur at the same time as the deposition of canisters containing the waste is going on in another adjacent access tunnel. In fact, the deposition consists of several stages after the drilling of the deposition hole. The most vulnerable stage from a vibration point of view is when the bentonite buffer is placed in the deposition hole but the canister has not been placed yet. During this stage, a hollow column of bentonite blocks remains free to vibrate inside the deposition hole. The goal of this study was to investigate the displacement of the bentonite blocks when exposed to the highest vibration level that can be expected during the drill and blast operations. In order to investigate this, a three dimensional model in 3DEC, capable of capturing the dynamic behaviour of the bentonite buffer was set up. To define the vibration levels, which serve as input data for the 3DEC model, an extensive analysis of the recorded vibrations from the TASQ - tunnel was carried out. For this purpose, an upper expected vibration limit was defined. This was done outgoing from the fact that the planned charging for the construction of the geological repository will lie in the interval 2 to 4 kg. Furthermore, at the first stage for this study, it was decided that the vibration should be conservatively evaluated for 30 m distance. Using these data, it was concluded that the maximum vibration level that can be expected will be approximately 60 mm/s. After simplifying the vibration signal, a sinusoidal wave with the amplitude 60 mm/s was applied at the bottom of the column and it was assumed that the vibrations only affect the bentonite buffer in one direction (horizontal direction). From this simulation, it was concluded that hardly any displacements occurred. However, when applying the same sinusoidal wave both in the horizontal and the

  3. Vibrational effects of fuel elements detected during KNK II power operation

    International Nuclear Information System (INIS)

    Mitzel, F.; Vaeth, W.; Ansari, S.

    1982-08-01

    The reactivity signal of the KNK II reactor shows almost harmonic reactivity oscillations of Δρ≤0.5 cent. Sensitive correlation measurements, made during the regular plant operation with the normal out-of-core plant instrumentation, revealed that they are associated with individual fuel elements. Auxiliary measurements under various operational conditions and theoretical considerations showed that the oscillations are caused by flow-induced mechanical vibrations. Similar characteristics with respect to the frequencies of these oscillations have obviously not yet been observed for fuel element vibrations in other reactors and tests in out-of-core loops. Therefore efforts were made to classify the phenomenon and to identify the excitation mechanism by using only the normal plant instrumentation. It seems to be most likely a flow-induced vibration of whole fuel elements by vortex shedding or jet switching. This model can explain all observations without exception [de

  4. Non-equilibrium dog-flea model

    Science.gov (United States)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  5. Plasma wave instabilities in nonequilibrium graphene

    DEFF Research Database (Denmark)

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    2016-01-01

    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  6. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Science.gov (United States)

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  7. Development of evaluation method on flow-induced vibration and corrosion of components in two-phase flow by coupled analysis. 1. Evaluation of effects of flow-induced vibration on structural material integrity

    International Nuclear Information System (INIS)

    Naitoh, Masanori; Uchida, Shunsuke; Koshizuka, Seiichi; Ninokata, Hisashi; Anahara, Naoki; Dosaki, Koji; Katono, Kenichi; Akiyama, Minoru; Saitoh, Hiroaki

    2007-01-01

    Problems in major components and structural materials in nuclear power plants have often been caused by flow induced vibration, corrosion and their overlapping effects. In order to establish safe and reliable plant operation, it is necessary to predict future problems for structural materials based on combined analyses of flow dynamics and corrosion and to mitigate them before they become serious issues for plant operation. An innovative method for flow induced vibration of structures in two phase flow by combined analyses of three dimensional flow dynamics and structures is to be introduced. (author)

  8. A vibration sieve

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

    1982-01-01

    A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

  9. Experimental study of nonequilibrium post-chf heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Badr, O.; Neti, S.; Chen, J.

    1986-01-01

    Verifications and improvements of nonequilibrium heat transfer models, for post-critical-heat-flux convective boiling, has been greatly affected by the lack of experimental data regarding the degree of thermodynamic nonequilibrium. Recent studies had been successful in measuring vapor superheats in a vertical single tube. This paper extends the nonequilibrium convective boiling data to a rod bundle geometry. Vapor superheat measurements were obtained in a rod bundle with nine heated rods and a heated shroud. Tests were carried out with water at low mass fluxes with a wide range of dryout conditions. Significant nonequilibrium was observed, with vapor superheats of up to 600 0 C. Parametric effects of mass flux, heat flux and inlet conditions on vapor superheat are presented

  10. Effects of Eight Months of Whole-Body Vibration Training on the Muscle Mass and Functional Capacity of Elderly Women.

    Science.gov (United States)

    Santin-Medeiros, Fernanda; Rey-López, Juan P; Santos-Lozano, Alejandro; Cristi-Montero, Carlos S; Garatachea Vallejo, Nuria

    2015-07-01

    Few intervention studies have used whole-body vibration (WBV) training in the elderly, and there is inconclusive evidence about its health benefits. We examined the effect of 8 months of WBV training on muscle mass and functional capacity in elderly women. A total of 37 women (aged 82.4 ± 5.7 years) voluntarily participated in this study. Subjects were randomly assigned to a vibration group (n = 19) or a control group (n = 18). The vibration group trained on a vertical vibration platform twice a week. The control group was requested not to change their habitual lifestyle. The quadriceps femoris muscle cross-sectional area was determined by magnetic resonance imaging. All participants were evaluated by a battery of tests (Senior Fitness Test) to determine their functional capacity, as well as handgrip strength and balance/gait. General linear repeated-measure analysis of variance (group by time) was performed to examine the effect of the intervention on the outcomes variables. After 8 months, nonstatistically significant differences in the quadriceps CSA (pre-training: 8,516.16 ± 1,271.78 mm² and post-training: 8,671.63 ± 1,389.03 mm²) (p > 0.05) were found in the WBV group (Cohen's d: -0.12), whereas the CON group significantly decreased muscle mass (pre-training: 9,756.18 ± 1,420.07 mm² and post-training: 9,326.82 ± 1,577.53 mm²), with moderate effect size evident (Cohen's d: 0.29). In both groups, no changes were observed in the functional capacity, handgrip strength and balance/gait. The WBV training could prevent the loss of quadriceps CSA in elderly women.

  11. Assessment of the Vibrations Effects Caused by Technical Seismicity Due to the Railway traffic on High-sensitivity Machinery

    Science.gov (United States)

    Papán, Daniel; Valašková, Veronika; Demeterová, Katarína

    2016-10-01

    The numerical and experimental approach in structural dynamics problems is more and more current nowadays. This approach is applied and solved in many research and developing institutions of the all the world. Vibrations effect caused by passing trains used in manufacturing facilities can affect the quality of the production activity. This effect is possible to be solved by a numerical or an experimental way. Numerical solution is not so financially and time demanding. The main aim of this article is to focus on just experimental measurement of this problem. In this paper, the case study with measurement due to cramped conditions realized in situ is presented. The case study is located close to railway. The vibration effect caused by passing trains on the high-sensitivity machinery contained in this object were observed. The structure was a high-sensitivity machine that was placed in a construction process. For the measurements, the high-sensitivity standard vibrations equipment was used. The assessments of measurements’ results were performed for the technological conditions and Slovak Standard Criteria. Both of these assessments were divided to amplitude and frequency domain. The amplitude criterion is also divided to peak particle velocity and RMS (Root Mean Square). Frequency domain assessment were realised using the frequency response curves obtained from high-sensitivity machinery manufacturer. The frequency limits are established for each axis of triaxle system. The measurement results can be predicted if the vibration have to be reduced. Measurement implemented in the production hall should obtain materials to determine the seismic loading and response of production machinery caused by technical seismicity.

  12. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  13. Coherent anti-Stokes Raman scattering and spontaneous Raman scattering diagnostics of nonequilibrium plasmas and flows

    Science.gov (United States)

    Lempert, Walter R.; Adamovich, Igor V.

    2014-10-01

    The paper provides an overview of the use of coherent anti-Stokes Raman scattering (CARS) and spontaneous Raman scattering for diagnostics of low-temperature nonequilibrium plasmas and nonequilibrium high-enthalpy flows. A brief review of the theoretical background of CARS, four-wave mixing and Raman scattering, as well as a discussion of experimental techniques and data reduction, are included. The experimental results reviewed include measurements of vibrational level populations, rotational/translational temperature, electric fields in a quasi-steady-state and transient molecular plasmas and afterglow, in nonequilibrium expansion flows, and behind strong shock waves. Insight into the kinetics of vibrational energy transfer, energy thermalization mechanisms and dynamics of the pulse discharge development, provided by these experiments, is discussed. Availability of short pulse duration, high peak power lasers, as well as broadband dye lasers, makes possible the use of these diagnostics at relatively low pressures, potentially with a sub-nanosecond time resolution, as well as obtaining single laser shot, high signal-to-noise spectra at higher pressures. Possibilities for the development of single-shot 2D CARS imaging and spectroscopy, using picosecond and femtosecond lasers, as well as novel phase matching and detection techniques, are discussed.

  14. Two-temperature chemically non-equilibrium modelling of an air supersonic ICP

    Energy Technology Data Exchange (ETDEWEB)

    El Morsli, Mbark; Proulx, Pierre [Laboratoire de Modelisation de Procedes Chimiques par Ordinateur Oppus, Departement de Genie Chimique, Universite de Sherbrooke (Ciheam) J1K 2R1 (Canada)

    2007-08-21

    In this work, a non-equilibrium mathematical model for an air inductively coupled plasma torch with a supersonic nozzle is developed without making thermal and chemical equilibrium assumptions. Reaction rate equations are written, and two coupled energy equations are used, one for the calculation of the translational-rotational temperature T{sub hr} and one for the calculation of the electro-vibrational temperature T{sub ev}. The viscous dissipation is taken into account in the translational-rotational energy equation. The electro-vibrational energy equation also includes the pressure work of the electrons, the Ohmic heating power and the exchange due to elastic collision. Higher order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collisions integrals available in the literature. The results obtained are compared with those obtained using a chemical equilibrium model and a one-temperature chemical non-equilibrium model. The influence of the power and the pressure chamber on the chemical and thermal non-equilibrium is investigated.

  15. Triply coupled vibrational band gap in a periodic and nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam including the warping effect

    International Nuclear Information System (INIS)

    Yu Dianlong; Fang Jianyu; Cai Li; Han Xiaoyun; Wen Jihong

    2009-01-01

    The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli-Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.

  16. The Impact of Nonequilibrium and Equilibrium Fractionation on Two Different Deuterium Excess Definitions

    Science.gov (United States)

    Dütsch, Marina; Pfahl, Stephan; Sodemann, Harald

    2017-12-01

    The deuterium excess (d) is a useful measure for nonequilibrium effects of isotopic fractionation and can therefore provide information about the meteorological conditions in evaporation regions or during ice cloud formation. In addition to nonequilibrium fractionation, two other effects can change d during phase transitions. The first is the dependence of the equilibrium fractionation factors on temperature, and the second is the nonlinearity of the δ scale on which d is defined. The second effect can be avoided by using an alternative definition that is based on the logarithmic scale. However, in this case d is not conserved when air parcels mix, which can lead to changes without phase transitions. Here we provide a systematic analysis of the benefits and limitations of both deuterium excess definitions by separately quantifying the impact of the nonequilibrium effect, the temperature effect, the δ-scale effect, and the mixing effect in a simple Rayleigh model simulating the isotopic composition of air parcels during moist adiabatic ascent. The δ-scale effect is important in depleted air parcels, for which it can change the sign of the traditional deuterium excess in the remaining vapor from negative to positive. The alternative definition mainly reflects the nonequilibrium and temperature effect, while the mixing effect is about 2 orders of magnitude smaller. Thus, the alternative deuterium excess definition appears to be a more accurate measure for nonequilibrium effects in situations where moisture is depleted and the δ-scale effect is large, for instance, at high latitudes or altitudes.

  17. Effects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers

    Directory of Open Access Journals (Sweden)

    Masoud Ahmadi

    2017-12-01

    Full Text Available Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid environments such as their applications in chemical and biological sensors. Additionally, piezoelectric microcantilevers are used to enhance atomic-force microscope scanning. Motivated by these considerations, presented herein is a finite element investigation into the nonlinear vibration behavior of piezoelectric microcantilever of atomic-force microscopes in fluid environment. For this purpose, a 3D finite element model coupled with a computational fluid dynamics model is introduced based upon a fluid-solid interaction analysis. First, the reliability of present fluid-solid interaction analysis is revealed by comparison with experimental data available in the literature. Then, numerical results are presented to study the influences of fluid dynamic viscosity and density on the resonance frequency, resonance amplitude and time response of piezoelectric microcantilever. It was shown that increasing the fluid density and dynamic viscosity results in the decrease of resonance frequency. For example, for density equal to 1000 kg/m3 , increasing the viscosity of fluid environment from 0.1 to 1, 10 and 20 mPa.s leads to decrease of resonance frequency about 3%, 29% and 42%, respectively. Also, the resonance amplitude of microcantilever increases as the density increases, while increasing dynamic viscosity has a decreasing effect on the resonance amplitude.

  18. Modeling and experimental verification of proof mass effects on vibration energy harvester performance

    International Nuclear Information System (INIS)

    Kim, Miso; Hoegen, Mathias; Dugundji, John; Wardle, Brian L

    2010-01-01

    An electromechanically coupled model for a cantilevered piezoelectric energy harvester with a proof mass is presented. Proof masses are essential in microscale devices to move device resonances towards optimal frequency points for harvesting. Such devices with proof masses have not been rigorously modeled previously; instead, lumped mass or concentrated point masses at arbitrary points on the beam have been used. Thus, this work focuses on the exact vibration analysis of cantilevered energy harvester devices including a tip proof mass. The model is based not only on a detailed modal analysis, but also on a thorough investigation of damping ratios that can significantly affect device performance. A model with multiple degrees of freedom is developed and then reduced to a single-mode model, yielding convenient closed-form normalized predictions of device performance. In order to verify the analytical model, experimental tests are undertaken on a macroscale, symmetric, bimorph, piezoelectric energy harvester with proof masses of different geometries. The model accurately captures all aspects of the measured response, including the location of peak-power operating points at resonance and anti-resonance, and trends such as the dependence of the maximal power harvested on the frequency. It is observed that even a small change in proof mass geometry results in a substantial change of device performance due not only to the frequency shift, but also to the effect on the strain distribution along the device length. Future work will include the optimal design of devices for various applications, and quantification of the importance of nonlinearities (structural and piezoelectric coupling) for device performance

  19. Phase transition universality classes of classical, nonequilibrium systems

    CERN Document Server

    Ódor, G

    2004-01-01

    In the first chapter I summarize the most important critical exponents and relations used in this work. In the second chapter I briefly address the question of scaling behavior at first order phase transitions.In chapter three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and percolation behavior. The main body of this work is given in chapter four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In chapter five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of known transitions in low dimensional systems are between active and absorbing states of reaction-diffusion type systems, but I briefly introduce related classes that appear in interface growth models in chapter six. Some of them are related to critical behavior of coupled, multi-component systems. Finally in chapter seven I summarize families of absorbing state system classes, mean-field classes and the most freq...

  20. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...