WorldWideScience

Sample records for vibrational ir raman

  1. FT-IR, RAMAN AND DFT STUDIES ON THE VIBRATIONAL ...

    African Journals Online (AJOL)

    aminoethoxy)propane (baep) were examined both experimentally and theoretically including FT-IR and Raman spectroscopic methods. Among the possible structural configurations, 30 of them were handled in the framework of this study.

  2. FT-IR and Raman vibrational microspectroscopies used for spectral biodiagnosis of human tissues

    OpenAIRE

    Lin, Shan-Yang; Li, Mei-Jane; Cheng, Wen-Ting

    2007-01-01

    Fourier transform infrared (FT-IR) and Raman vibrational microspectroscopies used for biomedical diagnosis of human tissues are reviewed from basic principle to biological applications. The advantages and disadvantages of both vibrational microspectroscopies are compared to highlight their efficiency and adaptability for noninvasively investigating the chemical compositions of ultrastructual human tissues at different disease states. Biochemical fingerprints applied to the biological samples ...

  3. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    . The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied......) the composition of blisters found on the surface of bread, (4) the microstructure of high-lysine barley and (5) the composition of white spots in the shell of frozen shrimps. (C) 2003 Elsevier Science Ltd. All rights reserved....

  4. Experimental Raman and IR spectral and theoretical studies of vibrational spectrum and molecular structure of Pantothenic acid (vitamin B5)

    Science.gov (United States)

    Srivastava, Mayuri; Singh, N. P.; Yadav, R. A.

    2014-08-01

    Vibrational spectrum of Pantothenic acid has been investigated using experimental IR and Raman spectroscopies and density functional theory methods available with the Gaussian 09 software. Vibrational assignments of the observed IR and Raman bands have been proposed in light of the results obtained from computations. In order to assign the observed IR and Raman frequencies the potential energy distributions (PEDs) have also been computed using GAR2PED software. Optimized geometrical parameters suggest that the overall symmetry of the molecule is C1. The molecule is found to possess eight conformations. Conformational analysis was carried out to obtain the most stable configuration of the molecule. In the present paper the vibrational features of the lowest energy conformer C-I have been studied. The two methyl groups have slightly distorted symmetries from C3V. The acidic Osbnd H bond is found to be the smallest one. To investigate molecular stability and bond strength we have used natural bond orbital analysis (NBO). Charge transfer occurs in the molecule have been shown by the calculated highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energies. The mapping of electron density iso-surface with electrostatic potential (ESP), has been carried out to get the information about the size, shape, charge density distribution and site of chemical reactivity of the molecule.

  5. Vibrational dynamics (IR, Raman, NRVS) and DFT study of new antitumor tetranuclearstannoxanecluster, Sn(IV)$-$oxo$-${di$-$o$-$vanillin} dimethyl dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Arjmand, F. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Sharma, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Usman, M. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry; Leu, B. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Hu, M. Y. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Toupet, L. [Univ. de Rennes, Rennes (France). Inst. de Physique de Rennes; Gosztola, David J. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Tabassum, S. [Aligarh Muslim Univ., Aligarh (India). Dept. of Chemistry

    2016-06-21

    The vibrational dynamics of a newly synthesized tetrastannoxane was characterized with a combination of experimental (Raman, IR and tin-based nuclear resonance vibrational spectroscopy) and computational (DFT/B3LYP) methods, with an emphasis on the vibrations of the tin sites. The cytotoxic activity revealed a significant regression selectively against the human pancreatic cell lines.

  6. Antimicrobial activity, structural evaluation and vibrational (FT-IR and FT-Raman) study of pyrrole containing vinyl derivatives

    Science.gov (United States)

    Singh, R. N.; Rawat, Poonam; Sahu, Sangeeta; Kumar, Yashvinder

    2016-02-01

    In this paper we present structural and vibrational study of three vinylpyrrole derivatives: 2-Cyano-3-(1H-pyrrol-2-yl)-acrylamide (CPA), 1-(1H-Pyrrol-2-yl)-Pent-1-en-3-one (PP) and 1-(1H-Pyrrol-2-yl)-but-1-en-3-one (PB), using ab initio, DFT and experimental approaches. The quantum chemical calculation have been performed on B3LYP method and 6-311 + G(d,p) basis set. The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. The experimental FT-IR and Raman study clearly indicate that the compound exist as dimer in solid state. The binding energies of (CPA), (PP) and (PB) dimers are found to be 20.95, 18.75 and 19.18 kcal/mol, respectively. The vibrational analysis shows red shifts in vN-H and vCdbnd O stretching as result of dimer formation. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using NBO analysis. Topological and energetic parameters reveal the nature of interactions in dimer. The local electronic descriptors analyses were used to predict the reactive sites in the molecule. Calculated first static hyperpolarizability of CPA, PP and PB is found to be 10.41 × 10- 30, 18.93 × 10- 30, 18.29 × 10- 30 esu, respectively, shows that investigated molecules will have non-linear optical response and might be used as non-linear optical (NLO) material. These vinylpyrrole compounds (CPA), (PP) and (PB) showed antifungal and antibacterial activity against Aspergillus niger and gram-positive bacteria Bacillus subtili.

  7. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations.

    Science.gov (United States)

    Singh, Harshita; Singh, Swapnil; Srivastava, Anubha; Tandon, Poonam; Bharti, Purnima; Kumar, Sudhir; Maurya, Rakesh

    2014-01-01

    Daidzein (C15H10O4) is a type of isoflavone. It was isolated from Butea monosperma that belongs to the Fabaceae family. Soybeans and soy products are the abundant source of daidzein. It is the subject of investigation for many reasons, as it has got wide applications, such as anti-tumor, anti-estrogen, weak pro-estrogen and anti-cancer activities. In the present study, a complete vibrational assignment is provided for the observed IR and Raman spectra of daidzein. Electronic properties have been analyzed using TD-DFT method for both gaseous and solvent phase. The optimized geometry, total energy, potential energy surface and vibrational wavenumbers of daidzein have been determined using density functional theory (DFT/B3LYP) method with 6-311++G(d,p) basis set and a good correlation was found between observed and calculated values. The double well potential energy curve of the molecule about three bonds, has been plotted, as obtained from DFT/6-31G basis. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Global reactivity descriptors have been calculated for predicting the chemical reactivity and the stability of chemical systems. Electrostatic potential surface has been plotted for predicting the structure activity relationship. NBO analysis has also been performed to study the stability of the molecule. NLO study reveals the nonlinear properties of the molecule. 1H and 13C NMR spectra have also been studied. Finally, the calculated results were used to simulate infrared and Raman spectra of the title compound which showed a good agreement with the observed spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-aminouracil

    Science.gov (United States)

    Singh, J. S.

    2014-09-01

    Infrared (IR) and Raman spectra of uracil and 5-aminouracil have been recorded and analyzed between the region 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke’s exchange in conjunction with Lee-Yang-Parr’s correlation functional and Becke’s three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-aminouracil by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, the most of B3LYP/6-311++G** vibrational frequencies are in the excellent agreement with available experimental assignments and helped in the reassignments of some fundamental vibrational modes. On the basis of calculated results, the assignments of some missing frequencies in the experimental study are proposed. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) are given by 25a‧ + 11a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 6 modes (4a‧ + 2a″) to the NH2 group. Kekule ring stretching mode is found to be comparatively higher frequency magnitude than the mode of uracil due to the involvement of hydrogen bonding of amino group. But, the ring breathing is found to be lower frequency magnitude compared to those for uracil which could be due to mass effect of the NH2 group in place of the hydrogen atom. All other bands have also been assigned different fundamentals/overtones/combinations.

  9. Macrocycle and substituent vibrational modes of nonplanar nickel (II) octaethyltetraphenylporphyrin from its resonance Raman, near-infrared-excited FT Raman, and FT-IR spectra and deuterium isotope shifts

    Energy Technology Data Exchange (ETDEWEB)

    Stichternath, A.; Schweitzer-Stenner, R.; Dreybrodt, W. (Univ. of Bremen (Germany)); Mak, R.S.W.; Li, X.Y. (Hong Kong Univ. of Science and Technology (Hong Kong)); Sparks, L.D.; Shelnutt, J.A. (Sandia National Lab., Albuquerque, NM (United States) Univ. of New Mexico, Albuquerque (United States)); Medforth, C.J.; Smith, K.M. (Univ. of California, Davis (United States))

    1993-04-15

    We have employed Raman dispersion, FT Raman, and FT-IR spectroscopy to identify a large number of resonance Raman lines of Ni(II) octaethyltetraphenylporphyrin dissolved in CS[sub 2]. The Raman depolarization dispersion technique was used to derive the symmetry of the normal modes giving rise to the observed Raman lines. By combining this information and the already available normal coordinates of Ni(II) tetraphenylporphyrin and Ni(II) octaethylporphyrin, many of the Raman-modes of the macrocycle could be assigned. Some resonance-enhanced Raman lines were found to arise from vibrations of the ethyl and phenyl substituents. They were identified by comparing resonance Raman, FT Raman, and FT infrared spectra of the Ni(II) octaethyltetraphenylporphyrin and its d[sub 20] isotopomer. All Raman lines normally referred to as core-size markers are found to be significantly shifted to lower frequencies with respect to their positions in Ni(II) octaethylporphyrin, in accordance with earlier findings (Shelnutt et al., J. Am. Chem. Soc. 113, 4077, 1991). This suggests that the molecule is in a highly nonplanar conformation. This notion is further corroborated by the strong dispersion of the depolarization ratio observed for nearly all A[sub 1g] and A[sub 2g] modes of the macrocycle. 27 refs., 13 figs., 2 tabs.

  10. Molecular structure and vibrational analysis of Trifluoperazine by FT-IR, FT-Raman and UV-Vis spectroscopies combined with DFT calculations.

    Science.gov (United States)

    Rajesh, P; Gunasekaran, S; Gnanasambandan, T; Seshadri, S

    2015-02-25

    The complete vibrational assignment and analysis of the fundamental vibrational modes of Trifluoperazine (TFZ) was carried out using the experimental FT-IR, FT-Raman and UV-Vis data and quantum chemical studies. The observed vibrational data were compared with the wavenumbers derived theoretically for the optimized geometry of the compound from the DFT-B3LYP gradient calculations employing 6-31G (d,p) basis set. Thermodynamic properties like entropy, heat capacity and enthalpy have been calculated for the molecule. The HOMO-LUMO energy gap has been calculated. The intramolecular contacts have been interpreted using natural bond orbital (NBO) and natural localized molecular orbital (NLMO) analysis. Important non-linear properties such as first hyperpolarizability of TFZ have been computed using B3LYP quantum chemical calculation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-methyluracil (thymine)

    Science.gov (United States)

    Singh, J. S.

    2015-02-01

    FT-IR (400-4000 cm-1) and Raman spectra (200-4000 cm-1) of uracil and 5-methyluracil (thymine) have been recorded and analyzed. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Using the Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP), the ab initio and DFT calculations were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-methyluracil (thymine) by employing Gaussian-03 program. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. In quantum chemical calculations, most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with the available experimental assignments and helped to propose in the reassignments of some missing frequencies in experimental study. Assuming under the Cs point group for both molecules, the distribution of normal mode of vibrations between the two species as planar (a‧) and non-planar (a″) for all 39 normal vibrational modes of 5-methyluracil are given by 26a‧ + 13a″, of which 30 modes (21a‧ + 9a″) correspond to the uracil moiety and 9 modes (5a‧ + 4a″) to the CH3 group. Consistent assignments have been made for the internal modes of CH3 group, especially for the anti-symmetric CH3 stretching and bending modes. A possible explanation could be the planarity of pyrimidine ring and non-planarity at carbon site of methyl group which might cause the splitting of frequencies including three components due to the substitution of CH3 group at the site of C5 atom on pyrimidine ring of uracil. The three non-equivalent CH bonds of CH3

  12. Raman and IR studies and DFT calculations of the vibrational spectra of 2,4-Dithiouracil and its cation and anion.

    Science.gov (United States)

    Singh, R; Yadav, R A

    2014-09-15

    Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5C6 bond length increases and loses its double bond character while the C4C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled NH stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime

    Science.gov (United States)

    Suvitha, A.; Periandy, S.; Boomadevi, S.; Govindarajan, M.

    2014-01-01

    In this work, the vibrational spectral analysis is carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for pycolinaldehyde oxime (PAO) (C6H6N2O) molecule. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on HF and B3LYP methods with 6-311++G(d,p) basis set. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The optimized geometric parameters are compared with experimental values of PAO. The non linear optical properties, NBO analysis, thermodynamics properties and mulliken charges of the title molecule are also calculated and interpreted. A study on the electronic properties, such as HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) are performed. The effects due to the substitutions of CHdbnd NOH ring are investigated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  14. Raman-IR vibrational and XRD characterization of ancient and modern mineralogy from volcanic eruption in Tenerife Island: Implication for Mars

    Directory of Open Access Journals (Sweden)

    E.A. Lalla

    2016-07-01

    Full Text Available A detailed vibrational Raman-IR spectroscopic and diffractional analyses have been performed on basalts from two locations from Tenerife Island: (1 the Arenas Negras volcano which belongs to the historical eruption not showing visible alteration and (2 Pillow Lavas zone from Anaga Massif which shows a clearly fluid-rock interaction caused by submarine alteration. These places have been extensively studied due to its similarity with the surface of Mars. The analysis is based on the mineral detection of selected samples by a Micro-Raman study of the materials. The complementary techniques have confirmed the mineralogy detected by the Raman measurement. The results show a volcanic environment behavior with primary phases like olivine, pyroxene, and feldspar/plagioclase. Moreover, the presence of accessory minerals or secondary mineralization like phosphate, iron oxides, zeolite or carbonates shows the alteration processes on each outcrop. The variation in the crystallinity and amorphous phases is related to fluid-rock interaction caused by hydrothermal episodes and external weathering processes, which shows several analogies with the ancient volcanic activity from Mars.

  15. FT-IR and Raman spectra, ab initio and density functional computations of the vibrational spectra, molecular geometries and atomic charges of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I)

    Science.gov (United States)

    Singh, J. S.

    2014-01-01

    Raman (200-4000 cm-1) and FT-IR (400-4000 cm-1) spectra of uracil and 5-halogenated uracils (5-X-uracils; X = F, Cl, Br, I) have been recorded and analyzed in the range 200-4000 cm-1. The optimized molecular geometries, atomic polar tensor (APT) charges and vibrational characteristics have been studied theoretically using restricted Hartree-Fock (RHF) and density functional theory (DFT) methods. Ab initio and DFT calculations [using Becke's exchange in conjunction with Lee-Yang-Parr's correlation functional and Becke's three-parameter hybrid method (B3LYP)] were carried out to study the optimized molecular fundamental vibrational frequencies for uracil and 5-halogenated uracils by employing Gaussian-03 program. Gauss View software was used to make the vibrational analysis. Raman and IR spectra have been computed theoretically for the uracil and 5-halogenated molecules. The fundamental vibrational frequencies along with their corresponding intensities in IR and Raman activities and depolarization ratios of the Raman lines have also been calculated using the RHF and DFT methods employing different basis sets. Quantum chemical calculations helped in the reassignments of some fundamental vibrational modes. Most of the B3LYP/6-311++G∗∗ vibrational frequencies are in excellent agreement with available experimental assignments. The ring breathing and kekule stretching modes are found to lower magnitudes compared to those for uracil which could be due to mass effect of halogen atom in place of the hydrogen atom. The C-X (X = F, Cl, Br, I) stretching frequency is distinctly separated from the CH/NH ring stretching frequencies on the pyrimidine ring. All other bands have also been assigned different fundamentals/overtones/combinations.

  16. Molecular vibrational investigation [FT-IR, FT-Raman, UV-Visible and NMR] on Bis(thiourea) Nickel chloride using HF and DFT calculations

    Science.gov (United States)

    Anand, S.; Sundararajan, R. S.; Ramachandraraja, C.; Ramalingam, S.; Durga, R.

    2015-03-01

    In the present research work, the FT-IR, FT-Raman spectra of the Bis(thiourea) Nickel chloride (BTNC) were recorded and analyzed. The observed fundamental frequencies in finger print and functional group regions were assigned according to their uniqueness region. The computational calculations were carried out by HF and DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The present organo-metallic compound was made up of covalent and coordination covalent bonds. The modified vibrational pattern of the complex molecule associated with ligand group was analyzed. Furthermore, the 13C NMR and 1H NMR spectral data were calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP/6-311++G(d,p) basis set and their spectra were simulated and the chemical shifts linked to TMS were compared. A investigation on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies were carried out. The kubo gap of the present compound was calculated related to HOMO and LUMO energies which confirm the occurring of charge transformation between the base and ligand. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. The NLO properties related to Polarizability and hyperpolarizability based on the finite-field approach were also discussed.

  17. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine.

    Science.gov (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2014-01-01

    The FTIR and FT-Raman spectra of 1-(m-(trifluoromethyl)phenyl)piperazine [TFMPP] have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of the compound was obtained by the density functional theory using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. A detailed interpretation of the infrared and Raman spectra were also reported based on potential energy distribution (PED). UV-Vis spectrum of the compound was recorded and the electronic properties HOMO and LUMO energies were measured by TD-DFT approach. Furthermore, molecular electrostatic potential is performed and also the calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    Science.gov (United States)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  19. Normal coordinate analysis and vibrational spectroscopy (FT-IR and FT-Raman) studies of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid using ab initio HF and DFT method

    Science.gov (United States)

    Prabakaran, A.; Muthu, S.

    2012-12-01

    The FT-IR and FT-Raman spectra of (2S)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid (2ADMA) were recorded in the region 4000-400 cm-1 and 4000-100 cm-1, respectively. The geometrical structure, harmonic vibrational frequency, infrared intensity, Raman activities and bonding features of this compound was carried out by ab initio HF and DFT methods with 6-31G (d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The electric dipole moment (μ) and the first-order hyperpolarizability (β0) values have been the computed quantum mechanically. The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The charge delocalizations of these molecules have been analyzed using NBO analysis. The solvent effects have been calculated using TD-DFT in combination with the polarized continuum model (PCM), and the results are in good agreement with experimental measurements. The other molecular properties like Mulliken population analysis, electrostatic potential (ESP) and thermodynamic properties of the title compound at the different temperatures have been calculated. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound which shows good agreement with observed spectra.

  20. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

    Directory of Open Access Journals (Sweden)

    Alexander G. Milekhin

    2017-05-01

    Full Text Available Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.

  1. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-01

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm-1) and Laser-Raman spectra (4000-100 cm-1) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations.

  2. Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields.

    Science.gov (United States)

    Xiao, Yuming; Koutmos, Markos; Case, David A; Coucouvanis, Dimitri; Wang, Hongxin; Cramer, Stephen P

    2006-05-14

    We have used four vibrational spectroscopies--FT-IR, FT-Raman, resonance Raman, and 57Fe nuclear resonance vibrational spectroscopy (NRVS)--to study the normal modes of the Fe-S cluster in [(n-Bu)4N]2[Fe4S4(SPh)4]. This [Fe4S4(SR)4]2- complex serves as a model for the clusters in 4Fe ferredoxins and high-potential iron proteins (HiPIPs). The IR spectra exhibited differences above and below the 243 K phase transition. Significant shifts with 36S substitution into the bridging S positions were also observed. The NRVS results were in good agreement with the low temperature data from the conventional spectroscopies. The NRVS spectra were interpreted by normal mode analysis using optimized Urey-Bradley force fields (UBFF) as well as from DFT theory. For the UBFF calculations, the parameters were refined by comparing calculated and observed NRVS frequencies and intensities. The frequency shifts after 36S substitution were used as an additional constraint. A D 2d symmetry Fe4S4S'4 model could explain most of the observed frequencies, but a better match to the observed intensities was obtained when the ligand aromatic rings were included for a D 2d Fe4S4(SPh)4 model. The best results were obtained using the low temperature structure without symmetry constraints. In addition to stretching and bending vibrations, low frequency modes between approximately 50 and 100 cm(-1) were observed. These modes, which have not been seen before, are interpreted as twisting motions with opposing sides of the cube rotating in opposite directions. In contrast with a recent paper on a related Fe4S4 cluster, we find no need to assign a large fraction of the low frequency NRVS intensity to 'rotational lattice modes'. We also reassign the 430 cm(-1) band as primarily an elongation of the thiophenolate ring, with approximately 10% terminal Fe-S stretch character. This study illustrates the benefits of combining NRVS with conventional Raman and IR analysis for characterization of Fe-S centers. DFT

  3. Vibrational spectroscopic (FT-IR and FT-Raman) studies, natural bond orbital analysis and molecular electrostatic potential surface of Isoxanthopterin.

    Science.gov (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2013-10-01

    The FTIR and FT-Raman spectra of Isoxanthopterin have been recorded in the region 4000-450 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of Isoxanthopterin were obtained by the density functional theory (DFT) using 6-311++G(d,p) basis set. The harmonic vibrational frequencies were scaled and compared with experimental values. The observed and the calculated frequencies are found to be in good agreement. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. The UV-visible spectrum was also recorded and compared with the theoretical values. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The first order hyperpolarizability (β0), related properties (β, α0 and Δα) and the Mulliken charges of the molecule were also computed using DFT calculations. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results show that charge in electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies (E2) confirms the occurrence of intramolecular charge transfer (ICT) within the molecule. Information about the charge density distribution of the molecule and its chemical reactivity has been obtained by mapping molecular electrostatic potential surface. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. FT-Raman, FT-IR, UV spectroscopic, NBO and DFT quantum chemical study on the molecular structure, vibrational and electronic transitions of clopidogrel hydrogen sulfate form 1: A comparison to form 2

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Tandon, Poonam; Bansal, A. K.

    2013-03-01

    Clopidogrel hydrogen sulfate (+)-(S)-(2-chlorophenyl)-6,7-dihydrothieno[3,2-c]pyridine-5(4H)-acetate sulfate (1:1), is a selective adenosine diphosphate (ADP) receptor antagonist often used in the treatment of coronary artery, peripheral vascular and cerebrovascular diseases. In the present communication, a comparative study of two polymorphic forms (forms 1 and 2) of clopidogrel hydrogen sulfate (CLP) has been reported. There is difference in conformation and intermolecular hydrogen bonding pattern of two forms. These differences are nicely reflected in the vibrational spectra. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands of CLP form 1 are interpreted with the aid of structure optimizations and normal mode analysis based on ab initio HF and DFT method employing 6-311++G(d,p) basis. Polymorphism in CLP have been studied using various characterization tools like FT-Raman, FT-IR spectroscopy and DSC in combination with the quantum chemical calculations. UV-vis spectroscopic studies along with HOMO-LUMO analysis of both polymorphs were performed. The solvent effect calculated by TD-DFT/IEF-PCM/6-31G model results complements with the experimental findings. Stability of the molecule arising from hyper conjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  5. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra

    CERN Document Server

    Ganesan, Aravindhan; Wang, Feng

    2013-01-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations domina...

  6. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  7. Vibration-free Raman Doppler velocimeter

    Science.gov (United States)

    Exton, R. J.

    1986-11-01

    A method and apparatus unaffected by vibrational environments for obtaining measurements using Raman Doppler Velocimetry is described. Two laser beams, a pump beam, and a probe beam, are focused by a lens to a point in a flow. A lens collimates the two beams. A beam splitter dumps the beam and the other beam is reflected by a corner cube back to the lens. The other lens then focuses the beam back to the point. The reflected beam and the backward and forward scattering at the point are detected by a detector and processed by a boxcar averager. The lens and corner cube combination, called a retrometer, ensure that the measurements are unaffected by vibrations.

  8. A Fourier transform-Raman and infrared vibrational study of delorazepam, fludiazepam, flurazepam, and tetrazepam.

    Science.gov (United States)

    Neville, G A; Beckstead, H D; Shurvell, H F

    1994-02-01

    Fourier transform-Raman and IR spectra of four compounds that are closely related to diazepam (Valium) have been recorded. The compounds, delorazepam, fludiazepam, flurazepam, and tetrazepam, are all 7-chloro-1,3-dihydro-[2H]-1,4-benzodiazepine -2-ones and differ from diazepam by the substituents at positions 1 and 5 of the diazepine ring. The spectra show characteristic features associated with both the diazepine ring and substituents. A strong line near 1610 cm-1 in the Raman spectra is assigned to the C = N stretch of the diazepine ring, and very strong IR absorption near 1690 cm-1 is attributed to the C = O stretching mode. Various IR and Raman vibrational features serve to characterize and differentiate these molecules. Evidence for intermolecular hydrogen bonding in one of the compounds (delorazepam) is presented.

  9. L-glutamine: Dynamical properties investigation by means of INS, IR, RAMAN, {sup 1}H NMR and DFT techniques

    Energy Technology Data Exchange (ETDEWEB)

    Pawlukojć, A., E-mail: andrzej@jinr.ru [Institute of Nuclear Chemistry and Technology, Dorodna 16 str., 03-195 Warsaw (Poland); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Hołderna-Natkaniec, K. [Faculty of Physics, A. Mickiewicz University, 61-614 Poznań (Poland); Bator, G. [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw (Poland); Natkaniec, I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Faculty of Physics, A. Mickiewicz University, 61-614 Poznań (Poland)

    2014-10-31

    Graphical abstract: - Highlights: • The L-glutamine was investigated by INS, IR, Raman and {sup 1}H NMR spectroscopy. • DFT calculations for the solids state model were performed. • The NH{sub 3}{sup +} torsional vibration mode is observed in the INS spectra. • Activation energy for the NH{sub 3}{sup +} group reorientation is obtained. - Abstract: Vibrational spectra of L-glutamine in the solid state were studied using the inelastic neutron scattering (INS), infrared (IR), Raman and {sup 1}H NMR spectroscopy techniques. DFT calculation using CASTEP code with the periodic boundary conditions was used to determine and describe the normal modes in the vibrational spectra of pure L-glutamine. An excellent agreement between the calculated and experimental INS, IR and Raman data has been found. Bands assigned to the stretching vibrations of the NH{sub 3}{sup +} group in hydrogen bonds are observed at 2400, 2618 and 2619 cm{sup −1}, while the NH{sub 3}{sup +} torsion vibration mode is observed at 441 cm{sup −1}. The band at 2041 cm{sup −1} is assigned to combinations of the NH{sub 3}{sup +} bending symmetry vibration and the CO{sub 2}{sup -} rocking vibration and can be used as an “indicator band” for the identification of the NH{sub 3}{sup +} groups in amino acid. For the L-glutamine an activation energy needed for the NH{sub 3}{sup +} group reorientation was obtained as 7.4 kcal/mol. It was found, that the combination three spectroscopic methods (INS, IR and Raman) with calculations for the crystal state proved to be an effective tool to investigate dynamical properties of amino acid crystals.

  10. IR, Raman, SERS and DFT study of paroxetine

    Science.gov (United States)

    Cozar, I. B.; Szabó, L.; Mare, D.; Leopold, N.; David, L.; Chiş, V.

    2011-05-01

    Structural investigations by different vibrational spectroscopic methods (FTIR, Raman and SERS), as well as density functional theory (DFT) calculations were performed on paroxetine (IUPAC name: (3S,4R)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)piperidine. After the identification of the lowest energy conformer of the investigated molecule, the FTIR, FT-Raman and SERS spectra were assigned on the basis of DFT calculations at B3LYP/6-31G(d) level of theory. The very good correlation found between experimental and theoretical data is a clear evidence for a reliable assignment of the vibrational bands. The molecular electrostatic potential was calculated and used for the prediction of preferred adsorption sites of the paroxetine molecule on the silver nanoparticles surface. Based on SERS spectra analysis it is shown that the molecule is adsorbed on the silver surface through the benzodioxol ring, in a tilted orientation.

  11. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    been reported. Subsequently, the vibrational absorption (VA) and vibrational circular dichroism (VCD) and the Raman and Raman Optical Activity (ROA) spectra have been reported. In this work an analysis of the aqueous solution VA, VCD, Raman, and ROA spectra for various isotopomers of LALA are reported...... with the experimentally measured spectra. With the DFT, explicit water molecules, and a continuum solvent model we are better able to reproduce the vibrational absorption and Raman spectra than previously reported. The AAT have been implemented at the DFT level, although not within the continuum treatment. The VCD sign...

  12. Raman and i.r. studies of the antileprotic drug Dapsone

    Science.gov (United States)

    D'Cunha, Romola; Kartha, V. B.; Gurnani, S.

    No information is available on the mode of action of Dapsone in leprosy treatment, the phenomena of drug resistance and toxicity. Information on the interaction of Dapsone with serum proteins can be obtained at the molecular level by spectroscopic investigations on structural changes of the system. As a first step in these investigations, the i.r. and laser Raman spectra of Dapsone and N-deutero Dapsone have been obtained. The characteristic vibrational frequencies of the NH 2 group, the SO 2 group and the aromatic ring have been identified and assigned from isotope shifts and studies in various solvents.

  13. FT-IR and FT-Raman spectroscopic signatures, vibrational assignments, NBO, NLO analysis and molecular docking study of 2-{[5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine.

    Science.gov (United States)

    Almutairi, Maha S; Alanazi, Amer M; Al-Abdullah, Ebtehal S; El-Emam, Ali A; Pathak, Shilendra K; Srivastava, Ruchi; Prasad, Onkar; Sinha, Leena

    2015-04-05

    FT-Raman and FT-IR spectra of the title compound 2-{[5-(adamantan-1-yl)-4-methyl-4H-1,2,4-triazol-3-yl]sulfanyl}-N,N-dimethylethanamine were recorded and investigated. The DFT/B3LYP/6-311++G(d,p) method was used to compute the vibrational wavenumbers. A good coherence between experimental and theoretical wavenumbers shows the preciseness of the assignments. NLO properties like the dipole moment, polarizability, first static hyperpolarizability, molecular electrostatic potential surface and contour map have been calculated to get a better cognizance of the properties of the title molecule. Natural bond orbital analysis has been applied to estimate the stability of the molecule arising from charge delocalization. The molecular docking studies concede that title compound may exhibit HIV-1 Protease 1N49 inhibitory activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  15. FT-IR, FT-Raman and Computational Study of Ethyl Methyl Ketone Semicarbazone

    Directory of Open Access Journals (Sweden)

    P. S. Binil

    2011-01-01

    Full Text Available FT-IR and FT-Raman spectra of ethyl methyl ketone semicarbazone were recorded and analyzed. The vibrational wavenumbers were computed using HF/6-31G*, B3PW91/6-31G* and B3LYP/6-31G* basis and compared with experimental data. The first hyperpolarizability, infrared intensities and Raman activities are reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive object for future studies of non-linear optics. The extended π-electron delocalization over the carbazone moiety is responsible for the nonlinearity of the molecule. The geometrical parameters of the title compound are in agreement with that of similar derivatives. The red shift of the NH stretching wavenumber in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond resulting in proton transfer to the neighboring oxygen atom.

  16. FT-IR and FT-NIR Raman spectroscopy in biomedical research

    Science.gov (United States)

    Naumann, D.

    1998-06-01

    FT-IR and FT-NIR Raman spectra of intact microbial, plant animal or human cells, tissues, and body fluids are highly specific, fingerprint-like signatures which can be used to discriminate between diverse microbial species and strains, characterize growth-dependent phenomena and cell-drug interactions, and differentiate between various disease states. The spectral information potentially useful for biomedical characterizations may be distributed over the entire infrared region of the electromagnetic spectrum, i.e. over the near-, mid-, and far-infrared. It is therefore a key problem how the characteristic vibrational spectroscopic information can be systematically extracted from the infrared spectra of complex biological samples. In this report these questions are addressed by applying factor and cluster analysis treating the classification problem of microbial infrared spectra as a model task. Particularly interesting applications arise by means of a light microscope coupled to the FT-IR spectrometer. FT-IR spectra of single microcolonies of less than 40 μm in diameter can be obtained from colony replica applying a stamping technique that transfers the different, spatially separated microcolonies from the culture plate to a special IR-sample holder. Using a computer controlled x,y-stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro-organisms can be integrated in one single apparatus. Since high quality, essentially fluorescence free Raman spectra may now be obtained in relatively short time intervals on previously intractable biological specimens, FT-IR and NIR-FT-Raman spectroscopy can be used in tandem to characterize biological samples. This approach seems to open up new horizons for biomedical characterizations of complex biological systems.

  17. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  19. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lee, Christopher [Pennsylvania State University; Dazen, Kevin [Pennsylvania State University; Kafle, Kabindra [Pennsylvania State University; Moore, Andrew [North Carolina State University; Park, Sunkyu [North Carolina State University; Kim, Seong H. [Pennsylvania State University

    2015-07-04

    Although the cellulose crystallinity index (CI) is used widely, its limitations have not been adequately described. In this study, the CI values of a set of reference samples were determined from X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and infrared (IR), Raman, and vibrational sum frequency generation (SFG) spectroscopies. The intensities of certain crystalline peaks in IR, Raman, and SFG spectra positively correlated with the amount of crystalline cellulose in the sample, but the correlation with XRD was nonlinear as a result of fundamental differences in detection sensitivity to crystalline cellulose and improper baseline corrections for amorphous contributions. It is demonstrated that the intensity and shape of the XRD signal is affected by both the amount of crystalline cellulose and crystal size, which makes XRD analysis complicated. It is clear that the methods investigated show the same qualitative trends for samples, but the absolute CI values differ depending on the determination method. This clearly indicates that the CI, as estimated by different methods, is not an absolute value and that for a given set of samples the CI values can be compared only as a qualitative measure.

  20. Theoretical characterization of the BN and BP coronenes by IR, Raman, and UV-VIS spectra.

    Science.gov (United States)

    de Abreu, Leandro; López-Castillo, Alejandro

    2012-07-28

    Boron-nitrogen coronene (BNC) and boron-phosphorous coronene (BPC), not yet synthesized molecules and of possible interest for material science, are composed of six condensed rings of borazine and boraphosphabenzene molecules, respectively. They are similar to the carbon coronene molecule (CC). Moreover, CC and BNC are isoelectronic and the BPC is formally isoelectronic with respect to other coronenes, if only the valence electrons are considered. In this work, the BNC and BPC were theoretically characterized using IR, Raman, and UV-VIS spectroscopies. The coronenes studied have D(6h) and D(3h) symmetries for carbon and boron compounds, respectively. The calculated vibrational and electronic spectra for the CC are in good agreement with the experimental data, indicating that the calculations for BNC and BPC will be useful to identify these compounds, when synthesized. The main vibrational modes of the CC, BNC, and BPC are correlated. However, the BPC vibrational frequencies are substantially lower than the CC and BNC ones. The electronic ground state studies showed that the BPC has intermediate characteristics between the CC and BNC.

  1. Theoretical characterization of the BN and BP coronenes by IR, Raman, and UV-VIS spectra

    Science.gov (United States)

    de Abreu, Leandro; López-Castillo, Alejandro

    2012-07-01

    Boron-nitrogen coronene (BNC) and boron-phosphorous coronene (BPC), not yet synthesized molecules and of possible interest for material science, are composed of six condensed rings of borazine and boraphosphabenzene molecules, respectively. They are similar to the carbon coronene molecule (CC). Moreover, CC and BNC are isoelectronic and the BPC is formally isoelectronic with respect to other coronenes, if only the valence electrons are considered. In this work, the BNC and BPC were theoretically characterized using IR, Raman, and UV-VIS spectroscopies. The coronenes studied have D6h and D3h symmetries for carbon and boron compounds, respectively. The calculated vibrational and electronic spectra for the CC are in good agreement with the experimental data, indicating that the calculations for BNC and BPC will be useful to identify these compounds, when synthesized. The main vibrational modes of the CC, BNC, and BPC are correlated. However, the BPC vibrational frequencies are substantially lower than the CC and BNC ones. The electronic ground state studies showed that the BPC has intermediate characteristics between the CC and BNC.

  2. Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis

    Science.gov (United States)

    Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea

    2017-07-01

    The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.

  3. Page 1 IR and Raman spectra of 4-methoxypyridine N-oxide 139 ...

    Indian Academy of Sciences (India)

    IR and Raman spectra of 4-methoxypyridine N-oxide 139. Table 1 (Conid.) Infrared (cm) Raman (cm). --------ee-wramm-mm-mm-mmander-m-sum Assignment. HCB or nujol mull Melt Melt. 1623 (s) 1625 (s) 1624 (3) p v, (a). 1566 (sh) 156 (sh) vis - Vas (A'). 1563 (ms) 1557 (ms) 1559 (1) p vs (a). 1520 (sh) 1520 (sh) vs.

  4. Raman and IR-ATR spectroscopy studies of heteroepitaxial structures with a GaN:C top layer

    Science.gov (United States)

    Cerqueira, M. F.; Vieira, L. G.; Alves, A.; Correia, R.; Huber, M.; Andreev, A.; Bonanni, A.; Vasilevskiy, M. I.

    2017-09-01

    This work, motivated by the technologically important task of determination of carbon dopant location in the GaN crystal lattice, employed Raman spectroscopy, with both resonant and non-resonant excitation, and infrared (IR) spectroscopy, in the attenuated total reflection (ATR) configuration, to study lattice vibration modes in a set of carbon-doped GaN (GaN:C) epilayers grown by metalorganic vapour phase epitaxy. We analyse Raman and IR-ATR spectra from the point of view of possible effects of the carbon doping, namely: (i) local vibration mode of C atoms in the nitrogen sublattice (whose frequency we theoretically estimate as 768 cm-1 using an isotope defect model), and (ii) shift in the positions of longitudinal modes owing to the phonon-plasmon coupling. We find only indirect hints of the doping effect on the resonant Raman spectra. However, we show theoretically and confirm experimentally that the IR-ATR spectroscopy can be a much more sensitive tool for this purpose, at least for the considered structures. A weak perturbation of the dielectric function of GaN:C, caused by the substitutional carbon impurity, is shown to produce a measurable dip in the ATR reflectivity spectra at  ≈770 cm-1 for both p- and s-polarizations. Moreover, it influences a specific (guided-wave type) mode observed at  ≈737 cm-1, originating from the GaN layer, which appears in the narrow frequency window where the real parts of the two components of the dielectric tensor of the hexagonal crystal have opposite signs. This interpretation is supported by our modelling of the whole multilayer structure, using a transfer matrix formalism.

  5. Spectroscopic properties of neuroleptics: IR and Raman spectra of Risperidone (Risperdal) and of its mono- and di-protonated forms

    Science.gov (United States)

    Alparone, Andrea

    2011-10-01

    Structures and IR and Raman spectra of Risperidone in its neutral, mono- and di-protonated forms were calculated in gas phase by DFT-B3LYP/6-31G* level. Mono-protonation occurs at the nitrogen atom of the piperidine ring, while nitrogen atom of the pyrimidine ring is the preferred site for the second protonation. The lowest-energy structure of the mono-protonated Risperidone is characterized by formation of a strong seven-membered O(pyrimidine ring)⋯ +H-N(piperidine ring) intramolecular hydrogen-bonded cycle. In the high-energy spectral region (3500-2500 cm -1), the bands of the N-H + stretches and the changes in wavenumbers and IR intensities of the C-H stretches near to the piperidine nitrogen atom (Bohlmann effect) are potentially useful to discriminate conformations and protonation states. Di-protonated structures can be identified by the presence of an isolated absorption peak located in the low-energy IR region (660-690 cm -1), attributed to the out-of-plane N-H +(pyrimidine ring) bending deformation. The most intense Raman band of neutral Risperidone placed at ca. 1500 cm -1, assigned to C dbnd C(pyrimidine ring) stretch + C dbnd N(pyrimidine ring) stretch, can be a useful vibrational marker to distinguish the neutral from the protonated forms.

  6. The spectroscopic (FT-IR, FT-Raman, dispersive Raman and NMR) study of ethyl-6-chloronicotinate molecule by combined density functional theory.

    Science.gov (United States)

    Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet

    2016-01-15

    In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Near-Ir surface-enhanced Raman spectrum of lignin

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner

    2009-01-01

    Compacted powders of commercially available nano- and microparticles of silver were used to successfully induce the surface enhanced Raman scattering (SERS) effect in spruce milled-wood lignin (MWL). For the two silver particle sizes used in this investigation, the spectra were mostly similar. Some general characteristics of the lignin SERS spectrum are described. The...

  8. Characterization of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione by Raman and FT-IR spectroscopy and DFT calculations

    Science.gov (United States)

    de Toledo, T. A.; da Silva, L. E.; Teixeira, A. M. R.; Freire, P. T. C.; Pizani, P. S.

    2015-07-01

    In this study, the structural and vibrational properties of Meldrum's acid derivative 5-(5-Ethyl-1,3,4-thiadiazol-2-ylamino)methylene-2,2-dimethyl-1,3-dioxane-4,6-dione, C11H13N3O4S were studied combining experimental techniques such as Raman and FT-IR spectroscopy and density functional theory (DFT) calculations. The Raman and FT-IR spectra were recorded at room conditions in the regions from 80 to 3400 cm-1 and 400 to 4000 cm-1, respectively. Vibrational wavenumbers were predicted using DFT calculations with the hybrid functional B3LYP and basis set 6-31G(d,p). A comparison between experimental and theoretical data is provided for the Raman and FT-IR spectra. The descriptions of the normal modes were carried by means of potential energy distribution (PED).

  9. Rotational isomers, spectroscopic (FT-IR, FT-Raman) studies and quantum chemical calculations on 2,4,6-tris(dimethylaminomethyl) phenol.

    Science.gov (United States)

    Karthick, T; Balachandran, V; Perumal, S; Lakshmi, A

    2013-09-01

    In this work, the spectroscopic characterization of 2,4,6-tris(dimethylaminomethyl) phenol; a novel promoter factor for DNA has been studied primarily. The FT-IR (4000-400 cm(-1)) and FT-Raman (3500-100 cm(-1)) spectra have been recorded on the solid phase of the title molecule. The spectroscopic signature of the title molecule has been found by comparing experimental FT-IR, FT-Raman spectra with the theoretical IR and Raman spectra of the stable isomer geometry at density functional theory (DFT) method with 6-311++G(d,p) basis set. Further, the vibrational assignments were performed on the basis of potential energy distribution (PED). The natural atomic orbital and natural population analysis performed in this study ensures us to know about the delocalization of charge and electron density of atoms within the molecule. Analysis of natural bond orbitals (NBOs) and HOMO-LUMO energy gap of the compound provides information about its chemical stability and intramolecular charge transfer properties. In addition, the reacting electrophilic and nucleophilic sites of the molecule were predicted with the help of molecular electrostatic potential (MEP) surface analysis. Moreover, the intensity of molecular vibrations at different temperatures were examined by applying thermo-chemical analysis. To investigate the solvent effect, the polarizable continuum model was used and the allowed transitions between various HOMO and LUMO levels were found. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. IR and Raman spectroscopic studies of sol–gel derived alkaline ...

    Indian Academy of Sciences (India)

    from 50–3300 cm. −1 in Stokes-shifted Raman region, all in one spectrum. For Fourier transform infrared measurements (FTIR) sol– gel derived glasses were crushed with pestle in an agate mor- tar. The crushed material was mixed with potassium bro- mide (Merck IR spectroscopy grade) in 1:100 proportion and dried at 40.

  11. Structure and behaviour of proteins, nucleic acids and viruses from vibrational Raman optical activity

    DEFF Research Database (Denmark)

    Barron, L.D.; Blanch, E.W.; McColl, I.H.

    2003-01-01

    On account of its sensitivity to chirality Raman optical activity (ROA), which may be measured as a small difference in vibrational Raman scattering from chiral molecules in right- and left-circularly polarized incident light, is a powerful probe of structure and behaviour of biomolecules in aque...

  12. Spectroscopic characterization of enzymatic flax retting: Factor analysis of FT-IR and FT-Raman data

    Science.gov (United States)

    Archibald, D. D.; Henrikssen, G.; Akin, D. E.; Barton, F. E.

    1998-06-01

    Flax retting is a chemical, microbial or enzymatic process which releases the bast fibers from the stem matrix so they can be suitable for mechanical processing before spinning into linen yarn. This study aims to determine the vibrational spectral features and sampling methods which can be used to evaluate the retting process. Flax stems were retted on a small scale using an enzyme mixture known to yield good retted flax. Processed stems were harvested at various time points in the process and the retting was evaluated by conventional methods including weight loss, color difference and Fried's test, a visual ranking of how the stems disintegrate in hot water. Spectroscopic measurements were performed on either whole stems or powders of the fibers that were mechanically extracted from the stems. Selected regions of spectra were baseline and amplitude corrected using a variant of the multiplicative signal correction method. Principal component regression and partial least-squares regression with full cross-validation were used to determine the spectral features and rate of spectral transformation by regressing the spectra against the retting time in hours. FT-Raman of fiber powders and FT-IR reflectance of whole stems were the simplest and most precise methods for monitoring the retting transformation. Raman tracks the retting by measuring the decrease in aromatic signal and subtle changes in the C-H stretching vibrations. The IR method uses complex spectral features in the fingerprint and carbonyl region, many of which are due to polysaccharide components. Both spectral techniques monitor the retting process with greater precision than the reference method.

  13. Caracterización de la heterogeneidad estructural en polipropileno polimórfico mediante espectroscopia vibracional: microscopia IR y Raman

    Directory of Open Access Journals (Sweden)

    Ellis, G.

    2004-04-01

    Full Text Available A series of polymorphic samples of isotactic polypropylene, obtained via selective nucleation, were studied by vibrational spectroscopy. A correlation was observed between the spectra obtained and the Turner-Jones parameter, characteristic of the fraction of the β polymorph. Aspects of the structural heterogeneity in the samples were evaluated using mapping techniques with IR micrsocopy, confocal Raman microscopy, synchrotron IR microscopy and IR imaging microscopy.

    Una serie de muestras polimórficas de polipropileno isotáctico, obtenidos por nucleación selectiva, fueron estudiadas mediante espectroscopia vibracional. Se observó una correlación entre los espectros obtenidos y el parámetro de Turner-Jones, característico de la fracción del polimorfo β. Se evaluaron aspectos de la heterogeneidad estructural utilizando técnicas de mapeo con microscopia IR, microscopia Raman confocal, microscopia IR con radiación sincrotrón y microscopia IR de imagen.

  14. DFT calculations and experimental FT-IR, FT-Raman, NMR, UV-Vis spectral studies of 3-fluorophenylboronic acid.

    Science.gov (United States)

    Karabacak, M; Kose, E; Sas, E B; Kurt, M; Asiri, A M; Atac, A

    2015-02-05

    The spectroscopic (FT-IR, FT-Raman, (1)H and (13)C NMR, UV-Vis), structural, electronic and thermodynamical properties of 3-fluorophenylboronic acid (C6H4FB(OH)2), 3FPBA) were submitted by using both experimental techniques and theoretical methods (quantum chemical calculations) in this work. The experimental infrared and Raman spectra were obtained in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The equilibrium geometry and vibrational spectra were calculated by using DFT (B3LYP) with 6-311++G(d,p) basis set. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. The total energy distributions (TED) of the vibrational modes were performed for the assignments of the title molecule by using scaled quantum mechanics (SQM) method. The NMR chemical shifts ((1)H and (13)C) were recorded in DMSO solution. The (1)H and (13)C NMR spectra were computed by using the gauge-invariant atomic orbital (GIAO) method, showing a good agreement with the experimental ones. The last one UV-Vis absorption spectra were analyzed in two solvents (ethanol and water), saved in the range of 200-400 nm. In addition these, HOMO and LUMO energies, the excitation energies, density of states (DOS) diagrams, thermodynamical properties and molecular electrostatic potential surface (MEPs) were presented. Nonlinear optical (NLO) properties and thermodynamic features were performed. The experimental results are combined with the theoretical calculations using DFT calculations to fortification of the paper. At the end of this work, the results were proved our paper had been indispensable for the literature backing. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  16. Vibrational Properties of a Monolayer Silicene Sheet Studied by Tip-Enhanced Raman Spectroscopy

    Science.gov (United States)

    Sheng, Shaoxiang; Wu, Jiang-bin; Cong, Xin; Li, Wenbin; Gou, Jian; Zhong, Qing; Cheng, Peng; Tan, Ping-heng; Chen, Lan; Wu, Kehui

    2017-11-01

    Combining ultrahigh sensitivity, spatial resolution, and the capability to resolve chemical information, tip-enhanced Raman spectroscopy (TERS) is a powerful tool to study molecules or nanoscale objects. Here we show that TERS can also be a powerful tool in studying two-dimensional materials. We have achieved a 109 Raman signal enhancement and a 0.5 nm spatial resolution using monolayer silicene on Ag(111) as a prototypical 2D material system. Because of the selective enhancement on Raman modes with vertical vibrational components in TERS, our experiment provides direct evidence of the origination of Raman modes in silicene. Furthermore, the ultrahigh sensitivity of TERS allows us to identify different vibrational properties of silicene phases, which differ only in the bucking direction of the Si-Si bonds. Local vibrational features from defects and domain boundaries in silicene can also be identified.

  17. NIR–FT Raman, FT–IR and surface-enhanced Raman scattering ...

    Indian Academy of Sciences (India)

    Administrator

    The observed C–H in-plane bending and out-of- plane bending modes obtain their SERS intensity from these Raman polarizability components. 17,18. This leads to evidence for a tilted orientation of. SPSA on the silver surface. The appearances of both in-plane modes and out-of-plane modes suggest that there is a certain ...

  18. Espectroscopia vibracional: sistemática para o cálculo dos estiramentos CO de complexos carbonílicos e determinação da sua atividade IV e Raman Vibrational spectroscopy: procedures for the calculation of the CO stretchings of carbonyl complexes and determination of their IR and Raman activity

    Directory of Open Access Journals (Sweden)

    Gelson Manzoni de Oliveira

    2002-07-01

    Full Text Available IR bands related to M-C stretchings are not diagnostically significant for the identification of carbonyl groups in the spectra of carbonyl complexes. Otherwise, the frequency, intensity and number of bands for the CO stretchings provide very useful informations about the number of CO ligands and many others structural proprieties, like the presence of bridged CO groups. We report about a relatively simple and useful method for the determination of the CO stretchings of carbonyl complexes, which considers only the bond stretching internal coordinates of the CO groups.

  19. IR and Raman studies of oil and seedcake extracts from natural and genetically modified flax seeds

    Science.gov (United States)

    Żuk, M.; Dymińska, L.; Kulma, A.; Boba, A.; Prescha, A.; Szopa, J.; Mączka, M.; Zając, A.; Szołtysek, K.; Hanuza, J.

    2011-03-01

    Flax plant of the third generation (F3) overexpressing key genes of flavonoid pathway cultivated in field in 2008 season was used as the plant material throughout this study. The biochemical properties of seed, oil and seedcake extracts from natural and transgenic flax plants were compared. Overproduction of flavonoids (kaempferol), phenolic acids (coumaric, ferulic/synapic) and lignan-secoisolariciresinol diglucoside (SDG) in oil and extracts from transgenic seeds has been revealed providing a valuable source of these compounds for biotechnological application. The changes in fatty acids composition and increase in their stability against oxidation along three plant generations were also detected. The analysis of oil and seedcake extracts was performed using Raman and IR spectroscopy. The wavenumbers and integral intensities of Raman and IR bands were used to identify the components of phenylpropanoid pathway in oil and seedcake extracts from control and transgenic flax seeds. The spectroscopic data were compared to those obtained from biochemical analysis.

  20. Vibrational properties of epitaxial Bi4Te3 films as studied by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2015-08-01

    Full Text Available Bi4Te3, as one of the phases of the binary Bi–Te system, shares many similarities with Bi2Te3, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi4Te3 films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi4Te3 films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi4Te3 films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi4Te3 films, it is found that the Raman-active phonon oscillations in Bi4Te3 films exhibit the vibrational properties of those in both Bi and Bi2Te3 films.

  1. Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine

    Science.gov (United States)

    Valenzano, Loredana; Meyer, Alessio; Demichelis, Raffaella; Civalleri, Bartolomeo; Dovesi, Roberto

    2009-07-01

    The IR and Raman spectra of spessartine garnet Mn3Al2Si3O12, are simulated with the periodic ab initio CRYSTAL code by adopting an all-electron Gaussian-type basis set and the B3LYP Hamiltonian. The frequencies of the 25 Raman active modes (3 of A 1 g , 8 of E g and 14 of F 2 g symmetry) and of the two sets of 17 F 1 u transverse-optical and longitudinal-optical frequencies are generated, as well as the IR oscillator strength. The agreement between calculated and experimental data is excellent: for the IR and Raman sets, the mean absolute difference overline{|Updelta|} is 4.0 and 6.8 cm-1, respectively. Isotopic substitution permits to highlight the Mn, Al and Si participation to the various zones of the spectrum. Graphical animation, available on the authors’ web-site ( http://www.crystal.unito.it/vibs/garnets/spessartine/ ), provides a very readable description of the movement of atoms and groups in each vibrational mode.

  2. Efficient Vibrational Energy Transfer through Covalent Bond in Indigo Carmine Revealed by Nonlinear IR Spectroscopy.

    Science.gov (United States)

    He, Xuemei; Yu, Pengyun; Zhao, Juan; Wang, Jianping

    2017-10-12

    Ultrafast vibrational relaxation and structural dynamics of indigo carmine in dimethyl sulfoxide were examined using femtosecond pump-probe infrared and two-dimensional infrared (2D IR) spectroscopies. Using the intramolecularly hydrogen-bonded C═O and delocalized C═C stretching modes as infrared probes, local structural and dynamical variations of this blue dye molecule were observed. Energy relaxation of the vibrationally excited C═O stretching mode was found to occur through covalent bond to the delocalized aromatic vibrational modes on the time scale of a few picoseconds or less. Vibrational quantum beating was observed in magic-angle pump-probe, anisotropy, and 2D IR cross-peak dynamics, showing an oscillation period of ca. 1010 fs, which corresponds to the energy difference between the C═O and C═C transition frequency (33 cm-1). This confirms a resonant vibrational energy transfer happened between the two vibrators. However, a more efficient energy-accepting mode of the excited C═O stretching was believed to be a nearby combination and/or overtone mode that is more tightly connected to the C═O species. On the structural aspect, dynamical-time-dependent 2D IR spectra reveal an insignificant inhomogeneous contribution to time-correlation relaxation for both the C═O and C═C stretching modes, which is in agreement with the generally believed structural rigidity of such conjugated molecules.

  3. FT-IR and Raman spectra and DFT calculations on bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Maia, J. R.; Lima, J. A.; Freire, P. T. C.; Mendes Filho, J.; Nogueira, C. E. S.; Teixeira, A. M. R.; de Menezes, A. S.; Remédios, C. M. R.; Cardoso, L. P.

    2013-12-01

    In this work the Fourier transform infrared and the Raman spectra of bis(L-hisidinato)nickel(II) monohydrate were recorded at room temperature. Optimized geometry and vibrational frequencies were obtained by means of Density Functional Theory (DFT). Experimental and theoretical vibrational spectra were compared and a complete analysis of the modes was done in terms of the Potential Energy Distribution (PED).

  4. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    Science.gov (United States)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  5. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV-Vis), NBO and Homo-Lumo analysis of 1-benzyl-3-(2-furoyl) thiourea

    Science.gov (United States)

    Gil, Diego M.; Defonsi Lestard, M. E.; Estévez-Hernández, O.; Duque, J.; Reguera, E.

    2015-06-01

    Vibrational and electronic spectra for 1-benzyl-3-(2-furoyl) thiourea were calculated by using density functional method (B3LYP) with different basis sets. The complete assignment of all vibrational modes was performed on basis of the calculated frequencies and comparing with the reported IR and Raman spectra for that thiourea derivative. UV-visible absorption spectra of the compound dissolved in methanol were recorded and analyzed using time dependent density functional theory (TD-DFT). The calculated values for the geometrical parameters of the title compound are consistent with the ones reported from XRD studies. The stability of the molecule, related to hyper-conjugative interactions, and electron delocalization were evaluated using natural bond orbital (NBO) analysis. Intra-molecular interactions were studied by AIM approach. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. Molecular electrostatic potential map was performed by the DFT method.

  6. IR-Raman-VCD study of R-(+)-Pulegone: Influence of the solvent

    Science.gov (United States)

    Aviles-Moreno, Juan Ramón; Ureña Horno, Elena; Partal Ureña, Francisco; López González, Juan Jesús

    2011-08-01

    R-(+)-Pulegone is a natural monoterpene obtained from the essential oils of a variety of plants. It is used in flavouring agents, perfumery and aromatherapy. In this work, a study of the molecular structure and the infrared and Raman spectra of this chemical is presented. Theoretical calculations reveal the existence of two conformers depending on the position of the methyl group (axial and equatorial), being the equatorial conformer the most stable. A complete and reliable assignment of the IR and Raman spectra of the title compound is made, and the results are used to carry out a detailed interpretation of the VCD spectrum of this compound in the 4000-900 cm -1 region. Finally, the influence of the solvent in the VCD bands (intensity and sign) has been tested comparing the neat liquid spectrum with the VCD spectra recorded with four solvents.

  7. Epi-detection of vibrational phase contrast coherent anti-Stokes Raman scattering

    NARCIS (Netherlands)

    Garbacik, E.T.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2014-01-01

    We demonstrate a system for the phase-resolved epi-detection of coherent anti-Stokes Raman scattering (CARS) signals in highly scattering and/or thick samples. With this setup, we measure the complex vibrational responses of multiple components in a thick, highly-scattering pharmaceutical tablet in

  8. Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy.

    Science.gov (United States)

    Hall, David W; Marshall, Susan N; Gordon, Keith C; Killeen, Daniel P

    2016-01-01

    Squalene is sourced predominantly from shark liver oils and to a lesser extent from plants such as olives. It is used for the production of surfactants, dyes, sunscreen, and cosmetics. The economic value of shark liver oil is directly related to the squalene content, which in turn is highly variable and species-dependent. Presented here is a validated gas chromatography-mass spectrometry analysis method for the quantitation of squalene in shark liver oils, with an accuracy of 99.0 %, precision of 0.23 % (standard deviation), and linearity of >0.999. The method has been used to measure the squalene concentration of 16 commercial shark liver oils. These reference squalene concentrations were related to infrared (IR) and Raman spectra of the same oils using partial least squares regression. The resultant models were suitable for the rapid quantitation of squalene in shark liver oils, with cross-validation r (2) values of >0.98 and root mean square errors of validation of ≤4.3 % w/w. Independent test set validation of these models found mean absolute deviations of the 4.9 and 1.0 % w/w for the IR and Raman models, respectively. Both techniques were more accurate than results obtained by an industrial refractive index analysis method, which is used for rapid, cheap quantitation of squalene in shark liver oils. In particular, the Raman partial least squares regression was suited to quantitative squalene analysis. The intense and highly characteristic Raman bands of squalene made quantitative analysis possible irrespective of the lipid matrix.

  9. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation and NLO, HOMO-LUMO, NBO analysis of organic 2,4,5-trichloroaniline.

    Science.gov (United States)

    Govindarajan, M; Karabacak, M; Periandy, S; Tanuja, D

    2012-11-01

    In this work, the experimental and theoretical study on the molecular structure and vibrational spectra of 2,4,5-trichloroaniline (C(6)H(4)NCl(3), abbreviated as 2,4,5-TClA) were studied. The FT-IR and FT-Raman spectra were recorded. The molecular geometry and vibrational frequencies in the ground state were calculated by using the Hartree-Fock (HF) and density functional theory (DFT) methods (B3LYP) with 6-311++G(d,p) basis set. Comparison of the observed fundamental vibrational frequencies of 2,4,5-TClA with calculated results by HF and DFT indicates that B3LYP is superior to HF method for molecular vibrational problems. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and the first hyperpolarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results also show that the 2,4,5-TClA molecule may have microscopic nonlinear optical (NLO) behavior with non-zero values. Mulliken atomic charges of 2,4,5-TClA was calculated and compared with aniline and chlorobenzene molecules. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Ab-initio molecular dynamics and vibrational Raman spectroscopy investigations of quartz polymorph at high temperature

    Science.gov (United States)

    Sediki, Hayet; Simon, Patrick; Hadjadj, Aomar; Krallafa, Abdelghani M.

    2017-09-01

    Quartz has found a wide range of applications over the past years. In the present work, the temperature dependence of microcrystalline quartz is investigated with Raman spectroscopy and DFT-based molecular dynamics simulations. We aimed to determine the structure at short and medium range distances as a function of the increasing temperature. The dynamics and the structural changes are analysed in terms of time-dependent properties, and the vibrational analysis obtained from calculated dipole trajectory and vibrational density of states (VDOS). The computed data is compared to Raman and infrared spectroscopic measurements. The approach is of a particularly great interest when we focus on the structural behaviour, and the dynamical disorder observed and characterised through geometric and thermodynamic data. The calculations confirm that the infrared and Raman signature as a function of temperature provide a sensitive analysis of the structural behaviour of quartz.

  11. Ultrafast vibrational population transfer dynamics in 2-acetylcyclopentanone studied by 2D IR spectroscopy.

    Science.gov (United States)

    Park, Sungnam; Ji, Minbiao

    2011-03-14

    2-Acetylcyclopentanone (2-ACP), which is a β-dicarbonyl compound, undergoes keto-enol isomerization, and its enol tautomers are stabilized by a cyclic intramolecular hydrogen bond. 2-ACP (keto form) has symmetric and asymmetric vibrational modes of the two carbonyl groups at 1748 and 1715 cm(-1) , respectively, which are well separated from the carbonyl modes of its enol tautomers in the FTIR spectrum. We have investigated 2-ACP dissolved in carbon tetrachloride by 2D IR spectroscopy and IR pump-probe spectroscopy. Vibrational population transfer dynamics between the two carbonyl modes were observed by 2D IR spectroscopy. To extract the population exchange dynamics (i.e., the down- and uphill population transfer rate constants), we used the normalized volumes of the cross-peaks with respect to the diagonal peaks at the same emission frequency and the survival and conditional probability functions. As expected, the downhill population transfer time constant (3.2 ps) was measured to be smaller than the uphill population transfer time constant (3.8 ps). In addition, the vibrational population relaxation dynamics of the two carbonyl modes were observed to be the same within the experimental error and were found to be much slower than vibrational population transfer between two carbonyl modes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spectroscopic characteristic (FT-IR, FT-Raman, UV, 1H and 13C NMR), theoretical calculations and biological activity of alkali metal homovanillates

    Science.gov (United States)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Piekut, J.; Regulska, E.; Lewandowski, W.

    2016-04-01

    The structural and vibrational properties of lithium, sodium, potassium, rubidium and cesium homovanillates were investigated in this paper. Supplementary molecular spectroscopic methods such as: FT-IR, FT-Raman in the solid phase, UV and NMR were applied. The geometrical parameters and energies were obtained from density functional theory (DFT) B3LYP method with 6-311++G** basis set calculations. The geometry of the molecule was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned. Geometric and magnetic aromaticity indices, atomic charges, dipole moments, HOMO and LUMO energies were also calculated. The microbial activity of investigated compounds was tested against Bacillus subtilis (BS), Pseudomonas aeruginosa (PA), Escherichia coli (EC), Staphylococcus aureus (SA) and Candida albicans (CA). The relationship between the molecular structure of tested compounds and their antimicrobial activity was studied. The principal component analysis (PCA) was applied in order to attempt to distinguish the biological activities of these compounds according to selected band wavenumbers. Obtained data show that the FT-IR spectra can be a rapid and reliable analytical tool and a good source of information for the quantitative analysis of the relationship between the molecular structure of the compound and its biological activity.

  13. VIBRATIONAL RAMAN OPTICAL-ACTIVITY CALCULATIONS USING LONDON ATOMIC ORBITALS

    DEFF Research Database (Denmark)

    Helgaker, T.; Ruud, K.; Bak, Keld L.

    1994-01-01

    Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency of the inc...... of the incident light, using SCF linear response theory. London atomic orbitals are employed, imposing gauge origin invariance on the calculations. Calculations have been carried out in the harmonic approximation for CFHDT and methyloxirane.......Ab initio calculations of Raman differential intensities are presented at the self-consistent field (SCF) level of theory. The electric dipole-electric dipole, electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizability tensors are calculated at the frequency...

  14. Insilico molecular modeling, docking and spectroscopic [FT-IR/FT-Raman/UV/NMR] analysis of Chlorfenson using computational calculations

    Science.gov (United States)

    Ramalingam, S.; Periandy, S.; Sugunakala, S.; Prabhu, T.; Bououdina, M.

    2013-11-01

    In the present work, the recorded FT-IR/FT-Raman spectra of the Chlorfenson (4-Chorophenyl-4-chlorobenzenesulfonate) are analysed. The observed vibrational frequencies are assigned and the computational calculations are carried out by DFT (LSDA, B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results are investigated with the UV/NMR data. The fluctuation of structure of Chlorobenzenesulfonate due to the substitution of C6H4Cl is investigated. The vibrational sequence pattern of the molecule related to the substitutions is intensely analysed. Moreover, 13C NMR and 1H NMR chemical shifts are calculated by using the gage independent atomic orbital (GIAO) technique with HF/B3LYP/B3PW91 methods on same basis set. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated energy of Kubo gap (HOMO and LUMO) ensures that the charge transfer occurs within the molecule. Besides frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) is executed. NLO properties and Mulliken charges of the Chlorfenson is also calculated and interpreted. Biological properties like the target receptor identification, and Identification of interacting residues, of this compound is identified and analysed by using SWISSMODEL, Castp, Hex and Pdb Sum. By using these properties, the mechanism of action of this compound on ATP Synthase of Tetranychus urticae is found and it is very much useful to develop efficient pesticides having less toxic to the environment.

  15. Micro-Raman Vibrational Identification of 10-MDP Bond to Zirconia and Shear Bond Strength Analysis

    Directory of Open Access Journals (Sweden)

    Diego Martins De-Paula

    2017-01-01

    Full Text Available So far, there is no report regarding the micro-Raman vibrational fingerprint of the bonds between 10-methacryloyloxy-decyl dihydrogen phosphate (10-MDP and zirconia ceramics. Thus, the aim of this study was to identify the Raman vibrational peaks related to the bonds of 10-MDP with zirconia, as well as the influence on microshear bond strength. Micro-Raman spectroscopy was employed to assess the vibrational peak of 10-MDP binding to zirconia. Microshear bond strength of the dual-cure resin cement to zirconia with the presence of 10-MDP in composition of experimental ceramic primer and self-adhesive resin cement was also surveyed. Statistical analysis was performed by one-way ANOVA and Tukey’s test (p<0.05. Peaks at 1545 cm−1 and 1562 cm−1 were found to refer to zirconia binding with 10-MDP. The presence of 10-MDP in both experimental ceramic primer and self-adhesive resin cement improved microshear bond strength to zirconia ceramic. It can be concluded that the nondestructive method of micro-Raman spectroscopy was able to characterize chemical bonds of 10-MDP with zirconia, which improves the bond strengths of resin cement.

  16. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  17. Estimation of Cellulose Crystallinity of Lignocelluloses Using Near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods

    Science.gov (United States)

    Umesh P. Agarwal; Richard R. Reiner; Sally A. Ralph

    2013-01-01

    Of the recently developed univariate and multivariate near-IR FT-Raman methods for estimating cellulose crystallinity, the former method was applied to a variety of lignocelluloses: softwoods, hardwoods, wood pulps, and agricultural residues/fibers. The effect of autofluorescence on the crystallinity estimation was minimized by solvent extraction or chemical treatment...

  18. Spectroscopic (FT-IR, FT-Raman) and quantum mechanical studies of 3t-pentyl-2r,6c-diphenylpiperidin-4-one thiosemicarbazone

    Science.gov (United States)

    Savithiri, S.; Arockia doss, M.; Rajarajan, G.; Thanikachalam, V.; Bharanidharan, S.; Saleem, H.

    2015-02-01

    In this study, the molecular structure and vibrational spectra of 3t-pentyl2r,6c-diphenylpiperidin-4-one thiosemicarbazone (PDPOTSC) were studied. The ground-state molecular geometry was ascertained by using the density functional theory (DFT)/B3LYP method using 6-31++G(d,p) as a basis set. The vibrational (FT-IR and FT-Raman) spectra of PDPOTSC were computed using DFT/B3LYP and HF methods with 6-31++G(d,p) basis set. The fundamental vibrations were assigned on the basis of the total energy distribution (TED ⩾ 10%) of the vibrational modes, calculated with scaled quantum mechanics (SQM) methods PQS program. The electrical dipole moment (μ) and first hyperpolarizability (βo) values have been computed using DFT/B3LYP and HF methods. The calculated result (βo) shows that the title molecule might have nonlinear optical (NLO) behavior. Atomic charges of C, N, S and molecular electrostatic potential (MEP) were calculated using B3LYP/6-31G++(d,p). The HOMO-LUMO energies were calculated and natural bonding orbital (NBO) analysis has also been carried out.

  19. A combined experimental and theoretical studies on FT-IR, FT-Raman and UV-vis spectra of 2-chloro-3-quinolinecarboxaldehyde.

    Science.gov (United States)

    Prasad, M V S; Udaya Sri, N; Veeraiah, V

    2015-09-05

    In the present study, the FT-IR and FT-Raman spectra of 2-chloro-3-quinolinecarboxaldehyde (2Cl3QC) have been recorded in the region 4000-400 and 3500-50 cm(-1), respectively. The fundamental modes of vibrational frequencies of 2Cl3QC are assigned. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy, have been calculated for the molecule. The predicted first hyperpolarizability also shows that the molecule might have a reasonably good non-linear optical (NLO) behavior. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization have been analyzed using natural bond orbitals (NBO) analysis. The results show that charge in electron density (ED) in the π(∗) antibonding orbitals and E((2)) energies confirms the occurrence of ICT (intra-molecular charge transfer) within the molecule. UV-visible spectrum of the title molecule has also been calculated using TD-DFT/CAM-B3LYP/6-31G(d,p) method. The calculated energy and oscillator strength almost exactly reproduces reported experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  1. Electron paramagnetic resonance, optical absorption, IR and Raman spectral studies on pelecypod shell

    Science.gov (United States)

    Lakshmi Reddy, S.; Reddy, K. N. M.; Siva Reddy, G.; Reddy, B. J.; Frost, R. L.; Endo, Tamio

    2008-02-01

    Pelecypod shell originated from Kolleru lake of Andhra Pradesh is used in the present work. It contains Mn(II) and Fe(III) in traces. The EPR spectrum of the compound is due to Mn(II) which is in three independent sites. The three g values are evaluated with slight differences. The hyperfine component varies from 9.33 to 9.49 mT. The zero field splitting parameter is also ranges from 43.8(1) to 44.1(1) mT. Using the covalence parameter the number of ligands around metal is estimated as 20. In EPR spectrum Fe(III) is identified. The optical absorption spectrum is attributed to Mn(II) in octahedral geometry. Further 10 Dq band is attributed to Fe(II) in the optical absorption spectrum. NIR spectral results are due to water fundamentals, whereas IR and Raman spectrum is due to carbonate ion fundamentals.

  2. Revealing silent vibration modes of nanomaterials by detecting anti-Stokes hyper-Raman scattering with femtosecond laser pulses.

    Science.gov (United States)

    Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong

    2016-01-21

    We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.

  3. A combined experimental (IR, Raman and UV-Vis) and quantum chemical study of canadine

    Science.gov (United States)

    Joshi, Bhawani Datt; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha; Ayala, A. P.

    2018-02-01

    Plant based natural products cover a major sector of the medicinal field, as such focus on plant research has been increased all over the world. As an attempt to aid that research, we have performed structural and spectroscopic analysis of a natural product, an alkaloid: canadine. Both ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP using 6-311 ++G(d,p) basis set were used for the calculations. The calculated vibrational frequencies were scaled and compared with the experimental infrared and Raman spectra. The complete vibrational assignments were made using potential energy distribution. The structure-activity relation has also been interpreted by mapping electrostatic potential surface and evaluating the reactivity descriptors, which are valuable information for quality control of medicines and drug-receptor interactions. Natural bond orbital analysis has also been performed to understand the stability and hyperconjugative interactions of the molecule. Furthermore, UV-Vis spectra have been recorded in an ethanol solvent (EtOH) and the electronic property has been analyzed employing TD-DFT for both gaseous and solvent phase. The HOMO and LUMO calculation with their energy gap show that charge transfer occurs within the molecule. Additionally, the nonlinear optical properties of the title compound have been interpreted that predicts it's the best candidate for the NLO materials.

  4. Origin invariance in vibrational resonance Raman optical activity.

    Science.gov (United States)

    Vidal, Luciano N; Egidi, Franco; Barone, Vincenzo; Cappelli, Chiara

    2015-05-07

    A theoretical investigation on the origin dependence of the vibronic polarizabilities, isotropic and anisotropic rotational invariants, and scattering cross sections in Resonance Raman Optical Activity (RROA) spectroscopy is presented. Expressions showing the origin dependence of these polarizabilities were written in the resonance regime using the Franck-Condon (FC) and Herzberg-Teller (HT) approximations for the electronic transition moments. Differently from the far-from-resonance scattering regime, where the origin dependent terms cancel out when the rotational invariants are calculated, RROA spectrum can exhibit some origin dependence even for eigenfunctions of the electronic Hamiltonian. At the FC level, the RROA spectrum is completely origin invariant if the polarizabilities are calculated using a single excited state or for a set of degenerate states. Otherwise, some origin effects can be observed in the spectrum. At the HT level, RROA spectrum is origin dependent even when the polarizabilities are evaluated from a single excited state but the origin effect is expected to be small in this case. Numerical calculations performed for (S)-methyloxirane, (2R,3R)-dimethyloxirane, and (R)-4-F-2-azetidinone at both FC and HT levels using the velocity representation of the electric dipole and quadrupole transition moments confirm the predictions of the theory and show the extent of origin effects and the effectiveness of suggested ways to remove them.

  5. Poly-3-hydroxy butyric acid interaction with the transgenic flax fibers: FT-IR and Raman spectra of the composite extracted from a GM flax

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Żuk, Magdalena; Szopa, Jan; Dymińska, Lucyna; Mączka, Mirosław; Hanuza, Jerzy

    2009-07-01

    The FT-IR and FT-Raman studies have been performed on commercial 3-hydroxy-butyric acid, commercial poly-3-hydroxy butyric acid as well as poly-3-hydroxy butyric acid (PHB) produced by bacteria. The data were compared to those obtained for poly-3-hydroxy butyric acid extracted from natural and genetically modified flax. Genetically modified flax was generated by expression of three bacterial genes coding for synthesis of poly-3-hydroxy butyric acid. Thus transgenic flaxes were enhanced with different amount of the PHB. The discussion of polymer structure and vibrational properties has been done in order to get insight into differences among these materials. The interaction between the cellulose of flax fibers and embedded poly-3-hydroxybutyric acid has been also discussed. The spectroscopic data provide evidences for structural changes in cellulose and in PHB when synthesized in fibers. Based on this data it is suggesting that cellulose and PHB interact by hydrogen and ester bonds.

  6. Conformational stability, spectroscopic (FT-IR, FT-Raman and UV-Vis) analysis, NLO, NBO, FMO and Fukui function analysis of 4-hexylacetophenone by density functional theory.

    Science.gov (United States)

    Saravanan, S; Balachandran, V

    2015-03-05

    The experimental and theoretical study on the structures and vibrations of 4-hexylacetophenone (abbreviated as 4HAP) are presented. The FT-IR and FT-Raman spectra of the title compound have been recorded in the region 4000-400cm(-1) and 3500-100cm(-1) respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) method with 6-311++G(d,p) basis set. The most stable conformer of 4HAP is identified from the computational results. The assignments of the vibrational spectra have been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMEF). The linear polarizability (α) and the first hyperpolarizability (βtot) values of the investigated molecule have been computed using B3LYP and LSDA with 6-311++G(d,p) basis set. Stability of the molecule arising from hyper conjugative interaction and charge transfer delocalization has been analyzed using natural bond orbital (NBO) analysis. The molecule orbital contributions are studied by density of energy states (DOSs). UV-Vis spectrum and effects of solvents have been discussed effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach. Fukui function and Mulliken analysis on atomic charges of the title compound have been calculated. Finally, electrophilic and nucleophilic descriptors of the title molecule have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Characterization of flavonoid 3-Methoxyquercetin performed by FT-IR and FT-Raman spectroscopies and DFT calculations

    Science.gov (United States)

    de Toledo, T. A.; da Silva, L. E.; Botelho, T. C.; Ramos, R. J.; de Souza, P. T., Jr.; Teixeira, A. M. R.; Freire, P. T. C.; Bento, R. R. F.

    2012-12-01

    In the present study, the natural product 3-Methoxyquercetin, a flavonoid with potential antiviral activity, was characterized through infrared and Raman spectroscopies combined with Density Functional Theory calculation. The flavonoid was extracted from Strychnos pseudoquina St. Hil (Loganiaceae) by chromatographic techniques. The optimized molecular structure and calculated vibrational spectra were performed by B3LYP/6-31G (d,p) basis set. The optimized structure was compared with X-ray diffraction data of other flavonoids compounds, and the theoretical data are in good agreement with experimental ones. Fourier transform-Raman and -infrared spectra, as well as the assignment of the normal modes are also presented.

  8. Spectroscopic (FT-IR, FT-Raman, UV-Vis) analysis, conformational, HOMO-LUMO, NBO and NLO calculations on monomeric and dimeric structures of 4-pyridazinecarboxylic acid by HF and DFT methods

    Science.gov (United States)

    Eşme, A.; Sağdınç, S. G.

    2017-11-01

    In this study, the Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 4-pyridazinecarboxylic acid (4PCA) in solid phase were recorded and analyzed. Quantum chemical calculations of the optimized molecular structure, energies, conformational, UV-Vis, nonlinear optical (NLO) and natural bond orbital (NBO) analysis, molecular surfaces, Mulliken charges, and vibrational studies for 4PCA were performed using the ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. Obtained results on the geometric structure and vibrational frequencies are compared with observed data. The dimeric structure of 4PCA with DFT/B3LYP/6-311++G(d,p) level caused by the shifts of Osbnd H and Cdbnd O bands in the vibrational spectra of 4PCA were also studied. Moreover, the spectroscopic and theoretical results were compared with the corresponding properties for monomeric and dimeric structures of 4PCA. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies also confirm that charge transfer occurs within the molecule. NBO analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction. The detailed vibrational assignments were performed with the HF and DFT calculations, and the potential energy distribution (PED) was obtained by the Vibrational Energy Distribution Analysis (VEDA4) program.

  9. Analysis of molecular structure, spectroscopic properties (FT-IR, micro-Raman and UV-vis) and quantum chemical calculations of free and ligand 2-thiopheneglyoxylic acid in metal halides (Cd, Co, Cu, Ni and Zn).

    Science.gov (United States)

    Gökce, Halil; Bahçeli, Semiha

    2013-12-01

    In this study, molecular geometries, experimental vibrational wavenumbers, electronic properties and quantum chemical calculations of 2-thiopheneglyoxylic acid molecule, (C6H4O3S), and its metal halides (Cd, Co, Cu, Ni and Zn) which are used as pharmacologic agents have been investigated experimentally by FT-IR, micro-Raman and UV-visible spectroscopies and elemental analysis. Meanwhile the vibrational calculations were verified by DFT/B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets in the ground state, for free TPGA molecule and its metal halide complexes, respectively, for the first time. The calculated fundamental vibrational frequencies for the title compounds are in a good agreement with the experimental data. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. FT-IR, FT-Raman spectroscopic study of carotenoids from saffron ( Crocus sativus L.) and some derivatives

    Science.gov (United States)

    Tarantilis, Petros A.; Beljebbar, Abdelilah; Manfait, Michel; Polissiou, Moschos

    1998-04-01

    The carotenoids of saffron, crocins (CRCs), were extracted and their derivatives, dimethylcrocetin (DMCRT) and crocetin (CRT) were prepared from the extract by alkaline hydrolysis in methanol (DMCRT) and by alkaline hydrolysis in water followed by acidification (CRT), respectively. FT-IR, FT-Raman spectroscopies were used to study these compounds. The FT-IR spectra of CRCs, DMCRT and CRT have characteristic absorbance bands between 1706 and 1664 cm -1 ( νCO) and in the region between 1243 and 1228 cm -1 ( νC-O). Two main Raman lines were observed near 1540 and 1166 cm -1 which are respectively assigned to ( νCC) and ( νC-C) stretching modes.

  11. Spectroscopic investigations (FT-IR & FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine

    Science.gov (United States)

    Prasath, M.; Govindammal, M.; Sathya, B.

    2017-10-01

    The Azathioprine is used as anticancer agent. Azathioprine is chemically called 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (6M4N5P). The vibrational analysis of the 6M4N5P compound was carried out by using FT-IR and FT-Raman spectroscopic techniques and compared with aspects. The optimized geometry, frequency and intensity of the vibrational bands of 6M4N5P were obtained from the HF and DFT methods with 6-31G (d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that charge transfer occur within the molecule. MEP (Molecular Electrostatic Potential) is very useful in the investigation of the charge distributions and molecular structure. The molecule orbital contributions were determined by using the total density of states (TDOS). A molecular docking analysis has been carried out to understand the conformational change and electrostatic properties of 6M4N5P in the active site of Rac1-Receptor.

  12. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), first order hyperpolarizability, NBO and molecular docking study of (E)-1-(4-bromobenzylidene)semicarbazide

    Science.gov (United States)

    Raja, M.; Muhamed, R. Raj; Muthu, S.; Suresh, M.

    2017-01-01

    The compound (E)-1-(4-bromobenzylidene)semicarbazide(4BSC) was synthesized and characterized by FT-IR, FT-Raman, UV-Visible, 1HNMR and 13CNMR spectra. The optimized molecular geometry(bond length, bond angle), the complete vibrational frequency, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with the help of 6-311++G(d,p) basis set. From the recorded UV-Visible spectrum, the electronic properties such as excitation energies, wavelength, band gap and oscillator strength are evaluated by TD-DFT in DMSO solution and gas phase methods using 6-311++G(d,p) basis set. The calculated HOMO - LUMO band gap energies confirm that charge transfer occurs within the molecule. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge-independent atomic orbital (GIAO) method and compared with experimental results. The hyperconjugative interaction energy E(2) and electron densities of donor (i) and acceptor (j) bonds were calculated using NBO analysis. Besides NLO and MEP were also calculated and interpreted. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antimicrobial protein. Thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations the heat capacity (C), entropy (S) and enthalpy changes (H) and temperatures.

  13. Modeling of structures and calculation of IR vibrational spectra of N,N-dimethylformamide dimers by density functional theory

    Science.gov (United States)

    Shundalau, M. B.; Chybirai, P. S.; Komyak, A. I.; Zazhogin, A. P.; Ksenofontov, M. A.; Umreiko, D. S.

    2011-07-01

    We present results of ab initio and DFT calculations of the structure and IR vibrational spectra of the monomer and dimers of N,N-dimethylformamide (DMF). The calculations were carried out in the B3LYP/cc-pVDZ approximation with subsequent force-field scaling. The calculated characteristics of the vibrational spectra of DMF show satisfactory agreement with experimental values, allowing them to be used in spectral and structural analysis.

  14. Microwave, infrared and Raman spectra, conformational stability and vibrational assignment of methoxyflurane

    Science.gov (United States)

    Li, Y. S.; Durig, J. R.

    1982-05-01

    The low resolution microwave spectrum of methoxyflurane, CHCl 2CF 2OCH 3, has been recorded from 26.5 to 39.0 GHz. From the spacing of the major transitions it is shown that the value of 2036 MHz for B + C is consistent with the trans-trans or gauche-trans conformers where the first term ( trans or gauche) refers to the internal rotation around the C-C bond. The infrared (40-3500 cm -1) and the Raman (20-3500 cm -1) spectra have been recorded for gaseous and solid methoxyflurane. Additionally, the Raman spectrum of the liquid has been obtained and qualitative depolarization ratios measured. From these data it is shown that the most stable form in the fluid phases at ambient temperature is the gauche-trans conformer but the trans-trans form is the most stable in the solid state. A complete vibrational analysis based on infrared band contours, depolarization values and group frequencies is proposed for this conformer. From the analysis of the low frequency vibrational data, values of some of the barriers to internal rotation are estimated. These results are compared to some similar quantities for some corresponding molecules.

  15. Quantum chemical studies on molecular structure, spectroscopic (IR, Raman, UV-Vis), NBO and HOMO-LUMO analysis of 1-benzyl-3-(2-furoyl) thiourea.

    Science.gov (United States)

    Gil, Diego M; Defonsi Lestard, M E; Estévez-Hernández, O; Duque, J; Reguera, E

    2015-06-15

    Vibrational and electronic spectra for 1-benzyl-3-(2-furoyl) thiourea were calculated by using density functional method (B3LYP) with different basis sets. The complete assignment of all vibrational modes was performed on basis of the calculated frequencies and comparing with the reported IR and Raman spectra for that thiourea derivative. UV-visible absorption spectra of the compound dissolved in methanol were recorded and analyzed using time dependent density functional theory (TD-DFT). The calculated values for the geometrical parameters of the title compound are consistent with the ones reported from XRD studies. The stability of the molecule, related to hyper-conjugative interactions, and electron delocalization were evaluated using natural bond orbital (NBO) analysis. Intra-molecular interactions were studied by AIM approach. The HOMO and LUMO analysis are used to determine the charge transfer within the molecule. Molecular electrostatic potential map was performed by the DFT method. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Quantum mechanical and spectroscopic (FT-IR, FT-Raman) study, NBO analysis, HOMO-LUMO, first order hyperpolarizability and molecular docking study of methyl[(3R)-3-(2-methylphenoxy)-3-phenylpropyl]amine by density functional method

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob; Mathew, Sheril Ann

    2018-01-01

    Quantum chemical techniques such as density functional theory (DFT) have become a powerful tool in the investigation of the molecular structure and vibrational spectrum and are finding increasing use in application related to biological systems. The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) techniques are employed to characterize the title compound. The vibrational frequencies were obtained by DFT/B3LYP calculations with 6-31G(d,p) and 6-311 ++G(d,p) as basis sets. The geometry of the title compound was optimized. The vibrational assignments and the calculation of Potential Energy Distribution (PED) were carried out using the Vibrational Energy Distribution Analysis (VEDA) software. Molecular electrostatic potential was calculated for the title compound to predict the reactive sites for electrophilic and nucleophilic attack. In addition, the first-order hyperpolarizability, HOMO and LUMO energies, Fukui function and NBO were computed. The thermodynamic properties of the title compound were calculated at different temperatures, revealing the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. Molecular docking studies were also conducted as part of this study. The paper further explains the experimental results which are in line with the theoretical calculations and provide optimistic evidence through molecular docking that the title compound can act as a good antidepressant. It also provides sufficient justification for the title compound to be selected as a good candidate for further studies related to NLO properties.

  17. Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV–vis and EXAFS study

    NARCIS (Netherlands)

    Keller, D.E.; Visser, T.|info:eu-repo/dai/nl/110288327; Soulimani, F.|info:eu-repo/dai/nl/313889449; Koningsberger, D.C.|info:eu-repo/dai/nl/073704342; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2007-01-01

    The effect of hydration on the molecular structure of silica-supported vanadium oxide catalysts with loadings of 1–16 wt.% V has been systematically investigated by infrared, Raman, UV–vis and EXAFS spectroscopy. IR and Raman spectra recorded during hydration revealed the formation of V–OH groups,

  18. Extremely slow intramolecular vibrational redistribution: Direct observation by time-resolved raman spectroscopy in trifluoropropyne

    Science.gov (United States)

    Malinovsky, A. L.; Makarov, A. A.; Ryabov, E. A.

    2011-04-01

    We have studied the dynamics of intramolecular vibrational redistribution (IVR) from the initially excited mode v1 ≈ 3330 cm-1 (acetylene-type H-C bond) in H-C≡C-CF3 molecules in the gaseous phase by means of anti-Stokes spontaneous Raman scattering. The time constant of this process is estimated as 2.3 ns—this is the slowest IVR time reported so far for the room-temperature gases. It is suggested that so long IVR time with respect to the other propyne derivatives can be explained by a larger defect, in this case, of the Fermi resonance of v1 with v2 + 2v7—the most probable doorway state leading to IVR from v1 to the bath of all vibrational-rotational states with the close energies. In addition, it is shown that the observed dynamics is in agreement with a theoretical model assuming strong vibrational-rotational mixing.

  19. Vibrational Raman spectra of hydrogen clathrate hydrates from density functional theory

    Science.gov (United States)

    Ramya, K. R.; Venkatnathan, Arun

    2013-03-01

    Hydrogen clathrate hydrates are promising sources of clean energy and are known to exist in a sII hydrate lattice, which consists of H2 molecules in dodecahedron (512) and hexakaidecahedron (51264) water cages. The formation of these hydrates which occur in extreme thermodynamic conditions is known to be considerably reduced by an inclusion of tetrahydrofuran (THF) in cages of these hydrate lattice. In this present work, we employ the density functional theory with a dispersion corrected (B97-D) functional to characterize vibrational Raman modes in the cages of pure and THF doped hydrogen clathrate hydrates. Our calculations show that the symmetric stretch of the H2 molecule in the 51264H2.THF cage is blueshifted compared to the 51264H2 cage. However, all vibrational modes of water molecules are redshifted which suggest reduced interaction between the H2 molecule and water molecules in the 51264H2.THF cage. The symmetric and asymmetric O-H stretch of water molecules in 512H2, 51264H2, and 51264H2.THF cages are redshifted compared with the corresponding guest free cages due to interactions between encapsulated H2 molecules and water molecules of the cages. The low frequency modes contain contributions from contraction and expansion of water cages and vibration of water molecules due to hydrogen bonding and these modes could possibly play an important role in the formation of the hydrate lattice.

  20. Application of fluorescent and vibration spectroscopy for septic serum human albumin structure deformation during pathology

    Science.gov (United States)

    Zyubin, A.; Konstantinova, E.; Slezhkin, V.; Matveeva, K.; Samusev, I.; Bryukhanov, V.

    2017-12-01

    In this paper we perform results of conformational analysis of septic human serum albumin (HSA) carried out by Raman spectroscopy (RS), infrared (IR) spectroscopy and fluorescent spectroscopy. The main vibrational groups were identified and analyzed for septic HSA and its health control. Comparison between Raman and IR results were done. Fluorescent spectral changes of Trp-214 group were analyzed. Application of Raman, IR spectroscopy, fluorescent spectroscopy for conformational changes study of HSA during pathology were shown.

  1. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.

    Science.gov (United States)

    Szymańska-Chargot, Monika; Cybulska, Justyna; Zdunek, Artur

    2011-01-01

    Raman and Fourier Transform Infrared (FT-IR) spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the I(β) content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (X(C)(RAMAN)%) varied from -25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose I(β). However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm(-1). Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX) has the most similar structure to those observed in natural primary cell walls.

  2. Adsorption and Vibrational Study of Folic Acid on Gold Nanopillar Structures Using Surface-enhanced Raman Scattering Spectroscopy

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Rozo, Ciro E.

    2015-01-01

    on the nanopillars within the high electromagnetic field areas. The adsorption behaviour of folic acid and the band assignment of the main vibrations together with the optimized geometry of folic acid and folic acid in the presence of a cluster of 10 gold atoms were assessed using the density functional theory (B3......This paper presents a study of adsorption and vibrational features of folic acid, using surface-enhanced Raman scattering (SERS). A gold-capped silicon nanopillar (Au NP) with a height of 600 nm and a width of 120 nm was utilized to study the vibrational features of FA molecules adsorbed......LYP(6-31G(d))) and the scalar relativistic effective core potential with a double-zeta basis set (LANL2DZ). The vibrations obtained from the solid-state folic acid and the folic acid on a gold cluster were in accordance with those observed experimentally. The analysis of the main vibrations indicated...

  3. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Temperature dependent equilibrium native to unfolded protein dynamics and properties observed with IR absorption and 2D IR vibrational echo experiments.

    Science.gov (United States)

    Chung, Jean K; Thielges, Megan C; Bowman, Sarah E J; Bren, Kara L; Fayer, M D

    2011-05-04

    Dynamic and structural properties of carbonmonoxy (CO)-coordinated cytochrome c(552) from Hydrogenobacter thermophilus (Ht-M61A) at different temperatures under thermal equilibrium conditions were studied with infrared absorption spectroscopy and ultrafast two-dimensional infrared (2D IR) vibrational echo experiments using the heme-bound CO as the vibrational probe. Depending on the temperature, the stretching mode of CO shows two distinct bands corresponding to the native and unfolded proteins. As the temperature is increased from low temperature, a new absorption band for the unfolded protein grows in and the native band decreases in amplitude. Both the temperature-dependent circular dichroism and the IR absorption area ratio R(A)(T), defined as the ratio of the area under the unfolded band to the sum of the areas of the native and unfolded bands, suggest a two-state transition from the native to the unfolded protein. However, it is found that the absorption spectrum of the unfolded protein increases its inhomogeneous line width and the center frequency shifts as the temperature is increased. The changes in line width and center frequency demonstrate that the unfolding does not follow simple two-state behavior. The temperature-dependent 2D IR vibrational echo experiments show that the fast dynamics of the native protein are virtually temperature independent. In contrast, the fast dynamics of the unfolded protein are slower than those of the native protein, and the unfolded protein fast dynamics and at least a portion of the slower dynamics of the unfolded protein change significantly, becoming faster as the temperature is raised. The temperature dependence of the absorption spectrum and the changes in dynamics measured with the 2D IR experiments confirm that the unfolded ensemble of conformers continuously changes its nature as unfolding proceeds, in contrast to the native state, which displays a temperature-independent distribution of structures. © 2011

  5. Application of spectroscopic methods (FT-IR, Raman, ECD and NMR) in studies of identification and optical purity of radezolid

    Science.gov (United States)

    Michalska, Katarzyna; Gruba, Ewa; Mizera, Mikołaj; Lewandowska, Kornelia; Bednarek, Elżbieta; Bocian, Wojciech; Cielecka-Piontek, Judyta

    2017-08-01

    In the presented study, N-{[(5S)-3-(2-fluoro-4‧-{[(1H-1,2,3-triazol-5-ylmethyl)amino]methyl}biphenyl-4-yl)-2-oxo-1,3-oxazolidin-5-yl]methyl}acetamide (radezolid) was synthesized and characterized using FT-IR, Raman, ECD and NMR. The aim of this work was to assess the possibility of applying classical spectral methods such as FT-IR, Raman, ECD and NMR spectroscopy for studies on the identification and optical purity of radezolid. The experimental interpretation of FT-IR and Raman spectra of radezolid was conducted in combination with theoretical studies. Density functional theory (DFT) with the B3LYP hybrid functional was used for obtaining radezolid spectra. Full identification was carried out by COSY, 1H {13C} HSQC and 1H {13C} HMBC experiments. The experimental NMR chemical shifts and spin-spin coupling constants were compared with theoretical calculations using the DFT method and B3LYP functional employing the 6-311 ++G(d,p) basis set and the solvent polarizable continuum model (PCM). The experimental ECD spectra of synthesized radezolid were compared with experimental spectra of the reference standard of radezolid. Theoretical calculations enabled us to conduct HOMO and LUMO analysis and molecular electrostatic potential maps were used to determine the active sites of microbiologically active form of radezolid enantiomer. The relationship between results of ab initio calculations and knowledge about chemical-biological properties of S-radezolid and other oxazolidinone derivatives are also discussed.

  6. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.

    Science.gov (United States)

    Taylor, Erik A; Lloyd, Ashley A; Salazar-Lara, Carolina; Donnelly, Eve

    2017-10-01

    Raman and Fourier transform infrared (FT-IR) spectroscopic imaging techniques can be used to characterize bone composition. In this study, our objective was to validate the Raman mineral:matrix ratios (ν 1 PO 4 :amide III, ν 1 PO 4 :amide I, ν 1 PO 4 :Proline + hydroxyproline, ν 1 PO 4 :Phenylalanine, ν 1 PO 4 :δ CH 2 peak area ratios) by correlating them to ash fraction and the IR mineral:matrix ratio (ν 3 PO 4 :amide I peak area ratio) in chemical standards and native bone tissue. Chemical standards consisting of varying ratios of synthetic hydroxyapatite (HA) and collagen, as well as bone tissue from humans, sheep, and mice, were characterized with confocal Raman spectroscopy and FT-IR spectroscopy and gravimetric analysis. Raman and IR mineral:matrix ratio values from chemical standards increased reciprocally with ash fraction (Raman ν 1 PO 4 /Amide III: P Fourier transform infrared mineral:matrix ratio values from native bone tissue were also similar to theoretical mineral:matrix ratio values for a given ash fraction. Raman and IR mineral:matrix ratio values were strongly correlated ( P < 0.01, R 2  = 0.82). These results were confirmed by calculating the mineral:matrix ratio for theoretical IR spectra, developed by applying the Beer-Lambert law to calculate the relative extinction coefficients of HA and collagen over the same range of wavenumbers (800-1800 cm -1 ). The results confirm that the Raman mineral:matrix bone composition parameter correlates strongly to ash fraction and to its IR counterpart. Finally, the mineral:matrix ratio values of the native bone tissue are similar to those of both chemical standards and theoretical values, confirming the biological relevance of the chemical standards and the characterization techniques.

  7. Structural and vibrational characterization of sugar arabinitol structures employing micro-Raman spectra and DFT calculations

    Science.gov (United States)

    Hédoux, Alain; Guinet, Yannick; Carpentier, Laurent; Paccou, Laurent; Derollez, Patrick; Brandán, Silvia Antonia

    2017-06-01

    In this work, three monomeric forms of arabinitol, usually named arabitol, and their dimeric species have been structural and vibrationally studied by using the micro-Raman spectra in the solid phase accomplished with theoretical calculations based on the theory of the functional of the density (DFT). The hybrid B3LYP method was used for all the calculations together with the 6-31G* and 6-311++g** basis sets. Two different L structures with minima energies were predicted in accordance to the two polymorphic structures revealed by recent X-ray diffraction experiments. The studies by natural bond orbital (NBO) calculations reveals high stabilities of the L form as compared with the D one but the topological properties by using the atoms in molecules (AIM) suggest a higher stability of the D form due to a strong H bond interactions. The scaled mechanical force fields (SQMFF) procedure was used to perform the complete vibrational assignments for the monomeric forms and their dimer. On the other hand, the similarity in the gap values computed for the three forms of arabitol with those observed for sucrose, trehalose, maltose and lactose in gas phase at the same level of theory could partially explain the sweetening property of this alcohol. In addition, the influences of the size of the basis set on some properties were evidenced.

  8. Structure investigation of BN films grown by ion-beam-assisted deposition by means of polarised IR and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ben el Mekki, M.; Djouadi, M.A.; Guiot, E.; Mortet, V. [ENSAM, Cluny (France). Lab. Bourguignon des Materiaux et Procedes; Pascallon, J.; Stambouli, V.; Bouchier, D. [Institut d' Electronique Fondamentale, Universite Paris-Sud, Orsay (France); Mestres, N. [Institut de Ciencia de Materials de Barcelona (CSIC), E-08193, Bellaterra (Spain); Nouet, G. [LERMAT, ISMRA, Caen (France)

    1999-09-01

    We present an optical investigation, by means of polarised infrared (IR) spectroscopy and Raman scattering, of the microstructure and crystallinity of mixed films of hexagonal and cubic boron nitride (h-BN and c-BN, respectively). The films were deposited on an unheated silicon substrate by the ion-beam-assisted deposition method (IBAD) at low energy (400-500 eV). The deposition temperature, due to the ion bombardment, was in the range 200-250 C at the end of the deposition process. Different film types were grown on a silicon substrate of dimensions 75 mm x 15 mm by changing the ion (nitrogen+argon) to atom (thermal boron) arrival ratio, {phi}{sub ion}/{phi}{sub B}, in the range 0.69-3. Polarised IR reflectivity (PIRR) spectra were acquired at different positions on the BN film (different arrival ratios {phi}{sub ion}/{phi}{sub B}) and show an important upwards shift of transverse optical (TO) and longitudinal optical (LO) phonons of the twofold degenerated mode E{sub 1u} of the sp{sup 2} phase at the transition zone from sp{sup 2} to sp{sup 3} phases. Several processes can shift the IR phonon peaks, including the degree of crystallinity, film thickness, film stoichiometry and intrinsic stress. The micro-Raman results and the full-width at half-maximum values of TO phonons of the E{sub 1u} mode show that the BN film has a similar crystallinity in all regions. The effect of the film thickness was shown by using a microstructure-dependent model for the IR anisotropic effective dielectric function of thin films. (orig.)

  9. Quantitative IR Spectrum and Vibrational Assignments for Glycolaldehyde Vapor: Glycolaldehyde Measurements in Biomass Burning Plumes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Timothy J.; Sams, Robert L.; Profeta, Luisa T.; Akagi, Sheryl; Burling, Ian R.; Yokelson, Robert J.; Williams, Stephen D.

    2013-04-15

    Glycolaldehyde (GA, 2-hydroxyethanal, C2H4O2) is a semi-volatile molecule of atmospheric importance, recently proposed as a precursor in the formation of aqueous-phase secondary organic aerosol (SOA). There are few methods to measure glycolaldehyde vapor, but infrared spectroscopy has been used successfully. Using vetted protocols we have completed the first assignment of all fundamental vibrational modes and derived quantitative IR absorption band strengths using both neat and pressure-broadened GA vapor. Even though GA is problematic due to its propensity to both dimerize and condense, our intensities agree well with the few previously published values. Using the reference ν10 band Q-branch at 860.51 cm-1, we have also determined GA mixing ratios in biomass burning plumes generated by field and laboratory burns of fuels from the southeastern and southwestern United States, including the first field measurements of glycolaldehyde in smoke. The GA emission factors were anti-correlated with modified combustion efficiency confirming release of GA from smoldering combustion. The GA emission factors (g of GA emitted per kg dry biomass burned on a dry mass basis) had a low dependence on fuel type consistent with the production mechanism being pyrolysis of cellulose. GA was emitted at 0.23 ± 0.13% of CO from field fires and we calculate that it accounts for ~18% of the aqueous-phase SOA precursors that we were able to measure.

  10. FT-IR and Raman spectroscopies determine structural changes of tilapia fish protein isolate and surimi under different comminution conditions.

    Science.gov (United States)

    Kobayashi, Yuka; Mayer, Steven G; Park, Jae W

    2017-07-01

    Tilapia proteins refined by pH shift and water washing were chopped under various comminution conditions and their structural changes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopies. Both techniques revealed the degree of unfolding in protein structure increased when fish protein isolate (FPI) and surimi were chopped at 25°C for 18min compared to samples chopped at 5°C for 6min. Results indicated both hydrophobic interactions and disulfide bonds were significantly enhanced during gelation. FPI and surimi gels prepared at 25°C for 18min exhibited higher β-sheet contents and more chemical bonds such as hydrophobic interactions and disulfide bonds than those at 5°C for 6min. Results suggested that controlling comminution is important to improve gel qualities in FPI and surimi from tropical fish like tilapia. Moreover, FT-IR and Raman spectroscopies are useful complementary tools for elucidating the change in the structure of protein during comminution and gelation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Artur Zdunek

    2011-05-01

    Full Text Available Raman and Fourier Transform Infrared (FT-IR spectroscopy was used for assessment of structural differences of celluloses of various origins. Investigated celluloses were: bacterial celluloses cultured in presence of pectin and/or xyloglucan, as well as commercial celluloses and cellulose extracted from apple parenchyma. FT-IR spectra were used to estimate of the Iβ content, whereas Raman spectra were used to evaluate the degree of crystallinity of the cellulose. The crystallinity index (XCRAMAN% varied from −25% for apple cellulose to 53% for microcrystalline commercial cellulose. Considering bacterial cellulose, addition of xyloglucan has an impact on the percentage content of cellulose Iβ. However, addition of only xyloglucan or only pectins to pure bacterial cellulose both resulted in a slight decrease of crystallinity. However, culturing bacterial cellulose in the presence of mixtures of xyloglucan and pectins results in an increase of crystallinity. The results confirmed that the higher degree of crystallinity, the broader the peak around 913 cm−1. Among all bacterial celluloses the bacterial cellulose cultured in presence of xyloglucan and pectin (BCPX has the most similar structure to those observed in natural primary cell walls.

  12. Discrimination of fennel chemotypes applying IR and Raman spectroscopy – discovery of a new -asarone chemotype

    Directory of Open Access Journals (Sweden)

    Krähmer, Andrea

    2016-07-01

    Full Text Available Various vibrational spectroscopy methods have been applied to classify different fennel chemotypes according to their individual profile of volatile substances. Intact fennel fruits of different chemotypes could be successfully discriminated by Attenuated Total Reflectance Fourier transform Infrared (ATR-FTIR and Near Infrared (NIR spectroscopy. Solvent extracts (CCl4 of the considered fennel fruits showed characteristic fingerprints with marker bands related to the individual volatile components (trans-anethole, fenchone, estragole, piperitenone oxide, -asarone, limonene for ATR-FTIR and FT-Raman spectroscopy. Especially C=C and C=O absorption bands contribute to the different spectral profiles. Based on hierarchical cluster analysis, the considered fennel accessions were classified according to gas chromatographic (GC and vibrational spectroscopic data. Furthermore, even a discrimination of “sweet” and “bitter” fennel fruits, both belonging to the trans-anethole chemotype, could be successfully performed. All vibrational spectroscopical techniques used in this study are rapid and easy to apply. Hence, they allow different fennel chemotypes to be reliably distinguished and can also be used for on-site measurement in free nature.

  13. Fourier transform two-dimensional electronic-vibrational spectroscopy using an octave-spanning mid-IR probe.

    Science.gov (United States)

    Gaynor, James D; Courtney, Trevor L; Balasubramanian, Madhumitha; Khalil, Munira

    2016-06-15

    The development of coherent Fourier transform two-dimensional electronic-vibrational (2D EV) spectroscopy with acousto-optic pulse-shaper-generated near-UV pump pulses and an octave-spanning broadband mid-IR probe pulse is detailed. A 2D EV spectrum of a silicon wafer demonstrates the full experimental capability of this experiment, and a 2D EV spectrum of dissolved hexacyanoferrate establishes the viability of our 2D EV experiment for studying condensed phase molecular ensembles.

  14. Controlling cross pumping between C-N and C-H vibration in nitromethane by selective fluorescence-enhanced stimulated Raman scattering

    National Research Council Canada - National Science Library

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Men, Zhiwei

    2016-01-01

    To investigate the vibrational features of nitromethane (NM), which is a kind of energy material and a well known low-sensitivity and high explosive, experiments are performed to obtain the stimulated Raman scattering (SRS...

  15. Graphitic carbon nitride C 6N 9H 3·HCl: Characterisation by UV and near-IR FT Raman spectroscopy

    Science.gov (United States)

    McMillan, Paul F.; Lees, Victoria; Quirico, Eric; Montagnac, Gilles; Sella, Andrea; Reynard, Bruno; Simon, Patrick; Bailey, Edward; Deifallah, Malek; Corà, Furio

    2009-10-01

    The graphitic layered compound C 6N 9H 3·HCl was prepared by reaction between melamine and cyanuric chloride under high pressure-high temperature conditions in a piston cylinder apparatus and characterised using SEM, powder X-ray diffraction, UV Raman and near-IR Fourier transform Raman spectroscopy with near-IR excitation. Theoretical calculations using density functional methods permitted evaluation of the mode of attachment of H atoms to nitrogen sites in the structure and a better understanding of the X-ray diffraction pattern. Broadening in the UV and near-IR FT Raman spectra indicate possible disordering of the void sites within the graphitic layers or it could be due to electron-phonon coupling effects.

  16. Fourier-transform Raman and infrared spectroscopic analysis of novel biliverdin compounds

    Science.gov (United States)

    Hu, Jiming; Moigno, Damien; Kiefer, Wolfgang; Ma, Jinshi; Chen, Qiongqi; Wang, Changqi; Feng, Haitao; Shen, Jingkai; Niu, Fei; Gu, Yinghong

    2000-11-01

    The vibrational spectroscopy of novel biliverdin compounds were studied by Fourier-transform Raman (FT-Raman) and infrared (FT-IR) spectroscopy. The effects of type, length and position of substituents at C(8) and C(12) or C(1) and C(19) of tetrapyrroles on FT-Raman and FT-IR spectra of these compounds, are discussed. The marker bands are developed in order to distinguish between etiobiliverdin and mesobiliverdin.

  17. Vibrational properties of epitaxial Bi{sub 4}Te{sub 3} films as studied by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hao; Pan, Wenwu; Chen, Qimiao; Wu, Xiaoyan [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China); Song, Yuxin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se; Gong, Qian [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Lu, Pengfei [State Key Laboratory of Information Photonics and Optical Communications, Ministry of Education, Beijing University of Posts and Telecommunications, P.O. Box 72, Beijing 100876 (China); Wang, Shumin, E-mail: songyuxin@mail.sim.ac.cn, E-mail: shumin@chalmers.se [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050 (China); Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg (Sweden)

    2015-08-15

    Bi{sub 4}Te{sub 3}, as one of the phases of the binary Bi–Te system, shares many similarities with Bi{sub 2}Te{sub 3}, which is known as a topological insulator and thermoelectric material. We report the micro-Raman spectroscopy study of 50 nm Bi{sub 4}Te{sub 3} films on Si substrates prepared by molecular beam epitaxy. Raman spectra of Bi{sub 4}Te{sub 3} films completely resolve the six predicted Raman-active phonon modes for the first time. Structural features and Raman tensors of Bi{sub 4}Te{sub 3} films are introduced. According to the wavenumbers and assignments of the six eigenpeaks in the Raman spectra of Bi{sub 4}Te{sub 3} films, it is found that the Raman-active phonon oscillations in Bi{sub 4}Te{sub 3} films exhibit the vibrational properties of those in both Bi and Bi{sub 2}Te{sub 3} films.

  18. Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV–vis and EXAFS study

    OpenAIRE

    Keller, D.E.; Visser, T; Soulimani, F.; Koningsberger, D. C.; Weckhuysen, B.M.

    2007-01-01

    The effect of hydration on the molecular structure of silica-supported vanadium oxide catalysts with loadings of 1–16 wt.% V has been systematically investigated by infrared, Raman, UV–vis and EXAFS spectroscopy. IR and Raman spectra recorded during hydration revealed the formation of V–OH groups, characterized by a band at 3660 cm−1. Hydroxylation was found to start instantaneously upon exposure to traces of water, reflecting a very high sensitivity of the supported vanadium oxide catalysts ...

  19. FT-IR, FT-Raman, NMR and UV-Vis spectra and DFT calculations of 5-bromo-2-ethoxyphenylboronic acid (monomer and dimer structures).

    Science.gov (United States)

    Sas, E B; Kose, E; Kurt, M; Karabacak, M

    2015-02-25

    In this study, the Fourier Transform Infrared (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of 5-bromo-2-ethoxyphenylboronic acid (5Br2EPBA) are recorded in the solid phase in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. The (1)H, (13)C and DEPT nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The UV-Vis absorption spectrum of 5Br2EPBA is saved in the range of 200-400 nm in ethanol and water. The following theoretical calculations for monomeric and dimeric structures are supported by experimental results. The molecular geometry and vibrational frequencies in the ground state are calculated by using DFT methods with 6-31G(d,p) and 6-311G(d,p) basis sets. There are four conformers for the present molecule. The computational results diagnose the most stable conformer of 5Br2EPBA as Trans-Cis (TC) form. The complete assignments are performed on the basis of the total energy distribution (TED) of vibrational modes, calculated with scaled quantum mechanics (SQM) method in parallel quantum solutions (PQS) program. The (1)H and (13)C NMR chemical shifts of 5Br2EPBA molecule are calculated by using the Gauge Invariant Atomic Orbital (GIAO) method in DMSO and gas phase for monomer and dimer structures of the most stable conformer. Moreover, electronic properties, such as the HOMO and LUMO energies (by TD-DFT and CIS methods) and molecular electrostatic potential surface (MEPs) are investigated. Stability of the molecule arising from hyper-conjugative interactions, charge delocalization is analyzed using natural bond orbital (NBO) analysis. Nonlinear optical (NLO) properties and thermodynamic features are presented. All calculated results are compared with the experimental data of the title molecule. The correlation of theoretical and experimental results provides a detailed description of the structural and physicochemical properties of the title molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Raman spectra of vibrational and librational modes in methane clathrate hydrates using density functional theory

    Science.gov (United States)

    Ramya, K. R.; Pavan Kumar, G. V.; Venkatnathan, Arun

    2012-05-01

    The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (512CH4) and tetrakaidecahedron (51262CH4) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH4 in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH4 and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 512CH4 cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH4 molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 512CH4 and 51262CH4 cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH4 molecules. The CH4 bending modes in the 512CH4 and 51262CH4 cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH4. The low frequency librational modes which are collective motion of the water molecules and CH4 in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.

  1. Spectroscopic (FT-IR and FT-Raman) investigation, first order hyperpolarizability, NBO, HOMO-LUMO and MEP analysis of 6-nitrochromone by ab initio and density functional theory calculations.

    Science.gov (United States)

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm(-1) and 4000-400 cm(-1), respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Impact of input field characteristics on vibrational femtosecond coherent anti-Stokes Raman scattering thermometry.

    Science.gov (United States)

    Yang, Chao-Bo; He, Ping; Escofet-Martin, David; Peng, Jiang-Bo; Fan, Rong-Wei; Yu, Xin; Dunn-Rankin, Derek

    2018-01-10

    In this paper, three ultrashort-pulse coherent anti-Stokes Raman scattering (CARS) thermometry approaches are summarized with a theoretical time-domain model. The difference between the approaches can be attributed to variations in the input field characteristics of the time-domain model. That is, all three approaches of ultrashort-pulse (CARS) thermometry can be simulated with the unified model by only changing the input fields features. As a specific example, the hybrid femtosecond/picosecond CARS is assessed for its use in combustion flow diagnostics; thus, the examination of the input field has an impact on thermometry focuses on vibrational hybrid femtosecond/picosecond CARS. Beginning with the general model of ultrashort-pulse CARS, the spectra with different input field parameters are simulated. To analyze the temperature measurement error brought by the input field impacts, the spectra are fitted and compared to fits, with the model neglecting the influence introduced by the input fields. The results demonstrate that, however the input pulses are depicted, temperature errors still would be introduced during an experiment. With proper field characterization, however, the significance of the error can be reduced.

  3. Crystal structure of post-perovskite-type CaIrO3 reinvestigated: new insights into atomic thermal vibration behaviors

    Directory of Open Access Journals (Sweden)

    Akihiko Nakatsuka

    2015-09-01

    Full Text Available Single crystals of the title compound, the post-perovskite-type CaIrO3 [calcium iridium(IV trioxide], have been grown from a CaCl2 flux at atmospheric pressure. The crystal structure consists of an alternate stacking of IrO6 octahedral layers and CaO8 hendecahedral layers along [010]. Chains formed by edge-sharing of IrO6 octahedra (point-group symmetry 2/m.. run along [100] and are interconnected along [001] by sharing apical O atoms to build up the IrO6 octahedral layers. Chains formed by face-sharing of CaO8 hendecahedra (point-group symmetry m2m run along [100] and are interconnected along [001] by edge-sharing to build up the CaO8 hendecahedral layers. The IrO6 octahedral layers and CaO8 hendecahedral layers are interconnected by sharing edges. The present structure refinement using a high-power X-ray source confirms the atomic positions determined by Hirai et al. (2009 [Z. Kristallogr. 224, 345–350], who had revised our previous report [Sugahara et al. (2008. Am. Mineral. 93, 1148–1152]. However, the displacement ellipsoids of the Ir and Ca atoms based on the present refinement can be approximated as uniaxial ellipsoids elongating along [100], unlike those reported by Hirai et al. (2009. This suggests that the thermal vibrations of the Ir and Ca atoms are mutually suppressed towards the Ir...Ca direction across the shared edge because of the dominant repulsion between the two atoms.

  4. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide

    Science.gov (United States)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.

    2017-08-01

    The title compound, (E)-1-(5-bromo-2-hydroxybenzylidene)semicarbazide (15BHS) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory(DFT) B3LYP method with 6-311++G(d,p) basis set. The detailed interpretation of the vibrational spectra has been carried out by VEDA program. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The first order hyperpolarizability, Molecular electrostatic potential (MEP) and Fukui functions were also performed. To study the biological activity of the investigation molecule, molecular docking was done to identify the hydrogen bond lengths and binding energy with different antifungal proteins. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 15BHS at different temperatures have been calculated.

  5. Identification of Multiple Water-Iodide Species in Concentrated NaI Solutions Based on the Raman Bending Vibration of Water

    NARCIS (Netherlands)

    Besemer, M.; Bloemenkamp, R.; Ariese, F.; van Manen, H.J.

    2016-01-01

    The influence of aqueous electrolytes on the water bending vibration was studied with Raman spectroscopy. For all salts investigated (NaI, NaBr, NaCl, and NaSCN), we observed a nonlinear intensity increase of the water bending vibration with increasing concentration. Different lasers and a tunable

  6. A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2014-12-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes.

  7. A study of the eigenvectors of the vibrational modes in crystalline cytidine via high-pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2015-01-01

    Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K and high pressures by evaluating the logarithmic derivative of the vibrational frequency ω with respect to pressure P: [Formula: see text]. Crystalline samples of molecular materials have strong intramolecular bonds and weak intermolecular bonds. This hierarchy of bonding strengths causes the vibrational optical modes localized within a molecular unit ("internal" modes) to be relatively high in frequency while the modes in which the molecular units vibrate against each other ("external" modes) have relatively low frequencies. The value of the logarithmic derivative is a useful diagnostic probe of the nature of the eigenvector of the vibrational modes because stretching modes (which are predominantly internal to the molecule) have low logarithmic derivatives while external modes have higher logarithmic derivatives. In crystalline cytidine, the modes at 85.8, 101.4, and 110.6 cm(-1) are external in which the molecules of the unit cell vibrate against each other in either translational or librational motions (or some linear combination thereof). All of the modes above 320 cm(-1) are predominantly internal stretching modes. The remaining modes below 320 cm(-1) include external modes and internal modes, mostly involving either torsional or bending motions of groups of atoms within a molecule.

  8. Anomalous vibrational modes in few layer WTe2 revealed by polarized Raman scattering and first-principles calculations

    Science.gov (United States)

    Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo; Yuan, Hui; Zhong, Tingting; Meunier, Vincent; Pan, Minghu

    2017-09-01

    When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a 2D geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe2 as a vibrational mode centered at ~86.9 cm-1 in the monolayer splits into two active modes at 82.9 and 89.6 cm-1 in the bilayer. Davydov splitting of these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.

  9. Characterization of thin heteroepitaxial diamond films on Ir/SrTiO3 by X-ray diffraction and micro-Raman spectroscopy

    OpenAIRE

    Stritzker, Bernd

    1999-01-01

    Characterization of thin heteroepitaxial diamond films on Ir/SrTiO3 by X-ray diffraction and micro-Raman spectroscopy / H. Roll, M. Schreck, B. Stritzker. – In: Applied Diamond Conference/ Frontier Carbon Technology Joint Conference 1999 / ed. by: M. Yoshikawa ... - Tsukuba : Tsukuba Research Center, 1999. S. 73-781

  10. Supramolecular organization of perfluorinated 1H-indazoles in the solid state using X-ray crystallography, SSNMR and sensitive (VCD) and non sensitive (MIR, FIR and Raman) to chirality vibrational spectroscopies.

    Science.gov (United States)

    Quesada-Moreno, María M; Avilés-Moreno, Juan Ramón; López-González, Juan Jesús; Jacob, Kane; Vendier, Laure; Etienne, Michel; Alkorta, Ibon; Elguero, José; Claramunt, Rosa M

    2017-01-04

    1H-Indazole derivatives exhibit a remarkable property since some of them form chiral supramolecular structures starting from achiral monomers. The present work deals with the study of three perfluorinated 1H-indazoles that resolve spontaneously as conglomerates. These conglomerates can contain either a pure enantiomer (one helix) or a mixture of both enantiomers (both helices) with an enantiomeric excess (e.e.) of one of them. The difficulty of the structural analysis of these types of compounds is thus clear. We outline a complete strategy to determine the structures and configurations (M or P helices) of the enantiomers (helices) forming the conglomerates of these perfluorinated 1H-indazoles based on X-ray crystallography, solid state NMR spectroscopy and different solid state vibrational spectroscopies that are either sensitive (VCD) or not (FarIR, IR and Raman) to chirality, together with quantum chemical calculations (DFT).

  11. FT-IR and FT-Raman spectra of 5-chlorocytosine: Solid state simulation and tautomerism. Effect of the chlorine substitution in the Watson-Crick base pair 5-chlorodeoxycytidine-deoxyguanosine

    Science.gov (United States)

    Alcolea Palafox, M.; Rastogi, V. K.; Singh, S. P.

    2018-01-01

    The laser Raman and IR spectra of 5-chlorocytosine have been recorded and accurately assigned in the solid state using Density functional calculations (DFT) together with the linear scaling equation procedure (LSE) and the solid state simulation of the crystal unit cell through a tetramer form. These results remarkably improve those reported previously by other authors. Several new scaling equations were proposed to be used in related molecules. The six main tautomers of the biomolecule 5-chlorocytosine were determined and optimized at the MP2 and CCSD levels, using different basis sets. The relative stabilities were compared with those obtained in cytosine and their 5-halo derivatives. Several relationships between energies, geometric parameters and NBO atomic charges were established. The effect of the chlorine substitution in the fifth position was evaluated through the stability of the Watson-Crick (WC) base pair of 5-chlorodeoxycytidine with deoxyguanosine, and through their vibrational spectra.

  12. Raman and IR studies of polymorphism in n-hexanol at high pressure and low temperature

    Science.gov (United States)

    Ren, Yufen; Cheng, Xuerui; Zhu, Xiang; Yang, Kun; Wang, Yongqiang; Yuan, Chaosheng

    2017-09-01

    As one important organic molecule, the structure stability and polymorphism of n-hexanol (C6H14O) have been investigated at low temperature and high pressure using in situ Raman and infrared spectroscopy. The existence of three polymorphs is observed for n-hexanol in this work. The liquid n-hexanol converts to the monoclinic γ-phase structure at 203 K and 0.8 GPa respectively. Additional changes are observed in spectra at 3.0 and 7.3 GPa, because of two additional phase transitions to monoclinic β-phase structures. In addition, conformational change between trans and gauche is also observed accompanied by the phase transitions. Moreover, hydrogen-bond formation and its response to the external pressure are confirmed from infrared spectra. Finally, the phase transitions under high pressure and low temperature are reversible. These results are helpful for understanding of structure transition under external condition for n-alcohols and other organic molecules.

  13. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  14. Low-frequency vibrational excitations in the amorphous and crystalline states of triphenyl phosphite: A neutron and Raman scattering investigation

    Science.gov (United States)

    Hédoux, Alain; Derollez, Patrick; Guinet, Yannick; Dianoux, Albert José; Descamps, Marc

    2001-04-01

    The vibrational density of states in the triphenyl phosphite, measured by inelastic neutron scattering, were obtained during isothermal aging at Ta=210, 213, and 216 K. The low-frequency ωn behavior of the vibrational density of states was observed to be time dependent. This is suggestive of an abortive crystallization process because the ω exponent has not reached the characteristic value of the crystalline state (n=2) at the end of the transformation. The confrontation of inelastic neutron scattering and Raman data in the low-frequency range reveals interesting information about the structural organization in the liquid, the glass, the undercooled liquid, and the glacial state, through the observation of the boson peak.

  15. The impact of vibrational Raman scattering of air on DOAS measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, J.; Frieß, U.; Platt, U.

    2015-09-01

    In remote sensing applications, such as differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered. After inelastic scattering on N2 and O2 molecules, the scattered photons occur as additional intensity at a different wavelength, effectively leading to "filling-in" of both solar Fraunhofer lines and absorptions of atmospheric constituents, if the inelastic scattering happens after the absorption. Measured spectra in passive DOAS applications are typically corrected for rotational Raman scattering (RRS), also called Ring effect, which represents the main contribution to inelastic scattering. Inelastic scattering can also occur in liquid water, and its influence on DOAS measurements has been observed over clear ocean water. In contrast to that, vibrational Raman scattering (VRS) of N2 and O2 has often been thought to be negligible, but it also contributes. Consequences of VRS are red-shifted Fraunhofer structures in scattered light spectra and filling-in of Fraunhofer lines, additional to RRS. At 393 nm, the spectral shift is 25 and 40 nm for VRS of O2 and N2, respectively. We describe how to calculate VRS correction spectra according to the Ring spectrum. We use the VRS correction spectra in the spectral range of 420-440 nm to determine the relative magnitude of the cross-sections of VRS of O2 and N2 and RRS of air. The effect of VRS is shown for the first time in spectral evaluations of Multi-Axis DOAS data from the SOPRAN M91 campaign and the MAD-CAT MAX-DOAS intercomparison campaign. The measurements yield in agreement with calculated scattering cross-sections that the observed VRS(N2) cross-section at 393 nm amounts to 2.3 ± 0.4 % of the cross-section of RRS at 433 nm under tropospheric conditions. The contribution of VRS(O2) is also found to be in agreement with calculated scattering cross-sections. It is concluded, that this phenomenon has to be included in the spectral evaluation of weak absorbers as it

  16. Compositional dependencies in the vibrational properties of amorphous Ge-As-Se and Ge-Sb-Te chalcogenide alloys studied by Raman spectroscopy

    Science.gov (United States)

    Shportko, K.; Revutska, L.; Paiuk, O.; Baran, J.; Stronski, A.; Gubanova, A.; Venger, E.

    2017-11-01

    This work is focused on the compositional dependencies in the Raman spectra of amorphous Ge-As-Se and Ge-Sb-Te chalcogenides with the systematic increase of the Ge-content. Studied Ge-As-Se and Ge-Sb-Te chalcogenides are promising for applications in the photonics, optical, and electronic data storages. Gaussians used to fit the obtained Raman spectra were attributed to the vibrations of the structural units in Ge-Sb-Te and Ge-As-Se samples. Systematic compositional dependencies of the intensities of the characteristic Raman bands correlate with evolution of concentration of the different structural units in Ge-Sb-Te and Ge-As-Se alloys along the studied compositional lines. Obtained compositional trends in the intensities of Raman bands may enable one to predict vibrational properties of other amorphous Ge-Sb-Te and Ge-As-Se chalcogenides.

  17. Evaluation of Salmon Adhesion on PET-Metal Interface by ATR, FT-IR, and Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2015-01-01

    Full Text Available The material employed in this study is an ecoefficient, environmentally friendly, chromium (VI-free (noncarcinogenic metal polymer. The originality of the research lies in the study of the effect of new production procedures of salmon on metal packaging with multilayer polyethylene terephthalate (PET polymer coatings. Our hypothesis states that the adhesion of postmortem salmon muscles to the PET polymer coating produces surface and structural changes that affect the functionality and limit the useful life of metal containers, compromising therefore their recycling capacity as ecomaterials. This work is focused on studying the effects of the biochemical changes of postmortem salmon on the PET coating and how muscle degradation favors adhesion to the container. The experimental design considered a series of laboratory tests of containers simulating the conditions of canned salmon, chemical and physical tests of food-contact canning to evaluate the adhesion, and characterization of changes in the multilayer PET polymer by electron microscopy, ATR, FT-IR, and Raman spectroscopy analyses. The analyses determined the effect of heat treatment of containers on the loss of freshness of canned fish and the increased adhesion to the container wall, and the limited capability of the urea treatment to remove salmon muscle from the container for recycling purposes.

  18. [A study of phonon vibration like modes for aggregation structure in silicate melts by high temperature Raman spectrum].

    Science.gov (United States)

    Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin

    2010-05-01

    Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.

  19. Evaluation of NaCl Effect on Vibration-Delaminated Metal-Polymer Composites by Improved Micro-Raman Methodology

    Directory of Open Access Journals (Sweden)

    E. Zumelzu

    2013-01-01

    Full Text Available Polyethylene terephthalate (PET is a polymer coating that protects the electrolytic chromium coated steel (ECCS against aggressive electrolytes like NaCl. It is widely accepted by manufacturers that NaCl has no effect on the PET coating, which is inert. However, we showed that there are some effects at the structural level, caused by vibrations, and facilitated by defects on the layers. The vibrations occurring during the transportation of food containers produce delaminations at given points of the metal-polymer interface, known as antinodes, which in turn may produce PET degradation affecting food quality. The former can be determined by electrochemical measurements, and the changes in composition or structural order can be characterized by Raman. The present work applied this latter technique in experimental samples of PET-coated ECCS sheets by performing perpendicular and parallel analyses to the surface, and determined that it constitutes a new potential methodology to determine the behavior of the composite under the above conditions. The results demonstrated that the delamination areas on the PET facilitated polymer degradation by the electrolyte. Moreover, the Raman characterization evidenced the presence of multilayers and crystalline orderings, which limited its functionality as a protective coating.

  20. Crystal structure, FT-IR, FT-Raman, 1H NMR and computational study of ethyl 2-{[(Z)3-(4-chlorophenyl)-3-hydroxy-2-propene-1-thione] amino} acetate

    Science.gov (United States)

    Prasanth, S.; Varughese, Mary; Joseph, Nirmala; Mathew, Paulson; Manojkumar, T. K.; Sudarsanakumar, C.

    2015-02-01

    The molecular structure of a thioamide derivative ethyl 2-{[(Z)3-(4-chlorophenyl)-3-hydroxy-2-propene-1-thione] amino} acetate was determined by X-ray diffraction. The proton NMR (1H NMR), Fourier Transform Infra-Red (FT-IR) and Fourier Transform Raman (FT-Raman) spectra of the compound were recorded and analyzed. The conjugated enol form of the compound was crystallized in the monoclinic space group P21/c, with unit cell dimensions a = 12.514(2) Å, b = 5.403(5) Å, c = 21.233(3) Å, β = 94.597(4)°. The structure was solved by direct methods and refined to the R value of 0.0462. The thioamide moiety in the compound adopts the Z-conformation and the Csbnd N bond shows a high rotational barrier. The geometry in the gas phase was optimized by B3LYP and RHF quantum mechanical calculations using Gaussian 09 programme and the vibrational frequencies were calculated. The experimental and theoretical data are in good agreement.

  1. Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV-Visible), Fukui function, antimicrobial and molecular docking study of (E)-1-(3-bromobenzylidene)semicarbazide by DFT method

    Science.gov (United States)

    Raja, M.; Raj Muhamed, R.; Muthu, S.; Suresh, M.; Muthu, K.

    2017-02-01

    The title compound, (E)-1-(3-bromobenzylidene)semicarbazide (3BSC) was synthesized and characterized by FT-IR, FT-Raman, UV, 1HNMR and 13CNMR spectral analysis. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering activities were calculated by using density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The calculated HOMO and LUMO energies show that charge transfer within the molecule. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital analysis (NBO). The hyperpolarizability calculation reveals the present material has a reasonably good propensity for nonlinear optical activity. Molecular electrostatic potential (MEP) and Fukui functions were also performed. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the 3BSC at different temperatures have been calculated. The biological applications of 3BSC have been screened for its antimicrobial activity and found to exhibit antifungal and antibacterial effects. In addition, the Molecular docking was also performed for the different receptors.

  2. Vibrational analysis by Raman spectroscopy of the interface between dental adhesive resin and dentin.

    Science.gov (United States)

    Suzuki, M; Kato, H; Wakumoto, S

    1991-07-01

    The Raman microprobe technique was applied for analysis of the molecular components at the adhesive interface between 4-META/MMA-TBB resin and dentin. The Raman spectra showed that the 4-META molecules in monomer solution were mostly hydrolyzed into 4-MET molecules, which were then co-polymerized with MMA molecules to form resin and resin-reinforced dentin layers. On the basis of line analysis by the Raman microprobe, resin molecules were estimated to penetrate 6 microns into the dentin from the interface. Raman intensity studies indicated that the concentration of 4-MET molecular units in the resin-reinforced dentin was more than four times the concentration in the original monomer solution. This demonstrated the excellent infiltration ability of 4-MET monomer into dentin substrate in situ.

  3. Vapor-phase Raman spectra, theoretical calculations, and the vibrational and structural properties of cis- and trans-stilbene.

    Science.gov (United States)

    Egawa, Toru; Shinashi, Kiyoaki; Ueda, Toyotoshi; Ocola, Esther J; Chiang, Whe-Yi; Laane, Jaan

    2014-02-13

    The vapor-phase Raman spectra of cis- and trans-stilbene have been collected at high temperatures and assigned. The low-frequency skeletal modes were of special interest. The molecular structures and vibrational frequencies of both molecules have also been obtained using MP2/cc-pVTZ and B3LYP/cc-pVTZ calculations, respectively. The two-dimensional potential map for the internal rotations around the two Cphenyl-C(═C) bonds of cis-stilbene was generated by using a series of B3LYP/cc-pVTZ calculations. It was confirmed that the molecule has only one conformer with C2 symmetry. The energy level calculation with a two-dimensional Hamiltonian was carried out, and the probability distribution for each level was obtained. The calculation revealed that the "gearing" internal rotation in which the two phenyl rings rotate with opposite directions has a vibrational frequency of 26 cm(-1), whereas that of the "antigearing" internal rotation in which the phenyl rings rotate with the same direction is about 52 cm(-1). In the low vibrational energy region the probability distribution for the gearing internal rotation is similar to that of a one-dimensional harmonic oscillator, and in the higher region the motion behaves like that of a free rotor.

  4. Vibrational Raman and optical studies of Cm in zirconia-based pyrochlores and related oxide matrices

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Z.; Haire, R.G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Raison, P.E. [CEA-DRN/DEC/SPUA/LACA, Commissariat a l' Energie Atomique, Cadarache (France)

    2002-11-01

    Raman spectroscopy has been employed to follow the phase behavior of Cm-Zr oxide materials as a function of Cm:Zr ratio. Three different structural phases, monoclinic, cubic and pyrochlore, are formed when the Cm:Zr ratio is varied from > 0 to 1. Each phase produces a distinct Raman profile in the 100-700 cm{sup -1} spectral region. Up to 10 atom % Cm, the Raman spectra indicate that the monoclinic structure is dominant. Raman bands corresponding to the monoclinic phase are absent in samples containing 20-40 atom % Cm. Concomitantly, a band at {approx}600 cm{sup -1} broadens and increases in intensity with increasing curium content, indicating that the cubic phase is dominant in this concentration range. The pyrochlore oxide structure, which forms at 50 atom % Cm, generates three Raman bands (the center of mass are at 283, 387, 495 cm{sup -1}) out of six bands predicted by nuclear site group analyses. The strongest of these is at 283 cm{sup -1}, and corresponds to the O-Cm-O bending mode. Details of these studies will be compared and discussed with data obtained for comparable systems containing selected analogous 4f-elements. (author)

  5. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  6. On the impact of Vibrational Raman Scattering of N2/O2 on MAX-DOAS Measurements of atmospheric trace gases

    Science.gov (United States)

    Lampel, Johannes; Zielcke, Johannes; Frieß, Udo; Platt, Ulrich; Wagner, Thomas

    2015-04-01

    In remote sensing applications, such as the applications of differential optical absorption spectroscopy (DOAS), atmospheric scattering processes need to be considered since they can modify the observed spectra. Inelastic scattering of photons by N2 and O2 molecules can be observed as additional intensity, effectively leading to filling-in of both, solar Fraunhofer lines and absorption bands of atmospheric constituents. The main contribution is due to rotational Raman scattering, which can lead to changes in observed optical densities of absorption lines up to several percent. Measured optical densities are typically corrected for this effect (also known as Ring Effect). In contrast to that Vibrational Raman scattering of N2 and O2 was often thought to be negligible, but also contributes to this effect. We present calculations of Vibrational Raman cross-sections for O2 and N2 for the application in passive DOAS measurements. Consequences of vibrational Raman scattering are red-shifted Fraunhofer structures, so called 'Fraunhofer Ghost' lines (FGL), in scattered light spectra and filling-in of Fraunhofer lines, additional to rotational Raman scattering. We also present first unequivocal observations of FGL at optical densities of up to several 104. From our measurements and calculations of the optical density of these FGL, we conclude, that this phenomenon has to be included in the spectral evaluation of weak absorbers. Its relevance is demonstrated in spectral evaluations of Multi-Axis (MAX)-DOAS data and an agreement with calculated scattering cross-sections is found. To exclude cross-sensitivities with other absorbers, such as water vapour, MAX-DOAS data from different latitudes and different instruments were analysed. We evaluate the influence of the additional intensities due to vibrational Raman scattering on the spectral retrieval of IO, Glyoxal, H2O and NO2 in the blue wavelength range. In the case of NO2 the column densities derived from certain wavelength

  7. To Avoid Chasing Incorrect Chemical Structures of Chiral Compounds: Raman Optical Activity and Vibrational Circular Dichroism Spectroscopies.

    Science.gov (United States)

    Polavarapu, Prasad L; Covington, Cody L; Raghavan, Vijay

    2017-09-20

    A chemical structure (CS) identifies the connectivities between atoms, and the nature of those connections, for a given elemental composition. For chiral molecules, in addition to the identification of CS, the identification of the correct absolute configuration (AC) is also needed. Several chiral natural products are known whose CSs were initially misidentified and later corrected, and these errors were often discovered during the total synthesis of natural products. In this work, we present a new and convenient approach that can be used with Raman optical activity (ROA) and vibrational circular dichroism (VCD) spectroscopies, to distinguish between the correct and incorrect CSs of chiral compounds. This approach involves analyzing the spectral similarity overlap between experimental spectra and those predicted with advanced quantum chemical theories. Significant labor needed for establishing the correct CSs via chemical syntheses of chiral natural products can thus be avoided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Industrial applications of Raman spectroscopy

    Science.gov (United States)

    Grasselli, J. G.; Walder, F.; Petty, C.; Kemeny, G.

    1993-03-01

    In the last two decades, Raman spectroscopy has matured as an important method for the study of molecules and complex molecular systems. This is evident from the number of fine texts and the many review articles which have been published describing theory and applications of Raman spectroscopy over a very broad range of subjects (1-10). Raman spectroscopy is the essential partner to infrared spectroscopy for a complete vibrational analysis of a molecule in structure determinations. From the understanding developed on small molecules, theory was extended to interpret the spectra of larger systems such as polymers, biological molecules, and ordered condensed phases. The contribution of Raman spectroscopy to these areas has been significant. It was the development of commercial lasers in the 1960s which spurred the renewed interest in the Raman technique. But applications were still limited for highly fluorescing or intensely colored systems. In 1986, a breakthrough paper by Hirschfeld and Chase (11) described the use of near-infrared laser excitation and a commercial interferometer-based FT-IR spectrometer to record FT-Raman spectra. Significant advantages included the inherent multiplex, throughput and data processing features of the FT interferometers and the use of a ND:YAG laser (1.064 μm) which dramatically decreased problems with sample fluorescence and decomposition. A deluge of papers describing applications of FT-Raman spectroscopy can be found in the Journal of Raman Spectroscopy, Spectrochimica Acta (special issues 40A ad 47A), and Applied Spectroscopy since then.

  9. Vibrational Phase Contrast Microscopy by Use of Coherent Anti-Stokes Raman Scattering

    NARCIS (Netherlands)

    Jurna, M.; Korterik, Jeroen P.; Otto, Cornelis; Herek, Jennifer Lynn; Offerhaus, Herman L.

    2009-01-01

    In biological samples the resonant coherent anti-Stokes Raman scattering signal of less abundant constituents can be overwhelmed by the nonresonant background, preventing detection of those molecules. We demonstrate a method to obtain the phase of the oscillators in the focal volume that allows

  10. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    Science.gov (United States)

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  11. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinyl hydrazine

    Science.gov (United States)

    Rawat, Poonam; Singh, R. N.; Ranjan, Alok; Ahmad, Sartaj; Saxena, Rajat

    2017-05-01

    As part of a study of pyrrole hydrazone, we have investigated quantum chemical calculations, molecular geometry, relative energy, vibrational properties and antimycobacterial/antimicrobial activity of pyrrole-2-carboxaldehyde isonicotinyl hydrazone (PCINH), by applying the density functional theory (DFT) and Hartree Fock (HF). Good reproduction of experimental values is obtained and with small percentage error in majority of the cases in comparison to theoretical result (DFT). The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. In crystal structure studies the hydrated PCINH (syn-syn conformer) shows different conformation than from anhydrous form (syn-anti conformer). The rotational barrier between syn-syn and syn-anti conformers of PCINH is 12.7 kcal/mol in the gas phase. In this work, use of FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Vis spectroscopies has been made for full characterization of PCINH. A detailed interpretation of the vibrational spectrum was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. The calculated nature of electronic transitions within molecule found to be π → π*. The electronic descriptors study indicates that PCINH can be used as robust synthon for synthesis of new heterocyclic compounds. The first static hyperpolarizability (β0) of PCINH is calculated as 33.89 × 10- 30 esu, (gas phase); 68.79 × 10- 30 (CHCl3), esu; 76.76 × 10- 30 esu (CH2Cl2), 85.16 × 10- 30 esu (DMSO). The solvent induced effects on the first static hyperpolarizability were studied and found to increase as dielectric constants of the solvents increases. Investigated molecule shows better NLO value than Para nitroaniline (PNA). The compound PCINH shows good antifungal and antibacterial activity against Aspergillus niger and gram

  12. Antimycobacterial, antimicrobial activity, experimental (FT-IR, FT-Raman, NMR, UV-Vis, DSC) and DFT (transition state, chemical reactivity, NBO, NLO) studies on pyrrole-isonicotinyl hydrazine.

    Science.gov (United States)

    Rawat, Poonam; Singh, R N; Ranjan, Alok; Ahmad, Sartaj; Saxena, Rajat

    2017-05-15

    As part of a study of pyrrole hydrazone, we have investigated quantum chemical calculations, molecular geometry, relative energy, vibrational properties and antimycobacterial/antimicrobial activity of pyrrole-2-carboxaldehyde isonicotinyl hydrazone (PCINH), by applying the density functional theory (DFT) and Hartree Fock (HF). Good reproduction of experimental values is obtained and with small percentage error in majority of the cases in comparison to theoretical result (DFT). The experimental FT-IR and Raman wavenumbers were compared with the respective theoretical values obtained from DFT calculations and found to agree well. In crystal structure studies the hydrated PCINH (syn-syn conformer) shows different conformation than from anhydrous form (syn-anti conformer). The rotational barrier between syn-syn and syn-anti conformers of PCINH is 12.7kcal/mol in the gas phase. In this work, use of FT-IR, FT-Raman, (1)H NMR, (13)C NMR and UV-Vis spectroscopies has been made for full characterization of PCINH. A detailed interpretation of the vibrational spectrum was carried out with the aid of normal coordinate analysis using single scaling factor. Our results support the hydrogen bonding pattern proposed by reported crystalline structure. The calculated nature of electronic transitions within molecule found to be π→π*. The electronic descriptors study indicates that PCINH can be used as robust synthon for synthesis of new heterocyclic compounds. The first static hyperpolarizability (β0) of PCINH is calculated as 33.89×10(-30)esu, (gas phase); 68.79×10(-30) (CHCl3), esu; 76.76×10(-30)esu (CH2Cl2), 85.16×10(-30)esu (DMSO). The solvent induced effects on the first static hyperpolarizability were studied and found to increase as dielectric constants of the solvents increases. Investigated molecule shows better NLO value than Para nitroaniline (PNA). The compound PCINH shows good antifungal and antibacterial activity against Aspergillus niger and gram

  13. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.

    Science.gov (United States)

    Kim, Kilyoung; Johnson, Alan M; Powell, Amber L; Mitchell, Deborah G; Sevy, Eric T

    2014-12-21

    Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

  14. Studies on the rubber phase stability in gamma irradiated polystyrene-SBR blends by using FT-IR and Raman spectroscopy[Gamma irradiation; Polystyrene-SBR blends; Izod impact; FTIR; Raman

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Barrera, G.; Lopez, H.; Castano, V.M.; Rodriguez, R. E-mail: rogelior@servidor.unam.mx

    2004-02-01

    Improvement in the impact properties of polystyrene-SBR blends produced by different concentrations and types of styrene-butadiene rubber (SBR) was studied. The samples were gamma irradiated at different doses to achieve good adhesion, and consequently good stability, between the rubbery phase and the polystyrene matrix, producing an improvement in the impact properties. The results show that the best Izod impact was obtained for a blend with 10% SBR and with a dose of 100 kGy. Several samples with 0%, 3%, 5% and 10% of SBR were prepared and characterized by FT-IR and FT-Raman spectroscopies.

  15. Characterization of writing materials of books of great historical-artistic value by FT-IR and micro-raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Vito Librando

    2014-12-01

    Full Text Available This work describes the application of Fourier-Transform Infrared and Raman spectroscopic techniques for the characterization of cellulose paper samples and inks used on ancient writing materials. These samples from books of high historical and artistic interest were provided by the Public Library of Syracuse.The ancient paper showed a characteristic pattern of carbonyl groups, whose vibration modes were observed in FTIR spectra. The spectra of ancient paper samples were compared to each other and to modern paper in order to highlight differences in conservation state between new and old papers. The paper aging process is related to the presence of acid substances and oxidative agents that result in cellulose hydrolysis leading to the shortening of its chain along with changes in the amount of the crystalline form. This hydrolysis causes changes in hydrogen bonds and consequently change the CCH, COH, OCH and HCH bending vibrations mode. In this work, the FTIR and Raman spectra of inks used on ancient paper and parchment samples were also discussed.

  16. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of but-2-enoyl fluoride

    Science.gov (United States)

    Durig, James R.; Guirgis, Gamil A.; Jin, Yanping

    1996-06-01

    The Raman (3500-10 cm -1) and infrared (3200-50 cm -1 spectra have been recorded of the fluid and solid phases of but-2-enoyl fluoride (crotonyl fluoride) trans-CH 3CHCHCFO, where the methyl group is trans to the CFO group. From the variable temperature studies of the infrared spectrum of the sample dissolved in liquified Xe, the conformer pair at {836}/{827}cm-1 has been used to determine a ΔH value of 135 ± 11 cm -1 (387 ± 30 cal mol -1), with the s-cis ( syn) form (two double bonds oriented cis to one another) the more stable form. In the Raman and infrared spectra of the solid, the s-cis conformer seems predominant, but even with repeated annealing a spectrum free of signals from the s-trans ( anti) conformer could not be obtained. In fact, in some of the infrared spectra, there appeared to be a slight preference for the trans conformer. The asymmetric torsional fundamental of the s-trans conformer was observed at 104.3 cm -1 with two hot bands and that for the s-cis rotamer at 97.0 cm -1 with one hot band. From these data the potential function governing the conformational interchange was determined, and the potential coefficients are: V1 = -122 ± 1, V2 = 1993 ± 27, V3 = 21 ± 1 and V4 = -88 ± 8 cm -1. The s-trans to s-cis and s-cis to s-trans barriers were determined to be 2044 and 1942 cm -1, respectively, with an enthalpy difference between the conformers of 102 ± 29 cm -1(292 ± 83 cal mol -1). The barriers governing the internal rotation of the CH 3 group for the s-trans and s-cis conformers are calculated to be 1060 ± 17 cm -1 (3.03 ± 0.05 kcal mol -1) and 1042 ± 23 cm -1 (2.98 ± 0.07 kcal mol -1), respectively. A complete vibrational assignment of the normal modes is provided. The structural parameters, force constants, and vibrational frequencies have been determined from ab initio {RHF}/{3-21 G}, {RHF}/{6-31 G∗ } and {MP2 }/{6-31 G∗ } calculations, and the theoretical results are compared with the experimental values when appropriate

  17. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules

    Science.gov (United States)

    Almutairi, Maha S.; Xavier, S.; Sathish, M.; Ghabbour, Hazem A.; Sebastian, S.; Periandy, S.; Al-Wabli, Reem I.; Attia, Mohamed I.

    2017-04-01

    Methyl 5-methoxy-1H-indole-2-carboxylate (MMIC) was prepared via esterification of commercially available 5-methoxyindole-2-carboxylic acid. The title molecule MMIC was characterised using FT-IR and FT-Raman in the ranges of 4000-500 and 4000-50 cm-1, respectively. The fundamental modes of the vibrations were assigned and the UV-visible spectrum of the MMIC molecule was recorded in the range of 200-400 nm to explore its electronic nature. The HOMO-LUMO energy distribution was calculated and the bonding and anti-bonding structures of the title molecule were studied and analysed using the natural bond orbital (NBO) approach. The reactivity of the MMIC molecule was also investigated and both the positive and negative centres of the molecule were identified using chemical descriptors and molecular electrostatic potential (MEP) analysis. The chemical shifts of the 1H and 13C NMR spectra were noted and the magnetic field environment of the MMIC molecule are discussed. The non-linear optical (NLO) properties of the title molecule were studied based on its calculated values of polarisability and hyperpolarisability. All computations were obtained by DFT methods using the 6-311++G (d,p) basis set.

  18. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    Science.gov (United States)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  19. Characterization of pollen by vibrational spectroscopy.

    Science.gov (United States)

    Zimmermann, Boris

    2010-12-01

    Classification, discrimination, and biochemical assignment of vibrational spectra of pollen samples belonging to 43 different species of the order Pinales has been made using three different vibrational techniques. The comparative study of transmission (KBr pellet) and attenuated total reflection (ATR) Fourier transform infrared (FT-IR) and FT-Raman spectroscopies was based on substantial variability of pollen grain size, shape, and relative biochemical composition. Depending on the penetration depth of the probe light, vibrational techniques acquire predominant information either on pollen grain walls (FT-Raman and ATR-FT-IR) or intracellular material (transmission FT-IR). Compared with the other two methods, transmission FT-IR obtains more comprehensive information and as a result achieves superior spectral identification and discrimination of pollen. The results strongly indicate that biochemical similarities of pollen grains belonging to the same plant genus or family lead to similar features in corresponding vibrational spectra. The exploitation of that property in aerobiological monitoring was demonstrated by simple and rapid pollen identification based on relatively small spectral libraries, with the same (or better) taxonomic resolution as that provided by optical microscopy. Therefore, the clear correlation between vibrational spectra and pollen grain morphology, biochemistry, and taxonomy is obtained, while successful pollen identification illustrates the practicability of such an approach in environmental studies.

  20. Near-IR Fourier transform Raman spectroscopy in surgery and medicine: detection of renal stones and bladder cancer

    Science.gov (United States)

    Nie, Shuming; Redd, Douglas C. B.; Li, Yunzhi; Yu, Nai-Teng

    1992-06-01

    Tissue diagnosis and characterization are critically important to the development and applications of laser-based therapeutic procedures in urology (viz., laser lithotripsy and bladder cancer treatment). Recently, we demonstrated for the first time that the new technique of near-infrared laser excited Fourier transform (FT)-Raman spectroscopy can readily differentiate various types of renal stones and bladder cancer from normal kidney/bladder tissues. It has thus become possible to develop an FT-Raman-based fiberoptic sensor for clinical use in laser lithotripsy and bladder cancer treatment. The future development of such a diagnostic modality will allow a surgeon/physician to take real-time Raman spectra of urinary calculi or cancerous tissue via a flexible fiberoptic probe.

  1. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d/sub 8//sup 1/. [Low temperature spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-05-03

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new /sup 3/B/sub 1//sub g/ ..-->.. /sup 1/A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced /sup 3/A/sub u/-/sup 3/B/sub 1//sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K.

  2. Vibrational energy flow in substituted benzenes

    Science.gov (United States)

    Pein, Brandt C.

    Using ultrafast infrared (IR) Raman spectroscopy, vibrational energy flow was monitored in several liquid-state substituted benzenes at ambient temperature. In a series of mono-halogenated benzenes, X-C6H 5 (X = F, Cl, Br, I), a similar CH-stretch at 3068 cm-1 was excited using picosecond IR pulses and the resulting vibrational relaxation and overall vibrational cooling processes were monitored with anti-Stokes spectroscopy. In the molecules with a heavier halide substituent the CH-stretch decayed slower while midrange vibrations decayed faster. This result was logical if the density of states (DOS) in the first few tiers, which is the DOS composed of vibrations with smaller quantum number, is what primarily determines energy flow. For tiers 1-4, the DOS was nearly identical in the CH-stretch region while it increased in the midrange region for heavier halide mass. Excitation spectroscopy, an extension of 3D IR-Raman spectroscopy, was developed and used to selectively pump vibrations localized to the substituent or the phenyl group in nitrobenzene (NB), o-fluoronitrobenzene (OFNB) and o-nitrotoluene (ONT) and in the alkylbenzene series toluene, isopropylbenzene (IPB), and t-butylbenzene (TBB). Using quantum chemical calculations, each Raman active vibration was sorted, according to their atomic displacements, into three classifications: substituent, phenyl, or global. Using IR pump wavenumbers that initially excited substituent or phenyl vibrations, IR-Raman spectroscopy was used to monitor energy flowing from the substituent to phenyl vibrations and vice versa. In NB nitro-to-phenyl and nitro-to-global energy flow was almost nonexistent while phenyl-to-nitro and phenyl-to-global was weak. When ortho substituents (-CH3, -F) were introduced, energy flow from nitro-to-phenyl and nitro-to-global was activated. In ONT, phenyl-to-nitro energy flow ceased possibly due to the added methyl group diverting energy from entering the nitro vibrations. Energy flow is therefore

  3. Spectroscopic and Raman excitation profile studies of 3-benzoylpyridine

    Science.gov (United States)

    Sett, Pinaky; Datta, Shirsendu; Chowdhury, Joydeep; Ghosh, Manash; Mallick, Prabal Kumar

    2017-07-01

    In the present work IR, UV absorption and Raman spectra including Raman excitation profiles and structure of 3-benzoyl pyridine have been investigated. Detailed studies on the vibrational and electronic properties of the molecule have been carried out. All these studies are aided with valuable quantum chemical calculations. The structural changes encountered on excitation to the low lying excited states have been investigated. Theoretical profiles determined by the sum-over-states method based on pertinent Franck-Condon and Herzberg-Teller terms have satisfactorily simulated the experimentally measured relative Raman intensities and these are also in compliance with the structural changes and potential energy distributions.

  4. Disentangling the Complex Vibrational Spectrum of the Protonated Water Trimer, H(+)(H2O)3, with Two-Color IR-IR Photodissociation of the Bare Ion and Anharmonic VSCF/VCI Theory.

    Science.gov (United States)

    Duong, Chinh H; Gorlova, Olga; Yang, Nan; Kelleher, Patrick J; Johnson, Mark A; McCoy, Anne B; Yu, Qi; Bowman, Joel M

    2017-08-17

    Vibrational spectroscopy of the protonated water trimer provides a stringent constraint on the details of the potential energy surface (PES) and vibrational dynamics governing excess proton motion far from equilibrium. Here we report the linear spectrum of the cold, bare H(+)(H2O)3 ion using a two-color, IR-IR photofragmentation technique and follow the evolution of the bands with increasing ion trap temperature. The key low-energy features are insensitive to both D2 tagging and internal energy. The D2-tagged D(+)(D2O)3 spectrum is reported for the first time, and the isotope dependence of the band pattern is surprisingly complex. These spectra are reproduced by large-scale vibrational configuration interaction calculations based on a new full-dimensional PES, which treat the anharmonic effects arising from large amplitude motion. The results indicate such extensive mode mixing in both isotopologues that one should be cautious about assigning even the strongest features to particular motions, especially for the absorptions that occur close to the intramolecular bending mode of the water molecule.

  5. Structural and Raman Vibrational Studies of CeO2-Bi2O3 Oxide System

    Directory of Open Access Journals (Sweden)

    L. Bourja

    2009-01-01

    Full Text Available A series of ceramics samples belonging to the CeO2-Bi2O3 phase system have been prepared via a coprecipitation route. The crystallized phases were obtained by heating the solid precursors at 600∘C for 6 hours, then quenching the samples. X-ray diffraction analyses show that for x<0.20 a solid solution Ce1−xBixO2−x/2 with fluorine structure is formed. For x ranging between 0.25 and 0.7, a tetragonal β′ phase coexisting with the FCC solid solution is observed. For x ranging between 0.8 and 0.9, a new tetragonal β phase appears. The β′ phase is postulated to be a superstructure of the β phase. Finally, close to x=1, the classical monoclinic α Bi2O3 structure is observed. Raman spectroscopy confirms the existence of the phase changes as x varies between 0 and 1.

  6. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  7. Characterizing the deformational isomers of bimetallic Ir2(dimen)4(2+) (dimen = 1,8-diisocyano-p-menthane) with vibrational wavepacket dynamics.

    Science.gov (United States)

    Hartsock, Robert W; Zhang, Wenkai; Hill, Michael G; Sabat, Bridgett; Gaffney, Kelly J

    2011-04-14

    We studied the Ir(2)(dimen)(4)(2+) complex with ultrafast transient absorption spectroscopy and density functional theory and concluded that it possesses two singlet ground state isomers in room temperature solution. The molecule can adopt either a paddle wheel or a propeller conformation in solution, where the paddle wheel structure possesses a metal-metal bond of 4.4 Å and a dihedral angle between the quasi-C(4v) planes of 0° and the propeller structure has a metal-metal bond of 3.6 Å and a dihedral angle of 17° when crystallized. Each conformation has a distinct absorption in the visible attributed to a (1)(dσ(z)* → pσ(z)) excitation, with the long eclipsed structure absorbing at 475 nm and the short twisted structure absorbing at 585 nm. We independently pumped at each of these visible transitions to form vibrational wavepackets on the ground and excited state potential energy surfaces, which modulated the ground state bleach and stimulated emission signals, respectively. We found that the ground state wavepacket oscillates with a frequency of 48 cm(-1) when pumping the red peak and 11 cm(-1) when pumping the blue peak. We assign these frequencies to the Ir-Ir symmetric stretch, with the variation in frequency reflecting the variation in metal-metal bond strength in support of our assignment of the blue peak to the longer Ir-Ir bond length conformer and the red peak to the shorter Ir-Ir bond length conformer. When pumping the red peak, we found two modes with frequencies of 80 and 119 cm(-1) in the stimulated emission and only one mode at 75 cm(-1) when pumping the blue peak. We assign the 75-80 cm(-1) frequency to the Ir-Ir stretch and the 119 cm(-1) vibration to the dihedral angle twist in the excited state. The variation in the excited state dynamics does not result from the excitation of different electronic states, but rather from excitation to different Franck-Condon regions of the same electronic excited state potential energy surface. This

  8. Vibrational spectroscopic characterisation of salmeterol xinafoate polymorphs and a preliminary investigation of their transformation using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Hassan Refat H. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)], E-mail: H.G.M.Edwards@bradford.ac.uk; Hargreaves, Michael D.; Munshi, Tasnim; Scowen, Ian J.; Telford, Richard J. [Chemical and Forensic Sciences/University Analytical Centre, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP (United Kingdom)

    2008-07-14

    Knowledge and control of the polymorphic phases of chemical compounds are important aspects of drug development in the pharmaceutical industry. Salmeterol xinafoate, a long acting {beta}-adrenergic receptor agonist, exists in two polymorphic Forms, I and II. Raman and near infrared spectra were obtained of these polymorphs at selected wavelengths in the range of 488-1064 nm; significant differences in the Raman and near-infrared spectra were apparent and key spectral marker bands have been identified for the vibrational spectroscopic characterisation of the individual polymorphs which were also characterised with X ray diffractometry. The solid-state transition of salmeterol xinafoate polymorphs was studied using simultaneous in situ portable Raman spectroscopy and differential scanning calorimetry isothermally between transitions. This method assisted in the unambiguous characterisation of the two polymorphic forms by providing a simultaneous probe of both the thermal and vibrational data. The study demonstrates the value of a rapid in situ analysis of a drug polymorph which can be of potential value for at-line in-process control.

  9. Raman scattering in the high T c superconductors MBa 2Cu 3O 7-x

    Science.gov (United States)

    Liu, Ran; Merlin, R.; Cardona, M.; Mattausch, Hj.; Bauhofer, W.; Simon, A.; Garcia-Alvarado, F.; Moran, E.; Vallet, M.; Gonzalez-Calbet, J. M.; Alario, M. A.

    1987-09-01

    We report Raman scattering measurements of MBa 2Cu 3O 7 ( M = Y, Sm, Eu) polycrystalline superconductors in the region of Cu-O stretching vibrations. Four peaks are seen. On the basis of the factor group analysis given here they are assigned to two Raman allowed and two ir-allowed LO modes. The latter are probably induced by disorder (e.g. O-vacancies).

  10. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study

    Science.gov (United States)

    Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang

    2016-01-01

    Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm−1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1–2 wall layered nanotubes and monolayer flat sheets. PMID:27620879

  11. Vibrational properties of SrCu{sub 2}O{sub 2} studied via Density Functional Theory calculations and compared to Raman and infrared spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Even, J., E-mail: jacky.even@insa.rennes.fr [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Pedesseau, L.; Durand, O. [Université Européenne de Bretagne, INSA, FOTON, UMR CNRS 6082, 20 Avenue des Buttes de Coësmes, F-35708 Rennes (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Huyberechts, G. [FLAMAC, Technologiepark 903, 9052 Zwijnaarde (Belgium); Servet, B. [Thales Research and Technology France, Campus Polytechnique, 1, avenue Augustin Fresnel, 91767 Palaiseau cedex France (France); Chaix-Pluchery, O. [Laboratoire des Matériaux et du Génie Physique, Grenoble INP—Minatec, 3, parvis Louis Néel, BP 257, 38016 Grenoble Cedex 1 (France)

    2013-08-31

    The SrCu{sub 2}O{sub 2} material is a p-type transparent conductive oxide. A theoretical study of the SrCu{sub 2}O{sub 2} crystal is performed with a state of the art implementation of the Density Functional Theory. The simulated crystal structure is compared with available X-ray diffraction data and previous theoretical modeling. Density Functional Perturbation Theory is used to study the vibrational properties of the SrCu{sub 2}O{sub 2} crystal. A symmetry analysis of the optical phonon eigenvectors at the Brillouin zone center is proposed. The Raman spectra simulated using the derivatives of the dielectric susceptibility, show a good agreement with Raman scattering experimental results. - Highlights: ► The symmetry properties of the optical phonons of the SrCu{sub 2}O{sub 2} crystal are analyzed. ► Born charges and the dynamical matrix are calculated at the Brillouin zone center. ► Density Functional Perturbation Theory (DFPT) is used to compute Raman spectrum. ► DFPT Raman spectrum is compared with experimental results.

  12. Determining the Structure of Oxalate Anion Using Infrared and Raman Spectroscopy Coupled with Gaussian Calculations

    Science.gov (United States)

    Peterson, Karen I.; Pullman, David P.

    2016-01-01

    A laboratory project for the upper-division physical chemistry laboratory is described, and it combines IR and Raman spectroscopies with Gaussian electronic structure calculations to determine the structure of the oxalate anion in solid alkali oxalates and in aqueous solution. The oxalate anion has two limiting structures whose vibrational spectra…

  13. Visible and IR spectroscopy of ablative ytterbium nanoparticles

    Science.gov (United States)

    Tcibulnikova, Anna V.; Borkunov, Rodion Y.; Bryukhanov, Valery V.; Slezhkin, Vasiliy A.; Zyubin, Andrey Y.; Samusev, Ilya G.

    2018-01-01

    The presence of plasmon resonance in the region of 375 nm for ytterbium nanoparticles obtained by laser ablation in the stabilizer of AOT in heptane is established in the work. The dimensions of the ytterbium nanoparticles are determined by the dynamic scattering method. Raman spectra and absorption spectra were measured in the IR region. Characteristic vibration frequencies for ytterbium nanoparticles and scattering bands for a pure ytterbium metal surface are determined.

  14. Application of NIR Raman spectroscopy for detecting and characterizing early dental caries

    Science.gov (United States)

    Ko, A. C.; Choo-Smith, L.-P.; Zhu, R.; Hewko, M.; Dong, C.; Cleghorn, B.; Sowa, M. G.

    2006-02-01

    Early dental caries detection facilitates implementation of non-surgical methods for arresting caries progression and promoting tooth remineralization. We present a method based on Raman spectroscopy with near-IR laser excitation to provide biochemical contrast for detecting and characterizing incipient carious lesions found in extracted human teeth. Changes in Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Examination of various intensities of the PO 4 3- ν2, ν3, ν4 vibrations showed consistent increased intensities in spectra of carious lesions compared to sound enamel. The spectral changes are attributed to demineralization-induced alterations of enamel crystallite morphology and/or orientation. This hypothesis is supported by reduced Raman polarization anisotropy derived from polarized Raman spectra of carious lesions. Polarized Raman spectral imaging of carious lesions found on whole (i.e. un-sectioned) tooth samples will also be presented.

  15. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant population...... in beta-sheet shows amide I and amide II ROA bands similar to those of beta-sheet poly(L-lysine), which suggests that the C-terminal domain of the prion protein is able to support unusually flat beta-sheets. A principal component analysis (PCA) that identifies protein structural types from ROA band...

  16. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations.

    Science.gov (United States)

    Michalski, J; Bryndal, I; Lorenc, J; Hermanowicz, K; Janczak, J; Hanuza, J

    2018-02-15

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z=4 with the unit cell parameters: a=12.083(7), b=12.881(6), c=8.134(3) Å and β=97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2'-C1' torsion angle takes a value -178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12μs and the Stokes shift is close to 5470cm-1. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Analysis of structure and vibrational dynamics of the BeTe(001) surface using X-ray diffraction, Raman spectroscopy, and density functional theory

    DEFF Research Database (Denmark)

    Kumpf, C.; Müller, A.; Weigand, W.

    2003-01-01

    in the underlying Te layer. The Be-rich surface exhibits a (4 X 1) periodicity with alternating Te dimers and Te-Be-Te trimers. A vibration eigenfrequency of 165 cm(-1) is observed for the Te-rich surface, while eigenmodes at 157 and 188 cm(-1) are found for the Be-rich surface. The experimentally derived atomic......The atomic structure and lattice dynamics of epitaxial BeTe(001) thin films are derived from surface x-ray diffraction and Raman spectroscopy. On the Te-rich BeTe(001) surface [1 (1) over bar0]-oriented Te dimers are identified. They cause a (2 X 1) superstructure and induce a pronounced buckling...... geometry and the vibration modes are in very good agreement with the results of density functional theory calculations....

  18. Vibrational spectroscopy of the mass-selected tetrahydrofurfuryl alcohol monomers and its dimers in gas phase using IR depletion and VUV single photon ionization

    Science.gov (United States)

    Wang, Pengchao; Hu, Yongjun; Zhan, Huaqi; Chen, Jiaxin; Jin, Shan; Song, Wentao; Li, Yujian

    2017-10-01

    Tetrahydrofurfuryl alcohol (THFA, C5H10O2) is a close chemical analog of the sugar rings present in the phosphate-deoxyribose backbone structure of the nucleic acids. In present report, the infrared (IR) spectra of the size-selected THFA monomer and its dimer have been investigated in a pulsed supersonic jet using infrared-vacuum ultraviolet (VUV) ionization. Herein, the laser light at 118 nm wavelength served as the source of ;soft; ionization in a time-of-flight mass spectrometer. The IR features for the monomers located at 3622 cm- 1 can be assigned to the intramolecular hydrogen bonding stretch vibrations mainly referring to A and C conformers. Compared with the monomer, however, characteristic peaks for the dimer centered at 3415 and 3453 cm- 1, red shifted 207 and 169 cm- 1, respectively, were associated with the intermolecular hydrogen bonding stretch vibrations. Combined with the quantum-chemical calculations, the dimer in the gas phase preferred cyclic AC conformer stabled by forming two strong intermolecular hydrogen bonds, which shown the high hydrogen bond selectivity in the cluster. The conclusions drawn from the role played in the conformational flexibility by the hydroxyl and ether groups may be extended to other biomolecules.

  19. Raman, IR, UV-vis and EPR characterization of two copper dioxolene complexes derived from L-dopa and dopamine.

    Science.gov (United States)

    Barreto, Wagner J; Barreto, Sônia R G; Ando, Rômulo A; Santos, Paulo S; DiMauro, Eduardo; Jorge, Thiago

    2008-12-15

    The anionic complexes [Cu(L(1-))3](1-), L(-)=dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the nuCC+nuCO stretching mode at ca. 1384 cm(-1). The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g=2.0005 and g=2.0923, and for Cu(II) with g=2.008 and g=2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.

  20. Raman and Surface Enhanced Raman of Biological Material

    National Research Council Canada - National Science Library

    Guicheteau, Jason A; Gonser, Kristina; Christesen, Steven Dale

    2004-01-01

    .... Vibrational spectroscopic methods such as Raman and surface enhanced Raman scattering (SERS) provide rapid detailed fingerprint information about the molecular composition of biomaterial in a non-destructive manner...

  1. Resonance Raman and vibrational mode analysis used to predict ligand geometry for docking simulations of a water soluble porphyrin and tubulin.

    Science.gov (United States)

    McMicken, Brady; Parker, James E; Thomas, Robert J; Brancaleon, Lorenzo

    2016-09-01

    The ability to modify the conformation of a protein by controlled partial unfolding may have practical applications such as inhibiting its function or providing non-native photosensitive properties. A water-soluble porphyrin, meso-tetrakis (p-sulfonatophenyl) porphyrin (TSPP), non-covalently bound to tubulin can be used as a photosensitizer, which upon irradiation can lead to conformational changes of the protein. To fully understand the mechanism responsible for this partial unfolding and determine the amino acid residues and atoms involved, it is essential to find the most likely binding location and the configuration of the ligand and protein. Techniques typically used to analyze atomic position details, such as nuclear magnetic resonance and X-ray crystallography, require large concentrations, which are incompatible with the dilute conditions required in experiments for photoinduced mechanisms. Instead, we develop an atomistic description of the TSPP-tubulin complex using vibrational mode analysis from density functional theory calculations correlated to resonance Raman spectra of the porphyrin paired with docking simulations. Changes in the Raman peaks of the porphyrin molecule correlate with changes in its structural vibrational modes when bound to tubulin. The data allow us to construct the relative geometry of the porphyrin when bound to protein, which are then used with docking simulations to find the most likely configuration of the TSPP-tubulin complex.

  2. Advanced discriminating criteria for natural organic substances of cultural heritage interest: spectral decomposition and multivariate analyses of FT-Raman and FT-IR signatures.

    Science.gov (United States)

    Daher, Céline; Bellot-Gurlet, Ludovic; Le Hô, Anne-Solenn; Paris, Céline; Regert, Martine

    2013-10-15

    Natural organic substances are involved in many aspects of the cultural heritage field. Their presence in different forms (raw, heated, mixed), with various conservation states, constitutes a real challenge regarding their recognition and discrimination. Their characterization usually involves the use of separative techniques which imply destructive sampling and specific analytical preparations. Here we propose a non destructive approach using FT-Raman and infrared spectroscopies for the identification and differentiation of natural organic substances. Because of their related functional groups, they usually present similar vibrational signatures. Nevertheless the use of appropriate signal treatment and statistical analysis was successfully carried out to overcome this limitation, then proposing new objective discriminating methodology to identify these substances. Spectral decomposition calculations were performed on the CH stretching region of a large set of reference materials such as resins, oils, animal glues, and gums. Multivariate analyses (Principal Component Analyses) were then performed on the fitting parameters, and new discriminating criteria were established. A set of previously characterized archeological resins, with different surface aspects or alteration states, was analyzed using the same methodology. These testing samples validate the efficiency of our discriminating criteria established on the reference corpus. Moreover, we proved that some alteration or ageing of organic materials is not an issue to their recognition. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Dental caries detection by optical spectroscopy: a polarized Raman approach with fibre-optic coupling

    Science.gov (United States)

    Ko, A. C.-T.; Choo-Smith, L.-P.; Werner, J.; Hewko, M.; Sowa, M. G.; Dong, C.; Cleghorn, B.

    2006-09-01

    Incipient dental caries lesions appear as white spots on the tooth surface; however, accurate detection of early approximal lesions is difficult due to limited sensitivity of dental radiography and other traditional diagnostic tools. A new fibre-optic coupled spectroscopic method based on polarized Raman spectroscopy (P-RS) with near-IR laser excitation is introduced which provides contrast for detecting and characterizing incipient caries. Changes in polarized Raman spectra are observed in PO 4 3- vibrations arising from hydroxyapatite of mineralized tooth tissue. Demineralization-induced morphological/orientational alteration of enamel crystallites is believed to be responsible for the reduction of Raman polarization anisotropy observed in the polarized Raman spectra of caries lesions. Supporting evidence obtained by polarized Raman spectral imaging is presented. A specially designed fibre-optic coupled setup for simultaneous measurement of parallel- and cross-polarized tooth Raman spectra is demonstrated in this study.

  4. Understanding the nano- and macromechanical behaviour, the failure and fatigue mechanisms of advanced and natural polymer fibres by Raman/IR microspectrometry

    Science.gov (United States)

    Colomban, Philippe

    2013-03-01

    The coupled mechanical and Raman/infrared (IR) analysis of the (nano)structure and texture of synthetic and natural polymer fibres (polyamides (PA66), polyethylene terephthalate (PET), polypropylene (PP), poly(paraphenylene benzobisoxazole) (PBO), keratin/hair, Bombyx mori, Gonometa rufobrunea/postica Antheraea/Tussah silkworms and Nephila Madagascarensis spider silks) is applied so as to differentiate between crystalline and amorphous macromolecules. Bonding is very similar in the two cases but a broader distribution of conformations is observed for the amorphous macromolecules. These conclusions are then used to discuss the modifications induced by the application of a tensile or compressive stress, including the effects of fatigue. Detailed attention is paid to water and the inter-chain coupling for which the importance of hydrogen bonding is reconsidered. The significant role of the ‘amorphous’ bonds/domains in the process of fracture/fatigue is shown. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October-2 November 2012, Ha Long, Vietnam.

  5. Analysis of 19th century ceramic fragments excavated from Pirenópolis (Goiás, Brazil) using FT-IR, Raman, XRF and SEM.

    Science.gov (United States)

    Freitas, Renato P; Coelho, Filipe A; Felix, Valter S; Pereira, Marcelo O; de Souza, Marcos André Torres; Anjos, Marcelino J

    2018-03-15

    This study used Raman, FT-IR and XRF spectroscopy and SEM to analyze ceramic fragments dating from the 19th century, excavated from an old farm in the municipality of Pirenópolis, Goiás, Brazil. The results show that the samples were produced in an open oven at a firing temperature below 500°C, using raw materials including kaolinite, hematite, magnetite, quartz, microcline, albite, anhydrite, calcite, illite, orthoclase and MnO 2 . Although the analyses showed similarities in the manufacturing process and the presence of many minerals was common in all samples, multivariate statistical methods (PCA) allowed a more detailed assessment of similarities and differences in the mineral composition of the samples. The results of the PCA showed that the samples excavated in one of the slave quarters (senzalas) group with those excavated at the farmhouse, where the landowner lived, which indicates a paternalistic attitude towards captives, including the sharing of ceramic materials of everyday use. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. DFT studies on the vibrational and electronic spectra of acetylsalicylic acid

    Science.gov (United States)

    Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu

    2016-05-01

    The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.

  7. Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles

    Science.gov (United States)

    Kavelin, V.; Fesenko, O.; Dubyna, H.; Vidal, C.; Klar, T. A.; Hrelescu, C.; Dolgov, L.

    2017-03-01

    Sulfonated Zn phthalocyanine, as a prospective photosensitizer in the photodynamic therapy of tumors, is investigated by means of Raman, infrared, and fluorescence spectroscopies. Conventional and surface-enhanced spectra from this photosensitizer are obtained and compared. Gold nano-islands attached to silica cores (Au-SiO2) are proposed as nanostructures providing plasmonically enhanced signals. Pronounced enhancement of Raman and infrared spectral bands from sulfonated Zn phthalocyanine allows their more convenient assignment with vibrational modes of sulfonated Zn phthalocyanine. In comparison to Raman and IR, the fluorescence is less enhanced by Au-SiO2 particles.

  8. Perspective on quantifying electron localization/delocalization, non-linear optical response and vibrational analysis of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline

    Science.gov (United States)

    Arun Sasi, B. S.; Jebin, R. P.; Suthan, T.; James, C.

    2017-10-01

    An organic nonlinear optical material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline (DMBDNA) has been grown by slow evaporation technique. Vibrational spectral analysis has been carried out using FT Raman, FT-IR and UV-Vis spectroscopic techniques. The influence of intramolecular charge transfer within the molecule has been studied on the basis of NBO analysis. Vibrational frequencies have been calculated and scaled, which has been compared with the experimental FT-IR and FT Raman spectra. The effect of electronic localization and delocalization within the molecule is conceded on the basis of electron density partitioning paradigm.

  9. Vibrational assignments for 7-methyl-4-bromomethylcoumarin, as aided by RHF and B3LYP/6-31G* calculations.

    Science.gov (United States)

    Sortur, Veenasangeeta; Yenagi, Jayashree; Tonannavar, J; Jadhav, V B; Kulkarni, M V

    2008-11-15

    Infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectral measurements have been made for the solid sample of 7-methyl-4-bromomethylcoumarin. Electronic structure calculations at RHF/6-31G* and B3LYP/6-31G* levels of theory have been performed, giving equilibrium geometries, harmonic vibrational spectra and normal modes. Different orientations of bromomethyl group have yielded only two conformers, of which the most stable one lying lower from the other conformer by approximately 7.99 kJ/mol, is non-planar with no symmetry. A complete assignment of the vibrational modes, aided by the calculations, has been proposed. Coupled vibrations are manifest in many modes. Some spectral features, compared to 6-methyl-4-bromomethylcoumarin, show changes across both IR and Raman spectra, involving mainly skeletal vibrations, and to a lesser degree, methyl and bromomethyl vibrations. Low-frequency vibrations below 150 cm(-1) are assigned to lattice modes.

  10. Characterization of extracellular vesicles by IR spectroscopy: Fast and simple classification based on amide and CH stretching vibrations.

    Science.gov (United States)

    Mihály, Judith; Deák, Róbert; Szigyártó, Imola Csilla; Bóta, Attila; Beke-Somfai, Tamás; Varga, Zoltán

    2017-03-01

    Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were investigated by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Amide and CH stretching band intensity ratios calculated from IR bands, characteristic of protein and lipid components, proved to be distinctive for the different extracellular vesicle subpopulations. This proposed 'spectroscopic protein-to-lipid ratio', combined with the outlined spectrum-analysis protocol is valid also for low sample concentrations (0.15-0.05mg/ml total protein content) and can carry information about the presence of other non-vesicular formations such as aggregated proteins, lipoproteins and immune complexes. Detailed analysis of IR data reveals compositional changes of extracellular vesicles subpopulations: second derivative spectra suggest changes in protein composition from parent cell towards exosomes favoring proteins with β-turns and unordered motifs at the expense of intermolecular β-sheet structures. The IR-based protein-to-lipid assessment protocol was tested also for red blood cell derived microvesicles for which similar values were obtained. The potential applicability of this technique for fast and efficient characterization of vesicular components is high as the investigated samples require no further preparations and all the different molecular species can be determined in the same sample. The results indicate that ATR-FTIR measurements provide a simple and reproducible method for the screening of extracellular vesicle preparations. It is hoped that this sophisticated technique will have further impact in extracellular vesicle research. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. FTIR and Raman spectra of CH(D)FClsbnd CF2sbnd Osbnd CHF derivatives of enflurane. Experimental and ab initio study

    Science.gov (United States)

    Melikova, S. M.; Rutkowski, K. S.; Telkova, E.; Czarnik-Matusewicz, B.; Rospenk, M.; Herrebout, W.

    2015-05-01

    The vibrational spectra of two H/D derivatives of enflurane are studied with the help of FTIR cryospectroscopy in liquefied Kr and Raman spectroscopy of pure liquid. The majority of fundamental bands are identified. Using MP2/6-311++G(df,pd) calculations the six local minima are found on the potential energy surface and ascribed to the most stable conformers of enflurane. The vibrational frequencies, infrared intensities, and Raman activities are found at the same level of theory. The potential energy distribution is calculated for the most stable conformer. Assignment of the vibrational bands registered is performed using the results of calculations of the frequencies with "anharm" option implemented in Gaussian. The model IR and Raman spectra built with the help of data of ab initio calculations reflect the basic features of experimental spectra. IR spectra of cryosolutions of enflurane and acetone in liquefied Kr suggest weak complex formation stabilized by "blue shifting" H bonds.

  12. Visualizing Resonances in the Complex Plane with Vibrational Phase Contrast Coherent Anti-Stokes Raman Scattering (CARS)

    NARCIS (Netherlands)

    Jurna, M.; Garbacik, E.T.; Korterik, Jeroen P.; Herek, Jennifer Lynn; Otto, Cornelis; Offerhaus, Herman L.

    2010-01-01

    In coherent anti-Stokes Raman scattering (CARS), the emitted signal carries both amplitude and phase information of the molecules in the focal volume. Most CARS experiments ignore the phase component, but its detection allows for two advantages over intensity-only CARS. First, the pure resonant

  13. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation, molecular docking and molecular simulation dynamics on 1-Methyl-3-Phenylpiperazine

    Science.gov (United States)

    Subashini, K.; Periandy, S.

    2017-09-01

    The title compound was analyzed, by recording FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra in solid phase, 1H and 13C NMR in CDCl3 (deuterated chloroform) and UV spectrum (200-400 nm) in solid phase and in ethanol solution. Conformational analysis was done using semi-empirical method PM6. The computed wavenumbers obtained from B3LYP and B3PW91 functionals along with 6-311++G (d, p) basis sets were scaled so as to agree with the experimental values and the scaling factors have been reported. All fundamental modes have been assigned based on the potential energy distribution (PED) values and the structure of the molecule was analyzed in terms of parameters like bond length, bond angle and dihedral angles through B3LYP and B3PW91 functionals along with 6-311++G(d,p) basis set. The observed HOMO-LUMO mappings reveal the different charge transfer possibilities within the molecule. The percentage contribution of a group to each molecular orbital was calculated using Gauss Sum program. Natural bond orbital analysis was computed and possible transition were correlated with the electronic transitions. Mulliken charges, electrostatic potential charges and natural charges are also predicted. The theoretical 1H and 13C NMR chemical shifts were computed using B3LYP functionals using 6-311++G (2d, p) basis sets. The temperature dependence of the thermodynamic properties; heat capacity, entropy and enthalpy for the title compound were also determined by B3LYP functional with 6-311++G (d, p) basis set. Molecular docking study shows that the title compound might exhibit inhibitory activity against Clostridium botulinum (2J3X). The interaction of the ligand (title molecule) with 2J3X for 2 ns duration and radial distribution function have been observed through molecular dynamics simulations.

  14. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.

    Science.gov (United States)

    Johnson, Jeremy A; Kim, Kilyoung; Mayhew, Maurine; Mitchell, Deborah G; Sevy, Eric T

    2008-03-27

    Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

  15. Effects of topological defects and diatom vacancies on characteristic vibration modes and Raman intensities of zigzag single-walled carbon nanotubes.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-04

    Defects are ubiquitous in carbon nanotubes (CNTs), despite their large formation energies, and have astounding effects on their physicochemical properties. In this study, we employ density-functional theory (DFT) calculations to study systematically the atomic structure, stability, and characteristic vibrations of pristine and defected zigzag CNTs, where the defects are of the form of Stone-Wales (SW) and diatom vacancies (DV). The DFT optimized structures and the phonon modes are subsequently used in conjunction with a semiempirical bond-polarization model to study the nonresonant Raman spectra. For each defect type, we find two CNT structures with defects parallel or oblique to the tube axis. For the SW defects, the two structures have similar formation energies, whereas for the DV defect, only defects parallel to the tube axis are likely to exist. The results show that the defects induce a blue shift in the radial breathing mode (RBM) of metallic CNTs, whereas this mode is not shifted for semiconducting CNTs. However, the RBM shift or its Raman profile is not sensitive to the defect type. The G-band showed more sensitivity to the defects in the form of a red/blue shift in the frequency, or a partial/complete defragmentation of the G bands.

  16. New Method to Study the Vibrational Modes of Biomolecules in the Terahertz Range Based on a Single-Stage Raman Spectrometer.

    Science.gov (United States)

    Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R

    2017-03-31

    The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.

  17. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Saja, D; Joe, I Hubert; Jayakumar, V S [Department of Physics, Mar Ivanios College, Thiruvananthapuram-695015, Kerala (India)

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.

  18. Vibrational spectroscopy at very high pressures. Part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Adams, David M.; Berg, Rolf W.; Williams, Alan D.

    1981-01-01

    Raman and far-IR mode frequency shifts with pressure have been observed under hydrostatic conditions in a gasketed diamond anvil cell (d.a.c.). Using compressibilities calculated from unit cell constants and lattice energies, Grüneisen parameters gammai have been obtained for all observed modes...... pressure curves for K2SnCl6 and [(CH3)4N]2MCl6 (M=Sn, Te, Pt) are discussed in relation to their structures. Shifts of nu-tilde i with temperature for K2ReCl6 and K2PtCl6 are analyzed into explicit and implicit anharmonic contributions. The Journal of Chemical Physics is copyrighted by The American...

  19. Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation, conformational stability, NLO properties, HOMO-LUMO and NBO analysis of hydroxyquinoline derivatives by density functional theory calculations.

    Science.gov (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2013-10-01

    The FTIR and FT-Raman spectra of 2-hydroxyquinoline and its derivatives have been recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of these compounds were obtained by the density functional theory using 6-311++G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. A detailed interpretation of the infrared and Raman spectra were also reported based on total energy distribution (TED). The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically simulated spectra. (1)H and (13)C NMR spectra were recorded and its corresponding nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method. UV-visible spectrum of the compound was recorded and the electronic properties HOMO and LUMO energies were measured by time-dependent (TD-DFT) approach. Molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. In addition, the non-linear optical properties were discussed from the dipole moment values and excitation wavelength in the UV-visible region. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. FT-Raman and FTIR-ATR spectroscopies and DFT calculations of triterpene acetyl aleuritolic acid

    Science.gov (United States)

    Melo, I. R. S.; Teixeira, A. M. R.; Sena Junior, D. M.; Santos, H. S.; Albuquerque, M. R. J. R.; Bandeira, P. N.; Rodrigues, A. S.; Braz-Filho, R.; Gusmão, G. O. M.; Silva, J. H.; Faria, J. L. B.; Bento, R. R. F.

    2014-01-01

    Triterpenoids comprise an important class of compounds presenting a wide range of biologically important properties. Acetyl aleutitolic acid (AAA) is a triterpenoid isolated from Croton zehntneri, with molecular formula C32H50O4. Its structure has been characterized by NMR spectroscopy, however, there are no papers available regarding its vibrational properties. The Fourier-Transform Infrared with Attenuated Total Reflectance and Fourier-Transform Raman spectra, together with Density Functional Theory calculations of AAA are reported. Vibrational spectra were recorded at 300 K in the regions 600 cm-1 to 4000 cm-1 and 40 cm-1 to 4000 cm-1, for IR and Raman, respectively. Vibrational wavenumbers were predicted using Density Functional Theory calculations with the hybrid functional B3LYP and the basis set 6-31 G(d,p). A complete assignment of vibrational modes is given.

  1. The vibrational structure of dibenzo-p-dioxin

    DEFF Research Database (Denmark)

    Eriksen, Troels Kongsgaard; Hansen, Bjarke Knud Vilster; Spanget-Larsen, Jens

    2008-01-01

    The title compound (DD) was investigated by IR and Raman spectroscopy, including FTIR linear dichroism (LD) measurements on samples aligned in stretched polyethylene. The observed IR and Raman wavenumbers, IR polarization directions, and relative intensities were generally well reproduced...

  2. Out-of-plane vibrations of acetone oxime-D o and -D 6

    Science.gov (United States)

    Keresztury, G.; Holly, S.; Incze, M.

    1984-03-01

    The Raman and polarized i.r. spectra of crystalline acetone oxime-d 6 (AD-d 6) were recorded and used for a complete assignment of the fundamental vibrations. Experimental evidence is presented for the assignment of the 650 cm -1 infrared absorption band of AO-d 0 and -d 6 crystals to a hot transition of the OH out-of-plane bending vibration. A simplified force field is proposed for the out-of-plane vibrations of the molecule.

  3. Estudo das propriedades vibracionais do diterpeno C20H28O4 e da xantoxilina C10H12O4, por espectroscopias FT-Raman, FT-IR e cÃlculos DFT

    OpenAIRE

    Cristiano Balbino da Silva

    2012-01-01

    Neste trabalho foram estudadas as propriedades vibracionais de duas substÃncias orgÃnicas, extraÃdas de plantas comumente usadas na medicina popular: o diterpeno C20H28O4, extraÃdo do Croton argyrophylloides e a xantoxilina C10H12O4, extraÃda do Croton Nepetaefollius. Foram realizadas medidas de espectroscopia Raman por transformada de Fourier (FTRaman) e medidas de infravermelho por transformada de Fourier (FT-IR), para obtenÃÃo dos modos normais de vibraÃÃo das substÃncias. CÃlculos ab init...

  4. Vibrational spectroscopic characterization of fluoroquinolones

    Science.gov (United States)

    Neugebauer, U.; Szeghalmi, A.; Schmitt, M.; Kiefer, W.; Popp, J.; Holzgrabe, U.

    2005-05-01

    Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.

  5. Vibrational and theoretical study of selected diacetylenes.

    Science.gov (United States)

    Roman, Maciej; Baranska, Malgorzata

    2013-11-01

    Six commonly used disubstituted diacetylenes with short side-chains (RCCCCR, where R=CH2OH, CH2OPh, C(CH3)2OH, C(CH3)3, Si(CH3)3, and Ph) were analyzed using vibrational spectroscopy and quantum-chemical calculations to shed new light on structural and spectroscopic properties of these compounds. Prior to that the conformational analysis of diacetylenes was performed to search the Potential Energy Surface for low-energy minima. Theoretical investigations were followed by the potential energy distribution (PED) analysis to gain deeper insight into FT-Raman and FT-IR spectra that, in some cases, were recorded for the first time for the studied compounds. The analysis was focused mainly on spectral features of the diacetylene system sensitive to the substitution. Shifts of the characteristic bands and changes in bond lengths were observed when changing the substituent. Furthermore, Fermi resonance was observed in the vibrational spectra of some diacetylenes. FT-IR spectra were measured by using two methods, i.e. transmission (with KBr substrate) and Attenuated Total Reflection (ATR), showing the latter adequate and fast tool for IR measurements of diacetylenes. Additionally, Surface Enhanced Raman Spectroscopy (SERS) was applied for phenyl derivative for the first time to study its interaction with metallic nanoparticles that seems to be perpendicular. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. First principles study of vibrational dynamics of ceria-titania hybrid clusters

    Science.gov (United States)

    Majid, Abdul; Bibi, Maryam

    2017-04-01

    Density functional theory based calculations were performed to study vibrational properties of ceria, titania, and ceria-titania hybrid clusters. The findings revealed the dominance of vibrations related to oxygen when compared to those of metallic atoms in the clusters. In case of hybrid cluster, the softening of normal modes related to exterior oxygen atoms in ceria and softening/hardening of high/low frequency modes related to titania dimmers are observed. The results calculated for monomers conform to symmetry predictions according to which three IR and three Raman active modes were detected for TiO2, whereas two IR active and one Raman active modes were observed for CeO2. The comparative analysis indicates that the hybrid cluster CeTiO4 contains simultaneous vibrational fingerprints of the component dimmers. The symmetry, nature of vibrations, IR and Raman activity, intensities, and atomic involvement in different modes of the clusters are described in detail. The study points to engineering of CeTiO4 to tailor its properties for technological visible region applications in photocatalytic and electrochemical devices.

  7. A new perspective on beta-sheet structures using vibrational Raman optical activity: From poly(L-lysine) to the prion protein

    DEFF Research Database (Denmark)

    McColl, L.H.; Blanch, E.W.; Gill, A.C.

    2003-01-01

    The vibrational Raman optical activity (ROA) spectrum of a polypeptide in a model beta-sheet conformation, that of poly(L-lysine), was measured for the first time, and the alpha-helix --> beta-sheet transition monitored as a function of temperature in H2O and D2O. Although no significant population......-sheet poly(L-lysine) contains up-and-down antiparallel beta-sheets based on the hairpin motif. The ROA spectrum of beta-sheet poly(L-lysine) was compared with ROA data on a number of native proteins containing different types of beta-sheet. Amide I and amide II ROA band patterns observed in beta-sheet poly...... in beta-sheet shows amide I and amide II ROA bands similar to those of beta-sheet poly(L-lysine), which suggests that the C-terminal domain of the prion protein is able to support unusually flat beta-sheets. A principal component analysis (PCA) that identifies protein structural types from ROA band...

  8. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression

    Science.gov (United States)

    Oleszko, Adam; Hartwich, Jadwiga; Wójtowicz, Anna; Gąsior-Głogowska, Marlena; Huras, Hubert; Komorowska, Małgorzata

    2017-08-01

    Hypertriglyceridemia, related with triglyceride (TG) in plasma above 1.7 mmol/L is one of the cardiovascular risk factors. Very low density lipoproteins (VLDL) are the main TG carriers. Despite being time consuming, demanding well-qualified staff and expensive instrumentation, ultracentrifugation technique still remains the gold standard for the VLDL isolation. Therefore faster and simpler method of VLDL-TG determination is needed. Vibrational spectroscopy, including FT-IR and Raman, is widely used technique in lipid and protein research. The aim of this study was assessment of Raman and FT-IR spectroscopy in determination of VLDL-TG directly in serum with the isolation step omitted. TG concentration in serum and in ultracentrifugated VLDL fractions from 32 patients were measured with reference colorimetric method. FT-IR and Raman spectra of VLDL and serum samples were acquired. Partial least square (PLS) regression was used for calibration and leave-one-out cross validation. Our results confirmed possibility of reagent-free determination of VLDL-TG directly in serum with both Raman and FT-IR spectroscopy. Quantitative VLDL testing by FT-IR and/or Raman spectroscopy applied directly to maternal serum seems to be promising screening test to identify women with increased risk of adverse pregnancy outcomes and patient friendly method of choice based on ease of performance, accuracy and efficiency.

  9. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  10. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    Directory of Open Access Journals (Sweden)

    Dan Lis

    2014-11-01

    Full Text Available Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS. They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA and surface-enhanced Raman scattering (SERS techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis.

  11. Experimental and theoretical (FT-IR, FT-Raman, UV-vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory.

    Science.gov (United States)

    Kumar, Amit; Deval, Vipin; Tandon, Poonam; Gupta, Archana; Deepak D'silva, E

    2014-09-15

    A combined experimental and theoretical investigation on FT-IR, FT-Raman, NMR, UV-vis spectra of a chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one (4N4MSP) has been reported. 4N4MSP has two planar rings connected through conjugated double bond and it provides a necessary configuration to show non-linear optical (NLO) response. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set combination. The analysis of the fundamental modes was made with the help of potential energy distribution (PED). Molecular electrostatic potential (MEP) surface was plotted over the geometry primarily for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO analysis. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The recorded and calculated 1H chemical shifts in gas phase and MeOD solution are gathered for reliable calculations of magnetic properties. Thermodynamic properties like heat capacity (C°p,m), entropy (S°m), enthalpy (H°m) have been calculated for the molecule at the different temperatures. Based on the finite-field approach, the non-linear optical (NLO) parameters such as dipole moment, mean polarizability, anisotropy of polarizability and first order hyperpolarizability of 4N4MSP molecule are calculated. The predicted first hyperpolarizability shows that the molecule has a reasonably good nonlinear optical (NLO) behavior. Copyright © 2014 Elsevier B.V. All

  12. Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art

    Science.gov (United States)

    Vagnini, M.; Gabrieli, F.; Daveri, A.; Sali, D.

    2017-04-01

    A non-invasive approach has been carried out to characterize painting materials used in modern artworks conserved in the art collection of Carandente's museum at Palazzo Collicola in Spoleto (Italy). This work is focused on the cross-validation of the handheld BRAVO Raman spectrometer, that uses a sequentially Shifted Excitation (SSE) to mitigate fluorescence, for the characterization specifically of organic materials. The analytical procedure, combining XRF, Raman and reflection infrared spectroscopy, allowed a complete characterization of the artists' palettes; particularly eight different synthetic dyes belonging to the class of pigment red (PR) and pigment yellow (PY.), synthetic and traditional binders, such as alkyd resin and lipids have been easily identified.

  13. Raman scattering signatures of Kitaev spin liquids in A(2)IrO(3) iridates with A=Na or Li.

    Science.gov (United States)

    Knolle, J; Chern, Gia-Wei; Kovrizhin, D L; Moessner, R; Perkins, N B

    2014-10-31

    We show how Raman spectroscopy can serve as a valuable tool for diagnosing quantum spin liquids (QSL). We find that the Raman response of the gapless QSL of the Kitaev-Heisenberg model exhibits signatures of spin fractionalization into Majorana fermions, which give rise to a broad signal reflecting their density of states, and Z(2) gauge fluxes, which also contribute a sharp feature. We discuss the current experimental situation and explore more generally the effect of breaking the integrability on response functions of Kitaev spin liquids.

  14. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level.

    Science.gov (United States)

    Harz, M; Rösch, P; Popp, J

    2009-02-01

    Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering. Copyright 2008 International Society for Advancement of Cytometry

  15. Intracavity-Pumped Raman Laser Action in a Mid-IR, Continuous-Wave (cw) MgO:PPLN Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Okishev, A.V.; Zuegel, J.D.

    2006-12-13

    Intracavity-pumped Raman laser action in a fiber-laser–pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.

  16. Intracavity-pumped Raman laser action in a mid IR, continuous-wave (cw) MgO:PPLN optical parametric oscillator.

    Science.gov (United States)

    Okishev, Andrey V; Zuegel, Jonathan D

    2006-12-11

    Intracavity-pumped Raman laser action in a fiber-laser-pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.

  17. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy.

    Science.gov (United States)

    Tahir, Haroon Elrasheid; Xiaobo, Zou; Zhihua, Li; Jiyong, Shi; Zhai, Xiaodong; Wang, Sheng; Mariod, Abdalbasit Adam

    2017-07-01

    Fourier transform infrared with attenuated total reflectance (FTIR-ATR) and Raman spectroscopy combined with partial least square regression (PLSR) were applied for the prediction of phenolic compounds and antioxidant activity in honey. Standards of catechin, syringic, vanillic, and chlorogenic acids were used for the identification and quantification of the individual phenolic compounds in six honey varieties using HPLC-DAD. Total antioxidant activity (TAC) and ferrous chelating capacity were measured spectrophotometrically. For the establishment of PLSR model, Raman spectra with Savitzky-Golay smoothing in wavenumber region 1500-400cm-1 was used while for FTIR-ATR the wavenumber regions of 1800-700 and 3000-2800cm-1 with multiplicative scattering correction (MSC) and Savitzky-Golay smoothing were used. The determination coefficients (R2) were ranged from 0.9272 to 0.9992 for Raman while from 0.9461 to 0.9988 for FTIT-ART. The FTIR-ATR and Raman demonstrated to be simple, rapid and nondestructive methods to quantify phenolic compounds and antioxidant activities in honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Vibrational analysis of dibenzo-18-crown-6. Effect of dispersion correction on the calculated vibrational spectra

    Science.gov (United States)

    Al-Jallal, Nada A.; El-Azhary, Adel A.

    2017-09-01

    We report for the first time a detailed vibrational analysis of dibenzo-18-crown-6, db18c6. The experimental IR and Raman spectra of db18c6 were measured. The assignment of the fundamental vibrational frequencies of db18c6 was aided by using scaled quantum mechanical force fields calculated at the B3LYP/6-311G** and CAM-B3LYP/6-311G** levels. Comparison between the experimental and calculated spectra of some of the important conformations of db18c6 led to the conclusion that db18c6 in the solid phase exists in a C2 conformation that is similar to that predicted by X-ray, for also the solid phase. The effect of inclusion of the atom pair-wise dispersion correction to the B3LYP method, known as the B3LYP-D3 method, on the calculated IR and Raman spectra of db18c6 at the B3LYP level was also investigated. It was concluded that the effect of inclusion of the dispersion correction on the calculated vibrational frequencies and intensities is negligible.

  19. Raman Scattering Study of Lattice Vibrations in the Type-II Superlattice InAs /InAs1 -xSbx

    Science.gov (United States)

    Liu, Henan; Zhang, Yong; Steenbergen, Elizabeth H.; Liu, Shi; Lin, Zhiyuan; Zhang, Yong-Hang; Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Dupuis, Russell D.; Kim, Jin K.; Hawkins, Samuel D.; Klem, John F.

    2017-09-01

    The InAs /InAs1 -xSbx superlattice system distinctly differs from two well-studied superlattice systems GaAs /AlAs and InAs /GaSb in terms of electronic band alignment, common elements at the interface, and phonon spectrum overlapping of the constituents. This fact leads to the unique electronic and vibrational properties of the InAs /InAs1 -xSbx system when compared to the other two systems. In this work, we report a polarized Raman study of the vibrational properties of the InAs /InAs1 -xSbx superlattices (SLs) as well as selected InAs1 -xSbx alloys, all grown on GaSb substrates by either MBE or metalorganic chemical vapor deposition (MOCVD) from both the growth surface and cleaved edge. In the SL, from the (001) backscattering geometry, an InAs-like longitudinal optical (LO) mode is observed as the primary feature, and its intensity is found to increase with increasing Sb composition. From the (110) cleaved-edge backscattering geometry, an InAs-like transverse optical (TO) mode is observed as the main feature in two cross-polarization configurations, but an additional InAs-like "forbidden" LO mode is observed in two parallel-polarization configurations. The InAs1 -xSbx alloys lattice matched to the substrate (xSb˜0.09 ) grown by MBE are also found to exhibit the forbidden LO mode, implying the existence of some unexpected [001] modulation. However, the strained samples (xSb˜0.35 ) grown by MOCVD are found to behave like a disordered alloy. The primary conclusions are (1) the InAs-like LO or TO mode can be either a confined or quasiconfined mode in the InAs layers of the SL or extended mode of the whole structure depending on the Sb composition. (2) InAs /InAs1 -xSbx and InAs /GaSb SLs exhibit significantly different behaviors in the cleaved-edge geometry but qualitatively similar in the (001) geometry. (3) The appearance of the forbidden LO-like mode is a universal signature for SLs and bulk systems resulting from the mixing of phonon modes due to structural

  20. Low temperature vibrational spectra, lattice dynamics, and phase transitions in some potassium hexahalometallates: K2[XY6] with X=Sn or Te and Y=Cl or Br

    DEFF Research Database (Denmark)

    Chodos, Steven L.; Berg, Rolf W.

    1979-01-01

    This paper deals with the observation and identification of phonon frequencies resulting from the low temperature phase transitions in K2XY6 crystals. By means of a simple lattice dynamical model, the vibrational Raman and IR data available in the literature and obtained here have been analyzed. ...

  1. Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art.

    Science.gov (United States)

    Vagnini, M; Gabrieli, F; Daveri, A; Sali, D

    2017-04-05

    A non-invasive approach has been carried out to characterize painting materials used in modern artworks conserved in the art collection of Carandente's museum at Palazzo Collicola in Spoleto (Italy). This work is focused on the cross-validation of the handheld BRAVO Raman spectrometer, that uses a sequentially Shifted Excitation (SSE) to mitigate fluorescence, for the characterization specifically of organic materials. The analytical procedure, combining XRF, Raman and reflection infrared spectroscopy, allowed a complete characterization of the artists' palettes; particularly eight different synthetic dyes belonging to the class of pigment red (PR) and pigment yellow (PY.), synthetic and traditional binders, such as alkyd resin and lipids have been easily identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantum mechanical study of the structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H and UV), NBO and HOMO-LUMO analysis of 2-quinoxaline carboxylic acid.

    Science.gov (United States)

    Prabavathi, N; Nilufer, A; Krishnakumar, V

    2012-06-15

    The FTIR and FT-Raman spectra of 2-quinoxaline carboxylic acid (2-QCA) has been recorded in the region 4000-450 and 4000-100 cm(-1), respectively. The conformational analysis, optimized geometry, frequency and intensity of the vibrational bands of 2-QCA were obtained by the density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The (1)H and(13)C NMR spectra have been recorded and (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecule were also calculated using the gauge independent atomic orbital (GIAO) method and their respective linear correlations were obtained. The theoretical UV-visible spectrum of the compound using CIS method and the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within molecule. The Mulliken charges, the values of electric dipole moment (μ) of the molecule were computed using DFT calculations. The change in electron density (ED) in the σ* antibonding orbitals and stabilization energies E(2) have been calculated by natural bond (NBO) analysis to give clear evidence of stabilization originating in the hyper conjugation of hydrogen-bonded interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Vibrational spectroscopy and density functional theory study of ninhydrin

    Science.gov (United States)

    Li, Ran; Sui, Huimin; Liu, Peipie; Chen, Lei; Cheng, Jianbo; Zhao, Bing

    2015-02-01

    In this paper, ninhydrin was designed as a model molecule for theoretical and experimental studies of the molecule structure. Density functional theory (DFT) calculations have been performed to predict the IR and Raman spectra for the molecule. In addition, Fourier transform infrared (FTIR) and Raman spectra of the compound have been obtained experimentally. Based on the modeling results obtained at the B3LYP/6-311++G** level, all FTIR and Raman bands of the compound obtained experimentally were assigned. Our calculated vibrational frequencies are in good agreement with the experimental values. The molecular electrostatic potential surface calculation was performed and the result suggested that the ninhydrin had two potential hydrogen bond donors and four potential hydrogen bond acceptors. HOMO-LUMO gap was also obtained theoretically at B3LYP/6-311++G** level.

  4. Vibrational Spectra and Heat Capacity of Methane, and the Speed of Sound

    Science.gov (United States)

    Tennis, Ronald; Bailey, Ryan; Henderson, Giles

    2000-12-01

    A two-part physical chemistry laboratory experiment is described in which students evaluate statistical mechanical theory by comparing a measured speed of sound and heat capacity with values predicted from vibrational spectra. In part 1 students measure the IR spectrum of CH4(g) and the Raman spectrum of CH4(l) to determine quantized vibrational energy spacings. Strong Raman scattering of a pulsed nitrogen laser beam is observed with a liquid methane sample in a custom cryogenic cell constructed from two side-arm test tubes and a length of Pyrex tube. These data are used with the statistical mechanics of a harmonic oscillator to calculate vibrational heat capacities and CP/CV; of CH4(g) and the speed of sound in CH4(g). In part 2, the predicted speed of sound is compared with an experimental value measured with a simple acoustic resonance cavity (Kundt's tube) exhausted to a Bunsen burner.

  5. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  6. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    Science.gov (United States)

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Conformational analysis and vibrational spectroscopic studies on dapsone

    Science.gov (United States)

    Ildiz, Gulce Ogruc; Akyuz, Sevim

    2012-11-01

    In this study, the theoretical conformation analysis of free dapsone has been performed by single point energy calculations at both semi-empirical PM3 and DFT/B3LYP-3-21G theory levels and three stable conformers were determined. Both the IR and Raman spectra of the molecule in solid phase have been recorded. The IR intensities and harmonic vibrational wavenumbers of each conformer were calculated by DFT method at B3LYP/6-31++G(d,p) theory level. For the fundamental characterization, the total energy distribution (TED) calculations of the vibrational modes were done using parallel quantum mechanic solution program (SQM) and the fundamental modes were assigned. The theoretical results are in agreement with the experimental ones.

  8. Infrared spectra of U.S. automobile original finishes (post - 1989). VIII: In situ identification of bismuth vanadate using extended range FT-IR spectroscopy, Raman spectroscopy, and X-ray fluorescence spectrometry.

    Science.gov (United States)

    Suzuki, Edward M

    2014-03-01

    Chrome Yellow (PbCrO4 ·xPbSO4 ) was a common pigment in U.S. automobile OEM finishes for more than three decades, but in the early 1990s its use was discontinued. One of its main replacements was Bismuth Vanadate (BiVO4 ·nBi2 MoO6 , n = 0-2), which was commercially introduced in 1985, as this inorganic pigment also produces a very bright hue and has excellent outdoor durability. This paper describes the in situ identification of Bismuth Vanadate in automotive finishes using FT-IR and dispersive Raman spectroscopy and XRF spectrometry. Some differentiation of commercial formulations of this pigment is possible based on far-infrared absorptions, Raman data, and elemental analysis. The spectral differences arise from the presence or absence of molybdenum, the use of two crystal polymorphs of BiVO4 , and differences in pigment stabilizers. Bismuth Vanadate is usually not used alone, and it is typically found with Isoindoline Yellow, hydrous ferric oxide, rutile, Isoindolinone Yellow 3R, or various combinations of these. © 2013 American Academy of Forensic Sciences.

  9. Anharmonic vibrational and electronic spectral study of 2-amino-4-hydroxy-6-methylpyrimidine: A combined experimental (FTIR, FT-Raman, UV-Vis) and theoretical (DFT, MP2) approach

    Science.gov (United States)

    Faizan, Mohd; Bhat, Sheeraz Ahmad; Alam, Mohammad Jane; Afroz, Ziya; Ahmad, Shabbir

    2017-11-01

    A combined experimental and theoretical study of the structure, vibrational spectra and electronic spectra of 2-amino-4-hydroxy-6-methylpyrimidine in the ground electronic state are reported. Anharmonic frequencies for the most stable conformer have been simulated using GVPT2, VSCF and PT2-VSCF methods with potential energy surface calculated using MP2 and DFT level of theory with 6-311G(d,p) basis set. The vibrational spectra (FTIR and FT-Raman) are interpreted in terms of fundamental, combination and overtone bands. It is found that the experimental and the VPT2 computed frequencies are in well agreement. The experimental and the calculated UV-Vis spectrum in gas and ethanol solvent are found comparable. Furthermore, HOMO-LUMO analysis, NLO, MEP, and natural charges of the molecule are also reported.

  10. Active antioxidants in ex-vivo examination of burn wound healing by means of IR and Raman spectroscopies-Preliminary comparative research

    Science.gov (United States)

    Pielesz, Anna; Biniaś, Dorota; Sarna, Ewa; Bobiński, Rafał; Kawecki, Marek; Glik, Justyna; Klama-Baryła, Agnieszka; Kitala, Diana; Łabuś, Wojciech; Paluch, Jadwiga; Kraut, Małgorzata

    2017-02-01

    Being a complex traumatic event, burn injury also affects other organ systems apart from the skin. Wounds undergo various pathological changes which are accompanied by alterations in the molecular environment. Information about molecules may be obtained with the use of Raman spectroscopy and Fourier-transform infrared spectroscopy, and when combined, both methods are a powerful tool for providing material characterization. Alterations in the molecular environment may lead to identifying objective markers of acute wound healing. In general, incubation of samples in solutions of L-ascorbic acid and 5% and 7% orthosilicic acid organizes the collagen structure, whereas the increased intensity of the Raman bands in the region of 1500-800 cm- 1 reveals regeneration of the burn tissue. Since oxidative damage is one of the mechanisms responsible for local and distant pathophysiological events after burn, antioxidant therapy can prove to be beneficial in minimizing burn wounds, which was examined on the basis of human skin samples and chicken skin samples, the latter being subject to modification when heated to a temperature sufficient for the simulation of a burn incident.

  11. FT-IR and FT-Raman characterization and investigation of reactive properties of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide by molecular dynamics simulations and DFT calculations

    Science.gov (United States)

    Ranjith, P. K.; Al-Abdullah, Ebtehal S.; Al-Omary, Fatmah A. M.; El-Emam, Ali A.; Anto, P. L.; Sheena, Mary Y.; Armaković, Stevan; Armaković, Sanja J.; Zitko, Jan; Dolezal, Martin; Van Alsenoy, C.

    2017-05-01

    The FT-IR and FT-Raman spectra of N-(3-iodo-4-methylphenyl)pyrazine-2-carboxamide were recorded and the experimentally observed wavenumbers are compared with the theoretically obtained wavenumbers. The redshift of the Nsbnd H stretching mode in the IR spectrum from the computed value indicated the weakening of the Nsbnd H bond. The ring breathing modes of the phenyl ring and pyrazine ring are assigned at 819 and 952 cm-1 theoretically. Using natural bond orbital analysis, the stability of the molecule arising from hyperconjugative interaction and charge delocalization has been analyzed. The most reactive sites in the molecule were identified by molecular electrostatic potential map. The calculations of the average local ionization energy (ALIE) were used for visualization and determination of molecule sites possibly prone to electrophilic attacks. Further information on possible reactive centers of title molecule has been obtained by calculations of Fukui functions. Vulnerability of title molecule towards autoxidation mechanism was investigated by calculations of bond dissociation energies (BDE), while vulnerability towards hydrolysis was investigated by calculations of radial distribution functions (RDF) as obtained after molecular dynamics (MD) simulations. Molecular docking studies suggest that the compound might exhibit inhibitory activity against mGluRs.

  12. Vibrational spectra and normal coordinate analysis of plant growth regulator 1-naphthalene acetamide

    Science.gov (United States)

    Ravikumar, C.; Padmaja, L.; Hubert Joe, I.

    2010-02-01

    FT Raman and IR spectra of the biologically active molecule, 1-naphthalene acetamide (NA) have been recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers of NA have been calculated with the help of B3LYP density functional theory (DFT) method. The assignments of the vibrational spectra have been carried out with the help of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The downshifting of NH 2 stretching wavenumber indicates the formation of intermolecular N-H⋯O hydrogen bonding. The NBO analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule.

  13. Vibrational Spectral Studies and Ab initio Computations of a Nonlinear Food Dye Carmoisine

    Science.gov (United States)

    Snehalatha, M.; Ravikumar, C.; Sekar, N.; Jayakumar, V. S.; Joe, I. Hubert

    2008-11-01

    FT-IR and Raman techniques were employed for the vibrational characterization of the food dye Carmoisine (E122). The equilibrium geometry, various bonding features, and harmonic vibrational wavenumbers have been investigated with the help of density functional theory (DFT) calculations. The first hyperpolarizability of the molecule is calculated. A good correlation was found between the computed and experimental wavenumbers. Azo stretching wavenumbers have been lowered due to conjugation and π-electron delocalization. The optimized structure indicates intramolecular C-H …O=S hydrogen bonding in the molecule. Intramolecular charge transfer (ICT) responsible for the optical nonlinearity of the dye molecule has been discussed theoretically and experimentally.

  14. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes

    Science.gov (United States)

    Murugavel, S.; Sundramoorthy, S.; Lakshmanan, D.; Subashini, R.; Pavan Kumar, P.

    2017-03-01

    The novel title compound 4-chloro-8-methoxyquinoline-2(1H)-one (4CMOQ) has been synthesized by slow evaporation solution growth technique at room temperature. The synthesized 4CMOQ molecule was characterized experimentally by FT-IR, FT-Raman, UV-Vis, NMR and single crystal diffraction (XRD) and theoretically by quantum chemical calculations. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311++G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. The nuclear magnetic resonance spectra (1H and 13C NMR) are obtained by using the gauge-invariant atomic orbital (GIAO) method. The change in electron density (ED) in the antibonding orbital's and stabilization energies E(2) of the molecule have been evaluated by natural bond orbital (NBO) analysis to give clear evidence of stabilization. Moreover, electronic characteristics such as HOMO and LUMO energies, Mulliken atomic charges and molecular electrostatic potential surface are investigated. Absorption spectrum analysis, nonlinear optical properties, chemical reactivity descriptors and thermodynamic features are also outlined theoretically. Molecular docking studies were executed to understand the inhibitory activity of 4CMOQ against DNA gyrase and Lanosterol 14 α-demethylase. The antimicrobial activity of 4CMOQ was determined against bacterial strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and fungal strains such as Aspergillus niger, Monascus purpureus and Penicillium citrinum. The obtained results show that the compound exhibited good to moderate antimicrobial activity.

  15. Low-frequency vibrational spectrum of molecular nitrogen complex rhenium(1) chloro(dinitrogen) tetrakis(dimethylphenylphosphine)

    Energy Technology Data Exchange (ETDEWEB)

    Kachapina, L.M.; Kichigina, G.A.; Makhaev, V.D.; Borisov, A.P. (AN SSSR, Chernogolovka. Inst. Khimicheskoj Fiziki)

    1981-10-01

    The investigation results of IR and Raman spectra in the region of 600-170 cm/sup -1/ of molecular nitrogen complex-rhenium (1) chloro (dinitrogen) tetrakis (dimethyl-phenylphosphine)- Cl(PMe/sub 2/Ph)/sub 4/ReN/sub 2/ are presented. The IR spectra have been recorded using the ''Perkin-Elmer 325'' spectrophotometer. The samples have been prepared in the form of tablets with KBr (650-400 cm/sup -1/) and CsI (450-200 cm/sup -1/) and suspensions in vaseline oil. The Raman spectra have been measured using the ''Coderg-PHO'' spectrometer with the recording by FEhU-106. The samples have been taken in the form of polycrystals. The lines attributed to the valent vibration of the Re-N bond and deformation vibration of ReNN fragment have been identified in the spectra.

  16. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  17. Theoretical Investigation of C-H Vibrational Spectroscopy. 1. Modeling of Methyl and Methylene Groups of Ethanol with Different Conformers.

    Science.gov (United States)

    Wang, Lin; Ishiyama, Tatsuya; Morita, Akihiro

    2017-09-14

    A flexible and polarizable molecular model of ethanol is developed to extend our investigation of thermodynamic, structural, and vibrational properties of the liquid and interface. A molecular dynamics (MD) simulation with the present model confirmed that this model well reproduces a number of properties of liquid ethanol, including density, heat of vaporization, surface tension, molecular dipole moment, and trans/gauche ratio. In particular, the present model can describe vibrational IR, Raman, and sum frequency generation (SFG) spectra of ethanol and partially deuterated analogues with reliable accuracy. The improved accuracy is largely attributed to proper modeling of the conformational dependence and the intramolecular couplings including Fermi resonance in C-H vibrations. Precise dependence of torsional motions is found to be critical in representing vibrational spectra of the C-H bending. This model allows for further vibrational analysis of complicated alkyl groups widely observed in various organic molecules with MD simulation.

  18. IR spectra of halothane-acetone complex in liquefied noble gases (Kr and Xe)

    Science.gov (United States)

    Melikova, S. M.; Rutkowski, K. S.; Rospenk, M.

    2017-07-01

    IR absorption spectra of solutions of halothane (C2HBrClF3) and acetone ((CD3)2CO) mixtures in liquefied noble gases (krypton and xenon) have been recorded and analyzed. Bands due to weak hydrogenbonded complexes are identified. The complex-formation enthalpy is estimated in a series of temperature experiments on the change in the total intensity of the bands due to monomers and complexes. Second-order bands are found, which are assigned to the first overtone of stretching vibration CH of halothane and the Raman band related to simultaneous excitation of stretching vibration CH of halothane and stretching vibration CO of acetone. The results of ab initio calculation performed within the MP2/6-311++G(d, p) approximation are used to analyze the spectroscopic data.

  19. Displacement of polarons by vibrational modes in doped conjugated polymers

    Science.gov (United States)

    Anderson, M.; Ramanan, C.; Fontanesi, C.; Frick, A.; Surana, S.; Cheyns, D.; Furno, M.; Keller, T.; Allard, S.; Scherf, U.; Beljonne, D.; D'Avino, G.; von Hauff, E.; Da Como, E.

    2017-10-01

    Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p -doped conjugated homo- and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors.

  20. Enhanced ion dissociation of LiCF{sub 3}SO{sub 3} by new carbonate plasticizers: Raman and IR studies

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, L. K.; Lee, H. S.; Yang, X. Q.; McBreen, J.

    1993-10-01

    The extent of ion dissociation of LiCF{sub 3}SO{sub 3} in propylene carbonate [PC] and new, modified carbonates [MC-3, MC-5] prepared in our laboratory has been determined by Raman spectroscopy. In the modified carbonates the polyether groups -CH{sub 2}(OCH{sub 2}CH{sub 2}){sub n}OCH{sub 3} (n=3 for MC-3 and n=5 for MC-5) replace the 4-CH{sub 3} substituent of PC. The spectra clearly show that both MC-3 and MC-5 promote ion dissociation of the Li triflate salt relative to PC. Furthermore, MC-5 solutions contain more free ions than MC-3 solutions, and are less affected by concentration changes. Infrared spectra demonstrate that Li{sup +} cations associate less with the carbonyl of the modified carbonates than with the carbonyl of PC. These results suggest that the enhanced ion dissociation of Li triflate in MC-3 and MC-5 arises from complexation of the Li{sup +} to the oxygens of the polyether sidechains, and that MC-5 with its six ether oxygens forms the more stable complex.

  1. FT-IR, FT-Raman and NMR characterization of 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate and investigation of its reactive and optoelectronic properties by molecular dynamics simulations and DFT calculations

    Science.gov (United States)

    Menon, Vidya V.; Fazal, Edakot; Mary, Y. Sheena; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Nagarajan, Subban; Van Alsenoy, C.

    2017-01-01

    The FT-IR and FT-Raman spectra of the synthesized compound, 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate is recorded and analyzed. Optimized molecular structure, wave numbers, corresponding assignments regarding 2-isopropyl-5-methylcyclohexyl quinoline-2-carboxylate has become screened tentatively as well as hypothetically using Gaussian09 program package. Natural bonding orbital assessment has been completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular re-hybridization and delocalization of electron density within the molecule. The NMR spectral assessment had been made choosing structure property relationship by chemical shifts along with the magnetic shielding effects regarding the title compound. The first and second hyperpolarizabilities were calculated. The calculated first order hyperpolarizability is commensurate with the documented worth of very similar derivatives and could be an interesting object for more experiments on nonlinear optics. Local reactivity properties have been investigated using average local ionization energies and Fukui functions. Investigation of optoelectronic properties encompassed calculations of reorganization energies and hopping rates of charge carriers within the framework of Marcus semi-empiric approach. The docked ligand title compound forms a stable complex with CDK inhibitors and gives a binding affinity value of -9.7 kcal/mol and molecular docking results suggest that the compound might exhibit inhibitory activity against CDK inhibitors.

  2. Solvation number and conformation of N,N-dimethylacrylamide and N,N-dimethylpropionamide in the coordination sphere of the cobalt(II) ion in solution studied by FT-IR and FT-Raman spectroscopy.

    Science.gov (United States)

    Asada, Mitsunori; Mitsugi, Takushi; Ogura, Takahiro; Fujii, Kenta; Umebayashi, Yasuhiro; Ishiguro, Shin-ichi

    2007-07-01

    The solvation number and conformation of N,N-dimethylacrylamide (DMAA) in the coordination sphere of the cobalt(II) ion in solution were studied, and compared with those of N,N-dimethylpropionamide (DMPA) by means of FT-Raman and FT-IR spectroscopy. Both solvents are present as either the planar cis or nonplanar staggered conformer in equilibrium, and the former is more stable in the bulk. As these solvents solvate the metal ion through the carbonyl O atom of the acryl (DMAA) or propionyl (DMPA) group, the solvation structure around the metal ion is highly congested to reduce the solvation number and/or to lead to a conformational geometry change of solvent. It turns out that the solvation number of the cobalt(II) ion is 4 for both DMAA and DMPA at 298 K, and that DMPA changes its conformation upon solvation, whereas DMAA hardly changes. The enthalpy of conformational change DeltaH degrees for DMPA is 5 kJ mol(-1) in the bulk, and is -9 kJ mol(-1) in the coordination sphere of the cobalt(II) ion. On the other hand, the DeltaH degrees value for DMAA is 9 kJ mol(-1) in the bulk.

  3. Vibrational Relaxation in Neat Crystals of Naphthalene by Picosecond CARS

    NARCIS (Netherlands)

    Hesp, Ben H.; Wiersma, Douwe A.

    1980-01-01

    Picosecond delayed CARS experiments on totally symmetric modes in naphthalene at 1.5 K are reported. The Raman lineshape of the vibrational excitons is lorentzian and vibrational relaxation can be surprisingly slow. The Raman lineshape of the Ag exciton level of the 766 cm-1 vibrational mode reveals

  4. IR intensity

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output.......Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output....

  5. Molecular structure, vibrational spectral analysis, NBO, HOMO-LUMO and conformational studies of ninhydrin

    Science.gov (United States)

    Arivazhagan, M.; Anitha Rexalin, D.

    2013-03-01

    The FT-IR and FT-Raman vibrational spectra of ninhydrin have been recorded in the range 4000-400 cm-1and 3600-50 cm-1, respectively. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state are calculated using ab initio HF and density functional B3LYP methods with 6-311++G(d,p) basis set combination. In order to find the most optimized geometry, the energy calculations are carried out for various possible conformers. Keto and enol forms of ninhydrin are also studied. The condensed summary of the principal NBOs shows the occupancy, orbital energy and the qualitative pattern of delocalization interactions of ninhydrin. The calculated HOMO-LUMO energies reveal that charge transfer occurs within the molecule. The predicted first hyperpolarizability also shows that the ninhydrin molecule have good optical quality and nonlinear optical (NLO) behavior. With the help of specific scaling procedures, the observed vibrational wave numbers in FT-IR and FT-Raman spectra are analyzed and assigned to different normal modes of the molecule.

  6. The vibrational structure of (E,E’)-1,4-diphenyl-1,3-butadiene. Linear dichroism FTIR spectroscopy and quantum chemical calculations

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Møller, Søren; Spanget-Larsen, Jens

    2006-01-01

    The title compound (DPB) was investigated by FTIR spectroscopy in liquid solutions and by FTIR linear dichroism (LD) measurements on samples aligned in stretched polyethylene. The LD data provided experimental assignments of molecular transition moment directions and vibrational symmetries for more...... of a nearly complete assignment of the IR active fundamentals of DPB, involving reassignment of a number of transitions. In addition, previously published Raman spectra of DPB were well predicted by the B3LYP/cc-pVTZ calculations....

  7. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    .... The book reviews basic principles, instrumentation, sampling methods, quantitative analysis, origin of group frequencies and qualitative interpretation using generalized Infrared (IR) and Raman spectra...

  8. Raman Spectroscopy of Two-Dimensional Bi2TexSe3 − x Platelets Produced by Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Jian Yuan

    2015-08-01

    Full Text Available In this paper, we report a facile solvothermal method to produce both binary and ternary compounds of bismuth chalcogenides in the form of Bi2TexSe3 − x. The crystal morphology in terms of geometry and thickness as well as the stoichiometric ratio can be well controlled, which offers the opportunities to systematically investigate the relationship between microstructure and phonon scattering by Raman spectroscopy. Raman spectra of four compounds, i.e., Bi2Se3, Bi2Se2Te, Bi2SeTe2 and Bi2Te3, were collected at four different excitation photon energies (2.54, 2.41, 1.96, and 1.58 eV. It is found that the vibrational modes are shifted to higher frequency with more Se incorporation towards the replacement of Te. The dependence of Raman vibrational modes on excitation photon energy was investigated. As the excitation photon energy increases, three Raman vibrational modes (A1g1, Eg2 and A1g2 of the as-produced compounds move to low frequency. Three Infrared-active (IR-active modes were observed in thin topological insulators (TIs crystals.

  9. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.

    Science.gov (United States)

    Błasiak, Bartosz; Londergan, Casey H; Webb, Lauren J; Cho, Minhaeng

    2017-04-18

    The vibrational frequency of a chosen normal mode is one of the most accurately measurable spectroscopic properties of molecules in condensed phases. Accordingly, infrared absorption and Raman scattering spectroscopy have provided valuable information on both distributions and ensemble-average values of molecular vibrational frequencies, and these frequencies are now routinely used to investigate structure, conformation, and even absolute configuration of chemical and biological molecules of interest. Recent advancements in coherent time-domain nonlinear vibrational spectroscopy have allowed the study of heterogeneous distributions of local structures and thermally driven ultrafast fluctuations of vibrational frequencies. To fully utilize IR probe functional groups for quantitative bioassays, a variety of biological and chemical techniques have been developed to site-specifically introduce vibrational probe groups into proteins and nucleic acids. These IR-probe-labeled biomolecules and chemically reactive systems are subject to linear and nonlinear vibrational spectroscopic investigations and provide information on the local electric field, conformational changes, site-site protein contacts, and/or function-defining features of biomolecules. A rapidly expanding library of data from such experiments requires an interpretive method with atom-level chemical accuracy. However, despite prolonged efforts to develop an all-encompassing theory for describing vibrational solvatochromism and electrochromism as well as dynamic fluctuations of instantaneous vibrational frequencies, purely empirical and highly approximate theoretical models have often been used to interpret experimental results. They are, in many cases, based on the simple assumption that the vibrational frequency of an IR reporter is solely dictated by electric potential or field distribution around the vibrational chromophore. Such simplified description of vibrational solvatochromism generally referred to as

  10. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  11. Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis.

    Science.gov (United States)

    Kumar, Srividya; Verma, Taru; Mukherjee, Ria; Ariese, Freek; Somasundaram, Kumaravel; Umapathy, Siva

    2016-04-07

    Biomolecular structure elucidation is one of the major techniques for studying the basic processes of life. These processes get modulated, hindered or altered due to various causes like diseases, which is why biomolecular analysis and imaging play an important role in diagnosis, treatment prognosis and monitoring. Vibrational spectroscopy (IR and Raman), which is a molecular bond specific technique, can assist the researcher in chemical structure interpretation. Based on the combination with microscopy, vibrational microspectroscopy is currently emerging as an important tool for biomedical research, with a spatial resolution at the cellular and sub-cellular level. These techniques offer various advantages, enabling label-free, biomolecular fingerprinting in the native state. However, the complexity involved in deciphering the required information from a spectrum hampered their entry into the clinic. Today with the advent of automated algorithms, vibrational microspectroscopy excels in the field of spectropathology. However, researchers should be aware of how quantification based on absolute band intensities may be affected by instrumental parameters, sample thickness, water content, substrate backgrounds and other possible artefacts. In this review these practical issues and their effects on the quantification of biomolecules will be discussed in detail. In many cases ratiometric analysis can help to circumvent these problems and enable the quantitative study of biological samples, including ratiometric imaging in 1D, 2D and 3D. We provide an extensive overview from the recent scientific literature on IR and Raman band ratios used for studying biological systems and for disease diagnosis and treatment prognosis.

  12. Surface enhanced Raman scattering

    CERN Document Server

    Furtak, Thomas

    1982-01-01

    In the course of the development of surface science, advances have been identified with the introduction of new diagnostic probes for analytical characterization of the adsorbates and microscopic structure of surfaces and interfaces. Among the most recently de­ veloped techniques, and one around which a storm of controversy has developed, is what has now been earmarked as surface enhanced Raman scattering (SERS). Within this phenomenon, molecules adsorbed onto metal surfaces under certain conditions exhibit an anomalously large interaction cross section for the Raman effect. This makes it possible to observe the detailed vibrational signature of the adsorbate in the ambient phase with an energy resolution much higher than that which is presently available in electron energy loss spectroscopy and when the surface is in contact with a much larger amount of material than that which can be tolerated in infrared absorption experiments. The ability to perform vibrational spectroscopy under these conditions would l...

  13. Vibrational spectra and structures of Ti-N2O and OTi-N2: a combined IR matrix isolation and theoretical study.

    Science.gov (United States)

    Marzouk, Asma; Alikhani, M Esmaïl; Madebène, Bruno; Tremblay, Benoît; Perchard, Jean-Pierre

    2013-02-28

    The reaction of atomic titanium with nitrous oxide has been reinvestigated using matrix isolation in solid neon coupled to infrared spectroscopy and by quantum chemical methods. Our technique of sublimation of Ti atoms from a filament heated at about 1500 °C allowed the formation of three species: one Ti-N(2)O pair of van der Waals (vdW) type characterized by small red shift with respect to N(2)O monomer, and two isomers of OTi-N(2) pair where N(2) is in interaction with the OTi moiety either with end-on or side-on structure. Interconversion between these structures has been performed with several wavelengths. In the visible and near-ultraviolet the conversion vdW → OTi-N(2) (end-on) is observed with characteristic times strongly varying according to the wavelength. In the near-infrared the conversion OTi-N(2) (end-on) → OTi-N(2) (side-on) occurs, the vdW species remaining unchanged. These selectivities allow 8, 6, and 4 vibrational transitions to be assigned for vdW, (3)[OTi(η(1)-NN)] (end-on), and (1)[OTi(η(2)-NN)] (side-on), respectively. Electronic and geometrical structures are also investigated with double-hybrid functionals. It has been shown that the side-on geometry corresponds to the ground state of (1)[OTi(η(2)-NN)] in the singlet electronic state. The theoretical vibrational analysis supports well the experimental attributions.

  14. Raman and infrared spectroscopy of carbohydrates: A review

    Science.gov (United States)

    Wiercigroch, Ewelina; Szafraniec, Ewelina; Czamara, Krzysztof; Pacia, Marta Z.; Majzner, Katarzyna; Kochan, Kamila; Kaczor, Agnieszka; Baranska, Malgorzata; Malek, Kamilla

    2017-10-01

    Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (D-(-)-ribose, 2-deoxy-D-ribose, L-(-)-arabinose, D-(+)-xylose, D-(+)-glucose, D-(+)-galactose and D-(-)-fructose) and disaccharides (D-(+)-sucrose, D-(+)-maltose and D-(+)-lactose), and then more complex ones, i.e. trisaccharides (D-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050 cm- 1), IV (3050-2800 cm- 1) and II (1200-800 cm- 1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200 cm- 1) and I (800-100 cm- 1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.

  15. Anisotropy in Bone Demineralization Revealed by Polarized Far-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Roman Schuetz

    2015-04-01

    Full Text Available Bone material is composed of an organic matrix of collagen fibers and apatite nanoparticles. Previously, vibrational spectroscopy techniques such as infrared (IR and Raman spectroscopy have proved to be particularly useful for characterizing the two constituent organic and inorganic phases of bone. In this work, we tested the potential use of high intensity synchrotron-based far-IR radiation (50–500 cm−1 to gain new insights into structure and chemical composition of bovine fibrolamellar bone. The results from our study can be summarized in the following four points: (I compared to far-IR spectra obtained from synthetic hydroxyapatite powder, those from fibrolamellar bone showed similar peak positions, but very different peak widths; (II during stepwise demineralization of the bone samples, there was no significant change neither to far-IR peak width nor position, demonstrating that mineral dissolution occurred in a uniform manner; (III application of external loading on fully demineralized bone had no significant effect on the obtained spectra, while dehydration of samples resulted in clear differences. (IV using linear dichroism, we showed that the anisotropic structure of fibrolamellar bone is also reflected in anisotropic far-IR absorbance properties of both the organic and inorganic phases. Far-IR spectroscopy thus provides a novel way to functionally characterize bone structure and chemistry, and with further technological improvements, has the potential to become a useful clinical diagnostic tool to better assess quality of collagen-based tissues.

  16. Experimental and theoretical studies on the characterization of monocrotaline by infrared and Raman spectroscopies

    Science.gov (United States)

    Oliveira, Ramon Prata; Demuner, Antonio Jacinto; Alvarenga, Elson Santiago; Parma, Monica Cropo; Barbosa, Luiz Claudio Almeida; de Moura Guimarães, Luciano; Aguiar, Alex Ramos

    2017-05-01

    The use of plants in folk medicine has a long and ancient history in the treatment of various diseases. Currently, a large proportion of commercial drugs are based on natural products or are synthetic compounds inspired on such natural substances. Therefore, in this communication to aid that research, structural and spectroscopic analysis of the natural pyrrolizidine alkaloid called monocrotaline was carried out. Pyrrolizidine alkaloids that are commonly found in the Boraginaceae and Asteraceae families are among the great diversity of secondary metabolites which are produced by plants to act as a defense mechanism against herbivores and microbes. In the present study, the natural product, monocrotaline, an alkaloid isolated from the leaves of Crotalaria paulina, with potential application in medicine, was characterized by infrared (IR) and Raman spectroscopy with the support of Density Functional Theory (DFT) calculations. IR and Raman spectra of monocrotaline were recorded at room temperature ranging from 4000 to 400 cm-1. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 + G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this structure. A perfect fit between the experimentally measured frequencies of the IR and Raman spectra and the calculated values were observed, and we have performed the complete identification of monocrotaline by these techniques.

  17. Vibrational spectroscopy investigation using ab initio and DFT vibrational analysis of 7-chloro-2-methylamino-5-phenyl-3H-1,4-benzodiazepine-4-oxide

    Science.gov (United States)

    Prasath, M.; Muthu, S.; Arun Balaji, R.

    2013-09-01

    The FT-IR and FT-Raman spectrum of 7-chloro-2-methylamino-5-phenyl-3H-1, 4-benzodiazepine-4-oxide (7CMP4BO) has been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The optimized geometry, Thermodynamic properties, NBO, Molecular Electrostatic Potentials, PES, frequency and intensity of the vibrational bands of 7CMP4BO were obtained by the ab initio HF and density functional theory (DFT), B3LYP/6-31G (d,p) basis set. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated potential energy distribution (PED). The linear polarizability (α) and the first order hyperpolarizability (β) values of the investigated molecule have been computed using DFT quantum mechanical calculations. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically calculated values.

  18. 2-Chloro- and 2-bromo-3-pyridinecarboxaldehydes: structures, rotamers, fermi resonance and vibration modes.

    Science.gov (United States)

    Yenagi, Jayashree; Shettar, Anita; Tonannavar, J

    2011-09-01

    FT-Infrared (4000-400 cm(-1)) and NIR-FT-Raman (4000-50 cm(-1)) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON-trans and ON-cis: the ON-trans rotamer being more stable than cis by 3.42 kcal mol(-1) for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol(-1) for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON-trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm(-1); the characteristic ring mode at 1051 cm(-1) is diminished; a mixed mode near 707 cm(-1) is enhanced. Further, an observed doublet near 1696-1666 cm(-1) in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm(-1) and a combination mode of ring stretch near 1059 cm(-1) and deformation vibration, 625 cm(-1). A strong Raman aldehydic torsional mode at 62 cm(-1) is interpreted to correspond to the dominant ON-trans over cis rotamers population. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  20. Ligand effects on the structure and vibrational properties of the thiolated Au18 cluster

    Directory of Open Access Journals (Sweden)

    Alfredo Tlahuice-Flores

    2016-10-01

    Full Text Available Most of the studies devoted to thiolated gold clusters suppose that their core and Au-S framework do not suffer from distortion independently of the protecting ligands (-SR and it is assumed as correct to simplify the ligand as SCH3. In this work is delivered a systematic study of the structure and vibrational properties (IR and Raman of the Au18(SR14 cluster. The pursued goal is to understand the dependency of the displayed vibrational properties of the thiolated Au18 cluster with the ligands type. A set of six ligands was considered during calculations of the vibrational properties based on density functional theory (DFT and in its dispersion-corrected approach (DFT-D.

  1. Raman Spectroscopy for Homeland Security Applications

    Directory of Open Access Journals (Sweden)

    Gregory Mogilevsky

    2012-01-01

    Full Text Available Raman spectroscopy is an analytical technique with vast applications in the homeland security and defense arenas. The Raman effect is defined by the inelastic interaction of the incident laser with the analyte molecule’s vibrational modes, which can be exploited to detect and identify chemicals in various environments and for the detection of hazards in the field, at checkpoints, or in a forensic laboratory with no contact with the substance. A major source of error that overwhelms the Raman signal is fluorescence caused by the background and the sample matrix. Novel methods are being developed to enhance the Raman signal’s sensitivity and to reduce the effects of fluorescence by altering how the hazard material interacts with its environment and the incident laser. Basic Raman techniques applicable to homeland security applications include conventional (off-resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS, resonance Raman spectroscopy, and spatially or temporally offset Raman spectroscopy (SORS and TORS. Additional emerging Raman techniques, including remote Raman detection, Raman imaging, and Heterodyne imaging, are being developed to further enhance the Raman signal, mitigate fluorescence effects, and monitor hazards at a distance for use in homeland security and defense applications.

  2. Structure, isomerism, and vibrational assignment of aluminumtrifluoroacetylacetonate. An experimental and theoretical study

    Science.gov (United States)

    Afzali, R.; Vakili, M.; Boluri, E.; Tayyari, S. F.; Nekoei, A.-R.; Hakimi-Tabar, M.; Darugar, V.

    2018-02-01

    An interpretation of the experimental IR and Raman spectra of Aluminum (III) trifluoroacetylacetonate (Al(TFAA)3) complex, which were synthesized by us, is first reported here. The charge distribution, isomerism, strength of metal‑oxygen binding and vibrational spectral properties for this complex structure were theoretically investigated through population analysis, geometry optimization and harmonic frequency calculations, performed at B3LYP/6-311G* level of theory. In the population analysis, two different approaches reffered to as ;Atoms in molecules (AIM);, and ;Natural Bond Orbital (NBO); were used. According to the calculation resuls, the energy difference between the cis and trans isomers of Al(TFAA)3 is very small and indicates that both isomers coexist in the sample in comparable proportions. Comparison of the calculated frequency and intensity data with the observed IR and Raman spectra of the complex has supported this conclusion. On the other hand, comparison of the structural and vibrational spectral data of Al(TFAA)3, which were experimentally measured and calculated at B3LYP/6-311G* level, with the corresponding data of Aluminum acetylacetonate (Al(AA)3) has revealed the effects of CF3 substitution on the structural and vibrational spectral data associated with the CH3 groups in the complex structure.

  3. Experimental and theoretical model of reactivity and vibrational detection modes of triacetone triperoxide (TATP) and homologues

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.

    2004-12-01

    Fully optimized molecular geometry, parameters of reactivity and vibrational spectra of triacetone triperoxide (TATP) and homologue organic peroxides were calculated using B3LYP/6-31G(d,p) method within the Density Functional Theory formalism. Infrared and Raman Spectroscopy were utilized to obtain vibrational spectra of the energetic compound. The model consists in the relation found between the Raman Shift location of the important symmetric stretch ν(O-O) of the organic peroxides and the reactivity of the organic peroxides. A good correlation between the band location in the series studied and the x-y plane polarizability component and the ionization energy was found. Gas phase IR absorption of TATP in air was used for developing stand-off detection schemes of the important organic peroxide in air. The sublimation properties of TATP were measured using two methods: Grazing Angle Probe-Fiber Coupled FTIR and gravimetric on stainless steel surfaces. Sublimation rates, loading concentration values and absorbance band areas were measured and modeled using the persistent IR vibrational signature of the ν(C-O) mode.

  4. Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Fu, Yan; Wang, Haifeng; Shi, Riyi; Cheng, Ji-Xin

    2006-05-01

    We report a mechanistic analysis of photodamage in coherent anti-Stokes Raman scattering (CARS) microscopy. Photodamage to the myelin sheath in spinal tissues is induced by using the point scan mode and is featured by myelin splitting and shockwaves with broadband emission. Our measurement of photodamage rate versus the excitation power reveals that both linear and nonlinear mechanisms are involved. Moreover, we show that vibrational absorption induced by coherent Raman processes significantly contributes to the nonlinear damage at high peak powers. For CARS imaging of cultured cells, the photodamage is characterized by plasma membrane blebbing and is dominated by a second order mechanism. Our study suggests that for dense samples such as the myelin sheath, CARS imaging induced photodamage can be minimized by using laser beams with relatively long near IR wavelengths and a repetition rate of a few MHz. For less dense samples such as cultured cells, laser pulses of higher repetition rates are preferred.

  5. Thermal, vibrational spectra and photoluminescence properties of the nonlinear optical material MnTeMoO6

    Science.gov (United States)

    Jin, Chengguo; Shao, Juxiang; Li, Zhen; Yang, Junsheng; Cao, Qilong; Huang, Duohui; Wan, Mingjie; Wang, Fanhou

    2015-04-01

    MnTeMoO6 is a novel nonlinear optical material in near-mid-IR region. Vibrational spectra characterization, thermal and photoluminescent properties of polycrystalline MnTeMoO6 have been investigated in this work. The results show that polycrystalline MnTeMoO6 has a relatively high melting point at 725.2 °C and exhibits superheating of crystal. The observed Raman and IR bands of MnTeMoO6 are assigned to vibrations of the Mn-O bonds, MoO4 tetrahedra, and TeO4 polyhedra. Photoluminescence measurements show that MnTeMoO6 displays a strong emission peak at 467 nm under excitation at 280 nm, and the absorption band at 0.47-0.52 μm in UV-vis spectra may be caused by photoluminescence.

  6. Environment-dependent conformation investigation of 3-amino-1,2,4-triazole (3-AT): Raman Spectroscopy and density functional theory

    Science.gov (United States)

    Meng, Shuang; Zhao, Yanying; Xue, Jiadan; Zheng, Xuming

    2018-02-01

    In the paper, diverse tautomers of 3-amino-1,2,4-triazole (3AT) in solid and polar solvent have been explored by FT-IR, FT-Raman and 488 nm Raman experiments combing with quantum chemical theoretical calculation using PCM solvent model and normal mode analysis. The vibrational spectra prefer the 3-amino-1,2,4-2H-triazole (2H-3AT) dimer in solid, while in a polar solvent 3AT is apt to the 3-amino-1,2,4-2H-triazole (2H-3AT) monomer. The significant wavenumber difference and Raman intensity patterns in solid and different solvents are induced by hydrogen bond perturbation along > NH ⋯ N ≤ hydrogen bonds on five-membered N-heterocyclic ring. The ground state proton transfer reaction mechanism along the five-membered N-heterocyclic ring is supported by intermolecular hydrogen bonding between 3AT and protonic solvent molecules.

  7. Infrared and Raman spectra of (3,3,3-trifluoropropyl)trimethoxysilane, its sol and xerogel.

    Science.gov (United States)

    Li, Ying-Sing; Vecchio, Nicolas E; Lu, Weijie

    2013-03-15

    Organic modified silica sol was prepared by using (3,3,3-trifluoropropyl)trimethoxysilane (TFPTMS) as a precursor in ethanol solution under acidic condition. Infrared and Raman spectra were recorded for the silane coupling agent (SCA), TFPTMS sol and xerogel. Vibrational assignments have been suggested based on the spectral relative intensity, results from the vibrational study of trimethoxypropylsilane (TMPS), similar trifluorocompounds and group frequencies. Low temperature IR spectra revealed the presence of two conformers in TFPTMS. Only one conformer could be identified in the TFPTMS sol and xerogel. Thermal investigation of TFPTMS xerogel with infrared spectroscopic method indicated that the organic part remained essentially unchanged at or below 350 °C but decomposed at or around 450 °C, in agreement with the result from thermal gravimetric analysis (TGA). After the decomposition of the organic branch, the remaining part of the xerogel was composed of silica. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect.

    Science.gov (United States)

    Surmacki, Jakub; Brozek-Pluska, Beata; Kordek, Radzislaw; Abramczyk, Halina

    2015-04-07

    Vibrational signatures of human breast tissue (invasive ductal carcinoma and invasive lobular carcinoma) were used to identify, characterize and discriminate structures in normal (noncancerous) and cancerous tissues by confocal Raman imaging, Raman spectroscopy and IR spectroscopy. The most important differences between normal and cancerous tissues were found in regions characteristic for vibrations of carotenoids, fatty acids, proteins, and interfacial water. Particular attention was paid to the role played by unsaturated fatty acids and their derivatives. K-means clustering and basis analysis followed by PCA and PLSDA is employed to analyze Raman spectroscopic maps of human breast tissue and for a statistical analysis of the samples (82 patients, 164 samples). Raman maps successfully identify regions of carotenoids, fatty acids, and proteins. The intensities, frequencies and profiles of the average Raman spectra differentiate the biochemical composition of normal and cancerous tissues. The paper demonstrates that Raman imaging has reached a clinically relevant level in regard to breast cancer diagnosis applications. The sensitivity and specificity obtained directly from PLSLD and cross validation are equal to 90.5% and 84.8% for calibration and 84.7% and 71.9% for cross-validation respectively.

  9. Innovative nanostructures for highly sensitive vibrational biosensing (Conference Presentation)

    Science.gov (United States)

    Popp, Juergen; Mayerhöfer, Thomas; Cialla-May, Dana; Weber, Karina; Huebner, Uwe

    2016-03-01

    Employing vibrational spectroscopy (IR-absorption and Raman spectroscopy) allows for the labelfree detection of molecular specific fingerprints of inorganic, organic and biological substances. The sensitivity of vibrational spectroscopy can be improved by several orders of magnitude via the application of plasmonic active surfaces. Within this contribution we will discuss two such approaches, namely surface enhanced Raman spectroscopy (SERS) as well as surface enhanced IR absorption (SEIRA). It will be shown that SERS using metal colloids as SERS active substrate in combination with a microfluidic lab-on-a-chip (LOC) device enables high throughput and reproducible measurements with highest sensitivity and specificity. The application of such a LOC-SERS approach for therapeutic drug monitoring (e.g. quantitative detection of antibiotics in a urine matrix) will be presented. Furthermore, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer as one-time use SERS substrates for specific food analysis (e.g. quantitative detection of toxic food colorants). The second part of this contribution presents a slit array metamaterial perfect absorber for IR sensing applications consisting of a dielectric layer sandwiched between two metallic layers of which the upper layer is perforated with a periodic array of slits. Light-matter interaction is greatly amplified in the slits, where also the analyte is concentrated, as the surface of the substrate is covered by a thin silica layer. Thus, already small concentrations of analytes down to a monolayer can be detected by refractive index sensing and identified by their spectral fingerprints with a standard mid-infrared lab spectrometer.

  10. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  11. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Kim, Heejae; Kim, Seongheun; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O-D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O-D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O-D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O-D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O-D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O-D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O-D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O-D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O-D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O-D stretch mode is shown to be important and the asymmetric line shapes of the O-D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  12. Structural Rietveld refinement and vibrational study of MgCr{sub x}Fe{sub 2−x}O{sub 4} spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, K. [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria); Rais, A., E-mail: amrais@yahoo.com [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria); Taibi, K. [Laboratoire de Science et Génie des Matériaux, USTHB, Alger, Algéria (Algeria); Moreau, M.; Ouddane, B. [Laboratory of LASIR Spectrochemistry, University of Science and Technology, 59650 Villeneuve d’Ascq (France); Addou, A. [Laboratoire des Sciences et technique de l’Environnement et de la Valorisation, département de Génie des Procédés, Université de Mostaganem, Mostaganem (Algeria)

    2016-11-15

    Spinel ferrites with the general formula MgCr{sub x}Fe{sub 2−x}O{sub 4} (0≤x≤1) were synthesized by the standard ceramic technique and characterized by X-ray diffraction. The XRD patterns confirmed that the mixed ferrite samples are in the cubic spinel structure which is further validated by Rietveld refinement in the space group Fd3m. The crystal structure and cell parameters were refined by Rietveld analysis. The vibrational study was achieved using Fourier Transform-InfraRed (FT-IR) and Raman spectroscopy. From FT-IR band frequencies, the force constants K{sub t} and K{sub o} , for tetrahedral (A) and octahedral (B) sites respectively, have been calculated and discussed with the trend of bond lengths obtained from Rietveld refinement. For all compositions, Raman spectra revealed the five active modes showing the vibration of O{sup 2−} ions at both the A-site and B-site ions. The frequencies trend with chromium content of both FT-IR and Raman spectra showed a shift toward higher values for all modes.

  13. Raman active modes of NiSi crystal

    Energy Technology Data Exchange (ETDEWEB)

    Wan Li, E-mail: liwan_china@yahoo.com.c [Department of Physics, Wenzhou University (China); Tang Bo; Cheng Xinhong; Ren Yiming; Zhang Xuefei; Xu Dapeng; Luo Haijun; Huang Yunmi [Department of Physics, Wenzhou University (China)

    2009-08-01

    Raman scattering intensities of the NiSi Raman-active modes have been calculated with three Raman measurement configurations, which can be used for the symmetry assignment of the NiSi Raman peaks. Raman-active vibrations of the NiSi crystal have also been theoretically studied. Results show that the lattices with A{sub g} and B{sub 2g} modes vibrate only in the plane normal to the NiSi[0 1 0] direction while the lattices with B{sub 1g} and B{sub 3g} modes vibrate only along the NiSi[0 1 0] axis. Based on such study, the relationship between the anisotropic strain distribution in the NiSi thin film and the Raman peak shifts has been briefly discussed.

  14. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  15. Effects of central metal on electronic structure, magnetic properties, infrared and Raman spectra of double-decker phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-09-01

    Graphical abstract: - Highlights: • Electron density distributions were delocalized on the phthalocyanine rings. • The chemical shift was separated by the nuclear quadrupole interaction based on the EFG and η. • The magnetic parameters were dependent on the perturbation of the crystal field. • The vibration modes were shifted by the asymmetrical structure. - Abstract: The effects of the central metal in double-decker metal phthalocyanine on the electronic structure, magnetic properties, and infrared and Raman spectra of the complex were investigated. Electron density distributions were delocalized on the phthalocyanine rings. The narrow energy gap and infrared peaks observed in the ultra-violet–visible–near infrared spectra of the systems were attributed to phthalocyanine ring–ring interactions the between overlapping π-orbitals on each ring. The chemical shift behavior of the phthalocyanine rings was separated by the deformation of their structure owing to nuclear magnetic interaction of the nuclear quadrupole interaction as determined by the electronic field gradient and asymmetric parameters. The magnetic parameters of principle g-tensors were dependent on the perturbation of the crystal field by the hybridization of the d-spin in the central metal conjugated with nitrogen ligands. In the case of the vanadyl system, the IR vibration modes were shifted by the soft vibration mode for resolving the symmetrical structure. Inactive Raman vibration modes arose from no-polarization on the phthalocyanine rings. Double-decker metal phthalocyanines have great advantages for the control of the magnetic mechanism for quantum spin entanglement in the relaxation process.

  16. Absorption spectra and Raman gain coefficient in near-IR region of Er3+ ions doped TeO2-Nb2O5-Bi2O3-ZnO glasses

    Science.gov (United States)

    Yousef, El Sayed; Hegazy, H. H.; Almojadah, Samar; Reben, M.

    2015-11-01

    Er3+ ions doped TeO2 based glasses were prepared by quenching melting technique. A systematic characterization of glass transition temperature and optical properties of the prepared glass was carried out. The gain cross-section for the Er3+laser transition 4I13/2→4I15/2 was calculated. The results show the TNBZ glass doped with 2000 ppm of Er2O3 had the maximum value of gain cross-section equal to 14.4 cm-1 and large stimulated emission cross-section (1.4×10-20 cm2). The glasses developed here showed the widest bandwidths of gain cross section from 249 to 1106 cm-1. Moreover the Raman gain coefficient of the present glass was obtained from Raman scattering experiments using 532 nm excitation. This composition has also the maximum value of Raman gain coefficient (g=1.4×10-10 m/W) and it has the highest value of full width half maximum (FWHM≈ 380 cm-1). Finally, the structure of the prepared glasses was investigated through deconvolution Raman spectra. The thermal stability and spectroscopic properties indicate that this glass doped with Er3+ is a promising candidate for fiber lasers and Raman gain amplifiers.

  17. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  18. Evaluation and differentiation of the Betulaceae birch bark species and their bioactive triterpene content using analytical FT-vibrational spectroscopy and GC-MS

    Directory of Open Access Journals (Sweden)

    Cîntă-Pînzaru Simona

    2012-07-01

    Full Text Available Abstract Background Aiming to obtain the highest triterpene content in the extraction products, nine bark samples from the forest abundant flora of Apuseni Mountains, Romania were Raman spectroscopically evaluated. Three different natural extracts from Betula pendula Roth birch bark have been obtained and characterized using Fourier transform vibrational spectra. Results This study shows that principal components of the birch tree extract can be rapidly recognized and differentiated based on their vibrational fingerprint band shape and intensity. The vibrational spectroscopy results are supported by the GC-MS data. Based on IR and Raman analysis, one can conclude that all the extracts, independent on the solvent(s used, revealed dominant betulin species, followed by lupeol. Conclusions Since Raman measurements could also be performed on fresh plant material, we demonstrated the possibility to apply the present results for the prediction of the highest triterpene content in bark species, for the selection of harvesting time or individual genotypes directly in the field, with appropriate portable Raman equipment.

  19. Vibrational characterization of dinaphthylpolyynes: A model system for the study of end-capped sp carbon chains

    CERN Document Server

    Cinquanta, Eugenio; Castelli, Ivano Eligio; Cataldo, Franco; Manini, Nicola; Onida, Giovanni; Milani, Paolo

    2011-01-01

    We perform a systematic investigation of the resonance and vibrational properties of naphthyl-terminated sp carbon chains (dinaphthylpolyynes) by combined multi-wavelength resonant Raman (MWRR) spectroscopy, ultraviolet-visible spectroscopy, and Fourier-transform infrared (FT-IR) spectroscopy, plus ab initio density functional theory (DFT) calculations. We show that the MWWR and FT-IR spectroscopies are particularly suited to identify chains of different lengths and different terminations, respectively. By DFT calculations, we further extend those findings to sp carbon chains end-capped by other organic structures. The present analysis shows that combined MWRR and FT-IR provide a powerful tool to draw a complete picture of chemically stabilized sp carbon chains.

  20. Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone

    Science.gov (United States)

    Anoop, M. R.; Binil, P. S.; Suma, S.; Sudarsanakumar, M. R.; Y, Sheena Mary.; Varghese, Hema Tresa; Panicker, C. Yohannan

    2010-04-01

    FT-IR and FT-Raman spectra of ethyl methyl ketone thiosemicarbazone were recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF/6-31G(d) and B3LYP/6-31G(d) basis sets and are assigned with the aid of MOLEKEL program. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The red shift of the NH stretching wavenumber in the infrared spectrum compared to the computed wavenumber indicates the weakening of the N-H bond resulting in proton transfer to the neighbouring sulfur atom.

  1. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    The mid-infrared (IR) spectral region is of significant technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinct spectral fingerprints. To date, the limitations of mid-IR light sources, such as thermal emitters, low...... cancer detection with mid-IR imaging spectroscopy....

  2. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  3. Ultrafast optical nonlinearity, electronic absorption, vibrational spectra and solvent effect studies of ninhydrin

    Science.gov (United States)

    Sajan, D.; Devi, T. Uma; Safakath, K.; Philip, Reji; Němec, Ivan; Karabacak, M.

    2013-05-01

    FT-IR, FT-Raman and UV-Vis spectra of the nonlinear optical molecule ninhydrin have been recorded and analyzed. The equilibrium geometry, bonding features, and harmonic vibrational wavenumbers have been investigated with the help of B3LYP density functional theory method. A detailed interpretation of the vibrational spectra is carried out with the aid of normal coordinate analysis following the scaled quantum mechanical force field methodology. Solvent effects have been calculated using time-dependent density functional theory in combination with the polarized continuum model. Natural bond orbital analysis confirms the occurrence of strong intermolecular hydrogen bonding in the molecule. Employing the open-aperture z-scan technique, nonlinear optical absorption of the sample has been studied in the ultrafast and short-pulse excitation regimes, using 100 fs and 5 ns laser pulses respectively. It is found that ninhydrin exhibits optical limiting for both excitations, indicating potential photonic applications.

  4. FT-IR, micro-Raman and UV-vis spectroscopic and quantum chemical investigations of free 2,2'-dithiodipyridine and its metal (Co, Cu and Zn) halide complexes.

    Science.gov (United States)

    Gökce, Halil; Bahçeli, Semiha

    2013-10-01

    In this study the elemental analysis results, molecular geometries, vibrational and electronic absorption spectra of free 2,2'-dithiodipyridine(C10H8N2S2), (or DTDP) (with synonym, 2,2'-dipyridyl disulfide) and M(C10H8N2S2)Cl2 (M=Co, Cu and Zn) complexes have been reported. Vibrational wavenumbers of free DTDP and its metal halide complexes have been calculated by using DFT/B3LYP calculation method with 6-31++G(d,p) and Lanl2DZ basis sets, respectively, in the ground state, for the first time. The calculated fundamental vibrational frequencies are in a good agreement with experimental data. The HOMO, LUMO and MEP analyses of all compounds are performed by DFT method. Copyright © 2013. Published by Elsevier B.V.

  5. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Aoife A. Gowen

    2016-07-01

    Full Text Available Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy.

  6. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    Directory of Open Access Journals (Sweden)

    Souhir Boujday

    2015-08-01

    Full Text Available In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR, (phase-modulated InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS, and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS. Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  7. Ab-initio study of structural, vibrational and optical properties of solid oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in

    2016-09-15

    We report the structural, elastic and vibrational properties of five ionic-molecular solid oxidizers MNO{sub 3} (M = Li, Na, K) and MClO{sub 3} (M = Na, K). By treating long range electron-correlation effects, dispersion corrected method leads to more accurate predictions of structural properties and phase stability of KNO{sub 3} polymorphs. The obtained elastic moduli show soft nature of these materials and are consistent with Ultrasonic Pulse Echo measurements. We made a complete assignment of vibrational modes which are in good accord with available experimental results. From calculated IR and Raman spectra, it is found that the vibrational frequencies show a red-shift from Li → Na → K (Na → K) and N → Cl for nitrates (chlorates) due to increase in mass of metal and non-metal atoms, respectively. The calculated electronic structure using recently developed Tran-Blaha modified Becke-Johnson potential show that the materials are wide band gap insulators with predominant ionic bonding between M{sup +} (metal) and NO{sub 3}{sup −}/ClO{sub 3}{sup −} ions and covalent bonding (N−O and Cl−O) within nitrate and chlorate anionic group. From the calculated optical spectra, we observe that electric-dipole transitions are due to nitrate/chlorate group below 20 eV and cationic transitions occur above 20 eV. The calculated reflectivity spectra are consistent with the available experimental measurements. - Highlights: • Ground state properties with inclusion of dispersion correction method. • Elastic constants and mechanical properties. • Vibrational spectra and their complete assignment. • Raman and IR spectra. • Electronic structure and optical properties using TB-mBJ potential.

  8. Molecular geometry, vibrational spectra, atomic charges, frontier molecular orbital and Fukui function analysis of antiviral drug zidovudine

    Science.gov (United States)

    Ramkumaar, G. R.; Srinivasan, S.; Bhoopathy, T. J.; Gunasekaran, S.

    2012-12-01

    The solid phase FT-IR and FT-Raman spectra of zidovudine (AZT) were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of zidovudine were obtained by the Restricted Hartree-Fock (RHF) density functional theory (DFT) with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. The harmonic vibrational frequencies for zidovudine were calculated and the scaled values have been compared with experimental values of FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The harmonic vibrational wave numbers and intensities of vibrational bands of zidovudine with its cation and anion were calculated and compared with the neutral AZT. The DFT calculated HOMO and LUMO energies shows that charge transfer occurs within the molecule. The electron density-based local reactivity descriptors such as Fukui functions were calculated to explain the chemical selectivity or reactivity site in AZT.

  9. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution.

    Science.gov (United States)

    Adhikary, Ramkrishna; Zimmermann, Jörg; Romesberg, Floyd E

    2017-02-08

    Vibrational spectroscopy provides a direct route to the physicochemical characterization of molecules. While both IR and Raman spectroscopy have been used for decades to provide detailed characterizations of small molecules, similar studies with proteins are largely precluded due to spectral congestion. However, the vibrational spectra of proteins do include a "transparent window", between ∼1800 and ∼2500 cm-1, and progress is now being made to develop site-specifically incorporated carbon-deuterium (C-D), cyano (CN), thiocyanate (SCN), and azide (N3) "transparent window vibrational probes" that absorb within this window and report on their environment to facilitate the characterization of proteins with small molecule-like detail. This Review opens with a brief discussion of the advantages and limitations of conventional vibrational spectroscopy and then discusses the strengths and weaknesses of the different transparent window vibrational probes, methods by which they may be site-specifically incorporated into peptides and proteins, and the physicochemical properties they may be used to study, including electrostatics, stability and folding, hydrogen bonding, protonation, solvation, dynamics, and interactions with inhibitors. The use of the probes to vibrationally image proteins and other biomolecules within cells is also discussed. We then present four case studies, focused on ketosteroid isomerase, the SH3 domain, dihydrofolate reductase, and cytochrome c, where the transparent window vibrational probes have already been used to elucidate important aspects of protein structure and function. The Review concludes by highlighting the current challenges and future potential of using transparent window vibrational probes to understand the evolution and function of proteins and other biomolecules.

  10. A new Density Functional Theory (DFT) based method for supporting the assignment of vibrational signatures of mannan and cellulose—Analysis of palm kernel cake hydrolysis by ATR-FT-IR spectroscopy as a case study

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Sanadi, Anand Ramesh; Jørgensen, Henning

    2011-01-01

    Attenuated Total Reflectance (ATR) FT-IR spectroscopy gives in situ information on molecular concentration, organization and interactions in plant cell walls. We demonstrate its potential for further developments by a case study which combines ATR-FT-IR spectroscopy with a recently published DFT ...

  11. Page 1 RAMAN AND INFRARED SPECTRA OF ETHYLENE GLY ...

    Indian Academy of Sciences (India)

    17 infrared maxima in the liquid State and 20 Raman lines in the solid state have been reported. Detailed vibrational assignments have been given. Two strong polarised Raman lines of the liquid which have no correspond- ing infrared absorption bands, and which disappear on Solidification, have been attributed to the ...

  12. Molecular structure, spectral investigation (1H NMR, 13C NMR, UV-Visible, FT-IR, FT-Raman), NBO, intramolecular hydrogen bonding, chemical reactivity and first hyperpolarizability analysis of formononetin [7-hydroxy-3(4-methoxyphenyl)chromone]: A quantum chemical study

    Science.gov (United States)

    Srivastava, Anubha; Mishra, Rashmi; Kumar, Sudhir; Dev, Kapil; Tandon, Poonam; Maurya, Rakesh

    2015-03-01

    Formononetin [7-hydroxy-3(4-methoxyphenyl)chromone or 4‧-methoxy daidzein] is a soy isoflavonoid that is found abundantly in traditional Chinese medicine Astragalus mongholicus (Bunge) and Trifolium pretense L. (red clover), and in an Indian medicinal plant, Butea (B.) monosperma. Crude extract of B.monosperma is used for rapid healing of fracture in Indian traditional medicine. In this study, a combined theoretical and experimental approach is used to study the properties of formononetin. The optimized geometry was calculated by B3LYP method using 6-311++G(d,p) as a large basis set. The FT-Raman and FT-IR spectra were recorded in the solid phase, and interpreted in terms of potential energy distribution (PED) analysis. Density functional theory (DFT) is applied to explore the nonlinear optical properties of the molecule. Good consistency is found between the calculated results and observed data for the electronic absorption, IR and Raman spectra. The solvent effects have been calculated using time-dependent density functional theory in combination with the integral equation formalism polarized continuum model, and the results are in good agreement with observed measurements. The double well potential energy curve of the molecule about the respective bonds, have been plotted, as obtained from DFT/6-31G basis set. The computational results diagnose the most stable conformer of formononetin. The HOMO-LUMO energy gap of possible conformers has been calculated for comparing their chemical activity. Chemical reactivity has been measured by reactivity descriptors and molecular electrostatic potential surface (MEP). The 1H and 13C NMR chemical shifts of the molecule were calculated by the Gauge including atomic orbital (GIAO) method. Furthermore, the role of CHsbnd O intramolecular hydrogen bond in the stability of molecule is investigated on the basis of the results of topological properties of AIM theory and NBO analysis. The calculated first hyperpolarizability shows

  13. In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Sugimura, Fumiya; Sakai, Nanami; Nakamura, Tetsuya; Nakamura, Masashi; Ikeda, Katsuyoshi; Sakai, Toshio; Hoshi, Nagahiro

    2017-10-18

    In situ vibrational spectra of Pt oxides that cannot be measured with IR spectroscopy have been studied on the low index planes of Pt using surface enhanced Raman spectroscopy with bare Au nanoparticles (NPSERS). Two bands appear around 570 and 340 cm(-1) at higher potentials in 0.1 M HClO4 saturated with Ar, which are assigned to the stretching vibration of Pt-O(H) and the libration vibration of Pt-O, respectively. NPSERS spectra are measured in O2 saturated solution for the first time. The band intensities of Pt-O(H) and Pt-O in O2 saturated solution are enhanced significantly compared with those in Ar saturated solution. The onset potentials of Pt-O and Pt-O(H) formation are 1.15 V(RHE) on Pt(100) and 1.2 V(RHE) on Pt(111) and Pt(110). The onset potential of Pt-O and Pt-O(H) and band shape differ from the results obtained using shell isolated surface enhanced Raman spectroscopy (SHINERS). The Pt-O and Pt-O(H) band intensities are normalized using COad as an internal standard. The Pt-O(H) band intensity depends on surface structures as Pt(110) < Pt(111) ≪ Pt(100), whereas the Pt-O band gives a different intensity order for Pt(111) and Pt(110) as Pt(111) ≤ Pt(110) ≪ Pt(100) in O2 saturated solution.

  14. A low frequency assignment for infrared and Raman spectra of (-)-isobornyl acetate using related compounds and deuterated derivatives

    Science.gov (United States)

    Kim, S. B.; Hammaker, R. M.; Fateley, W. G.

    Nineteen fundamentals of (-)-isobornyl acetate and seven deuterium substituted modifications (2- d1;3,3- d2;2,3,3- d3; acetate- d3; 2- d1, acetate- d3; 3,3- d2 acetate- d3; 2,3,3- d3 acetate- d3) have been assigned between 200 and 900 cm -1. These fundamentals are: skeletal vibrations of the quaternary carbons, ring breathing and bending vibrations, and vibrations of the acetate group. Key model compounds used in this analysis are norbornane, neopentane, methyl acetate and cyclopentanol. A series of related compounds (norbornane, bornane, exo-norbornyl acetate, 1-methyl-exo-norbornyl acetate, apoisobornyl acetate and (-)-isobornyl acetate) is used to identify frequencies associated with the quaternary carbon and the acetate group. Raman spectra are more useful for the quaternary carbon frequencies and i.r. spectra are more useful for acetate group frequencies. Quaternary carbon skeletal stretching frequencies and ring breathing frequencies are responsible for prominent Raman bands between 580 and 670 cm -1 and between 780 and 940 cm -1, respectively.

  15. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  16. Vibrational Spectroscopic Studies and Computational Study of 1,2-Diphenyl-4-n-Butyl-3,5-Pyrazolidinedione

    Directory of Open Access Journals (Sweden)

    C. Yohannan Panicker

    2011-01-01

    Full Text Available FT-IR and FT-Raman spectra of 1,2-diphenyl-4-n-Butyl-3,5-pyrazolidinedione (Phenylbutazone were recorded and analyzed. The vibrational wavenumbers were computed using HF/6-31G(d and B3LYP/6-31G(d basis sets and compared with experimental data. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The geometrical parameters of the title compound obtained from theoretical calculations are in agreement with that of reported similar derivatives. The first hyperpolarizability is comparable with reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The variation in C-N bond lengths suggests an extended π-electron delocalization over the pyrazolidinedione moiety which is responsible for the nonlinearity of the molecule.

  17. Vibrational normal modes calculation in the crystalline state of methylated monosaccharides: Anomers of the methyl-D-glucopyranoside and methyl-D-xylopyranoside molecules.

    Science.gov (United States)

    Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya

    2016-01-15

    A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm(-1) spectral region for the IR spectra, and in the 4000-20 cm(-1) spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    Science.gov (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  19. Electronic resonances in broadband stimulated Raman spectroscopy

    Science.gov (United States)

    Batignani, G.; Pontecorvo, E.; Giovannetti, G.; Ferrante, C.; Fumero, G.; Scopigno, T.

    2016-01-01

    Spontaneous Raman spectroscopy is a formidable tool to probe molecular vibrations. Under electronic resonance conditions, the cross section can be selectively enhanced enabling structural sensitivity to specific chromophores and reaction centers. The addition of an ultrashort, broadband femtosecond pulse to the excitation field allows for coherent stimulation of diverse molecular vibrations. Within such a scheme, vibrational spectra are engraved onto a highly directional field, and can be heterodyne detected overwhelming fluorescence and other incoherent signals. At variance with spontaneous resonance Raman, however, interpreting the spectral information is not straightforward, due to the manifold of field interactions concurring to the third order nonlinear response. Taking as an example vibrational spectra of heme proteins excited in the Soret band, we introduce a general approach to extract the stimulated Raman excitation profiles from complex spectral lineshapes. Specifically, by a quantum treatment of the matter through density matrix description of the third order nonlinear polarization, we identify the contributions which generate the Raman bands, by taking into account for the cross section of each process.

  20. Basic principles of ultrafast Raman loss spectroscopy

    Indian Academy of Sciences (India)

    Loss features. (anti-Stokes side). Extracted Raman spectrum. Figure 6. Schematic diagram of SRGS and URLS. by broadband WL continuum which contains several frequency components. This results in the simultane- ous excitation of a large number of vibrational modes in the system. If the WL continuum contains frequen ...

  1. Theoretical study on cation-anion interaction and vibrational spectra of 1-allyl-3-methylimidazolium-based ionic liquids.

    Science.gov (United States)

    Xuan, Xiaopeng; Guo, Meng; Pei, Yuanchao; Zheng, Yong

    2011-05-01

    In order to deepen the understanding of the cation-anion interaction in ionic liquids, the structures of cation, anions, and cation-anion ion-pairs of 1-allyl-3-methylimidazolium-based ionic liquids are optimized using density functional theory (DFT), and their most stable geometries are discussed. The structural parameters, hydrogen bonds and interaction energies of 1-allyl-3-methylimidazolium dicyanamide ([Amim]DCA), 1-allyl-3-methylimidazolium chloride ([Amim]Cl), 1-allyl-3-methylimidazolium formate ([Amim]FmO) and 1-allyl-3-methylimidazolium acetate ([Amim]AcO) ion pairs are studied. The vibrational frequencies of [Amim]DCA and [Amim]Cl have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Computation and interpretation of vibrational spectra on the structure of Losartan using ab initio and Density Functional methods

    Science.gov (United States)

    Latha, B.; Gunasekaran, S.; Srinivasan, S.; Ramkumaar, G. R.

    2014-11-01

    The solid phase FTIR and FT-Raman spectra of Losartan have been recorded in the region 400-4000 cm-1. The spectra were interpreted in terms of fundamental modes, combination and overtone bands. The structure of the molecule was optimized and the structural characteristics were determined by Quantum chemical methods. The vibrational frequencies yield good agreement between observed and calculated values. The infrared and Raman spectra were also predicted from the calculated intensities. (1)H and (13)C NMR spectra were recorded and resonance chemical shifts of the molecule were calculated. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies calculated by TD-HF approach. NBO atomic charges of the molecules and second order perturbation theory analysis of Fock matrix also calculated and interpreted. The geometrical parameters, energies, harmonic vibrational frequencies, IR intensities, Raman intensities, and absorption wavelengths were compared with experimental and theoretical data of the molecule.

  3. The vibrational Stokes shift of water (HOD in D2O)

    Science.gov (United States)

    Wang, Zhaohui; Pang, Yoonsoo; Dlott, Dana D.

    2004-05-01

    The vibrational Stokes shift of the OH stretching transition νOH of water is the shift between the ground-state absorption and the excited-state (v=1) emission. A recent measurement on HOD in D2O solvent [S. Woutersen and H. J. Bakker, Phys. Rev. Lett. 83, 2077 (1999)] of a 70 cm-1 redshift, and a subsequent calculation of a 57 cm-1 redshift using equilibrium molecular dynamics simulations [C. P. Lawrence and J. L. Skinner, J. Chem. Phys. 117, 8847 (2002)] were in good agreement. We now report extensive measurements of the vibrational Stokes shift in HOD/D2O using an ultrafast IR pump, Raman probe method. The vibrational Stokes shift is seen to depend on the pump pulse frequency and on time delay; by varying these parameters it can be made to range from 112 to -32 cm-1 (negative values indicate a blueshift in the excited state). The equilibrium vibrational Stokes shift is actually a negative rather than a positive quantity. Possible reasons for the disagreement between experiment and theory are briefly discussed.

  4. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol

    Science.gov (United States)

    Moorthi, P. P.; Gunasekaran, S.; Swaminathan, S.; Ramkumaar, G. R.

    2015-02-01

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule.

  5. Structural and Vibrational Study on Monomer and Dimer Forms and Water Clusters of Acetazolamide

    Directory of Open Access Journals (Sweden)

    Aysen E. Ozel

    2013-01-01

    Full Text Available Experimental IR and Raman spectra of solid acetazolamide have been analysed by computing the molecular structures and vibrational spectra of monomer and dimer forms and water clusters of acetazolamide. The possible stable conformers of free acetazolamide molecule in the ground state were obtained by scanning the potential energy surface through the dihedral angles, D1 (1S-2C-6S-9N, D2 (4N-5C-12N-14C, and D3 (5C-12N-14C-16C. The final geometry parameters for the obtained stable conformers were determined by means of geometry optimization, carried out at DFT/B3LYP/6-31G++(d,p theory level. Afterwards the possible dimer forms of the molecule and acetazolamide-H2O clusters were formed and their energetically preferred conformations were investigated using the same method and the same level of theory. The effect of BSSE on the structure and energy of acetazolamide dimer has been investigated. The assignment of the vibrational modes was performed based on the potential energy distribution of the vibrational modes, calculated by using GAR2PED program. The experimental vibrational wavenumbers of solid acetazolamide are found to be in better agreement with the calculated wavenumbers of dimer form of acetazolamide than those of its monomeric form. NBO analysis has been performed on both monomer and dimer geometries.

  6. Ultraviolet Resonant Raman Enhancements in the Detection of Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Short Jr., Billy Joe [Naval Postgraduate School, Monterey, CA (United States)

    2009-06-01

    Raman-based spectroscopy is potentially militarily useful for standoff detection of high explosives. Normal (non-resonance) and resonance Raman spectroscopies are both light scattering techniques that use a laser to measure the vibrational spectrum of a sample. In resonance Raman, the laser is tuned to match the wavelength of a strong electronic absorbance in the molecule of interest, whereas, in normal Raman the laser is not tuned to any strong electronic absorbance bands. The selection of appropriate excitation wavelengths in resonance Raman can result in a dramatic increase in the Raman scattering efficiency of select band(s) associated with the electronic transition. Other than the excitation wavelength, however, resonance Raman is performed experimentally the same as normal Raman. In these studies, normal and resonance Raman spectral signatures of select solid high explosive (HE) samples and explosive precursors were collected at 785 nm, 244 nm and 229 nm. Solutions of PETN, TNT, and explosive precursors (DNT & PNT) in acetonitrile solvent as an internal Raman standard were quantitatively evaluated using ultraviolet resonance Raman (UVRR) microscopy and normal Raman spectroscopy as a function of power and select excitation wavelengths. Use of an internal standard allowed resonance enhancements to be estimated at 229 nm and 244 nm. Investigations demonstrated that UVRR provided ~2000-fold enhancement at 244 nm and ~800-fold improvement at 229 nm while PETN showed a maximum of ~25-fold at 244 nm and ~190-fold enhancement at 229 nm solely from resonance effects when compared to normal Raman measurements. In addition to the observed resonance enhancements, additional Raman signal enhancements are obtained with ultraviolet excitation (i.e., Raman scattering scales as !4 for measurements based on scattered photons). A model, based partly on the resonance Raman enhancement results for HE solutions, is presented for estimating Raman enhancements for solid HE samples.

  7. On the intermolecular vibrational modes of the guanine⋯cytosine, adenine⋯thymine and formamide⋯formamide H-bonded dimers

    Science.gov (United States)

    Florián, Jan; Leszczynski, Jerzy; Johnson, Benny G.

    1995-04-01

    Harmonic force fields, frequencies, and IR and Raman intensities of the intermolecular vibrational modes in the cyclic formamide dimer and the guanine-cytosine and adenine-thymine DNA base pairs were calculated using several ab initio methods, including Hartree-Fock, MP2 and gradient-corrected density functional theory (DFT), with various basis sets. A polar environment was modeled using the polarizable continuum model (SCRF). The effect of electron correlation upon calculated Raman intensities was investigated using DFT. The normal coordinate analysis was carried out in internal coordinates observing C 2h symmetry of the formamide dimer. These coordinates were also generalized for the DNA base pairs, allowing force constants, frequencies and intensities of the characteristic intermolecular vibrational modes to be compared among the H-bonded complexes studied. In addition, coordinates defined in this way are directly related to standard DNA interbase structural parameters as pseudodyad, tilt and propeller twist angles. Extensive coupling of the intramolecular wagging vibrations of the amino groups participating in H-bonding with the tilt and propeller twist vibrations was obtained for the lowest frequency normal modes.

  8. Experimental and DFT dimer modeling studies of the H-bond induced-vibration modes of l-β-Homoserine.

    Science.gov (United States)

    Yalagi, Shashikala; Tonannavar, J; Yenagi, Jayashree

    2017-06-15

    The vibrational spectra for l-β-Homoserine have been measured (IR absorption: 4000-400cm(-1)/Raman spectra: 4000-200cm(-1)). Characteristic vibrational modes of ammonium (-NH3(+)), carboxylate (-CO2(-)) and hydroxyl (-OH) groups across the 3700-1400cm(-1) are all identified to have originated in inter-molecular hydrogen bonding involving these functional groups. DFT calculations at B3LYP/6-311++G(d, p) level have yielded a single neutral monomer in the gas phase. Since as a member of the amino acids which are known to possess zwitterionic structure in condensed phase, the neutral monomer of l-β-Homoserine is optimized to a zwitterionic structure in a water medium. Consideration of two dimer structures, one dimer with -NH‧‧‧O bond and another -OH‧‧‧O bond, has given rise to vibrational modes that satisfactorily fit to all the observed absorption and Raman bands. It is found that the dimer with -OH‧‧‧O bond (binding energy, 8.896kcal/mol) is more tightly bound than the dimer with -NH‧‧‧O bond (8.363kcal/mol). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comment on: ``FT-IR, FT-Raman and UV spectral investigation; computed frequency estimation analysis and electronic structure calculations on 1-nitronaphthalene'' by M. Govindarajan and M. Karabacak [Spectrochim. Acta A 85 (2012) 251-260

    Science.gov (United States)

    Alparone, Andrea; Librando, Vito

    2012-12-01

    The title paper [1] incorrectly establishes that, in gas phase the global minimum energy structure of 1-nitronaphthalene is planar (Cs symmetry). By contrast, present calculations indicate that the planar Cs form is an unstable structure on the potential energy surface, exhibiting an imaginary vibrational wavenumber value corresponding to the torsional mode of the nitro group around the C-N bond. At the B3LYP/6-311++G(d,p) level of calculation the global minimum energy structure of 1-nitronaphthalene in gas phase has a non-planar geometry, characterized by O-N-C-C dihedral angles of ca. 30° and lying 0.35 kcal/mol below the Cs form.

  10. Raman Spectra and Dynamics of Thiocyanate Ion in Poly(Vinyl Alcohol)-KSCN Films

    Science.gov (United States)

    Gafurov, M. M.; Rabadanov, K. Sh.; Shabanov, N. S.; Tretinnikov, O. N.; Amirov, A. M.; Gadjimagomedov, S. Kh.

    2017-11-01

    Raman spectra of poly(vinyl alcohol)-potassium-thiocyanate films are studied. Parameters of vibrational and orientational relaxation of thiocyanate ion in the polymer matrix are determined. The character and rate of vibrational dephasing become identical to SCN- vibrations in aqueous solution at salt concentrations ≥0.3 M.

  11. IR Spectroscopic signs of malignant neoplasms in the thyroid gland

    Science.gov (United States)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Butra, V. A.

    2012-03-01

    We use Fourier transform IR spectroscopy to study thyroid tumor tissues which were removed during surgery. The IR spectra of the tissues with pathological foci are compared with data from histologic examination. In the region of N-H, C-H, and C = O stretching vibrations, the IR spectra of the tissues for thyroid cancer are different from the IR spectra of tissues without malignant formations. We identify the spectral signs of thyroid cancer. We show that IR analysis is promising for identification of thyroid pathology at the molecular level.

  12. Vibrational study on the bioactivity of Portland cement-based materials for endodontic use

    Science.gov (United States)

    Taddei, P.; Tinti, A.; Gandolfi, M. G.; Rossi, P. L.; Prati, C.

    2009-04-01

    The bioactivity of a modified Portland cement (wTC) and a phosphate-doped wTC cement (wTC-P) was studied at 37 °C in Dulbecco's Phosphate Buffered Saline (DPBS). The cements, prepared as disks, were analysed at different ageing times (from 1 day to 2 months) by micro-Raman and ATR/FT-IR spectroscopies. The presence of deposits on the surface of the cements and the composition changes as a function of the storage time were investigated. The presence of an apatite deposit on the surface of both cements was already revealed after one day of ageing in DPBS. The trend of the I 965/I 991 Raman intensity ratio indicated the formation of a meanly thicker apatite deposit on the wTC-P cement at all the investigated times. This result was confirmed by the trend of the I 1030/I 945 IR intensity ratio calculated until 14 days of ageing. At 2 months, the thickness of the apatite deposit on wTC and wTC-P was about 200 and 500 μm, respectively, as estimated by micro-Raman spectroscopy, confirming the higher bioactivity of the phosphate-doped cement. Vibrational techniques allowed to gain more insights into the cement transformation and the different hydration rates of the various cement component. The setting of the cement and the formation of the hydrated silicate gel (C-S-H phase) was spectroscopically monitored through the I 830/I 945 IR intensity ratio.

  13. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT......-molecular orbital calculations by use of the Gaussian 03W pro- gram, based on complete geometry minimizations of the conformational energy of the S-(+)-amphetamine molecule, the S-(+)-amphetamine-H+ ion, and the R-(–)-amphetamine molecule. Following this, harmonic frequency calculations have been made, providing...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  14. Modeling Raman scattering in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Miguel [Seccion de Estudios de Posgrado, ESIME-Culhuacan, IPN, Av. Santa Ana 1000, 04430, Mexico, D.F. (Mexico); Wang, Chumin [Instituto de Investigaciones en Materiales, UNAM, A.P. 70-360, 04510, Mexico, D.F. (Mexico)

    2005-06-01

    In this work, we model the Raman scattering by phonons using the Born potential and the Green's function formalism, which takes into account the long-range correlation of atomic vibrations. The porous silicon is viewed as a sponge, in which periodical column pores are dug in direction [001] from crystalline silicon, i.e., a supercell model is used to calculate the Raman response. The results show that the main Raman peak shifts to lower energies when the porosity increases, and for square pores it asymptotically approaches to a limit value of 475 cm{sup -1}. Finally, the supercell results are compared with the quantum wire model, in which the main Raman peaks move to higher energies as the width of the wires grows. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. The reaction between ZnO and Molten K2S2O7 forming K2Zn(SO4)2, studied by Raman and IR Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nielsen, Kurt; Boghosian, Soghomon

    1999-01-01

    The reaction between zinc oxide and molten potassium pyrosulfate at 500 °C was shown by Raman spectroscopy to be a 1:1 reaction. By lovering the temperature, colorless crystals could be formed. The crystal structure was determined: Space group = P21/c, Z = 4, a = 5.3582(11), b = 8.7653(18), c = 16.......153(3) Å, b = 91.78(3)o, wR2 = 0.0758 for all 1930 ? independent reflections. The compound, K2Zn(SO4)2, contained trigonally bipyramidal zinc coordinated to five oxygen atoms, with Zn-O bonds of normal length (~ 2.04 ± 0.05 Å), equitorial bonds being slightly shorter on the average. The O-Zn-O angles were...... approximately 90o and 120o. The oxygens were all bridging to the two sulfur atoms forming nearly perfect tetrahedral SO42- groups. The K+ ions were placed in between these ZnO5 hexahedra, which formed a three-dimensional network. Bond distances and angles are compared with literature values. Empirical...

  16. 2D-COS of in situ μ-Raman and in situ IR spectra for structure evolution characterisation of NEP-deposited cobalt oxide catalyst during n-nonane combustion

    Science.gov (United States)

    Chlebda, Damian K.; Jodłowski, Przemysław J.; Jędrzejczyk, Roman J.; Łojewska, Joanna

    2017-11-01

    New catalytic systems are still in development to meet the challenge of regulations concerning the emission of volatile organic compounds (VOCs). This is because such compounds have a significant impact on air quality and some of them are toxic to the environment and human beings. The catalytic combustion process of VOCs over non-noble metal catalysts is of great interest to researchers. The high conversion parameters and cost effective preparation makes them a valuable alternative to monoliths and noble metal catalysts. In this study, the cobalt catalyst was prepared by non-equilibrium plasma deposition of organic precursor on calcined kanthal steel. Thus prepared, cobalt oxide based microstructural short-channel reactors were tested for n-nonane combustion and the catalyst surfaces were examined by in situ μ-Raman spectroscopy and in situ infrared spectroscopy. The spectra collected at various temperatures were used in generalised two-dimensional correlation analysis to establish the sequential order of spectral intensity changes and correlate the simultaneous changes in bands selectively coupled by different interaction mechanisms. The 2D synchronous and asynchronous contour maps were proved to be a valuable extension to the standard analysis of the temperature dependent 1D spectra.

  17. Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability.

    Science.gov (United States)

    Mangolim, Camila Sampaio; da Silva, Thamara Thaiane; Fenelon, Vanderson Carvalho; do Nascimento, Adriane; Sato, Francielle; Matioli, Graciette

    2017-10-01

    Curdlan is a linear polysaccharide composed of glucose units joined by β-(1,3) bonds that possesses unique gelation properties. This study aimed to characterize the structure and evaluate the gelling properties of curdlan produced by Agrobacterium sp. IFO 13140 and its gels, as well as apply it in food. FT-Raman analysis highlighted the structural changes that occurred during the formation of gels, with variations related to the hydrogen bonds and hydrophobic interactions, which occur with the formation of the low-set and high-set gels, respectively. Rheological analysis showed that the pre-gelled commercial curdlan and the curdlan produced by Agrobacterium sp. IFO 13140 differed in terms of gelation properties, which depends of the degree of polymerization of the polysaccharide, but when applied to pasta products, both improved the texture parameters. The curdlan gels were found to have great potential as gelling agents to improve texture, water retention capacity and stability of food products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Spectres de vibration de composés organiques des éléments de la colonne IVB—XIV. Etude physico-chimique de germa-2 azolidines, digerma-2,5 azolidines et de cyclodi- et tri-germazanes

    Science.gov (United States)

    Marchand, Annette; Gerval, Pierre; Rivière-Baudet, Monique; Lacrampe, Georges; Khallaayoun, Abdelhay

    1985-01-01

    A physicochemical study (i.r., Raman) about a series of 2-germaazolidines, 2,5-digermaazolidines and cyclodi- and tri-germazanes is presented. Infrared and Raman spectra were examined and led to the following conclusions: vibrations ν(GeN) and ν s(GeNGe) are located between 500 and 620 cm -1 and the ν a(GeNGe) mode between 750 and 900 cm -1. The influence of the dimension and the substitution of each cycle upon those vibrations is discussed. Evidence of a relation between (ν a - ν s) GeNGe and the size of the cycle is presented for cyclodi- and trigermazanes. An extension of this study to derivatives with an MXM sequence (X = N or O), (M = Si, Ge, Sn) has shown that a linear relation can be established between the characteristic frequencies of the MOM group and the corresponding angle.

  19. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    Science.gov (United States)

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H2O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman

  20. Vibrational modes and Structure of Niobium(V) Oxosulfato Complexes in the Molten Nb2O5-K2S2O7-K2SO4 System Studied by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Paulsen, Andreas L.; Borup, Flemming; Berg, Rolf W.

    2010-01-01

    coefficient, n, pointing to n = 3 and to the following reaction: Nb2O5 + 3S2O7 --> 2NbO(SO4)3, which is consistent with the Raman spectra of the molten mixtures. Nb2O5 could be dissolved much easier when K2SO4 was present in an equimolar (1:1) SO4/Nb ratio; the incremental presence of K2SO4 in Nb2O5-K2S2O7...... melts induces composition effects in the Raman spectra that terminate when n(SO4)/n(Nb) = 1. The composition effects and the temperature-dependent features of the Raman spectra obtained for Nb2O5-K2S2O7-K2SO4 molten mixtures together with the spectral changes occurring upon freezing are accounted...

  1. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    Science.gov (United States)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  2. DFT study of the molecular and crystal structure and vibrational analysis of cisplatin

    Science.gov (United States)

    Georgieva, I.; Trendafilova, N.; Dodoff, N.; Kovacheva, D.

    2017-04-01

    DFT and periodic-DFT (PAW-PBE method, code VASP) calculations have been performed to study the structural and vibrational characteristics of cis-diamminedichloroplatinum(II) (cisplatin) at molecular and outside molecular level. To estimate the effect of the intermolecular interactions in crystal on the structural and vibrational properties of cisplatin, three theoretical models are considered in the present study: monomer (isolated molecule), hydrogen bonded dimer and periodic solid state structures. The work focused on the role of the theoretical models for correct modeling and prediction of geometrical and vibrational parameters of cisplatin. It has been found that the elaborate three-dimensional intermolecular hydrogen bonding network in the crystalline cisplatin significantly influences the structural and vibrational pattern of cisplatin and therefore the isolated cisplatin molecule is not the correct computational model regardless of the theoretical level used. To account for the whole intermolecular hydrogen bonding network in direction of both a and c axis and for more reliable calculations of structural and vibrational parameters periodic DFT calculations were carried out in the full crystalline periodic environment with the known lattice parameters for each cisplatin polymorph phase. The model calculations performed both at molecular level and for the periodic structures of alpha and beta cisplatin polymorph forms revealed the decisive role of the extended theoretical model for reliable prediction of the structural and vibrational characteristics of cisplatin. The powder diffraction pattern and the calculated IR and Raman spectra predicted beta polymorph form of our cisplatin sample freshly synthesized for the purposes of the present study using the Dhara's method. The various rotamers realized in the polymorph forms of cisplatin were explained by the low population of the large number of rotamers in solution as well as with the high rotamer

  3. Insight into the reactive properties of newly synthesized 1,2,4-triazole derivative by combined experimental (FT-IR and FR-Raman) and theoretical (DFT and MD) study

    Science.gov (United States)

    Mary, Y. Sheena; Al-Omary, Fatmah A. M.; Mostafa, Gamal A. E.; El-Emam, Ali A.; Manjula, P. S.; Sarojini, B. K.; Narayana, B.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.

    2017-08-01

    The vibrational spectral analysis has been carried out on 4-[(E)-(4-hydroxybenzylidene)amino]-3-methyl-1H-1,2,4-triazole-5(4H)-thione (HBAMTT) in order explore the chemical and pharmacological properties. The most important reactive sites have been identified employing molecular electrostatic potential map. Nonlinear optical properties are identified and the first hyperpolarizability is 80.35 times that of urea, which is standard NLO material. The molecular activity is studied from the dislocation of the frontier molecular orbitals and NBO analysis is carried to gain an insight into the charge transfer within the molecular system. Using molecular electrostatic potential map, the electrophilic and nucleophilic sites are identified. Title molecule was further investigated from the aspect of local reactivity properties by calculations of average local ionization energies (ALIE) and Fukui functions. Vulnerability towards autoxidation and hydrolysis mechanisms has been assessed thanks to the calculations of bond dissociation energies (BDE) and radial distribution functions (RDF), respectively. This information was also valuable for the initial investigation of degradation properties of the title molecule. Thanks to the molecular docking studies, it can be concluded that docked ligand forms a stable complex with AChE and could be used as a new drug for the Alzheimer's disease, myasthenia gravis and glaucoma.

  4. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  5. FT-IR and DFT study of lemon peel

    Science.gov (United States)

    Berezin, K. V.; Likhter, A. M.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.

    2017-03-01

    Experimental FT-IR spectra of lemon peel are registered in the 650 - 3800 cm-1 range. The influence of peel artificial and natural dehydration on its vibrational spectrum is studied. The colored outer surface of lemon peel is proved not to have a significant impact on FT-IR spectrum. It is determined that only dehydration processes affect the FT-IR vibrational spectrum of the peel when a lemon is stored for 28 days under natural laboratory conditions. Polymer molecule models for dietary fibers, such as cellulose, hemicellulose, pectin, lignin, as well as hesperidin - flavonoid glycoside, and free moisture cluster are developed within the framework of DFT/B3LYP/6-31G(d) theoretical method. By implementing supramolecular approach, modeling of the vibrational FT-IR spectrum of lemon peel is carried out and its detailed theoretical interpretation is presented.

  6. Vibrational spectral investigation, NBO, first hyperpolarizability and UV-Vis spectral analysis of 3,5-dichlorobenzonitrile and m-bromobenzonitrile by ab initio and density functional theory methods.

    Science.gov (United States)

    Senthil kumar, J; Jeyavijayan, S; Arivazhagan, M

    2015-02-05

    The FT-IR and FT-Raman spectra of 3,5-dichlorobenzonitrile and m-bromobenzonitrile have been recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1), respectively. The optimized geometry, wave numbers and intensity of vibrational bonds of title molecules are obtained by ab initio and DFT level of theory with complete relaxation in the potential energy surface using 6-311++G(d, p) basis set. A complete vibrational assignments aided by the theoretical harmonic frequency, analysis have been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The UV-Vis spectral analysis of the molecules has also been done which confirms the charge transfer of the molecules. Furthermore, the first hyperpolarizability and total dipole moment of the molecules have been calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Determination of SiO2 Raman spectrum indicating the transformation from coesite to quartz in Gföhl migmatitic gneisses in the Moldanubian Zone, Czech Republic

    National Research Council Canada - National Science Library

    Tomoyuki KOBAYASHI; Takao HIRAJIMA; Yoshikuni HIROI; Martin SVOJTKA

    2008-01-01

    .... The Raman spectrum is composed of the intense vibrations of quartz at 464, 393 and 266 cm-1 of quartz and the weak vibration of coesite at 521 cm-1 is obtained from the quartz proximal to the relict...

  8. Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant

    Science.gov (United States)

    Bocarando-Chacon, J.-G.; Cortez-Valadez, M.; Vargas-Vazquez, D.; Rodríguez Melgarejo, F.; Flores-Acosta, M.; Mani-Gonzalez, P. G.; Leon-Sarabia, E.; Navarro-Badilla, A.; Ramírez-Bon, R.

    2014-05-01

    Silver nanoparticles have been obtained in an extract of Opuntia ficus-indica plant. The size and distribution of nanoparticles were quantified by atomic force microscopy (AFM). The diameter was estimated to be about 15 nm. In addition, energy dispersive X-ray spectroscopy (EDX) peaks of silver were observed in these samples. Three Raman bands have been experimentally detected at 83, 110 and 160 cm-1. The bands at 83 and 110 cm-1 are assigned to the silver-silver Raman modes (skeletal modes) and the Raman mode located at 160 cm-1 has been assigned to breathing modes. Vibrational assignments of Raman modes have been carried out based on the Density Functional Theory (DFT) quantum mechanical calculation. Structural and vibrational properties for small Agn clusters with 2≤n≤9 were determined. Calculated Raman modes for small metal clusters have an approximation trend of Raman bands. These Raman bands were obtained experimentally for silver nanoparticles (AgNP).

  9. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  10. Molecular structure, vibrational spectroscopic, first order hyperpolarizability and HOMO-LUMO studies of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid.

    Science.gov (United States)

    Ramalingam, M; Sethuraman, V; Sundaraganesan, N

    2011-02-01

    The FT-IR and FT-Raman spectra of 7-amino-8-oxo-3-vinyl-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid (7AVCA) were recorded in the region 4000-400 cm(-1) and 3500-10 cm(-1), respectively. Quantum chemical calculations of energies, geometrical structure and vibrational wavenumbers were carried out by ab initio HF and density functional theoretical methods invoking 6-311G(d,p) basis set. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The electric dipole moment (μ) and the first order hyperpolarizability (β0) values have been computed quantum mechanically. The calculated results show that 7AVCA may have microscopic nonlinear optical (NLO) behavior with non-zero values. A detailed interpretation of the FT-IR and FT-Raman spectra of 7AVCA is reported. The theoretical IR and Raman spectra of 7AVCA have also been constructed. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. FT-Raman and FT-Infrared investigations of archaeological artefacts from Foeni Neolithic site (Banat, Romania

    Directory of Open Access Journals (Sweden)

    Simona Cîntă Pînzaru

    2008-08-01

    Full Text Available An impressive collection of chert artefacts from the Foeni Neolithic archaeological site (Timiş County, Banat region, Romania is hosted by the Banat Museum in Timişoara. A representative set of seven specimens was non-destructively investigated using FT-Raman and ATR-FT-IR spectroscopy. The research was carried out for checking if these readily-available, non-destructive, fast, and cheap methods, which do not require preliminary sample preparation could provide significant information for characterizing the mineral composition of chert artefacts. Based on vibrational data, it was confirmed that the raw material was represented by microcrystalline quartz and moganite, with local concentrations of accessory minerals (calcite, dolomite, and clay minerals. In spite of their wide macroscopic heterogeneity (colour, transparency, based on single point FT-Raman measurements the chert artefacts could not be assigned to distinctive groups of raw silica materials, in order to provide specific arguments for provenance studies. However, the presence of specific accessory minerals (dolomite, illite pointed to distinctive genetic conditions in the case of one lithic material. Sets of measurements (mapping are required for statistically characterizing each artefact specimen. IR data were less significant, due to the rough surface texture of the specimens in contact with the ZnSe crystal of the ATR-FT-IR module. However, illite was identified based solely on its contribution to the IR spectrum. This pioneering study on chert artefacts from Romania based on optical spectroscopic methods shows that there are good premises for a systematic investigation of highly-valuable museum collections, in particular in terms of chert geology.

  12. Spectroscopic (vibrational, NMR and UV-vis.) and quantum chemical investigations on 4-hexyloxy-3-methoxybenzaldehyde.

    Science.gov (United States)

    Abbas, Ashgar; Gökce, Halil; Bahçeli, Semiha

    2016-01-05

    In this study, the 4-hexyloxy-3-methoxybenzaldehyde compound as one of the derivatives of vanillin which is a well known flavoring agent, C14H20O3, has been investigated by experimentally and extensively utilizing density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. In this context, the optimized geometry, vibrational frequencies, (1)H and (13)C NMR chemical shifts, UV-vis. (in gas phase and in methanol solvent) spectra, HOMO-LUMO analysis, molecular electrostatic potential (MEP), thermodynamic parameters and atomic charges of 4-hexyloxy-3-methoxybenzaldehyde have been calculated. In addition, theoretically predicted IR, Raman and UV-vis. (in gas phase and in methanol solvent) spectra of the mentioned molecule have been constructed. The results calculated were compared with the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Structural, vibrational and theoretical studies of anilinium trichloroacetate: new hydrogen bonded molecular crystal with nonlinear optical properties.

    Science.gov (United States)

    Tanak, H; Pawlus, K; Marchewka, M K; Pietraszko, A

    2014-01-24

    In this work, we report a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of the potential nonlinear optical (NLO) material anilinium trichloroacetate. The FT-IR and FT-Raman spectra of the compound have been recorded together between 4000-80 cm(-1) and 3600-80 cm(-1) regions, respectively. The compound crystallizes in the noncentrosymmetric space group of monoclinic system. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with 6-311++G(d,p) as higher basis set. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. DSC measurements on powder samples do not indicate clearly on the occurrence of phase transitions in the temperature 113-293 K. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule. The non-linear optical properties are also addressed theoretically. The predicted NLO properties of the title compound are much greater than ones of urea. In addition, DFT calculations of the title compound, molecular electrostatic potential, frontier orbitals and thermodynamic properties were also performed at 6-311++G(d,p) level of theory. For title crystal the SHG efficiency was estimated by Kurtz-Perry method to be d(eff)=0.70 d(eff) (KDP). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Lattice vibrational modes and their frequency shifts in semiconductor nanowires.

    Science.gov (United States)

    Yang, Li; Chou, M Y

    2011-07-13

    We have performed first-principles calculations to study the lattice vibrational modes and their Raman activities in silicon nanowires (SiNWs). Two types of characteristic vibrational modes are examined: high-frequency optical modes and low-frequency confined modes. Their frequencies have opposite size dependence with a red shift for the optical modes and a blue shift for the confined modes as the diameter of SiNWs decreases. In addition, our calculations show that these vibrational modes can be detected by Raman scattering measurements, providing an efficient way to estimate the size of SiNWs.

  15. A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems.

    Science.gov (United States)

    Petrenko, Taras; Rauhut, Guntram

    2017-03-28

    Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.

  16. Spectral analysis, vibrational assignments, NBO analysis, NMR, UV-Vis, hyperpolarizability analysis of 2-aminofluorene by density functional theory.

    Science.gov (United States)

    Jone Pradeepa, S; Sundaraganesan, N

    2014-05-05

    In this present investigation, the collective experimental and theoretical study on molecular structure, vibrational analysis and NBO analysis has been reported for 2-aminofluorene. FT-IR spectrum was recorded in the range 4000-400 cm(-1). FT-Raman spectrum was recorded in the range 4000-50 cm(-1). The molecular geometry, vibrational spectra, and natural bond orbital analysis (NBO) were calculated for 2-aminofluorene using Density Functional Theory (DFT) based on B3LYP/6-31G(d,p) model chemistry. (13)C and (1)H NMR chemical shifts of 2-aminofluorene were calculated using GIAO method. The computed vibrational and NMR spectra were compared with the experimental results. The total energy distribution (TED) was derived to deepen the understanding of different modes of vibrations contributed by respective wavenumber. The experimental UV-Vis spectra was recorded in the region of 400-200 nm and correlated with simulated spectra by suitably solvated B3LYP/6-31G(d,p) model. The HOMO-LUMO energies were measured with time dependent DFT approach. The nonlinearity of the title compound was confirmed by hyperpolarizabilty examination. Using theoretical calculation Molecular Electrostatic Potential (MEP) was investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems

    Science.gov (United States)

    Petrenko, Taras; Rauhut, Guntram

    2017-03-01

    Vibrational configuration interaction theory is a common method for calculating vibrational levels and associated IR and Raman spectra of small and medium-sized molecules. When combined with appropriate configuration selection procedures, the method allows the treatment of configuration spaces with up to 1010 configurations. In general, this approach pursues the construction of the eigenstates with significant contributions of physically relevant configurations. The corresponding eigenfunctions are evaluated in the subspace of selected configurations. However, it can easily reach the dimension which is not tractable for conventional eigenvalue solvers. Although Davidson and Lanczos methods are the methods of choice for calculating exterior eigenvalues, they usually fall into stagnation when applied to interior states. The latter are commonly treated by the Jacobi-Davidson method. This approach in conjunction with matrix factorization for solving the correction equation (CE) is prohibitive for larger problems, and it has limited efficiency if the solution of the CE is based on Krylov's subspace algorithms. We propose an iterative subspace method that targets the eigenvectors with significant contributions to a given reference vector and is based on the optimality condition for the residual norm corresponding to the error in the solution vector. The subspace extraction and expansion are modified according to these principles which allow very efficient calculation of interior vibrational states with a strong multireference character in different vibrational structure problems. The convergence behavior of the method and its performance in comparison with the aforementioned algorithms are investigated in a set of benchmark calculations.

  18. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  19. The resonance Raman excitation profile of lutein

    Science.gov (United States)

    Hoskins, L. C.

    The resonance Raman excitation profiles for the ν 1, ν 2 and ν 3 vibrations of lutein in acetone, toluene and carbon disulfide solvents have been measured. The results are interpreted in terms of a three-mode vibrational theory which includes both homogeneous and inhomogeneous broadening effects. Excellent agreement between calculated and observed excitation profiles and visible spectra was found in acetone and toluene, but the results in carbon disulfide indicate a possible breakdown in the three-mode model. The major broadening mechanism is homogeneous, with about a 25% contribution from inhomogeneous broadening.

  20. Raman Spectroscopic Study of Tungsten(VI) Oxosulfato Complexes in WO3–K2S2O7–K2SO4 Molten Mixtures: Stoichiometry, Vibrational Properties and Molecular Structure

    DEFF Research Database (Denmark)

    Paulson, Andreas L.; Kalampounias, Angelos G.; Berg, Rolf W.

    2011-01-01

    ; therefore, the reaction WO3 þ S2O7 2- f WO2(SO4)2 2- with six-fold W coordination is proposed as fully consistent with the observed Raman features. The effects of the incremental dissolution and presence of K2SO4 inWO3-K2S2O7 melts point to aWO3 3 K2S2O7 3 K2SO4 stoichiometry and a corresponding complex...

  1. Vibrational and electronic properties of 4‧-halomethyl-2-biphenylcarbonitrile compounds

    Science.gov (United States)

    Shankar Rao, Y. B.; Veeraiah, V.; Sundius, Tom; Chaitanya, Kadali

    2017-09-01

    In this paper we studied the structural, vibrational and electronic properties of the 4‧-bromomethyl-2-biphenylcarbonitrile (BMBP) 4‧-chloromethyl-2-biphenylcarbonitrile (CMBP) and 4‧-fluoromethyl-2-biphenylcarbonitrile (FMBP) compounds using experimental and theoretical methods. The FT-IR and FT-Raman spectra of BMBP in solid phase were recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The UV absorption spectrum of BMBP was recorded in dichloromethane and methanol solvents in the range 180-400 nm. The theoretical spectral properties of title compounds were simulated using density functional theory (DFT) and time dependent DFT methods. Scaling of the vibrational frequencies was carried out with the MOLVIB program using multiple scaling factors and assignment to each vibrational frequency was consigned on the basis of potential energy distribution (PED). The electronic spectrum of BMBP in two different solvents (methanol and dichloromethane), calculated at the CAM-B3LYP/6-31G(d,p) level compares well with the experimental data and validates the current method for predicting the absorption spectrum of CMBP and FMBP. Furthermore, the electronic, nonlinear optical and thermodynamics properties of the three compounds were discussed in detailed.

  2. Comparative studies on molecular structure, vibrational spectra and hyperpolarizabilies of NLO chromophore Ethyl 4-Dimethylaminobenzoate

    Science.gov (United States)

    Amalanathan, M.; Jasmine, G. Femina; Roy, S. Dawn Dharma

    2017-08-01

    The molecular structure, vibrational spectra and polarizabilities of Ethyl 4-Dimethylaminobenzoate (EDAB) was investigated by density functional theory employing Becke's three parameter hybrid exchange functional with Lee-Yang-Parr (B3LYP) co-relational functional involving 6-311++G(d,p) basis set and compared with some other levels. A detailed interpretation of the IR and Raman spectra of EDBA have been reported and analyzed. Complete vibrational assignments of the vibrational modes have been done on the basis of the potential energy distribution (TED) using VEDA software. The molecular electrostatic potential mapped onto total density surface has been obtained. A study on the electronic properties, such as absorption wavelength, and frontier molecular orbitals energy, was performed using DFT approach. The stability of the molecule arising from hyper conjugative interactions and accompanying charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The natural and Mulliken charge also calculated and compared with different level of calculation. The dipole moment, polarizability and first, second order hyperpolarizabilities of the title molecule were calculated and compared with the experimental values. The energy gap between frontier orbitals has been used along with electric moments and first order hyperpolarizability, to understand the non linear optical (NLO) activity of the molecule. The NLO activity of molecule was confirmed by SHG analysis.

  3. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  4. Quantum chemistry-based analysis of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl].

    Science.gov (United States)

    Paulat, Florian; Praneeth, V K K; Näther, Christian; Lehnert, Nicolai

    2006-04-03

    Vibrational properties of the five-coordinate porphyrin complexes [M(TPP)(Cl)] (M = Fe, Mn, Co) are analyzed in detail. For [Fe(TPP)(Cl)] (1), a complete vibrational data set is obtained, including nonresonance (NR) Raman, and resonance Raman (RR) spectra at multiple excitation wavelengths as well as IR spectra. These data are completely assigned using density functional (DFT) calculations and polarization measurements. Compared to earlier works, a number of bands are reassigned in this one. These include the important, structure-sensitive band at 390 cm(-1), which is reassigned here to the totally symmetric nu(breathing)(Fe-N) vibration for complex 1. This is in agreement with the assignments for [Ni(TPP)]. In general, the assignments are on the basis of an idealized [M(TPP)]+ core with D(4h) symmetry. In this Work, small deviations from D(4h) are observed in the vibrational spectra and analyzed in detail. On the basis of the assignments of the vibrational spectra of 1, [Mn(TPP)(Cl)] (2), and diamagnetic [Co(TPP)(Cl)] (3), eight metal-sensitive bands are identified. Two of them correspond to the nu(M-N) stretching modes with B(1g) and Eu symmetries and are assigned here for the first time. The shifts of the metal sensitive modes are interpreted on the basis of differences in the porphyrin C-C, C-N, and M-N distances. Besides the porphyrin core vibrations, the M-Cl stretching modes also show strong metal sensitivity. The strength of the M-Cl bond in 1-3 is further investigated. From normal coordinate analysis (NCA), force constants of 1.796 (Fe), 0.932 (Mn), and 1.717 (Co) mdyn/A are obtained for 1-3, respectively. The weakness of the Mn-Cl bond is attributed to the fact that it only corresponds to half a sigma bond. Finally, RR spectroscopy is used to gain detailed insight into the nature of the electronically excited states. This relates to the mechanism of resonance enhancement and the actual nature of the enhanced vibrations. It is of importance that anomalous

  5. Normal-mode characteristics of chlorophyll models. Vibrational analysis of metallooctaethylchlorins and their selectively deuterated analogues

    Energy Technology Data Exchange (ETDEWEB)

    Fonda, H.N.; Oertling, W.A.; Salehi, A.; Chang, C.K.; Babcock, G.T. (Michigan State Univ., East Lansing (United States))

    1990-12-19

    The resonance Raman (RR) and infrared (IR) spectra of the Zn, Cu, and Ni complexes of trans-octaethylchlorin (OEC) reveal significant differences in the vibrational-mode properties of metallochlorins and metalloporphyrins. Modes with a contribution from the C{sub a}C{sub m} stretching coordinate are distinguished by their sensitivity to metal substitution and to selective d{sub 2} and d{sub 4} methine deuteration. Comparison of the resonance Raman spectrum of CuOEC with that of CuECI (ECI = etiochlorin I) identifies those modes with a contribution from C{sub b}C{sub b} and C{sub b}C{sub s} stretching and C{sub b}C{sub s} bending coordinates. The results obtained show that there is substantial mixing of C{sub a}C{sub m} and C{sub b}C{sub b} stretching character in the high-frequency modes of MOEC. The suggestion that the symmetry reduction that occurs in metallochlorins relative to metalloporphyrins produces vibrational-mode localization to specific hemispheres or quadrants of the macrocycle has been tested and confirmed by specific d{sub 2} deuteration at the methine carbons. Resonance Raman spectra of CuOEP-d{sub 2} (OEP = octaethylporphyrin) and CuOEP-d{sub 4} establish that, for a delocalized mode, methine d{sub 2} deuteration can be expected to produce half the d{sub 4} shift. For CuOEC, selective deuteration at the {alpha}{beta} and {gamma},{delta} methine positions causes different patterns of frequency shifts that indicate the extent of mode localization.

  6. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical...

  7. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  8. Surface-enhanced Raman spectroscopy of urine by an ingenious near-infrared Raman spectrometer

    Science.gov (United States)

    Feng, Shangyuan; Chen, Weiwei; Li, Yongzeng; Chen, Guannan; Huang, Zufang; Liao, Xiaohua; Xie, Zhiming; Chen, Rong

    2007-11-01

    This paper demonstrates the potential of an elaborately devised near-infrared Raman system in analysis of urine. The broad band in the long-wavelength region of the electronic absorption spectra of the sol with added adsorbent at certain concentrations has been explained in terms of the aggregation of the colloidal silver particles. We have reported the surface-enhanced Raman (SERS) spectra of urine, and studied the silver solution enhanced effects on the urine Raman scattering. The Raman bands of human's urine was assigned to certain molecule vibrations. We have found that different donators have dissimilar SERS of urine in different physiological condition. Comparatively few studies have explored the ability of Raman spectroscopy for the analysis of urine acid. In the present report, we investigated the ability of surface enhanced Raman spectroscopy to measure uric acid in the human urine. The results suggested that the present Raman system holds considerable promise for practical use. Practical applications such as the quantitative medical examination of urine metabolites may also be feasible in the near future.

  9. QED description of Raman scattering from molecules in plasmonic cavities

    CERN Document Server

    Schmidt, Mikolaj K; Gonzalez-Tudela, Alejandro; Giedke, Geza; Aizpurua, Javier

    2015-01-01

    Plasmon-enhanced Raman scattering can push single-molecule vibrational spectroscopy beyond a regime addressable by classical electrodynamics. We employ a quantum electrodynamics (QED) description of the coherent interaction of plasmons and molecular vibrations that reveal the emergence of nonlinearities in the inelastic response of the system. For realistic situations, we predict the onset of \\textit{phonon-stimulated Raman scattering} and an counter-intuitive dependence of the anti-Stokes emission on the frequency of excitation. We further show that this novel QED framework opens a venue to analyze the correlations of photons emitted at a plasmonic cavity

  10. The interplay between the paracetamol polymorphism and its molecular structures dissolved in supercritical CO2 in contact with the solid phase: In situ vibration spectroscopy and molecular dynamics simulation analysis.

    Science.gov (United States)

    Oparin, Roman D; Moreau, Myriam; De Walle, Isabelle; Paolantoni, Marco; Idrissi, Abdenacer; Kiselev, Michael G

    2015-09-18

    The aim of this paper is to characterize the distribution of paracetamol conformers which are dissolved in a supercritical CO2 phase being in equilibrium with their corresponding crystalline form. The quantum calculations and molecular dynamics simulations were used in order to characterize the structure and analyze the vibration spectra of the paracetamol conformers in vacuum and in a mixture with CO2 at various thermodynamic state parameters (p,T). The metadynamics approach was applied to efficiently sample the various conformers of paracetamol. Furthermore, using in situ IR spectroscopy, the conformers that are dissolved in supercritical CO2 were identified and the evolution of the probability of their presence as a functions of thermodynamic condition was quantified while the change in the crystalline form of paracetamol have been monitored by DSC, micro IR and Raman techniques. The DSC analysis as well as micro IR and Raman spectroscopic studies of the crystalline paracetamol show that the subsequent heating up above the melting temperature of the polymorph I of paracetamol and the cooling down to room temperature in the presence of supercritical CO2 induces the formation of polymorph II. The in situ IR investigation shows that two conformers (Conf. 1 and Conf. 2) are present in the phase of CO2 while conformer 3 (Conf. 3) has a high probability to be present after re-crystallization. Copyright © 2015. Published by Elsevier B.V.

  11. Micro-Raman and Micro-FTIR Spectroscopy of Experimentally Shocked Bytownite

    Science.gov (United States)

    Jaret, S.; Sims, M.; Johnson, J. R.; Glotch, T. D.

    2016-12-01

    During impact events, feldspars undergo progressive shock metamorphic transformations that change their internal structure. These changes are detectable optically in thin section and with X-ray analyses and vibrational spectroscopy. As part of an ongoing study of the compositional effects on these shock transformations in plagioclase, we report new micro-Raman and micro-FTIR results on experimentally shocked bytownite and compare these to similar studies of andesine and albite. With increasing shock pressure, micro-Raman patterns show a decrease in overall intensity of peaks. At shock pressures below 29 GPa, this manifests as an increase in the 486:507 Dcm-1 peak ratio. Above 29 GPa, bytownite shows micro-Raman patterns indicative of an amorphous material: two broad peaks centered near 500 Dcm-1 and 950 Dcm-1. For comparison, andesine and albite exhibit a broad peak at 490 Dcm-1 and a weak peak (if present) at 950 Dcm-1. Micro-FTIR results also show a pattern of decreasing crystallinity with increased pressure, indicated by loss of the peak at 1050 cm-1 above 29 GPa. Above 38.2 GPa, only one peak near 960 cm-1 is present. In some high pressure samples the peak position varies slightly, which could be due to a crystal orientation effect or minor compositional variations across a given sample. This may suggest that the highly shocked bytownite has retained some small scale remnant feldspar topology despite being amorphous at large scales. Bytownite shares similar patterns to other plagioclases in spectroscopic response to shock. Raman spectra show loss of cation modes first, and an overall decrease in Raman intensity. IR spectra of highly shocked samples show an overall amorphous spectral shape with possible remnant crystal orientation effects. Amorphization pressures for bytownite are slightly lower than andesine and significantly lower than albite. This is consistent with a Ca dependency on shock transformations, as suggested previously. Future work will include

  12. Raman spectroscopy of blood in-vitro

    Science.gov (United States)

    Villanueva-Luna, A. E.; Castro-Ramos, J.; Vazquez-Montiel, S.; Flores-Gil, A.; Ortiz-Lima, C. M.; Delgado-Atencio, J. A.

    2012-03-01

    We present Raman spectra from a sample of 8 volunteers that have different type of blood. The experimental data were carried out using a 785 nm excitation laser and an ocean optics spectrometer of 6 cm-1 resolution, with a used spectral region from 1000 to 1800 cm-1. We find Raman features at 1000 and 1542 cm-1 regarded with hemoglobin and its derivatives. Also we find Raman features at 1248 and 1342 cm-1 that are now regarded with pure fibrin. In this work, we use Principal Component analysis (PCA) to determine all variations of our samples, which allows us to define a classification of the influence of the blood type. Finally, we found vibrational lines of cholesterol, glucose and triglycerides that are reported in literature.

  13. vibrational spectroscopic investigation of some hofmann

    African Journals Online (AJOL)

    Preferred Customer

    4-phenylpyridine, G = 1,4-dioxane and M = Ni, Co and Cd) have been prepared in powder form and their FT-IR and Raman spectra have ... is also known as coordination polymer which is the term given in inorganic chemistry to a metal coordination ... linear optics devices and as magnetic materials [1]. The Hofmann type ...

  14. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  15. Transcutaneous Raman Spectroscopy of Bone

    Science.gov (United States)

    Maher, Jason R.

    Clinical diagnoses of bone health and fracture risk typically rely upon measurements of bone density or structure, but the strength of a bone is also dependent upon its chemical composition. One technology that has been used extensively in ex vivo, exposed-bone studies to measure the chemical composition of bone is Raman spectroscopy. This spectroscopic technique provides chemical information about a sample by probing its molecular vibrations. In the case of bone tissue, Raman spectra provide chemical information about both the inorganic mineral and organic matrix components, which each contribute to bone strength. To explore the relationship between bone strength and chemical composition, our laboratory has contributed to ex vivo, exposed-bone animal studies of rheumatoid arthritis, glucocorticoid-induced osteoporosis, and prolonged lead exposure. All of these studies suggest that Raman-based predictions of biomechanical strength may be more accurate than those produced by the clinically-used parameter of bone mineral density. The utility of Raman spectroscopy in ex vivo, exposed-bone studies has inspired attempts to perform bone spectroscopy transcutaneously. Although the results are promising, further advancements are necessary to make non-invasive, in vivo measurements of bone that are of sufficient quality to generate accurate predictions of fracture risk. In order to separate the signals from bone and soft tissue that contribute to a transcutaneous measurement, we developed an overconstrained extraction algorithm that is based upon fitting with spectral libraries derived from separately-acquired measurements of the underlying tissue components. This approach allows for accurate spectral unmixing despite the fact that similar chemical components (e.g., type I collagen) are present in both soft tissue and bone and was applied to experimental data in order to transcutaneously detect, to our knowledge for the first time, age- and disease-related spectral

  16. Shape sensitive Raman scattering from Nano-particles

    CERN Document Server

    Apell, S P; Antosiewicz, Tomasz; Aizpurua, J

    2016-01-01

    We investigate the interplay of shape changes and localized surface plasmons in small metal particles with the potential of a large enhancement of the Raman signal from the particles own vibrations. The framework is a geometrical one where we study the change in geometric factors during the vibrational movement. The resulting cross-section is found to be of a detectable order of magnitude however much smaller than the elastic cross-section.

  17. A low frequency assignment for infrared and Raman spectra of (+)-bornyl acetate using related compounds and deuterated derivatives

    Science.gov (United States)

    Kim, S. B.; Hammaker, R. M.; Fateley, W. G.

    Twenty-one fundamentals of (+)-bornyl acetate and nine deuterium substituted modifications (2- d1; 3,3- d2; 2,3,3- d3; acetate- d3; 2- d1 acetate- d3; 3,3- d2 acetate- d3; 2,3,3- d3 acetate- d3; 10- d1; 10,10,10- d3) as well as (-)-isobornyl-1-10,10.10- d3 acetate have been assigned between 200 and 850cm -1. These results supplement the previous assignment of nineteen fundamentals of (-)-isobornyl acetate and seven deuterium substituted modifications (2- d1,; 3,3- d2; 2,3,3- d3; acetate- d3; 2- d1 acetate- d3; 3,3- d2 acetate- d3; 2,3,3- d3 acetate- d3) between 200 and 900cm -1 [8]. These fundamentals are: skeletal vibrations of the quaternary carbons, ring breathing, bending, and twisting vibrations, and vibrations of the acetate group. Key model compounds used in this analysis are norbornane, neopentane, methyl acetate, cyclopentanol, and the (-)-isobornyl acetate system. A series of related compounds (norbornane, bornane, endo-norbomyl acetate, 1-methyl-endo-norbornyl acetate, apobornyl acetate, and (+)-bornyl acetate) is used to identify frequencies associated with the quaternary carbon and the acetate group. Raman spectra are more useful for the quaternary carbon frequencies and i.r. spectra are more useful for acetate group frequencies. Four exo stereoisomer alcohols (1-methyl-exo-norborneol, 1-methy d3-exonorborneoI, apoisoborneol, (-)-isoborneol) and three endo stereoisomer alcohols (1-methyl-endo-norborneol, apoborneol, (+)-borneol) serve as model compounds for a modification of the earlier assignment [8] for the skeletal stretching of the quaternary carbons in the (-)-isobornyl acetate system and extension of this modified assignment to the (+)-bornyl acetate system. Quaternary carbon symmetric skeletal stretching is believed to be responsible for prominent Raman bands between 580 and 680cm -1 in the 36 bicyclic ring compounds investigated to date. Fermi resonance is proposed as the explanation for a number of unexpected intensity patterns observed in the

  18. Probing molecular symmetry with polarization-sensitive stimulated Raman spectroscopy

    CERN Document Server

    Kerdoncuff, Hugo; Westergaard, Philip G; Petersen, Jan C; Lassen, Mikael

    2016-01-01

    We demonstrate polarization-sensitive stimulated Raman spectroscopy (PS-SRS) enabling fast, high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations. The method provides information about the symmetry of the Raman-active vibrational modes. Our compact PS-SRS setup is based on a tunable continuous wave (CW) probe laser combined with a semi-monolithic nanosecond pulsed pump laser. The CW operation of the laser offers narrow linewidth and low noise, and does not require temporal synchronization with the pump. We demonstrate the technique by measuring the depolarization ratios of carbon-hydrogen (CH) stretches in two different polymer samples in the spectral range of 2825-3025 cm-1. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm-1/s) with a resolution of 0.65 cm-1. A normalization method is introduced for the direct comparison of the simultaneously acquired polarization Raman spectra.

  19. Raman spectroscopic analysis of real samples: Brazilian bauxite mineralogy.

    Science.gov (United States)

    Faulstich, Fabiano Richard Leite; Castro, Harlem V; de Oliveira, Luiz Fernando Cappa; Neumann, Reiner

    2011-10-01

    In this investigation, Raman spectroscopy with 1064 and 632.8 nm excitation was used to investigate real mineral samples of bauxite ore from mines of Northern Brazil, together with Raman mapping and X-rays diffraction. The obtained results show clearly that the use of microRaman spectroscopy is a powerful tool for the identification of all the minerals usually found in bauxites: gibbsite, kaolinite, goethite, hematite, anatase and quartz. Bulk samples can also be analysed, and FT-Raman is more adequate due to better signal-to-noise ratio and representativity, although not efficient for kaolinite. The identification of fingerprinting vibrations for all the minerals allows the acquisition of Raman-based chemical maps, potentially powerful tools for process mineralogy applied to bauxite ores. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Raman microspectroscopy detects epigenetic modifications in living Jurkat leukemic cells.

    Science.gov (United States)

    Poplineau, Mathilde; Trussardi-Régnier, Aurélie; Happillon, Teddy; Dufer, Jean; Manfait, Michel; Bernard, Philippe; Piot, Olivier; Antonicelli, Frank

    2011-12-01

    Classical biochemical and molecular methods for discerning cells with epigenetic modifications are often biologically perturbing or even destructive. We wondered whether the noninvasive laser tweezer Raman spectroscopy technique allowed the discrimination of single living human cells undergoing epigenetic modifications. Human Jurkat leukemic cells were treated with inhibitors of histone deacetylases (trichostatin A and MS-275). Epigenetic changes were monitored through histone electrophoresis, nuclear image cytometry and laser tweezer Raman spectroscopy. Treatment of Jurkat cells with histone deacetylase inhibitors increased histone acetylation and induced chromatin organization changes. Characteristic vibrations, issued from laser tweezer Raman spectroscopy analyses, mostly assigned to DNA and proteins allowed discerning histone deacetylase inhibitor-treated cells from control with high confidence. Statistical processing of laser tweezer Raman spectroscopy data led to the definition of specific biomolecular fingerprints of each cell group. This original study shows that laser tweezer Raman spectroscopy is a label-free rapid tool to identify living cells that underwent epigenetic changes.

  1. Spectroscopic (infrared, Raman, UV and NMR) analysis, Gaussian hybrid computational investigation (MEP maps/HOMO and LUMO) on cyclohexanone oxime

    Science.gov (United States)

    Ramalingam, S.; Karabacak, M.; Periandy, S.; Puviarasan, N.; Tanuja, D.

    2012-10-01

    In the present analysis, FT-IR/FT-Raman spectra of the cyclohexanone oxime (CHO, C6H11NO) are recorded. The observed vibrational frequencies are assigned and the computational calculations are carried out by HF and DFT (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set and the corresponding results are tabulated. In order to yield good coherence with observed values, the calculated frequencies are scaled by appropriate scale factors. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The alternation of structure of cyclohexanone due to the substitution of NOH is investigated. The vibrational sequence pattern of the molecule related to the substitutions is analyzed. Comparison of the observed fundamental vibrational frequencies of CHO and calculated results by density functional (B3LYP and B3PW91) and HF methods indicates that B3LYP is superior to the scaled HF and B3PW91 approach for molecular vibrational problems. Moreover, 13C NMR and 1H NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with HF/B3LYP/B3PW91 methods and the same basis set. A study on the electronic properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by HF and DFT methods. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) was performed. NLO properties and Mulliken charges of the CHO was also calculated and interpreted. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures are calculated in gas phase.

  2. Vibrational Energy Relaxation in Water-Acetonitrile Mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Kobayashi, Takayoshi; Kobayashi, Tetsuro; Nelson, Keith A.; Okada, Tadashi; Silvestri, Sandro De

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  3. Vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, D; Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Kobayashi, T; Okada, T; Kobayashi, T; Nelson, KA; DeSilvestri, S

    2005-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  4. Vibrational energy relaxation in water-acetonitrile mixtures

    NARCIS (Netherlands)

    Cringus, Dan; Yeremenko, Sergey; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    2004-01-01

    IR pump-probe spectroscopy is used to study the effect of hydrogen bonding on the vibrational energy relaxation pathways. Hydrogen bonding accelerates the population relaxation from 12ps in diluted acetonitrile solution to 700fs in bulk water.

  5. Vibrational spectroscopic studies of N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime and N1-ethyl-indirubin-3‧-monooxime

    Science.gov (United States)

    Li, Ying-Sing; Yao, Qi-Zheng; Wang, Zhao-Hui; Cheng, Jingcai; Truong, Tuyen Thi T.

    2015-05-01

    We have prepared N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime due to its potential for being a pharmaceutical. Infrared and Raman spectra have been recorded and vibrational assignments have been suggested based mainly on our previous vibrational investigation of N1-isopropyl-5‧-chloro-7-azaindirubin-3‧-oxime and on group characteristic frequencies. Temperature variation study has revealed the presence of conformers due to the internal rotation of ethyl group. IR spectra collected for N1-ethyl-7-azaindirubin-3‧-oxime have shown rather similar spectral features with that of N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime. IR spectra of these compounds have revealed the association through hydrogen bonding in the solid state. IR spectra recorded for these samples after annealing at high temperatures indicated the thermal conversion temperature to be lowered than 270 °C. Results from thermal analyses have determined the beginning decomposition temperatures to be 250 °C and the decomposition enthalpies to be 94 kJ/mol for both N1-ethyl-5‧-bromo-7-azaindirubin-3‧-oxime and N1-ethyl-7-azaindirubin-3‧-oxime.

  6. Karthik Raman Nagasuma Chandra

    Indian Academy of Sciences (India)

    Author Affiliations. Karthik Raman1 Nagasuma Chandra2. Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Switzerland; Bioinformatics Centre, Raman building, Indian Institute of Science, Bangalore 560 012, India ...

  7. Study of polymorphism in imatinib mesylate: A quantum chemical approach using electronic and vibrational spectra

    Science.gov (United States)

    Srivastava, Anubha; Joshi, B. D.; Tandon, Poonam; Ayala, A. P.; Bansal, A. K.; Grillo, Damián

    2013-02-01

    Imatinib mesylate, 4-(4-methyl-piperazin-1-ylmethyl)-N-u[4-methyl-3-(4-pyridin-3-yl)pyrimidine-2-ylamino)phenyl]benzamide methanesulfonate is a therapeutic drug that is approved for the treatment of chronic myelogeneous leukemia (CML) and gastrointestinal stromal tumors (GIST). It is known that imatinib mesylate exists in two polymorphic forms α and β. However, β-form is more stable than the α-form. In this work, we present a detailed vibrational spectroscopic investigation of β-form by using FT-IR and FT-Raman spectra. These data are supported by quantum mechanical calculations using DFT employing 6-311G(d,p) basis set, which allow us to characterize completely the vibrational spectra of this compound. The FT-IR spectrum of α-form has also been discussed. The importance of hydrogen-bond formation in the molecular packing arrangements of both forms has been examined with the vibrational shifts observed due to polymorphic changes. The red shift of the NH stretching bands in the infrared spectrum from the computed wavenumber indicates the weakening of the NH bond. The UV-vis spectroscopic studies along with the HOMO-LUMO analysis of both polymorphs (α and β) were performed and their chemical activity has been discussed. The TD-DFT method was used to calculate the electronic absorption spectra in the gas phase as well as in the solvent environment using IEF-PCM model and 6-31G basis set. Finally, the results obtained complements to the experimental findings.

  8. Mineralogical Composition of the Mexican Ordinary Chondrite Type Meteorite: A Raman, Infrared and XRD Study

    Science.gov (United States)

    Ostrooumov, M.

    2016-08-01

    The Raman microprobe (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of seven mexican meteorites: Aldama, Cosina, El Pozo, Escalon, Nuevo Mercurio,Pacula, Zapotitlan Salinas.

  9. Imaging with Raman spectroscopy.

    Science.gov (United States)

    Zhang, Yin; Hong, Hao; Cai, Weibo

    2010-09-01

    Raman spectroscopy, based on the inelastic scattering of a photon, has been widely used as an analytical tool in many research fields. Recently, Raman spectroscopy has also been explored for biomedical applications (e.g. cancer diagnosis) because it can provide detailed information on the chemical composition of cells and tissues. For imaging applications, several variations of Raman spectroscopy have been developed to enhance its sensitivity. This review article will provide a brief summary of Raman spectroscopy-based imaging, which includes the use of coherent anti-Stokes Raman spectroscopy (CARS, primarily used for imaging the C-H bond in lipids), surface-enhanced Raman spectroscopy (SERS, for which a variety of nanoparticles can be used as contrast agents), and single-walled carbon nanotubes (SWNTs, with its intrinsic Raman signal). The superb multiplexing capability of SERS-based Raman imaging can be extremely powerful in future research where different agents can be attached to different Raman tags to enable the interrogation of multiple biological events simultaneously in living subjects. The primary limitations of Raman imaging in humans are those also faced by other optical techniques, in particular limited tissue penetration. Over the last several years, Raman spectroscopy imaging has advanced significantly and many critical proof-of-principle experiments have been successfully carried out. It is expected that imaging with Raman Spectroscopy will continue to be a dynamic research field over the next decade.

  10. Application of Raman Spectroscopy and Infrared Spectroscopy in the Identification of Breast Cancer.

    Science.gov (United States)

    Depciuch, Joanna; Kaznowska, Ewa; Zawlik, Izabela; Wojnarowska, Renata; Cholewa, Marian; Heraud, Philip; Cebulski, Józef

    2016-02-01

    Raman spectroscopy and infrared (IR) spectroscopy are both techniques that allow for the investigation of vibrating chemical particles. These techniques provide information not only about chemical particles through the identification of functional groups and spectral analysis of so-called "fingerprints", these methods allow for the qualitative and quantitative analyses of chemical substances in the sample. Both of these spectral techniques are frequently being used in biology and medicine in diagnosing illnesses and monitoring methods of therapy. The type of breast cancer found in woman is often a malignant tumor, causing 1.38 million new cases of breast cancer and 458 000 deaths in the world in 2013. The most important risk factors for breast cancer development are: sex, age, family history, specific benign breast conditions in the breast, ionizing radiation, and lifestyle. The main purpose of breast cancer screening tests is to establish early diagnostics and to apply proper treatment. Diagnoses of breast cancer are based on: (1) physical techniques (e.g., ultrasonography, mammography, elastography, magnetic resonance, positron emission tomography [PET]); (2) histopathological techniques; (3) biological techniques; and (4) optical techniques (e.g., photo acoustic imaging, fluorescence tomography). However, none of these techniques provides unique or especially revealing answers. The aim of our study is comparative spectroscopic measurements on patients with the following: normal non-cancerous breast tissue; breast cancer tissues before chemotherapy; breast cancer tissues after chemotherapy; and normal breast tissues received around the cancerous breast region. Spectra collected from breast cancer patients shows changes in amounts of carotenoids and fats. We also observed changes in carbohydrate and protein levels (e.g., lack of amino acids, changes in the concentration of amino acids, structural changes) in comparison with normal breast tissues. This fact

  11. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  12. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane

    DEFF Research Database (Denmark)

    Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.

    2014-01-01

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational as...

  13. Prof. C. V. Raman | History | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Sc. Work in Vibrations and Musical Instruments, Geometrical and Wave Optics, Light and X-ray Scattering, Physics of Crystals, Colour. Best known for the Phenomenon of inelastic light scattering named the 'Raman effect' after him. Large body of experimental work was concerned with waves - wave motions of vibrating ...

  14. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  15. Vibrational properties of a regular helical Se chain

    Science.gov (United States)

    Nakamura, Kazuma; Ikawa, Atsushi

    2002-07-01

    In this paper we calculated the phonon dispersion curves and the infrared (IR)/Raman spectra of an infinite regular helical selenium (Se) chain. The ingredients needed for their calculations, i.e., the force constant matrix, dynamical-charge tensor (DCT), and polarizability-derivative tensor (PDT), were obtained from ab initio molecular orbital calculations with the second-order Møller-Plesset perturbation theory for a Se chain with finite length. Assignments for the IR and Raman spectra were performed in terms of a rotational angle τ of the helix; i.e., the phonon modes with wave number Q~=0 or τ are IR active, while the phonon modes with Q~=0, τ, or 2τ are Raman active. Therefore, IR and Raman spectroscopy are useful, not only for identifying the static structure but also for deriving the phonon dispersions of the Se chain. From analyses based on a valence force field model, we found that the ab initio phonon dispersion curve of the stretching band strongly depends on the off-diagonal couplings in the force constant matrix and on the chain geometry, especially the bond angle. The ab initio DCT and PDT were also analyzed with the so-called bond-current and bond-polarizability models, respectively. We found that these simple models reproduce the ab initio IR/Raman intensities quite accurately.

  16. Analysis of solid-state transformations of pharmaceutical compounds using vibrational spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Strachan, Clare J; Gordon, Keith C

    2009-01-01

    pharmaceutical ingredient can significantly influence its processing behaviour, including powder flow and compressibility, and biopharmaceutical properties such as solubility, dissolution rate and bioavailability. KEY FINDINGS: Vibrational spectroscopic techniques such as infrared, near-infrared, Raman and, most...

  17. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  18. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of mannitol.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Swaminathan, S; Ramkumaar, G R

    2015-02-25

    A collective experimental and theoretical study was conducted on the molecular structure and vibrational spectra of mannitol. The FT-IR and FT-Raman spectra of mannitol were recorded in the solid phase. The molecular geometry, vibrational frequencies, thermodynamic functions and atomic charges of mannitol in the ground state have been calculated by using the ab initio HF (Hartree-Fock) and density functional methods (B3LYP) invoking cc-pVDZ basis set. The complete vibrational assignments were performed on the basis of Total Energy Distribution (TED) of the vibrational modes. The UV absorption spectra of the title compound dissolved in water. Natural bond orbital analysis has been carried out to explain the charge transfer or delocalization of charge due to the intra-molecular interactions. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO methods. The first order hyperpolarizability (β0) of this novel molecular system and related properties (β, α0 and Δα) of mannitol are calculated using B3LYP/cc-pVDZ and HF/cc-pVDZ methods on the finite-field approach. By using TD-DFT calculation, electronic absorption spectra of the title compound have been predicted and a good agreement with experimental one is established. In addition, the molecular electrostatic potential (MEP) have been investigated using theoretical calculations, the calculated HOMO and LUMO energies shows that the charge transfer within the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Study of conformational stability, structural, electronic and charge transfer properties of cladrin using vibrational spectroscopy and DFT calculations.

    Science.gov (United States)

    Singh, Swapnil; Singh, Harshita; Srivastava, Anubha; Tandon, Poonam; Sinha, Kirti; Bharti, Purnima; Kumar, Sudhir; Kumar, Padam; Maurya, Rakesh

    2014-11-11

    In the present work, a detailed conformational study of cladrin (3-(3,4-dimethoxy phenyl)-7-hydroxychromen-4-one) has been done by using spectroscopic techniques (FT-IR/FT-Raman/UV-Vis/NMR) and quantum chemical calculations. The optimized geometry, wavenumber and intensity of the vibrational bands of the cladrin in ground state were calculated by density functional theory (DFT) employing 6-311++G(d,p) basis sets. The study has been focused on the two most stable conformers that are selected after the full geometry optimization of the molecule. A detailed assignment of the FT-IR and FT-Raman spectra has been done for both the conformers along with potential energy distribution for each vibrational mode. The observed and scaled wavenumber of most of the bands has been found to be in good agreement. The UV-Vis spectrum has been recorded and compared with calculated spectrum. In addition, 1H and 13C nuclear magnetic resonance spectra have been also recorded and compared with the calculated data that shows the inter or intramolecular hydrogen bonding. The electronic properties such as HOMO-LUMO energies were calculated by using time-dependent density functional theory. Molecular electrostatic potential has been plotted to elucidate the reactive part of the molecule. Natural bond orbital analysis was performed to investigate the molecular stability. Non linear optical property of the molecule have been studied by calculating the electric dipole moment (μ) and the first hyperpolarizability (β) that results in the nonlinearity of the molecule. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol

    Science.gov (United States)

    Jha, Omkant; Yadav, T. K.; Yadav, R. A.

    2018-01-01

    Structural and vibrational studies for the most stable conformer of dopamine {4-(2-Aminoethyl) benzene-1, 2-diol} have been carried out at the DFT/B3LYP/6-311 ++G** level using the Gaussian 09 software. The IR and Raman spectra have been recorded and analyzed in light of the computed vibrational parameters using the DFT and the PEDs computed with the help of the GAR2PED software. Some of the fundamentals have considerably changed frequencies in going from benzene to dopamine. Except the rocking and wagging modes of the NH2 group the other four modes are pure group modes. The rocking and wagging modes of the NH2 group show mixing with the other modes. The two Osbnd H stretching vibrations are highly localized modes. The Kekule phenyl ring stretching mode is found to remain almost unchanged. The HOMO-LUMO study suggests the existence of charge transfer within the molecule and the energy gap supports the pharmacological active property of the dopamine molecule. The NBO analysis has been carried out to understand the proper and improper hydrogen bonding.

  1. Structural, quantum chemical, vibrational and thermal studies of a hydrogen bonded zwitterionic co-crystal (nicotinic acid: pyrogallol)

    Science.gov (United States)

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Athimoolam, S.; Sridhar, B.

    2017-02-01

    In the present work, a new co-crystal of nicotinic acid with pyrogallol (NICPY) has been grown in the zwitterionic form and the corresponding structural, vibrational, thermal, solubility and anti-cancer characteristics have been reported. The single crystal X-ray diffraction analysis confirms that the structural molecular packing of the crystal stabilized through N-H⋯O and O-H⋯O hydrogen bond. The stabilization energy of the hydrogen bond motifs were calculated in the solid state. Vibrational spectral studies such as Fourier transform-infrared (FT-IR) and FT-Raman were adopted to understand the zwitterionic co-crystalline nature of the compound, which has been compared with theoretically calculated vibrational frequencies. The thermal stability of the grown co-crystal was analyzed by TG/DTA study. The solubility of the NICPY co-crystal was investigated in water at different temperature and compared with that of the nicotinic acid, which is the parent compound of NICPY co-crystal. The grown crystals were treated with human cervical cancer cell line (HeLa) to analyze the cytotoxicity of NICPY crystals and compared with the parent compound, which shows that NICPY has moderate activity against human cervical cancer cell line.

  2. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy.

    Science.gov (United States)

    Oscar, Breland G; Chen, Cheng; Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2017-07-27

    Tracking molecular motions in real time remains a formidable challenge in science and engineering fields because the experimental methodology requires simultaneously high spatial and temporal resolutions. Building on early successes and future potential of femtosecond stimulated Raman spectroscopy (FSRS) as a structural dynamics technique, we present a comprehensive study of stimulated Raman line shapes of a photosensitive molecule in solution with tunable Raman pump and probe pulses. Following femtosecond 400 nm electronic excitation, the model photoacid pyranine exhibits dynamic and mode-dependent Raman line shapes when the Raman pump is tuned from the red side toward and across the excited-state absorption (ESA) band (e.g., from S1) with varying resonance conditions. On the anti-Stokes FSRS side, low-frequency modes below ∼1000 cm-1 exhibit a line shape change from gain to dispersive to loss, whereas the dispersive intermediate is much less notable for high-frequency modes. The characteristic mode frequency blue shift involving vibrationally hot states in S1 with time constants of ∼9.6 and 58.6 ps reveals the sensitivity of anti-Stokes FSRS to vibrational cooling and solvation. This work lays the foundation for expanding tunable FSRS technology on both the Stokes and anti-Stokes sides to investigate a variety of photoinduced processes in solution with sufficient resolution to expose functional motions and increased sensitivity to monitor vibrational cooling.

  3. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  4. Mid-IR Plasmonics, Cavity Coupled Excitations, and IR Spectra of Individual Airborne Particulate Matter

    Science.gov (United States)

    Luthra, Antriksh

    With the advances in plasmonics, new fields have evolved involving the mixing of light with various states like Surface Plasmons (SPs), Surface Phonons (SPh), molecular emitters or resonators, and wavelength scale cavities. This work concentrates on the interaction of infrared (IR) light with SPs, cavity modes, and molecular vibrations. In the first chapter, the field of Plasmonics is introduced from a classical and a quantum mechanical perspective and a comparison of both is presented. In Chapter 2, the interaction of cavity modes with vibrations is discussed. Briefly, when IR light is illuminated upon an etalon, its fringes disperse as function of angle. If there is a dielectric in a cavity having a vibrational transition in the fringe region, it leads to a strong interaction that gives rise to a Rabi splitting. Data was obtained from collaborators at the U.S. Naval Research Laboratory (NRL) and a derivation for the dispersion of etalon cavity modes was carried out to model the peak positions of the fringes. In Chapter 3, the excitation of Surface Plasmons Polaritons (SPPs) on metal bi-gratings is discussed. The resonance condition occurs when the momentum of the IR light parallel to the surface plus the grating vector match the momentum of the SPP. Experiments were performed in the GammaX space (ky=0) and the resonance peak positions were modeled with SPP momentum matching equations. In Chapter 4, the application of plasmonics in the mid-IR frequency range that overlaps with the frequencies of molecular vibrations is explored. The plasmonic mesh has interesting optical properties, it focuses more light in the holes and that leads to an enhancement of the IR spectra of a particle trapped in the mesh hole. In this work, plasmonic mesh is used to study airborne particles that are usually difficult to study using FTIR spectroscopy due to strong Mie scattering effect. Respiring dust particles of 4 microns size has significant negative health consequences. Different

  5. Polarized Raman spectroscopy unravels the biomolecular structural changes in cervical cancer.

    Science.gov (United States)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Dornadula, Koteeswaran; Ganesan, Singaravelu

    2016-01-05

    Polarized Raman spectroscopy has emerged as a promising technique giving a wealth of information about the orientation and symmetry of bond vibrations in addition to the general chemical information from the conventional Raman spectroscopy. In this regard, polarized Raman Spectroscopic technique was employed to study the changes in the orientation of biomolecules in normal and cancerous conditions. This technique was compared to the conventional Raman spectroscopic technique and was found to yield additional information about the orientation of tyrosine, collagen and DNA. The statistically analyzed depolarization ratios by Linear Discriminant Analysis yielded better accuracy than the statistical results of conventional Raman spectroscopy. Thus, this study reveals that polarized Raman spectroscopy has better diagnostic potential than the conventional Raman spectroscopic technique. Copyright © 2015. Published by Elsevier B.V.

  6. [Progress in Raman spectroscopic measurement of methane hydrate].

    Science.gov (United States)

    Xu, Feng; Zhu, Li-hua; Wu, Qiang; Xu, Long-jun

    2009-09-01

    Complex thermodynamics and kinetics problems are involved in the methane hydrate formation and decomposition, and these problems are crucial to understanding the mechanisms of hydrate formation and hydrate decomposition. However, it was difficult to accurately obtain such information due to the difficulty of measurement since methane hydrate is only stable under low temperature and high pressure condition, and until recent years, methane hydrate has been measured in situ using Raman spectroscopy. Raman spectroscopy, a non-destructive and non-invasive technique, is used to study vibrational modes of molecules. Studies of methane hydrate using Raman spectroscopy have been developed over the last decade. The Raman spectra of CH4 in vapor phase and in hydrate phase are presented in this paper. The progress in the research on methane hydrate formation thermodynamics, formation kinetics, decomposition kinetics and decomposition mechanism based on Raman spectroscopic measurements in the laboratory and deep sea are reviewed. Formation thermodynamic studies, including in situ observation of formation condition of methane hydrate, analysis of structure, and determination of hydrate cage occupancy and hydration numbers by using Raman spectroscopy, are emphasized. In the aspect of formation kinetics, research on variation in hydrate cage amount and methane concentration in water during the growth of hydrate using Raman spectroscopy is also introduced. For the methane hydrate decomposition, the investigation associated with decomposition mechanism, the mutative law of cage occupancy ratio and the formulation of decomposition rate in porous media are described. The important aspects for future hydrate research based on Raman spectroscopy are discussed.

  7. Raman spectroscopy for cancer detection and characterization in metastasis models

    Science.gov (United States)

    Koga, Shigehiro; Oshima, Yusuke; Sato, Mitsunori; Ishimaru, Kei; Yoshida, Motohira; Yamamoto, Yuji; Matsuno, Yusuke; Watanabe, Yuji

    2017-02-01

    Raman spectroscopy provides a wealth of diagnostic information to the surgeon with in situ cancer detection and label-free histopathology in clinical practice. Raman spectroscopy is a developing optical technique which can analyze biological tissues with light scattering. The difference in frequencies between the incident light and the scattering light are called Raman shifts, which correspond to the vibrational energy of the molecular bonds. Raman spectrum gives information about the molecular structure and composition in biological specimens. We had been previously reported that Raman spectroscopy could distinguish various histological types of human lung cancer cells from normal cells in vitro. However, to identify and detect cancer diagnostic biomarkers in vivo on Raman spectroscopy is still challenging, because malignancy can be characterized not only by the cancer cells but also by the environmental factors including immune cells, stroma cells, secretion vesicles and extracellular matrix. Here we investigate morphological and molecular dynamics in both cancer cells and their environment in xenograft models and spontaneous metastasis models using Raman spectroscopy combined with fluorescence microscopy and photoluminescence imaging. We are also constructing a custom-designed Raman spectral imaging system for both in vitro and in vivo assay of tumor tissues to reveal the metastasis process and to evaluate therapeutic effects of anti-cancer drugs and their drug delivery toward the clinical application of the technique.

  8. Normal coordinate analysis, molecular structure, vibrational and electronic spectral investigation of 7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethylpurine-2,6-dione by ab initio HF and DFT method

    Science.gov (United States)

    Prabakaran, A.; Muthu, S.

    2014-01-01

    In the present work, the characterization of 7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethylpurine-2,6-dione (7DDMP26D) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra of 7DDMP26D were recorded in solid phase. The UV-Vis absorption spectrum of the 7DDMP26D was recorded in the range of 200-400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of 7DDMP26D in the ground state have been calculated by HF and DFT methods using 6-31G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO). The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time-depended DFT (TD-DFT) approach. The other molecular properties like electrostatic potential (ESP), Fukui function and thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

  9. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  10. An experimental and theoretical study of the synthesis and vibrational spectroscopy of triacetone triperoxide (TATP)

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Pena, Alvaro J.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.; Mina, Nairmen; Garcia, Rafael; Chamberlain, R. Thomas; Lareau, Richard T.

    2004-09-01

    Non nitrogen containing, organic peroxides explosives Triacetone triperoxide and diacetone diperoxide have been prepared in the laboratory in order to study various aspects of their synthesis and their experimental and theoretical spectroscopic characteristics. By using different proportions of acetone/hydrogen peroxide (Ac/H2O2), sulfuric, hydrochloric and methanosulfuric acids as catalyzers, it was possible to obtain both compounds in a rapid and simple form. Raman, IR spectroscopy, and GC-MS were used in order to determine the precursors, intermediates and final analytes. Experiments and theoretical studies using density functional theory (DFT) have been used in the elucidation step of the mechanism of the synthesis of the so called "transparent" explosives. The B3LYP functional with the 6-31G** basis set was used to carry out the electronic structure calculation of the intermediates and internal rotations and vibrations of TATP. Raman spectra of solid TATP and FTIR spectra of gas TATP, were recorded in order to assign the experimental spectra. Although full agreement with experiment was not obtained, spectral features of the main TATP bands were assigned.

  11. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    National Research Council Canada - National Science Library

    Claudia Woess; Seraphin Hubert Unterberger; Clemens Roider; Monika Ritsch-Marte; Nadin Pemberger; Jan Cemper-Kiesslich; Petra Hatzer-Grubwieser; Walther Parson; Johannes Dominikus Pallua

    2017-01-01

    .... In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested...

  12. Resonant Femtosecond Stimulated Raman Band Intensity and S_{n} State Electronic Structure

    Science.gov (United States)

    Quincy, Timothy J.; Barclay, Matthew S.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) is a powerful technique capable of providing dynamic vibrational information on molecular excited states. When combined with transient electronic spectroscopies such as Pump-Probe or Pump-Repump-Probe, the excited state dynamics can be viewed with greater clarity. Due to the low intensities of Raman scattering typical for FSRS, experiments are commonly performed with the Raman pump in resonance with the excited state absorption to take advantage of resonance enhancement. However, the inherent information about the resonant state embedded in the Raman scattering is not a well explored component of the technique. 2,5-diphenylthiophene (DPT) in solution is used as a model system to study the wavelength dependence of the excited state Raman resonance enhancement. DPT has strong excited state absorption and stimulated emission bands within the tunable range of the Raman pump, allowing a wide variety of resonance conditions to be probed. Varying the Raman pump wavelength across the excited state absorption band produces different trends in both the absolute and relative magnitudes of the resulting FSRS vibrational modes. Comparing with calculations of the S_{1} vibrational modes, we determine the structure of the resonant S_{n} state potential energy surface based on the motions of the resonantly enhanced vibrations.

  13. Dark excited states of carotenoid in light harvesting complex probing with femtosecond stimulated Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-03-01

    Full Text Available Vibrational dynamics of dark excited states in carotenoids have been investigated using tunable Raman pump pulses. The S1 state has same vibrational dynamics in light-harvesting complex (LH1 and solution. The S* state in LH1 has similar vibrational modes with the triplet state of carotenoid. However, the so-called S* state in solution does not have the modes and is concluded to be different from the S* state in LH1.

  14. A density functional theory study of Raman modes of cadmium hexathiohypodiphosphate (CdPS3

    Directory of Open Access Journals (Sweden)

    Shakoor Abdul

    2015-06-01

    Full Text Available Raman scattering investigations based on density functional theory (DFT calculations were performed to explore the vibrational modes of a cadmium hexathiohypodiphosphate CdPS3 single crystal. The calculations were performed to obtain the Raman spectra for the cadmium hexathiohypodiphosphate atoms to study the size dependence. Several vibrational modes indicating stretching and bending features related to Cd, S and P atoms were observed. Modifications of the frequency and intensity of different Raman modes with an increase in the number of atoms in CdPS3 were discussed in detail. Hydrogen atoms were added in order to make the closed shell configuration and saturate the CdPS3 as per the requisite for calculating the Raman spectra. This produced some additional modes of vibration related to hydrogen atoms. Band gap and formation energy were also calculated. The results generated are found to be in close agreement with the experimental values.

  15. Real-time detection of doorway states in the intramolecular vibrational energy redistribution of the OH/OD stretch vibration of phenol

    OpenAIRE

    Yamada, Yuji; Mikami, Naohiko; Ebata, Takayuki

    2004-01-01

    A picosecond time-resolved IR-UV pump-probe spectroscopic study was carried out for the intramolecular vibrational energy redistribution of the OH/OD stretching vibration of isolated phenol and its isotopomers in supersonic beams. The time evolution due to IVR showed a significant isotope effect; the OH stretch vibration showed a single exponential decay and its lifetime is greatly lengthened upon the deuterium substitution of the CH group. The OD stretch vibration exhibited prominent quantum...

  16. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    Administrator

    to study their structure systematically. IR spectrum of each glass composition shows a number of absorption bands. These bands are strongly influenced by the increasing substitution of SrO for PbO. Various bands shift with composition. Absorption peaks occur due to the vibrational mode of the borate network in these ...

  17. Stochastic Liouville equations for femtosecond stimulated Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Bijay Kumar; Ando, Hideo; Dorfman, Konstantin E.; Mukamel, Shaul [Department of Chemistry, University of California, Irvine, California 92617 (United States)

    2015-01-14

    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period T, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique, known as femtosecond stimulated Raman spectroscopy (FSRS), can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE), originally developed for NMR lineshapes. The SLE provide a convenient simulation protocol that can describe complex dynamics caused by coupling to collective bath coordinates at much lower cost than a full dynamical simulation. The origin of the dispersive features that appear when there is no separation of timescales between vibrational variations and the dephasing time is clarified.

  18. Synthesis, structural, photoluminescence, vibrational and DFT investigation of the bis (4-aminopyridinium) tetrachloridocuprate(II) monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Kessentini, A., E-mail: kessentiniabir@gmail.com [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Belhouchet, M. [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Suñol, J.J. [Departamento De Fisica, Universita de Girona, Compus Montilivi, Girona 17071 (Spain); Abid, Y. [Laboratoire de Physique appliquée, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia); Mhiri, T. [Laboratoire Physico-Chimie de l’Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B. P. 1171, 3000 Sfax (Tunisia)

    2014-05-01

    The crystals of the family of alkylammonuim tetrachloridocuprate (II), (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O, have been grown, structurally characterized and their vibrational as well as optical properties been studied. A preliminary single crystal X-ray diffraction structural analysis has revealed that the title compound belongs to the monoclinic system with space group C2/c. Its unit cell dimensions are: a=8.454 (2) Å, b=14.279 (2) Å, c=14.363 (3) Å, β=95.813 (4)°, with Z=4 and its crystal structure was determined and refined down to R{sub 1}=0.029 and wR{sub 2}=0.080. The crystal lattice is composed of discrete [CuCl{sub 4}]{sup 2−} tetrahedra surrounded by 4-aminopyridinium cations and water molecules which are interconnected by means of hydrogen bonding contacts [N–H…Cl, O–H…Cl and N–H…O]. Furthermore, the room temperature IR and Raman spectra of the title compound were recorded and analyzed. The optimized molecular structure and the vibrational spectra were calculated by the density functional theory (DFT) method using the B3LYP function. The organic–inorganic hybrid crystal thin film can be easily prepared by spin-coating method from the ethanol solution of the (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O perovskite and it showed characteristic absorptions of CuCl-based layered perovskite centered at 288 and 400 nm, as well as the photoluminescence peak at around 443 nm. The unaided-eye-detectable blue luminescence emission comes from the excitonic transition in the CuCl{sub 4} anions. - Highlights: • A new hybrid compound (C{sub 5}H{sub 7}N{sub 2}){sub 2}CuCl{sub 4}H{sub 2}O was synthesized. • Vibrational properties were studied by IR and Raman spectroscopy and examined theoretically using the DFT/B3LYP/LanL2DZ level of theory. • The UV–vis spectrum shows two absorption peaks at 288 and at 400 nm. • This compound show a strong blue emission at 443 nm.

  19. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  20. Surface-Enhanced and Normal Stokes and Anti-Stokes Raman Spectroscopy of Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Kneipp, K.; Kneipp, H.; Corio, P.; Brown, S. D. M.; Shafer, K.; Motz, J.; Perelman, L. T.; Hanlon, E. B.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S.

    2000-04-01

    Surface enhancement factors of at least 1012 for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions.

  1. Evaluasi Integritas Sistem Struktur Jembatan Dr. Ir. Soekarno

    Directory of Open Access Journals (Sweden)

    Ady Wijayanto

    2017-08-01

    Full Text Available Dr. Ir. Soekarno Bridge is the long span bridge which to be the Manado city landmark. To calculate the Dr. Ir. Soekarno Bridge’s feasibility, integrated evaluation need to know the bridge physical condition reliability. The purpose of this analysis is for reviewing and evaluating the entire Dr. Ir. Soekarno Bridge integrity. Every structure has natural frequency characteristic, which describes the structure strength, stiffness and integrity. The vibration record data sources are dynamic loading test and accelerometer sensor records. Perception and comfortable level the bridge users evaluated by the vibration record data. Perception and comfortable level the bridge users evaluated by the vibration record data. The accelerometer sensors records on X, Y, and Z directions. The Fast Fourier Transform (FFT analysis carries out to exchange time domain to frequency domain. The frequency domain graphics filtered by ISO 2631-1 formula. Perception and comfortable level the Dr. Ir. Soekarno Bridge users are still in the comfort condition, so this bridge is proper to pass through the vehicles. Based on the Weibull Distribution, Dr. Ir. Soekarno Bridge has service life until 100 years as long as the plan service life.

  2. Simulation of High Resolution Vibrational and Electronic Spectra with a Multifrequency Virtual Spectrometer

    Science.gov (United States)

    Biczysko, Malgorzata; Bloino, Julien; Barone, Vincenzo

    2013-06-01

    Moving from the common practice of extracting numerical data from experiment to be compared with quantum mechanical (QM) results toward a direct vis-à-vis} comparison of experimental and simulated spectra would strongly reduce any arbitrariness in analysis of complex experimental outcomes and allow a proper account of the information connected to both position and shape of spectral bands. The development of such ``virtual ab initio spectrometers'' for a wide range of wavelengths has been one of our major research goals in the last years [1,2]. Recent methodological advances from our group allow simulation of optical (IR, Raman, UV-vis, etc.) spectra line-shapes for medium-to-large closed- and open-shell molecular systems. Vibrational spectra are computed including anharmonicities through perturbative corrections while electronic spectra line-shapes are simulated accounting for the vibrational structure. Well resolved and accurate theoretical spectra provide data as close as possible to the results directly available from experiment allowing to avoid ambiguities in analysis of the latter. Several examples illustrating interpretation, assignment or revision of experimental spectra for prototypes of bio-molecular systems (phenyl radical, glycine, thymine, pyrimidine, anisole dimer) will be presented. 1. V. Barone, A. Baiardi, M. Biczysko, J. Bloino, C. Cappelli, F. Lipparini Phys. Chem. Chem. Phys, 14, 12404, 2012 2. M. Biczysko, J. Bloino, G. Brancato, et al. Theor. Chem. Acc. 113, 1201, 2012

  3. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara

    2011-01-01

    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  4. Vibrational spectroscopic studies and molecular docking of 10,10-Dimethylanthrone

    Science.gov (United States)

    Sheena Mary, Y.; Yamuna, T. S.; Yohannan Panicker, C.; Yathirajan, H. S.; Siddegowda, M. S.; Al-Saadi, Abdulaziz A.; Van Alsenoy, Christian; War, Javeed Ahmad

    2015-01-01

    FT-IR and FT-Raman spectra of 10,10-Dimethylanthrone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign vibrational bands obtained experimentally. In its most stable form, the title compound maintains C2v symmetry as determined by XRD results, where both methyl groups are staggered with respect to the corresponding C23sbnd C24 and C23sbnd C28 bonds. The geometrical parameters (B3LYP/6-311++G(d,p)(5D,7F)) of the title compound are in agreement with the XRD results. The calculated HOMO and LUMO energies allow the calculations of atomic and molecular properties and they also showed that charge transfer occurs in the molecule. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. As seen from the MEP map, negative potential regions are localized over the carbonyl group and are possible sites for electrophilic attack. The title compound, 10,10-Dimethylanthrone forms a stable complex with human topoisomerase-II as is evident from the ligand-receptor interactions and show appreciable antineoplastic activity.

  5. Vibrational spectroscopic analysis of aluminum phthalocyanine chloride. experimental and DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, I.M., E-mail: solidhima@gmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbasia, Cairo (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Eid, Kh.M. [Physics Department, Faculty of Education, Ain Shams University, Roxy, Cairo (Egypt); Physics department, Bukairiayh for Sciences & Arts, Quassim University, Quassim (Saudi Arabia); Ammar, H.Y. [Physics Department, Faculty of Arts and science, Najran University, Najran (Saudi Arabia)

    2016-06-15

    In this work, we report a combined experimental and theoretical study of aluminum phthalocyanine chloride (AlPcCl). The FT-IR and Raman spectra of AlPcCl were recorded and analyzed. The density functional theory (DFT) computations have been performed at B3LYP/6-31g and B3LYP/6-311g to derive equilibrium geometry, vibrational wavenumbers, intensity and NLO properties. All the observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. The natural bond orbital (NBO) calculations were performed to study the atomic charge distribution of the investigated compound. The calculated results showed that dipole moment of the investigated compound was 4.68 Debye and HOMO-LUMO energy gap was 2.14 eV. The lowering of frontier orbital gap appears to be the cause of its enhanced charge transfer interaction.

  6. Raman scattering in right angle configuration on Cu2ZnSiSe4 single crystals

    Science.gov (United States)

    Guc, M.; Levcenko, S.; Zalamai, V.; Arushanov, E.; Syrbu, N. N.

    2017-11-01

    Polarized Raman scattering and resonance Raman scattering spectra of Cu2ZnSiSe4 crystals measured at temperature 300 and 10 K were investigated. Nine vibrational modes of A2 symmetry, seven modes of B2 symmetry and nine modes of B1 symmetry were determined in Raman spectra taken at right angle configuration from the (2 1 0) crystal plane. A resonance Raman scattering with participation of 2LO, 3LO and more phonons was observed at photon energies higher than the ground state of exciton transition at low temperature.

  7. DFT study on the Raman spectra of Fe(II-porphin

    Directory of Open Access Journals (Sweden)

    Hovorun D. M.

    2009-02-01

    Full Text Available DFT quantum-chemical calculations of the Raman spectra of Fe(II-porphin in quintet (ground state were performed. Spin-unrestricted UB3LYP functional in 6-311G basis was used for geometry optimization and Raman calculation. All active modes of Raman spectrum were analyzed in detail. It was noted that the insertion of Fe(II ion into porphin leads to the considerable changes in frequencies and intensities for those vibrational modes which involve nitrogen atoms displacement. The Raman depolarization ratio for plane polarized incident light is discussed

  8. Raman Spectroscopic Investigation of Dyes in Spices

    Science.gov (United States)

    Uhlemann, Ute; Ramoji, Anuradha; Rösch, Petra; Da Costa Filho, Paulo Augusto; Robert, Fabien; Popp, Jürgen

    2010-08-01

    In this study, a number of synthetic colorants for spices have been investigated by means of Raman spectroscopy, resonance Raman spectroscopy, and surface enhanced (resonance) Raman spectroscopy (SER(S)). The aim of the study was the determination of limits of detection for each dye separately and in binary mixtures of dyes in spiked samples of the spices. Most of the investigated dyes have been azo dyes, some being water-soluble, the other being fat-soluble. Investigating the composition of food preparations is an ongoing and important branch of analytical sciences. On one hand, new ingredients have to be analyzed with regard to their contents, on the other hand, raw materials that have been tampered have to be eliminated from food production processes. In the last decades, the various Raman spectroscopic methods have proven to be successful in many areas of life and materials sciences. The ability of Raman spectroscopy to distinguish even structural very similar analytes by means of their vibrational fingerprint will also be important in this study. Nevertheless, Raman scattering is a very weak process that is oftentimes overlaid by matrix interferences or fluorescence. In order to achieve limits of detection in the nanomolar range, the signal intensity has to be increased. According to the well-known equations, there are several ways of achieving this increase: •increasing sample concentration •increasing laser power •decreasing the laser wavelength •using electronic resonance •increasing the local electromagnetic field In this study, nearly all of the above-mentioned principles were applied. In a first step, all dyes were investigated in solution at different concentrations to determine a limit of detection. In the second step, spiked spice samples have been extracted with a variety of solvents and process parameters tested. To lower the limit of detection even further, SERS spectroscopy has been used as well in as out of electronic resonance.

  9. Vibrational spectra of Cu(II), Cu(I), Ni(II), Pd(II), Pt(II) and Hg(II) complexes with dithizone

    Science.gov (United States)

    Michalska, Danuta; Kowal, Andrzei T.

    1985-01-01

    The far i.r. spectra of Cu(II), Cu(I) and Ni(II) complexes with dithizone are presented. The assignment of the metal—ligand vibrations was carried out by 63Cu/ 65Cu and 58Ni/ 62Ni isotopic substitution. Resonance Raman spectra of Hg(II), Pd(II), Pt(II), Cu(II) and Cu(I) complexes were measured. Excitation profiles of the enhanced Raman modes of Hg(II) dithizonate allowed us to identify vibrations associated with the chromophoric azo group. It is concluded that Pd(II) dithizonate and Pt(II) dithizonate are N, S coordinated and form a trans square-planar structure, whereas in Cu(I) dithizonate the Cu(I) ion forms a strong bond with the sulfur atom and a weak secondary bond with the azo nitrogen as well as with sulfur atoms from the neighboring molecules conferring a tetrahedral configuration on the coordination sphere and polymeric structure of the complex.

  10. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol

    Directory of Open Access Journals (Sweden)

    Andrea León

    2017-01-01

    Full Text Available The aim of this study was to prepare a novel targeting drug delivery system for 2-Methoxyestradiol (2ME in order to improve the clinical application of this antitumor drug. It is based in nanoparticles (NPs of titanium dioxide (TiO2 coated with polyethylene glycol (PEG and loaded with 2ME. A complete IR and Raman characterization have been made to confirm the formation of TiO2–PEG–2ME composite. Vibrational modes have been assigned for TiO2, PEG, and 2ME and functionalized TiO2–PEG and TiO2–PEG–2ME. The observed variation in peak position of FTIR and Raman of each for these composites has been elucidated in terms of intermolecular interactions between PEG–2ME and TiO2, obtaining step-by-step the modification processes that were attributed to the conjugation of PEG and 2ME to TiO2 NPs. Modifying TiO2 NPs with PEG loaded with the 2ME drug revealed that the titanium dioxide nanocarrier possesses an effective adsorption capability, and we discuss their potential application as a system of drug delivery.

  11. Structural properties and FTIR-Raman spectra of the anti-hypertensive clonidine hydrochloride agent and their dimeric species

    Science.gov (United States)

    Romano, Elida; Davies, Lilian; Brandán, Silvia Antonia

    2017-04-01

    The structural and vibrational properties of the α-adrenergic agonist clonidine hydrochloride agent and their anionic and dimeric species were studied combining the experimental FT-IR and Raman spectra in solid phase with ab-initio calculations based on the density functional theory (DFT). All the calculations were performed by using the hybrid B3LYP with the 6-31G* and 6-311++G** basis sets. The structural properties for those species were studied employing the Natural Bond Orbital (NBO), Atoms in Molecules theory (AIM) and frontier orbitals calculations. The complete assignments of the FTIR and Raman spectra were performed combining the DFT calculations with the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Very good concordances between the theoretical and experimental spectra were found. In addition, the force constants for those three species were computed and compared with the values reported for similar antihypertensive agents. The ionic nature of the H→Cl bond and the high value of the LP(1)N4 → LP*(1)H18 charge transfer could explain the high reactivity of clonidine hydrochloride in relation to other antihypertensive agent and the strong shifthing of the band assigned to the Nsbnd H stretching mode linked to the Hsbnd Cl bond toward lower wavenumbers.

  12. Elaboration and optimization of tellurite-based materials for raman gain application

    Science.gov (United States)

    Guery, Guillaume

    absorption in the transmission bandwidth in the near infrared (NIR). A reduction of 90 % in the OH content in candidate glasses was realized and core-only optical fiber drawn from this glass exhibited optical losses lower than 10 dB/m (either at 1.55 mum or 2.0 mum). This optical attenuation in a high Raman gain material represents a first in the design of both material attributes. The role of the glass modifiers on the glass structure has been investigated by a combination of vibrational spectroscopic methods, including IR absorption, as well as Raman and hyper-Raman scatterings. Following examination of fundamental vibrations present in the paratellurite crystal alpha-TeO2, these results were extended to interpret the structure of multi-component tellurite glasses. It has been verified that the transformation of the tellurite entities TeO4→TeO3+1→TeO3 is directly related to the percentage and type of glass modifiers present in the various tellurite glass matrix. The dramatic disruption in the continuity of Te-O linkages in the tellurite glass backbone's chains during the introduction of the modifier zinc oxide, leads to a systematic reduction in glass network connectivity. This structural change is accompanied by a significant change in the glass' normalized polarization curve (IPsiV/IHV ), a paramter which quantifies directly the depolymerization ratio (DR). This metric provides direct correlation with a reduction in the ternary glass' polarizability/hyperpolarizability and a decrease in the glass' nonlinear optical properties, specifically its Raman gain response. These results have validated and extended our understanding of the important role of Te-O-Te content and short, medium and longer-scale organization of the tellurite glass network and the corresponding impact on linear and nonlinear optical response and properties. Such fundamental knowledge of the relationship between vibrational response and structure, correlated to linear and nonlinear optical properties

  13. Relationship between molecular structure and Raman spectra of quinolines

    Science.gov (United States)

    Frosch, Torsten; Popp, Jürgen

    2009-04-01

    DFT calculations were applied to investigate the relationship between the molecular structure and the Raman spectra of quinolines. A variety of different quinolines with increasing complexity was investigated and an aminoquinoline nucleus was found that describes the Raman spectrum of protonated chloroquine. It was discovered that the biological important, rigid C7-chloro group and C4-side chain of chloroquine significantly disturb certain molecular vibrations. The protonation at the N1 position causes dramatic changes of the Raman bands in the wavenumber region between 1500 cm -1 and 1650 cm -1. These bands are putative marker bands of the aminoquinoline drugs for π-π interactions to the hematin targets in malaria infected cells. The calculation of the normal modes and the illustration of the associated atomic displacements are very valuable for a deeper understanding of the associated bands in the Raman spectra.

  14. Raman Cooling of Solids through Photonic Density of States Engineering

    CERN Document Server

    Chen, Yin-Chung

    2015-01-01

    The laser cooling of vibrational states of solids has been achieved through photoluminescence in rare-earth elements, optical forces in optomechanics, and the Brillouin scattering light-sound interaction. The net cooling of solids through spontaneous Raman scattering, and laser refrigeration of indirect band gap semiconductors, both remain unsolved challenges. Here, we analytically show that photonic density of states (DoS) engineering can address the two fundamental requirements for achieving spontaneous Raman cooling: suppressing the dominance of Stokes (heating) transitions, and the enhancement of anti-Stokes (cooling) efficiency beyond the natural optical absorption of the material. We develop a general model for the DoS modification to spontaneous Raman scattering probabilities, and elucidate the necessary and minimum condition required for achieving net Raman cooling. With a suitably engineered DoS, we establish the enticing possibility of refrigeration of intrinsic silicon by annihilating phonons from ...

  15. Assignment of the Raman lines in single crystal barium metaborate (beta-BaB sub 2 O sub 4)

    CERN Document Server

    Ney, P; Maillard, A; Polgar, K

    1998-01-01

    A Raman-scattering study performed on beta-BaB sub 2 O sub 4 (beta-BBO) at room temperature allows us to assign all the vibrational modes detected in the Raman spectra. The internal and external vibration modes are properly obtained by taking account of the light polarization, mode contamination and isotope effects. A correspondence between the lattice and the free-ring modes is also presented. (author)

  16. Vacuum-UV to IR supercontinuum in hydrogen-filled photonic crystal fiber

    CERN Document Server

    Belli, Federico; Chang, Wonkeun; Travers, John C; Russell, Philip St J

    2015-01-01

    Although supercontinuum sources are readily available for the visible and near infrared, and recently also for the mid-IR, many areas of biology, chemistry and physics would benefit greatly from the availability of compact, stable and spectrally bright deep ultraviolet (DUV) and vacuum ultraviolet (VUV) supercontinuum sources. Such sources have however not yet been developed. Here we report the generation of a bright supercontinuum, spanning more than three octaves from 124 nm to beyond 1200 nm, in hydrogen-filled kagom\\'e-style hollow-core photonic crystal fiber (kagom\\'e-PCF). Few-{\\mu}J, 30 fs pump pulses at wavelength 805 nm are launched into the fiber, where they undergo self-compression via the Raman-enhanced Kerr effect. Modeling indicates that before reaching a minimum sub-cycle pulse duration of ~1 fs, much less than one period of molecular vibration (8 fs), nonlinear reshaping of the pulse envelope, accentuated by self-steepening and shock formation, creates an ultrashort feature that causes impulsi...

  17. Vibrational spectroscopy of reduced ReI complexes of 1,10-phenanthroline and substituted analogues.

    Science.gov (United States)

    Howell, Sarah L; Gordon, Keith C

    2006-04-13

    IR spectroscopy in concert with DFT calculations and resonance Raman spectroelectrochemistry has been used to identify the molecular orbital nature of the singly occupied molecular orbital (SOMO) in reduced [Re(CO)(3)Cl(L)] and [Re(CO)(3)(4-Mepy)(L)](+) complexes, where L = 1,10-phenanthroline and its 4,7-diphenyl- and 3,4,7,8-tetramethyl-substituted analogues. The SOMO of each reduced species considered was found to be of b(1) symmetry, rather than the close lying orbital of a(2) symmetry (within a C(2)(v)() symmetry description of the phenanthroline moiety). This was deduced in a number of ways. First, the average carbonyl band force constants (Deltak(av) = k(av){reduced complex} - k(av){parent complex}) range from -57 to -41 N m(-1) for the series of compounds studied. The value of Deltak(av) relates to the extent of orbital overlap between the ligand MO and the metal dpi MO. These values are consistent with population of a b(1) MO because the wave function amplitude at the chelating nitrogens for this MO is significantly greater than that for a(2) MO. Second, calculations on singly reduced [Re(CO)(3)(4-Mepy)(phen)](+) and [Re(CO)(3)(4-Mepy)(tem)](+) predict population of a b(2) SOMO. The spectra predicted for these species are in close agreement with the vibrational spectroscopic data; for the IR data the shifts in the CO bands are predicted to 6 cm(-1) and the mean absolute deviation between calculated and measured Raman bands was found to be 10 cm(-1).

  18. Genomic DNA characterization of pork spleen by Raman spectroscopy

    Science.gov (United States)

    Guzmán-Embús, D. A.; Orrego Cardozo, M.; Vargas-Hernández, C.

    2013-11-01

    In this paper, the study of Raman signal enhancement due to interaction between ZnO rods and pork spleen DNA is reported. ZnO microstructures were synthesized by the Sol-Gel method and afterward combined with porcine spleen DNA extracted in the previous stages, following standardized cell lysis, deproteinization, and precipitation processes. Raman spectroscopy was used for the characterization of structures of ZnO and ZnO-DNA complex, and the results show the respective bands of ZnO wurtzite hexagonal phase for modes E2 (M), A1(TO), E2(High), E1(LO), and 2LO. Due to the SERS effect in the spectral range from 200 to 1800 cm,-1 Raman bands caused by vibrations of the deoxyribose C-O-C binding were also observed, producing deformation of the ring as shown in the 559 cm-1 peak. The broad band at 782 cm-1, together with the complex vibration of the string 5'-COPO-C3', is over a wide band of thymine (790 cm-1) or cytosine (780 cm-1). A prominent band near 1098 cm-1 assigned to symmetric stretching vibration phosphodioxy group (PO2-) DNA backbone is most favoured in intensity by the addition of ZnO particles originated by the SERS effect. This effect suggests a possible mechanism for enhancing the Raman signal due to the electromagnetic interaction between a DNA molecule and the flat surface of the ZnO rod.

  19. T R Shankar Raman

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. T R Shankar Raman. Articles written in Resonance – Journal of Science Education. Volume 1 Issue 7 July 1996 pp 52-61 Feature Article. Nature Watch - A Horde of Indian Deer · T R Shankar Raman · More Details Fulltext PDF. Volume 1 Issue 9 September 1996 ...

  20. Characterization of Thalidomide using Raman Spectroscopy

    Science.gov (United States)

    Cipriani, Penelope; Smith, Candace Y.

    2008-02-01

    Thalidomide is a potent anticancer therapeutic drug whose mechanism of action has not yet been elucidated. In this report, experimental Raman spectroscopy is used to determine and characterize the vibrational frequencies of the drug. These normal modes are then compared to their quantum mechanical counterparts, which have been computed using density functional theory. Upon analysis of the spectra, we found that there was a high level of agreement between the wavenumbers. As such, this spectroscopic technique may be a viable tool for examining the way in which this drug interacts with its target molecules.

  1. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  2. Detection of molecular changes induced by antibiotics in Escherichia coli using vibrational spectroscopy

    Science.gov (United States)

    Xuan Nguyen, N. T.; Sarter, Samira; Hai Nguyen, N.; Daniel, Philippe

    2017-08-01

    This study aimed to test Raman (400-1800 cm- 1) and Infra-red (1900-500 cm- 1) spectroscopies followed by statistical analysis (principal component analysis) to detect molecular changes induced by antibiotics (ampicillin, cefotaxime - cell wall synthesis inhibitors, tetracycline - protein synthesis inhibitor, ciprofloxacin - DNA synthesis inhibitor) against Escherichia coli TOP10. In case of ampicillin and cefotaxime, a decrease in protein bands in both Raman (1240, 1660 cm- 1), and IR spectra (1230, 1530, 1630 cm- 1), and an increase in carbohydrate bands (1150, 1020 cm- 1) in IR spectra were observed. Tetracycline addition caused an increase in nucleic acid bands (775, 1478, 1578 cm- 1), a sharp decrease in phenylalanine (995 cm- 1) in Raman spectra and the amide I and amide II bands (1630, 1530 cm- 1) in IR spectra, an increase in DNA in both Raman (1083 cm- 1) and IR spectra (1080 cm- 1). Regarding ciprofloxacin, an increase in nucleic acids (775, 1478, 1578 cm- 1) in Raman spectra and in protein bands (1230, 1520, 1630 cm- 1), in DNA (1080 cm- 1) in IR spectra were detected. Clear discrimination of antibiotic-treated samples compared to the control was recorded, showing that Raman and IR spectroscopies, coupled to principal component analysis for data, could be used to detect molecular modifications in bacteria exposed to different classes of antibiotics. These findings contribute to the understanding of the mechanisms of action of antibiotics in bacteria.

  3. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  4. Raman spectroscopic study of uranyl complex in alkali chloride melts

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Toshiyuki, E-mail: tosiyuki@rri.kyoto-u.ac.jp [Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Uda, Takeshi [Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494 (Japan); Graduate School of Engineering, Kyoto University, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan); Iwadate, Yasuhiko [Graduate School of Engineering, Chiba University, Yayoi 1-33, Inage, Chiba 263-8522 (Japan); Nagai, Takayuki [Nuclear Fuel Cycle Engineering Lab., Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai, Ibaraki 319-1194 (Japan); Uehara, Akihiro; Yamana, Hajimu [Division of Nuclear Engineering Science, Research Reactor Institute, Kyoto University, 2-1010, Asashiro Nishi, Kumatori, Sennan, Osaka 590-0494 (Japan)

    2013-09-15

    Raman spectra of alkali chloride melts containing 3 mol% U(VI) were measured at 823 K. The complexation of UO{sub 2}Cl{sub 4}{sup 2-} in binary mixtures of LiCl-KCl, LiCl-RbCl, and LiCl-CsCl was investigated. The spectrum of UO{sub 2}Cl{sub 4}{sup 2-} obtained was characterized by Raman active vibration modes, that is, totally symmetric stretching vibrations A{sub 1g} (ν{sub 1}: OUO) and A{sub 1g} (ν{sub 2}: UCl{sub 4}), and bending vibration E{sub g} (ν{sub 8:} UO{sub 2}Cl{sub 2}). The dependence of polarizing power of solvent cations on the vibrational frequencies was clarified. The ν{sub 8} frequencies were insensitive to the change in the polarizing power. On the other hand, the ν{sub 1} and ν{sub 2} frequencies increased with the rise of polarizing power. The Raman shifts suggest that the square bipyramidal structure of UO{sub 2}Cl{sub 4}{sup 2-} is kept in various binary alkali chlorides, while O{sup 2−} and Cl{sup −} around U(VI) are clearly polarized by the increase of polarizing power.

  5. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    The vibrational structure of the title compound (1,3-diphenyl-3-thioxopropane-1-one, TDBM) was studied by a variety of experimental and theoretical methods. The stable ground state configuration of TDBM was investigated by IR absorption measurements in different media, by LD polarization spectros...... to an “open”, non-chelated enethiol form (t-TCC), thereby supporting the previous conclusions by Posokhov et al. No obvious indications of the contribution of other forms to the observed spectra could be found....

  6. Conformational and vibrational reassessment of solid paracetamol

    Science.gov (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  7. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  8. Vibrational spectra of M 2Cu(SO 4) 2 · {6 H2O }/{D2O} (M = NH 4 or K )

    Science.gov (United States)

    Rajagopal, P.; Aruldhas, G.

    1989-06-01

    The IR and polarized Raman spectra of M2Cu(SO 4) 2 · 6H 2O ( M = NH 4 or K) and their deuterated analogs have been recorded and analyzed. The site locations for the SO 2-4 ions in these crystals are found to be identical. These SO 2-4 tetrahedra are angularly distorted. The vibrational bands of the metal aquo complex for (NH 4) 2Cu(SO 4) 2 · 6H 2O are shifted considerably from those for other Tutton salts. One can infer from the spectral data that the NH +4 ion is not rotating freely in the lattice. Separate bands have been identified for three different types of water molecules in both samples. This interpretation is confirmed by analysis of the spectral changes due to the replacement of hydrogen by deuterium in the H 2O units.

  9. Z-scan measurements of the third-order optical nonlinearities and vibrational spectral studies by DFT computations on azo dye 1-(2-Methylphenylazo)-2-napthol

    Science.gov (United States)

    Sreenath, M. C.; Mathew, S.; Hubert Joe, I.; Rastogi, V. K.

    2017-12-01

    The nonlinear optical properties of azo dye 1-(2-Methylphenylazo)-2-napthol have been studied. The complete vibrational features and electronic absorption spectra of the title compound were analyzed by FT-IR, FT-Raman and UV-visible spectra combined with density functional theory and time-dependent density functional computations respectively. Nonlinear optical behavior was investigated by calculating the second-order hyperpolarizablity at DFT level. Third-order nonlinear optical parameters of 1-(2-Methylphenylazo)-2-napthol were measured using closed and open aperture Z-scan technique. The Z-scan result confirms, the dye exhibit self-focusing effect and the sign of the refractive nonlinearity is positive. The nonlinear refractive index (n2), nonlinear absorption coefficient (β), real and imaginary parts of third-order susceptibility (χ (3)) and second-order hyperpolarizability (γ) are calculated. The calculated results indicated that 1-(2-Methylphenylazo)-2-napthol have potential applications in optoelectronics and photonics.

  10. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  11. New explanation of Raman peak redshift in nanoparticles

    Science.gov (United States)

    Meilakhs, A. P.; Koniakhin, S. V.

    2017-10-01

    In this letter, we propose a new model that explains the Raman peak downshift observed in nanoparticles with respect to bulk materials. The proposed model takes into account discreteness of the vibrational spectra of nanoparticles. For crystals with a cubic lattice (Diamond, Silicon, Germanium) we give a relation between the displacement of Raman peak position and the size of nanoparticles. The proposed model does not include any uncertain parameters, unlike the conventionally used phonon confinement model (PCM), and can be employed for unambiguous nanoparticles size estimation.

  12. Density functional theory study of vibrational spectra, and ...

    Indian Academy of Sciences (India)

    The FTIR and FT Raman spectra of dacarbazine were recorded in the regions 4000-400 and 3500-100 cm-1, respectively. The optimized geometry, wavenumber, polarizability and several thermodynamic properties of dacarbazine were studied using ab initio Hartree-Fock, MP2 and DFT methods. A complete vibrational ...

  13. Density functional theory study of vibrational spectra, and ...

    Indian Academy of Sciences (India)

    WINTEC

    315. *For correspondence. Density functional theory study of vibrational spectra, and assignment of fundamental modes of ... FTIR; FT-Raman; density functional theory; dacarbazine. 1. Introduction. Dacarbazine, used as antineoplastic in ...... molecules (London: Chapman and Hall) vol 2. 18. Wiberg K B and Sharke A 1973 ...

  14. Calculation of vibrational excitation cross-sections in resonant ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 119; Issue 5. Calculation of vibrational excitation cross-sections in resonant electron-molecule scattering using the time-dependent wave packet (TDWP) approach with application to the 2 CO- shape resonance. Raman Kumar Singh Manabendra Sarma Ankit Jain ...

  15. Characterization and calibration of a combined laser Raman, fluorescence and coherent Raman spectrometer

    Science.gov (United States)

    Lawhead, Carlos; Cooper, Nathan; Anderson, Josiah; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Electronic and vibrational spectroscopy is extremely important tools used in material characterization; therefore a table-top laser spectrometer system was built in the spectroscopy lab at the UWF physics department. The system is based upon an injection seeded nanosecond Nd:YAG Laser. The second and the third harmonics of the fundamental 1064 nm radiation are used to generate Raman and fluorescence spectra measured with MS260i imaging spectrograph occupied with a CCD detector and cooled to -85 °C, in order to minimize the dark background noise. The wavelength calibration was performed with the emission spectra of standard gas-discharge lamps. Spectral sensitivity calibration is needed before any spectra are recorded, because of the table-top nature of the instrument. A variety of intensity standards were investigated to find standards suitable for our table top setup that do not change the geometry of the system. High quality measurement of Raman standards where analyzed to test spectral corrections. Background fluorescence removal methods were used to improve Raman signal intensity reading on highly fluorescent molecules. This instrument will be used to measure vibrational and electronic spectra of biological molecules.

  16. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  17. Raman scattering in crystals

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.F.

    1988-09-30

    A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.

  18. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  19. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available Silver-doped hydroxyapatite (Ag:HAp was obtained by coprecipitation method. Transmission electron microscopy (TEM, infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The most intense peak Raman spectrum is the narrow band observed at 960 cm−1. In this article Ag:HAp-NPs were also evaluated for their antimicrobial activities against gram-positive, gram-negative, and fungal strains. The specific antimicrobial activity revealed by the qualitative assay demonstrates that our compounds are interacting differently with the microbial targets.

  20. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  1. The Future IR Office.

    Science.gov (United States)

    Sanders, Liz

    1999-01-01

    Discusses three emerging trends on the affect of information technology on institutional research (IR), examining the following: information technology as a catalyst for change; pressures of access and accountability and challenges of open access to information, and the new informational professional. Offers a vision of technology's…

  2. Femtosecond time-resolved impulsive stimulated Raman spectroscopy using sub-7-fs pulses: Apparatus and applications

    Energy Technology Data Exchange (ETDEWEB)

    Kuramochi, Hikaru [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Takeuchi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198 (Japan)

    2016-04-15

    We describe details of the setup for time-resolved impulsive stimulated Raman spectroscopy (TR-ISRS). In this method, snapshot molecular vibrational spectra of the photoreaction transients are captured via time-domain Raman probing using ultrashort pulses. Our instrument features transform-limited sub-7-fs pulses to impulsively excite and probe coherent nuclear wavepacket motions, allowing us to observe vibrational fingerprints of transient species from the terahertz to 3000-cm{sup −1} region with high sensitivity. Key optical components for the best spectroscopic performance are discussed. The TR-ISRS measurements for the excited states of diphenylacetylene in cyclohexane are demonstrated, highlighting the capability of our setup to track femtosecond dynamics of all the Raman-active fundamental molecular vibrations.

  3. Raman spectroscopic study of LiHPO

    Science.gov (United States)

    Lee, Kwang-Sei; Ko, Jae-Hyeon; Moon, Joonhee; Lee, Sookyoung; Jeon, Minhyon

    2008-03-01

    The dielectric constant of polycrystalline LiH 2PO 4 has been measured between 297 and 17 K. No marked changes were observed over this range, indicating that the room-temperature orthorhombic phase persisted up to 17 K. Raman spectra of polycrystalline LiH 2PO 4 were also measured at 297, 200, and 70 K in the frequency shift region of 15-4000 cm -1 with Raman-active vibrational modes naively assigned to low-frequency (0-300 cm -1) external and high-frequency (300-4000 cm -1) internal modes. In addition to the internal modes of the PO 4 tetrahedra, the internal modes of the LiO 4 tetrahedra spectroscopically manifested themselves between 390-500 cm -1. This frequency range overlaps those of ν2 (PO 4) and ν4 (PO 4). The LiH 2PO 4O-H vibrational frequencies were in good agreement with crystallographic reports that there are two types of hydrogen bonds: intermediate (long bonds) and strong (short bonds).

  4. Random Raman lasing

    CERN Document Server

    Hokr, Brett H; Mason, John D; Beier, Hope T; Rockwll, Benjamin A; Thomas, Robert J; Noojin, Gary D; Petrov, Georgi I; Golovan, Leonid A; Yakovlev, Vladislav V

    2013-01-01

    Propagation of light in a highly scattering medium is among the most fascinating optical effect that everyone experiences on an everyday basis and possesses a number of fundamental problems which have yet to be solved. Conventional wisdom suggests that non-linear effects do not play a significant role because the diffusive nature of scattering acts to spread the intensity, dramatically weakening these effects. We demonstrate the first experimental evidence of lasing on a Raman transition in a bulk three-dimensional random media. From a practical standpoint, Raman transitions allow for spectroscopic analysis of the chemical makeup of the sample. A random Raman laser could serve as a bright Raman source allowing for remote, chemically specific, identification of powders and aerosols. Fundamentally, the first demonstration of this new light source opens up an entire new field of study into non-linear light propagation in turbid media, with the most notable application related to non-invasive biomedical imaging.

  5. Theoretical calculation (DFT), Raman and surface-enhanced Raman scattering (SERS) study of ponceau 4R

    Science.gov (United States)

    Xie, Yunfei; Li, Yan; Sun, Yingying; Wang, Heya; Qian, He; Yao, Weirong

    2012-10-01

    Ponceau 4R is used as a coloring agent in many different products, such as food, drinks, medicines, cosmetics and tobacco. However, ponceau 4R also shows carcinogenic, teratogenic and mutagenic behavior in high doses. In this work, standard Raman, theoretical Raman and surface-enhanced Raman scattering (SERS) spectra have been used to investigate ponceau 4R. More specifically, density functional theory (DFT) calculations have been used to calculate the optimized Raman spectrum of ponceau 4R at the B3LYP/6-31G(d) level. This has provided a better understanding of the optimized geometry and vibrational frequencies of this dye. In addition, the experimental spectrum of ponceau 4R has been compared with the theoretical spectrum; good agreement was obtained. Finally, it has shown that using SERS the detection limit of the ponceau 4R solution can be as low as 5 μg/mL. This has been achieved by SERS measurements of ponceau 4R on a substrate of gold nanoparticles. The SERS peaks at 1030, 1236, 1356 and 1502 cm-1 were chosen as index for semi-quantitative analysis, showing that the SERS technique provided a useful ultrasensitive method for the detection of ponceau 4R.

  6. Raman hyperspectral image analysis of benzoyl peroxide additive

    Science.gov (United States)

    Wang, Xiaobin; Huang, Wenqian; Wang, Qingyan; Liu, Chen; Wang, Chaopeng; Yang, Guiyan; Zhao, Chunjiang

    2017-06-01

    This study adopted a Raman hyperspectral imaging system to collect the Raman spectra and hyperspectral images of benzoyl peroxide (BPO) additive for subsequent analysis. The raw Raman spectra of BPO were preprocessed by wavelet denoising. Optimal parameters of wavelet denoising were selected by the orthogonal experimental design. The signal-noise (S/N) ratio of the optimal parameter combination was 32.848. The smoothed Raman spectra were divided into three regions (1900-1300, 1300-700, and 700-100 cm-1) for assignment and the band vibrational modes of BPO molecule were obtained. Wherein, the Raman bands at 1771, 1597, 1230, 999, 889 and 845 cm-1 are higher than others, and can be used as the Raman characteristic bands. Analysis of the grayscale images corresponding to different characteristic bands, it is found that the order of change of the image gray level was consistent with characteristic bands intensity. Findings of this study provide the research basics for the detection and analysis of BPO additive.

  7. Raman signatures of charge ordering in K0.3WO3

    OpenAIRE

    Sagar, D. M.; Fausti, D.; Smaalen, S. van; van Loosdrecht, P. H. M.

    2010-01-01

    We present polarization- and temperature-dependent Raman spectroscopic study of hexagonal tungsten bronze, K0.3WO3. The observed asymmetry in phonon line shapes indicate the presence of strong lattice anharmonicity arising due to the nonstoichiometry of the material. We observed a broad multipeak Raman feature at low frequency due to the local modes of K atoms known as local structural excitations. The observed vibrational features indicate a second-order phase transition around T=200 K accom...

  8. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    Science.gov (United States)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  9. Vibrational, NMR and UV-Visible spectroscopic investigation, VCD and NLO studies on Benzophenone thiosemicarbazone using computational calculations

    Science.gov (United States)

    Moorthy, N.; Jobe Prabakar, P. C.; Ramalingam, S.; Periandy, S.; Parasuraman, K.

    2016-04-01

    In order to explore the unbelievable NLO property of prepared Benzophenone thiosemicarbazone (BPTSC), the experimental and theoretical investigation has been made. The theoretical calculations were made using RHF and CAM-B3LYP methods at 6-311++G(d,p) basis set. The title compound contains Cdbnd S ligand which helps to improve the second harmonic generation (SHG) efficiency. The molecule has been examined in terms of the vibrational, electronic and optical properties. The entire molecular behavior was studied by their fundamental IR and Raman wavenumbers and was compared with the theoretical aspect. The molecular chirality has been studied by performing vibrational circular dichroism (circularly polarized infrared radiation). The Mulliken charge levels of the compound ensure the perturbation of atomic charges according to the ligand. The molecular interaction of frontier orbitals emphasizes the modification of chemical properties of the compound through the reaction path. The enormous amount of NLO activity was induced by the Benzophenone in thiosemicarbazone. The Gibbs free energy was evaluated at different temperature and from which the enhancement of chemical stability was stressed. The VCD spectrum was simulated and the optical dichroism of the compound has been analyzed.

  10. Molecular structure, vinyl rotation barrier, and vibrational dynamics of 2,6-dichlorostyrene. A theoretical and experimental research.

    Science.gov (United States)

    Ceacero-Vega, Antonio A; Ruiz, Tomas Peña; Gómez, Manuel Fernández; Roldán, José M Granadino; Navarro, Amparo; Fernández-Liencres, M Paz; Jayasooriya, Upali A

    2007-07-19

    The molecular structure of 2,6-dichlorostyrene has been analyzed at MP2 and DFT levels using different basis sets concluding in a nonplanar geometry. The influence of either the level of theory or the nature of the substituent has been assessed. The vinyl-phenyl torsion barrier has also been investigated as a function of level of theory. The ultimate factors responsible for the torsion barrier have been studied using two different partitioning schemes, i.e., the total electronic potential energy and the natural bond orbital, NBO. A topological analysis of the electron density within the atom-in-molecule, AIM, theory predicts soft intramolecular chlorine (ring)-hydrogen (vinyl) contacts when the system becomes planar. A first complete vibrational study has been performed using theoretical data and experimental vibrational frequencies from IR, Raman and, for the first time, inelastic neutron scattering, INS, spectra. The new assignment proposed is based on a scaled quantum mechanical, SQM, force field and the wavenumber linear scaling, WLS, approach.

  11. Anisotropic effects in the Raman scattering of Re-doped 2H-MoSe2 layered semiconductors

    Directory of Open Access Journals (Sweden)

    Chia-Ti Wu

    Full Text Available We present the anisotropic Raman spectra of the Re-doped MoSe2 layered semiconductor with thicker edge plane grown by chemical vapor transport method. The anisotropic lattice dynamics in the doped MoSe2 layered material are investigated by Raman scattering. The vibrational spectra measured on the planes perpendicular and parallel to the crystal c-axis can be correlated, respectively, to the Raman active E1g, A1g and E2g1 modes. The linewidth parameter Γ and correlation length L evaluated using spatial correlation model for describing the Raman spectra lineshape are further discussed to understand the in-plane and out-of-plane vibration of the Se atoms in the E1g and A1g modes. Keywords: MoSe2, Anisotropic, Layered semiconductors, Raman scattering

  12. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  13. Raman Spectroscopic Characterization of Melanoma and Benign Melanocytic Lesions Suspected of Melanoma Using High-Wavenumber Raman Spectroscopy.

    Science.gov (United States)

    Santos, Inês P; Caspers, Peter J; Bakker Schut, Tom C; van Doorn, Remco; Noordhoek Hegt, Vincent; Koljenović, Senada; Puppels, Gerwin J

    2016-08-02

    Melanoma is a pigmented type of skin cancer, which has the highest mortality of all skin cancers. Because of the low clinical diagnostic accuracy for melanoma, an objective tool is needed to assist clinical assessment of skin lesions that are suspected of (early) melanoma. The aim of this study was to identify spectral differences in the CH region of HWVN (high-wavenumber) Raman spectra between melanoma and benign melanocytic lesions clinically suspected of melanoma. We used these spectral differences to explore preliminary classification models to distinguish melanoma from benign melanocytic lesions. Data from 82 freshly excised melanocytic lesions clinically suspected of melanoma were measured using an in-house built Raman spectrometer, which has been optimized for measurements on pigmented skin lesions (excitation wavelength 976 nm and a wavelength range of the Raman signal 1340-1540 nm). Clear spectral differences were observed between melanoma and benign melanocytic lesions. These differences can be assigned mainly to the symmetric CH2 stretching vibrations of lipids. Our results show that the Raman bands between 2840 and 2930 cm(-1) have increased intensity for melanoma when compared to benign melanocytic lesions, suggesting an increase in lipid content in melanoma. These results demonstrate that spectroscopic information in the CH-stretching region of HWVN Raman spectra can discriminate melanoma from benign melanocytic lesions that are often clinically misdiagnosed as melanoma and that Raman spectroscopy has the potential to provide an objective clinical tool to improve the clinical diagnostic accuracy of skin lesions suspected of melanoma.

  14. Resonance-Enhanced Excited-State Raman Spectroscopy of Conjugated Thiophene Derivatives: Combining Experiment with Theory

    Science.gov (United States)

    Barclay, Matthew S.; Quincy, Timothy J.; Caricato, Marco; Elles, Christopher G.

    2017-06-01

    Resonance-enhanced Femtosecond Stimulated Raman Spectroscopy (FSRS) is an ultrafast experimental method that allows for the study of excited-state structural behaviors, as well as the characterization of higher electronically excited states accessible through the resonant conditions of the observed vibrations. However, interpretation of the experiment is difficult without an accurate vibrational assignment of the resonance-enhanced spectra. We therefore utilize simulations of off-resonant excited-state Raman spectra, in which we employ a numerical derivative of the analytical excited-state polarizabilities along the normal mode displacements, in order to identify and interpret the resonance-enhanced vibrations observed in experiment. We present results for a benchmark series of conjugated organic thiophene derivatives, wherein we have computed the off-resonant excited-state Raman spectra for each molecule and matched it with its resonance-enhanced experimental spectrum. This comparison allows us to successfully identify the vibrational displacements of the observed FSRS bands, as well as validate the accuracy of the theoretical results through an experimental benchmark. The agreement between the experimental and computed results demonstrates that we are able to predict qualitatively accurate excited-state Raman spectra for these conjugated thiophenes, allowing for a more thorough interpretation of excited-state Raman signals at relatively low computational cost.

  15. HWIL IR imaging testing

    Science.gov (United States)

    Vinson, R. J.; Passwater, R. D.

    1981-03-01

    The Army simulator facilities are presently configured to conduct hardware-in-the-loop mission tasks on the HELLFIRE and COPPERHEAD missile systems. These systems presently use a LASER seeker. The facility is an ideal candidate to be converted to include infrared (IR) seekers used on the TGSM system. This study investigates the possibility and impact of a facility update. This report documents the feasibility of developing a hardware-in-the-loop (HWIL) hybrid simulation incorporating infrared IR seekers used for the Assault Breaker program. Other hardware to be considered are the autopilot, signal conditioning, signal processing, and actuators which may be integrated into the system simulation. Considerations are given to replacing all or elements of hardware while substituting math models in the system simulation.

  16. Nanoparticles and intracellular applications of surface-enhanced Raman spectroscopy

    OpenAIRE

    Taylor, Jack; Huefner, Anna; Li, Li; Wingfield, Jonathan; Mahajan, Sumeet

    2016-01-01

    Surface-enhanced Raman spectrocopy (SERS) offers ultrasensitive vibrational fingerprinting at the nanoscale. Its non-destructive nature affords an ideal tool for interrogation of the intracellular environment, detecting the localisation of biomolecules, delivery and monitoring of therapeutics and for characterisation of complex cellular processes at the molecular level. Innovations in nanotechnology have produced a wide selection of novel, purpose-built plasmonic nanostructures capable of hig...

  17. From near-infrared and Raman to surface-enhanced Raman spectroscopy: progress, limitations and perspectives in bioanalysis.

    Science.gov (United States)

    Dumont, Elodie; De Bleye, Charlotte; Sacré, Pierre-Yves; Netchacovitch, Lauranne; Hubert, Philippe; Ziemons, Eric

    2016-05-01

    Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, near-infrared, Raman and mainly surface-enhanced Raman spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.

  18. The VISTA IR camera

    Science.gov (United States)

    Dalton, Gavin B.; Caldwell, Martin; Ward, Kim; Whalley, Martin S.; Burke, Kevin; Lucas, John M.; Richards, Tony; Ferlet, Marc; Edeson, Ruben L.; Tye, Daniel; Shaughnessy, Bryan M.; Strachan, Mel; Atad-Ettedgui, Eli; Leclerc, Melanie R.; Gallie, Angus; Bezawada, Nagaraja N.; Clark, Paul; Bissonauth, Nirmal; Luke, Peter; Dipper, Nigel A.; Berry, Paul; Sutherland, Will; Emerson, Jim

    2004-09-01

    The VISTA IR Camera has now completed its detailed design phase and is on schedule for delivery to ESO"s Cerro Paranal Observatory in 2006. The camera consists of 16 Raytheon VIRGO 2048x2048 HgCdTe arrays in a sparse focal plane sampling a 1.65 degree field of view. A 1.4m diameter filter wheel provides slots for 7 distinct science filters, each comprising 16 individual filter panes. The camera also provides autoguiding and curvature sensing information for the VISTA telescope, and relies on tight tolerancing to meet the demanding requirements of the f/1 telescope design. The VISTA IR camera is unusual in that it contains no cold pupil-stop, but rather relies on a series of nested cold baffles to constrain the light reaching the focal plane to the science beam. In this paper we present a complete overview of the status of the final IR Camera design, its interaction with the VISTA telescope, and a summary of the predicted performance of the system.

  19. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures

    NARCIS (Netherlands)

    K. Maquelin (Kees); C. Kirschner; L.P. Choo-Smith; N.A. Ngo-Thi; T. van Vreeswijk; M. Stammler; H.P. Endtz (Hubert); H.A. Bruining (Hajo); D. Naumann; G.J. Puppels (Gerwin)

    2003-01-01

    textabstractRapid identification of microbial pathogens reduces infection-related morbidity and mortality of hospitalized patients. Raman spectra and Fourier transform infrared (IR) spectra constitute highly specific spectroscopic fingerprints of microorganisms by which they can

  20. Vibrational spectroscopy and microscopic imaging: novel approaches for comparing barrier physical properties in native and human skin equivalents

    Science.gov (United States)

    Yu, Guo; Zhang, Guojin; Flach, Carol R.; Mendelsohn, Richard

    2013-06-01

    Vibrational spectroscopy and imaging have been used to compare barrier properties in human skin, porcine skin, and two human skin equivalents, Epiderm 200X with an enhanced barrier and Epiderm 200 with a normal barrier. Three structural characterizations were performed. First, chain packing and conformational order were compared in isolated human stratum corneum (SC), isolated porcine SC, and in the Epiderm 200X surface layers. The infrared (IR) spectrum of isolated human SC revealed a large proportion of orthorhombically packed lipid chains at physiological temperatures along with a thermotropic phase transition to a state with hexagonally packed chains. In contrast, the lipid phase at physiological temperatures in both porcine SC and in Epiderm 200X, although dominated by conformationally ordered chains, lacked significant levels of orthorhombic subcell packing. Second, confocal Raman imaging of cholesterol bands showed extensive formation of cholesterol-enriched pockets within the human skin equivalents (HSEs). Finally, IR imaging tracked lipid barrier dimensions as well as the spatial disposition of ordered lipids in human SC and Epiderm 200X. These approaches provide a useful set of experiments for exploring structural differences between excised human skin and HSEs, which in turn may provide a rationale for the functional differences observed among these preparations.

  1. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  2. Infrared and Raman Study of the Recluse Spider Silk

    Science.gov (United States)

    Wang, S. L.; Wang, Qijue; Xing, Zhen; Schniepp, H. C.; Qazilbash, M. M.

    Spider silk exhibits remarkable mechanical properties, such as high tensile strength and toughness. We want to gain insight into the composition and structure of spider silk to discover the origin of these properties. We are especially interested in the organization of the crystalline beta sheets that are expected to contribute to the high strength of the silk from the recluse spider, Loxosceles laeta. The recluse spider produces a silk that has a unique geometry amongst arachnids. We measure the silk's optical properties, particularly the infrared-active and Raman-active vibrations. Broadband infrared transmission spectra were collected in the spectral range between 600 cm-1 and 4000 cm-1, with light polarized parallel and perpendicular to the long axis of the silk. Raman micro-spectroscopy was performed in the spectral range 500 cm-1 and 4000 cm- 1 with a 514 nm laser. The infrared and Raman vibrational modes are fit with Lorentzian and pseudo-Voigt functions. The vibrational modes are assigned to specific structures and electronic bonds in the silk. This work was supported by NASA/ Virginia Space Grant Consortium.

  3. Monolithic PM Raman fiber laser at 1679 nm for Raman amplification at 1810 nm

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian; Rottwitt, Karsten

    2013-01-01

    Stimulated Raman scattering (SRS) has been subject to much attention within the field of fiber lasers and amplifiers as it provides an extended wavelength coverage in comparison to rare-earth based devices. Motivated by the projected capacity crunch [1], different approaches are being explored...... was obtained by optimizing the Q-factor of the cavity compared to the fiber length, through the reflectivity of the inscribed FBGs. A linewidth (LW) of 27 pm (2.9 GHz) is obtained at an output power of 275 mW. The LW was sufficiently wide to avoid stimulated Brillouin scattering in the RA. The measured Raman...... to increase the capacity of communication systems [2]. One approach is by exploiting new optical wavelength bands, outside the conventional amplification windows. In the development of lasers and amplifiers in the short wave IR above the Erbium band, SRS seems to be a promising candidate. In this paper we...

  4. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023% PC5, 0.00095% PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm-1). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  5. Structured illumination microscopy for vibrational molecular imaging (Conference Presentation)

    Science.gov (United States)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2016-09-01

    Raman microscopy is a powerful tool for analytical imaging. The wavelength shift of Raman scattering corresponds to molecular vibrational energy. Therefore, we can access rich chemical information, such as distribution, concentration, and chemical environment of sample molecules. Despite these strengths of Raman microscopy, the spatial resolution has been a limiting factor for many practical applications. In this study, we developed a large-area, high-resolution Raman microscope by utilizing structured illumination microscopy (SIM) to overcome the spatial resolution limit. A structured line-illumination (SLI) Raman microscope was constructed. The structured illumination is introduced along the line direction by the interference of two line-shaped beams. In SIM, the spatial frequency mixing between structured illumination and Raman scattering from the sample allows access to the high spatial frequency information beyond the conventional cut-off. As a result, the FWHM of 40-nm fluorescence particle images showed a clear resolution enhancement in the line direction: 366 nm in LI and 199 nm in SLI microscope. Using the developed microscope, we successfully demonstrated high-resolution Raman imaging of various kinds of specimens, such as few-layer graphene, graphite, mouse brain tissue, and polymer nanoparticles. The high resolution Raman images showed the capability to extract original spectral features from the mixed Raman spectra of a multi-component sample because of the enhanced spatial resolution, which is advantageous in observing complex spectral features. The Raman microscopy technique reported here enables us to see the detailed chemical structures of chemical, biological, and medical samples with a spatial resolution smaller than 200 nm.

  6. Generation of Pseudoscalar Bosons by Stimulated Raman Scattering of Light in Dielectric Media

    Directory of Open Access Journals (Sweden)

    Gorelik V.S.

    2015-01-01

    Full Text Available The conditions of pseudoscalar excitations of liquids and crystals vibration states in spontaneous and stimulated Raman spectra revealing are reported. The selection rules for pseudoscalar modes of molecules and crystals observation have been obtained. The experiments on observation of spontaneous and stimulated Raman scattering on pseudoscalar modes of molecules and crystals have been fulfilled. The excitation of stimulated Raman scattering was with using of solid state laser YAG:Nd3+, generating intense (up to 1 TW/cm2 ultrashort (60 ps laser pulses with energy 10 mJ and frequency repetition 10 Hz. The relationship between pseudoscalar bosons of dielectric media and axion of vacuum is analyzed.

  7. (17)O NMR and Raman Spectroscopies of Green Tea Infusion with Nanomaterial to Investigate Their Properties.

    Science.gov (United States)

    Zhou, Changyan; Zhang, Huiping; Yan, Ying; Zhang, Xinya

    2016-09-01

    (17)O NMR and Raman spectrograms of green tea infusions with nanomaterial were investigated. Different green tea infusions were prepared by steeping tea powder with different concentrations of nanomaterial aqueous solution. The tea infusions were tested with (17)O NMR and Raman spectroscopies. The (17)O NMR results showed that line width increased to 90 in the tea infusions after nanomaterial was added as a result of the effects of the self-association of Ca(2+) and tea polyphenol. The results of Raman spectroscopy showed that, in tea infusions, the enhancement of C─C and C─O stretching vibrations suggest an increase in the number of effective components in water.

  8. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    Science.gov (United States)

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  9. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  10. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    Science.gov (United States)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  11. Fructose-water-dimethylsulfoxide interactions by vibrational spectroscopy and molecular dynamics simulations.

    Science.gov (United States)

    Nikolakis, Vladimiros; Mushrif, Samir H; Herbert, Bryon; Booksh, Karl S; Vlachos, Dionisios G

    2012-09-13

    The solvation of fructose in dimethyl sulfoxide (DMSO) and DMSO-H(2)O (or DMSO-D(2)O) mixtures was investigated using vibrational spectroscopy (Raman, ATR/FTIR) and molecular dynamics (MD) simulations. The analysis of the fructose hydroxyl hydrogen-DMSO oxygen radial distribution function showed that the coordination number of DMSO around the furanose form of fructose is ~3.5. This number is smaller than the number of hydroxyl groups of fructose because one DMSO molecule is shared between two hydroxyl groups and because intramolecular hydrogen bonds are formed. In the case of fructose-DMSO mixtures, a red shift of the Raman S═O asymmetric stretch is observed, which indicates that fructose breaks the DMSO clusters through strong hydrogen bonding between the hydrogen atoms of its hydroxyl groups and the oxygen atom of DMSO. The Raman scattering cross sections of the DMSO S═O stretch when a DMSO molecule interacts with another DMSO molecule, a fructose molecule, or a water molecule were estimated from the spectra of the binary mixtures using the coordination numbers from MD simulations. It was also possible to use these values together with the MD-estimated coordination numbers to satisfactorily predict the effect of the water fraction on the Raman scattering intensity of the S═O stretching band in ternary mixtures. MD simulations also showed that, with increasing water content, the DMSO orientation around fructose changed, with the sulfur atom moving away from the carbohydrate. The deconvolution of the fructose IR OH stretching region revealed that the hydroxyls of fructose can be separated into two groups that participate in hydrogen bonds of different strengths. MD simulations showed that the three hydroxyls of the fructose ring form stronger hydrogen bonds with the solvent than the remaining hydroxyls, providing an explanation for the experimental observations. Finally, analysis of ATR/FTIR spectra revealed that, with increasing water content, the average

  12. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    intensities with the stoichiometric coefficients, the equilibrium constant, and the thermodynamics of the reaction equilibrium is derived. The method is used-along with the temperature-dependent features of the Raman spectra-to show that the studied equilibrium 2HSO(4)(-) (1) S2O72-(1) + H2O(g) is the only......Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... band intensities inferring the occurrence of the temperature-dependent dissociation equilibrium 2HSO(4)(-) (1) S2O72-(1) + H2O(g). The Raman data are adequate for determining the partial pressures of H2O in the gas phase above the molten mixtures. A formalism for correlating relative Raman band...

  13. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  14. Monosodium glutamate in its anhydrous and monohydrate form: Differentiation by Raman spectroscopies and density functional calculations

    Science.gov (United States)

    Peica, N.; Lehene, C.; Leopold, N.; Schlücker, S.; Kiefer, W.

    2007-03-01

    Monosodium glutamate (MSG), a common flavor enhancer, is detected in aqueous solutions by Raman and surface-enhanced Raman (SERS) spectroscopies at the micromolar level. The presence of different species, such as protonated and unprotonated MSG, is demonstrated by concentration and pH dependent Raman and SERS experiments. In particular, the symmetric bending modes of the amino group and the stretching modes of the carboxy moiety are employed as marker bands. The protonation of the NH 2 group at acidic pH values, for example, is detected in the Raman spectra. From the measured SERS spectra, a strong chemical interaction of MSG with the colloidal particles is deduced and a geometry of MSG adsorbed on the silver surface is proposed. In order to assign the observed Raman bands, calculations employing density functional theory (DFT) were performed. The calculated geometries, harmonic vibrational wavenumbers and Raman scattering activities for both MSG forms are in good agreement with experimental data. The set of theoretical data enables a complete vibrational assignment of the experimentally detected Raman spectra and the differentiation between the anhydrous and monohydrate forms of MSG.

  15. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly......Compared to traditional IR methods, Raman spectroscopy has the advantage of only minimal interference from water when measuring aqueous samples, which makes this method potentially useful for in situ monitoring of important industrial bioprocesses. This study demonstrates real-time monitoring......-variant chemometric techniques, such as PLS, were avoided in the quantification model, as an attempt to keep the monitoring method as simple as possible and still get satisfactory estimations. Instead, estimations were made with a two-step approach, where initial scattering correction of attenuated signals...

  16. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  17. Identification of gaseous oxygen and nitrogen in bubble inclusions in Bi4(GeO4)3 (BGO) crystals by means of Raman spectroscopy

    NARCIS (Netherlands)

    Boer, R.C. de; Loosdrecht, P.H.M. van; Meekes, H.L.M.

    1994-01-01

    Bubble inclusions in BGO crystals have been studied by means of Raman spectroscopy. Since the crystals were grown under ambient atmospheric conditions, we focused our attention on oxygen and nitrogen. Both species are diatomic homonuclear molecules which are vibrationally and rotationally Raman

  18. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  19. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  20. Spectroscopic studies (FTIR, FT-Raman and UV), potential energy surface scan, normal coordinate analysis and NBO analysis of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl) piperidine-3,4,5-triol by DFT methods

    Science.gov (United States)

    Isac Paulraj, E.; Muthu, S.

    2013-05-01

    This work presents the characterization of (2R,3R,4R,5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl)piperidine-3,4,5-triol (abbreviated as HEHMPT) by quantum chemical calculations and spectral techniques. The spectroscopic properties were investigated by FT-IR, FT-Raman and UV-Vis techniques. The FT-IR spectrum (4000-400 cm-1) and FT-Raman spectrum (4000-100 cm-1) in solid phase was recorded for HEHMPT. The UV-Vis absorption spectrum of the HEHMPT that dissolved in water was recorded in the range of 100-400 nm. The structural and spectroscopic data of the molecule were obtained from B3LYP and M06-2X with 6-31G(d,p) basis set calculations. The theoretical wavenumbers were scaled and compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the normal co-ordinate analysis (NCA), experimental results and potential energy distribution (PED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method, interpreted in terms of fundamental modes. The stable geometry of the compound has been determined from the potential energy surface scan. The stability of molecule has been analyzed by NBO analysis. The molecule orbital contributions were studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. The electronic properties like UV spectral analysis and HOMO-LUMO energies were reported. The calculated HOMO and LUMO energies shows that charge transfer interactions taking place within the molecule. Mulliken population analysis on atomic charges is also calculated.

  1. Calculation of infrared/Raman spectra and dielectric properties of various crystalline poly(lactic acid)s by density functional perturbation theory (DFPT) method.

    Science.gov (United States)

    Lin, Tingting; Liu, Xiang-Yang; He, Chaobin

    2012-02-09

    We calculated infrared (IR) and Raman spectra of poly(lactic acid) (PLA) polymorphs by employing density functional perturbation theory (DFPT) and a plane wavebasis set. Significant different characteristics are found in the calculated spectra of poly(L-lactic acid) (PLLA) α-form and PLLA/poly(D-lactic acid) (PDLA) stereocomplex (sc) form. Particularly in the carbonyl stretching region, there is only one sharp peak in the sc-form while there are five peaks in the PLLA α-form. A low wavenumber (65 cm(-1)) vibration band of α-PLLA observed in a previous terahertz time-domain spectroscopy study was reproduced in the calculated solid-state PLLA spectra. This band could not be obtained by using DFT (B3LYP/6-31G*) simulation on a single PLA oligomer chain and had been attributed to lattice vibrations in the crystal. The permittivity and polarizability tensors of PLA single crystals were also obtained using the DFPT method and were found to be anisotropic. © 2012 American Chemical Society

  2. A Rapid Method of Crude Oil Analysis Using FT-IR Spectroscopy

    African Journals Online (AJOL)

    HP USER

    (1997). FT-IR characterization of pitches derived from Avgamasya asphaltite and Raman-Dincer heavy crude, Fuel, 76: 1389-1394. Aske, N. (2002). Characterisation of crude oil components, asphaltene aggregation and emulsion stability by means of near infrared spectroscopy and multivariate analysis. Thesis submitted to ...

  3. Surface-Enhanced Raman Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 2. Surface-Enhanced Raman Spectroscopy - Recent Advancement of Raman Spectroscopy. Ujjal Kumar Sur. General Article Volume 15 Issue 2 February 2010 pp 154-164 ...

  4. Toward surface-enhanced Raman imaging of latent fingerprints.

    Science.gov (United States)

    Connatser, R Maggie; Prokes, Sharka M; Glembocki, Orest J; Schuler, Rebecca L; Gardner, Charles W; Lewis, Samuel A; Lewis, Linda A

    2010-11-01

    Exposure to light or heat, or simply a dearth of fingerprint material, renders some latent fingerprints undetectable using conventional methods. We begin to address such elusive fingerprints using detection targeting photo- and thermally stable fingerprint constituents: surface-enhanced Raman spectroscopy (SERS). SERS can give descriptive vibrational spectra of amino acids, among other robust fingerprint constituents, and good sensitivity can be attained by improving metal-dielectric nanoparticle substrates. With SERS chemical imaging, vibrational bands' intensities recreate a visual of fingerprint topography. The impact of nanoparticle synthesis route, dispersal methodology-deposition solvent, and laser wavelength are discussed, as are data from enhanced vibrational spectra of fingerprint components. SERS and Raman chemical images of fingerprints and realistic contaminants are shown. To our knowledge, this represents the first SERS imaging of fingerprints. In conclusion, this work progresses toward the ultimate goal of vibrationally detecting latent prints that would otherwise remain undetected using traditional development methods. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  5. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging

    Science.gov (United States)

    Zhang, Guojin; Senak, Laurence; Moore, David J.

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  6. Raman spectroscopic and mass spectrometric investigations of the hydrogen isotopes and isotopically labelled methane

    Energy Technology Data Exchange (ETDEWEB)

    Jewett, J.R., Fluor Daniel Hanford

    1997-02-24

    Suitable analytical methods must be tested and developed for monitoring the individual process steps within the fuel cycle of a fusion reactor and for tritium accountability. The utility of laser-Raman spectroscopy accompanied by mass spectrometry with an Omegatron was investigated using the analysis of all hydrogen isotopes and isotopically labeled methanes as an example. The Omegatron is useful for analyzing all hydrogen isotopes mixed with the stable helium isotopes. The application of this mass spectrometer were demonstrated by analyzing mixtures of deuterated methanes. In addition, it was employed to study the radiochemical Witzbach exchange reaction between tritium and methanes. A laser-Raman spectrometer was designed for analysis of tritium-containing gases and was built from individual components. A tritium-compatible, metal-sealed Raman cuvette having windows with good optical properties and additional means for measuring the stray light was first used successfully in this work. The Raman spectra of the hydrogen isotopes were acquired in the pure rotation mode and in the rotation-vibration mode and were used for on. The deuterated methanes were measured by Raman spectroscopy, the wavenumbers determined were assigned to the corresponding vibrations, and the wavenumbers for the rotational fine-structure were summarized in tables. The fundamental Vibrations of the deuterated methanes produced Witzbach reactions were detected and assigned. The fundamental vibrations of the molecules were obtained with Raman spectroscopy for the first time in this work. The @-Raman spectrometer assembled is well suited for the analysis of tritium- containing gases and is practical in combination with mass spectrometry using an Omegatron, for studying gases used in fusion.

  7. Optically active vibrational modes of PPV derivatives on textile substrate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.A.T. da, E-mail: seaquinhos@uel.br [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Dias, I.F.L. [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Santos, E.P. dos; Martins, A.A. [Departamento de Fisica, Universidade Vale do Paraiba-UNIVAP, Avenida Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, Sao Paulo (Brazil); Duarte, J.L.; Laureto, E.; Reis, G.A. dos [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Guimaraes, P.S.S.; Cury, L.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte, CEP 30123-970 Minas Gerais (Brazil)

    2013-02-15

    In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on 'dirty' textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I{sub (01)}/I{sub (00)}, were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: Black-Right-Pointing-Pointer MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. Black-Right-Pointing-Pointer Their properties were studied by photoluminescence and Raman techniques. Black-Right-Pointing-Pointer We observed inversion of first vibrational band in relation to purely electronic peak. Black-Right-Pointing-Pointer Optically active vibrational modes of PPV derivatives were studied.

  8. Identification of different forms of cocaine and substances used in adulteration using near-infrared Raman spectroscopy and infrared absorption spectroscopy.

    Science.gov (United States)

    Penido, Ciro A F O; Pacheco, Marcos Tadeu T; Zângaro, Renato A; Silveira, Landulfo

    2015-01-01

    Identification of cocaine and subsequent quantification immediately after seizure are problems for the police in developing countries such as Brazil. This work proposes a comparison between the Raman and FT-IR techniques as methods to identify cocaine, the adulterants used to increase volume, and possible degradation products in samples seized by the police. Near-infrared Raman spectra (785 nm excitation, 10 sec exposure time) and FT-IR-ATR spectra were obtained from different samples of street cocaine and some substances commonly used as adulterants. Freebase powder, hydrochloride powder, and crack rock can be distinguished by both Raman and FT-IR spectroscopies, revealing differences in their chemical structure. Most of the samples showed characteristic peaks of degradation products such as benzoylecgonine and benzoic acid, and some presented evidence of adulteration with aluminum sulfate and sodium carbonate. Raman spectroscopy is better than FT-IR for identifying benzoic acid and inorganic adulterants in cocaine. © 2014 American Academy of Forensic Sciences.

  9. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  10. Raman spectroscopy of oral bacteria

    Science.gov (United States)

    Berger, Andrew J.; Zhu, Qingyuan; Quivey, Robert G.

    2003-10-01

    Raman spectroscopy has been employed to measure the varying concentrations of two oral bacteria in simple mixtures. Evaporated droplets of centrifuged mixtures of Streptococcus sanguis and Streptococcus mutans were analyzed via Raman microspectroscopy. The concentration of s. sanguis was determined based upon the measured Raman spectrum, using partial least squares cross-validation, with an r2 value of 0.98.

  11. Vibrational microspectroscopy analysis of human lenses

    Science.gov (United States)

    Paluszkiewicz, C.; Piergies, N.; Sozańska, A.; Chaniecki, P.; Rękas, M.; Miszczyk, J.; Gajda, M.; Kwiatek, W. M.

    2018-01-01

    In this study we present vibrational analysis of healthy (non-affected by cataract) and cataractous human lenses by means of Raman and FTIR spectroscopy methods. The performed analysis provides complex information about the secondary structure of the proteins and conformational changes of the amino acid residues due to the formation of opacification of human lens. Briefly, the changes in the conformation of the Tyr and Trp residues and the protein secondary structure between the healthy and cataractous samples, were recognized. Moreover, the observed spectral pattern suggests that the process of cataract development does not occur uniformly over the entire volume of the lens.

  12. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  13. Pure electrical, highly-efficient and sidelobe free coherent Raman spectroscopy using acousto-optics tunable filter (AOTF).

    Science.gov (United States)

    Meng, Zhaokai; Petrov, Georgi I; Yakovlev, Vladislav V

    2016-02-01

    Fast and sensitive Raman spectroscopy measurements are imperative for a large number of applications in biomedical imaging, remote sensing and material characterization. Stimulated Raman spectroscopy offers a substantial improvement in the signal-to-noise ratio but is often limited to a discrete number of wavelengths. In this report, by introducing an electronically-tunable acousto-optical filter as a wavelength selector, a novel approach to a broadband stimulated Raman spectroscopy is demonstrated. The corresponding Raman shift covers the spectral range from 600 cm(-1) to 4500 cm(-1), sufficient for probing most vibrational Raman transitions. We validated the use of the new instrumentation to both coherent anti-Stokes scattering (CARS) and stimulated Raman scattering (SRS) spectroscopies.

  14. Raman spectroscopy of Bacillus thuringiensis physiology and inactivation

    Science.gov (United States)

    Morrow, J. B.; Almeida, J.; Cole, K. D.; Reipa, V.

    2012-12-01

    The ability to detect spore contamination and inactivation is relevant to developing and determining decontamination strategy success for food and water safety. This study was conducted to develop a systematic comparison of nondestructive vibrational spectroscopy techniques (Surface-Enhanced Raman Spectroscopy, SERS, and normal Raman) to determine indicators of Bacillus thuringiensis physiology (spore, vegetative, outgrown, germinated and inactivated spore forms). SERS was found to provide better resolution of commonly utilized signatures of spore physiology (dipicolinic acid at 1006 cm-1 and 1387 cm-1) compared to normal Raman and native fluorescence indigenous to vegetative and outgrown cell samples was quenched in SERS experiment. New features including carotenoid pigments (Raman features at 1142 cm-1, 1512 cm-1) were identified for spore cell forms. Pronounced changes in the low frequency region (300 cm-1 to 500 cm-1) in spore spectra occurred upon germination and inactivation (with both free chlorine and by autoclaving) which is relevant to guiding decontamination and detection strategies using Raman techniques.

  15. Cell Imaging by Spontaneous and Amplified Raman Spectroscopies

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    2017-01-01

    Full Text Available Raman spectroscopy (RS is a powerful, noninvasive optical technique able to detect vibrational modes of chemical bonds. The high chemical specificity due to its fingerprinting character and the minimal requests for sample preparation have rendered it nowadays very popular in the analysis of biosystems for diagnostic purposes. In this paper, we first discuss the main advantages of spontaneous RS by describing the study of a single protozoan (Acanthamoeba, which plays an important role in a severe ophthalmological disease (Acanthamoeba keratitis. Later on, we point out that the weak signals that originated from Raman scattering do not allow probing optically thin samples, such as cellular membrane. Experimental approaches able to overcome this drawback are based on the use of metallic nanostructures, which lead to a huge amplification of the Raman yields thanks to the excitation of localized surface plasmon resonances. Surface-enhanced Raman scattering (SERS and tip-enhanced Raman scattering (TERS are examples of such innovative techniques, in which metallic nanostructures are assembled on a flat surface or on the tip of a scanning probe microscope, respectively. Herein, we provide a couple of examples (red blood cells and bacterial spores aimed at studying cell membranes with these techniques.

  16. Raman, Prof. Rajiva

    Indian Academy of Sciences (India)

    Elected: 1996 Section: Animal Sciences. Raman, Prof. Rajiva Ph.D. (Banaras), FNA, FNASc. Date of birth: 9 December 1948. Specialization: Human Molecular Genetics & Cytogenetics, Gene Expression & Chromatin Organization in Development and Sex Determination Address: Professor Emeritus, Department of Zoology, ...

  17. Qualitative and quantitative approach towards the molecular understanding of structural, vibrational and optical features of urea ninhydrin monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Sasikala, V. [Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110 (India); Sajan, D., E-mail: drsajanbmc@gmail.com [Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala 690110 (India); Chaitanya, K. [Department of Chemistry, Nanjing University of Science and Technology, Xialingwei 200, Nanjing (China); Sundius, Tom [Department of Physics, University of Helsinki (Finland); Devi, T. Uma [Department of Physics, Government Arts College for Women (Autonomous), Pudukottai (India)

    2017-04-15

    In this study, single crystals of urea ninhydrin monohydrate (UNMH) have been grown by slow evaporation method. The grown crystals were characterized by FT-IR, FT-Raman and UV-Vis-NIR spectroscopies. The Kurtz and Perry powder method was employed to confirm the near-zero SHG efficiency of the as-grown centrosymmetric UNMH crystal. The third order nonlinearity of the crystal has been studied by the open aperture Z-scan method. The nonlinear absorption coefficient is calculated and the potentiality of UNMH in optical limiting applications is identified. The molecular geometry and the origin of optical non-linearity at the molecular level have been investigated by the density functional theory. The normal coordinate analysis was carried out to assign the molecular vibrational modes. Vibrational spectral studies confirms the presence of weak O-H⋯O and moderate O-H⋯O type hydrogen bonds in the molecule as well as O-H⋯O, N-H⋯O and blue-shifted C-H⋯O type H-bonds in the crystal. The intramolecular charge transfer interactions and the electronic absorption mechanisms have been discussed. The static and the dynamic values of hyperpolarizabilities for UNMH were estimated theoretically by DFT methods. - Highlights: • Molecular geometric and NBO interaction features of UNMH were analyzed. • Vibrational spectral features and types of H-bonding in isolated gaseous phase molecule were discussed. • Electronic absorption maxima of different phases of UNMH were found out. • The non-linear absorption behaviour of UNMH is investigated using z-scan. • First- and second- order hyperpolarizability values were estimated theoretically.

  18. Structural stability, vibrational, and bonding properties of potassium 1, 1'-dinitroamino-5, 5'-bistetrazolate: An emerging green primary explosive

    Science.gov (United States)

    Yedukondalu, N.; Vaitheeswaran, G.

    2015-08-01

    Potassium 1,1'-dinitroamino-5,5'-bistetrazolate (K2DNABT) is a nitrogen rich (50.3% by weight, K2C2N12O4) green primary explosive with high performance characteristics, namely, velocity of detonation (D = 8.33 km/s), detonation pressure (P = 31.7 GPa), and fast initiating power to replace existing toxic primaries. In the present work, we report density functional theory (DFT) calculations on structural, equation of state, vibrational spectra, electronic structure, and absorption spectra of K2DNABT. We have discussed the influence of weak dispersive interactions on structural and vibrational properties through the DFT-D2 method. We find anisotropic compressibility behavior (btoxic lead azide and harder than the most sensitive cyanuric triazide. A complete assignment of all the vibrational modes has been made and compared with the available experimental results. The calculated zone center IR and Raman frequencies show a blue-shift which leads to a hardening of the lattice upon compression. In addition, we have also calculated the electronic structure and absorption spectra using recently developed Tran Blaha-modified Becke Johnson potential. It is found that K2DNABT is a direct band gap insulator with a band gap of 3.87 eV and the top of the valence band is mainly dominated by 2p-states of oxygen and nitrogen atoms. K2DNABT exhibits mixed ionic (between potassium and tetrazolate ions) and covalent character within tetrazolate molecule. The presence of ionic bonding suggests that the investigated compound is relatively stable and insensitive than covalent primaries. From the calculated absorption spectra, the material is found to decompose under ultra-violet light irradiation.

  19. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  20. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.