WorldWideScience

Sample records for vibrational imaging based

  1. Optical image hiding based on chaotic vibration of deformable moiré grating

    Science.gov (United States)

    Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas

    2018-03-01

    Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.

  2. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  3. Mechanical Fault Diagnosis Using Color Image Recognition of Vibration Spectrogram Based on Quaternion Invariable Moment

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2015-01-01

    Full Text Available Automatic extraction of time-frequency spectral image of mechanical faults can be achieved and faults can be identified consequently when rotating machinery spectral image processing technology is applied to fault diagnosis, which is an advantage. Acquired mechanical vibration signals can be converted into color time-frequency spectrum images by the processing of pseudo Wigner-Ville distribution. Then a feature extraction method based on quaternion invariant moment was proposed, combining image processing technology and multiweight neural network technology. The paper adopted quaternion invariant moment feature extraction method and gray level-gradient cooccurrence matrix feature extraction method and combined them with geometric learning algorithm and probabilistic neural network algorithm, respectively, and compared the recognition rates of rolling bearing faults. The experimental results show that the recognition rates of quaternion invariant moment are higher than gray level-gradient cooccurrence matrix in the same recognition method. The recognition rates of geometric learning algorithm are higher than probabilistic neural network algorithm in the same feature extraction method. So the method based on quaternion invariant moment geometric learning and multiweight neural network is superior. What is more, this algorithm has preferable generalization performance under the condition of fewer samples, and it has practical value and acceptation on the field of fault diagnosis for rotating machinery as well.

  4. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  5. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  6. Sub-nano tesla magnetic imaging based on room-temperature magnetic flux sensors with vibrating sample magnetometry

    Science.gov (United States)

    Adachi, Yoshiaki; Oyama, Daisuke

    2017-05-01

    We developed a two-dimensional imaging method for weak magnetic charge distribution using a commercially available magnetic impedance sensor whose magnetic field resolution is 10 pT/Hz1/2 at 10 Hz. When we applied the vibrating sample magnetometry, giving a minute mechanical vibration to the sample and detecting magnetic signals modulated by the vibration frequency, the effects of 1/f noise and the environmental low-frequency band noise were suppressed, and a weak magnetic charge distribution was obtained without magnetic shielding. Furthermore, improvement in the spatial resolution was also expected when the signals were demodulated at the second harmonic frequency of the vibration. In this paper, a preliminary magnetic charge imaging using the vibrating sample magnetometry and its results are demonstrated.

  7. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  8. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  9. Vibration factors impact analysis on aerial film camera imaging quality

    Science.gov (United States)

    Xie, Jun; Han, Wei; Xu, Zhonglin; Tan, Haifeng; Yang, Mingquan

    2017-08-01

    Aerial film camera can acquire ground target image information advantageous, but meanwhile the change of aircraft attitude, the film features and the work of camera inside system could result in a vibration which could depress the image quality greatly. This paper presented a design basis of vibration mitigation stabilized platform based on the vibration characteristic of the aerial film camera and indicated the application analysis that stabilized platform could support aerial camera to realize the shoot demand of multi-angle and large scale. According to the technique characteristics of stabilized platform, the development direction are high precision, more agility, miniaturization and low power.

  10. Kymographic imaging of laryngeal vibrations

    NARCIS (Netherlands)

    Svec, Jan G.; Schutte, Harm K.

    2012-01-01

    Purpose of review Kymographic imaging is a modern method for displaying and evaluating vibratory behaviour of the vocal folds which is crucial for voice production. This review summarizes the state of the art of this method, and focuses on the progress in this area within the last 5 years. Recent

  11. Novel Applications of Laser Doppler Vibration Measurements to Medical Imaging

    Science.gov (United States)

    Tabatabai, Habib; Oliver, David E.; Rohrbaugh, John W.; Papadopoulos, Christopher

    2013-06-01

    Laser Doppler Vibrometry (LDV) has been widely used in engineering applications involving non-contact vibration and sound measurements. This technique has also been used in some biomedical applications including hearing research. The detectable frequencies are in the range of near-DC to 1 GHz or higher. This paper reviews applications of LDV in biomedical engineering and proposes new medical imaging applications based on measuring surface vibrations of tissues and organs. Tests were conducted on human skin using single point and scanning laser vibrometers. These tests suggest that skin vibrations due to the forcing excitation from the heart can be used in imaging of blood flow. The results of these tests illustrate the potential of such vibration measurements in a variety of diagnostic medical imaging applications including blood flow/restrictions, real-time monitoring of blood pressure variations, wound healing, muscle movements, etc. The fact that the measurements can be conducted remotely (non-contact) is an important benefit that adds to the promise of this approach.

  12. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Aoife A. Gowen

    2016-07-01

    Full Text Available Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy.

  13. Remote Electromagnetic Vibration of Steerable Needles for Imaging in Power Doppler Ultrasound

    Science.gov (United States)

    Cabreros, Sarah S.; Jimenez, Nina M.; Greer, Joseph D.; Adebar, Troy K.; Okamura, Allison M.

    2015-01-01

    Robotic needle steering systems for minimally invasive medical procedures require complementary medical imaging systems to track the needles in real time. Ultrasound is a promising imaging modality because it offers relatively low-cost, real-time imaging of the needle. Previous methods applied vibration to the base of the needle using a voice coil actuator, in order to make the needle visible in power Doppler ultrasound. We propose a new method for needle tip vibration, using electromagnetic actuation of small permanent magnets placed inside the needle to improve needle tip visibility in power Doppler imaging. Robotic needle insertion experiments using artificial tissue and ex vivo porcine liver showed that the electromagnetic tip vibration method can generate a stronger Doppler response compared to the previous base vibration method, resulting in better imaging at greater needle depth in tissue. It also eliminates previous issues with vibration damping along the shaft of the needle. PMID:26413379

  14. Rotational speed invariant fault diagnosis in bearings using vibration signal imaging and local binary patterns.

    Science.gov (United States)

    Khan, Sheraz Ali; Kim, Jong-Myon

    2016-04-01

    Structural vibrations of bearing housings are used for diagnosing fault conditions in bearings, primarily by searching for characteristic fault frequencies in the envelope power spectrum of the vibration signal. The fault frequencies depend on the non-stationary angular speed of the rotating shaft. This paper explores an imaging-based approach to achieve rotational speed independence. Cycle length segments of the rectified vibration signal are stacked to construct grayscale images which exhibit unique textures for each fault. These textures show insignificant variation with the rotational speed, which is confirmed by the classification results using their local binary pattern histograms.

  15. Vibrational Based Inspection Of A Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of accep......The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination...

  16. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  17. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  18. Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves

    Directory of Open Access Journals (Sweden)

    Jie Hui

    2016-03-01

    Full Text Available The quantized vibration of chemical bonds provides a way of detecting specific molecules in a complex tissue environment. Unlike pure optical methods, for which imaging depth is limited to a few hundred micrometers by significant optical scattering, photoacoustic detection of vibrational absorption breaks through the optical diffusion limit by taking advantage of diffused photons and weak acoustic scattering. Key features of this method include both high scalability of imaging depth from a few millimeters to a few centimeters and chemical bond selectivity as a novel contrast mechanism for photoacoustic imaging. Its biomedical applications spans detection of white matter loss and regeneration, assessment of breast tumor margins, and diagnosis of vulnerable atherosclerotic plaques. This review provides an overview of the recent advances made in vibration-based photoacoustic imaging and various biomedical applications enabled by this new technology.

  19. A novel vibration sensor based on phase grating interferometry

    Science.gov (United States)

    Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei

    2017-05-01

    Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.

  20. Vision-Based Faint Vibration Extraction Using Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    Xiujun Lei

    2015-01-01

    Full Text Available Vibration measurement is important for understanding the behavior of engineering structures. Unlike conventional contact-type measurements, vision-based methodologies have attracted a great deal of attention because of the advantages of remote measurement, nonintrusive characteristic, and no mass introduction. It is a new type of displacement sensor which is convenient and reliable. This study introduces the singular value decomposition (SVD methods for video image processing and presents a vibration-extracted algorithm. The algorithms can successfully realize noncontact displacement measurements without undesirable influence to the structure behavior. SVD-based algorithm decomposes a matrix combined with the former frames to obtain a set of orthonormal image bases while the projections of all video frames on the basis describe the vibration information. By means of simulation, the parameters selection of SVD-based algorithm is discussed in detail. To validate the algorithm performance in practice, sinusoidal motion tests are performed. Results indicate that the proposed technique can provide fairly accurate displacement measurement. Moreover, a sound barrier experiment showing how the high-speed rail trains affect the sound barrier nearby is carried out. It is for the first time to be realized at home and abroad due to the challenge of measuring environment.

  1. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    low spring constant objective to be achieved. A piezoelectric cantilever beam that is very long and very thin would produce the maximum voltage...California, Berkeley, 2002. [11] A. Kasyap, “Development of MEMS-based piezoelectric cantilever arrays for vibrational energy harvesting,” Gainesville, FL...maximum 200 words) The piezoelectric effect is a phenomenon where strain on a piezoelectric crystal structure causes potential difference at its

  2. Confirmation of Thermal Images and Vibration Signals for Intelligent Machine Fault Diagnostics

    Directory of Open Access Journals (Sweden)

    Achmad Widodo

    2012-01-01

    Full Text Available This paper deals with the maintenance technique for industrial machinery using the artificial neural network so-called self-organizing map (SOM. The aim of this work is to develop intelligent maintenance system for machinery based on an alternative way, namely, thermal images instead of vibration signals. SOM is selected due to its simplicity and is categorized as an unsupervised algorithm. Following the SOM training, machine fault diagnostics is performed by using the pattern recognition technique of machine conditions. The data used in this work are thermal images and vibration signals, which were acquired from machine fault simulator (MFS. It is a reliable tool and is able to simulate several conditions of faulty machine such as unbalance, misalignment, looseness, and rolling element bearing faults (outer race, inner race, ball, and cage defects. Data acquisition were conducted simultaneously by infrared thermography camera and vibration sensors installed in the MFS. The experimental data are presented as thermal image and vibration signal in the time domain. Feature extraction was carried out to obtain salient features sensitive to machine conditions from thermal images and vibration signals. These features are then used to train the SOM for intelligent machine diagnostics process. The results show that SOM can perform intelligent fault diagnostics with plausible accuracies.

  3. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  4. Estimate of the effect of micro-vibration on the performance of the Algerian satellite (Alsat-1B) imager

    Science.gov (United States)

    Serief, Chahira

    2017-11-01

    Alsat-1B, launched into a 670 km sun-synchronous orbit on board the PSLV launch vehicle from the Sriharikota launch site in India on 26 September 2016, is a medium resolution Earth Observation satellite with a mass of 100 kg. Alsat-1B will be used for agricultural and resource monitoring, disaster management, land use mapping and urban planning. It is based on the SSTL-100 platform, and flies a 24 m multispectral imager and a 12 m panchromatic imager delivering images with a swath width of 140 km. One of the main factors affecting the performance of satellite-borne optical imaging systems is micro-vibration. Micro-vibration is a low level mechanical disturbance inevitably generated from moving parts on a satellite and exceptionally difficult to be controlled by the attitude and orbital control system (AOCS) of a spacecraft. Micro-vibration usually causes problems for optical imaging systems onboard Earth Observation satellites. The major effect of micro-vibration is the excitation of the support structures for the optical elements during imaging operations which can result in severe degradation of image quality by smearing and distortion. Quantitative characterization of image degradation caused by micro-vibration is thus quite useful and important as part of system level analysis which can help preventing micro-vibration influence by proper design and restoring the degraded image. The aim of this work is to provide quantitative estimates of the effect of micro-vibration on the performance of Alsat-1B imager, which may be experienced operationally, in terms of the modulation transfer function (MTF) and based on ground micro-vibration tests results.

  5. Vibrational spectroscopy and imaging: applications for tissue engineering.

    Science.gov (United States)

    Querido, William; Falcon, Jessica M; Kandel, Shital; Pleshko, Nancy

    2017-10-23

    Tissue engineering (TE) approaches strive to regenerate or replace an organ or tissue. The successful development and subsequent integration of a TE construct is contingent on a series of in vitro and in vivo events that result in an optimal construct for implantation. Current widely used methods for evaluation of constructs are incapable of providing an accurate compositional assessment without destruction of the construct. In this review, we discuss the contributions of vibrational spectroscopic assessment for evaluation of tissue engineered construct composition, both during development and post-implantation. Fourier transform infrared (FTIR) spectroscopy in the mid and near-infrared range, as well as Raman spectroscopy, are intrinsically label free, can be non-destructive, and provide specific information on the chemical composition of tissues. Overall, we examine the contribution that vibrational spectroscopy via fiber optics and imaging have to tissue engineering approaches.

  6. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  7. Vibrational Based Inspection of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Rytter, Anders

    and Structural Engineering at the University of Aalborg since the beginning of 1992. Both projects have been supported by the Danish Technical Research Council. Further, the first mentioned project was supported by the Danish Energy Agency. Their financial support is gratefully acknowledged.......The thesis has been written in relation to two different research projects. Firstly, an offshore test programme, Integrated Experimental/Numerical Analysis of the Dynamic behavior of offshore structures, which was performed at the department of Building Technology and Structural Engineering...... at the University of Aalborg from 1988 to 1991. Secondly, a research project, In-Field Vibration Based Inspection of Civil Engineering Structures, which has been performed as a pilot project by the Consulting Engineers Rambøll, Hannemann and Højlund in cooperation with the department of Building Technology...

  8. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  9. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.

    2011-03-03

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  10. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    Science.gov (United States)

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  11. Vibration Analysis using 3D Image Correlation Technique

    Directory of Open Access Journals (Sweden)

    Splitthof K.

    2010-06-01

    Full Text Available Digital speckle correlation techniques have already been successfully proven to be an accurate displacement analysis tool for a wide range of applications. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. With a simple setup it opens a wide range of applications. Rapid new developments in the field of digital imaging and computer technology opens further applications for these measurement methods to high speed deformation and strain analysis, e.g. in the fields of material testing, fracture mechanics, advanced materials and component testing. The high resolution of the deformation measurements in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space, it is capable of measuring high amplitudes and even objects with rigid body movements. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of harmonic vibration and transient events from material research and industrial applications are presented. The results show typical features of the system.

  12. Vibration-based testing of bolted joints

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Sah, Si Mohamed; Fidlin, Alexander

    2017-01-01

    In recent pilot studies we have started investigating how to possibly use measured flexural (i.e. transverse/bending) vibrations, induced by bolt-tapping, to estimate bolt tightness. Some of the vibration features we investigated showed strong correlation with bolt tightness. For example, the low...... to bolt tension, but also to slenderness ratio. Thus, if only the natural frequency feature were to be used for estimating bolt tension, accuracy will drop off for the short and thick bolts that are often used in critical joints....

  13. Predicting footbridge vibrations using a probability-based approach

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2017-01-01

    to modeling the action of a pedestrian. The paper employs a probability-based approach to modeling the action of a pedestrian by considering randomness in the behavior of the pedestrian crossing the footbridge. The paper describes the approach and studies implications (sensitivity) of selected decisions made......Vibrations in footbridges may be problematic as excessive vibrations may occur as a result of actions of pedestrians. Design-stage predictions of levels of footbridge vibration to the action of a pedestrian are useful and have been employed for many years based on a deterministic approach...

  14. Image-based monitoring of one-lung ventilation.

    Science.gov (United States)

    Jean, S; Cinel, I; Gratz, I; Tay, C; Lotano, V; Deal, E; Parrillo, J E; Dellinger, R P

    2008-12-01

    With the increasing demand for one-lung ventilation in both thoracic surgery and other procedures, identifying the correct placement becomes increasingly important. Currently, endobronchial intubation is suspected based on a combination of auscultation and physiological findings. We investigated the ability of the visual display of airflow-induced vibrations to detect single-lung ventilation with a double-lumen endotracheal tube. Double-lumen tubes were placed prior to surgery. Tracheal and endobronchial lumens were alternately clamped to produce unilateral lung ventilation of right and left lung. Vibration response imaging, which detects vibrations transmitted to the surface of the thorax, was performed during both right- and left-lung ventilation. Geographical area of vibration response image as well as amount and distribution of lung sounds were assessed. During single-lung ventilation, the image and video obtained from the vibration response imaging identifies the ventilated lung with a larger and darker image on the ventilated side. During single-lung ventilation, 87.2 +/- 5.7% of the measured vibrations was detected over the ventilated lung and 12.8 +/- 5.7% over the non-ventilated lung (P single-lung ventilation, the vibration distribution in the non-ventilated lung had a majority of vibration detected by the medial sensors closest to the midline (P lung is ventilated. During single-lung ventilation, vibration response imaging clearly showed increased vibration in the lung that is being ventilated. Distribution of residual vibration differed in the non-ventilated lung in a manner that suggests transmission of vibrations across the mediastinum from the ventilated lung. The lung image and video obtained from vibration response imaging may provide useful and immediate information to help one-lung ventilation assessment.

  15. Structured illumination microscopy for vibrational molecular imaging (Conference Presentation)

    Science.gov (United States)

    Watanabe, Kozue; Palonpon, Almar F.; Smith, Nicholas I.; Chiu, Liang-da; Kasai, Atsushi; Hashimoto, Hitoshi; Kawata, Satoshi; Fujita, Katsumasa

    2016-09-01

    Raman microscopy is a powerful tool for analytical imaging. The wavelength shift of Raman scattering corresponds to molecular vibrational energy. Therefore, we can access rich chemical information, such as distribution, concentration, and chemical environment of sample molecules. Despite these strengths of Raman microscopy, the spatial resolution has been a limiting factor for many practical applications. In this study, we developed a large-area, high-resolution Raman microscope by utilizing structured illumination microscopy (SIM) to overcome the spatial resolution limit. A structured line-illumination (SLI) Raman microscope was constructed. The structured illumination is introduced along the line direction by the interference of two line-shaped beams. In SIM, the spatial frequency mixing between structured illumination and Raman scattering from the sample allows access to the high spatial frequency information beyond the conventional cut-off. As a result, the FWHM of 40-nm fluorescence particle images showed a clear resolution enhancement in the line direction: 366 nm in LI and 199 nm in SLI microscope. Using the developed microscope, we successfully demonstrated high-resolution Raman imaging of various kinds of specimens, such as few-layer graphene, graphite, mouse brain tissue, and polymer nanoparticles. The high resolution Raman images showed the capability to extract original spectral features from the mixed Raman spectra of a multi-component sample because of the enhanced spatial resolution, which is advantageous in observing complex spectral features. The Raman microscopy technique reported here enables us to see the detailed chemical structures of chemical, biological, and medical samples with a spatial resolution smaller than 200 nm.

  16. Imaging acoustic vibrations in an ear model using spectrally encoded interferometry

    Science.gov (United States)

    Grechin, Sveta; Yelin, Dvir

    2018-01-01

    Imaging vibrational patterns of the tympanic membrane would allow an accurate measurement of its mechanical properties and provide early diagnosis of various hearing disorders. Various optical technologies have been suggested to address this challenge and demonstrated in vitro using point scanning and full-field interferometry. Spectrally encoded imaging has been previously demonstrated capable of imaging tissue acoustic vibrations with high spatial resolution, including two-dimensional phase and amplitude mapping. In this work, we demonstrate a compact optical apparatus for imaging acoustic vibrations that could be incorporated into a commercially available digital otoscope. By transmitting harmonic sound waves through the otoscope insufflation port and analyzing the spectral interferograms using custom-built software, we demonstrate high-resolution vibration imaging of a circular rubber membrane within an ear model.

  17. 49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Procedure for Base-level Vibration Testing C... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three... platform. 4. Immediately following the period of vibration, each package shall be removed from the platform...

  18. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    Science.gov (United States)

    Miyamoto, Ayaho; Yabe, Akito

    2011-07-01

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the "substructure method" employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  19. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ayaho [Graduate School of Science and Engineering, Yamaguchi University, Ube (Japan); Yabe, Akito, E-mail: miya818@yamaguchi-u.ac.jp, E-mail: nagai@kke.co.jp [Seismic Engineering Department, KOZO KEIKAKU Engineering Inc. Tokyo (Japan)

    2011-07-19

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the 'substructure method' employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  20. Design of vibration sensor based on fiber Bragg grating

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong

    2017-12-01

    Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.

  1. Study of the vibration of bulkhead-stiffened cylindrical shells by laser-based methods

    Science.gov (United States)

    Zhu, Ninghui

    studied. The relationship between natural frequency loci veering, mode shape localization of steady state vibration and pass- stop-band behavior of wave propagation are established in stiffened cylindrical shell structures. It is hoped that this finding can be used to emphasis the importance of mode localization when the numerical models are applied to the study of dynamic behavior of real engineering structures. Finally, a novel laser-based vibration measurement system is developed. Rather than using a photographic camera as in conventional speckle photography, this system utilizes a CCD camera and an interfaced computer to perform the digital speckle image processing. Several algorithms are developed or found to extract the mode shapes related to the vibration of objects from captured digital speckle images. The algorithms can be generally categorized into the following aspects as spatial domain filtering (e.g., image edge detection operation), spectrum domain filtering (e.g., Fourier transform operation), spatial domain correlation and image blurring model. The computer generated or processed images can provide a Chladni-like pattern showing the mode shapes of vibrating objects. This new laser-based vibration measurement technique not only inherits the common merits shared by conventional optical schemes such as whole-field, non-contact and non-destruction, but also possesses its unique features of noise-resistance, simplicity, flexibility and, most of all, practicability. The feasibility of this new technique had been proven by successful field tests at the shipyard of General Dynamic Electric Boat Division.

  2. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  3. Flexible Fiber-Optic High-Speed Imaging of Vocal Fold Vibration: A Preliminary Report.

    Science.gov (United States)

    Woo, Peak; Baxter, Peter

    2017-03-01

    High-speed video (HSV) imaging of vocal fold vibration has been possible only through the rigid endoscope. This study reports that a fiberscope-based high-speed imaging system may allow HSV imaging of naturalistic voicing. Twenty-two subjects were recorded using a commercially available black and white high-speed camera (Photron Motion Tools, 256 × 120 pixel, 2000 frames per second, 8 second acquisition time). The camera gain is set to +6 db. The camera is coupled to a standard fiber-optic laryngoscope (Olympus ENF P-4) with a 300-W Xenon light. Image acquisition was done by asking the subject to perform repeated phonation at modal phonation. Video images were processed using commercial video editing and video noise reduction software (After effects, Magix, and Neat Video 4.1). After video processing, the video images were analyzed using digital kymography (DKG). The HSV black and white video acquired by the camera is gray and lacks contrast. By adjustment of image contrast, brightness, and gamma and using noise reduction software, the flexible laryngoscopy image can be converted to video image files suitable for DKG and waveform analysis. The increased noise still makes edge tracking for objective analysis difficult, but subjective analysis of DKG plot is possible. This is the first report of HSV acquisition in an unsedated patient using a fiberscope. Image enhancement and noise reduction can enhance the HSV to allow extraction of the digital kymogram. Further image enhancement may allow for objective analysis of the vibratory waveform. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. Measurement of Vibrated Bulk Density of Coke Particle Blends Using Image Texture Analysis

    Science.gov (United States)

    Azari, Kamran; Bogoya-Forero, Wilinthon; Duchesne, Carl; Tessier, Jayson

    2017-09-01

    A rapid and nondestructive machine vision sensor was developed for predicting the vibrated bulk density (VBD) of petroleum coke particles based on image texture analysis. It could be used for making corrective adjustments to a paste plant operation to reduce green anode variability (e.g., changes in binder demand). Wavelet texture analysis (WTA) and gray level co-occurrence matrix (GLCM) algorithms were used jointly for extracting the surface textural features of coke aggregates from images. These were correlated with the VBD using partial least-squares (PLS) regression. Coke samples of several sizes and from different sources were used to test the sensor. Variations in the coke surface texture introduced by coke size and source allowed for making good predictions of the VBD of individual coke samples and mixtures of them (blends involving two sources and different sizes). Promising results were also obtained for coke blends collected from an industrial-baked carbon anode manufacturer.

  5. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations...... signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the entire blade length, so good results can be obtained even using only one actuator. The system is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach, the system enables...

  6. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  7. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  8. Analysis of a Lorentz force based vibration exciter using permanent ...

    Indian Academy of Sciences (India)

    This work presents performance analysis of a Lorentz force based noncontact vibration exciter by mounting a couple of permanent magnets on a piezoelectric stack. A conductor is attached to the structure to be excited and is placed midway between unlike poles of a couple of permanent magnets. The permanent magnets ...

  9. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    Science.gov (United States)

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  10. Granular Media-Based Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara

    2013-01-01

    and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring

  11. Modeling and imaging of the vocal fold vibration for voice health

    DEFF Research Database (Denmark)

    Granados, Alba

    displacements captured with laryngeal high-speed videoendoscopy. A dense optical ow algorithm is adapted to the complex nature of the image sequence, and numerical errors are treated to improve the accuracy of the results. Principal components decomposition is applied to extract the underlying modes......, analysis and inference. This thesis deals with biomechanical models of the vocal fold, specially of the collision, and laryngeal videoendoscopic analysis procedures suitable for the inference of the underlying vocal fold characteristics. The rst part of this research is devoted to frictionless contact...... modeling during asymmetric vocal fold vibration. The prediction problem is numerically addressed with a self-sustained three-dimensional nite element model of the vocal fold with position-based contact constraints. A novel contact detection mechanism is shown to successfully detect collision in asymmetric...

  12. A review of vibration-based MEMS piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Saadon, Salem; Sidek, Othman [Collaborative Microelectronic Design Excellence Center (CEDEC), School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2011-01-15

    The simplicity associated with the piezoelectric micro-generators makes it very attractive for MEMS applications, especially for remote systems. In this paper we reviewed the work carried out by researchers during the last three years. The improvements in experimental results obtained in the vibration-based MEMS piezoelectric energy harvesters show very good scope for MEMS piezoelectric harvesters in the field of power MEMS in the near future. (author)

  13. Online vibration-based crack detection during fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, B.; Vecchio, A.; Auweraer, H. van der [LMS International, Heverlee (Belgium); Mevel, L. [INRIA, Rennes (France); Vanlanduit, S.; Guillaume, P. [Dept. of Mechanical Engineering, VUB, Brussels (Belgium); Goursat, M. [Rocquencourt, INRIA, Le Chesnay (France)

    2003-07-01

    When performing fatigue tests, it is essential to monitor the degradation of the structure with an increasing number of fatigue cycles. In this article, a vibration-based damage detection method will be proposed. Such a method has the advantage that it operates online with the fatigue test. Especially for structures with very high fatigue strength, it is important that the test does not have to be interrupted. The damage detection method that will be used is based on a residual generated from a stochastic subspace identification method. The basic idea is that a model for the undamaged structure is identified and that, afterwards, vibration measurements from a possibly damaged structure are confronted with this model. A statistical local approach hypothesis testing is used to assess the deviation of the new data from the nominal model. After introducing the damage detection method, its performance will be illustrated on data from a fatigue experiment. The method will be compared to other linear and non-linear vibration-based damage detection methods. (orig.)

  14. A novel vision-based mold monitoring system in an environment of intense vibration

    Science.gov (United States)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-10-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration.

  15. Dictionary Based Image Segmentation

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2015-01-01

    We propose a method for weakly supervised segmentation of natural images, which may contain both textured or non-textured regions. Our texture representation is based on a dictionary of image patches. To divide an image into separated regions with similar texture we use an implicit level sets...

  16. Differential diagnosis of lung carcinoma with three-dimensional quantitative molecular vibrational imaging

    Science.gov (United States)

    Gao, Liang; Hammoudi, Ahmad A.; Li, Fuhai; Thrall, Michael J.; Cagle, Philip T.; Chen, Yuanxin; Yang, Jian; Xia, Xiaofeng; Fan, Yubo; Massoud, Yehia; Wang, Zhiyong; Wong, Stephen T. C.

    2012-06-01

    The advent of molecularly targeted therapies requires effective identification of the various cell types of non-small cell lung carcinomas (NSCLC). Currently, cell type diagnosis is performed using small biopsies or cytology specimens that are often insufficient for molecular testing after morphologic analysis. Thus, the ability to rapidly recognize different cancer cell types, with minimal tissue consumption, would accelerate diagnosis and preserve tissue samples for subsequent molecular testing in targeted therapy. We report a label-free molecular vibrational imaging framework enabling three-dimensional (3-D) image acquisition and quantitative analysis of cellular structures for identification of NSCLC cell types. This diagnostic imaging system employs superpixel-based 3-D nuclear segmentation for extracting such disease-related features as nuclear shape, volume, and cell-cell distance. These features are used to characterize cancer cell types using machine learning. Using fresh unstained tissue samples derived from cell lines grown in a mouse model, the platform showed greater than 97% accuracy for diagnosis of NSCLC cell types within a few minutes. As an adjunct to subsequent histology tests, our novel system would allow fast delineation of cancer cell types with minimum tissue consumption, potentially facilitating on-the-spot diagnosis, while preserving specimens for additional tests. Furthermore, 3-D measurements of cellular structure permit evaluation closer to the native state of cells, creating an alternative to traditional 2-D histology specimen evaluation, potentially increasing accuracy in diagnosing cell type of lung carcinomas.

  17. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  18. Vibration-based monitoring and diagnostics using compressive sensing

    Science.gov (United States)

    Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.

    2017-04-01

    Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.

  19. Imaging the surface stress and vibration modes of a microcantilever by laser beam deflection microscopy.

    Science.gov (United States)

    Tamayo, Javier; Pini, Valerio; Kosaka, Prisicila; Martinez, Nicolas F; Ahumada, Oscar; Calleja, Montserrat

    2012-08-10

    There is a need for noninvasive techniques for simultaneous imaging of the stress and vibration mode shapes of nanomechanical systems in the fields of scanning probe microscopy, nanomechanical biological and chemical sensors and the semiconductor industry. Here we show a novel technique that combines a scanning laser, the beam deflection method and digital multifrequency excitation and analysis for simultaneous imaging of the static out-of-plane displacement and the shape of five vibration modes of nanomechanical systems. The out-of-plane resolution is at least 100 pm Hz⁻¹/² and the lateral resolution, which is determined by the laser spot size, is 1-1.5 μm. The capability of the technique is demonstrated by imaging the residual surface stress of a microcantilever together with the shape of the first 22 vibration modes. The vibration behavior is compared with rigorous finite element simulations. The technique is suitable for major improvements in the imaging of liquids, such as higher bandwidth and enhanced spatial resolution.

  20. Characterization of Vocal Fold Vibration in Sulcus Vocalis Using High-Speed Digital Imaging

    Science.gov (United States)

    Yamauchi, Akihito; Yokonishi, Hisayuki; Imagawa, Hiroshi; Sakakibara, Ken-Ichi; Nito, Takaharu; Tayama, Niro; Yamasoba, Tatsuya

    2017-01-01

    Purpose: The aim of the present study was to qualitatively and quantitatively characterize vocal fold vibrations in sulcus vocalis by high-speed digital imaging (HSDI) and to clarify the correlations between HSDI-derived parameters and traditional vocal parameters. Method: HSDI was performed in 20 vocally healthy subjects (8 men and 12 women) and…

  1. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  2. Free vibration analysis of a rotating nanoshaft based SWCNT

    Science.gov (United States)

    Belhadj, Abdelkadir; Boukhalfa, Abdelkrim; Belalia, Sid A.

    2017-12-01

    In this paper, the vibration behaviour of a nanoscale rotating shaft based single-walled carbon nanotube is investigated. The Euler-Bernoulli beam model is used to model the dynamic behaviour of the nanorotor based on Eringen's nonlocal theory of elasticity. The governing equations and boundary conditions are derived according to the Hamilton's principle and the resulted equations system is solved with the aid of the generalized differential quadrature method (GDQM). The effects of the small-scale parameter, angular velocity and boundary conditions are reported. The results can provide useful guidance for the dynamic behaviour and design of the next generation of rotating nanomachinery, such as nanoturbines and nanomotors.

  3. Preparation and measurement of TFBG based vibration sensor

    Science.gov (United States)

    Helan, Radek; Urban, Frantisek; Mikel, Bretislav; Urban, Frantisek

    2014-08-01

    We present vibration fiber sensor set up based on tilted fiber Bragg grating (TFBG) and fiber taper. The sensor uses the TFBG as a cladding modes reflector and fiber taper as a bend-sensitive recoupling member. The lower cladding modes (ghost), reflected from TFBG, is recoupled back into the fiber core via tapered fiber section. We focused on optimization of TFBG tilt angle to reach maximum reflection of the ghost and taper parameters. Comparative measurements were made using optical spectrum analyzer and superluminiscent diode as broadband light source. We present dependence between intensity of recoupled ghost mode and sensor deflection.

  4. Whole-body vibration: is there a causal relationship to specific imaging findings of the spine?

    Science.gov (United States)

    Bible, Jesse E; Choemprayong, Songphan; O'Neill, Kevin R; Devin, Clinton J; Spengler, Dan M

    2012-10-01

    Systematic review. To perform a systematic review of the available literature for those studies that evaluated the role of whole-body vibration (WBV) on the spine, using imaging modalities as well as an estimation of WBV exposure. Numerous comparative studies have reported a possible association between the occurrence of spinal symptoms and exposure to WBV. These exposures have commonly been examined in the work environment largely through self-reported questionnaires only. From a scientific perspective, the majority of studies emphasize symptoms and lack objective medical evidence, such as spinal imaging, to help establish a specific spinal disorder. Because both neck and low back pain comprise symptoms that can arise from a host of factors including age, a casual link between spinal disorders and WBV cannot be affirmed. MEDLINE and EMBASE were searched for studies related to WBV and spinal symptoms, diagnosis, and/or disorders. Our searches were limited to studies published prior to August 2011. The resulting 700 citations (after excluding 354 duplicates) were then screened by 3 independent reviewers on the basis of the following predetermined inclusion and exclusion criteria: inclusion-clinical studies with imaging evaluation (radiographs, computed tomographic scans, and/or magnetic resonance images) and documented WBV exposure (occupation, amount of WBV, and/or duration); exclusion-reliance solely on self-reporting of symptoms (neck pain, low back pain, and/or sciatica), those articles based on a clinical diagnosis without use of imaging, and in vitro/animal/biomechanical studies. Only 7 studies met the inclusion criteria for this systematic review. Included were 5 retrospective cohort and 2 cross-sectional studies. Although mixed results and conclusions were found, the majority of studies did not identify an association between WBV exposure and an abnormal spinal imaging finding indicating damage of the spine. We should also stress that each included study has

  5. Magnetic field sensor using a polymer-based vibrator

    Science.gov (United States)

    Wu, Jiang; Hasebe, Kazuhiko; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2016-09-01

    In this technical note, a polymer-based magnetic sensor with a high resolution was devised for sensing the high magnetic field. It consisted of a bimorph (vibrator) made of poly (phenylene sulfide) (PPS) and a phosphor-bronze foil glued on the free end of the bimorph. According to Faraday’s law of induction, when a magnetic field in the direction perpendicular to the bimorph was applied, the foil cut the magnetic flux, and generated an alternating voltage across the leads at the natural frequency of the bimorph. Because PPS has low mechanical loss, low elastic modulus, and low density, high vibration velocity can be achieved if it is employed as the elastomer of the bimorph. The devised sensor was tested in the magnetic field range of 0.1-570 mT and exhibited a minimum detectable magnetic field of 0.1 mT. At a zero-to-peak driving voltage of 60 V, the sensitivity of the PPS-based magnetic sensor reached 10.5 V T-1, which was 1.36 times the value of the aluminum-based magnetic sensor with the same principle and dimensions.

  6. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously ...

  7. A novel technique for active vibration control, based on optimal ...

    Indian Academy of Sciences (India)

    BEHROUZ KHEIRI SARABI

    2017-07-11

    Jul 11, 2017 ... Abstract. In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a ...

  8. Vibration Based Methods For Damage Detection In Structures

    Directory of Open Access Journals (Sweden)

    Manoach E.

    2016-01-01

    Full Text Available Vibration based damage detection methods are among the most popular and promising approaches for health monitoring of structures. In this work a critical review of different methods for damage detection methods of structures is presented. The theoretical bases of the most popular methods based on the changes in the modal properties of the structures are deduced. The review includes the modal displacements, the mode shape slopes, the modal curvatures and the strain energy methods. The efficiency of all these methods is compared by using a finite element analysis of intact and damaged beams. The methods are tested experimentally by using a scanning laser vibrometer to measure the modal properties of specially prepared composite beams with defects. All this methods are compared with the damage detection method based on the analysis of the Poincaré maps of the motion of the structures. Conclusions concerning the advantages and the applicability of the considered methods are deduced.

  9. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    Science.gov (United States)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-03-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations <= 50 mg m-3, providing a new method for vibration controlling of ESP.

  10. VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Belhadef RACHID

    2016-01-01

    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  11. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    Science.gov (United States)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  12. Efficiency Enhancement of a Cantilever-Based Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Ali E. Kubba

    2013-12-01

    Full Text Available Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA was used as an initial tool to compare the three geometries’ stiffness (K, output open-circuit voltage (Vave, and average normal strain in the piezoelectric transducer (εave that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3, has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle.

  13. Efficiency enhancement of a cantilever-based vibration energy harvester.

    Science.gov (United States)

    Kubba, Ali E; Jiang, Kyle

    2013-12-23

    Extracting energy from ambient vibration to power wireless sensor nodes has been an attractive area of research, particularly in the automotive monitoring field. This article reports the design, analysis and testing of a vibration energy harvesting device based on a miniature asymmetric air-spaced cantilever. The developed design offers high power density, and delivers electric power that is sufficient to support most wireless sensor nodes for structural health monitoring (SHM) applications. The optimized design underwent three evolutionary steps, starting from a simple cantilever design, going through an air-spaced cantilever, and ending up with an optimized air-spaced geometry with boosted power density level. Finite Element Analysis (FEA) was used as an initial tool to compare the three geometries' stiffness (K), output open-circuit voltage (V(ave)), and average normal strain in the piezoelectric transducer (ε(ave)) that directly affect its output voltage. Experimental tests were also carried out in order to examine the energy harvesting level in each of the three designs. The experimental results show how to boost the power output level in a thin air-spaced cantilever beam for energy within the same space envelope. The developed thin air-spaced cantilever (8.37 cm3), has a maximum power output of 2.05 mW (H = 29.29 μJ/cycle).

  14. An electroactive polymer based concept for vibration reduction via adaptive supports

    Science.gov (United States)

    Wolf, Kai; Röglin, Tobias; Haase, Frerk; Finnberg, Torsten; Steinhoff, Bernd

    2008-03-01

    A concept for the suppression of resonant vibration of an elastic system undergoing forced vibration coupled to electroactive polymer (EAP) actuators based on dielectric elastomers is demonstrated. The actuators are utilized to vary the stiffness of the end support of a clamped beam, which is forced to harmonic vibration via a piezoelectric patch. Due to the nonlinear dependency of the elastic modulus of the EAP material, the modulus can be changed by inducing an electrostrictive deformation. The resulting change in stiffness of the EAP actuator leads to a shift of the resonance frequencies of the vibrating beam, enabling an effective reduction of the vibration amplitude by an external electric signal. Using a custom-built setup employing an aluminum vibrating beam coupled on both sides to electrodized strips of VHB tape, a significant reduction of the resonance amplitude was achieved. The effectiveness of this concept compared to other active and passive concepts of vibration reduction is discussed.

  15. Vector Analysis of Ionic Collision on CaCO3 Precipitation Based on Vibration Time History

    Science.gov (United States)

    Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2017-05-01

    Vibration effects on the piping system can result from the internal factor of fluid or the external factor of the mechanical equipment operation. As the pipe vibrated, the precipitation process of CaCO3 on the inner pipe could be affected. In the previous research, the effect of vibration on CaCO3 precipitation in piping system was clearly verified. This increased the deposition rate and decreased the induction time. However, the mechanism of vibration control in CaCO3 precipitation process as the presence of vibration has not been recognized yet. In the present research, the mechanism of vibration affecting the CaCO3 precipitation was investigated through vector analysis of ionic collision. The ionic vector force was calculated based on the amount of the activation energy and the vibration force was calculated based on the vibration sensor data. The vector resultant of ionic collision based on the vibration time history was analyzed to prove that vibration brings ionic collision randomly to the planar horizontal direction and its collision model was suspected as the cause of the increasing deposition rate.

  16. Reactor vibration reduction based on giant magnetostrictive materials

    Directory of Open Access Journals (Sweden)

    Yan Rongge

    2017-05-01

    Full Text Available The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  17. Reactor vibration reduction based on giant magnetostrictive materials

    Science.gov (United States)

    Rongge, Yan; Weiying, Liu; Yuechao, Wu; Menghua, Duan; Xiaohong, Zhang; Lihua, Zhu; Ling, Weng; Ying, Sun

    2017-05-01

    The vibration of reactors not only produces noise pollution, but also affects the safe operation of reactors. Giant magnetostrictive materials can generate huge expansion and shrinkage deformation in a magnetic field. With the principle of mutual offset between the giant magnetostrictive force produced by the giant magnetostrictive material and the original vibration force of the reactor, the vibration of the reactor can be reduced. In this paper, magnetization and magnetostriction characteristics in silicon steel and the giant magnetostrictive material are measured, respectively. According to the presented magneto-mechanical coupling model including the electromagnetic force and the magnetostrictive force, reactor vibration is calculated. By comparing the vibration of the reactor with different inserted materials in the air gaps between the reactor cores, the vibration reduction effectiveness of the giant magnetostrictive material is validated.

  18. Vibrational response analysis of tires using a three-dimensional flexible ring-based model

    Science.gov (United States)

    Matsubara, Masami; Tajiri, Daiki; Ise, Tomohiko; Kawamura, Shozo

    2017-11-01

    Tire vibration characteristics influence noise, vibration, and harshness. Hence, there have been many investigations of the dynamic responses of tires. In this paper, we present new formulations for the prediction of tire tread vibrations below 150 Hz using a three-dimensional flexible ring-based model. The ring represents the tread including the belt, and the springs represent the tire sidewall stiffness. The equations of motion for lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests. Unlike most studies of flexible ring models, which mainly discussed radial and circumferential vibration, this study presents steady response functions concerning not only radial and circumferential but also lateral vibration using the three-dimensional flexible ring-based model. The results of impact tests described confirm the theoretical findings. The results show reasonable agreement with the predictions.

  19. Single-camera high-speed stereo-digital image correlation for full-field vibration measurement

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-09-01

    A low-cost, easy-to-implement single-camera high-speed stereo-digital image correlation (SCHS stereo-DIC) method using a four-mirror adapter is proposed for full-field 3D vibration measurement. With the aid of the four-mirror adapter, surface images of calibration target and test objects can be separately imaged onto two halves of the camera sensor through two different optical paths. These images can be further processed to retrieve the vibration responses on the specimen surface. To validate the effectiveness and accuracy of the proposed approach, dynamic parameters including natural frequencies, damping ratios and mode shapes of a rectangular cantilever plate were extracted from the directly measured vibration responses using the established system. The results reveal that the SCHS stereo-DIC is a simple, practical and effective technique for vibration measurements and dynamic parameters identification.

  20. Two-channel microfluidic CARS: experimental quantification of pure vibrational contrast in CARS images

    Science.gov (United States)

    Bergner, G.; Henkel, T.; Akimov, D.; Dietzek, B.; Schlücker, S.; Bartelt, H.; Popp, J.

    2011-07-01

    The combination of linear and nonlinear Raman microspectroscopy has been established to be a powerful tool for biomedical diagnostics. In this contribution we discuss our recent approaches towards CARS (coherent anti-Stokes Raman scattering) based quantification of analytes, which is generally complicated by the CARS-signal strength dependence on the square of the molecular concentration and on the interplay between a molecular-specific vibrational signal and a nonresonant contribution in the signal generation. Due to these complications the quantification of analytes presents a major challenge in CARS microscopy. Here we discuss two recently developed approaches, i.e. on the one hand a simplified setup for coherent anti-Stokes Raman scattering (CARS) microscopy, which allows for recording CARS images with 30 cm-1 excitation bandwidth for probing Raman bands between 500 and 900 cm-1 with minimal requirements for alignment. This experimental arrangement is based on electronic switching between CARS images recorded at different Raman resonances by combining a photonic crystal fiber (PCF) as broad-band light source and an acoustooptical programmable dispersive filter (AOPDF) as tunable wavelength filter. On the other hand, we discuss how the introduction of carbon-deuterium (C-D) bonds into drug compounds constitutes a non-invasive labeling approach that allows for higher intrinsic CARS contrast to be obtained. The quantitative detection of C-deuterated drugs by Raman microspectroscopy and CARS microscopy is examined. Concentration-dependent studies on drugs with aliphatic and aromatic C-D moieties were performed in a two-channel microfluidic chip, using the corresponding non-deuterated (C-H) isotopomers as an internal reference.

  1. Nanoplatform-based molecular imaging

    National Research Council Canada - National Science Library

    Chen, Xiaoyuan

    2011-01-01

    "Nanoplathform-Based Molecular Imaging provides rationale for using nanoparticle-based probes for molecular imaging, then discusses general strategies for this underutilized, yet promising, technology...

  2. An Innovative Transponder-Based Interferometric Radar for Vibration Measurements

    Science.gov (United States)

    Coppi, F.; Cerutti, A.; Farina, P.; De Pasquale, G.; Novembrini, G.

    2010-05-01

    Ground-based radar interferometry has recently emerged as an innovative technology of remote sensing, able to accurately measure the static or dynamic displacement of several points of a structure. This technique in the last couple of years has been applied to different types of structures, such as bridges, towers and chimneys. This paper presents a prototype system developed by IDS, originally aimed at measuring the structural vibrations of helicopter rotor blades, based on an interferometric technique and constituted by combination of a radar sensor and a series of transponders installed on the target structure. The main advantages of this solution with respect to conventional interferometric radars, are related to the increased spatial resolution of the system, provided by the possibility to discriminate different transponders installed within the same resolution cell of the radar sensor, and to the reduction of the ambient noise (e.g. multi-path) on the radar measurement. The first feature allows the use of the microwave technology even on target areas with limited dimensions, such as industrial facilities, while the second aspect may extend the use of radar interferometric systems to complex scenarios, where multi-reflections are expected due to the presence of natural targets with high reflectivity to the radar signal. In the paper, the system and its major characteristics are first described; subsequently, application to the measurement of ambient vibration response of a lab set-up is summarized. Then the data acquired on a rotating mock-up are reported and analyzed to identify natural frequencies and mode shapes of the investigated structure.

  3. Wearable Vibration Based Computer Interaction and Communication System for Deaf

    Directory of Open Access Journals (Sweden)

    Mete Yağanoğlu

    2017-12-01

    Full Text Available In individuals with impaired hearing, determining the direction of sound is a significant problem. The direction of sound was determined in this study, which allowed hearing impaired individuals to perceive where sounds originated. This study also determined whether something was being spoken loudly near the hearing impaired individual. In this manner, it was intended that they should be able to recognize panic conditions more quickly. The developed wearable system has four microphone inlets, two vibration motor outlets, and four Light Emitting Diode (LED outlets. The vibration of motors placed on the right and left fingertips permits the indication of the direction of sound through specific vibration frequencies. This study applies the ReliefF feature selection method to evaluate every feature in comparison to other features and determine which features are more effective in the classification phase. This study primarily selects the best feature extraction and classification methods. Then, the prototype device has been tested using these selected methods on themselves. ReliefF feature selection methods are used in the studies; the success of K nearest neighborhood (Knn classification had a 93% success rate and classification with Support Vector Machine (SVM had a 94% success rate. At close range, SVM and two of the best feature methods were used and returned a 98% success rate. When testing our wearable devices on users in real time, we used a classification technique to detect the direction and our wearable devices responded in 0.68 s; this saves power in comparison to traditional direction detection methods. Meanwhile, if there was an echo in an indoor environment, the success rate increased; the echo canceller was disabled in environments without an echo to save power. We also compared our system with the localization algorithm based on the microphone array; the wearable device that we developed had a high success rate and it produced faster

  4. Full-field Measurement of Deformation and Vibration using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Liang-Chih Chen

    2015-05-01

    Full Text Available The main intention of this study was to investigate the full-field measurement of de-formation and vibration using a program we developed for digital image correlation. Digital image correlation is a measuring method that can calculate the displacement of each point on an object by using recorded images. By capturing continuous images of the object in deformation or in motion, the displacements of feature points on the object can be tracked and used in calculations to determine the full-field deformation, strain and vibration of the object. We used the fast and simple algorithm in our program as the core, and conducted non-contact full-field displacement measurement by tracking feature points from images taken after motion. The measuring accuracy can be up to 0.1 pixel. Our experimental results show the technique to be very accurate and useful. We also applied this technique under conditions where an ordinary sensor could not be used.

  5. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  6. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  7. Prognostic and Remaining Life Prediction of Electronic Device under Vibration Condition Based on CPSD of MPI

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2016-01-01

    Full Text Available Prognostic of electronic device under vibration condition can help to get information to assist in condition-based maintenance and reduce life-cycle cost. A prognostic and remaining life prediction method for electronic devices under random vibration condition is proposed. Vibration response is measured and monitored with acceleration sensor and OMA parameters, including vibration resonance frequency, especially first-order resonance frequency, and damping ratio is calculated with cross-power spectrum density (CPSD method and modal parameter identification (MPI algorithm. Steinberg vibration fatigue model which considers transmissibility factor is used to predict the remaining life of electronic component. Case study with a test board is carried out and remaining life is predicted. Results show that with this method the vibration response characteristic can be monitored and predicted.

  8. Neuromuscular response of the trunk to inertial based sudden perturbations following whole body vibration exposure.

    Science.gov (United States)

    MacIntyre, Danielle; Cort, Joel A

    2014-12-01

    The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    Science.gov (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  10. Vibration control using a variable coil-based friction damper

    Science.gov (United States)

    Amjadian, Mohsen; Agrawal, Anil K.

    2017-04-01

    This paper is focused on the analytical model, design, and simulation of a variable coil-based friction damper (VCBFD) for vibration control of structures. The proposed VCBFD is composed of a soft ferromagnetic plate, made of a linear magnetic material, and two identical thick rectangular air-core coils connected in parallel, each one attached to the plate through a friction pad. The friction force is provided by a normal force produced through an attractive electromagnetic interaction between the air-core coils (ACs) and the soft ferromagnetic plate when sliding relative to each other. The magnitude of the normal force in the damper is varied by a semi-active controller that controls the command current passing through the ACs. To demonstrate the efficiency of the proposed VCBFD and its semi-active controller, it has been implemented on a two-degree-of-freedom (2DOF) base-isolated model subjected to the acceleration components of three records of strong earthquakes. The results show that the performance of the proposed VCBFD in its passive-on mode is overshadowed by the undesirable effects of stick-slip motion. However, the damper in its semi-active mode is more successful in not only reducing the displacement of the base-floor but also avoiding stick-slip motion, due to acting completely in its sliding phase.

  11. Imaging study of vibrational predissociation of the HCl-acetylene dimer: pair-correlated distributions.

    Science.gov (United States)

    Li, Guosheng; Parr, Jessica; Fedorov, Igor; Reisler, Hanna

    2006-07-07

    The state-to-state predissociation dynamics of the HCl-acetylene dimer were studied following excitation in the asymmetric C-H (asym-CH) stretch and the HCl stretch. Velocity map imaging (VMI) and resonance enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Different vibrational predissociation mechanisms were observed for the two excited vibrational levels. Following excitation in the of the asym-CH stretch fundamental, HCl fragments in upsilon = 0 and j = 4-7 were observed and no HCl in upsilon = 1 was detected. The fragments' center-of-mass (c.m.) translational energy distributions were derived from images of HCl (j = 4-7), and were converted to rotational state distributions of the acetylene co-fragment by assuming that acetylene is generated with one quantum of C-C stretch (nu(2)) excitation. The acetylene pair-correlated rotational state distributions agree with the predictions of the statistical phase space theory, restricted to acetylene fragments in 1nu(2). It is concluded that the predissociation mechanism is dominated by the initial coupling of the asym-CH vibration to a combination of C-C stretch and bending modes in the acetylene moiety. Vibrational energy redistribution (IVR) between acetylene bending and the intermolecular dimer modes leads to predissociation that preserves the C-C stretch excitation in the acetylene product while distributing the rest of the available energy statistically. The predissociation mechanism following excitation in the Q band of the dimer's HCl stretch fundamental was quite different. HCl (upsilon = 0) rotational states up to j = 8 were observed. The rovibrational state distributions in the acetylene co-fragment derived from HCl (j = 6-8) images were non-statistical with one or two quanta in acetylene bending vibrational excitation. From the observation that all the HCl(j) translational energy distributions were similar, it is proposed that there exists a

  12. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  13. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...

  14. Vibration based structural health monitoring of a composite T-beam

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Loendersloot, Richard; Warnet, Laurent; de Boer, Andries; Akkerman, Remko

    2010-01-01

    A vibration based damage identification method is investigated experimentally for a 2.5-dimensional composite structure. The dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is considered. A force–vibration set-up, including a laser

  15. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  16. Optimal Search Strategy of Robotic Assembly Based on Neural Vibration Learning

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2011-01-01

    Full Text Available This paper presents implementation of optimal search strategy (OSS in verification of assembly process based on neural vibration learning. The application problem is the complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly. The favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural-network-based learning algorithm, it is possible to find extended scope of vibration state parameter. Using optimal search strategy based on minimal distance path between vibration parameter stage sets (amplitude and frequencies of robots gripe vibration and recovery parameter algorithm, we can improve the robot assembly behaviour, that is, allow the fastest possible way of mating. We have verified by using simulation programs that search strategy is suitable for the situation of unexpected events due to uncertainties.

  17. Analysis of micro vibration in gas film of aerostatic guide way based on molecule collision theory

    Directory of Open Access Journals (Sweden)

    Yang Shao Hua

    2016-01-01

    Full Text Available Micro vibration of the aerostatic guide way has a significant impact on its dynamic characteristics and stability, which limits the development of pneumatic component. High pressure gas molecules have been collided with the supporting surface and the internal surface of the throttle during the flow process. Variable impulse of the surfaces aside for the gas film are affected by the changes of impulse which formed irregular impact force in horizontal and vertical direction. Micro-vibration takes place based on the natural frequency of the system and its frequency doubling. In this paper, the vibration model was established to describe the dynamic characteristics of the gas film, and the formation mechanism of micro vibration in the film is defined. Through the simulation analysis and experimental comparison, formation mechanism of the micro vibration in the gas film is confirmed. It was proposed that the micro vibration of gas film can be produced no matter whether there is a gas chamber or not in the throttle. Under the same conditions, the micro vibration of the guide way with air chamber is greater than that without any chamber. The frequency points of the vibration peaks are almost the same, as well as the vibration pattern in the frequency domain.

  18. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    Science.gov (United States)

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.

  19. Molecular images and vibrational spectroscopy of sorbic acid with the scanning tunneling microscope

    Science.gov (United States)

    Smith, Douglas P. E.; Kirk, Michael D.; Quate, Calvin F.

    1987-06-01

    Images of sorbic acid molecules absorbed onto graphite have been taken with a scanning tunneling microscope (STM) operating in liquid helium. Molecular clusters were clearly observed, as was the atomic structure of the graphite substrate. The molecules were seen to diffuse across the substrate at a rate of about 1 Å/min. When dI/dV vs V was measured with the STM probe directly over a sorbic acid molecule, a well-defined spectrum of peaks was obtained whose energies corresponded to the vibrational resonances of the molecule. Large changes in the spectra occurred if the tip was moved a lateral distance of 5 Å.

  20. Vibration Pattern Imager (VPI): A control and data acquisition system for scanning laser vibrometers

    Science.gov (United States)

    Rizzi, Stephen A.; Brown, Donald E.; Shaffer, Thomas A.

    1993-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from scanning laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor, but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. The sensor itself is not part of the VPI system. A graphical interface program, which runs on a PC under the MS-DOS operating system, functions in an interactive mode and communicates with the DSP and I/O boards in a user-friendly fashion through the aid of pop-up menus. Two types of data may be acquired with the VPI system: single point or 'full field.' In the single point mode, time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and is stored by the PC. The position of the measuring point (adjusted by mirrors in the sensor) is controlled via a mouse input. The mouse input is translated to output voltages by the D/A converter on the I/O board to control the mirror servos. In the 'full field' mode, the measurement point is moved over a user-selectable rectangular area. The time series data is sampled by the A/D converter on the I/O board (at a user-defined sampling rate for a selectable number of samples) and converted to a root-mean-square (rms) value by the DSP board. The rms 'full field' velocity distribution is then uploaded for display and storage on the PC.

  1. Vibration Response Imaging: evaluation of rater agreement in healthy subjects and subjects with pneumonia

    Directory of Open Access Journals (Sweden)

    Makris Demosthenes

    2010-03-01

    Full Text Available Abstract Background We evaluated pulmonologists variability in the interpretation of Vibration response imaging (VRI obtained from healthy subjects and patients hospitalized for community acquired pneumonia. Methods The present is a prospective study conducted in a tertiary university hospital. Twenty healthy subjects and twenty three pneumonia cases were included in this study. Six pulmonologists blindly analyzed images of normal subjects and pneumonia cases and evaluated different aspects of VRI images related to the quality of data aquisition, synchronization of the progression of breath sound distribution and agreement between the maximal energy frame (MEF of VRI (which is the maximal geographical area of lung vibrations produced at maximal inspiration and chest radiography. For qualitative assessment of VRI images, the raters' evaluations were analyzed by degree of consistency and agreement. Results The average value for overall identical evaluations of twelve features of the VRI image evaluation, ranged from 87% to 95% per rater (94% to 97% in control cases and from 79% to 93% per rater in pneumonia cases. Inter-rater median (IQR agreement was 91% (82-96. The level of agreement according to VRI feature evaluated was in most cases over 80%; intra-class correlation (ICC obtained by using a model of subject/rater for the averaged features was overall 0.86 (0.92 in normal and 0.73 in pneumonia cases. Conclusions Our findings suggest good agreement in the interpretation of VRI data between different raters. In this respect, VRI might be helpful as a radiation free diagnostic tool for the management of pneumonia.

  2. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.

    Science.gov (United States)

    Park, Hee-June; Cha, Wonjae; Kim, Geun-Hyo; Jeon, Gye-Rok; Lee, Byung Joo; Shin, Bum-Joo; Choi, Yang-Gyu; Wang, Soo-Geun

    2016-05-01

    Laryngeal videokymography and high-speed digital kymography are the currently available techniques for studying aperiodic vibration of the vocal folds. However, videokymography has a fundamental limitation that only linear portions of the vocal fold mucosa can be visualized, whereas high-speed digital kymography has the disadvantages of lack of immediate feedback during examination and considerable waiting time before kymographic visualization. We developed a new system, two-dimensional (2D) scanning videokymography, that provides a possible alternative for evaluation of the vibratory pattern of the vocal folds. Herein, we report the application of 2D scanning videokymography for visualization of vocal fold vibration in humans and an analysis of its parameters. Two young healthy volunteers (one man and one woman) took part in this study. The vibratory patterns of their vocal folds were evaluated using 2D scanning videokymography and laryngeal stroboscopy. Two-dimensional scanning videokymography provided a high-definition image of the vibratory movements of the vocal folds. In analysis of the images acquired by the device, various parameters including fundamental frequency; ratio of the vibratory phases; phase, amplitude, and glottal area symmetry; and cycle-to-cycle variability were extracted. Our results indicate that 2D scanning videokymography is a useful and promising tool for visualization of the vibratory movement of the vocal folds. This new technique might improve our understanding of the mechanism of vocal fold vibration and contribute to voice research as well as clinical practice. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  3. The influence of mechanical vibrations on microstructure of Ni-based thermally sprayed-fused coatings

    Directory of Open Access Journals (Sweden)

    Jelena ŠKAMAT

    2013-12-01

    Full Text Available The influence of mechanical vibrations on microstructure and properties of Ni-based thermally sprayed and fused coatings deposited on a steel substrate has been studied. Self-fluxing powder with about 73% Ni was used as a sprayed material. As-sprayed coatings were refused using conventional flame technique and with introducing of mechanical vibrations. In result coatings with quite complicated microstructure were obtained. During investigation of coatings by different methods it was found that vibratory treatment really influences the solidified microstructure. It was found that vibrations promote densimetric movement of hard particles up - towards a surface with forming of thicker so-called “hard-inclusions-free” layer near interface. Some tendency was noted that coatings, remelted under vibrations, showed better corrosion and high-temperature oxidation resistance in comparison with coatings created without vibrational treatment during solidification.

  4. Vibration Control of a Semiactive Vehicle Suspension System Based on Extended State Observer Techniques

    Directory of Open Access Journals (Sweden)

    Ze Zhang

    2014-01-01

    Full Text Available A feedback control method based on an extended state observer (ESO method is implemented to vibration reduction in a typical semiactive suspension (SAS system using a magnetorheological (MR damper as actuator. By considering the dynamic equations of the SAS system and the MR damper model, an active disturbance rejection control (ADRC is designed based on the ESO. Numerical simulation and real-time experiments are carried out with similar vibration disturbances. Both the simulation and experimental results illustrate the effectiveness of the proposed controller in vibration suppression for a SAS system.

  5. Control of Rotor-Blade Coupled Vibrations Using Shaft-Based Actuation

    DEFF Research Database (Denmark)

    Christensen, Rene H.; Santos, Ilmar

    2006-01-01

    When implementing active control into bladed rotating machines aiming at reducing blade vibrations, it can be shown that blade as well as rotor vibrations can in fact be controlled by the use of only shaft-based actuation. Thus the blades have to be deliberately mistuned. This paper investigates...... of modal controllability and observability converge toward steady levels as the degree of mistuning is increased. Finally, experimental control results are presented to prove the theoretical conclusions and to show the feasibility of controlling rotor and blade vibrations by means of shaft-based actuation...

  6. Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm

    National Research Council Canada - National Science Library

    Sheng, Xianjun; Kong, Yuanli; Zhang, Fengyun; Yang, Rui

    2016-01-01

    .... The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique...

  7. Transverse vibrations of wood-based products : equations and considerations

    Science.gov (United States)

    Joseph F. Murphy

    2011-01-01

    Four equations are presented to determine bending stiffness using transverse vibration. These equations are used for constant cross-section products, panels, rectangular cross-section products, and logs with and without taper. Practical considerations for their use are discussed and concluding remarks are included.

  8. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  9. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  10. Imaging performance comparison between CMOS and sCMOS detectors in a vibration test on large areas using digital holographic interferometry

    Science.gov (United States)

    Flores-Morenoa, J. M.; Torre I., Manuel H. De la; Aguayo, Daniel D.; Fernando Mendoza, S.

    2014-05-01

    A comparison of the interferometric imaging performance of two different cameras during a vibration study is presented. One of the cameras has a high speed CMOS sensor and the second one uses a high resolution (scientific) sCMOS sensor. This comparison is based on the interferometric response as a merit parameter of these sensors which is not a conventional procedure. Even when the current standard for image quality is on the signal to noise ratio calculations, an interferometric test to evaluate the fringe pattern visibility is equivalent to the contrast to noise ratio value. An out of plane digital holographic interferometer is used to test each camera once at the time with the same experimental conditions. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The sample is deformed by means of a controlled vibration induced by a tip ended linear step motor. Results from each camera are presented as the retrieved optical phase during the vibration. Finally, some conclusions based on the post processed images are presented suggesting a smoother optical phase obtained with the sCMOS camera.

  11. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes.

    Science.gov (United States)

    Lawrence, Jane M; Stroman, Patrick W; Kollias, Spyros S

    2008-03-01

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements.

  12. Functional magnetic resonance imaging of the human spinal cord during vibration stimulation of different dermatomes

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Jane M. [University Hospital of Zurich, Institute of Neuroradiology, Zurich (Switzerland); University of Manitoba, Department of Physiology, Winnipeg, Manitoba (Canada); Stroman, Patrick W. [Queen' s University, Department of Diagnostic Radiology, Kingston, Ontario (Canada); Kollias, Spyros S. [University Hospital of Zurich, Institute of Neuroradiology, Zurich (Switzerland)

    2008-03-15

    We investigated noninvasively areas of the healthy human spinal cord that become active in response to vibration stimulation of different dermatomes using functional magnetic resonance imaging (fMRI). The objectives of this study were to: (1) examine the patterns of consistent activity in the spinal cord during vibration stimulation of the skin, and (2) investigate the rostrocaudal distribution of active pixels when stimulation was applied to different dermatomes. FMRI of the cervical and lumbar spinal cord of seven healthy human subjects was carried out during vibration stimulation of six different dermatomes. In separate experiments, vibratory stimulation (about 50 Hz) was applied to the right biceps, wrist, palm, patella, Achilles tendon and left palm. The segmental distribution of activity observed by fMRI corresponded well with known spinal cord neuroanatomy. The peak number of active pixels was observed at the expected level of the spinal cord with some activity in the adjacent segments. The rostrocaudal distribution of activity was observed to correspond to the dermatome being stimulated. Cross-sectional localization of activity was primarily in dorsal areas but also spread into ventral and intermediate areas of the gray matter and a distinct laterality ipsilateral to the stimulated limb was not observed. We demonstrated that fMRI can detect a dermatome-dependent pattern of spinal cord activity during vibratory stimulation and can be used as a passive stimulus for the noninvasive assessment of the functional integrity of the human spinal cord. Demonstration of cross-sectional selectivity of the activation awaits further methodological and experimental refinements. (orig.)

  13. Assessment of myofascial trigger points (MTrPs): a new application of ultrasound imaging and vibration sonoelastography.

    Science.gov (United States)

    Sikdar, Siddhartha; Shah, Jay P; Gilliams, Elizabeth; Gebreab, Tadesse; Gerber, Lynn H

    2008-01-01

    Myofascial trigger points (MTrPs) are palpable hyperirritable nodules in skeletal muscle that are associated with chronic musculoskeletal pain. The goal of this study was to image MTrPs in the upper trapezius muscle using 2D gray scale ultrasound (US) and vibration sonoelastography (VSE) for differentiating the soft tissue characteristics of MTrPs compared to surrounding muscle. MTrPs appeared as hypoechoeic elliptically-shaped focal regions within the trapezius muscle on 2D US. Audio-frequency vibrations (100-250 Hz) were induced in the trapezius muscle of four volunteers with clinically identifiable MTrPs, and the induced vibration amplitudes were imaged using the color Doppler variance mode, and were further quantified using spectral Doppler analysis. Spectral Doppler analysis showed that vibration amplitudes were 27% lower on average within the MTrP compared to surrounding tissue (p0.05). Color variance imaging consistently detected a focal region of reduced vibration amplitude, which correlated with the hypoechoeic region identified as an MTrP (r =0.76 for area). Real-time 2D US identifies MTrPs, and VSE is feasible for differentiating MTrPs from surrounding tissue. Preliminary findings show that MTrPs are hypoechoeic on 2D US and the relative stiffness of MTrPs can be quantified using VSE. Ultrasound offers a convenient, accessible and low-risk approach for identifying MTrPs and for evaluating clinical observations of palpable, painful nodules.

  14. Sorption-based vibration-free cooler for the METIS instrument on E-ELT

    NARCIS (Netherlands)

    ter Brake, Hermanus J.M.; Wu, Roger; Zalewski, D.R.; Vermeer, Cristian Hendrik; Holland, Herman J.; Doornink, J.; Benthem, B.; Boom, E.; McLean, I.S.; Ramsay, S.K.; Takam, H.

    2012-01-01

    METIS is the 'Mid-infrared ELT Imager and Spectrograph' for the European Extremely Large Telescope. This E-ELT instrument will cover the thermal/mid-infrared wavelength range from 3 to 14 μm and will require cryogenic cooling of detectors and optics. We present a vibration-free cooling

  15. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  16. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  17. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Dashan Zhang

    2016-04-01

    Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  18. Polymer-based disposable microneedle array with insertion assisted by vibrating motion

    OpenAIRE

    Lee, F.-W.; Hung, W.-H.; Ma, C.-W.; Yang, Y.-J.

    2016-01-01

    This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and colle...

  19. Research on vibration signal of engine based on subband energy method

    Science.gov (United States)

    Wu, Chunmei; Cui, Feng; Zhao, Yong; Fu, Baohong; Ma, Junchi; Yang, Guihua

    2017-04-01

    Based on the research of DA462 type engine cylinder and cylinder head vibration signal of the surface, the signal measured in the time domain and frequency domain are analyzed in detail, draw the following conclusions: the analysis of vibration signal of the subband energy method is applied to the engine, the concentration response of each of the motivation band can clearly be seen. Through the analysis we can see that the combustion excitation frequency response from 0k to 1K, the vibration influence on the body piston lateral impact force is mainly concentrated in 2K˜5K frequency range of Hz, valve opening and closing the excitation response frequency is mainly concentrated in the 3K˜4K range of Hz, and thus locating the valve clearance fault. This method is simple, accurate and practical for the post processing and analysis of vibration signals.

  20. U-shape magnetostrictive vibration based power generator for universal use

    Science.gov (United States)

    Ueno, T.

    2016-04-01

    Vibrational power generator extracts electrical energy from ambient vibration. Author invented novel configuration using magnetostrictive material. The device is based on parallel beams of iron-gallium alloy and magnetic material, and features high efficiency, high robustness, and low electrical impedance. In this paper, author proposes U-shape generator for universal use. It consists of the parallel beams and fixed and free end beams forming U-shape frame flexibly modified for variety of mechanical input. Miniature U-shape prototype using Fe-Ga rod 6 by 0.5 by 13 mm3 exhibited average power of 3.7 mW under vibration of 166 Hz and 2.5 G. L-shape type was demonstrated to generate electromotive force by two directional vibrations. In switch type, maximum energy of 0.7 mJ was retrieved by one pushing force. The performances are sufficient to drive wireless module for heath monitoring and remote control.

  1. Identification for Active Vibration Control of Flexible Structure Based on Prony Algorithm

    Directory of Open Access Journals (Sweden)

    Xianjun Sheng

    2016-01-01

    Full Text Available Flexible structures have been widely used in many fields due to the advantages of light quality, small damping, and strong flexibility. However, flexible structures exhibit the vibration in the process of manipulation, which reduces the pointing precision of the system and causes fatigue of the machine. So, this paper focuses on the identification method for active vibration control of flexible structure. The modal parameters and transfer function of the system are identified from the step response signal based on Prony algorithm, while the vibration is attenuated by using the input shaping technique designed according to the parameters identified from the Prony algorithm. Eventually, the proposed approach is applied to the most common flexible structure, a piezoelectric cantilever beam actuated by Macro Fiber Composite (MFC. The experimental results demonstrate that the Prony algorithm is very effective and accurate on the dynamic modeling of flexible structure and input shaper could significantly reduce the vibration and improve the response speed of system.

  2. The High Precision Vibration Signal Data Acquisition System Based on the STM32

    Directory of Open Access Journals (Sweden)

    Zhu Hui-Ling

    2014-06-01

    Full Text Available Vibrating wire sensors are a class of sensors that are very popular used for strain measurements of structures in buildings and civil infrastructures. The use of frequency, rather than amplitude, to convey the signal means that vibrating wire sensors are relatively resistant signal degradation from electrical noise, long cable runs, and other changes in cable resistance. This paper proposed a high precision vibration signal acquisition with storage function based on STM32 microcontroller in order to promote safety in engineering construction. The instrument designed in this paper not only can directly collect vibrating signals, but also store data into SD card and communicate with computer so as to realize the real-time monitoring from point to point.

  3. Study on measuring vibration displacement by shear interference based on sinusoidal phase modulation

    Science.gov (United States)

    He, Guotian; Tang, Feng; Song, Li; Jiang, Helun

    2009-05-01

    The semiconductor laser (LD) Taimangelin interferometer based on sinusoidal phase modulation is vulnerable to external vibration, temperature changes, vibration, and other air interference which causes great measurement error. This paper presents a new semiconductor laser sinusoidal phase modulation shear interference technology and anti-jamming wavelet transform algorithm which is not sensitive to environment interference. It changes the original optical technology in the plane mirror to three pyramid-shear, causing a certain amount of displacement of reference light and object light. and partial use of high resolution wavelet transform algorithm solves the problem in measuring the vibration displacement of measured object..Vibration shear interferometry expression is launched, and theoretically discusses the measurement principle. Using MATLAB before and after the improvement of the methods to simulate contrast obtains the impact of shear volume size on measurement accuracy with experimental test. Experimental results show that it effectively reduces the impact of outside interference on measurement accuracy.

  4. Imaging vibration of the cochlear partition of an excised guinea pig cochlea using phase-sensitive Fourier domain optical coherence tomography

    Science.gov (United States)

    Choudhury, Niloy; Zeng, Yaguang; Fridberger, Anders; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.; Wang, Ruikang K.

    2011-03-01

    Studying the sound stimulated vibrations of various membranes that form the complex structure of the organ of Corti in the cochlea of the inner ear is essential for understanding how the travelling sound wave of the basilar membrane couples its energy to the organ structures. In this paper we report the feasibility of using phase-sensitive Fourier domain optical coherence tomography (FD-OCT) to image the vibration of various micro-structures of the cochlea at the same time. An excised cochlea of a guinea pig was stimulated using sounds at various frequencies and vibration image was obtained. When measuring the apex area, vibration signal from different turns, which have different best response frequencies are obtained in the same image. The method has the potential to measure the response from a much wider region of the cochlea than any other currently used method. The noise floor for vibration image for the system at 200 Hz was ~0.3nm.

  5. Strong enhancement of vibrational relaxation by Watson-Crick base pairing.

    Science.gov (United States)

    Woutersen, Sander; Cristalli, Gloria

    2004-09-15

    We have studied the ultrafast dynamics of NH-stretch vibrational excitations in Watson-Crick base pairs consisting of adenine and uracil derivatives. To estimate the influence of the A:U hydrogen bonding on the vibrational dynamics, we have also studied the uracil derivative in monomeric form. The vibrational relaxation of the NH-stretching mode is found to occur much faster in the Watson-Crick base pair than in monomeric uracil. From the delay dependence of the transient vibrational spectra, it can be concluded that both in base-paired and monomeric uracil, the energy relaxation takes place in two steps, the first step being a rapid transfer of energy from the NH-stretching mode to an accepting mode, the second step the relaxation of this accepting mode. The transient spectra show evidence that in the base pair the hydrogen bond between the nucleobases acts as the accepting mode, and that the hydrogen bonding between the bases is responsible for the extremely fast vibrational relaxation in this system.

  6. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  7. Development of microcontroller-based acquisition and processing unit for fiber optic vibration sensor

    Science.gov (United States)

    Suryadi; Puranto, P.; Adinanta, H.; Waluyo, T. B.; Priambodo, P. S.

    2017-04-01

    Microcontroller based acquisition and processing unit (MAPU) has been developed to measure vibration signal from fiber optic vibration sensor. The MAPU utilizes a 32-bit ARM microcontroller to perform acquisition and processing of the input signal. The input signal is acquired with 12 bit ADC and processed using FFT method to extract frequency information. Stability of MAPU is characterized by supplying a constant input signal at 500 Hz for 29 hours and shows a stable operation. To characterize the frequency response, input signal is swapped from 20 to 1000 Hz with 20 Hz interval. The characterization result shows that MAPU can detect input signal from 20 to 1000 Hz with minimum signal of 4 mV RMS. The experiment has been set that utilizes the MAPU with singlemode-multimode-singlemode (SMS) fiber optic sensor to detect vibration which is induced by a transducer in a wooden platform. The experimental result indicates that vibration signal from 20 to 600 Hz has been successfully detected. Due to the limitation of the vibration source used in the experiment, vibration signal above 600 Hz is undetected.

  8. Shell-NASA Vibration-Based Damage Characterization

    Science.gov (United States)

    Rollins, John M.

    2014-01-01

    This article describes collaborative research between Shell International Exploration and Production (IE&P) scientists and ISAG personnel to investigate the feasibility of ultrasonic-based characterization of spacecraft tile damage for in-space inspection applications. The approach was proposed by Shell personnel in a Shell-NASA "speed-matching" session in early 2011 after ISAG personnel described challenges inherent in the inspection of MMOD damage deep within spacecraft thermal protection system (TPS) tiles. The approach leveraged Shell's relevant sensor and analytical expertise. The research addressed the difficulties associated with producing 3D models of MMOD damage cavities under the surface of a TPS tile, given that simple image-based sensing is constrained by line of sight through entry holes that have diameters considerably smaller than the underlying damage cavities. Damage cavity characterization is needed as part of a vehicle inspection and risk reduction capability for long-duration, human-flown space missions. It was hoped that cavity characterization could be accomplished through the use of ultrasonic techniques that allow for signal penetration through solid material.

  9. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  10. Stroboscopic Image Modulation to Reduce the Visual Blur of an Object Being Viewed by an Observer Experiencing Vibration

    Science.gov (United States)

    Kaiser, Mary K. (Inventor); Adelstein, Bernard D. (Inventor); Anderson, Mark R. (Inventor); Beutter, Brent R. (Inventor); Ahumada, Albert J., Jr. (Inventor); McCann, Robert S. (Inventor)

    2014-01-01

    A method and apparatus for reducing the visual blur of an object being viewed by an observer experiencing vibration. In various embodiments of the present invention, the visual blur is reduced through stroboscopic image modulation (SIM). A SIM device is operated in an alternating "on/off" temporal pattern according to a SIM drive signal (SDS) derived from the vibration being experienced by the observer. A SIM device (controlled by a SIM control system) operates according to the SDS serves to reduce visual blur by "freezing" (or reducing an image's motion to a slow drift) the visual image of the viewed object. In various embodiments, the SIM device is selected from the group consisting of illuminator(s), shutter(s), display control system(s), and combinations of the foregoing (including the use of multiple illuminators, shutters, and display control systems).

  11. Evidence-based cancer imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shinagare, Atul B.; Khorasani, Ramin [Dept. of Radiology, Brigham and Women' s Hospital, Boston (Korea, Republic of)

    2017-01-15

    With the advances in the field of oncology, imaging is increasingly used in the follow-up of cancer patients, leading to concerns about over-utilization. Therefore, it has become imperative to make imaging more evidence-based, efficient, cost-effective and equitable. This review explores the strategies and tools to make diagnostic imaging more evidence-based, mainly in the context of follow-up of cancer patients.

  12. Bearings Fault Diagnosis Based on Convolutional Neural Networks with 2-D Representation of Vibration Signals as Input

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Periodic vibration signals captured by the accelerometers carry rich information for bearing fault diagnosis. Existing methods mostly rely on hand-crafted time-consuming preprocessing of data to acquire suitable features. In this paper, we use an easy and effective method to transform the 1-D temporal vibration signal into a 2-D image. With the signal image, convolutional Neural Network (CNN is used to train the raw vibration data. As powerful feature extractor and classifier for image recognition, CNN can learn to acquire features most suitable for the classification task by being trained. With the image format of vibration signals, the neuron in fully-connected layer of CNN can see farther and capture the periodic feature of signals. According to the results of the experiments, when fed in enough training samples, the proposed method outperforms other common methods. The proposed method can also be applied to solve intelligent diagnosis problems of other machine systems.

  13. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  14. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Trendafilova, I, E-mail: Irina.Trendafilova@strath.ac.uk [Department of Mechanical Engineering, University of Strathclyde, 75 Montrose street, Glasgow, G1 1XJ (United Kingdom)

    2011-07-19

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  15. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  16. The multilayer and wide-deck vibrating screen based on the innovative long-span vibration exciter

    Science.gov (United States)

    Zeng, Ming; Xu, Zonglin; Zhang, Jinnan; Zhang, Minghong

    2017-09-01

    The multilayer and wide-deck innovative single plasmid vibration screen is applicable to the petroleum drilling and the other relevant industries. The structural features and advantages of the components are illustrated, and the innovative long-span vibration exciter together with the steel rope saddle block flexible coupling is emphatically analyzed. Two engineering examples are provided to make the explanation.

  17. VPI - VIBRATION PATTERN IMAGER: A CONTROL AND DATA ACQUISITION SYSTEM FOR SCANNING LASER VIBROMETERS

    Science.gov (United States)

    Rizzi, S. A.

    1994-01-01

    The Vibration Pattern Imager (VPI) system was designed to control and acquire data from laser vibrometer sensors. The PC computer based system uses a digital signal processing (DSP) board and an analog I/O board to control the sensor and to process the data. The VPI system was originally developed for use with the Ometron VPI Sensor (Ometron Limited, Kelvin House, Worsley Bridge Road, London, SE26 5BX, England), but can be readily adapted to any commercially available sensor which provides an analog output signal and requires analog inputs for control of mirror positioning. VPI's graphical user interface allows the operation of the program to be controlled interactively through keyboard and mouse-selected menu options. The main menu controls all functions for setup, data acquisition, display, file operations, and exiting the program. Two types of data may be acquired with the VPI system: single point or "full field". In the single point mode, time series data is sampled by the A/D converter on the I/O board at a user-defined rate for the selected number of samples. The position of the measuring point, adjusted by mirrors in the sensor, is controlled via a mouse input. In the "full field" mode, the measurement point is moved over a user-selected rectangular area with up to 256 positions in both x and y directions. The time series data is sampled by the A/D converter on the I/O board and converted to a root-mean-square (rms) value by the DSP board. The rms "full field" velocity distribution is then uploaded for display and storage. VPI is written in C language and Texas Instruments' TMS320C30 assembly language for IBM PC series and compatible computers running MS-DOS. The program requires 640K of RAM for execution, and a hard disk with 10Mb or more of disk space is recommended. The program also requires a mouse, a VGA graphics display, a Four Channel analog I/O board (Spectrum Signal Processing, Inc.; Westborough, MA), a break-out box and a Spirit-30 board (Sonitech

  18. Chaotic Dynamics-Based Analysis of Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Using Nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhongsheng Chen

    2016-01-01

    Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.

  19. A method of real-time fault diagnosis for power transformers based on vibration analysis

    Science.gov (United States)

    Hong, Kaixing; Huang, Hai; Zhou, Jianping; Shen, Yimin; Li, Yujie

    2015-11-01

    In this paper, a novel probability-based classification model is proposed for real-time fault detection of power transformers. First, the transformer vibration principle is introduced, and two effective feature extraction techniques are presented. Next, the details of the classification model based on support vector machine (SVM) are shown. The model also includes a binary decision tree (BDT) which divides transformers into different classes according to health state. The trained model produces posterior probabilities of membership to each predefined class for a tested vibration sample. During the experiments, the vibrations of transformers under different conditions are acquired, and the corresponding feature vectors are used to train the SVM classifiers. The effectiveness of this model is illustrated experimentally on typical in-service transformers. The consistency between the results of the proposed model and the actual condition of the test transformers indicates that the model can be used as a reliable method for transformer fault detection.

  20. Imaging based refractometers

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S.

    2015-11-24

    Refractometers for simultaneously measuring refractive index of a sample over a range or wavelengths of light include dispersive and focusing optical systems. An optical beam including the rang of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. In some cases, the prism can have a triangle, parallelogram, trapezoid, or other shape. In some cases, the optical beam can be reflected off of multiple interfaces between the prism and the sample. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are indentified and corresponding refractive indices are determined.

  1. Impedance Synthesis Based Vibration Analysis of Geared Transmission System

    Directory of Open Access Journals (Sweden)

    Yafeng Ren

    2017-01-01

    Full Text Available The severity of gear noise response depends on the sensitivity of geared rotor system dynamics to the transmission error. As gearbox design trending towards lighter weight and lower noise, the influence of housing compliance on system dynamic characteristics cannot be ignored. In this study, a gear-shaft-bearing-housing coupled impedance model is proposed to account for the effect of housing compliance on the vibration of geared transmission system. This proposed dynamic model offers convenient modeling, efficient computing, and ability to combine computed parameters with experimental ones. The numerical simulations on system dynamic characteristics are performed for both a rigid housing configuration and a flexible one. Natural frequencies, dynamic mesh forces, and dynamic bearing reaction loads are computed, and the housing compliance contribution on system dynamic characteristics is analyzed. Results show that increasing housing compliance will decrease the system natural frequencies and will affect the dynamic bearing reaction loads significantly but have very little influence on the dynamic mesh force. Also, the analysis shows that bearing stiffness has significant influence on the degree of housing contribution on system dynamic characteristics.

  2. Imaging the state-specific vibrational predissociation of the C2H2-NH3 hydrogen-bonded dimer.

    Science.gov (United States)

    Parr, Jessica A; Li, Guosheng; Fedorov, Igor; McCaffery, Anthony J; Reisler, Hanna

    2007-08-09

    The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-acetylene dimer were studied following excitation in the asymmetric CH stretch. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the asymmetric CH stretch fundamental, ammonia fragments were detected by 2 + 1 REMPI via the B1E'' acetylene co-fragment. The latter is always generated with one or two quanta of bending excitation. All the distributions could be fit well when using a dimer dissociation energy of D0 = 900 +/- 10 cm(-1). Only channels with maximum translational energy acetylene co-fragment pair-correlated with specific rovibrational states of ammonia appear statistical as well. The vibrational-state distributions, however, show distinct state specificity among channels with low translational energy release. The predominant channel is NH3(1nu2) + C2H2(2nu4 or 1nu4 + 1nu5), where nu4 and nu5 are the trans- and cis-bend vibrations of acetylene, respectively. A second observed channel, with much lower population, is NH3(2nu2) + C2H2(1nu4). No products are generated in which the ammonia is in the vibrational ground state or the asymmetric bend (1nu4) state, nor is acetylene ever generated in the ground vibrational state or with CC stretch excitation. The angular momentum (AM) model of McCaffery and Marsh is used to estimate impact parameters in the internal collisions that give rise to the observed rotational distributions. These calculations show that dissociation takes place from bent geometries, which can also explain the propensity to excite fragment bending levels. The low recoil velocities associated with the observed channels facilitate energy exchange in the exit channel, which results in statistical-like fragment rotational distributions.

  3. Modelling and Analysis of Automobile Vibration System Based on Fuzzy Theory under Different Road Excitation Information

    Directory of Open Access Journals (Sweden)

    Xue-wen Chen

    2018-01-01

    Full Text Available A fuzzy increment controller is designed aimed at the vibration system of automobile active suspension with seven degrees of freedom (DOF. For decreasing vibration, an active control force is acquired by created Proportion-Integration-Differentiation (PID controller. The controller’s parameters are adjusted by a fuzzy increment controller with self-modifying parameters functions, which adopts the deviation and its rate of change of the body’s vertical vibration velocity and the desired value in the position of the front and rear suspension as the input variables based on 49 fuzzy control rules. Adopting Simulink, the fuzzy increment controller is validated under different road excitation, such as the white noise input with four-wheel correlation in time-domain, the sinusoidal input, and the pulse input of C-grade road surface. The simulation results show that the proposed controller can reduce obviously the vehicle vibration compared to other independent control types in performance indexes, such as, the root mean square value of the body’s vertical vibration acceleration, pitching, and rolling angular acceleration.

  4. IIR filtering based adaptive active vibration control methodology with online secondary path modeling using PZT actuators

    Science.gov (United States)

    Boz, Utku; Basdogan, Ipek

    2015-12-01

    Structural vibrations is a major cause for noise problems, discomfort and mechanical failures in aerospace, automotive and marine systems, which are mainly composed of plate-like structures. In order to reduce structural vibrations on these structures, active vibration control (AVC) is an effective approach. Adaptive filtering methodologies are preferred in AVC due to their ability to adjust themselves for varying dynamics of the structure during the operation. The filtered-X LMS (FXLMS) algorithm is a simple adaptive filtering algorithm widely implemented in active control applications. Proper implementation of FXLMS requires availability of a reference signal to mimic the disturbance and model of the dynamics between the control actuator and the error sensor, namely the secondary path. However, the controller output could interfere with the reference signal and the secondary path dynamics may change during the operation. This interference problem can be resolved by using an infinite impulse response (IIR) filter which considers feedback of the one or more previous control signals to the controller output and the changing secondary path dynamics can be updated using an online modeling technique. In this paper, IIR filtering based filtered-U LMS (FULMS) controller is combined with online secondary path modeling algorithm to suppress the vibrations of a plate-like structure. The results are validated through numerical and experimental studies. The results show that the FULMS with online secondary path modeling approach has more vibration rejection capabilities with higher convergence rate than the FXLMS counterpart.

  5. Two methods for damping torsional vibrations in DFIG-based wind generators using power converters

    Science.gov (United States)

    Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping

    2017-01-01

    This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.

  6. Casing Vibration Fault Diagnosis Based on Variational Mode Decomposition, Local Linear Embedding, and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yizhou Yang

    2017-01-01

    Full Text Available To diagnose mechanical faults of rotor-bearing-casing system by analyzing its casing vibration signal, this paper proposes a training procedure of a fault classifier based on variational mode decomposition (VMD, local linear embedding (LLE, and support vector machine (SVM. VMD is used first to decompose the casing signal into several modes, which are subsignals usually modulated by fault frequencies. Vibrational features are extracted from both VMD subsignals and the original one. LLE is employed here to reduce the dimensionality of these extracted features and make the samples more separable. Then low-dimensional data sets are used to train the multiclass SVM whose accuracy is tested by classifying the test samples. When the parameters of LLE and SVM are well optimized, this proposed method performs well on experimental data, showing its capacity of diagnosing casing vibration faults.

  7. Energy harvesting from coherent resonance of horizontal vibration of beam excited by vertical base motion

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-15

    This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.

  8. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  9. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor.

    Science.gov (United States)

    Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin

    2013-11-13

    A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical ...

  11. Energy-autonomous wireless vibration sensor for condition-based maintenance of machinery

    NARCIS (Netherlands)

    Wang, Z.; Bouwens, F.; Vullers, R.; Petré, F.; Devos, S.

    2011-01-01

    This paper addresses the development of an energy-autonomous wireless vibration sensor for condition-based monitoring of machinery. Such technology plays an increasingly important role in modern manufacturing industry. In this work, energy harvesting is realized by resorting to a custom designed

  12. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  13. A finite element-based perturbation method for nonlinear free vibration analysis of composite cylindrical shells

    NARCIS (Netherlands)

    Rahman, T.; Jansen, E.L.; Tiso, P.

    2011-01-01

    In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation

  14. Analysis of the Vibration Spectrum Based on the Input Voltage Spectrum

    DEFF Research Database (Denmark)

    Mathe, Laszlo; Jakobsen, Uffe; Rasmussen, Peter Omand

    2009-01-01

    Pulse width modulation, present in most drives, gives rise to harmonics in the current and this generates radial forces that cause vibrations in the motor shell. This paper derives an analytical expression for the estimation of the spectrum of the radial force in a machine with an air gap, based...

  15. Image-based occupancy sensor

    Science.gov (United States)

    Polese, Luigi Gentile; Brackney, Larry

    2015-05-19

    An image-based occupancy sensor includes a motion detection module that receives and processes an image signal to generate a motion detection signal, a people detection module that receives the image signal and processes the image signal to generate a people detection signal, a face detection module that receives the image signal and processes the image signal to generate a face detection signal, and a sensor integration module that receives the motion detection signal from the motion detection module, receives the people detection signal from the people detection module, receives the face detection signal from the face detection module, and generates an occupancy signal using the motion detection signal, the people detection signal, and the face detection signal, with the occupancy signal indicating vacancy or occupancy, with an occupancy indication specifying that one or more people are detected within the monitored volume.

  16. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  17. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-09-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  18. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    Science.gov (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  19. Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift

    Science.gov (United States)

    Zhong, Shuncong; Zhong, Jianfeng; Zhang, Qiukun; Maia, Nuno

    2017-09-01

    A novel quasi-optical coherence vibration tomography (Quasi-OCVT) measurement system suitable for structural damage detection is proposed by taking the concept of two-dimensional optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP) similar to the interferogram of 2D-OCVT system, as a sensor, was pasted on the surface of a vibrating structure. Image sequences of QIFP were captured by a high-speed camera that worked as a detector. The period density of the imaged QIFP changed due to the structural vibration, from which the vibration information of the structure could be obtained. Noise influence on the measurement accuracy, torsional sensitivity and optical distortion effect of the Quasi-OCVT system were investigated. The efficiency and reliability of the proposed method were demonstrated by applying the system to damage detection of a cracked beam-like structure with a roving auxiliary mass. The roving of the mass along the cracked beam brings about the change of natural frequencies that could be obtained by the Quasi-OCVT technique. Therefore, frequency-shift curves can be achieved and these curves provide additional spatial information for structural damage detection. Same cases were also analyzed by the finite element method (FEM) and conventional accelerometer-based measurement method. Comparisons were carried out among these results. Results obtained by the proposed Quasi-OCVT method had a good agreement with the ones obtained by FEM, from which the damage could be directly detected. However, the results obtained by conventional accelerometer showed misleading ambiguous peaks at damage position owing to the mass effect on the structure, where the damage location cannot be identified confidently without further confirmation. The good performance of the cost-effective Quasi-OCVT method makes it attractive for vibration measurement and damage detection of beam-like structures.

  20. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility

    Science.gov (United States)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.

    2016-01-01

    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  1. 2-Bromohydroquinone: structures, vibrational assignments and RHF, B- and B3-based density functional calculations.

    Science.gov (United States)

    Ramoji, Anuradha; Yenagi, Jayashree; Tonannavar, J

    2008-03-01

    Vibrational spectral measurements, namely, infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectra have been made for 2-Bromohydroquinone. Optimized geometrical structures, harmonic vibrational frequencies and intensities have been computed by the ab initio (RHF), B-based (BLYP, BP86) and B3-based (B3P86, B3LYP, B3PW91) density functional methods using 6-31G(d) basis set. A complete assignment of the observed spectra has been proposed. Coupling of vibrations has been determined by calculating potential energy distributions (PEDs) at BP86/6-31G(d) level of theory. In the computed equilibrium geometries by all the levels, the bond lengths and bond angles show changes in the neighborhood of Bromine. Similarly, the vibrational spectra exhibit some marked spectral features unlike in hydroquinone and phenol. On the other hand, the infrared spectrum shows a clear evidence of O-H...O bonding near 3200 cm(-1) as in hydroquinone. Evaluation of the theoretical methods demonstrates that all the levels but the RHF have reproduced frequencies fairly accurately in the 2000-500 cm(-1); below 500 cm(-1) the RHF has performed reasonably well.

  2. Imaging the inelastic scattering of vibrationally excited NO (v = 1) with Ar

    Science.gov (United States)

    Kamasah, Alexander; Li, Hongwei; Onvlee, Jolijn; van der Avoird, Ad; Parker, David H.; Suits, Arthur G.

    2018-01-01

    The inelastic scattering of vibrationally excited NO (v = 1) with Ar at a collision energy of 3.0 kcal mol-1 was investigated in crossed beams. Vibrationally excited NO was generated by flash heating and rotationally cooled by the supersonic expansion. The differential cross sections were compared to those of the vibrational ground state NO (v = 0) with Ar, which were also compared to theoretical calculations for scattering from the ground vibrational level. The differential cross sections show a similar strong j dependence of the rotational rainbow maxima from the inelastic scattering for both NO (v = 0) and (v = 1) but no significant differences between NO (v = 0) and (v = 1) were seen.

  3. Metadata for Content-Based Image Retrieval

    Directory of Open Access Journals (Sweden)

    Adrian Sterca

    2010-12-01

    Full Text Available This paper presents an image retrieval technique that combines content based image retrieval with pre-computed metadata-based image retrieval. The resulting system will have the advantages of both approaches: the speed/efficiency of metadata-based image retrieval and the accuracy/power of content-based image retrieval.

  4. Evidence based medical imaging (EBMI)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tony [Senior Lecturer in Medical Radiation Science, University Department of Rural Health, School of Health Sciences, Faculty of Health, University of Newcastle, Locked Bag 9783 NEMSC, Tamworth, NSW 2348 (Australia)], E-mail: tony.smith@hnehealth.nsw.gov.au

    2008-08-15

    Background: The evidence based paradigm was first described about a decade ago. Previous authors have described a framework for the application of evidence based medicine which can be readily adapted to medical imaging practice. Purpose: This paper promotes the application of the evidence based framework in both the justification of the choice of examination type and the optimisation of the imaging technique used. Methods: The framework includes five integrated steps: framing a concise clinical question; searching for evidence to answer that question; critically appraising the evidence; applying the evidence in clinical practice; and, evaluating the use of revised practices. Results: This paper illustrates the use of the evidence based framework in medical imaging (that is, evidence based medical imaging) using the examples of two clinically relevant case studies. In doing so, a range of information technology and other resources available to medical imaging practitioners are identified with the intention of encouraging the application of the evidence based paradigm in radiography and radiology. Conclusion: There is a perceived need for radiographers and radiologists to make greater use of valid research evidence from the literature to inform their clinical practice and thus provide better quality services.

  5. Wavelength conversion based spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin

    There has been a strong, application driven development of Si-based cameras and spectrometers for imaging and spectral analysis of light in the visible and near infrared spectral range. This has resulted in very efficient devices, with high quantum efficiency, good signal to noise ratio and high...... resolution for this spectral region. Today, an increasing number of applications exists outside the spectral region covered by Si-based devices, e.g. within cleantech, medical or food imaging. We present a technology based on wavelength conversion which will extend the spectral coverage of state of the art...... visible or near infrared cameras and spectrometers to include other spectral regions of interest....

  6. Biogeography based Satellite Image Classification

    OpenAIRE

    Harish Kundra; Parminder Singh; Navdeep Kaur; V.K. Panchal

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researc...

  7. Review on structural damage assessment via transmissibility with vibration based measurements

    Science.gov (United States)

    Zhou, Yun-Lai; Hongyou, Cao; Zhen, Ni; Abdel Wahab, Magd

    2017-05-01

    In this study, transmissibility based damage assessment techniques with vibration measurement are reviewed with highlighting the recent advancements since damage might induce severe changes and cause huge economic losses in both civil and mechanical engineering structures. In recent years, transmissibility underwent booming and divergent application for damage assessment both in experimental model and engineering application, and this review provides a fundamental understanding for transmissibility based damage assessment by summarizing those research outputs, which can serve as useful reference for further investigations.

  8. Vibration Analysis of Randomly Oriented Carbon Nanotube Based on FGM Beam Using Timoshenko Theory

    OpenAIRE

    Mohammad Amin Rashidifar; Darvish Ahmadi

    2015-01-01

    The carbon nanotube (CNT) reinforced functionally graded materials (FGM) are expected to be the new generation materials having wide range of unexplored potential applications in various technological areas such as aerospace and structural and chemical industry. The present work deals with the finite element modeling and free vibration analysis of CNT based functionally graded beam using three-dimensional Timoshenko beam theory. It has been assumed that the material properties of CNT based FG...

  9. Detail Enhancement for Infrared Images Based on Propagated Image Filter

    OpenAIRE

    Yishu Peng; Yunhui Yan; Jiuliang Zhao

    2016-01-01

    For displaying high-dynamic-range images acquired by thermal camera systems, 14-bit raw infrared data should map into 8-bit gray values. This paper presents a new method for detail enhancement of infrared images to display the image with a relatively satisfied contrast and brightness, rich detail information, and no artifacts caused by the image processing. We first adopt a propagated image filter to smooth the input image and separate the image into the base layer and the detail layer. Then,...

  10. A GIS-based approach for the screening assessment of noise and vibration impacts from transit projects.

    Science.gov (United States)

    Hamed, Maged; Effat, Waleed

    2007-08-01

    Urban transportation projects are essential in increasing the efficiency of moving people and goods within a city, and between cities. Environmental impacts from such projects must be evaluated and mitigated, as applicable. Spatial modeling is a valuable tool for quantifying the potential level of environmental consequences within the context of an environmental impact assessment (EIA) study. This paper presents a GIS-based tool for the assessment of airborne-noise and ground-borne vibration from public transit systems, and its application to an actual project. The tool is based on the US Federal Transit Administration's (FTA) approach, and incorporates spatial information, satellite imaging, geostatistical modeling, and software programming. The tool is applied on a case study of initial environmental evaluation of a light rail transit project in an urban city in the Middle East, to evaluate alternative layouts. The tool readily allowed the alternative evaluation and the results were used as input to a multi-criteria analytic framework.

  11. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  12. Based On Intrinsic Mode Function Energy Tracking Method of Circuit Breaker Vibration Signal Feature Extraction Studies

    Directory of Open Access Journals (Sweden)

    Sun Yi-Hang

    2017-01-01

    Full Text Available In order to detect a mechanical type of structural failure of the circuit breaker, the characteristics of the circuit breaker mechanical vibration signal is analyzed in this paper. A combination of medium voltage circuit breaker based on empirical mode decomposition (EMD amount of energy and support vector machine (SVM theory vibration signal feature vector extraction and analysis of fault classification method is proposed. First, the vibration signal of the circuit breaker is decomposed by EMD, then intrinsic mode function (IMF is obtain. The major fault feature information intrinsic mode functions the amount of energy of the component is obtained by discrete sampling points and the amount of energy. Using the amount of energy of IMF component as a feature vector, the failure of the test sample signal as input feature vector into trained “BT-SVM” support vector machine classification mechanism for fault classification. The differences and fault type of vibration signals can be identified by this method through the experimental analysis.

  13. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine

    Science.gov (United States)

    Antoni, Jérôme; Griffaton, Julien; André, Hugo; Avendaño-Valencia, Luis David; Bonnardot, Frédéric; Cardona-Morales, Oscar; Castellanos-Dominguez, German; Daga, Alessandro Paolo; Leclère, Quentin; Vicuña, Cristián Molina; Acuña, David Quezada; Ompusunggu, Agusmian Partogi; Sierra-Alonso, Edgar F.

    2017-12-01

    This paper presents the content and outcomes of the Safran contest organized during the International Conference Surveillance 8, October 20-21, 2015, at the Roanne Institute of Technology, France. The contest dealt with the diagnosis of a civil aircraft engine based on vibration data measured in a transient operating mode and provided by Safran. Based on two independent exercises, the contest offered the possibility to benchmark current diagnostic methods on real data supplemented with several challenges. Outcomes of seven competing teams are reported and discussed. The object of the paper is twofold. It first aims at giving a picture of the current state-of-the-art in vibration-based diagnosis of rolling-element bearings in nonstationary operating conditions. Second, it aims at providing the scientific community with a benchmark and some baseline solutions. In this respect, the data used in the contest are made available as supplementary material.

  14. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  15. Directed Graph Based Image Registration

    Science.gov (United States)

    Jia, Hongjun; Wu, Guorong; Wang, Qian; Wang, Yaping; Kim, Minjeong; Shen, Dinggang

    2011-01-01

    In this paper, a novel image registration method is proposed to achieve accurate registration between images having large shape differences with the help of a set of appropriate intermediate templates. We first demonstrate that directionality is a key factor in both pairwise image registration and groupwise registration, which is defined in this paper to describe the influence of the registration direction and paths on the registration performance. In our solution, the intermediate template selection and intermediate template guided registration are two coherent steps with directionality being considered. To take advantage of the directionality, a directed graph is built based on the asymmetric distance defined on all ordered image pairs in the image population, which is fundamentally different from the undirected graph with symmetric distance metrics in all previous methods, and the shortest distance between template and subject on the directed graph is calculated. The allocated directed path can be thus utilized to better guide the registration by successively registering the subject through the intermediate templates one by one on the path towards the template. The proposed directed graph based solution can also be used in groupwise registration. Specifically, by building a minimum spanning arborescence (MSA) on the directed graph, the population center, i.e., a selected template, as well as the directed registration paths from all the rest of images to the population center, is determined simultaneously. The performance of directed graph based registration algorithm is demonstrated by the spatial normalization on both synthetic dataset and real brain MR images. It is shown that our method can achieve more accurate registration results than both the undirected graph based solution and the direct pairwise registration. PMID:22014476

  16. A piezoelectric vibration harvester based on clamped-guided beams

    NARCIS (Netherlands)

    Wang, Z.; Matova, S.; Elfrink, R.; Jambunathan, M.; Nooijer, C. de; Schaijk, R. van; Vullers, R.J.M.

    2012-01-01

    The paper addresses the design, modeling, fabrication and experimental results of a piezoelectric energy harvester based on clamped-guided beams. The design is featured by shorter mass displacement and higher reliability than cantilever beams. Two separate sets of capacitors allow exploiting both

  17. Integrated vibration-based maintenance: an approach for continuous reduction in LCC. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, B. [ER Konsult Utveckling AB, Vaexjoe (Sweden)

    1998-12-31

    The biggest thread in achieving and maintaining high equipment effectiveness can be stated as: whether the improved manufacturing processes capable of producing quality products at a competitive cost. The effect of a new vibration-based maintenance concept, called Total Quality Maintenance (TQMain), is introduced. It aims to make intensive use of the real-time data acquisition and analysis to detect causes behind product quality deviation and failures in machinery, and following defect development at an early stage to increase machine mean effective life and improve company`s economics. The effect of TQMain on LCC of machinery and company`s economics is discussed. A case study to reveal savings in maintenance cost when a vibration-based policy involved, is presented. Using TQMain, company`s economics can be improved effectively through continuous improvement of the technical and economic effectiveness of production processes. (orig.) 14 refs.

  18. Evaluation of the vehicle state with vibration-based diagnostics methods

    Science.gov (United States)

    Gai, V. E.; Polyakov, I. V.; Krasheninnikov, M. S.; Koshurina, A. A.; Dorofeev, R. A.

    2017-02-01

    Timely detection of a trouble in the mechanisms work is a guarantee of the stable operation of the entire machine complex. It allows minimizing unexpected losses, and avoiding any injuries inflicted on working people. The solution of the problem is the most important for vehicles and machines, working in remote areas of the infrastructure. All-terrain vehicles can be referred to such type of transport. The potential object of application of the described methodology is the multipurpose rotary-screw amphibious vehicle for rescue; reconnaissance; transport and technological operations. At the present time, there is no information on the use of these kinds of systems in ground-based vehicles. The present paper is devoted to the state estimation of a mechanism based on the analysis of vibration signals produced by the mechanism, in particular, the vibration signals of rolling bearings. The theory of active perception was used for the solution of the problem of the state estimation.

  19. A vibration-based health monitoring program for a large and seismically vulnerable masonry dome

    Science.gov (United States)

    Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.

    2017-05-01

    Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.

  20. Carbon Nanotube-Based Nanomechanical Sensor: Theoretical Analysis of Mechanical and Vibrational Properties

    Directory of Open Access Journals (Sweden)

    Toshiaki Natsuki

    2017-08-01

    Full Text Available This paper reviews the recent research of carbon nanotubes (CNTs used as nanomechanical sensing elements based mainly on theoretical models. CNTs have demonstrated considerable potential as nanomechanical mass sensor and atomic force microscope (AFM tips. The mechanical and vibrational characteristics of CNTs are introduced to the readers. The effects of main parameters of CNTs, such as dimensions, layer number, and boundary conditions on the performance characteristics are investigated and discussed. It is hoped that this review provides knowledge on the application of CNTs as nanomechanical sensors and computational methods for predicting their properties. Their theoretical studies based on the mechanical properties such as buckling strength and vibration frequency would give a useful reference for designing CNTs as nanomechanical mass sensor and AFM probes.

  1. Vibration-based structural health monitoring of the aircraft large component

    Science.gov (United States)

    Pavelko, V.; Kuznetsov, S.; Nevsky, A.; Marinbah, M.

    2017-10-01

    In the presented paper there are investigated the basic problems of the local system of SHM of large scale aircraft component. Vibration-based damage detection is accepted as a basic condition, and main attention focused to a low-cost solution that would be attractive for practice. The conditions of small damage detection in the full scale structural component at low-frequency excitation were defined in analytical study and modal FEA. In experimental study the dynamic test of the helicopter Mi-8 tail beam was performed at harmonic excitation with frequency close to first natural frequency of the beam. The index of correlation coefficient deviation (CCD) was used for extraction of the features due to embedded pseudo-damage. It is shown that the problem of vibration-based detection of a small damage in the large scale structure at low-frequency excitation can be solved successfully.

  2. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    and the diaphragm collapse voltage for the microphones. Conclusions are that the FEM programs can be used to simulate the transducers to the degree of precision required in development of existing transducers. The programs also represent a virtual prototype that gives a better understanding of the behaviour......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...

  3. Vibration-Based Damage Identification in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    Due to the existing trend of placing wind turbines in impassable terrain, for example, offshore, these structures constitute prime candidates for being subjected to structural health monitoring (SHM). The wind turbine blades have in particular been paid research attention [1] as these compose one...... of the most common and critical components to fail in the turbines [2]. The standard structural integrity assessment of blades is based on visual inspection, which requires the turbine in question to be stopped while inspections are conducted. This procedure is extremely costly and tedious, hence emphasizing...

  4. Analysis of the Vibration Spectrum Based on the Input Voltage Spectrum

    OpenAIRE

    Mathe, Laszlo; Jakobsen, Uffe; Rasmussen, Peter Omand; Pedersen, John Kim

    2009-01-01

    Pulse width modulation, present in most drives, gives rise to harmonics in the current and this generates radial forces that cause vibrations in the motor shell. This paper derives an analytical expression for the estimation of the spectrum of the radial force in a machine with an air gap, based on the spectrum of the applied voltage. The measurements show that the spectral components are caused mainly by the modulation, which agrees with the results from the analytical solution. A method...

  5. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2014-09-01

    Full Text Available This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and

  6. Wavelet Based Demodulation of Vibration Signals Generated by Defects in Rolling Element Bearings

    OpenAIRE

    Yiakopoulos, C.T.; Antoniadis, I.A.

    2002-01-01

    Vibration signals resulting from roller bearing defects, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the fault. The envelope detection or demodulation methods have been established as the dominant analysis methods for this purpose, since they can separate the useful part of the signal from its redundant contents. The paper proposes a new effective demodulation method, based on the wavelet transform. Th...

  7. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    OpenAIRE

    Deng, Guodong; Zhang, Jiasheng; Wu, Wenbing; Shi, Xiong; Meng, Fei

    2014-01-01

    By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solu...

  8. Image-based BRDF Representation

    Directory of Open Access Journals (Sweden)

    Mihálik A.

    2015-12-01

    Full Text Available To acquire a certain level of photorealism in computer graphics, it is necessary to analyze, how the materials scatter the incident light. In this work, we propose the method to direct rendering of isotropic bidirectional reflectance function (BRDF from the small set of images. The image-based rendering is focused to synthesize as accurately as possible scenes composed of natural and artificial objects. The realistic image synthesis of BRDF data requires evaluation of radiance over the multiple directions of incident and scattered light from the surface. In our approach the images depict only the material reflectance, the shape is represented as the object geometry. We store the BRDF representation, acquired from the sample material, in a number of two-dimensional textures that contain images of spheres lit from the multiple directions. In order to render particular material, we interpolate between textures in the similar way the image morphing works. Our method allows the real-time rendering of tabulated BRDF data on low memory devices such as mobile phones.

  9. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  10. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  11. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  12. Diagnosis of Localized Faults in Multistage Gearboxes: A Vibrational Approach by Means of Automatic EMD-Based Algorithm

    Directory of Open Access Journals (Sweden)

    M. Buzzoni

    2017-01-01

    Full Text Available The gear fault diagnosis on multistage gearboxes by vibration analysis is a challenging task due to the complexity of the vibration signal. The localization of the gear fault occurring in a wheel located in the intermediate shaft can be particularly complex due to the superposition of the vibration signature of the synchronous wheels. Indeed, the gear fault detection is commonly restricted to the identification of the stage containing the faulty gear rather than the faulty gear itself. In this context, the paper advances a methodology which combines the Empirical Mode Decomposition and the Time Synchronous Average in order to separate the vibration signals of the synchronous gears mounted on the same shaft. The physical meaningful modes are selected by means of a criterion based on Pearson’s coefficients and the fault detection is performed by dedicated condition indicators. The proposed method is validated taking into account simulated vibrations signals and real ones.

  13. Image-Based Chemical Structure Determination.

    Science.gov (United States)

    Ofner, Johannes; Brenner, Florian; Wieland, Karin; Eitenberger, Elisabeth; Kirschner, Johannes; Eisenmenger-Sittner, Christoph; Török, Szilvia; Döme, Balazs; Konegger, Thomas; Kasper-Giebl, Anne; Hutter, Herbert; Friedbacher, Gernot; Lendl, Bernhard; Lohninger, Hans

    2017-07-28

    Chemical imaging is a powerful tool for understanding the chemical composition and nature of heterogeneous samples. Recent developments in elemental, vibrational, and mass-spectrometric chemical imaging with high spatial resolution (50-200 nm) and reasonable timescale (a few hours) are capable of providing complementary chemical information about various samples. However, a single technique is insufficient to provide a comprehensive understanding of chemically complex materials. For bulk samples, the combination of different analytical methods and the application of statistical methods for extracting correlated information across different techniques is a well-established and powerful concept. However, combined multivariate analytics of chemical images obtained via different imaging techniques is still in its infancy, hampered by a lack of analytical methodologies for data fusion and analysis. This study demonstrates the application of multivariate statistics to chemical images taken from the same sample via various methods to assist in chemical structure determination.

  14. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  15. Two-dimensional vibrational spectroscopy of rotaxane-based molecular machines.

    Science.gov (United States)

    Bodis, Pavol; Panman, Matthijs R; Bakker, Bert H; Mateo-Alonso, Aurelio; Prato, Maurizio; Buma, Wybren Jan; Brouwer, Albert M; Kay, Euan R; Leigh, David A; Woutersen, Sander

    2009-09-15

    It has recently become possible to synthesize mechanical devices the size of a single molecule. Although it is tempting to regard such molecular machines as nanoscale versions of their macroscopic analogs, many notions from macroscopic mechanics no longer apply at a molecular level. For instance, the concept of viscous friction is meaningless for a molecular machine because the size of the solvent molecules that cause the friction is comparable to that of the machine itself. Furthermore, in many cases, the interactions between a molecular machine and its surroundings are comparable to the force driving the machine. As a result, a certain amount of intrinsic randomness exists in the motion of molecular machines, and the details of their mechanics are largely unknown. For a detailed understanding of the mechanical behavior of molecular machines, experiments that probe their motion on an ultrafast time scale, such as two-dimensional (2D) vibrational spectroscopy, are essential. This method uses coupling between vibrational modes in a molecule to investigate the molecular conformation. The coupling shows up as off-diagonal peaks in a 2D graph of the vibrational response of the molecule, analogous to the spin coupling observed in multidimensional NMR spectroscopy. Both spin coupling and vibrational coupling are sensitive probes of the molecular conformation, but 2D vibrational spectroscopy shows orders of magnitude better time resolution than NMR. In this Account, we use 2D vibrational spectroscopy to study molecular machines based on rotaxanes. These devices consist of a linear thread and a macrocycle that is noncovalently locked onto the thread. In the rotaxanes we study, the macrocycle and the thread both contain CO and NH groups. By determining the coupling between the stretching modes of these goups from the cross peaks in the 2D spectrum, we directly and quantitatively probe the relative position and orientation of the macrocycle and the thread for both a small

  16. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little

  17. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... of bimorph vibration energy harvesters is that strain energy is not lost in mechanical support materials since only Pb(ZrxTi1-x)O3 (PZT) is strained; as a result, the effective system coupling coefficient is increased, and thus a potential for significantly higher output power is released. In addition, when...... the two layers are connected in series, the output voltage is increased, and as a result the relative power loss in the necessary rectifying circuit is reduced. We describe an improved process scheme for the energy harvester, which resulted in a robust fabrication process with a record high fabrication...

  18. Wavelet Based Demodulation of Vibration Signals Generated by Defects in Rolling Element Bearings

    Directory of Open Access Journals (Sweden)

    C.T. Yiakopoulos

    2002-01-01

    Full Text Available Vibration signals resulting from roller bearing defects, present a rich content of physical information, the appropriate analysis of which can lead to the clear identification of the nature of the fault. The envelope detection or demodulation methods have been established as the dominant analysis methods for this purpose, since they can separate the useful part of the signal from its redundant contents. The paper proposes a new effective demodulation method, based on the wavelet transform. The method fully exploits the underlying physical concepts of the modulation mechanism, present in the vibration response of faulty bearings, using the excellent time-frequency localization properties of the wavelet analysis. The choice of the specific wavelet family is marginal to their overall effect, while the necessary number of wavelet levels is quite limited. Experimental results and industrial measurements for three different types of bearing faults confirm the validity of the overall approach.

  19. Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mauricio Holguín-Londoño

    2016-01-01

    Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.

  20. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  1. An Impact-Based Frequency Up-Converting Hybrid Vibration Energy Harvester for Low Frequency Application

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2017-11-01

    Full Text Available In this paper, a novel impact-based frequency up-converting hybrid energy harvester (FUCHEH was proposed. It consisted of a piezoelectric cantilever beam and a driving beam with a magnetic tip mass. A solenoid coil was attached at the end of the piezoelectric beam. This innovative configuration amplified the relative motion velocity between magnet and coil, resulting in an enhancement of the induced electromotive force in the coil. An electromechanical coupling model was developed and a numerical simulation was performed to study the principle of impact-based frequency up-converting. A prototype was fabricated and experimentally tested. The time-domain and frequency-domain analyses were performed. Fast Fourier transform (FFT analysis verified that fundamental frequencies and coupled vibration frequency contributes most of the output voltage. The measured maximum output power was 769.13 µW at a frequency of 13 Hz and an acceleration amplitude of 1 m/s2, which was 3249.4%- and 100.6%-times larger than that of the frequency up-converting piezoelectric energy harvesters (FUCPEH and frequency up-converting electromagnetic energy harvester (FUCEMEH, respectively. The root mean square (RMS voltage of the piezoelectric energy harvester subsystem (0.919 V was more than 16 times of that of the stand-alone PEH (0.055 V. This paper provided a new scheme to improve generating performance of the vibration energy harvester with high resonant frequency working in the low-frequency vibration environment.

  2. The Health Monitoring Method of Concrete Dams Based on Ambient Vibration Testing and Kernel Principle Analysis

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2015-01-01

    Full Text Available The ambient vibration testing (AVT measurement of concrete dams on full-scale can show the practical dynamic properties of structure in the operation state. For most current researches, the AVT data is generally analyzed to identify the structural vibration characteristics, that is, modal parameters. The identified modal parameters, which can provide the global damage information or the damage location information of structure, can be used as the basis of structure health monitoring. Therefore, in this paper, the health monitoring method of concrete dams based on the AVT is studied. The kernel principle analysis (KPCA based method is adopted to eliminate the effect of environmental variables and monitor the health of dam under varying environments. By taking full advantage of the AVT data obtained from vibration observation system of dam, the identification capabilities and the warning capabilities of structural damage can be improved. With the simulated AVT data of the numerical model of a concrete gravity dam and the measured AVT data of a practical engineering, the performance of the dam health monitoring method proposed in this paper is verified.

  3. Vibration Study of Fork-lift Truck Based on the Virtual Prototype Technology

    Directory of Open Access Journals (Sweden)

    YANG Mingliang

    2014-05-01

    Full Text Available The forklift truck is one of important equipments of the modern logistics system. As the forklift truck is running, the driver seat and steering wheel of a certain type of fork-lift truck vibrate strongly, virtual prototyping technology and multi-body dynamics are used to make simulation of dynamic performance of fork-lift truck in this paper, and then the test result is compared with time course load that obtained from frame junction with the annex. We should repeatedly modify the simulation model based on test results, which is consistent with the actual results. Based on this model, so we put forward measures for improving design: Firstly, the axis of rotation of oval steering axle is implied; Secondly, the overhead guard is connected with the frame by the rubber cushion blocks at four different locations; Thirdly, the engine is fixed on the frame by the rubber cushion blocks (shock mount in two different position. The improved simulation and experimental verification are carried out under the same conditions, and the results show that the fundamental frequency of seat of the improved fork-lift truck and vibration energy are lower. The result proves the practical value of this method in the research of the vibration characteristics of complete engineering machine.

  4. Vibration-based angular speed estimation for multi-stage wind turbine gearboxes

    Science.gov (United States)

    Peeters, Cédric; Leclère, Quentin; Antoni, Jérôme; Guillaume, Patrick; Helsen, Jan

    2017-05-01

    Most processing tools based on frequency analysis of vibration signals are only applicable for stationary speed regimes. Speed variation causes the spectral content to smear, which encumbers most conventional fault detection techniques. To solve the problem of non-stationary speed conditions, the instantaneous angular speed (IAS) is estimated. Wind turbine gearboxes however are typically multi-stage gearboxes, consisting of multiple shafts, rotating at different speeds. Fitting a sensor (e.g. a tachometer) to every single stage is not always feasible. As such there is a need to estimate the IAS of every single shaft based on the vibration signals measured by the accelerometers. This paper investigates the performance of the multi-order probabilistic approach for IAS estimation on experimental case studies of wind turbines. This method takes into account the meshing orders of the gears present in the system and has the advantage that a priori it is not necessary to associate harmonics with a certain periodic mechanical event, which increases the robustness of the method. It is found that the MOPA has the potential to easily outperform standard band-pass filtering techniques for speed estimation. More knowledge of the gearbox kinematics is beneficial for the MOPA performance, but even with very little knowledge about the meshing orders, the MOPA still performs sufficiently well to compete with the standard speed estimation techniques. This observation is proven on two different data sets, both originating from vibration measurements on the gearbox housing of a wind turbine.

  5. Compact hyperspectral image sensor based on a novel hyperspectral encoder

    Science.gov (United States)

    Hegyi, Alex N.; Martini, Joerg

    2015-06-01

    A novel hyperspectral imaging sensor is demonstrated that can enable breakthrough applications of hyperspectral imaging in domains not previously accessible. Our technology consists of a planar hyperspectral encoder combined with a traditional monochrome image sensor. The encoder adds negligibly to the sensor's overall size, weight, power requirement, and cost (SWaP-C); therefore, the new imager can be incorporated wherever image sensors are currently used, such as in cell phones and other consumer electronics. In analogy to Fourier spectroscopy, the technique maintains a high optical throughput because narrow-band spectral filters are unnecessary. Unlike conventional Fourier techniques that rely on Michelson interferometry, our hyperspectral encoder is robust to vibration and amenable to planar integration. The device can be viewed within a computational optics paradigm: the hardware is uncomplicated and serves to increase the information content of the acquired data, and the complexity of the system, that is, the decoding of the spectral information, is shifted to computation. Consequently, system tradeoffs, for example, between spectral resolution and imaging speed or spatial resolution, are selectable in software. Our prototype demonstration of the hyperspectral imager is based on a commercially-available silicon CCD. The prototype encoder was inserted within the camera's ~1 cu. in. housing. The prototype can image about 49 independent spectral bands distributed from 350 nm to 1250 nm, but the technology may be extendable over a wavelength range from ~300 nm to ~10 microns, with suitable choice of detector.

  6. A Comparative Experimental Study on Head-Disk Touch-Down Detectability Based on Off-Track Vibration

    Directory of Open Access Journals (Sweden)

    Sheng-Xiang Chen

    2013-10-01

    Full Text Available To further increase the hard-disk drive’s areal density, the head-disk spacing needs to be reduced to sub 1 nm and it requires accurately detect the head-disk touch down (TD. The off-track-vibration-based TD detection methods are widely applied in current hard-disk drive (HDD for head-disk TD detection. However, few studies perform on how to improve the off-track-vibration-based TD detection sensitivity. In this paper, a comparative experimental study was conducted between comparative two off-track-vibration-based TD detection methods: one is based on the low-frequency-forced vibration; the other is based on the off-track-structure vibration. Besides, the skew angle, touch down area (TDA, and the head-stack assembly (HSA rotation inertia effects on TD detectability were discussed. Bigger skew angle and bigger TDA are helpful for good TD sensitivity for these two methods. To the method based on low frequency forced vibration, the smaller HSA rotation inertia design is also helpful.

  7. Polymer-based disposable microneedle array with insertion assisted by vibrating motion.

    Science.gov (United States)

    Lee, F-W; Hung, W-H; Ma, C-W; Yang, Y-J

    2016-01-01

    This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and collect blood by puncturing the dermis layer of human skin. The fabricated device is advantageous because of its biocompatibility, simple fabrication process, and low associated costs. Additionally, the graph of the measured extraction flow rate versus the pressure drop that is presented shows an agreement with the results predicted by analytical models. A 40% reduction of insertion force was demonstrated when the microneedle insertion was assisted by actuator-induced vibratory motions. Buckling analyses for estimating the maximum loads that the microneedle can sustain before failure occurs were also evaluated. Finally, the relationship between the insertion force and the vibration frequency was demonstrated in this study.

  8. A Heterodyne-based Method for Measuring Object Movement Speed and Vibration Parameters

    Directory of Open Access Journals (Sweden)

    M. A. Kostromin

    2015-01-01

    Full Text Available Now, in the industry and science, laser methods and tools are widely used to measure various parameters of objects and environment. Among them is distinguished the method of a heterodyne interferometry allowing real time measurements of fairly high accuracy. However, there is an essential shortcoming in this method. It is rather narrow range of measurements because a period of the wave-interference pattern is commensurable with the light wavelength. Therefore, for measurement of parameters of extended objects this work offers a method, which allows us to form the period wave-interference pattern commensurable with the object sizes using two channels of measurement, i.e. rough and exact, thereby providing a wide range and high accuracy of measurement. The article considers the offered method application to measure a movement speed and vibration parameters of the object and shows its advantage. It describes a structure of the heterodyne-based meter of the cross speed of object movement using the offered method where, as a result of the reflector cross movement, the phase of interfering beams is changed because the wave-interference pattern will be displaced with respect to the optoelectronic sensor slit. The paper defines efficiently working borders of this method for measuring object speed. It is found that to measure the amplitude of vibrations it is determined in this case by calculating the Bessel function transitions through zero. Thus, for disambiguation in determination of the amplitude size rather complicated equipment is demanded. It is shown that the offered method allows us to take absolute measurements of amplitude and frequency of vibrations along with simplified implementation. The calculations show that for the real speeds of the object movement this method, as compared to a known Doppler method, will have the higher sensitivity, which is easily regulated in a wide range by changing the frequency to the cross speeds of the movement

  9. Study on the status of the working bodies grinding machines based on vibration analysis

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2016-01-01

    Full Text Available Improvement of technology and engineering aimed at the use of secondary raw material is an important task. One of the most important operations in the preparation of raw materials for mixed feeds is fine grinding. In this regard, the article discusses the grinding equipment allowing to obtain raw materials of higher quality with the lower energy consumption. Methods and diagnostic tools were proposed, the principle of determining the locations (points of installation of vibration measurement sensors as well as the choice of the vibration signal analysis method were considered. Investigation of the state of the disintegrator working bodies was carried out in the workshop of LLC PСF "Luch 2000". The object of study is a disintegrator with rotors diameter of 350 mm, each of them having two rows of pins. The result of the experiment revealed that during the operation the working bodies of grinding machines are exposed to uneven wear and under the action of multicycle load micro-cracks and fatigue fractures occur. The method of spectral analysis revealed the appearance of harmonics with large vibration at a frequency of 126 Hz, as well as multiple frequencies, allowing a high degre e of probability to determine not only the actual state of the working bodies, but also to predict the defect development trend. Based on the analysis of the spectra, the decision on further time operation of the equipment is made, which significantly reduces the probability of an emergency stop of equipment and expensive repairs. The research data will be relevant when using vibration diagnostics tools in enterprises, as well as in the design, construction and choice of materials for grinding equipment.

  10. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  11. Free Vibration of Size-Dependent Functionally Graded Microbeams Based on the Strain Gradient Reddy Beam Theory

    Science.gov (United States)

    Ansari, R.; Gholami, R.; Sahmani, S.

    2014-09-01

    The microscale vibration characteristics of microbeams made of functionally graded materials (FGMs) are investigated based on the strain gradient Reddy beam theory capable of capturing the size effect. The non-classical governing differential equations, together with the corresponding boundary conditions, are obtained using Hamilton's principle. Then, the free vibration problem of simply supported FGM microbeams is solved using the Navier solution. The natural frequencies of FGM microbeams are calculated corresponding to a wide range of dimensionless length scale parameters, material property gradient indices, and aspect ratios to illustrate the influences of size effect on the vibrational response of FGM microbeams.

  12. Building high dimensional imaging database for content based image search

    Science.gov (United States)

    Sun, Qinpei; Sun, Jianyong; Ling, Tonghui; Wang, Mingqing; Yang, Yuanyuan; Zhang, Jianguo

    2016-03-01

    In medical imaging informatics, content-based image retrieval (CBIR) techniques are employed to aid radiologists in the retrieval of images with similar image contents. CBIR uses visual contents, normally called as image features, to search images from large scale image databases according to users' requests in the form of a query image. However, most of current CBIR systems require a distance computation of image character feature vectors to perform query, and the distance computations can be time consuming when the number of image character features grows large, and thus this limits the usability of the systems. In this presentation, we propose a novel framework which uses a high dimensional database to index the image character features to improve the accuracy and retrieval speed of a CBIR in integrated RIS/PACS.

  13. Upconversion based MIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Junaid, Saher; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-01-01

    Midinfrared (MIR) hyperspectral imaging has a great potential to be used as a tool for medical diagnostics featuring a combination of imaging and spectroscopy. In hyperspectral imaging, the images of the (biomedical) samples contains both spectral and spatial information....

  14. Image inpainting based on stacked autoencoders

    Science.gov (United States)

    Shcherbakov, O.; Batishcheva, V.

    2014-09-01

    Recently we have proposed the algorithm for the problem of image inpaiting (filling in occluded or damaged parts of images). This algorithm was based on the criterion spectrum entropy and showed promising results despite of using hand-crafted representation of images. In this paper, we present a method for solving image inpaiting task based on learning some image representation. Some results are shown to illustrate quality of image reconstruction.

  15. The thermo-vibrational convection in microgravity condition. Ground-based modelling.

    Science.gov (United States)

    Zyuzgin, A. V.; Putin, G. F.; Harisov, A. F.

    In 1995-2000 at orbital station "Mir" has been carried out the series of experiments with the equipment "Alice" for the studying regimes of heat transfer in the supercritical fluids under influence inertial microaccelerations. The experiments have found out existence of the thermo-vibrational and thermo-inertial convective movements in the real weightlessness[1] and controlling microgravity fields[2]. However regarding structures of thermovibrational convection the results of experiments have inconsistent character. Therefore carrying out the ground-based modeling of the given problem is actually. In this work in laboratory conditions were investigated the thermo-vibrational convective movements from the dot heat source at high-frequency vibrations of the cavity with the fluid and presence quasi-static microacceleration. As the result of ground-based modeling, the regimes of convective flows, similar observed in the space experiment are received. Evolution of the convective structures and the spatial-temporary characteristics of movements are investigated in a wide range of the problem parameters. The control criteria and its critical value are determined. The received results well coordinated to the data of space experiments and allow adding and expanding representation about thermo-vibrational effects in conditions of real weightlessness and remove the contradictions concerning structures thermo-vibrational convective flows, received at the analysis of the given orbital experiments. The research described in this publication was made possible in part by Russian Foundation for Basic Research and Administration of Perm Region, Russia, under grant 04-02-96038, and Award No. PE-009-0 of the U.S. Civilian Research & Development Foundation for the Independent States of the Former Soviet Union (CRDF). A.V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, E. B. Soboleva Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions. Cosmic Research

  16. A Role of Base Plate Jerk Feedback Scheme for Suppression of the Self Vibration in a Pneumatic Positioning Stage

    Science.gov (United States)

    Wali, Mohebullah; Nakamura, Yukinori; Wakui, Shinji

    In this study, a positioning stage is considered, which is actuated by four pneumatic cylinders and vertically supported by four coil-type spring isolators. Previously, we realized the base plate jerk feedback (BPJFB) to be analogues to a Master-Slave system which can synchronize the motion of the stage as a Slave to the motion of the base plate as a Master. However, in the case of real positioning, the stage had slightly self oscillation with higher frequency due to the higher gains set to the outer feedback loop controller besides its oscillation due to the natural vibration of the base plate. The self oscillation of stage was misunderstood to be the natural vibration of base plate due to the reaction force. However, according to the experimental results, the BPJFB scheme was able to control both of the mentioned vibrations. Suppression of the self vibration of stage is an interesting phenomenon, which should be experimentally investigated. Therefore, the current study focuses on the suppression of the self vibration of stage by using the BPJFB scheme. The experimental results show that besides operating as a Master-Slave synchronizing system, the PBJFB scheme is able to increase the damping ratio and stiffness of stage against its self vibration. This newly recognized phenomenon contributes to further increase the proportional gain of the outer feedback loop controller. As a result, the positioning speed and stability can be improved.

  17. Vector-based excitation amplitude imaging condition for elastic RTM

    Science.gov (United States)

    Zhou, Jinju; Wang, Deli

    2017-12-01

    In recent years, many studies have focused on elastic reverse time migration (RTM). In response to the problems associated with elastic RTM, we propose a new procedure for 2D elastic multicomponent RTM. In this new method, decomposed P- and S-wave components are obtained from the decoupled propagation of the source and receiver wavefields, which allows the expedient calculation of the Poynting vectors and the incident and reflection angles of the P- and S-waves. In addition, we deduce the vector-based excitation amplitude imaging condition. This process automatically accounts for the particle vibration directions when determining the angle-dependent signed reflection coefficients, and does not require the sign to be determined apart from the value of the reflection coefficients. This concept was further extended to the source-normalized crosscorrelation imaging condition. The reflection coefficient of the layered model test was in agreement with the Zoeppritz theory, the PP and PS wave images of the Marmousi II model were clear, and the PS wave images had higher resolution and richer details. In addition, since the calculated reflection coefficients are angle-dependent, they can be easily used for the extraction of angle-domain common-image gathers. Moreover, the imaging condition avoids the polarization reversal in PS wave images and does not require all of the source wavefield data. Consequently, the computation and storage requirements are significantly reduced, which will facilitate the use of the elastic RTM in practice.

  18. Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method

    Directory of Open Access Journals (Sweden)

    Maziar Janghorban

    Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.

  19. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    Science.gov (United States)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz

  20. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  1. Combined vibration and guided wave-based approach for composite panels health assessment

    Science.gov (United States)

    Radzienski, Maciej; Cao, Maosen; Wei, Xu; Kudela, Pawel; Ostachowicz, Wieslaw

    2017-04-01

    Various non-destructive testing (NDT) methods have been developed to extract information about state of a structure. Two of them: vibration-based and guided wave-based techniques are one of the most commonly used and well developed. Both approaches can be implemented using Scanning Laser Doppler Vibrometer measurements and excitation by means of piezoelectric transducer. In this paper authors present a combined approached for NDT using successive and simultaneous measurement of both mode shapes and guided waves. Vibration-based damage detection is focused on detection of mode shape singularity, created by material discontinuity. This method utilizes wavelet transform and Teager energy operator for damage indication. Guided wave-based damage detection uses propagating elastic wave energy variation on the specimen surface as well as any changes in wave propagation pattern due to its interaction with material discontinuity as a tool for structural health assessment. Combining this two different techniques can give higher accuracy in defect detection. At the same time any additional specimen preparation are necessary, any set-up changes are required and the all the data can be registered in the same amount of time (simultaneous excitation). To confirm proposed technique a honeycomb core sandwich aluminum plate with debonding is tested. A results obtained with both techniques and combined approach are presented.

  2. Vibration Analysis of Randomly Oriented Carbon Nanotube Based on FGM Beam Using Timoshenko Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2015-02-01

    Full Text Available The carbon nanotube (CNT reinforced functionally graded materials (FGM are expected to be the new generation materials having wide range of unexplored potential applications in various technological areas such as aerospace and structural and chemical industry. The present work deals with the finite element modeling and free vibration analysis of CNT based functionally graded beam using three-dimensional Timoshenko beam theory. It has been assumed that the material properties of CNT based FG beam vary only along the thickness and these properties are evaluated by rule of mixture. The extended Hamilton principle has been applied to find out the governing equations of CNT based FG beam. Finite element method is used to solve governing equation with the exact shape functions. Initial analysis deals with CNTs assumed to be oriented along the length direction only. But practically it is not possible. So, further work deals with the free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single walled carbon nanotubes (SWCNTs. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. Results are presented in tabular and graphical forms to show the effects of carbon nanotube orientations, slenderness ratios, and boundary conditions on the dynamic behavior of the beam.

  3. Investigation of micro-injection molding based on longitudinal ultrasonic vibration core.

    Science.gov (United States)

    Qiu, Zhongjun; Yang, Xue; Zheng, Hui; Gao, Shan; Fang, Fengzhou

    2015-10-01

    An ultrasound-assisted micro-injection molding method is proposed to improve the rheological behavior of the polymer melt radically, and a micro-injection molding system based on a longitudinal ultrasonic vibration core is developed and employed in the micro-injection molding process of Fresnel lenses. The verification experiments show that the filling mold area of the polymer melt is increased by 6.08% to 19.12%, and the symmetric deviation of the Fresnel lens is improved 15.62% on average. This method improved the filling performance and replication quality of the polymer melt in the injection molding process effectively.

  4. Fiducialization of the small-aperture quadrupoles based on the vibrating wire method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baichuan, E-mail: wangbaichuan@nint.ac.cn [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Tsinghua University, Beijing 100084 (China); Zheng, Shuxin, E-mail: zhengsx@tsinghua.edu.cn [Tsinghua University, Beijing 100084 (China); Wu, Lin; Du, Changtong; Xing, Qingzi [Tsinghua University, Beijing 100084 (China); Wang, Zhongming; Qiu, Mengtong [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Wang, Xuewu [Tsinghua University, Beijing 100084 (China)

    2016-03-11

    A fiducialization method based on vibrating wire is described dedicated to the problem of locating the magnetic center relative to external fiducials for the small-aperture quadrupoles. The advantage of this method is that the measurement of the wire position, which may be the main error source, is no longer needed. The position of the magnetic center can be directly obtained by measuring the position shift of the magnet fiducials. This method has been validated on small Permanent Magnet Quadrupoles (PMQs). Experiments have confirmed its feasibility of measuring PMQs with good repeatability of about 10 μm, and shown its high sensitivity as well as convenience.

  5. Fuzzy Model-based Pitch Stabilization and Wing Vibration Suppression of Flexible Wing Aircraft.

    Science.gov (United States)

    Ayoubi, Mohammad A.; Swei, Sean Shan-Min; Nguyen, Nhan T.

    2014-01-01

    This paper presents a fuzzy nonlinear controller to regulate the longitudinal dynamics of an aircraft and suppress the bending and torsional vibrations of its flexible wings. The fuzzy controller utilizes full-state feedback with input constraint. First, the Takagi-Sugeno fuzzy linear model is developed which approximates the coupled aeroelastic aircraft model. Then, based on the fuzzy linear model, a fuzzy controller is developed to utilize a full-state feedback and stabilize the system while it satisfies the control input constraint. Linear matrix inequality (LMI) techniques are employed to solve the fuzzy control problem. Finally, the performance of the proposed controller is demonstrated on the NASA Generic Transport Model (GTM).

  6. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    OpenAIRE

    Franchetti Paolo; Frizzarin Michele; Leonardi Andrea; Zeni Fabio

    2015-01-01

    A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention ...

  7. Vibration-based localisation of structural deterioration in frame-like civil engineering structures

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    to other structural systems, for instance, wind turbines—can provide reliable damage localisation in frame-like structures. The performance of the method, which is based on statistical interrogation of changes in a surrogate of the transfer matrix, is tested in a Monte Carlo setting with a numerical steel......With the existing trend of minimising material use in typical frame-like civil engineering structures, such as buildings, bridges, and offshore platforms, these structures will typically be subjected to substantial wind induced vibrations. Besides being a source of disturbance for the occupants...... frame model subjected to white noise excitation....

  8. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao

    2016-01-01

    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  9. High-speed Imaging of Vocal Fold Vibration Onset Delay: Normal Versus Abnormal.

    Science.gov (United States)

    Woo, Peak

    2017-05-01

    Vocal fold vibration onset delay (VFVOD) is heard frequently in spasmodic dysphonia and in muscle tension dysphonia. VFVOD changes due to other vocal pathologies have not been investigated. VFVOD during sustained vowel production was estimated with high-speed video in 10 normal and 40 pathologic subjects (scars, vocal fold paralysis, vocal fold nodules, and polyps). Analysis of high-speed video was done using digital kymography. VFVOD can be divided into two portions. Pre-phonation delay (PPD) is the duration when the vocal folds are nearly approximated to the time of first observed oscillation. Steady state delay (SSD) is the time when vocal folds are observed to come into oscillation until steady state of oscillation is observed. Normal subjects have almost zero PPD with vocal fold oscillation observed before full vocal fold adduction. Pathologic cases showed prolonged PPD because of (1) false cord adduction, (2) prolonged true vocal fold adduction, and (3) delay to onset of vocal fold vibration. Normal subjects have SSD of three to five cycles before steady state. Pathologic states result in increased SSD. Causes for increased SSD include (1) slow ramping up to steady state, (2) partial vibration of vocal folds, and (3) diplophonia with alternating beats before achieving steady state. There are significant differences between normal and pathology groups in both PPD and SSD. VFVOD is elevated in pathologic states. This can be due to increase in PPD or SSD. VFVOD is an under-recognized phenomenon that may contribute to complaints of vocal fatigue and dysphonia. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  11. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator.

    Science.gov (United States)

    Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan

    2014-09-01

    This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  12. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-02-01

    Full Text Available This paper presents a micro-electro-mechanical system (MEMS piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,TiO3 (PZT cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3 and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm−3∙g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  13. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    Science.gov (United States)

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial

  14. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  15. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  16. Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal

    Science.gov (United States)

    Li, Peigang; Xie, Shulin; Zhao, Xuefeng

    2017-04-01

    Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.

  17. Charging power optimization for nonlinear vibration energy harvesting systems subjected to arbitrary, persistent base excitations

    Science.gov (United States)

    Dai, Quanqi; Harne, Ryan L.

    2018-01-01

    The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.

  18. Semi-supervised vibration-based classification and condition monitoring of compressors

    Science.gov (United States)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  19. Optimal semi-active vibration absorber for harmonic excitation based on controlled semi-active damper

    Science.gov (United States)

    Weber, F.

    2014-09-01

    The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.

  20. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  1. Experimental Aspects in the Vibration-Based Condition Monitoring of Large Hydrogenerators

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Brito Junior

    2017-01-01

    Full Text Available Based on experimental observations on a set of twenty 700 MW hydrogenerators, compiled from several technical reports issued over the last three decades and collected from the reprocessing of the vibration signals recorded during the last commissioning tests, this paper shows that the accurate determination of the journal bearings operating conditions may be a difficult task. It shows that the outsize bearing brackets of large hydrogenerators are subject to substantial dimensional changes caused by external agents, like the generator electromagnetic field and the bearing cooling water temperature. It also shows that the shaft eccentricity of a journal bearing of a healthy large hydrogenerator, operating in steady-state condition, may experience unpredictable, sudden, and significant changes without apparent reasons. Some of these phenomena are reproduced in ordinary commissioning tests or may be noticed even during normal operation, while others are rarely observed or are only detected through special tests. These phenomena modify journal bearings stiffness and damping, changing the hydrogenerator dynamics, creating discrepancies between theoretical predictions and experimental measurements, and making damage detection and diagnostics difficult. Therefore, these phenomena must be analyzed and considered in the application of vibration-based condition monitoring to these rotating machines.

  2. Free Vibration Characteristic of Multilevel Beam Based on Transfer Matrix Method of Linear Multibody Systems

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available In this paper, an approach based on transfer matrix method of linear multibody systems (MS-TMM is developed to analyze the free vibration of a multilevel beam, coupled by spring/dashpot systems attached to them in-span. The Euler-Bernoulli model is used for the transverse vibration of the beams, and the spring/dashpot system represents a simplified model of a viscoelastic material. MS-TMM reduces the dynamic problem to an overall transfer equation which only involves boundary state vectors. The state vectors at the boundaries are composed of displacements, rotation angles, bending moments, and shear forces, which are partly known and partly unknown, and end up with reduced overall transfer matrix. Nontrivial solution requires the coefficient matrix to be singular to yield the required natural frequencies. This paper implements two novel algorithms based on the methodology by reducing the zero search of the reduced overall transfer matrix's determinate to a minimization problem and demonstrates a simple and robust algorithm being much more efficient than direct enumeration. The proposal method is easy to formulate, systematic to apply, and simple to code and can be extended to complex structures with any boundary conditions. Numerical results are presented to show the validity of the proposal method against the published literature.

  3. Multiple tuned mass damper based vibration mitigation of offshore wind turbine considering soil-structure interaction

    Science.gov (United States)

    Hussan, Mosaruf; Sharmin, Faria; Kim, Dookie

    2017-08-01

    The dynamics of jacket supported offshore wind turbine (OWT) in earthquake environment is one of the progressing focuses in the renewable energy field. Soil-structure interaction (SSI) is a fundamental principle to analyze stability and safety of the structure. This study focuses on the performance of the multiple tuned mass damper (MTMD) in minimizing the dynamic responses of the structures objected to seismic loads combined with static wind and wave loads. Response surface methodology (RSM) has been applied to design the MTMD parameters. The analyses have been performed under two different boundary conditions: fixed base (without SSI) and flexible base (with SSI). Two vibration modes of the structure have been suppressed by multi-mode vibration control principle in both cases. The effectiveness of the MTMD in reducing the dynamic response of the structure is presented. The dynamic SSI plays an important role in the seismic behavior of the jacket supported OWT, especially resting on the soft soil deposit. Finally, it shows that excluding the SSI effect could be the reason of overestimating the MTMD performance.

  4. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  5. Survey paper on Sketch Based and Content Based Image Retrieval

    OpenAIRE

    Gaidhani, Prachi A.; Bagal, S.B.

    2015-01-01

    International audience; This survey paper presents an overview of development of Sketch Based Image Retrieval (SBIR) and Content based image retrieval (CBIR) in the past few years. There is awful growth in bulk of images as well as the far-flung application in too many fields. The main attributes to represent as well index the images are color, shape, texture, spatial layout. These features of images are extracted to check similarity among the images. Generation of special query is the main p...

  6. Modeling and Simulation of the Vibration Characteristics of the In-Wheel Motor Driving Vehicle Based on Bond Graph

    Directory of Open Access Journals (Sweden)

    Di Tan

    2016-01-01

    Full Text Available Bond graph theory is applied to the modeling and analysis of the vibration characteristics of the in-wheel motor driving vehicle. First, an 11-degree-of-freedom vibration model of the in-wheel motor driving vehicle is established based on bond graph, and then the correctness of the model is verified. Second, under the driving condition of class B road excitations and a speed of 50 Km/h, the vibration characteristics of the in-wheel motor driving vehicle are simulated and analyzed, and the activity of each part in the system is then calculated. Third, these parts that have less of an effect on the vibration characteristics of an in-wheel motor driving vehicle are identified according to the magnitude of the activity, and then the model is simplified by removing these parts. Finally, the reliability of the simplified model is verified by comparing the vibration characteristics of the model before and after simplification. This study can provide a method for the modeling and simulation of the vibration characteristics of the in-wheel motor driving vehicle.

  7. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  8. Optical secure image verification system based on ghost imaging

    Science.gov (United States)

    Wu, Jingjing; Haobogedewude, Buyinggaridi; Liu, Zhengjun; Liu, Shutian

    2017-09-01

    The ghost imaging can perform Fourier-space filtering by tailoring the configuration. We proposed a novel optical secure image verification system based on this theory with the help of phase matched filtering. In the verification process, the system key and the ID card which contain the information of the correct image and the information to be verified are put in the reference and the test paths, respectively. We demonstrate that the ghost imaging configuration can perform an incoherent correlation between the system key and the ID card. The correct verification manifests itself with a correlation peak in the ghost image. The primary image and the image to be verified are encrypted and encoded into pure phase masks beforehand for security. Multi-image secure verifications can also be implemented in the proposed system.

  9. Vibrational spectroscopy and microscopic imaging: novel approaches for comparing barrier physical properties in native and human skin equivalents

    Science.gov (United States)

    Yu, Guo; Zhang, Guojin; Flach, Carol R.; Mendelsohn, Richard

    2013-06-01

    Vibrational spectroscopy and imaging have been used to compare barrier properties in human skin, porcine skin, and two human skin equivalents, Epiderm 200X with an enhanced barrier and Epiderm 200 with a normal barrier. Three structural characterizations were performed. First, chain packing and conformational order were compared in isolated human stratum corneum (SC), isolated porcine SC, and in the Epiderm 200X surface layers. The infrared (IR) spectrum of isolated human SC revealed a large proportion of orthorhombically packed lipid chains at physiological temperatures along with a thermotropic phase transition to a state with hexagonally packed chains. In contrast, the lipid phase at physiological temperatures in both porcine SC and in Epiderm 200X, although dominated by conformationally ordered chains, lacked significant levels of orthorhombic subcell packing. Second, confocal Raman imaging of cholesterol bands showed extensive formation of cholesterol-enriched pockets within the human skin equivalents (HSEs). Finally, IR imaging tracked lipid barrier dimensions as well as the spatial disposition of ordered lipids in human SC and Epiderm 200X. These approaches provide a useful set of experiments for exploring structural differences between excised human skin and HSEs, which in turn may provide a rationale for the functional differences observed among these preparations.

  10. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pietà

    Science.gov (United States)

    Siami, A.; Karimi, H. R.; Cigada, A.; Zappa, E.; Sabbioni, E.

    2018-01-01

    Preserving cultural heritage against earthquake and ambient vibrations can be an attractive topic in the field of vibration control. This paper proposes a passive vibration isolator methodology based on inerters for improving the performance of the isolation system of the famous statue of Michelangelo Buonarroti Pietà Rondanini. More specifically, a five-degree-of-freedom (5DOF) model of the statue and the anti-seismic and anti-vibration base is presented and experimentally validated. The parameters of this model are tuned according to the experimental tests performed on the assembly of the isolator and the structure. Then, the developed model is used to investigate the impact of actuation devices such as tuned mass-damper (TMD) and tuned mass-damper-inerter (TMDI) in vibration reduction of the structure. The effect of implementation of TMDI on the 5DOF model is shown based on physical limitations of the system parameters. Simulation results are provided to illustrate effectiveness of the passive element of TMDI in reduction of the vibration transmitted to the statue in vertical direction. Moreover, the optimal design parameters of the passive system such as frequency and damping coefficient will be calculated using two different performance indexes. The obtained optimal parameters have been evaluated by using two different optimization algorithms: the sequential quadratic programming method and the Firefly algorithm. The results prove significant reduction in the transmitted vibration to the structure in the presence of the proposed tuned TMDI, without imposing a large amount of mass or modification to the structure of the isolator.

  11. An Accurate Integral Method for Vibration Signal Based on Feature Information Extraction

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2015-01-01

    Full Text Available After summarizing the advantages and disadvantages of current integral methods, a novel vibration signal integral method based on feature information extraction was proposed. This method took full advantage of the self-adaptive filter characteristic and waveform correction feature of ensemble empirical mode decomposition in dealing with nonlinear and nonstationary signals. This research merged the superiorities of kurtosis, mean square error, energy, and singular value decomposition on signal feature extraction. The values of the four indexes aforementioned were combined into a feature vector. Then, the connotative characteristic components in vibration signal were accurately extracted by Euclidean distance search, and the desired integral signals were precisely reconstructed. With this method, the interference problem of invalid signal such as trend item and noise which plague traditional methods is commendably solved. The great cumulative error from the traditional time-domain integral is effectively overcome. Moreover, the large low-frequency error from the traditional frequency-domain integral is successfully avoided. Comparing with the traditional integral methods, this method is outstanding at removing noise and retaining useful feature information and shows higher accuracy and superiority.

  12. Torsional Vibration Semiactive Control of Drivetrain Based on Magnetorheological Fluid Dual Mass Flywheel

    Directory of Open Access Journals (Sweden)

    Qing-hua Zu

    2015-01-01

    Full Text Available The damping characteristics of the traditional dual mass flywheel (DMF cannot be changed and can only meet one of the damping requirements. Given that the traditional DMF cannot avoid the resonance interval in start/stop conditions, it tends to generate high-resonance amplitude, which reduces the lifetime of a vehicle’s parts and leads to vehicle vibration and noise. The problems associated with the traditional DMF can be solved through the magnetorheological fluid dual mass flywheel (MRF-DMF, which was designed in this study with adjustable damping performance under different conditions. The MRF-DMF is designed based on the rheological behavior of the magnetorheological fluid (MRF, which can be changed by magnetic field strength. The damping torque of the MRF-DMF, which is generated by the MRF effect, is derived in detail. Thus, the cosimulation between the drivetrain model built in AMESim and the control system model developed in Simulink is conducted. The controller of MRF-DMF is developed, after which the torsional vibration control test of drivetrain is carried out. The cosimulation and test results indicate that MRF-DMF with the controller effectively isolates torque fluctuation of the engine in the driving condition and exhibits high performance in suppressing the resonance amplitude in the start/stop conditions.

  13. Nondestructive diagnosis of flip chips based on vibration analysis using PCA-RBF

    Science.gov (United States)

    Su, Lei; Shi, Tielin; Liu, Zhiping; Zhou, Hongdi; Du, Li; Liao, Guanglan

    2017-02-01

    Flip chip technology combined with solder bump interconnection has been widely applied in IC package. The solder bumps are sandwiched between dies and substrates, leading to conventional techniques being difficult to diagnose the flip chips. Meanwhile, these conventional diagnosis methods are usually performed by human visual judgment. The human eye-fatigue can easily cause fault detection. Thus, it is difficult and crucial to detect the defects of flip chips automatically. In this paper, a nondestructive diagnosis system based on vibration analysis is proposed. The flip chip is excited by air-coupled ultrasounds and raw vibration signals are measured by a laser scanning vibrometer. Forty-two features are extracted for analysis, including ten time domain features, sixteen frequency domain features and sixteen wavelet packet energy features. Principal component analysis is used for feature reduction. Radial basis function neural network is adopted for classification and recognition. Flip chips in three states (good flip chips, flip chips with missing solder bumps and flip chips with open solder bumps) are utilized to validate the proposed method. The results demonstrate that this method is effective for defect inspection in flip chip package.

  14. Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhou

    2010-01-01

    Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.

  15. Customized multiwavelets for planetary gearbox fault detection based on vibration sensor signals.

    Science.gov (United States)

    Sun, Hailiang; Zi, Yanyang; He, Zhengjia; Yuan, Jing; Wang, Xiaodong; Chen, Lue

    2013-01-18

    Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox.

  16. Biometric Image Recognition Based on Optical Correlator

    Directory of Open Access Journals (Sweden)

    David Solus

    2017-01-01

    Full Text Available The aim of this paper is to design a biometric images recognition system able to recognize biometric images-eye and DNA marker. The input scenes are processed by user-friendly software created in C# programming language and then are compared with reference images stored in database. In this system, Cambridge optical correlator is used as an image comparator based on similarity of images in the recognition phase.

  17. Research and design of underwater flow-induced vibration energy harvester based on Karman vortex street

    Science.gov (United States)

    Yao, Gang; Wang, Hai; Yang, Chunlai; Wen, Li

    2017-03-01

    With the increasing development of wireless sensor network (WSN), power supply for WSN nodes had attracted increasing attention, and the energy harvesting system based on Karman vortex street has been widely used in underwater WSN. But the research of the influences of affecting factors towards the energy harvesting system is yet to be completed. So, in this paper, an underwater flow-induced vibration energy harvesting system based on Karman vortex street was proposed and tested. The influence of bluff body geometry and flow velocity towards the performance of the energy harvesting has been researched. The results showed that the output voltage increased as the diameter of bluff body and the water velocity increase. The power generation efficiency was the best when the shape of bluff body was circular.

  18. SPOT Controlled Image Base 10 meter

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — SPOT Controlled Image Base 10 meter (CIB-10) is a collection of orthorectified panchromatic (grayscale) images. The data were acquired between 1986 and 1993 by the...

  19. Medical Image Tamper Detection Based on Passive Image Authentication.

    Science.gov (United States)

    Ulutas, Guzin; Ustubioglu, Arda; Ustubioglu, Beste; V Nabiyev, Vasif; Ulutas, Mustafa

    2017-12-01

    Telemedicine has gained popularity in recent years. Medical images can be transferred over the Internet to enable the telediagnosis between medical staffs and to make the patient's history accessible to medical staff from anywhere. Therefore, integrity protection of the medical image is a serious concern due to the broadcast nature of the Internet. Some watermarking techniques are proposed to control the integrity of medical images. However, they require embedding of extra information (watermark) into image before transmission. It decreases visual quality of the medical image and can cause false diagnosis. The proposed method uses passive image authentication mechanism to detect the tampered regions on medical images. Structural texture information is obtained from the medical image by using local binary pattern rotation invariant (LBPROT) to make the keypoint extraction techniques more successful. Keypoints on the texture image are obtained with scale invariant feature transform (SIFT). Tampered regions are detected by the method by matching the keypoints. The method improves the keypoint-based passive image authentication mechanism (they do not detect tampering when the smooth region is used for covering an object) by using LBPROT before keypoint extraction because smooth regions also have texture information. Experimental results show that the method detects tampered regions on the medical images even if the forged image has undergone some attacks (Gaussian blurring/additive white Gaussian noise) or the forged regions are scaled/rotated before pasting.

  20. A SVD Based Image Complexity Measure

    DEFF Research Database (Denmark)

    Gustafsson, David Karl John; Pedersen, Kim Steenstrup; Nielsen, Mads

    2009-01-01

    Images are composed of geometric structures and texture, and different image processing tools - such as denoising, segmentation and registration - are suitable for different types of image contents. Characterization of the image content in terms of geometric structure and texture is an important...... problem that one is often faced with. We propose a patch based complexity measure, based on how well the patch can be approximated using singular value decomposition. As such the image complexity is determined by the complexity of the patches. The concept is demonstrated on sequences from the newly...... collected DIKU Multi-Scale image database....

  1. Vibration based structural health monitoring and the modal strain energy damage index algorithm applied to a composite T-beam

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; de Boer, Andries; Akkerman, Remko; Vasques, C.M.A.; Dias Rodrigues, J.

    2011-01-01

    A Finite Element based numerical model for a vibration based damage identification method for a 2.5D composite structure is discussed in this chapter. The linear dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is analysed. A

  2. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF......). The MAF projection exploits the fact that interesting phenomena in images typically exhibit spatial autocorrelation. The analysis is based on nearinfrared hyperspectral images of maize grains demonstrating the superiority of the kernelbased MAF method....

  3. High-speed Vibrational Imaging and Spectral Analysis of Lipid Bodies by Compound Raman Microscopy

    OpenAIRE

    Slipchenko, Mikhail N.; Le, Thuc T.; Chen, Hongtao; Cheng, Ji-Xin

    2009-01-01

    Cells store excess energy in the form of cytoplasmic lipid droplets. At present, it is unclear how different types of fatty acids contribute to the formation of lipid-droplets. We describe a compound Raman microscope capable of both high-speed chemical imaging and quantitative spectral analysis on the same platform. We use a picosecond laser source to perform coherent Raman scattering imaging of a biological sample and confocal Raman spectral analysis at points of interest. The potential of t...

  4. Influence of vegetable based cutting fluids on cutting force and vibration signature during milling of aluminium metal matrix composites

    Directory of Open Access Journals (Sweden)

    S. Shankar

    2017-03-01

    Full Text Available Due to the environmental and health issues, there is an enormous requirement for developing the novel cutting fluids (CFs. The vegetable based cutting fluid (VBCFs doesn’t affect the environment, diminish the harmful effects to the operator and also enhance the machining performances such as surface roughness, tool life, minimum vibration and cutting forces. In this work, the performances of four different VBCFs like palm, coconut, sunflower, soya bean oils, and a commercial type of CFs were considered to analyze the influence of cutting fluids while measuring the cutting force and vibration signatures during milling of 7075–T6 hybrid aluminium metal matrix composite with carbide insert tool. The experiments were conducted in CNC L-MILL 55 vertical machining center, with milling tool dynamometer to measure the cutting force and a tri-axial accelerometer to measure the vibration signals. The flow rate of the VBCFs were maintained at a constant rate and the results were compared with a commercial cutting fluid. The obtained result shows that palm oil suits better than the other vegetable based cutting fluids in terms of minimum cutting force requirement and minimum vibration. Also, the experimental result shows that the cutting fluid was one of the important parameter needs to be considered which influences the cutting force and vibration signals.

  5. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations

    Science.gov (United States)

    Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng

    2017-05-01

    This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.

  6. Case-control study of low-back pain referred for magnetic resonance imaging, with special focus on whole-body vibration.

    Science.gov (United States)

    Palmer, Keith T; Harris, Clare E; Harris, E Claire; Griffin, Michael J; Bennett, James; Reading, Isabel; Sampson, Madelaine; Coggon, David

    2008-10-01

    This study investigated risk factors for low-back pain among patients referred for magnetic resonance imaging (MRI), with special focus on whole-body vibration. A case-control approach was used. The study population comprised working-aged persons from a catchment area for radiology services. The cases were those in a consecutive series referred for a lumbar MRI because of low-back pain. The controls were age- and gender-matched persons X-rayed for other reasons. Altogether, 252 cases and 820 controls were studied, including 185 professional drivers. The participants were questioned about physical factors loading the spine, psychosocial factors, driving, personal characteristics, mental health, and certain beliefs about low-back pain. Exposure to whole-body vibration was assessed by six measures, including weekly duration of professional driving, hours driven in one period, and current root mean square A(8). Associations with whole-body vibration were examined with adjustment for age, gender, and other potential confounders. Strong associations were found with poor mental health and belief in work as a causal factor for low-back pain, and with occupational sitting for > or =3 hours while not driving. Associations were also found for taller stature, consulting propensity, body mass index, smoking history, fear-avoidance beliefs, frequent twisting, low decision latitude, and low support at work. However, the associations with the six metrics of whole-body vibration were weak and not statistically significant, and no exposure-response relationships were found. Little evidence of a risk from professional driving or whole-body vibration was found. Drivers were substantially less heavily exposed to whole-body vibration than in some earlier surveys. Nonetheless, it seems that, at the population level, whole-body vibration is not an important cause of low-back pain among those referred for MRI.

  7. A novel technique for active vibration control, based on optimal tracking control

    Science.gov (United States)

    Kheiri Sarabi, Behrouz; Sharma, Manu; Kaur, Damanjeet

    2017-08-01

    In the last few decades, researchers have proposed many control techniques to suppress unwanted vibrations in a structure. In this work, a novel and simple technique is proposed for the active vibration control. In this technique, an optimal tracking control is employed to suppress vibrations in a structure by simultaneously tracking zero references for modes of vibration. To illustrate the technique, a two-degrees of freedom spring-mass-damper system is considered as a test system. The mathematical model of the system is derived and then converted into a state-space model. A linear quadratic tracking control law is then used to make the disturbed system track zero references.

  8. Minimally invasive intracellular delivery based on electrokinetic forces combined with vibration-assisted cell membrane perforation

    Science.gov (United States)

    Shibata, Takayuki; Ozawa, Tatsuya; Ito, Yasuharu; Yamamoto, Keita; Nagai, Moeto

    2017-01-01

    To provide an effective platform for the fundamental analysis of cellular mechanisms and the regulation of cellular functions, we developed a unique method of minimally invasive intracellular delivery. Using this method, we successfully demonstrated the delivery of DNA molecules into living HeLa cells via a glass micropipette based on DC-biased AC-driven electrokinetic forces with much better controllability than that of the pressure-driven flow method. We also proposed a vibration-assisted insertion method for penetrating the cell membrane to reduce cell damage. Preliminary insertion tests revealed that application of mechanical oscillation can reduce the deformation of cells due to increases in their viscous resistance, resulting in a high probability of cell membrane perforation and cell viability. Moreover, to overcome the intrinsic low throughput of intracellular delivery with a single glass micropipette, we developed a fabrication process involving an array of stepped hollow silicon dioxide (SiO2) nanoneedles with well-defined tips.

  9. Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits.

    Science.gov (United States)

    Atzori, Matteo; Tesi, Lorenzo; Benci, Stefano; Lunghi, Alessandro; Righini, Roberto; Taschin, Andrea; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2017-03-29

    Here we report the investigation of the magnetization dynamics of a vanadyl complex with diethyldithiocarbamate (Et2dtc(-)) ligands, namely [VO(Et2dtc)2] (1), in both solid-state and frozen solution. This showed an anomalous and unprecedentedly observed field dependence of the relaxation time, which was modeled with three contributions to the relaxation mechanism. The temperature dependence of the weight of the two processes dominating at low fields was found to well correlate with the low energy vibrations as determined by THz spectroscopy. This detailed experimental comparative study represents a fundamental step to understand the spin dynamics of potential molecular quantum bits, and enriches the guidelines to design molecule-based systems with enhanced quantum coherence.

  10. On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Luciana L. Silva

    2015-01-01

    Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.

  11. Reliability-based optimization of an active vibration controller using evolutionary algorithms

    Science.gov (United States)

    Saraygord Afshari, Sajad; Pourtakdoust, Seid H.

    2017-04-01

    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost function is assigned for both controller gain optimization as well as sensor placement. The proposed scheme is implemented and verified for a wing section. Comparison of results for the frequency responses is considered to show potential applicability of the presented technique.

  12. Ro-vibrational spectra of C2H2 based on variational nuclear motion calculations

    Science.gov (United States)

    Urru, Andrea; Kozin, Igor N.; Mulas, Giacomo; Braams, Bastiaan J.; Tennyson, Jonathan

    2010-08-01

    A published ab initio-based potential energy surface and newly constructed dipole moment surface of acetylene have been used to compute vibrational band intensities. The line intensity calculations employed the variational nuclear motion code WAVR4 for computation of wave functions and energy levels, and a newly developed code DIPOLE4 for computation of dipole transitions. Owing to the high computational cost of J > 0 transitions using direct variational methods only J = 0 and J = 1 states and transitions have been computed variationally. The intensities of J > 1 transitions were extrapolated from J = 0 and J = 1 using Hönl-London coefficients. The resulting effective rotational constants B and transition intensities are compared with experimental data for the (3ν4 + ν5) combination band, the ν3 and the ν5 fundamental band. The prospects of using this procedure for extensive calculations of a hot line list, important for cool stars and extrasolar planets are discussed.

  13. Theoretical analysis based on fundamental functions of thin plate and experimental measurement for vibration characteristics of a plate coupled with liquid

    Science.gov (United States)

    Liao, Chan-Yi; Wu, Yi-Chuang; Chang, Ching-Yuan; Ma, Chien-Ching

    2017-04-01

    This study combined theoretical, experimental, and numerical analysis to investigate the vibration characteristics of a thin rectangular plate positioned horizontally at the bottom of a rectangular container filled with liquid. Flow field pressure was derived using an equation governing the behavior of incompressible fluids. Analytic solutions to vibrations in a thin plate in air served as the fundamental function of the thin plate coupled with liquid. We then used liquid pressure, and the out-of-plane deflection of the thin plate for the construction of frequency response functions for the analysis of vibration characteristics in the liquid-plate coupling system. Two experimental methods were employed to measure the vibration characteristics of the thin plate immersed in water. The first involved using sensors of polyvinylidene difluoride (PVDF) to measure transient signals of fluid-plate system subjected an impact at the thin plate. These were then converted to the frequency domain in order to obtain the resonant frequencies of the fluid-plate coupling system. The second method was amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), which was used to measure the dynamic characteristics of the thin plate in the flow field. This method was paired with the image processing techniques, temporal speckle pattern interferometry (TSPI) and temporal standard deviation (TSTD), to obtain clear mode shapes of the thin plate and resonant frequencies. Comparison of the results from theoretical analysis, finite element method, and experimental measurements confirmed the accuracy of our theoretical analysis, which was superior to the conventional approach based on beam mode shape functions. The experimental methods proposed in this study can be used to measure the resonant frequencies of underwater thin plates, and clear mode shapes can be obtained using AF-ESPI. Our results indicate that the resonant frequencies of thin plates underwater are lower than

  14. ADVANCED CLUSTER BASED IMAGE SEGMENTATION

    Directory of Open Access Journals (Sweden)

    D. Kesavaraja

    2011-11-01

    Full Text Available This paper presents efficient and portable implementations of a useful image segmentation technique which makes use of the faster and a variant of the conventional connected components algorithm which we call parallel Components. In the Modern world majority of the doctors are need image segmentation as the service for various purposes and also they expect this system is run faster and secure. Usually Image segmentation Algorithms are not working faster. In spite of several ongoing researches in Conventional Segmentation and its Algorithms might not be able to run faster. So we propose a cluster computing environment for parallel image Segmentation to provide faster result. This paper is the real time implementation of Distributed Image Segmentation in Clustering of Nodes. We demonstrate the effectiveness and feasibility of our method on a set of Medical CT Scan Images. Our general framework is a single address space, distributed memory programming model. We use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data parallelism. The image segmentation algorithm makes use of an efficient cluster process which uses a novel approach for parallel merging. Our experimental results are consistent with the theoretical analysis and practical results. It provides the faster execution time for segmentation, when compared with Conventional method. Our test data is different CT scan images from the Medical database. More efficient implementations of Image Segmentation will likely result in even faster execution times.

  15. Sequential projection pursuit for optimised vibration-based damage detection in an experimental wind turbine blade

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2018-02-01

    To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.

  16. Different source image fusion based on FPGA

    Science.gov (United States)

    Luo, Xiao; Piao, Yan

    2016-03-01

    The fusion technology of video image is to make the video obtained by different image sensors complementary to each other by some technical means, so as to obtain the video information which is rich in information and suitable for the human eye system. Infrared cameras in harsh environments such as when smoke, fog and low light situations penetrating power, but the ability to obtain the details of the image is poor, does not meet the human visual system. Single visible light imaging can be rich in detail, high resolution images and for the visual system, but the visible image easily affected by the external environment. Infrared image and visible image fusion process involved in the video image fusion algorithm complexity and high calculation capacity, have occupied more memory resources, high clock rate requirements, such as software, c ++, c, etc. to achieve more, but based on Hardware platform less. In this paper, based on the imaging characteristics of infrared images and visible light images, the software and hardware are combined to obtain the registration parameters through software matlab, and the gray level weighted average method is used to implement the hardware platform. Information fusion, and finally the fusion image can achieve the goal of effectively improving the acquisition of information to increase the amount of information in the image.

  17. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    with images. CBIR also referred as Query By Image Content (QBIC) is the application of auto- matic retrieval of images from a database based on the visual content such as colour, texture or shape. CBIR exploits techniques from computer vision, machine learning, database systems, data mining, information theory, statistics ...

  18. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing.

    Science.gov (United States)

    He, Haijun; Shao, Li-Yang; Luo, Bin; Li, Zonglei; Zou, Xihua; Zhang, Zhiyong; Pan, Wei; Yan, Lianshan

    2016-03-07

    A novel measurement scheme for multiple high-frequency vibrations has been demonstrated by combining phase-sensitive optical time domain reflectometry (Ф-OTDR) and Mach-Zehnder interferometer (MZI) based on frequency division multiplexing. The light source is directly launched into the MZI structure, while it was modulated by an acoustic optical modulator (AOM) with a frequency shift of 200 MHz for the Ф-OTDR part. The vibration frequency is obtained by demodulating the interference signal obtained by the MZI structure, while the vibration position is located by Ф-OTDR system. The spatial resolution of 10m is obtained over 3 km sensing fiber. And the detectable vibration frequency reaches up to 40 kHz. Compared to the previous schemes, this system works without dead zone in the detectable frequency range. Furthermore, the frequency spectrum mapping method has been adopted to determine multiple high-frequency vibrations simultaneously. The experimental results prove the concept and match well with the theoretical analysis.

  19. Magnetic resonance imaging based functional imaging in paediatric oncology.

    Science.gov (United States)

    Manias, Karen A; Gill, Simrandip K; MacPherson, Lesley; Foster, Katharine; Oates, Adam; Peet, Andrew C

    2017-02-01

    Imaging is central to management of solid tumours in children. Conventional magnetic resonance imaging (MRI) is the standard imaging modality for tumours of the central nervous system (CNS) and limbs and is increasingly used in the abdomen. It provides excellent structural detail, but imparts limited information about tumour type, aggressiveness, metastatic potential or early treatment response. MRI based functional imaging techniques, such as magnetic resonance spectroscopy, diffusion and perfusion weighted imaging, probe tissue properties to provide clinically important information about metabolites, structure and blood flow. This review describes the role of and evidence behind these functional imaging techniques in paediatric oncology and implications for integrating them into routine clinical practice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A self-adaptive anti-vibration pipeline-filtering algorithm

    Science.gov (United States)

    Wu, Houde; Wang, Bin; Zhao, Ming; Xu, Wenhai

    2015-03-01

    The mobile pipeline-filtering algorithm is a real-time algorithm that performs well in detecting small dim targets, but it is particularly sensitive to interframe vibration of sequence images. When searching for small dim targets at sea based on an infrared imaging system, irregular and random vibration of the airborne imaging platform causes huge interference problems for the mobile pipeline-filtering. This paper puts forward a pipeline-filtering algorithm that has a good performance on self-adaptive anti-vibration. In the block matching method using the normalized cross-correlations coefficient (NCC), the interframe vibration of sequence images is acquired in real time and used to correct coordinates of the single-frame detection results, and then the corrected detection results are used to complete the mobile pipelinefiltering. Experimental results show that the algorithm can overcome the problem of interframe vibration of sequence images, thus realizing accurate detection of small dim maritime targets.

  1. Developing stereo image based robot control system

    Energy Technology Data Exchange (ETDEWEB)

    Suprijadi,; Pambudi, I. R.; Woran, M.; Naa, C. F; Srigutomo, W. [Department of Physics, FMIPA, InstitutTeknologi Bandung Jl. Ganesha No. 10. Bandung 40132, Indonesia supri@fi.itb.ac.id (Indonesia)

    2015-04-16

    Application of image processing is developed in various field and purposes. In the last decade, image based system increase rapidly with the increasing of hardware and microprocessor performance. Many fields of science and technology were used this methods especially in medicine and instrumentation. New technique on stereovision to give a 3-dimension image or movie is very interesting, but not many applications in control system. Stereo image has pixel disparity information that is not existed in single image. In this research, we proposed a new method in wheel robot control system using stereovision. The result shows robot automatically moves based on stereovision captures.

  2. Note: Arbitrary periodical mechanical vibrations can be realized in the resonant state based on multiple tuning fork structure.

    Science.gov (United States)

    He, Liangguo; Pan, Chengliang; Wang, Hongbo; Feng, Zhihua

    2013-09-01

    We develop a novel approach to match harmonics and vibration modes based on the mechanism of multiple tuning fork structure (MTFS), through which it is promising to realize arbitrary periodical vibrations in the resonant state. A prototype three-layer MTFS with first three harmonics is presented to verify the feasibility of the proposed principle. The matching process and experimental results confirm the unique advantages of MTFS, as discussed in the theoretical analysis. Typical periodical motions, including sawtooth, square, half-wave rectified, and full-wave rectified waveforms, are achieved by the syntheses of resonant harmonics.

  3. In Situ Measurement of Wind-Induced Pulse Response of Sound Barrier Based on High-Speed Imaging Technology

    Directory of Open Access Journals (Sweden)

    Chunli Zhu

    2016-01-01

    Full Text Available The lifetime of the sound barrier is threatened by high-speed train-induced impulsive wind pressure as it passes by. The vibration response of the sound barrier during the process of train passing is difficult to be measured using conventional measurement methods because of the inconvenience of the installation of markers on the sound barrier. In this paper, the high-speed camera is used to record the whole process of the train passing by the sound barrier. Then, a displacement extraction algorithm based on the theory of Taylor expansion is proposed to obtain the vibration response curve. Compared with the result simulated by using the finite element method, the video extraction result shows the same head wave and tail wave phenomenon, demonstrating that the vibration measurement by using the high-speed imaging technology is an effective measuring way. It can achieve noncontact and remote vibration measurement and has important practical value.

  4. Detail Enhancement for Infrared Images Based on Propagated Image Filter

    Directory of Open Access Journals (Sweden)

    Yishu Peng

    2016-01-01

    Full Text Available For displaying high-dynamic-range images acquired by thermal camera systems, 14-bit raw infrared data should map into 8-bit gray values. This paper presents a new method for detail enhancement of infrared images to display the image with a relatively satisfied contrast and brightness, rich detail information, and no artifacts caused by the image processing. We first adopt a propagated image filter to smooth the input image and separate the image into the base layer and the detail layer. Then, we refine the base layer by using modified histogram projection for compressing. Meanwhile, the adaptive weights derived from the layer decomposition processing are used as the strict gain control for the detail layer. The final display result is obtained by recombining the two modified layers. Experimental results on both cooled and uncooled infrared data verify that the proposed method outperforms the method based on log-power histogram modification and bilateral filter-based detail enhancement in both detail enhancement and visual effect.

  5. Developing a Dynamics and Vibrations Course for Civil Engineering Students Based on Fundamental-Principles

    Science.gov (United States)

    Barroso, Luciana R.; Morgan, James R.

    2012-01-01

    This paper describes the creation and evolution of an undergraduate dynamics and vibrations course for civil engineering students. Incorporating vibrations into the course allows students to see and study "real" civil engineering applications of the course content. This connection of academic principles to real life situations is in…

  6. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    Science.gov (United States)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  7. Vibrational energy transport in acetylbenzonitrile described by an ab initio-based quantum tier model

    Science.gov (United States)

    Fujisaki, Hiroshi; Yagi, Kiyoshi; Kikuchi, Hiroto; Takami, Toshiya; Stock, Gerhard

    2017-01-01

    Performing comprehensive quantum-chemical calculations, a vibrational Hamiltonian of acetylbenzonitrile is constructed, on the basis of which a quantum-mechanical "tier model" is developed that describes the vibrational dynamics following excitation of the CN stretch mode. Taking into account 36 vibrational modes and cubic and quartic anharmonic couplings between up to three different modes, the tier model calculations are shown to qualitatively reproduce the main findings of the experiments of Rubtsov and coworkers (2011), including the energy relaxation of the initially excited CN mode and the structure-dependent vibrational transport. Moreover, the calculations suggest that the experimentally measured cross-peak among the CN and CO modes does not correspond to direct excitation of the CO normal mode but rather reflects excited low-frequency vibrations that anharmonically couple to the CO mode. Complementary quasiclassical trajectory calculations are found to be in good overall agreement with the quantum calculations.

  8. Experimental Study on Vibration Reduction Characteristics of Gear Shafts Based on ISFD Installation Position

    Directory of Open Access Journals (Sweden)

    Kaihua Lu

    2017-01-01

    Full Text Available A novel type of integral squeeze film damper (ISFD is proposed to reduce and isolate vibration excitations of the gear system through bearing to the foundation. Four ISFD designs were tested experimentally with an open first-grade spur gear system. Vibration reduction characteristics were experimentally studied at different speeds for cases where ISFD elastic damping supports were simultaneously installed on the driving and driven shafts, installed on the driven shaft, or only installed on the driving shaft. Experimental results show that the ISFD elastic damping support can effectively reduce shock vibration of the gear system. Additionally, resonant modulation in gear shafts caused by meshing impact was significantly reduced. Different vibration amplitudes of gear shafts with ISFD installed only on driven or driving shafts were compared. Results indicated that vibration reduction is better when ISFD is only installed on the driven shaft than on the driving shaft.

  9. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovana M B Veronezi

    Full Text Available Valproic acid (VPA, a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC immunofluorescence signals and Fourier transform-infrared (FT-IR microspectroscopy centered on spectral regions related to the vibration of-CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for-CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than-CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance.

  10. The effects of a bridge exercise with vibration training and an unstable base of support on lumbar stabilization.

    Science.gov (United States)

    Park, Jinsik; Lee, Sangyong; Hwangbo, Gak

    2015-01-01

    [Purpose] The aim of this study was to examine the effects of a bridge exercise with vibration training and an unstable base of support on lumbar stabilization. [Subjects] This study assigned healthy adults in their 20s to a bridge exercise with a sling and vibration group (BESV, n=20) and a bridge exercise with a sling group (BESG, n=20). [Methods] Electromyography was used to comparatively analyze the activity of the internal obliques (IO), external obliques (EO), and rectus abdominis (RA) when local vibration was applied during a bridge exercise that used a sling as an unstable base of support. [Results] There were statistically significant increases in the activity of the IO and EO within each group after the intervention. The activity of the IO and the EO was significantly higher in the BESV group than in the BES group after the intervention. [Conclusion] The bridge exercise performed using vibration training on an unstable base of support increased the activity of the IO and the EO, which improved lumbar stabilization.

  11. Image Based Rendering and Virtual Reality

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation.......The Presentation concerns with an overview of Image Based Rendering approaches and their use on Virtual Reality, including Virtual Photography and Cinematography, and Mobile Robot Navigation....

  12. A Miniature Magnetic-Force-Based Three-Axis AC Magnetic Sensor with Piezoelectric/Vibrational Energy-Harvesting Functions.

    Science.gov (United States)

    Hung, Chiao-Fang; Yeh, Po-Chen; Chung, Tien-Kan

    2017-02-08

    In this paper, we demonstrate a miniature magnetic-force-based, three-axis, AC magnetic sensor with piezoelectric/vibrational energy-harvesting functions. For magnetic sensing, the sensor employs a magnetic-mechanical-piezoelectric configuration (which uses magnetic force and torque, a compact, single, mechanical mechanism, and the piezoelectric effect) to convert x-axis and y-axis in-plane and z-axis magnetic fields into piezoelectric voltage outputs. Under the x-axis magnetic field (sine-wave, 100 Hz, 0.2-3.2 gauss) and the z-axis magnetic field (sine-wave, 142 Hz, 0.2-3.2 gauss), the voltage output with the sensitivity of the sensor are 1.13-26.15 mV with 8.79 mV/gauss and 1.31-8.92 mV with 2.63 mV/gauss, respectively. In addition, through this configuration, the sensor can harness ambient vibrational energy, i.e., possessing piezoelectric/vibrational energy-harvesting functions. Under x-axis vibration (sine-wave, 100 Hz, 3.5 g) and z-axis vibration (sine-wave, 142 Hz, 3.8 g), the root-mean-square voltage output with power output of the sensor is 439 mV with 0.333 μW and 138 mV with 0.051 μW, respectively. These results show that the sensor, using this configuration, successfully achieves three-axis magnetic field sensing and three-axis vibration energy-harvesting. Due to these features, the three-axis AC magnetic sensor could be an important design reference in order to develop future three-axis AC magnetic sensors, which possess energy-harvesting functions, for practical industrial applications, such as intelligent vehicle/traffic monitoring, processes monitoring, security systems, and so on.

  13. Content-Based Image Retrial Based on Hadoop

    Directory of Open Access Journals (Sweden)

    DongSheng Yin

    2013-01-01

    Full Text Available Generally, time complexity of algorithms for content-based image retrial is extremely high. In order to retrieve images on large-scale databases efficiently, a new way for retrieving based on Hadoop distributed framework is proposed. Firstly, a database of images features is built by using Speeded Up Robust Features algorithm and Locality-Sensitive Hashing and then perform the search on Hadoop platform in a parallel way specially designed. Considerable experimental results show that it is able to retrieve images based on content on large-scale cluster and image sets effectively.

  14. Graph Cuts based Image Segmentation using Fuzzy Rule Based System

    Directory of Open Access Journals (Sweden)

    M. R. Khokher

    2012-12-01

    Full Text Available This work deals with the segmentation of gray scale, color and texture images using graph cuts. From input image, a graph is constructed using intensity, color and texture profiles of the image simultaneously. Based on the nature of image, a fuzzy rule based system is designed to find the weight that should be given to a specific image feature during graph development. The graph obtained from the fuzzy rule based weighted average of different image features is further used in normalized graph cuts framework. Graph is iteratively bi-partitioned through the normalized graph cuts algorithm to get optimum partitions resulting in the segmented image. Berkeley segmentation database is used to test our algorithm and the segmentation results are evaluated through probabilistic rand index, global consistency error, sensitivity, positive predictive value and Dice similarity coefficient. It is shown that the presented segmentation method provides effective results for most types of images.

  15. Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2015-01-01

    Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.

  16. Investigation of in-core instrument guide tube vibrations at Oskarshamn BWR unit 2 based on noise analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, B.G.; Oguma, R. [EuroSim AB, Nykoeping (Sweden)

    1996-05-01

    In OKG-2 the on-line monitor for instrument tube vibration, VIBMON, has been in operation since 1992, yielding a huge data base that may be used for closer investigation of the vibrational problem. We performed a systematic evaluation and analysis of the accumulated data, with the primary goal to enhance the performance of the vibration monitor in terms of sensitivity as well as reliability by improving/developing diagnostic tools specifically on the following two points: Detection of guide tube impacts against adjacent fuel boxes; Detection of water leak to the bypass region as a consequence of fuel box damages. Two signal processing tools are introduced in order to estimate the amplitude of the guide tube vibrations and the impact risk. One is based on evaluation of the covariance function for LPRM (Local Power Range Monitor) signals measured at two heights in the same guide tube. The other tool is the use of the median value of the amplitude distribution function. The results of the present study was checked with those from ocular inspections which has been made during regular outages at OKG-2. The study suggests that it should be possible to detect the water leakage to the bypass region due to fuel box penetration by noise analysis, and also to identify the damaged position. 22 refs.

  17. Observer Based Optimal Vibration Control of a Full Aircraft System Having Active Landing Gears and Biodynamic Pilot Model

    Directory of Open Access Journals (Sweden)

    Hakan Yazici

    2016-01-01

    Full Text Available This paper deals with the design of an observed based optimal state feedback controller having pole location constraints for an active vibration mitigation problem of an aircraft system. An eleven-degree-of-freedom detailed full aircraft mathematical model having active landing gears and a seated pilot body is developed to control and analyze aircraft vibrations caused by runway excitation, when the aircraft is taxiing. Ground induced vibration can contribute to the reduction of pilot’s capability to control the aircraft and cause the safety problem before take-off and after landing. Since the state variables of the pilot body are not available for measurement in practice, an observed based optimal controller is designed via Linear Matrix Inequalities (LMIs approach. In addition, classical LQR controller is designed to investigate effectiveness of the proposed controller. The system is then simulated against the bump and random runway excitation. The simulation results demonstrate that the proposed controller provides significant improvements in reducing vibration amplitudes of aircraft fuselage and pilot’s head and maintains the safety requirements in terms of suspension stroke and tire deflection.

  18. Optical image hiding based on interference

    Science.gov (United States)

    Zhang, Yan; Wang, Bo

    2009-11-01

    Optical image processing has been paid a lot of attentions recently due to its large capacitance and fast speed. Many image encryption and hiding technologies have been proposed based on the optical technology. In conventional image encryption methods, the random phase masks are usually used as encryption keys to encode the images into random white noise distribution. However, this kind of methods requires interference technology such as holography to record complex amplitude. Furthermore, it is vulnerable to attack techniques. The image hiding methods employ the phase retrieve algorithm to encode the images into two or more phase masks. The hiding process is carried out within a computer and the images are reconstructed optically. But the iterative algorithms need a lot of time to hide the image into the masks. All methods mentioned above are based on the optical diffraction of the phase masks. In this presentation, we will propose a new optical image hiding method based on interference. The coherence lights pass through two phase masks and are combined by a beam splitter. Two beams interfere with each other and the desired image appears at the pre-designed plane. Two phase distribution masks are designed analytically; therefore, the hiding speed can be obviously improved. Simulation results are carried out to demonstrate the validity of the new proposed methods.

  19. Image content authentication based on channel coding

    Science.gov (United States)

    Zhang, Fan; Xu, Lei

    2008-03-01

    The content authentication determines whether an image has been tampered or not, and if necessary, locate malicious alterations made on the image. Authentication on a still image or a video are motivated by recipient's interest, and its principle is that a receiver must be able to identify the source of this document reliably. Several techniques and concepts based on data hiding or steganography designed as a means for the image authentication. This paper presents a color image authentication algorithm based on convolution coding. The high bits of color digital image are coded by the convolution codes for the tamper detection and localization. The authentication messages are hidden in the low bits of image in order to keep the invisibility of authentication. All communications channels are subject to errors introduced because of additive Gaussian noise in their environment. Data perturbations cannot be eliminated but their effect can be minimized by the use of Forward Error Correction (FEC) techniques in the transmitted data stream and decoders in the receiving system that detect and correct bits in error. This paper presents a color image authentication algorithm based on convolution coding. The message of each pixel is convolution encoded with the encoder. After the process of parity check and block interleaving, the redundant bits are embedded in the image offset. The tamper can be detected and restored need not accessing the original image.

  20. Approach for a smart device for active vibration suppression as an add-on for robot-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Perner, Marcus; Krombholz, Christian; Monner, Hans Peter [Institute of Composite Structures and Adaptive Systems, Braunschweig (Germany)

    2014-11-15

    Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.

  1. A simple method for enhanced vibration-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Guechaichia, A; Trendafilova, I, E-mail: abdelhamid.guechaichia@strath.ac.uk [Department of Mechanical Engineering University of Strathclyde, James Weir Building, 75 Montrose street, Glasgow, G1 IXJ (United Kingdom)

    2011-07-19

    This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures.

  2. Equivalent-circuit models for electret-based vibration energy harvesters

    Science.gov (United States)

    Phu Le, Cuong; Halvorsen, Einar

    2017-08-01

    This paper presents a complete analysis to build a tool for modelling electret-based vibration energy harvesters. The calculational approach includes all possible effects of fringing fields that may have significant impact on output power. The transducer configuration consists of two sets of metal strip electrodes on a top substrate that faces electret strips deposited on a bottom movable substrate functioning as a proof mass. Charge distribution on each metal strip is expressed by series expansion using Chebyshev polynomials multiplied by a reciprocal square-root form. The Galerkin method is then applied to extract all charge induction coefficients. The approach is validated by finite element calculations. From the analytic tool, a variety of connection schemes for power extraction in slot-effect and cross-wafer configurations can be lumped to a standard equivalent circuit with inclusion of parasitic capacitance. Fast calculation of the coefficients is also obtained by a proposed closed-form solution based on leading terms of the series expansions. The achieved analytical result is an important step for further optimisation of the transducer geometry and maximising harvester performance.

  3. A local flexibility method for vibration-based damage localization and quantification

    Science.gov (United States)

    Reynders, Edwin; De Roeck, Guido

    2010-06-01

    A method for vibration-based damage localization and quantification, based on quasi-static flexibility, is presented. The experimentally determined flexibility matrix is combined with a virtual load that causes nonzero stresses in a small part of the structure, where a possible local stiffness change is investigated. It is shown that, if the strain-stress relationship for the load is proportional, the ratio of some combination of deformations before and after a stiffness change has occurred, equals the inverse local stiffness ratio. The method is therefore called local flexibility (LF) method. Since the quasi-static flexibility matrix can be composed directly from modal parameters, the LF method allows to determine local stiffness variations directly from measured modal parameters, even if they are determined from output-only data. Although the LF method is in principle generally applicable, the emphasis in this paper is on beam structures. The method is validated with simulation examples of damaged isostatic and hyperstatic beams, and experiments involving a reinforced concrete free-free beam and a three-span prestressed concrete bridge, that are both subjected to a progressive damage test.

  4. Soil-Pile Interaction in the Pile Vertical Vibration Based on Fictitious Soil-Pile Model

    Directory of Open Access Journals (Sweden)

    Guodong Deng

    2014-01-01

    Full Text Available By introducing the fictitious soil-pile model, the soil-pile interaction in the pile vertical vibration is investigated. Firstly, assuming the surrounding soil of pile to be viscoelastic material and considering its vertical wave effect, the governing equations of soil-pile system subjected to arbitrary harmonic dynamic force are founded based on the Euler-Bernoulli rod theory. Secondly, the analytical solution of velocity response in frequency domain and its corresponding semianalytical solution of velocity response in time domain are derived by means of Laplace transform technique and separation of variables technique. Based on the obtained solutions, the influence of parameters of pile end soil on the dynamic response is studied in detail for different designing parameters of pile. Lastly, the fictitious soil-pile model and other pile end soil supporting models are compared. It is shown that the dynamic response obtained by the fictitious soil-pile model is among the dynamic responses obtained by other existing models if there are appropriate material parameters and thickness of pile end soil for the fictitious soil-pile model.

  5. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  6. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  7. Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation

    Science.gov (United States)

    Karsten, Roman; Flittner, Klaus; Haus, Henry; Schlaak, Helmut F.

    2013-04-01

    This paper describes the development of an active isolation mat for cancelation of vibrations on sensitive devices with a mass of up to 500 gram. Vertical disturbing vibrations are attenuated actively while horizontal vibrations are damped passively. The dimensions of the investigated mat are 140 × 140 × 20 mm. The mat contains 5 dielectric elastomer stack actuators (DESA). The design and the optimization of active isolation mat are realized by ANSYS FEM software. The best performance shows a DESA with air cushion mounted on its circumference. Within the mounting encased air increases static and reduces dynamic stiffness. Experimental results show that vibrations with amplitudes up to 200 μm can be actively eliminated.

  8. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.

    Science.gov (United States)

    Koven, Robert; Mills, Matthew; Gale, Richard; Aksak, Burak

    2017-11-01

    Piezoelectric vibration energy harvesters often consist of a cantilevered beam composed of a support layer and one or two piezoelectric layers with a tip mass. While this configuration is advantageous for maximizing electromechanical coupling, the mechanical properties of the piezoelectric material can place limitations on harvester size and resonant frequency. Here, we present numerical and experimental results from a new type of piezoelectric energy harvester in which the mechanical properties and the resonant frequency of the cantilever beam resonator are effectively decoupled from the piezoelectric component. Referred to as a base-mounted piezoelectric (BMP) harvester in this paper, this new design features a piezoelectric transducer mounted beneath the base of the cantilevered beam resonator. The flexibility in the material choice for the cantilever beam resonator means that the resonant frequency and the beam dimensions are essentially free parameters. A prototype made with a 1.6 mm mm mm polyurethane beam, a PZT-5H piezoelectric transducer, and an 8.36-g tip mass is shown to produce an average power of 8.75 and at 45 Hz across a 13.0- load under harmonic base excitations of constant peak acceleration at 0.25 and 1.0-g, respectively. We also show an increase in full-width half-maximum bandwidth approximately from 1.5 to 5.6 Hz using an array of four individual BMP harvesters of similar dimensions with peak power generation of at 37.6 Hz across a 1.934- load at 0.25-g peak base excitation. Finite elements-based numerical simulations are shown to be in reasonable agreement with experimental results, indicating that the harvester behaves like a damped mass-spring system as proposed in this paper. Fabricated using casting and laser machining techniques, this harvester shows potential as a low-cost option for powering small, low-power wireless sensor nodes and other low-power devices.

  9. ROV based underwater blurred image restoration

    Science.gov (United States)

    Zhishen, Liu; Tianfu, Ding; Gang, Wang

    2003-04-01

    In this paper, we present a method of ROV based image processing to restore underwater blurry images from the theory of light and image transmission in the sea. Computer is used to simulate the maximum detection range of the ROV under different water body conditions. The receiving irradiance of the video camera at different detection ranges is also calculated. The ROV’s detection performance under different water body conditions is given by simulation. We restore the underwater blurry images using the Wiener filter based on the simulation. The Wiener filter is shown to be a simple useful method for underwater image restoration in the ROV underwater experiments. We also present examples of restored images of an underwater standard target taken by the video camera in these experiments.

  10. Compact holographic optical element-based electronic speckle pattern interferometer for rotation and vibration measurements

    Science.gov (United States)

    Bavigadda, Viswanath; Moothanchery, Mohesh; Pramanik, Manojit; Mihaylova, Emilia; Toal, Vincent

    2017-03-01

    An out-of-plane sensitive electronic speckle pattern interferometer (ESPI) using holographic optical elements (HOEs) for studying rotations and vibrations is presented. Phase stepping is implemented by modulating the wavelength of the laser diode in a path length imbalanced interferometer. The time average ESPI method is used for vibration measurements. Some factors influencing the measurements accuracy are reported. Some advantages and limitations of the system are discussed.

  11. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  12. Vibrational mapping of sinonasal lesions by Fourier transform infrared imaging spectroscopy

    Science.gov (United States)

    Giorgini, Elisabetta; Sabbatini, Simona; Conti, Carla; Rubini, Corrado; Rocchetti, Romina; Re, Massimo; Vaccari, Lisa; Mitri, Elisa; Librando, Vito

    2015-12-01

    Fourier transform infrared imaging (FTIRI) is a powerful tool for analyzing biochemical changes in tumoral tissues. The head and neck region is characterized by a great variety of lesions, with different degrees of malignancy, which are often difficult to diagnose. Schneiderian papillomas are sinonasal benign neoplasms arising from the Schneiderian mucosa; they can evolve into malignant tumoral lesions (squamous cell carcinoma). In addition, they can sometimes be confused with the more common inflammatory polyps. Therefore, an early and definitive diagnosis of this pathology is mandatory. Progressing in our research on the study of oral cavity lesions, 15 sections consisting of inflammatory sinonasal polyps, benign Schneiderian papillomas, and sinonasal undifferentiated carcinomas were analyzed using FTIRI. To allow a rigorous description of these pathologies and to gain objective diagnosis, the epithelial layer and the adjacent connective tissue of each section were separately investigated by following a multivariate analysis approach. According to the nature of the lesion, interesting modifications were detected in the average spectra of the different tissue components, above all in the lipid and protein patterns. Specific band-area ratios acting as spectral markers of the different pathologies were also highlighted.

  13. Ranking images based on aesthetic qualities.

    OpenAIRE

    Gaur, Aarushi

    2015-01-01

    The qualitative assessment of image content and aesthetic impression is affected by various image attributes and relations between the attributes. Modelling of such assessments in the form of objective rankings and learning image representations based on them is not a straightforward problem. The criteria can be varied with different levels of complexity for various applications. A highly-complex problem could involve a large number of interrelated attributes and features alongside varied rul...

  14. Texture Based Image Analysis With Neural Nets

    Science.gov (United States)

    Ilovici, Irina S.; Ong, Hoo-Tee; Ostrander, Kim E.

    1990-03-01

    In this paper, we combine direct image statistics and spatial frequency domain techniques with a neural net model to analyze texture based images. The resultant optimal texture features obtained from the direct and transformed image form the exemplar pattern of the neural net. The proposed approach introduces an automated texture analysis applied to metallography for determining the cooling rate and mechanical working of the materials. The results suggest that the proposed method enhances the practical applications of neural nets and texture extraction features.

  15. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    The mid-infrared (IR) spectral region is of significant technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinct spectral fingerprints. To date, the limitations of mid-IR light sources, such as thermal emitters, low...... cancer detection with mid-IR imaging spectroscopy....

  16. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  17. A Novel Self-Powered Wireless Sensor Node Based on Energy Harvesting for Mechanical Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Xihai Zhang

    2014-01-01

    Full Text Available Wireless sensor networks (WSNs have been expected to improve the capability of capturing mechanical vibration dynamic behaviors and evaluating the current health status of equipment. While the expectation for mechanical vibration monitoring using WSNs has been high, one of the key limitations is the limited lifetime of batteries for sensor node. The energy harvesting technologies have been recently proposed. One of them shares the same main idea, that is, energy harvesting from ambient vibration can be converted into electric power. Employing the vibration energy harvesting, a novel self-powered wireless sensor node has been developed to measure mechanical vibration in this paper. The overall architecture of node is proposed. The wireless sensor node is described into four main components: the energy harvesting unit, the microprocessor unit, the radio transceiver unit, and accelerometer. Moreover, the software used to control the operation of wireless node is also suggested. At last, in order to achieve continuous self-powered for nodes, two operation modes including the charging mode and discharging mode are proposed. This design can effectively solve the problem of continuous supply power of sensor node for mechanical vibration monitoring.

  18. Research on vibration characteristics of gun barrel based on contact model

    Science.gov (United States)

    Zhao, Yang; Zhou, Qizheng; Yue, Pengfei

    2017-04-01

    In order to study vibration characteristics of the gun barrel under the action of moving projectile, the gun barrel is simplified to cross sectional cantilever beam such as Euler. Considering contact conditions of inertia effect and projectile with the gun barrel, the equation of lateral vibration of the gun barrel is established under the projectile-gun coupling effect; the modal analysis method is used to give the analytic solutions of equation series. The effect of the motion parameters the projectile on the vibration of gun barrel is discussed, and characteristics of vibration of gun barrel are further studied under two conditions of repeating and projectile with mass eccentricity. The research results show that reasonable control of the acceleration of the projectile in the gun bore, and reduction of projectile mass eccentricity can help reduce the muzzle vibration at the gun firing. The research results can provide reference for overall design of the gun, and the modeling and analysis method used in the paper can be promoted for the solution of vibration of other related projects under the moving excitation.

  19. Image filter effectiveness characterization based on HVS

    Science.gov (United States)

    Lukin, Vladimir V.; Ponomarenko, Nikolay N.; Krivenko, Sergey S.; Egiazarian, Karen O.; Astola, Jaakko T.

    2008-02-01

    It is a quite common that acquired images are noisy and image filtering is a necessary step to enhance them. Usually image filtering effectiveness is characterized in terms of MSE or PSNR although nowadays it is well understood that these criteria do not always correspond adequately to visual perception of processed images. Recently several new measures of image quality have been proposed. In particular, two metrics, called PSNR-HVS and PSNR-HVS-M, were designed and successfully tested. Both take into account different sensitivity of a human eye to spatial frequencies, the latter one also accounts for the masking effects. Using these two metrics as well as a traditional PSNR and used by NASA metric DCTune, we have analyzed performance of five different filters (standard mean and median, sigma, Lee and DCT based filters) for a set of test images corrupted by an additive Gaussian noise with a wide set of variance values. It has been shown that there are many situations when PSNR after filtering improves while one or all other metrics manifest image quality decreasing. Most often this happens if noise variance is small and/or an image contains texture. Comparisons show that DCT based filter commonly outperforms other considered filters in the sense of denoised image visual quality. At the same time, the standard mean filter produces worse visual quality of processed images even its scanning window size is 3x3.

  20. A close inspection and vibration sensing aerial robot for steel structures with an EPM-based landing device

    Science.gov (United States)

    Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako

    2017-04-01

    This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.

  1. Investigations of an Accelerometer-based Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes

    Science.gov (United States)

    Glück, Martin; Pott, Jörg-Uwe; Sawodny, Oliver

    2017-06-01

    Adaptive Optics (AO) systems in large telescopes do not only correct atmospheric phase disturbances, but they also telescope structure vibrations induced by wind or telescope motions. Often the additional wavefront error due to mirror vibrations can dominate the disturbance power and contribute significantly to the total tip-tilt Zernike mode error budget. Presently, these vibrations are compensated for by common feedback control laws. However, when observing faint natural guide stars (NGS) at reduced control bandwidth, high-frequency vibrations (>5 Hz) cannot be fully compensated for by feedback control. In this paper, we present an additional accelerometer-based disturbance feedforward control (DFF), which is independent of the NGS wavefront sensor exposure time to enlarge the “effective servo bandwidth”. The DFF is studied in a realistic AO end-to-end simulation and compared with commonly used suppression concepts. For the observation in the faint (>13 mag) NGS regime, we obtain a Strehl ratio by a factor of two to four larger in comparison with a classical feedback control. The simulation realism is verified with real measurement data from the Large Binocular Telescope (LBT); the application for on-sky testing at the LBT and an implementation at the E-ELT in the MICADO instrument is discussed.

  2. Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach

    Science.gov (United States)

    Hussain, Muzamal; Naeem, M. Nawaz; Shahzad, Aamir; He, Maogang

    2017-04-01

    The vibration analysis, based on the Donnell thin shell theory, of single-walled carbon nanotubes (SWCNTs) has been investigated. The wave propagation approach in standard eigenvalue form has been employed in order to derive the characteristic frequency equation describing the natural frequencies of vibration in SWCNTs. The complex exponential functions, with the axial modal numbers that depend on the boundary conditions stated at edges of a carbon nanotube, have been used to compute the axial modal dependence. In our new investigations, the vibration frequency spectra are obtained and calculated for various physical parameters like length-to-diameter ratios for armchair and zigzag SWCNTs for different modes and in-plane rigidity and mass density per unit lateral area for armchair and zigzag SWCNTs on the vibration frequencies. The computer software MATLAB is used in order to compute these frequencies of the SWCNTs. The results obtained from wave propagation method are found to be in satisfactory agreement with that obtained through the previously known numerical molecular dynamics simulations.

  3. Vibration-based estimation of tension for an axially travelling web in roll-to-roll manufacturing

    Science.gov (United States)

    Ma, Liang; Chen, Jiankui; Tang, Wei; Yin, Zhouping

    2018-01-01

    Precise estimation of web tension in roll-to-roll manufacturing is critical to ensure product quality. A vibration-based method to estimate web tension is proposed in this paper. By employing the Hamilton principle, the governing equations of motion are derived, which are discretized and solved by the Galerkin method. The natural frequencies are computed from the eigenvalue equation. This study attempts to derive an approximate fitting formula among the axial tension, the travelling speed and the natural frequency, from which the web tension can be calculated conveniently and quickly by employing the measured natural frequencies. A laser displacement sensor is used to measure the transverse vibration displacements of the travelling web and detect free vibration frequency. A major advantage of the proposed method is its contactless, which is more useful under conditions where load cells are not available. An experimental test is carried out to confirm the effectiveness and accuracy of the proposed approach. The web tensions estimated by the vibration method are compared with the measured tensions by load cells.

  4. Catalytic mechanism of LENR in quasicrystals based on localized anharmonic vibrations and phasons

    CERN Document Server

    Dubinko, Volodymyr; Irwin, Klee

    2016-01-01

    Quasicrystals (QCs) are a novel form of matter, which are neither crystalline nor amorphous. Among many surprising properties of QCs is their high catalytic activity. We propose a mechanism explaining this peculiarity based on unusual dynamics of atoms at special sites in QCs, namely, localized anharmonic vibrations (LAVs) and phasons. In the former case, one deals with a large amplitude (~ fractions of an angstrom) time-periodic oscillations of a small group of atoms around their stable positions in the lattice, known also as discrete breathers, which can be excited in regular crystals as well as in QCs. On the other hand, phasons are a specific property of QCs, which are represented by very large amplitude (~angstrom) oscillations of atoms be-tween two quasi-stable positions determined by the geometry of a QC. Large amplitude atomic motion in LAVs and phasons results in time-periodic driving of adjacent potential wells occupied by hydrogen ions (protons or deuterons) in case of hydrogenated QCs. This drivin...

  5. Vibration Analysis of Conical Shells by the Improved Fourier Expansion-Based Differential Quadrature Method

    Directory of Open Access Journals (Sweden)

    Wanyou Li

    2016-01-01

    Full Text Available An improved Fourier expansion-based differential quadrature (DQ algorithm is proposed to study the free vibration behavior of truncated conical shells with different boundary conditions. The original function is expressed as the Fourier cosine series combined with close-form auxiliary functions. Those auxiliary functions are introduced to ensure and accelerate the convergence of series expansion. The grid points are uniformly distributed along the space. The weighting coefficients in the DQ method are easily obtained by the inverse of the coefficient matrix. The derivatives in both the governing equations and the boundaries are discretized by the DQ method. Natural frequencies and modal shapes can be easily obtained by solving the numerical eigenvalue equations. The accuracy and stability of this proposed method are validated against the results in the literature and a very good agreement is observed. The centrosymmetric properties of these newly proposed weighting coefficients are also validated. Studies on the effects of semivertex angle and the ratio of length to radius are reported.

  6. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    Directory of Open Access Journals (Sweden)

    Franchetti Paolo

    2015-01-01

    Full Text Available A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention of rehabilitation of the bridge led to a reinforcement of the existing hinges with the coupling of new metallic devices: new tongue and groove hinges were applied, that by one side allow the horizontal displacements and rotation, by the other side strongly reduce the relative vertical displacements of the two parts of the bridge. A dynamic test campaign was set up in order to assess the effectiveness of the intervention. The principal dynamic parameters were calculated and analysed with respect to the intervention that was realized. The tests clearly showed the effectiveness of the intervention, and helped the designer to have a better understanding of the structural behaviour of the bridge.

  7. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  8. Comparison of Five Topologies of Cantilever-based MEMS Piezoelectric Vibration Energy Harvesters

    Science.gov (United States)

    Jia, Y.; Seshia, A. A.

    2014-11-01

    In the realm of MEMS piezoelectric vibration energy harvesters, cantilever-based designs are by far the most popular. Despite being deceptively simple, the active piezoelectric area near the clamped end is able to accumulate maximum strain-generated-electrical-charge, while the free end is able to accommodate a proof mass without compromising the effective area of the piezoelectric generator since it experiences minimal strain anyway. While other contending designs do exist, this paper investigates five micro-cantilever (MC) topologies, namely: a plain MC, a tapered MC, a lined MC, a holed MC and a coupled MC, in order to assess their relative performance as an energy harvester. Although a classical straight and plain MC offers the largest active piezoelectric area, alternative MC designs can potentially offer higher average mechanical strain distribution for a given mechanical loading. Numerical simulation and experimental comparison of these 5 MCs (0.5 μ AlN on 10 μm Si) with the same practical dimensions of 500 μm and 2000 μm, suggest a cantilever with a coupled subsidiary cantilever yield the best power performance, closely followed by the classical plain topology.

  9. Multi region based image retrieval system

    Indian Academy of Sciences (India)

    /fulltext/sadh/039/02/0333-0344 ... The paramount challenge is to translate or convert a visual query from a human and find similar images or videos in large digital collection. In this paper, a technique of region based image retrieval, a branch ...

  10. Spin scan tomographic array-based imager.

    Science.gov (United States)

    Hovland, Harald

    2014-12-29

    This work presents a novel imaging device based on tomographic reconstruction. Similar in certain aspects to the earlier presented tomographic scanning (TOSCA) principle, it provides several important enhancements. The device described generates a stream of one-dimensional projections from a linear array of thin stripe detectors onto which the (circular) image of the scene is rotated. A two-dimensional image is then reproduced from the one-dimensional signals using tomographic processing techniques. A demonstrator is presented. Various aspects of the design and construction are discussed, and resulting images and movies are presented.

  11. Image-based petrophysical parameters

    DEFF Research Database (Denmark)

    Noe-Nygaard, Jakob; Engstrøm, Finn; Sølling, Theis Ivan

    2017-01-01

    , the differences are significant for the low-permeability plug. For the two-phase-flow data, the predicted relative permeability endpoints differ significantly. The root cause of this again is attributed to the more-complex structure of the pore network in the low-permeability carbonate. The experiment was also......-computed-tomography (nano-CT) images of trim sections and cuttings. Moreover, the trim-section results are upscaled to trim size to form the basis of an additional comparison. The results are also benchmarked against conventional core analysis (CCAL) results on trim-size samples. The comparison shows that petrophysical...

  12. Ultra-High Temperature Sensors Based on Optical Property Modulation and Vibration-Tolerant Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel A. Riza

    2006-09-30

    The goals of the Year 2006 Continuation Phase 2 three months period (April 1 to Sept. 30) of this project were to (a) conduct a probe elements industrial environment feasibility study and (b) fabricate embedded optical phase or microstructured SiC chips for individual gas species sensing. Specifically, SiC chips for temperature and pressure probe industrial applications were batch fabricated. Next, these chips were subject to a quality test for use in the probe sensor. A batch of the best chips for probe design were selected and subject to further tests that included sensor performance based on corrosive chemical exposure, power plant soot exposure, light polarization variations, and extreme temperature soaking. Experimental data were investigated in detail to analyze these mentioned industrial parameters relevant to a power plant. Probe design was provided to overcome mechanical vibrations. All these goals have been achieved and are described in detail in the report. The other main focus of the reported work is to modify the SiC chip by fabricating an embedded optical phase or microstructures within the chip to enable gas species sensing under high temperature and pressure. This has been done in the Kar UCF Lab. using a laser-based system whose design and operation is explained. Experimental data from the embedded optical phase-based chip for changing temperatures is provided and shown to be isolated from gas pressure and species. These design and experimentation results are summarized to give positive conclusions on the proposed high temperature high pressure gas species detection optical sensor technology.

  13. Improved vibration sensor based on a biconical tapered singlemode fiber, using in-fiber Mach-Zehnder interferometer

    Science.gov (United States)

    Wonko, R.; Moś, J. E.; Stasiewicz, K. A.; Jaroszewicz, L. R.

    2017-05-01

    Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg's gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.

  14. Principal axes estimation using the vibration modes of physics-based deformable models.

    Science.gov (United States)

    Krinidis, Stelios; Chatzis, Vassilios

    2008-06-01

    This paper addresses the issue of accurate, effective, computationally efficient, fast, and fully automated 2-D object orientation and scaling factor estimation. The object orientation is calculated using object principal axes estimation. The approach relies on the object's frequency-based features. The frequency-based features used by the proposed technique are extracted by a 2-D physics-based deformable model that parameterizes the objects shape. The method was evaluated on synthetic and real images. The experimental results demonstrate the accuracy of the method, both in orientation and the scaling estimations.

  15. Nonlinear Vibration Signal Tracking of Large Offshore Bridge Stayed Cable Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Ye Qingwei

    2015-12-01

    Full Text Available The stayed cables are key stress components of large offshore bridge. The fault detection of stayed cable is very important for safe of large offshore bridge. A particle filter model and algorithm of nonlinear vibration signal are used in this paper. Firstly, the particle filter model of stayed cable of large offshore bridge is created. Nonlinear dynamic model of the stayed-cable and beam coupling system is dispersed in temporal dimension by using the finite difference method. The discrete nonlinear vibration equations of any cable element are worked out. Secondly, a state equation of particle filter is fitted by least square algorithm from the discrete nonlinear vibration equations. So the particle filter algorithm can use the accurate state equations. Finally, the particle filter algorithm is used to filter the vibration signal of bridge stayed cable. According to the particle filter, the de-noised vibration signal can be tracked and be predicted for a short time accurately. Many experiments are done at some actual bridges. The simulation experiments and the actual experiments on the bridge stayed cables are all indicating that the particle filter algorithm in this paper has good performance and works stably.

  16. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  17. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite

    Science.gov (United States)

    Kumbhar, Samir B.; Chavan, S. P.; Gawade, S. S.

    2018-02-01

    Shape memory alloy (SMA) is an attractive smart material which could be used as stiffness tuning element in adaptive tuned vibration absorber (ATVA). The sharp modulus change in SMA material during phase transformation creates difficulties for smooth tuning to track forcing frequency to minimize vibrations of primary system. However, high hysteresis damping at low temperature martensitic phase degrades performance of vibration absorber. This paper deals with the study of dynamic response of system in which SMA and magnetorheological elastomer (MRE) are combined together to act as a smart spring- mass-damper system in a tuned vibration absorber. This composite is used as two way stiffness tuning element in ATVA for smooth and continuous tuning and to minimize the adverse effect at low temperature by increasing equivalent stiffness. The stiffnesses of SMA element and MRE are varied respectively by changing temperature and strength of external magnetic field. The two way stiffness tuning ability and adaptivity have been demonstrated analytically and experimentally. The experimental results show good agreement with analytical results. The proposed composite is able to shift the stiffness consequently the natural frequency of primary system as well as reduce the vibration level of primary system by substantial mount.

  18. Free vibration characteristics analysis of rectangular plate with rectangular opening based on Fourier series method

    Directory of Open Access Journals (Sweden)

    WANG Minhao

    2017-08-01

    Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.

  19. Semi-active vibration absorber based on real-time controlled MR damper

    Science.gov (United States)

    Weber, F.

    2014-06-01

    A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.

  20. Finite element based investigation of buckling and vibration behaviour of thin walled box beams

    Directory of Open Access Journals (Sweden)

    Ramkumar K.

    2013-12-01

    Full Text Available Thin-walled box type conventional and composite structures are having wide applications for building the structural system which are used in advanced ships, aerospace, civil, construction equipment and etc. Often these structures are subjected to vibration and buckling due to the environmental effect such as mechanical, thermal, electrical, magnetic, and acoustic or a combination of these. Also dampingmaterial and structural stiffness plays an important role for the improvement of vibration, noise control, fatigue and bulking resistance of these structures. So it is important to know the dynamic and buckling characteristics of these structures. Pre-stress in a structure affects the stiffness, which modifies the dynamic and stability characteristics of the structure. So it is also important to know the influence of pre-stress on the vibration and buckling character. In this paper, buckling and dynamic characteristics of the thin-walled box type structures are analyzed using finite element software ANSYS.

  1. Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Suihan Sui

    2015-01-01

    Full Text Available The transverse free vibration of an axially moving beam made of functionally graded materials (FGM is investigated using a Timoshenko beam theory. Natural frequencies, vibration modes, and critical speeds of such axially moving systems are determined and discussed in detail. The material properties are assumed to vary continuously through the thickness of the beam according to a power law distribution. Hamilton’s principle is employed to derive the governing equation and a complex mode approach is utilized to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.

  2. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  3. Full Dimensional Vibrational Calculations for Methane Using AN Accurate New AB Initio Based Potential Energy Surface

    Science.gov (United States)

    Majumder, Moumita; Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker; Li, Jun; Guo, Hua; Manzhos, Sergei

    2014-06-01

    New potential energy surfaces for methane were constructed, represented as analytic fits to about 100,000 individual high-level ab initio data. Explicitly-correlated multireference data (MRCI-F12(AE)/CVQZ-F12) were computed using Molpro [1] and fit using multiple strategies. Fits with small to negligible errors were obtained using adaptations of the permutation-invariant-polynomials (PIP) approach [2,3] based on neural-networks (PIP-NN) [4,5] and the interpolative moving least squares (IMLS) fitting method [6] (PIP-IMLS). The PESs were used in full-dimensional vibrational calculations with an exact kinetic energy operator by representing the Hamiltonian in a basis of products of contracted bend and stretch functions and using a symmetry adapted Lanczos method to obtain eigenvalues and eigenvectors. Very close agreement with experiment was produced from the purely ab initio PESs. References 1- H.-J. Werner, P. J. Knowles, G. Knizia, 2012.1 ed. 2012, MOLPRO, a package of ab initio programs. see http://www.molpro.net. 2- Z. Xie and J. M. Bowman, J. Chem. Theory Comput 6, 26, 2010. 3- B. J. Braams and J. M. Bowman, Int. Rev. Phys. Chem. 28, 577, 2009. 4- J. Li, B. Jiang and Hua Guo, J. Chem. Phys. 139, 204103 (2013). 5- S Manzhos, X Wang, R Dawes and T Carrington, JPC A 110, 5295 (2006). 6- R. Dawes, X-G Wang, A.W. Jasper and T. Carrington Jr., J. Chem. Phys. 133, 134304 (2010).

  4. Homogeneity analysis of high yield manufacturing process of mems-based pzt thick film vibrational energy harvesters

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Pedersen, C.M.

    2011-01-01

    This work presents a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibrational energy harvesters aimed towards vibration sources with peak frequencies in the range of a few hundred Hz. By combining KOH etching with mechanical front side protection, SOI wafer...... to accurately define the thickness of the silicon part of the harvester and a silicon compatible PZT thick film screen-printing technique, we are able to fabricate energy harvesters on wafer scale with a yield higher than 90%. The characterization of the fabricated harvesters is focused towards the full wafer....../mass-production aspect; hence the analysis of uniformity in harvested power and resonant frequency....

  5. A general higher-order nonlocal couple stress based beam model for vibration analysis of porous nanocrystalline nanobeams

    Science.gov (United States)

    Ebrahimi, Farzad; Barati, Mohammad Reza

    2017-12-01

    This paper develops a higher order refined beam model with a parabolic shear strain function for vibration analysis of porous nanocrystalline nanobeams based on nonlocal couple stress theory. Nanocrystalline nanobeam is composed from three phases which are nano-grains, nano-voids and interface. Nano-voids or porosities inside the material have a stiffness-softening impact on the nanobeam. Nonlocal elasticity theory of Eringen is applied in analysis of nanocrystalline nanobeams for the first time. Also, modified couple stress theory is employed to capture grains rigid rotations. The governing equations obtained from Hamilton's principle are solved applying an analytical approach which satisfies various boundary conditions. The reliability of present approach is verified by comparing obtained results with those provided in literature. Finally the influences of nonlocal parameter, couple stress, grain size, porosities and shear deformation on the vibration characteristics of nanocrystalline nanobeams are explored.

  6. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  7. The multi-position calibration of the stiffness for atomic-force microscope cantilevers based on vibration

    Science.gov (United States)

    Zheng, Yelong; Song, Le; Hu, Gang; Cai, Xue; Liu, Hongguang; Ma, Jinyu; Zhao, Meirong; Fang, Fengzhou

    2015-05-01

    Calibration of the stiffness of atomic force microscope (AFM) cantilevers is critical for industry and academic research. The multi-position calibration method for AFM cantilevers based on vibration is investigated. The position providing minimum uncertainty is deduced. The validity of the multi-position approach is shown via theoretical and experimental means. We applied it to the recently developed vibration method using an AFM cantilever with a normal stiffness of 0.1 N m-1. The standard deviation of the measured stiffness is 0.002 N m-1 with a mean value of 0.189 N m-1 and the relative combined uncertainty is approximately 7%, which is better than the approach using the single position at the tip of the cantilever.

  8. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    Science.gov (United States)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  9. Theoretical study on cation-anion interaction and vibrational spectra of 1-allyl-3-methylimidazolium-based ionic liquids.

    Science.gov (United States)

    Xuan, Xiaopeng; Guo, Meng; Pei, Yuanchao; Zheng, Yong

    2011-05-01

    In order to deepen the understanding of the cation-anion interaction in ionic liquids, the structures of cation, anions, and cation-anion ion-pairs of 1-allyl-3-methylimidazolium-based ionic liquids are optimized using density functional theory (DFT), and their most stable geometries are discussed. The structural parameters, hydrogen bonds and interaction energies of 1-allyl-3-methylimidazolium dicyanamide ([Amim]DCA), 1-allyl-3-methylimidazolium chloride ([Amim]Cl), 1-allyl-3-methylimidazolium formate ([Amim]FmO) and 1-allyl-3-methylimidazolium acetate ([Amim]AcO) ion pairs are studied. The vibrational frequencies of [Amim]DCA and [Amim]Cl have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A fractal-based image encryption system

    KAUST Repository

    Abd-El-Hafiz, S. K.

    2014-12-01

    This study introduces a novel image encryption system based on diffusion and confusion processes in which the image information is hidden inside the complex details of fractal images. A simplified encryption technique is, first, presented using a single-fractal image and statistical analysis is performed. A general encryption system utilising multiple fractal images is, then, introduced to improve the performance and increase the encryption key up to hundreds of bits. This improvement is achieved through several parameters: feedback delay, multiplexing and independent horizontal or vertical shifts. The effect of each parameter is studied separately and, then, they are combined to illustrate their influence on the encryption quality. The encryption quality is evaluated using different analysis techniques such as correlation coefficients, differential attack measures, histogram distributions, key sensitivity analysis and the National Institute of Standards and Technology (NIST) statistical test suite. The obtained results show great potential compared to other techniques.

  11. Optimization of hoisting parameters in a multi-rope friction mine hoist based on the multi-source coupled vibration characteristics of hoisting catenaries

    National Research Council Canada - National Science Library

    Yao, Jiannan; Deng, Yong; Xiao, Xingming

    2017-01-01

    To avoid catenary collision in a multi-rope friction mine hoist, in this study, the relevant hoisting parameters based on the multi-source coupled vibration characteristics of hoisting catenaries are optimized...

  12. Ultrasonic vibration imposed on nanoparticle-based ZnO film improves the performance of the ensuing perovskite solar cell

    Science.gov (United States)

    Miao, Yihe; Du, Peng; Wang, Zhiyu; Chen, Qianli; Eslamian, Morteza

    2018-02-01

    This work focuses on the development of nearly annealing-free ZnO-based perovskite solar cells (PSCs), suitable for low-cost manufacturing of PSCs on flexible substrates. To this end, thin film of ZnO nanoparticles is employed as the electron transporting layer (ETL), because of its low-temperature solution-processability and high electron mobility. In order to remove the structural and surface defects, ultrasonic vibration is imposed on the substrate of the as-spun wet ZnO films for a short duration of 3 min. It is shown that the ultrasonic excitation bridges the ZnO nanoparticles (cold sintering), and brings about significant improvement in the ZnO film nanostructure and functionality. In addition, ethyl acetate (EA), as an emerging volatile anti-solvent, is employed to deposit the methylammonium (MA) lead halide perovskite thin film atop the ZnO ETL, in order to prepare perovskite layers that only need an annealing time of 30 s. The ZnO-based PSCs, with a simple structure and free of additional treatments, except for the ultrasonic vibration, exhibit a promising performance with a power conversion efficiency (PCE) of over 11%, 40% higher than that of the control device. The ultrasonic vibration treatment is facile, low-cost, environmentally friendly, and compatible with the scalable coating and printing techniques, such as spray and blade coating.

  13. Control concept for piezo-based actuator-sensor-units for uniaxial vibration damping in machine tools

    OpenAIRE

    Neugebauer, Reimund; Pagel, K.; Bucht, A; Wittstock, V.; Pappe, A.

    2010-01-01

    Additional piezo-based components in drive trains can significantly improve the dynamic behaviour of machine tools. In this article we present a piezo-based actuator-sensor-unit that is able to reduce uniaxial vibrations in ball screw driven feed axis of machine tools. A complex model of a feed axis including ASU was developed to design a controller. The control concept is based on the direct velocity feedback. A modular test bench was designed, assembled and investigated to verify the ASU's ...

  14. Intelligent image retrieval based on radiology reports

    Energy Technology Data Exchange (ETDEWEB)

    Gerstmair, Axel; Langer, Mathias; Kotter, Elmar [University Medical Center Freiburg, Department of Diagnostic Radiology, Freiburg (Germany); Daumke, Philipp; Simon, Kai [Averbis GmbH, Freiburg (Germany)

    2012-12-15

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. (orig.)

  15. Vibration analysis of hydropower house based on fluid-structure coupling numerical method

    Directory of Open Access Journals (Sweden)

    Shu-he Wei

    2010-03-01

    Full Text Available By using the shear stress transport (SST model to predict the effect of random flow motion in a fluid zone, and using the Newmark method to solve the oscillation equations in a solid zone, a coupling model of the powerhouse and its tube water was developed. The effects of fluid-structure interaction are considered through the kinematic and dynamic conditions applied to the fluid-structure interfaces (FSI. Numerical simulation of turbulent flow through the whole flow passage of the powerhouse and concrete structure vibration analysis in the time domain were carried out with the model. Considering the effect of coupling the turbulence and the powerhouse structure, the time history response of both turbulent flows through the whole flow passage and powerhouse structure vibration were generated. Concrete structure vibration analysis shows that the displacement, velocity, and acceleration of the dynamo floor respond dramatically to pressure fluctuations in the flow passage. Furthermore, the spectrum analysis suggests that pressure fluctuation originating from the static and dynamic disturbances of hydraulic turbine blades in the flow passage is one of the most important vibration sources.

  16. On the seismic response of instable rock slopes based on ambient vibration recordings

    Czech Academy of Sciences Publication Activity Database

    Kleinbrod, U.; Burjánek, Jan; Fäh, D.

    2017-01-01

    Roč. 69, September (2017), č. článku 126. ISSN 1880-5981 Institutional support: RVO:67985530 Keywords : ambient vibration s * instable rock slopes * site amplification Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.243, year: 2016

  17. Vibration based blind identification of bearing failures for autonomous wireless sensor nodes

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Bregon, A.; Daigle, M.J.

    2014-01-01

    Despite all the attention received by maintainers, undetected roller bearings failures are still a major source of concern in relation with reliability losses and high maintenance costs. Because of that, bearing condition assessment through vibration monitoring remains an intensive topic of

  18. Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance

    Science.gov (United States)

    Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.

    2004-01-01

    In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.

  19. Jet-Based Local Image Descriptors

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo; Darkner, Sune; Dahl, Anders Lindbjerg

    2012-01-01

    We present a general novel image descriptor based on higherorder differential geometry and investigate the effect of common descriptor choices. Our investigation is twofold in that we develop a jet-based descriptor and perform a comparative evaluation with current state-of-the-art descriptors on ...

  20. Computer vision for image-based transcriptomics.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Herrmann, Markus D; Yakimovich, Yauhen; Pelkmans, Lucas

    2015-09-01

    Single-cell transcriptomics has recently emerged as one of the most promising tools for understanding the diversity of the transcriptome among single cells. Image-based transcriptomics is unique compared to other methods as it does not require conversion of RNA to cDNA prior to signal amplification and transcript quantification. Thus, its efficiency in transcript detection is unmatched by other methods. In addition, image-based transcriptomics allows the study of the spatial organization of the transcriptome in single cells at single-molecule, and, when combined with superresolution microscopy, nanometer resolution. However, in order to unlock the full power of image-based transcriptomics, robust computer vision of single molecules and cells is required. Here, we shortly discuss the setup of the experimental pipeline for image-based transcriptomics, and then describe in detail the algorithms that we developed to extract, at high-throughput, robust multivariate feature sets of transcript molecule abundance, localization and patterning in tens of thousands of single cells across the transcriptome. These computer vision algorithms and pipelines can be downloaded from: https://github.com/pelkmanslab/ImageBasedTranscriptomics. Copyright © 2015. Published by Elsevier Inc.

  1. Measurement of higher harmonics in periodic vibrations using phase-modulated TV holography with digital image processing.

    Science.gov (United States)

    Løkberg, O J; Pedersen, H M; Valø, H; Wang, G

    1994-08-01

    We separately measure the higher harmonics vibration patterns of a periodic vibrating object by using time-average TV holography and phase modulation. During measurements the frequency of the phase modulation is adjusted to each harmonic component while the excitation of the object is set low enough to record all components on the linear part of the fringe function. Using acoustical phase stepping and calibration of the fringe function, we compute the amplitude and phase distributions of the frequency component. We measure components up to the 65th harmonic by using square-wave excitation.

  2. Process Analytical Techniques Based on In-Line Vibrational Spectroscopy and their Industrial Applications

    Directory of Open Access Journals (Sweden)

    Jednačak, T.

    2013-03-01

    Full Text Available Process analytical techniques (PAT involve the monitoring and control of physical and chemical processes as well as the identification of important process parameters in order to obtain the products with desired properties. PAT have been applied in various industrial process phases to ensure better process understanding, quality by optimal design and determination of process disturbances in time. In-line vibrational spectroscopic techniques are one of the major process analytical techniques used today. The most frequently used in-line vibrational spectroscopic techniques are near infrared spectroscopy (NIR, attenuated total reflectance middle infrared spectroscopy (ATR-MIR and Raman spectroscopy (Table 1, Figs. 1 and 2. They provide in situ real-time monitoring of the production processes by using different types of in-line probes (Figs. 3–5 which reduce exposure to hazardous materials and contamination, sample degradation or equilibrium perturbations in the reaction system. Due to the aforementioned advantages, in-line vibrational spectroscopic techniques have been successfully applied for different industrial pur- poses. The analysis of characteristic vibrational bands in in-line infrared and Raman spectra enable the monitoring of different processes such as crystallization, dissolution, polimorphic transitions and chemical reactions (Scheme 1, Figs. 6 and 7. The obtained data are, due to their complexity, very often further processed by multivariate data analysis methods (Fig. 9, such as principal components analysis (PCA and partial least squares (PLS. The basic principles of PCA and PLS are shown in Fig. 8. A number of different in-line vibrational spectroscopic techniques as well as multivariate data analysis methods have been developed recently, but in this article only the most important and most frequently used techniques are described.   KUI – 7/2013 Received April 10, 2012 Accepted July 18, 2012

  3. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states.

    Science.gov (United States)

    Pan, Huilin; Liu, Kopin

    2018-01-07

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them-including partially and fully deuterated isotopologs-four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands-CHD2(611), CH2D(311), CH2D(511), and CH2D(611)-are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  4. Image based Monument Recognition using Graph based Visual Saliency

    DEFF Research Database (Denmark)

    Kalliatakis, Grigorios; Triantafyllidis, Georgios

    2013-01-01

    , the images have been previously processed according to the Graph Based Visual Saliency model in order to keep either SIFT or SURF features corresponding to the actual monuments while the background “noise” is minimized. The application is then able to classify these images, helping the user to better...

  5. Method of recognizing the high-speed railway noise barriers based on the distance image

    Science.gov (United States)

    Ma, Le; Shao, Shuangyun; Feng, Qibo; Liu, Bingqian; Kim, Chol Ryong

    2016-10-01

    The damage or lack of the noise barriers is one of the important hidden troubles endangering the safety of high-speed railway. In order to obtain the vibration information of the noise barriers, the online detection systems based on laser vision were proposed. The systems capture images of the laser stripe on the noise barriers and export data files containing distance information between the detection systems on the train and the noise barriers. The vibration status or damage of the noise barriers can be estimated depending on the distance information. In this paper, we focused on the method of separating the area of noise barrier from the background automatically. The test results showed that the proposed method is in good efficiency and accuracy.

  6. Ab initio-based exciton model of amide I vibrations in peptides: definition, conformational dependence, and transferability.

    Science.gov (United States)

    Gorbunov, Roman D; Kosov, Daniil S; Stock, Gerhard

    2005-06-08

    Various aspects of the ab initio-based parametrization of an exciton model of amide I vibrations in peptides are discussed. Adopting "glycine dipeptide" (Ac-Gly-NHCH3) as a simple building-block model that describes the vibrational interaction between two peptide units, we perform comprehensive quantum-chemical calculations to investigate the effect and importance of the level of theory, the choice of local coordinates, and the localization method. A solvent continuum model description turns out important to obtain planar CONH peptide units when a full geometry optimization (which is necessary to obtain the correct frequencies) is performed. To study the conformational dependence of the amide I vibrations, we calculate (phi,psi) maps of the local-mode frequencies and couplings. Performing conformational averages of the (phi,psi) maps with respect to the most important peptide conformational states in solution (alpha, beta, P(II), and C5), we discuss the relation between these measurable quantities and the corresponding conformation of the peptide. Finally, the transferability of these maps to dipeptides with hydrophilic and hydrophobic side chains as well as to tripeptides with charged end groups is investigated.

  7. Thermo-Mechanical Vibration of Short Carbon Nanotubes Embedded in Pasternak Foundation Based on Nonlocal Elasticity Theory

    Directory of Open Access Journals (Sweden)

    B. Amirian

    2013-01-01

    Full Text Available This study is concerned with the thermal vibration analysis of a short single-walled carbon nanotube embedded in an elastic medium based on nonlocal Timoshenko beam model. A Winkler- and Pasternak-type elastic foundation is employed to model the interaction of short carbon nanotubes and the surrounding elastic medium. Influence of all parameters such as nonlocal small-scale effects, high temperature change, Winkler modulus parameter, Pasternak shear parameter, vibration mode and aspect ratio of short carbon nanotubes on the vibration frequency are analyzed and discussed. The present study shows that for high temperature changes, the effect of Winkler constant in different nonlocal parameters on nonlocal frequency is negligible. Furthermore, for all temperatures, the nonlocal frequencies are always smaller than the local frequencies in short carbon nanotubes. In addition, for high Pasternak modulus, by increasing the aspect ratio, the nonlocal frequency decreases. It is concluded that short carbon nanotubes have the higher frequencies as compared with long carbon nanotubes.

  8. Investigation of Effectiveness of Some Vibration-Based Techniques in Early Detection of Real-Time Fatigue Failure in Gears

    Directory of Open Access Journals (Sweden)

    Hasan Ozturk

    2010-01-01

    Full Text Available Bending fatigue crack is a dangerous and insidious mode of failure in gears. As it produces no debris in its early stages, it gives little warning during its progression, and usually results in either immediate loss of serviceability or greatly reduced power transmitting capacity. This paper presents the applications of vibration-based techniques (i.e. conventional time and frequency domain analysis, cepstrum, and continuous wavelet transform to real gear vibrations in the early detection, diagnosis and advancement monitoring of a real tooth fatigue crack and compares their detection and diagnostic capabilities on the basis of experimental results. Gear fatigue damage is achieved under heavy-loading conditions and the gearbox is allowed to run until the gears suffer badly from complete tooth breakage. It has been found that the initiation and progression of fatigue crack cannot be easily detected by conventional time and frequency domain approaches until the fault is significantly developed. On the contrary, the wavelet transform is quite sensitive to any change in gear vibration and reveals fault features earlier than other methods considered.

  9. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  10. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  11. Cluster Ensemble-Based Image Segmentation

    Directory of Open Access Journals (Sweden)

    Xiaoru Wang

    2013-07-01

    Full Text Available Image segmentation is the foundation of computer vision applications. In this paper, we propose a new cluster ensemble-based image segmentation algorithm, which overcomes several problems of traditional methods. We make two main contributions in this paper. First, we introduce the cluster ensemble concept to fuse the segmentation results from different types of visual features effectively, which can deliver a better final result and achieve a much more stable performance for broad categories of images. Second, we exploit the PageRank idea from Internet applications and apply it to the image segmentation task. This can improve the final segmentation results by combining the spatial information of the image and the semantic similarity of regions. Our experiments on four public image databases validate the superiority of our algorithm over conventional single type of feature or multiple types of features-based algorithms, since our algorithm can fuse multiple types of features effectively for better segmentation results. Moreover, our method is also proved to be very competitive in comparison with other state-of-the-art segmentation algorithms.

  12. Fractal-based image sequence compression scheme

    Science.gov (United States)

    Li, Haibo; Novak, Mirek; Forchheimer, Robert

    1993-07-01

    The dominant image transformation used in the existing fractal coding schemes is the affine function. Although an affine transformation is easy to compute and understand, its linear approximation ability limits the employment of larger range blocks, that is, it limits further improvement in compression efficiency. We generalize the image transformation from the usual affine form to the more general quadratic form, and provide theoretical requirements for the generalized transformation to be contractive. Based on the self-transformation system (STS) model, an image sequence coding scheme--fractal-based image sequence coding--is proposed. In this coding scheme, our generalized transformation is used to model the self- transformation is used to model the self-transformation from the domain block to its range blocks. Experimental results on a real image sequence show that for the same size of blocks, the SNR can be improved by 10 dB, or, for the same SNR of the decoded image sequence, the compression ratio is raised twofold when the new generalized transformation is used to replace the usual affine transformation. In addition, due to the utilization of the STS model, the computational complexity is only linearly related to the size of the 3-D blocks. This provides for fast encoding and decoding.

  13. Biologically based sensor fusion for medical imaging

    Science.gov (United States)

    Aguilar, Mario; Garrett, Aaron L.

    2001-03-01

    We present an architecture for the fusion of multiple medical image modalities that enhances the original imagery and combines the complimentary information of the various modalities. The design principles follow the organization of the color vision system in humans and primates. Mainly, the design of within- modality enhancement and between-modality combination for fusion is based on the neural connectivity of retina and visual cortex. The architecture is based on a system developed for night vision applications while the first author was at MIT Lincoln Laboratory. Results of fusing various modalities are presented, including: a) fusion of T1-weighted and T2-weighted MRI images, b) fusion of PD, T1 weighted, and T2-weighted, and c) fusion of SPECT and MRI/CT. The results will demonstrate the ability to fuse such disparate imaging modalities with regard to information content and complimentarities. These results will show how both brightness and color contrast are used in the resulting color fused images to convey information to the user. In addition, we will demonstrate the ability to preserve the high spatial resolution of modalities such as MRI even when combined with poor resolution images such as from SPECT scans. We conclude by motivating the use of the fusion method to derive more powerful image features to be used in segmentation and pattern recognition.

  14. Location-based Services using Image Search

    DEFF Research Database (Denmark)

    Vertongen, Pieter-Paulus; Hansen, Dan Witzner

    2008-01-01

    Recent developments in image search has made them sufficiently efficient to be used in real-time applications. GPS has become a popular navigation tool. While GPS information provide reasonably good accuracy, they are not always present in all hand held devices nor are they accurate in all situat...... of the image search engine and database image location knowledge, the location is determined of the query image and associated data can be presented to the user.......Recent developments in image search has made them sufficiently efficient to be used in real-time applications. GPS has become a popular navigation tool. While GPS information provide reasonably good accuracy, they are not always present in all hand held devices nor are they accurate in all...... situations, for example in urban environments. We propose a system to provide location-based services using image searches without requiring GPS. The goal of this system is to assist tourists in cities with additional information using their mobile phones and built-in cameras. Based upon the result...

  15. Image-based systems biology of infection.

    Science.gov (United States)

    Medyukhina, Anna; Timme, Sandra; Mokhtari, Zeinab; Figge, Marc Thilo

    2015-06-01

    The successful treatment of infectious diseases requires interdisciplinary studies of all aspects of infection processes. The overarching combination of experimental research and theoretical analysis in a systems biology approach can unravel mechanisms of complex interactions between pathogens and the human immune system. Taking into account spatial information is especially important in the context of infection, since the migratory behavior and spatial interactions of cells are often decisive for the outcome of the immune response. Spatial information is provided by image and video data that are acquired in microscopy experiments and that are at the heart of an image-based systems biology approach. This review demonstrates how image-based systems biology improves our understanding of infection processes. We discuss the three main steps of this approach--imaging, quantitative characterization, and modeling--and consider the application of these steps in the context of studying infection processes. After summarizing the most relevant microscopy and image analysis approaches, we discuss ways to quantify infection processes, and address a number of modeling techniques that exploit image-derived data to simulate host-pathogen interactions in silico. © 2015 International Society for Advancement of Cytometry.

  16. Content-based image and video compression

    Science.gov (United States)

    Du, Xun; Li, Honglin; Ahalt, Stanley C.

    2002-08-01

    The term Content-Based appears often in applications for which MPEG-7 is expected to play a significant role. MPEG-7 standardizes descriptors of multimedia content, and while compression is not the primary focus of MPEG-7, the descriptors defined by MPEG-7 can be used to reconstruct a rough representation of an original multimedia source. In contrast, current image and video compression standards such as JPEG and MPEG are not designed to encode at the very low bit-rates that could be accomplished with MPEG-7 using descriptors. In this paper we show that content-based mechanisms can be introduced into compression algorithms to improve the scalability and functionality of current compression methods such as JPEG and MPEG. This is the fundamental idea behind Content-Based Compression (CBC). Our definition of CBC is a compression method that effectively encodes a sufficient description of the content of an image or a video in order to ensure that the recipient is able to reconstruct the image or video to some degree of accuracy. The degree of accuracy can be, for example, the classification error rate of the encoded objects, since in MPEG-7 the classification error rate measures the performance of the content descriptors. We argue that the major difference between a content-based compression algorithm and conventional block-based or object-based compression algorithms is that content-based compression replaces the quantizer with a more sophisticated classifier, or with a quantizer which minimizes classification error. Compared to conventional image and video compression methods such as JPEG and MPEG, our results show that content-based compression is able to achieve more efficient image and video coding by suppressing the background while leaving the objects of interest nearly intact.

  17. Intelligent image retrieval based on radiology reports.

    Science.gov (United States)

    Gerstmair, Axel; Daumke, Philipp; Simon, Kai; Langer, Mathias; Kotter, Elmar

    2012-12-01

    To create an advanced image retrieval and data-mining system based on in-house radiology reports. Radiology reports are semantically analysed using natural language processing (NLP) techniques and stored in a state-of-the-art search engine. Images referenced by sequence and image number in the reports are retrieved from the picture archiving and communication system (PACS) and stored for later viewing. A web-based front end is used as an interface to query for images and show the results with the retrieved images and report text. Using a comprehensive radiological lexicon for the underlying terminology, the search algorithm also finds results for synonyms, abbreviations and related topics. The test set was 108 manually annotated reports analysed by different system configurations. Best results were achieved using full syntactic and semantic analysis with a precision of 0.929 and recall of 0.952. Operating successfully since October 2010, 258,824 reports have been indexed and a total of 405,146 preview images are stored in the database. Data-mining and NLP techniques provide quick access to a vast repository of images and radiology reports with both high precision and recall values. Consequently, the system has become a valuable tool in daily clinical routine, education and research. Radiology reports can now be analysed using sophisticated natural language-processing techniques. Semantic text analysis is backed by terminology of a radiological lexicon. The search engine includes results for synonyms, abbreviations and compositions. Key images are automatically extracted from radiology reports and fetched from PACS. Such systems help to find diagnoses, improve report quality and save time.

  18. An Early Warning System from debris flows based on ground vibration monitoring data

    Science.gov (United States)

    Arattano, Massimo; Coviello, Velio

    2015-04-01

    -2014. The algorithm is based on the real time processing of ground vibration data detected by three vertical geophones. During the testing period, two debris flow events occurred that were both correctly detected by the algorithm with a relatively limited number of false alarms.

  19. World Wide Web Based Image Search Engine Using Text and Image Content Features

    Science.gov (United States)

    Luo, Bo; Wang, Xiaogang; Tang, Xiaoou

    2003-01-01

    Using both text and image content features, a hybrid image retrieval system for Word Wide Web is developed in this paper. We first use a text-based image meta-search engine to retrieve images from the Web based on the text information on the image host pages to provide an initial image set. Because of the high-speed and low cost nature of the text-based approach, we can easily retrieve a broad coverage of images with a high recall rate and a relatively low precision. An image content based ordering is then performed on the initial image set. All the images are clustered into different folders based on the image content features. In addition, the images can be re-ranked by the content features according to the user feedback. Such a design makes it truly practical to use both text and image content for image retrieval over the Internet. Experimental results confirm the efficiency of the system.

  20. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mehralian, Fahimeh [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Tadi Beni, Yaghoub, E-mail: tadi@eng.sku.ac.ir [Faculty of Engineering, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Karimi Zeverdejani, Mehran [Mechanical Engineering Department, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  1. Co-simulation on vibration characteristics of uniaxial shaker based on AMESim and ADAMS

    Science.gov (United States)

    Liu, W.; Zhang, D. B.; Su, M.

    2017-07-01

    In this paper, we propose a selection method of the increased amplitude stability parameter for the unstable motion problem of the uniaxial shaker before its stable operation. On the basis of single-axis shaker dynamics equations, an ADMAS and AMESim combined simulation model is established. According to this model, the vibration characteristics under different parameters are solved by using the control variate method. The simulation results show that the motor speed, the eccentric mass and the inclination of screen surface are the three main factors which affect work starting state of uniaxial shaker. The working efficiency of uniaxial shaker is controlled by the motor speed while the amplitude is affected by the eccentric mass. Moreover, the inclination of screen surface plays a decisive role in the distribution of the vibration track before uniaxial shaker reaching the stable operation state. The relatively stable movement is obtained by optimizing the parameters, which provides a new way to improve the stability of uniaxial shaker.

  2. Vibration Analysis Based on Hammer Impact for Fouling Detection Using Microphone and Accelerometer as Sensors

    Directory of Open Access Journals (Sweden)

    Jaidilson Silva

    2010-01-01

    Full Text Available The easy detection of fouling in duct systems is a persistent problem and remains a relevant demand for the chemical, oil, food and pharmaceutical industries. The fouling process is the slow, unwanted layer deposition of heavy organic and other dissolved solid materials out of transported fluids or suspensions onto inner wall surfaces in fluid transport systems over an extended period of time. This work presents research results of vibrational hammer excitation for easy to use external non-invasive, non-destructive fouling detection in pipelines and other large scale duct systems. The main goal is the detection of inner pipe layer formation, and thickness estimation of the adsorbed material. Data were taken from the vibration amplitude variation in presence of an inner pipe fouling layer using acoustic accelerometer and microphone detection. The experimental set-up and achievable sensitivities and of the methods are outlined.

  3. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes

    Science.gov (United States)

    Mehralian, Fahimeh; Tadi Beni, Yaghoub; Karimi Zeverdejani, Mehran

    2017-06-01

    Featured by two small length scale parameters, nonlocal strain gradient theory is utilized to investigate the free vibration of nanotubes. A new size-dependent shell model formulation is developed by using the first order shear deformation theory. The governing equations and boundary conditions are obtained using Hamilton's principle and solved for simply supported boundary condition. As main purpose of this study, since the values of two small length scale parameters are still unknown, they are calibrated by the means of molecular dynamics simulations (MDs). Then, the influences of different parameters such as nonlocal parameter, scale factor, length and thickness on vibration characteristics of nanotubes are studied. It is also shown that increase in thickness and decrease in length parameters intensify the effect of nonlocal parameter and scale factor.

  4. Multispectral image fusion based on fractal features

    Science.gov (United States)

    Tian, Jie; Chen, Jie; Zhang, Chunhua

    2004-01-01

    Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the

  5. Free vibration analysis of single-walled boron nitride nanotubes based on a computational mechanics framework

    Science.gov (United States)

    Yan, J. W.; Tong, L. H.; Xiang, Ping

    2017-12-01

    Free vibration behaviors of single-walled boron nitride nanotubes are investigated using a computational mechanics approach. Tersoff-Brenner potential is used to reflect atomic interaction between boron and nitrogen atoms. The higher-order Cauchy-Born rule is employed to establish the constitutive relationship for single-walled boron nitride nanotubes on the basis of higher-order gradient continuum theory. It bridges the gaps between the nanoscale lattice structures with a continuum body. A mesh-free modeling framework is constructed, using the moving Kriging interpolation which automatically satisfies the higher-order continuity, to implement numerical simulation in order to match the higher-order constitutive model. In comparison with conventional atomistic simulation methods, the established atomistic-continuum multi-scale approach possesses advantages in tackling atomic structures with high-accuracy and high-efficiency. Free vibration characteristics of single-walled boron nitride nanotubes with different boundary conditions, tube chiralities, lengths and radii are examined in case studies. In this research, it is pointed out that a critical radius exists for the evaluation of fundamental vibration frequencies of boron nitride nanotubes; opposite trends can be observed prior to and beyond the critical radius. Simulation results are presented and discussed.

  6. Fault Diagnosis for Rolling Bearing under Variable Conditions Based on Image Recognition

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2016-01-01

    Full Text Available Rolling bearing faults often lead to electromechanical system failure due to its high speed and complex working conditions. Recently, a large amount of fault diagnosis studies for rolling bearing based on vibration data has been reported. However, few studies have focused on fault diagnosis for rolling bearings under variable conditions. This paper proposes a fault diagnosis method based on image recognition for rolling bearings to realize fault classification under variable working conditions. The proposed method includes the following steps. First, the vibration signal data are transformed into a two-dimensional image based on recurrence plot (RP technique. Next, a popular feature extraction method which has been widely used in the image field, scale invariant feature transform (SIFT, is employed to extract fault features from the two-dimensional RP and subsequently generate a 128-dimensional feature vector. Third, due to the redundancy of the high-dimensional feature, kernel principal component analysis is utilized to reduce the feature dimensionality. Finally, a neural network classifier trained by probabilistic neural network is used to perform fault diagnosis. Verification experiment results demonstrate the effectiveness of the proposed fault diagnosis method for rolling bearings under variable conditions, thereby providing a promising approach to fault diagnosis for rolling bearings.

  7. Electrostatic MEMS vibration energy harvester for HVAC applications with impact-based frequency up-conversion

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2016-12-01

    This paper reports on electrostatic MEMS vibration energy harvesters with gap-closing interdigitated electrodes, designed for and tested on HVAC air ducts. The harvesters were fabricated on SOI wafers with 200 µm device layer using a custom microfabrication process. Designs with aspects ratio (electrodes’ gap versus depth) of 10 and 20 were implemented, while the overall footprint was approximately 1 cm  ×  1 cm in both cases. In order to enhance the power output, a dual-level physical stopper system was designed to control the minimum gap between the electrodes, which is a key parameter in the conversion process. The dual-level stopper utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls. The parylene layer defines the absolute minimum gap and provides electrical insulation. The fabricated devices were first tested on a vibration shaker to characterize the resonant behavior. Devices with aspect ratio 10 were found to exhibit frequency up-conversion, which enhances the amount of converted power. Devices with both aspect ratios were found to exhibits spring hardening due to impact with the stoppers and spring softening behavior at increasing voltage bias. The highest power measured on shaker table for sinusoidal vibrations was 3.13 µW (includes enhancement due to frequency up-conversion driven by impact) for aspect ratio 10, and 0.166 µW for aspect ratio 20. The corresponding dimensional figure-of-merit, defined as the power output normalized to vibration acceleration and frequency, squared voltage and device mass, was in the range of 10 · 10-8 m V-2 for both devices, about an order of magnitude higher than state-of-the-art. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mg RMS, a primary frequency of 60 Hz and a PSD of 7.15 · 10-2 g2 Hz-1. The peak power measured was

  8. Autofocus imaging : Image reconstruction based on inverse scattering theory

    NARCIS (Netherlands)

    Behura, J.; Wapenaar, C.P.A.; Snieder, R.

    2014-01-01

    Conventional imaging algorithms assume single scattering and therefore cannot image multiply scattered waves correctly. The multiply scattered events in the data are imaged at incorrect locations resulting in spurious subsurface structures and erroneous interpretation. This drawback of current

  9. Compact Imagers Based on MESSENGER's Mercury Dual Imaging System

    Science.gov (United States)

    Chabot, N. L.; Murchie, S. L.; Hawkins, S. E.; Hayes, J. R.; Boldt, J. D.; Barnouin, O. S.; Heffernan, K.; Noble, M. W.

    2012-10-01

    MESSENGER's Mercury Dual Imaging System (MDIS) has acquired >130,000 images since launch in 2004, including the first images from Mercury orbit. MDIS, composed of two miniature cameras, has capabilities well matched to future planetary missions.

  10. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  11. Automatic medical image annotation and keyword-based image retrieval using relevance feedback

    OpenAIRE

    Ko, Byoung Chul; Lee, Jihyeon; Nam, Jae-Yeal

    2011-01-01

    This paper presents novel multiple keywords annotation for medical images, keyword-based medical image retrieval, and relevance feedback method for image retrieval for enhancing image retrieval performance. For semantic keyword annotation, this study proposes a novel medical image classification method combining local wavelet-based center symmetric–local binary patterns with random forests. For keyword-based image retrieval, our retrieval system use the confidence score that is assigned to ea...

  12. Motion characteristics and output voltage analysis of micro-vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Ye, Zhitong; Duan, Zhiyong; Takahata, Kenichi; Su, Yufeng

    2015-01-01

    In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.

  13. Vibration-based energy harvesting with piezoelectrets having high d31 activity

    Science.gov (United States)

    Zhang, X.; Pondrom, P.; Wu, L.; Sessler, G. M.

    2016-05-01

    Sandwiched fluoroethylene propylene films with charged, parallel-tunnel voids between the layers, which exhibit high d31 piezoelectric activity, were designed. Stripes of such piezoelectrets were exposed to mechanical stress in length direction by a seismic mass excited to vibrations. Due to the piezoelectricity of the films, a current in a terminating resistor is generated. The harvested power across the resistor amounts to about 0.2 mW for a seismic mass of 2 g and an acceleration of 1 g. In comparison with other piezoelectret or with poly(vinylidene fluoride) harvesters, the generated power referred to equal acceleration and force, is significantly larger.

  14. Vibration-based energy harvesting with piezoelectrets having high d{sub 31} activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. [Institute for Telecommunications Technology, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt (Germany); School of Physics Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China); Pondrom, P. [Institute for Telecommunications Technology, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt (Germany); System Reliability and Machine Acoustics SzM, Technische Universität Darmstadt, Magdalenenstr. 4, 64289 Darmstadt (Germany); Wu, L. [School of Physics Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092 (China); Sessler, G. M., E-mail: g.sessler@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Technische Universität Darmstadt, Merckstr. 25, 64283 Darmstadt (Germany)

    2016-05-09

    Sandwiched fluoroethylene propylene films with charged, parallel-tunnel voids between the layers, which exhibit high d{sub 31} piezoelectric activity, were designed. Stripes of such piezoelectrets were exposed to mechanical stress in length direction by a seismic mass excited to vibrations. Due to the piezoelectricity of the films, a current in a terminating resistor is generated. The harvested power across the resistor amounts to about 0.2 mW for a seismic mass of 2 g and an acceleration of 1 g. In comparison with other piezoelectret or with poly(vinylidene fluoride) harvesters, the generated power referred to equal acceleration and force, is significantly larger.

  15. Curvelet based offline analysis of SEM images.

    Directory of Open Access Journals (Sweden)

    Syed Hamad Shirazi

    Full Text Available Manual offline analysis, of a scanning electron microscopy (SEM image, is a time consuming process and requires continuous human intervention and efforts. This paper presents an image processing based method for automated offline analyses of SEM images. To this end, our strategy relies on a two-stage process, viz. texture analysis and quantification. The method involves a preprocessing step, aimed at the noise removal, in order to avoid false edges. For texture analysis, the proposed method employs a state of the art Curvelet transform followed by segmentation through a combination of entropy filtering, thresholding and mathematical morphology (MM. The quantification is carried out by the application of a box-counting algorithm, for fractal dimension (FD calculations, with the ultimate goal of measuring the parameters, like surface area and perimeter. The perimeter is estimated indirectly by counting the boundary boxes of the filled shapes. The proposed method, when applied to a representative set of SEM images, not only showed better results in image segmentation but also exhibited a good accuracy in the calculation of surface area and perimeter. The proposed method outperforms the well-known Watershed segmentation algorithm.

  16. Steganographic Capacity of Images, based on Image Equivalence Classes

    DEFF Research Database (Denmark)

    Hansen, Klaus; Hammer, Christian; Andersen, Jens Damgaard

    2001-01-01

    The problem of hiding information imperceptibly can be formulated as the problem of determining if a given image is a member of a sufficiently large equivalence class of images which to the Human Visual System appears to be the same image. This makes it possible to replace the given image...... with a modified image similar in appearance but carrying imperceptibly coded information. This paper presents a framework and an experimental algorithm to estimate upper bounds for the size of an equivalence class....

  17. Web Based Distributed Coastal Image Analysis System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project develops Web based distributed image analysis system processing the Moderate Resolution Imaging Spectroradiometer (MODIS) data to provide decision...

  18. Extension and Application of High-Speed Digital Imaging Analysis Via Spatiotemporal Correlation and Eigenmode Analysis of Vocal Fold Vibration Before and After Polyp Excision.

    Science.gov (United States)

    Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J

    2016-08-01

    To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.

  19. Study of combined filter based on wavelet transform to denoise stripe images of electronic speckle shearography pattern interferometry

    Science.gov (United States)

    Liu, Zhongling; Jing, Chao; Zhang, Yimo

    2011-11-01

    Stripe images of electronic speckle shearography pattern interferometry, in which stripe distribution are correlated with vertical micro distortion or micro vibration of objects, are severely disturbed by noises, and so denoising stripe images of electronic speckle shearography pattern interferometry is necessary to extract useful stripe distribution information. Denoising methods and flow for stripe images of electronic speckle shearography pattern interferometry are analyzed in this paper to get the stripe distribution correlated with vertical micro distortion or micro vibration of objects. The noises in the stripe images of electronic speckle shearography pattern interferometry are comprised of speckle noise and other random noises induced by environmental disturb and instrumental performance, so it's difficult to use familiar filters, such as mean-value filter, medium-value filter and adaptive filter, etc, to remove all noises in the stripe images. The combined filter composed of mean-value filter and wavelet filter is designed to denoise stripe images. The aim of mean-value filter is to remove random noises induced by environmental disturb and instrumental performance, and then the wavelet filter, in which the Meyer wavelet is adopted, is designed to remove speckle noise in the stripe images. The final stripe distribution images after denoising and binarization are listed to prove the denoising validity of combined filter based on wavelet transform.

  20. Image Fakery Detection Based on Singular Value Decomposition

    Directory of Open Access Journals (Sweden)

    T. Basaruddin

    2009-11-01

    Full Text Available The growing of image processing technology nowadays make it easier for user to modify and fake the images. Image fakery is a process to manipulate part or whole areas of image either in it content or context with the help of digital image processing techniques. Image fakery is barely unrecognizable because the fake image is looking so natural. Yet by using the numerical computation technique it is able to detect the evidence of fake image. This research is successfully applied the singular value decomposition method to detect image fakery. The image preprocessing algorithm prior to the detection process yields two vectors orthogonal to the singular value vector which are important to detect fake image. The result of experiment to images in several conditions successfully detects the fake images with threshold value 0.2. Singular value decomposition-based detection of image fakery can be used to investigate fake image modified from original image accurately.

  1. Small Imaging Depth LIDAR and DCNN-Based Localization for Automated Guided Vehicle.

    Science.gov (United States)

    Ito, Seigo; Hiratsuka, Shigeyoshi; Ohta, Mitsuhiko; Matsubara, Hiroyuki; Ogawa, Masaru

    2018-01-10

    We present our third prototype sensor and a localization method for Automated Guided Vehicles (AGVs), for which small imaging LIght Detection and Ranging (LIDAR) and fusion-based localization are fundamentally important. Our small imaging LIDAR, named the Single-Photon Avalanche Diode (SPAD) LIDAR, uses a time-of-flight method and SPAD arrays. A SPAD is a highly sensitive photodetector capable of detecting at the single-photon level, and the SPAD LIDAR has two SPAD arrays on the same chip for detection of laser light and environmental light. Therefore, the SPAD LIDAR simultaneously outputs range image data and monocular image data with the same coordinate system and does not require external calibration among outputs. As AGVs travel both indoors and outdoors with vibration, this calibration-less structure is particularly useful for AGV applications. We also introduce a fusion-based localization method, named SPAD DCNN, which uses the SPAD LIDAR and employs a Deep Convolutional Neural Network (DCNN). SPAD DCNN can fuse the outputs of the SPAD LIDAR: range image data, monocular image data and peak intensity image data. The SPAD DCNN has two outputs: the regression result of the position of the SPAD LIDAR and the classification result of the existence of a target to be approached. Our third prototype sensor and the localization method are evaluated in an indoor environment by assuming various AGV trajectories. The results show that the sensor and localization method improve the localization accuracy.

  2. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  3. ImageSURF: An ImageJ Plugin for Batch Pixel-Based Image Segmentation Using Random Forests

    Directory of Open Access Journals (Sweden)

    Aidan O'Mara

    2017-11-01

    Full Text Available Image segmentation is a necessary step in automated quantitative imaging. ImageSURF is a macro-compatible ImageJ2/FIJI plugin for pixel-based image segmentation that considers a range of image derivatives to train pixel classifiers which are then applied to image sets of any size to produce segmentations without bias in a consistent, transparent and reproducible manner. The plugin is available from ImageJ update site http://sites.imagej.net/ImageSURF/ and source code from https://github.com/omaraa/ImageSURF. Funding statement: This research was supported by an Australian Government Research Training Program Scholarship.

  4. Imaging of skull base: Pictorial essay.

    Science.gov (United States)

    Raut, Abhijit A; Naphade, Prashant S; Chawla, Ashish

    2012-10-01

    The skull base anatomy is complex. Numerous vital neurovascular structures pass through multiple channels and foramina located in the base skull. With the advent of computerized tomography (CT) and magnetic resonance imaging (MRI), accurate preoperative lesion localization and evaluation of its relationship with adjacent neurovascular structures is possible. It is imperative that the radiologist and skull base surgeons are familiar with this complex anatomy for localizing the skull base lesion, reaching appropriate differential diagnosis, and deciding the optimal surgical approach. CT and MRI are complementary to each other and are often used together for the demonstration of the full disease extent. This article focuses on the radiological anatomy of the skull base and discusses few of the common pathologies affecting the skull base.

  5. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  6. MODELING OF EQUIVALENT STIFFNESS OF A MAGNETIC SPRING OF VIBRATION EXCITER BASED ON COAXIAL-LINEAR MOTOR

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2015-12-01

    Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.

  7. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  8. On the seismic response of instable rock slopes based on ambient vibration recordings

    Science.gov (United States)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2017-09-01

    Rock slope failures can lead to huge human and economic loss depending on their size and exact location. Reasonable hazard mitigation requires thorough understanding of the underlying slope driving mechanisms and its rock mass properties. Measurements of seismic ambient vibrations could improve the characterization and detection of rock instabilities since there is a link between seismic response and internal structure of the unstable rock mass. An unstable slope near the village Gondo has been investigated. The unstable part shows strongly amplified ground motion with respect to the stable part of the rock slope. The amplification values reach maximum factors of 70. The seismic response on the instable part is highly directional and polarized. Re-measurements have been taken 1 year later showing exactly the same results as the original measurements. Neither the amplified frequencies nor the amplification values have changed. Therefore, ambient vibration measurements are repeatable and stay the same, if the rock mass has not undergone any significant change in structure or volume, respectively. Additionally, four new points have been measured during the re-measuring campaign in order to better map the border of the instability.[Figure not available: see fulltext.

  9. DSMC study of oxygen shockwaves based on high-fidelity vibrational relaxation and dissociation models

    Science.gov (United States)

    Borges Sebastião, Israel; Kulakhmetov, Marat; Alexeenko, Alina

    2017-01-01

    This work evaluates high-fidelity vibrational-translational (VT) energy relaxation and dissociation models for pure O2 normal shockwave simulations with the direct simulation Monte Carlo (DSMC) method. The O2-O collisions are described using ab initio state-specific relaxation and dissociation models. The Macheret-Fridman (MF) dissociation model is adapted to the DSMC framework by modifying the standard implementation of the total collision energy (TCE) model. The O2-O2 dissociation is modeled with this TCE+MF approach, which is calibrated with O2-O ab initio data and experimental equilibrium dissociation rates. The O2-O2 vibrational relaxation is modeled via the Larsen-Borgnakke model, calibrated to experimental VT rates. All the present results are compared to experimental data and previous calculations available in the literature. It is found that, in general, the ab initio dissociation model is better than the TCE model at matching the shock experiments. Therefore, when available, efficient ab initio models are preferred over phenomenological models. We also show that the proposed TCE + MF formulation can be used to improve the standard TCE model results when ab initio data are not available or limited.

  10. Vibrational Study and Force Field of the Citric Acid Dimer Based on the SQM Methodology

    Directory of Open Access Journals (Sweden)

    Laura Cecilia Bichara

    2011-01-01

    Full Text Available We have carried out a structural and vibrational theoretical study for the citric acid dimer. The Density Functional Theory (DFT method with the B3LYP/6-31G∗ and B3LYP/6-311++G∗∗ methods have been used to study its structure and vibrational properties. Then, in order to get a good assignment of the IR and Raman spectra in solid phase of dimer, the best fit possible between the calculated and recorded frequencies was carry out and the force fields were scaled using the Scaled Quantum Mechanic Force Field (SQMFF methodology. An assignment of the observed spectral features is proposed. A band of medium intensity at 1242 cm−1 together with a group of weak bands, previously not assigned to the monomer, was in this case assigned to the dimer. Furthermore, the analysis of the Natural Bond Orbitals (NBOs and the topological properties of electronic charge density by employing Bader's Atoms in Molecules theory (AIM for the dimer were carried out to study the charge transference interactions of the compound.

  11. Optical Fourier transform based in-plane vibration characterization for MEMS comb structure.

    Science.gov (United States)

    Gao, Yongfeng; Cao, Liangcai; You, Zheng; Zhao, Jiahao; Zhang, Zichen; Yang, Jianzhong

    2013-02-25

    On-line and on-wafer characterizations of mechanical properties of Micro-Electro-Mechanical-System (MEMS) with efficiency are very important to the mass production of MEMS foundry in the near future. However, challenges still remain. In this paper, we present an in-plane vibration characterizing method for MEMS comb using optical Fourier transform (OFT). In the experiment, the intensity distribution at the focal plane was captured to characterize the displacement of the vibrator in the MEMS comb structure. A typical MEMS comb was tested to verify the principle. The shape and the movement of MEMS comb was imitated and tested to calibrate the measurement by using a spatial light modulator (SLM). The relative standard deviations (RSD) of the measured displacements were better than 5%, where the RSD is defined as the ratio of the standard deviation to the mean. It is convinced that the presented method is feasible for on-line and on-wafer characterizations for MEMS with great convenience, high efficiency and low cost.

  12. pH titration monitored by quantum cascade laser-based vibrational circular dichroism.

    Science.gov (United States)

    Rüther, Anja; Pfeifer, Marcel; Lórenz-Fonfría, Víctor A; Lüdeke, Steffen

    2014-04-10

    Vibrational circular dichroism (VCD) spectra of aqueous solutions of proline were recorded in the course of titrations from basic to acidic pH using a spectrometer equipped with a quantum cascade laser (QCL) as an infrared light source in the spectral range from 1320 to 1220 cm(-1). The pH-dependent spectra were analyzed by singular value decomposition and global fitting of a two-pK Henderson-Hasselbalch model. The analysis delivered relative fractions of the three different protonation species. Their agreement with the relative fractions obtained from performing the same analysis on pH-dependent Fourier transform infrared (FT-IR) and QCL-IR spectra validates the quantitative results from QCL-VCD. Global fitting of the pH-dependent VCD spectra of L-proline allowed for extraction of pure spectra corresponding to anionic, zwitterionic, and cationic L-proline. From a static experiment, only pure spectra of the zwitterion would be accessible in a straightforward way. A comparison to VCD spectra calculated for all three species led to assignment of vibrational modes that are characteristic for the respective protonation states. The study demonstrates the applicability of QCL-VCD both for quantitative evaluation and for qualitative interpretation of dynamic processes in aqueous solutions.

  13. Registration of phase-contrast images in propagation-based X-ray phase tomography.

    Science.gov (United States)

    Weber, L; Hänsch, A; Wolfram, U; Pacureanu, A; Cloetens, P; Peyrin, F; Rit, S; Langer, M

    2018-01-01

    X-ray phase tomography aims at reconstructing the 3D electron density distribution of an object. It offers enhanced sensitivity compared to attenuation-based X-ray absorption tomography. In propagation-based methods, phase contrast is achieved by letting the beam propagate after interaction with the object. The phase shift is then retrieved at each projection angle, and subsequently used in tomographic reconstruction to obtain the refractive index decrement distribution, which is proportional to the electron density. Accurate phase retrieval is achieved by combining images at different propagation distances. For reconstructions of good quality, the phase-contrast images recorded at different distances need to be accurately aligned. In this work, we characterise the artefacts related to misalignment of the phase-contrast images, and investigate the use of different registration algorithms for aligning in-line phase-contrast images. The characterisation of artefacts is done by a simulation study and comparison with experimental data. Loss in resolution due to vibrations is found to be comparable to attenuation-based computed tomography. Further, it is shown that registration of phase-contrast images is nontrivial due to the difference in contrast between the different images, and the often periodical artefacts present in the phase-contrast images if multilayer X-ray optics are used. To address this, we compared two registration algorithms for aligning phase-contrast images acquired by magnified X-ray nanotomography: one based on cross-correlation and one based on mutual information. We found that the mutual information-based registration algorithm was more robust than a correlation-based method. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  14. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    -based observations become available. At present preliminary results are obtained using the routine methods. The first step in the process is to retrieve raw SAR data, calibrate the images and use a priori wind direction as input to the geophysical model function. From this process the wind speed maps are produced....... Results comparing satellite scatterometer winds to offshore meteorological observations have shown good results, and more comparisons are planned in this respect during the Norsewind project....

  15. Discussion on "Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations" by D.H. Bich and N. Xuan Nguyen, Journal of Sound and Vibration 331(25) (2012) 5488-5501

    Science.gov (United States)

    Amabili, M.

    2014-03-01

    Bich and Xuan Nguyen [1] studied nonlinear free and forced vibrations of FG shells under pre-load compression at constant temperature. Based on Donnell's shell theory and neglecting in-plane inertia, they employed a single-mode Galerkin approximation to discretize the transverse displacement. An averaging method was used to obtain the backbone curves while a Runge-Kutta scheme was utilized to obtain the frequency-response curves.

  16. MATLAB-Based Applications for Image Processing and Image Quality Assessment – Part I: Software Description

    Directory of Open Access Journals (Sweden)

    L. Krasula

    2011-12-01

    Full Text Available This paper describes several MATLAB-based applications useful for image processing and image quality assessment. The Image Processing Application helps user to easily modify images, the Image Quality Adjustment Application enables to create series of pictures with different quality. The Image Quality Assessment Application contains objective full reference quality metrics that can be used for image quality assessment. The Image Quality Evaluation Applications represent an easy way to compare subjectively the quality of distorted images with reference image. Results of these subjective tests can be processed by using the Results Processing Application. All applications provide Graphical User Interface (GUI for the intuitive usage.

  17. Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The idea of vibrational locomotion is based on vibrational-fluidization in ISRU reactor systems, which has proven very effective for regolith mixing. The vibrating...

  18. Multiple-image encryption algorithm based on mixed image element and permutation

    Science.gov (United States)

    Zhang, Xiaoqiang; Wang, Xuesong

    2017-05-01

    To improve encryption efficiency and facilitate the secure transmission of multiple digital images, by defining the pure image element and mixed image element, this paper presents a new multiple-image encryption (MIE) algorithm based on the mixed image element and permutation, which can simultaneously encrypt any number of images. Firstly, segment the original images into pure image elements; secondly, scramble all the pure image elements with the permutation generated by the piecewise linear chaotic map (PWLCM) system; thirdly, combine mixed image elements into scrambled images; finally, diffuse the content of mixed image elements by performing the exclusive OR (XOR) operation among scrambled images and the chaotic image generated by another PWLCM system. The comparison with two similar algorithms is made. Experimental results and algorithm analyses show that the proposed MIE algorithm is very simple and efficient, which is suitable for practical image encryption.

  19. A hash-based image encryption algorithm

    Science.gov (United States)

    Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul

    2010-03-01

    There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.

  20. Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure

    Science.gov (United States)

    Ma, Xingchen; Zhang, Xiaoqing

    2017-08-01

    Low cost electrostatic vibration energy harvesters based on negatively-charged polypropylene cellular films with a folded structure were designed in this study. Strips of such energy harvesters were excited by applying mechanical stress in length direction. A current in a terminating resistor was generated due to the capacitance variation of the samples. For a typical double-periodic folded-structure electrostatic vibration energy harvester sample whose effective length and width were 30 mm and 10 mm, respectively, the generated power across a matching resistor at a resonance frequency of 36 Hz amounts to 641 μW for a seismic mass of 4 g and an acceleration of 1 g (g is the gravity of the Earth). Similar structures which were designed and fabricated in this study were also tested for energy harvesting and high output power in the order of a few hundred microwatt was gained. Following the presentation of a theoretical model allowing for the calculation of the power generated in a load resistance at the resonance frequency of the harvesters, experimental results are shown and compared to theoretical prediction. It turns out that the experiment results accord well with the theoretical predictions.

  1. Thermal vibration analysis of nanoplates based on the higher-order nonlocal strain gradient theory by an analytical approach

    Science.gov (United States)

    Nematollahi, Mohammad Sadegh; Mohammadi, Hossein; Nematollahi, Mohammad Ali

    2017-11-01

    In this paper, a new formulation for analyzing free vibration of thin rectangular nanoplates under different thermal conditions is obtained based on the higher-order nonlocal strain gradient theory. Governing equations and non-classical boundary conditions of the nanoplate are derived by using the variational approach. The exact solution is obtained as a function of higher-order and lower-order nonlocal parameters, strain gradient length scale and temperature difference using Navier solution procedure. The influences of small-scale parameters on the vibrational behavior of the nanoplate are investigated for various thermal conditions. High and low temperature conditions are considered to study the effects of changes in temperature and small-scale parameters. It has been shown that increasing the nonlocal parameters decrease the natural frequency of the nanoplate, while increasing the strain gradient length scale will increase it. Also, the natural frequency of the nanoplate will increase by increasing the temperature difference in low temperature conditions, but it will decrease by increasing the temperature difference in high temperature conditions. Non-uniform behaviors are reported for some cases and softening effect and hardening effect are studied. To validate the solutions, the results are compared with previous researches.

  2. Vibration energy harvester with sustainable power based on a single-crystal piezoelectric cantilever array.

    Science.gov (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Ham, Yong-Hyun; Yang, Yil Suk; Kwon, Jong-Kee; Kwon, Kwang-Ho

    2012-08-01

    We designed and fabricated a bimorph cantilever array for sustainable power with an integrated Cu proof mass to obtain additional power and current. We fabricated a cantilever system using single-crystal piezoelectric material and compared the calculations for single and arrayed cantilevers to those obtained experimentally. The vibration energy harvester had resonant frequencies of 60.4 and 63.2 Hz for short and open circuits, respectively. The damping ratio and quality factor of the cantilever device were 0.012 and 41.66, respectively. The resonant frequency at maximum average power was 60.8 Hz. The current and highest average power of the harvester array were found to be 0.728 mA and 1.61 mW, respectively. The sustainable maximum power was obtained after slightly shifting the short-circuit frequency. In order to improve the current and power using an array of cantilevers, we also performed energy conversion experiments.

  3. Surface Damage Characteristics of BK7 Glass in Ultrasonic Vibration Machining Based on Scratching Experiment

    Science.gov (United States)

    Rui, Gao; Hong-xiang, Wang; Jun-liang, Liu; Chu, Wang; Wen-jie, Zhai

    2017-11-01

    To further explore the material removal mechanism in ultrasonic vibration machining, a diamond Vickers indenter was used to carry out scratching experiment for BK7 glass specimen. The morphologies of scratches and removal mechanism of material were analysed under different conditions. The results showed that the damage mode of scratch was plastic deformation when the scratching depth was small enough, and no crack was observed. With increase of scratching depth, the intermittent and continuous scratches appeared in plastic removal area, and plastic flow phenomenon was obvious. With further increase of scratching depth, the median/radial cracks and lateral cracks were induced, and the material was removed by plastic flow and brittle-plastic mixed mode. When the indenter arrived at the brittle fracture removal area, cracks in scratched surface became denser, the lateral cracks extended from inside of material to workpiece surface, and the material was removed by brittle fracture.

  4. Vibration-based structural health monitoring using output-only measurements under changing environment

    Science.gov (United States)

    Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J.

    2008-01-01

    This paper deals with the problem of damage detection using output-only vibration measurements under changing environmental conditions. Two types of features are extracted from the measurements: eigenproperties of the structure using an automated stochastic subspace identification procedure and peak indicators computed on the Fourier transform of modal filters. The effects of environment are treated using factor analysis and damage is detected using statistical process control with the multivariate Shewhart- T control charts. A numerical example of a bridge subject to environmental changes and damage is presented. The sensitivity of the damage detection procedure to noise on the measurements, environment and damage is studied. An estimation of the computational time needed to extract the different features is given, and a table is provided to summarize the advantages and drawbacks of each of the features studied.

  5. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: I, theoretical foundations.

    Science.gov (United States)

    Pezzotti, Giuseppe; Zhu, Wenliang; Boffelli, Marco; Adachi, Tetsuya; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato

    2015-05-01

    The Raman spectroscopic method has quantitatively been applied to the analysis of local crystallographic orientation in both single-crystal hydroxyapatite and human teeth. Raman selection rules for all the vibrational modes of the hexagonal structure were expanded into explicit functions of Euler angles in space and six Raman tensor elements (RTE). A theoretical treatment has also been put forward according to the orientation distribution function (ODF) formalism, which allows one to resolve the statistical orientation patterns of the nm-sized hydroxyapatite crystallite comprised in the Raman microprobe. Close-form solutions could be obtained for the Euler angles and their statistical distributions resolved with respect to the direction of the average texture axis. Polarized Raman spectra from single-crystalline hydroxyapatite and textured polycrystalline (teeth enamel) samples were compared, and a validation of the proposed Raman method could be obtained through confirming the agreement between RTE values obtained from different samples.

  6. Investigation of 1-Dimensional ultrasonic vibration compliance mechanism based on finite element analysis

    Science.gov (United States)

    Latif, A. Afiff; Ibrahim, M. Rasidi; Rahim, E. A.; Cheng, K.

    2017-04-01

    The conventional milling has many difficulties in the processing of hard and brittle material. Hence, ultrasonic vibration assisted milling (UVAM) was proposed to overcome this problem. The objective of this research is to study the behavior of compliance mechanism (CM) as the critical part affect the performance of the UVAM. The design of the CM was investigated and focuses on 1-Dimensional. Experimental result was obtained from a portable laser digital vibrometer. While the 1-Dimensional value such as safety factor, deformation of hinges and stress analysis are obtained from finite elements simulation. Finally, the findings help to find the best design judging from the most travelled distance of the piezoelectric actuators. In addition, this paper would provide a clear picture the behavior of the CM embedded in the UVAM, which can provide good data and to improve the machining on reducing tool wear, and lower cutting force on the workpiece surface roughness.

  7. Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory.

    Science.gov (United States)

    Zhang, Jin; Wang, Chengyuan

    2016-10-01

    A molecular structural mechanics (MSM) method has been implemented to investigate the free vibration of microtubules (MTs). The emphasis is placed on the effects of the configuration and the imperfect boundaries of MTs. It is shown that the influence of protofilament number on the fundamental frequency is strong, while the effect of helix-start number is almost negligible. The fundamental frequency is also found to decrease as the number of the blocked filaments at boundaries decreases. Subsequently, the Euler-Bernoulli beam theory is employed to reveal the physics behind the simulation results. Fitting the Euler-Bernoulli beam into the MSM data leads to an explicit formula for the fundamental frequency of MTs with various configurations and identifies a possible correlation between the imperfect boundary conditions and the length-dependent bending stiffness of MTs reported in experiments.

  8. Optical and vibrational properties of phosphorylcholine-based contact lenses-Experimental and theoretical investigations

    Science.gov (United States)

    Filipecka, Katarzyna; Miedziński, Rafał; Sitarz, Maciej; Filipecki, Jacek; Makowska-Janusik, Małgorzata

    2017-04-01

    The Raman, MIR and UV-vis spectroscopy have been used to characterize Omafilcon A material constructing the one of the Proclear family contact lenses. The Omafilcon A is hydrogel material composed of 2-hydroxyethyl methacrylate (HEMA) and 2-methacryloyloxyethyl phosphorylcholine (PC) polymers crosslinked with ethyleneglycol dimethacrylate (EGDMA). Vibrational and electronic properties of the Omafilcon A material were also investigated by quantum chemical calculations. Experimentally obtained Raman, MIR and optical spectra were compared to the theoretical ones calculated applying RHF and DFT methodology. The quantum chemical calculations were performed for isolated monomers of lenses compounds as well as for their dimers and trimers to elucidate the effect of Omafilcon A polymerization and the role of an individual components.

  9. Development of a Vibration-Based Electromagnetic Energy Harvester by a Conductive Direct-Write Process

    Directory of Open Access Journals (Sweden)

    Yao-Yun Feng

    2017-03-01

    Full Text Available A conductive direct-write process of multilayered coils for micro electromagnetic generators is proposed. This novel approach of using silver ink to form the conductive structures largely reduces the fabrication complexity, and it provides a faster alternative to the conventional semiconductor methods. Multi-layered coils with insulation were accurately layered on a micromachined cantilevered diaphragm by a dispenser. Coils several layers thick could be used to increase the power output and double coils were separated by a layer of insulation. Six prototypes, all capable of efficient conversion of vibrational energy into electrical energy, were fabricated. The experimental results, which include measurements of the electromotive force and power output, are presented. Prototypes with two coils and thicker conducting layers had less resistance and the power output was much more than that of a single-coil unit. This generator can produce 82 nW of power at a resonance frequency of 275 Hz under 5 g excitation.

  10. Image superresolution of cytology images using wavelet based patch search

    Science.gov (United States)

    Vargas, Carlos; García-Arteaga, Juan D.; Romero, Eduardo

    2015-01-01

    Telecytology is a new research area that holds the potential of significantly reducing the number of deaths due to cervical cancer in developing countries. This work presents a novel super-resolution technique that couples high and low frequency information in order to reduce the bandwidth consumption of cervical image transmission. The proposed approach starts by decomposing into wavelets the high resolution images and transmitting only the lower frequency coefficients. The transmitted coefficients are used to reconstruct an image of the original size. Additional details are added by iteratively replacing patches of the wavelet reconstructed image with equivalent high resolution patches from a previously acquired image database. Finally, the original transmitted low frequency coefficients are used to correct the final image. Results show a higher signal to noise ratio in the proposed method over simply discarding high frequency wavelet coefficients or replacing directly down-sampled patches from the image-database.

  11. Pediatric high speed digital imaging of vocal fold vibration: A normative pilot study of glottal closure and phase closure characteristics

    Science.gov (United States)

    Patel, Rita R.; Dixon, Angela; Richmond, AnnaMary; Donohue, Kevin D.

    2012-01-01

    Objective The aim of the study is to characterize normal vibratory patterns of both glottal closure and phase closure in the pediatric population with the use of high speed digital imaging. Methods For this prospective study a total of 56 pre-pubertal children, 5–11 years (boys = 28, girls = 28) and 56 adults, 21–45 years (males = 28, females = 28) without known voice problems were examined with the use of a new technology of high speed digital imaging. Recordings were captured at 4000 frames per second for duration of 4.094 seconds at participants’ typical phonation. With semi-automated software, montage analysis of glottal cycles was performed. Three trained experienced raters, rated features of glottal configuration and phase closure from glottal cycle montages. Results Posterior glottal gap was the predominant glottal closure configuration in children (girls = 85%, boys = 68%) with normal voice. Other glottal configurations observed were: anterior gap (girls = 3.6%, boys = 0%), complete closure (girls = 7%, boys = 10%), hour glass (girls = 0%, boys = 11%). Adults with normal voice also demonstrated predominantly higher percentage of posterior glottal gap configuration (females = 75% male = 54%) compared to the configurations of anterior gap (females = 0% male = 7%), complete closure (females = 2% male = 39%), hour glass (females = 3.6% male = 3.6%). A predominantly open phase (51–70% of the glottal cycle) was observed in 86% girls and 71% boys. Compared to children, adult females showed a predominantly balance phased closure 46%, followed by open phase (39%) and predominantly closed phase (14%). Adult males showed a predominantly closed phase (43%), followed by predominantly open phase (39%), followed by a balanced phase (18%). Conclusions This is a first study investigating characteristics of normal vibratory motion in children with high speed digital imaging. Glottal configuration and phase closure for children with normal voices are distinctly

  12. Developing Students' Ideas about Lens Imaging: Teaching Experiments with an Image-Based Approach

    Science.gov (United States)

    Grusche, Sascha

    2017-01-01

    Lens imaging is a classic topic in physics education. To guide students from their holistic viewpoint to the scientists' analytic viewpoint, an image-based approach to lens imaging has recently been proposed. To study the effect of the image-based approach on undergraduate students' ideas, teaching experiments are performed and evaluated using…

  13. Earth-based optical imaging of Mercury

    Science.gov (United States)

    Ksanfomality, L. V.

    2006-01-01

    In recent years, considerable progress has been achieved in producing resolved images of Mercury electronically with short exposures at Earth-based telescopes. For the purpose of obtaining images of the unknown portion of Mercury, the previously started series of observations of this planet by the short exposure method was continued. About 20,000 electronic images of Mercury have been acquired on 1-2 May 2002 under good meteorological conditions during the evening elongation. The phase angle of Mercury was 95-99° and the observed range of longitudes was 210-285°W. Observations were carried out using Ritchy-Chrétien telescope ( D = 1.29 m, F = 9.86 m) with the KS 19 filter cutting wavelengths shorter than about 700 nm. The planet's disk was seen, on average, at an angle of 7.7″. A CCD with a pixel size of 7.4 × 7.4 ncm in the regime of short exposures was used. By processing a great number of electronic images, a sufficiently distinct synthesized image of the unknown portion of Mercury's surface was obtained. The most prominent formation in this region is a giant basin (or cratered "mare") centered at about 8°N, 280°W, which was given a working name "Skinakas basin" (after the name of the observatory where observations were made). By its size, the interior part of this basin exceeds the largest lunar Mare Imbrium. As opposed to Mare Imbrium, the Skinakas basin is presumably of impact origin. Its relief resembles that of Caloris Planitia but the size is much larger. A series of smaller formations are also seen on synthesized images. The resolution obtained on the surface of Mercury is about 100 km, which is close to the telescope diffraction limit. Also considered is the synthesized image obtained at the Mount Bigelow Observatory, on December 4, 2003 (Ritchy-Chrétien telescope, D = 1.54 m, F = 20.79 m, using the same CCD camera).

  14. Exploiting synthetic aperture radar imagery for retrieving vibration signatures of concealed machinery

    Science.gov (United States)

    Pérez, Francisco; Campbell, Justin B.; Jaramillo, Monica; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2016-05-01

    It has been demonstrated that the instantaneous acceleration associated with vibrating objects that are directly imaged by synthetic aperture radar (SAR) can be estimated through the application of the discrete fractional Fourier transform (DFrFT) using the information contained in the complex SAR image. In general, vibration signatures may include, for example, the number of chirped sinusoids as well as their respective base frequencies and chirp rates. By further processing the DFrFT-processed data for clutter-noise rejection by means of pseudo- subspace methods, has been shown that the SAR-vibrometry method can be reliable as long as the signal-to-noise ratio (SNR) and the signal-to-clutter ratio (SCR) of the slow-time SAR signal at the range-line of interest exceeds 15dB. Meanwhile, the Nyquist theorem dictates that the maximum measurable vibration frequency is limited by half of the pulse-repetition frequency. This paper focuses on the detection and estimation of vibrations generated by machinery concealed within buildings and other structures. This is a challenging task in general because the vibration signatures of the source are typically altered by their housing structure; moreover, the SNR at the surface of the housing structure tends to be reduced. Here, experimental results for three different vibrating targets, including one concealed target, are reported using complex SAR images acquired by the General Atomics Lynx radar at resolutions of 1-ft and 4-in. The concealed vibrating target is actuated by a gear motor with an off-balance weight attached to it, which is enclosed by a wooden housing. The vibrations of the motor are transmitted to a chimney that extends above the housing structure. Using the SAR vibrometry approach, it is shown that it is possible to distinguish among the three vibrating objects based upon their vibration signatures.

  15. A novel high cycle fatigue assessment of small-bore side branches: tailor-made acceptable vibration levels based on the remaining life of existing structures

    NARCIS (Netherlands)

    Beek, P.J.G. van; Pijpers, R.J.M.; Macdonald, K.; Maljaars, J.; Lunde, K.; Korst, H.J.C.; Hansen, F.

    2014-01-01

    This paper describes a novel and advanced tailor-made fatigue assessment method whereby acceptable vibration levels are based on maximum acceptable stress ranges for individual side branches. The acceptable stress ranges for each critical welded connection are based on a fracture mechanics analysis

  16. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, P G; Apostolellis, P G; Fassois, S D, E-mail: mixail@mech.upatras.gr, E-mail: fassois@mech.upatras.gr [Laboratory for Stochastic Mechanical Systems and Automation (SMSA), Department of Mechanical and Aeronautical Engineering, University of Patras, GR 265 00 Patras (Greece)

    2011-07-19

    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  17. Semiactive Vibration Control Using a Magnetorheological Damper and a Magnetorheological Elastomer Based on the Bouc-Wen Model

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    2014-01-01

    Full Text Available A vibration control system is put forward using a magnetorheological damper (MRD and a magnetorheological elastomer (MRE connected in series. In order to model the hysteresis of the MRD, a Bouc-Wen model and a corresponding parameter identification method are developed for the MRD. The experimental results validate the proposed Bouc-Wen model that can predict the hysteretic behavior of the MRD accurately. The role of the MRE is illustrated by an example of a single degree-of-freedom system. A semiactive vibration control strategy of the proposed vibration control system is proposed. To validate this new approach, experiments are conducted and the results highlight significantly improved vibration reduction effect of the proposed vibration control system than the vibration control system only using the MRD.

  18. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Science.gov (United States)

    Zhu, Ganzheng; Li, Siqi; Gong, Shang; Yang, Benqiang; Zhang, Libo

    2016-01-01

    Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR) pathological image enhancement method based on improved bias field correction and guided image filter (GIF). Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E) stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR) image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work. PMID:28116303

  19. N-H Stretching Excitations in Adenosine-Thymidine Base Pairs in Solution: Base Pair Geometries, Infrared Line Shapes and Ultrafast Vibrational Dynamics

    Science.gov (United States)

    Greve, Christian; Preketes, Nicholas K.; Fidder, Henk; Costard, Rene; Koeppe, Benjamin; Heisler, Ismael A.; Mukamel, Shaul; Temps, Friedrich; Nibbering, Erik T. J.; Elsaesser, Thomas

    2013-01-01

    We explore the N-H stretching vibrations of adenosine-thymidine base pairs in chloroform solution with linear and nonlinear infrared spectroscopy. Based on estimates from NMR measurements and ab initio calculations, we conclude that adenosine and thymidine form hydrogen bonded base pairs in Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen configurations with similar probability. Steady-state concentration- and temperature dependent linear FT-IR studies, including H/D exchange experiments, reveal that these hydrogen-bonded base pairs have complex N-H/N-D stretching spectra with a multitude of spectral components. Nonlinear 2D-IR spectroscopic results, together with IR-pump-IR-probe measurements, as also corroborated by ab initio calculations, reveal that the number of N-H stretching transitions is larger than the total number of N-H stretching modes. This is explained by couplings to other modes, such as an underdamped low-frequency hydrogen-bond mode, and a Fermi resonance with NH2 bending overtone levels of the adenosine amino-group. Our results demonstrate that modeling based on local N-H stretching vibrations only is not sufficient and call for further refinement of the description of the N-H stretching manifolds of nucleic acid base pairs of adenosine and thymidine, incorporating a multitude of couplings with fingerprint and low-frequency modes. PMID:23234439

  20. Image Retrieval Based on Wavelet Features

    Science.gov (United States)

    Murtagh, F.

    2006-04-01

    A dominant (additive, stationary) Gaussian noise component in image data will ensure that wavelet coefficients are of Gaussian distribution, and in such a case Shannon entropy quantifies the wavelet transformed data well. But we find that both Gaussian and long tailed distributions may well hold in practice for wavelet coefficients. We investigate entropy-related features based on different wavelet transforms and the newly developed curvelet transform. Using a materials grading case study, we find that second, third, fourth order moments allow 100% successful test set discrimination.

  1. Research on image registration based on D-Nets

    Science.gov (United States)

    Wu, Cengceng; Liu, Zhaoguang; Cheng, Hongtan

    2017-06-01

    Image registration is the key technology of digital imaging applications, it is used widely. We researched the image registration techniques in this paper. Based on the basis of D-Nets image registration algorithms, we propose a new innovation. We turn first to process image, so we can get synthetic images of original images and enhanced images. Then we extract SIFT feature in the original image. Next, in order to reduce noise of the image, we use the Gauss filter to process the synthesized image. Then we do experiments with synthetic images in the process of image registration. In this process, we use the D-Nets algorithm to achieve. Compared to the existing method, it can greatly improve the accuracy and recall.

  2. A microscopic approach based on particle-vibration coupling: application to charge-exchange transitions and multiplets in odd nuclei

    Directory of Open Access Journals (Sweden)

    Colò Gianluca

    2016-01-01

    Full Text Available In this contribution, we shall describe a formalism that goes beyond the simple time-dependent mean field and is based on particle-vibration coupling (PVC. Such a formalism has been developed with the idea of being self-consistent. It makes use of Skyrme effective forces, and has been used for several applications. We will focus on charge-exchange transitions, namely we will show that our model describes well both the Gamow-Teller giant resonance width, and the low-lying transitions associated with β-decay. In this latter case, including PVC produces a significant improvement of the half-lives obtained at mean-field level, and leads to a good agreement with experimental data. We will end by discussing particle-phonon multiplets in odd nuclei.

  3. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory

    Science.gov (United States)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.

  4. A new information diffusion modelling technique based on vibrating string equation and its application in natural disaster risk assessment

    Science.gov (United States)

    Bai, Cheng-Zu; Zhang, Ren; Hong, Mei; Qian, Long-xia; Wang, Zhengxin

    2015-07-01

    In this paper, to naturally fill the gap in incomplete data, a new algorithm is proposed for estimating the risk of natural disasters based on the information diffusion theory and the equation of the vibrating string. Two experiments are performed with small samples to investigate its effectiveness. Furthermore, to demonstrate the practicality of the new algorithm, it is applied to study the relationship between epicentral intensity and earthquake magnitude, with strong-motion earthquake observations measured in Yunnan Province in China. The regression model, the back-propagation neural network and the conventional information diffusion model are also involved for comparison. All results show that the new algorithm, which can unravel fuzzy information in incomplete data, is better than the main existing methods for risk estimation.

  5. Vestas V90-3MW Wind Turbine Gearbox Health Assessment Using a Vibration-Based Condition Monitoring System

    Directory of Open Access Journals (Sweden)

    A. Romero

    2016-01-01

    Full Text Available Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.

  6. A low cycle fatigue test device for micro-cantilevers based on self-excited vibration principle.

    Science.gov (United States)

    Qi, Mingjing; Liu, Zhiwei; Yan, Xiaojun

    2014-10-01

    This paper reports a low-cycle fatigue test device for micro-cantilevers, which are widely used in micro scale structures. The working principle of the device is based on the phenomenon that a micro-cantilever can be set into self-excited vibration between two electrodes under DC voltage. Compared with previous devices, this simple device can produce large strain amplitude on non-notched specimens, and allows a batch of specimens to be tested simultaneously. Forty-two micro-cantilever specimens were tested and their fatigue fracture surfaces exhibit typical low cycle fatigue characteristics. As such, the device is very attractive for future fatigue investigation for micro scale structures.

  7. Vibration control of a cable-stayed bridge using electromagnetic induction based sensor integrated MR dampers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Won [University of Western Ontario, London (Canada); Koo, Jeong Hoi [Miami University, Oxford (United States); Jo, Ji Seong [POSCO, Seongnam (Korea, Republic of)

    2007-06-15

    This paper presents a novel electromagnetic induction (EMI) system integrated in magneto rheological (MR) dampers: The added EMI system converts reciprocal motions of MR damper into electiral energy (electromotive force or emf) according to the Faraday's law of electromagnetic induction. Maximum energy dissipation algorithm (MEDA) is employed to regulate the MR dampers because it strives to simplify a complex design process by employing the Lyapunov's direct approach. The emf signal, produced from the EMI, provides the necessary measurement information (i.e., realtive velocity across the damper) for the MEDA controller. Thus, the EMI acts as a sensor in the proposed MR-EMI system. In order to evaluate the performance and robustness of the MR-EMI sensor system with the MEDA control, this study performed an extensive simulation study using the first generation benchmark cable-stayed bridge. Moreover, it compared the performance and the robustness of proposed system with those of Clipped-Optimal Control (COC) and Sliding Mode Control (SMC), which were previously studied for the benchmark cable-stayed bridge. The results show that the MR-EMI system reduced the vibrations of the bridge structure more than those of COC and SMC and show more robust performance than that of SMC. These results suggest that EMIs can be used cost-effective sensing devices for MR damper control systems without compromising the performance of them.

  8. Development of nonresonant elliptical vibration cutting device based on parallel piezoelectric actuator

    Directory of Open Access Journals (Sweden)

    Lin Jieqiong

    2017-03-01

    Full Text Available Because of its unique intermittent cutting and friction reversal characteristics, elliptical vibration cutting (EVC has become the most promising method for machining of otherwise difficult-to-machine materials in recent years. However, some problems remain in the research towards development of EVC devices. In this paper, with the intention of solving the existing problems of EVC devices, a nonresonant-type EVC device that is driven by two parallel piezoelectric stacks is developed. After the principle of the device is introduced, the stiffness of the EVC device is calculated, and device simulations and experimental evaluations are performed. In addition, the performance of the EVC device is also tested. The experimental results show that the maximum strokes of the two directional mechanisms operating along the X- and Z-axes can reach 16.78 μm and 15.35 μm, respectively, and the motion resolutions in the X-axis and Z-axis directions both reach approximately 50 nm. Finally, a curved surface cutting experiment is carried out to verify the performance of the developed device.

  9. Development of nonresonant elliptical vibration cutting device based on parallel piezoelectric actuator

    Science.gov (United States)

    Jieqiong, Lin; Jinguo, Han; Mingming, Lu; Yan, Gu; Wenhui, Zhu

    2017-03-01

    Because of its unique intermittent cutting and friction reversal characteristics, elliptical vibration cutting (EVC) has become the most promising method for machining of otherwise difficult-to-machine materials in recent years. However, some problems remain in the research towards development of EVC devices. In this paper, with the intention of solving the existing problems of EVC devices, a nonresonant-type EVC device that is driven by two parallel piezoelectric stacks is developed. After the principle of the device is introduced, the stiffness of the EVC device is calculated, and device simulations and experimental evaluations are performed. In addition, the performance of the EVC device is also tested. The experimental results show that the maximum strokes of the two directional mechanisms operating along the X- and Z-axes can reach 16.78 μm and 15.35 μm, respectively, and the motion resolutions in the X-axis and Z-axis directions both reach approximately 50 nm. Finally, a curved surface cutting experiment is carried out to verify the performance of the developed device.

  10. On-line manipulator tool condition monitoring based on vibration analysis

    Science.gov (United States)

    Gierlak, Piotr; Burghardt, Andrzej; Szybicki, Dariusz; Szuster, Marcin; Muszyńska, Magdalena

    2017-05-01

    This article presents a method of processing and analyzing the measurement signals used in the problem of diagnosing the state of a manipulator's tool. The analysis of the signals was performed within the domain of time and frequency. The signals utilized in the analysis were the mechanical vibrations and the rotation speed of the tool. The database for analysis was obtained in a research environment and it includes the instances of the functioning of the system with tool in good technical state as well as instances with a damaged tool. With the intent at reducing the data, the registered signals are represented with the use of selected features. The preliminary selection of the significant features of the signals is made with the use of the sequential feature selection procedure. The reduced set of features is used for the creation of a tool condition classifier, which has a form of an artificial neural network. The obtained classifier operates on-line on robotized system and generates diagnostic information on the state of the tool.

  11. Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Jesus Adolfo Cariño-Corrales

    2016-01-01

    Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.

  12. A Large Span Crossbeam Vibration Frequencies Analysis Based on an Analogous Beam Method

    Directory of Open Access Journals (Sweden)

    Zhifeng Liu

    2013-01-01

    Full Text Available The novel method of an analogous beam is studied, which the flexural rigidity and mass per unit length correspond was described as the reciprocal of the mass per unit and the reciprocal of the flexural rigidity of the beam. It is shown that both beams possess the same natural frequencies of flexural vibration. In order to approximate calculation of these frequencies, the continuously distributed mass of the original beam is substituted for a number of concentrated masses. The analogous beam then becomes a chain of rigid links connected by pins and equipped with springs restraining the relative rotation of adjacent links. The equations of motion for the analogous beam can be solved by a procedure which consists of assuming a value for the natural frequency and calculating the deflections successively from one end of the beam to the other. Under normal circumstances, there will be a certain error, and one boundary condition will not be satisfied. The procedure is repeated with different values of the frequency until the error is removed. The method is illustrated by an example of a Crossbeam for which the fundamental frequency is found.

  13. Study on Impeller Fracture Model Based on Vibration Characteristics and Fractal Theory

    Directory of Open Access Journals (Sweden)

    Xiaolong Zhang

    2015-01-01

    Full Text Available During the operation of centrifugal compressor, failure easily occurs in the presence of complicated external forces. The failure process characterizes with strong nonlinearity, and hence it is difficult to be described by conventional methods. In this paper, firstly, the cracks in different positions are described using crack fractal theory. The basic failure modes of the impeller are summarized. Secondly, a three-dimensional finite element model of the impeller is constructed. Then the von Mises stress under the centrifugal force is calculated, and the corresponding impeller failure process is simulated by “element life and death technology” in ANSYS. Finally, the impeller failure mechanism is analyzed. It can be found that the static stress is not the main cause of the impeller failure, and the dynamic characteristics of the impeller are not perfect because of the pitch vibration modes which appeared in the investigated frequency range. Meanwhile, the natural frequency of the impeller also cannot avoid the frequency of the excitation force.

  14. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  15. Spectral intensities in cubic systems. I. Progressions based upon parity vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, R.; Vasquez, S.O. [Department of Basic Chemistry, Faculty of Physical and Mathematical Sciences, University of Chile. Tupper 2069, Casilla 2777, Santiago, Chile (Chile); Meruane, T. [Department of Chemistry, Universidad Metropolitana de Ciencias de la Educacion. Av. J.P. Alessandri 774, Casilla 147, C. Santiago, Chile (Chile); Poblete, V. [Department of Nuclear Materials, Lo Aguirre, Comision Chilena de Energia Nuclear. Amunategui 95, Casilla 188-D, Santiago, Chile (Chile); Pozo, J. [Facultad de Ciencias de la Ingenieria. Universidad Diego Portales. Casilla 298-V, Santiago, Chile (Chile)

    1998-12-01

    The well-resolved emission and absorption spectra of centrosymmetric coordination compounds of the transition metal ions have been used widely to provide the experimental data against which to test theoretical models of vibronic intensities. With reference to the {sup 2} E{sub g} {yields} {sup 4} A{sub 2g} luminescence transition, at a perfect octahedral site in Cs{sub 2}SiF{sub 6}, over than one hundred vibronic lines are observed with line widths of a few wavenumber spread over some 3000 cm{sup -1}. This paper reports a through examination of both the electronic and vibrational factors, which influences the observed vibronic intensities of the various assigned and identified lines in the spectra of the MnF{sub 6} {sup 2-} complex ion in the Cs{sub 2}SiF{sub 6} cubic lattice. The origin and nature of higher order vibronic interactions are analysed on the basis of a symmetrized vibronic crystal field-ligand polarization model. (Author)

  16. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  17. An Approach to Fault Diagnosis for Gearbox Based on Image Processing

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2016-01-01

    Full Text Available The gearbox is one of the most important parts of mechanical equipment and plays a significant role in many industrial applications. A fault diagnostic of rotating machinery has attracted attention for its significance in preventing catastrophic accidents and beneficially guaranteeing sufficient maintenance. In recent years, fault diagnosis has developed in the direction of multidisciplinary integration. This work addresses a fault diagnosis method based on an image processing method for a gearbox, which overcomes the limitations of manual feature selection. Differing from the analysis method in a one-dimensional space, the computing method in the field of image processing in a 2-dimensional space is applied to accomplish autoextraction and fault diagnosis of a gearbox. The image-processing-based diagnostic flow consists of the following steps: first, the vibration signal after noise reduction by wavelet denoising and signal demodulation by Hilbert transform is transformed into an image by bispectrum analysis. Then, speeded up robustness feature (SURF is applied to automatically extract the image feature points of the bispectrum contour map, and the feature dimension is reduced by principal component analysis (PCA. Finally, an extreme learning machine (ELM is introduced to identify the fault types of the gearbox. From the experimental results, the proposed method appears to be able to accurately diagnose and identify different types of faults of the gearbox.

  18. MULTIMODE quantum calculations of intramolecular vibrational energies of the water dimer and trimer using ab initio-based potential energy surfaces

    Science.gov (United States)

    Wang, Yimin; Carter, Stuart; Braams, Bastiaan J.; Bowman, Joel M.

    2008-02-01

    We report vibrational configuration interaction calculations of the monomer fundamentals of (H2O)2, (D2O)2, (H2O)3, and (D2O)3 using the code MULTIMODE and full dimensional ab initio-based global potential energies surfaces (PESs). For the dimer the HBB PES [Huang et al., J. Chem. Phys 128, 034312 (2008)] is used and for the trimer a new PES, reported here, is used. The salient properties of the new trimer PES are presented and compared to previous single-point calculations and the vibrational energies are compared with experiments.

  19. Frequency and damping ratio assessment of high-rise buildings using an Automatic Model-Based Approach applied to real-world ambient vibration recordings

    Science.gov (United States)

    Nasser, Fatima; Li, Zhongyang; Gueguen, Philippe; Martin, Nadine

    2016-06-01

    This paper deals with the application of the Automatic Model-Based Approach (AMBA) over actual buildings subjected to real-world ambient vibrations. In a previous paper, AMBA was developed with the aim of automating the estimation process of the modal parameters and minimizing the estimation error, especially that of the damping ratio. It is applicable over a single-channel record, has no parameters to be set, and no manual initialization phase. The results presented in this paper should be regarded as further documentation of the approach over real-world ambient vibration signals.

  20. A joint physics-based statistical deformable model for multimodal brain image analysis.

    Science.gov (United States)

    Nikou, C; Bueno, G; Heitz, F; Armspach, J P

    2001-10-01

    A probabilistic deformable model for the representation of multiple brain structures is described. The statistically learned deformable model represents the relative location of different anatomical surfaces in brain magnetic resonance images (MRIs) and accommodates their significant variability across different individuals. The surfaces of each anatomical structure are parameterized by the amplitudes of the vibration modes of a deformable spherical mesh. For a given MRI in the training set, a vector containing the largest vibration modes describing the different deformable surfaces is created. This random vector is statistically constrained by retaining the most significant variation modes of its Karhunen-Loève expansion on the training population. By these means, the conjunction of surfaces are deformed according to the anatomical variability observed in the training set. Two applications of the joint probabilistic deformable model are presented: isolation of the brain from MRI using the probabilistic constraints embedded in the model and deformable model-based registration of three-dimensional multimodal (magnetic resonance/single photon emission computed tomography) brain images without removing nonbrain structures. The multi-object deformable model may be considered as a first step toward the development of a general purpose probabilistic anatomical atlas of the brain.

  1. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  2. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  3. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    Science.gov (United States)

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  4. Vibrational study on the bioactivity of Portland cement-based materials for endodontic use

    Science.gov (United States)

    Taddei, P.; Tinti, A.; Gandolfi, M. G.; Rossi, P. L.; Prati, C.

    2009-04-01

    The bioactivity of a modified Portland cement (wTC) and a phosphate-doped wTC cement (wTC-P) was studied at 37 °C in Dulbecco's Phosphate Buffered Saline (DPBS). The cements, prepared as disks, were analysed at different ageing times (from 1 day to 2 months) by micro-Raman and ATR/FT-IR spectroscopies. The presence of deposits on the surface of the cements and the composition changes as a function of the storage time were investigated. The presence of an apatite deposit on the surface of both cements was already revealed after one day of ageing in DPBS. The trend of the I 965/I 991 Raman intensity ratio indicated the formation of a meanly thicker apatite deposit on the wTC-P cement at all the investigated times. This result was confirmed by the trend of the I 1030/I 945 IR intensity ratio calculated until 14 days of ageing. At 2 months, the thickness of the apatite deposit on wTC and wTC-P was about 200 and 500 μm, respectively, as estimated by micro-Raman spectroscopy, confirming the higher bioactivity of the phosphate-doped cement. Vibrational techniques allowed to gain more insights into the cement transformation and the different hydration rates of the various cement component. The setting of the cement and the formation of the hydrated silicate gel (C-S-H phase) was spectroscopically monitored through the I 830/I 945 IR intensity ratio.

  5. Automatic Matching of High Resolution Satellite Images Based on RFM

    OpenAIRE

    JI Shunping; YUAN Xiuxiao

    2016-01-01

    A matching method for high resolution satellite images based on RFM is presented.Firstly,the RFM parameters are used to predict the initial parallax of corresponding points and the prediction accuracy is analyzed.Secondly,the approximate epipolar equation is constructed based on projection tracking and its accuracy is analyzed.Thirdly,approximate 1D image matching is executed on pyramid images and least square matching on base images.At last RANSAC is imbedded to eliminate mis-matching points...

  6. Vibrational spectroscopy of the G...C base pair: Experiment, harmonic and anharmonic calculations, and the nature of the anharmonic couplings

    Czech Academy of Sciences Publication Activity Database

    Brauer, B.; Gerber, R. B.; Kabeláč, Martin; Hobza, Pavel; Bakker, J. M.; Abo-Riziq, A.; Vries de, M. S.

    2005-01-01

    Roč. 109, - (2005), s. 6974-6984 ISSN 1089-5639 Grant - others:NSF(US) CHE-0244341 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids bases * vibrational spectrum * frequencies anharmonicity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005

  7. Vibrations in a moving flexible robot arm

    Science.gov (United States)

    Wang, P. K. C.; Wei, Jin-Duo

    1987-01-01

    The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.

  8. On the correlation of output rate and aerodynamic characteristics in vibrating-mesh-based aqueous aerosol delivery.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Oesterheld, Nina; Knuedeler, Marie-Christine; Seeger, Werner; Schmehl, Thomas

    2014-01-30

    Aerosolization of aqueous formulations is of special interest for inhalative drug delivery, where an adequate nebulizer performance represents a prerequisite for improving pulmonary therapy. The present study investigated the interplay of output rate and aerodynamic characteristics of different excipient-based formulations and its impact on the atomization process by vibrating-mesh technology (i.e. eFlow(®)rapid). Output rate and aerodynamic characteristics were manipulated by both dynamic viscosity and conductivity of the applied formulation. Supplementation with sucrose and sodium chloride caused a decline (down to ∼0.2 g/min) and elevation (up to ∼1.0 g/min) of the nebulizer output rate, respectively. However, both excipients were capable of decreasing the aerodynamic diameter of produced aerosol droplets from >7.0 μm to values of ≤5.0 μm. Thus, the correlation of output rate and aerodynamic characteristics resulted in linear fits of opposite slopes (R(2)>0.85). Finally, the overall number of delivered aerosol droplets per time was almost constant for sucrose (≤1×10(8) droplets/s), while for sodium chloride a concentration-dependent increase was observed (up to ∼3×10(8) droplets/s). Overall, the current findings illustrated the influence of formulation parameters on the aerosolization process performed by vibrating-mesh technology. Moreover, concentration and charge distribution of aerosol populations supposedly modify the final characteristics of the delivered aerosols. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  10. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  11. Automated image based prominent nucleoli detection

    Directory of Open Access Journals (Sweden)

    Choon K Yap

    2015-01-01

    Full Text Available Introduction: Nucleolar changes in cancer cells are one of the cytologic features important to the tumor pathologist in cancer assessments of tissue biopsies. However, inter-observer variability and the manual approach to this work hamper the accuracy of the assessment by pathologists. In this paper, we propose a computational method for prominent nucleoli pattern detection. Materials and Methods: Thirty-five hematoxylin and eosin stained images were acquired from prostate cancer, breast cancer, renal clear cell cancer and renal papillary cell cancer tissues. Prostate cancer images were used for the development of a computer-based automated prominent nucleoli pattern detector built on a cascade farm. An ensemble of approximately 1000 cascades was constructed by permuting different combinations of classifiers such as support vector machines, eXclusive component analysis, boosting, and logistic regression. The output of cascades was then combined using the RankBoost algorithm. The output of our prominent nucleoli pattern detector is a ranked set of detected image patches of patterns of prominent nucleoli. Results: The mean number of detected prominent nucleoli patterns in the top 100 ranked detected objects was 58 in the prostate cancer dataset, 68 in the breast cancer dataset, 86 in the renal clear cell cancer dataset, and 76 in the renal papillary cell cancer dataset. The proposed cascade farm performs twice as good as the use of a single cascade proposed in the seminal paper by Viola and Jones. For comparison, a naive algorithm that randomly chooses a pixel as a nucleoli pattern would detect five correct patterns in the first 100 ranked objects. Conclusions: Detection of sparse nucleoli patterns in a large background of highly variable tissue patterns is a difficult challenge our method has overcome. This study developed an accurate prominent nucleoli pattern detector with the potential to be used in the clinical settings.

  12. The Calibration Home Base for Imaging Spectrometers

    Directory of Open Access Journals (Sweden)

    Johannes Felix Simon Brachmann

    2016-08-01

    Full Text Available The Calibration Home Base (CHB is an optical laboratory designed for the calibration of imaging spectrometers for the VNIR/SWIR wavelength range. Radiometric, spectral and geometric calibration as well as the characterization of sensor signal dependency on polarization are realized in a precise and highly automated fashion. This allows to carry out a wide range of time consuming measurements in an ecient way. The implementation of ISO 9001 standards in all procedures ensures a traceable quality of results. Spectral measurements in the wavelength range 380–1000 nm are performed to a wavelength uncertainty of +- 0.1 nm, while an uncertainty of +-0.2 nm is reached in the wavelength range 1000 – 2500 nm. Geometric measurements are performed at increments of 1.7 µrad across track and 7.6 µrad along track. Radiometric measurements reach an absolute uncertainty of +-3% (k=1. Sensor artifacts, such as caused by stray light will be characterizable and correctable in the near future. For now, the CHB is suitable for the characterization of pushbroom sensors, spectrometers and cameras. However, it is planned to extend the CHBs capabilities in the near future such that snapshot hyperspectral imagers can be characterized as well. The calibration services of the CHB are open to third party customers from research institutes as well as industry.

  13. Performance-based assessment of reconstructed images

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Kenneth [Los Alamos National Laboratory

    2009-01-01

    During the early 90s, I engaged in a productive and enjoyable collaboration with Robert Wagner and his colleague, Kyle Myers. We explored the ramifications of the principle that tbe quality of an image should be assessed on the basis of how well it facilitates the performance of appropriate visual tasks. We applied this principle to algorithms used to reconstruct scenes from incomplete and/or noisy projection data. For binary visual tasks, we used both the conventional disk detection and a new challenging task, inspired by the Rayleigh resolution criterion, of deciding whether an object was a blurred version of two dots or a bar. The results of human and machine observer tests were summarized with the detectability index based on the area under the ROC curve. We investigated a variety of reconstruction algorithms, including ART, with and without a nonnegativity constraint, and the MEMSYS3 algorithm. We concluded that the performance of the Raleigh task was optimized when the strength of the prior was near MEMSYS's default 'classic' value for both human and machine observers. A notable result was that the most-often-used metric of rms error in the reconstruction was not necessarily indicative of the value of a reconstructed image for the purpose of performing visual tasks.

  14. Mobile object retrieval in server-based image databases

    Science.gov (United States)

    Manger, D.; Pagel, F.; Widak, H.

    2013-05-01

    The increasing number of mobile phones equipped with powerful cameras leads to huge collections of user-generated images. To utilize the information of the images on site, image retrieval systems are becoming more and more popular to search for similar objects in an own image database. As the computational performance and the memory capacity of mobile devices are constantly increasing, this search can often be performed on the device itself. This is feasible, for example, if the images are represented with global image features or if the search is done using EXIF or textual metadata. However, for larger image databases, if multiple users are meant to contribute to a growing image database or if powerful content-based image retrieval methods with local features are required, a server-based image retrieval backend is needed. In this work, we present a content-based image retrieval system with a client server architecture working with local features. On the server side, the scalability to large image databases is addressed with the popular bag-of-word model with state-of-the-art extensions. The client end of the system focuses on a lightweight user interface presenting the most similar images of the database highlighting the visual information which is common with the query image. Additionally, new images can be added to the database making it a powerful and interactive tool for mobile contentbased image retrieval.

  15. High frequency image-based flow detection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, R [National Heart and Lung Institute, Royal Brompton Hospital, London SW3 6NP (United Kingdom); Prager, R W [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Gee, A H [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Treece, G M [Dept. of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2004-01-01

    Tumour angiogenesis refers to neovascular development on a microvascular scale and is an early indicator of cancer. Prototype high frequency pulsed Doppler systems using 50 MHz transducers have been reported to detect microvascular flow in vessels 0.02 mm to 0.5 mm in diameter at superficial depths of 0.5 mm. Detecting flow in microvasculature at deeper depths requires lower frequency transducers with a resulting tradeoff in spatial resolution. Using a 22 MHz transducer, we demonstrate a speckle decorrelation technique to detect in vitro flow in soft tubing of 0.5 mm diameter at a depth of 2 cm. This image-based decorrelation technique is capable of detecting flow in significantly narrower diameters down to 0.125 mm by decreasing the region of interest.

  16. Image based book cover recognition and retrieval

    Science.gov (United States)

    Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine

    2017-11-01

    In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.

  17. Image denoising method based on FPGA in digital video transmission

    Science.gov (United States)

    Xiahou, Yaotao; Wang, Wanping; Huang, Tao

    2017-11-01

    In the image acquisition and transmission link, due to the acquisition of equipment and methods, the image would suffer some different degree of interference ,and the interference will reduce the quality of image which would influence the subsequent processing. Therefore, the image filtering and image enhancement are particularly important.The traditional image denoising algorithm smoothes the image while removing the noise, so that the details of the image are lost. In order to improve image quality and save image detail, this paper proposes an improved filtering algorithm based on edge detection, Gaussian filter and median filter. This method can not only reduce the noise effectively, but also the image details are saved relatively well, and the FPGA implementation scheme of this filter algorithm is also given in this paper.

  18. Blind Image Inpainting Based on TV Model and Edge Detection

    Science.gov (United States)

    Wang, Xin-Yu; Deng, Liang-Jian

    Blind image inpainting is an approach to estimate the original image, when there is no or little knowledge of the degraded process. In this paper, the algorithm of blind image inpainting is based on edge detection methods to generate one inpainting mask H automatically. And then we combine the inpainting mask H with a TV model to get image blind inpainted. Experiment results demonstrate that the proposed algorithms is effective with application to both the synthetic and real-world images.

  19. Machine learning based analysis of cardiovascular images

    NARCIS (Netherlands)

    Wolterink, JM|info:eu-repo/dai/nl/413994112

    2017-01-01

    Cardiovascular diseases (CVDs), including coronary artery disease (CAD) and congenital heart disease (CHD) are the global leading cause of death. Computed tomography (CT) and magnetic resonance imaging (MRI) allow non-invasive imaging of cardiovascular structures. This thesis presents machine

  20. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal.

    Science.gov (United States)

    Cerrada, Mariela; Vinicio Sánchez, René; Cabrera, Diego; Zurita, Grover; Li, Chuan

    2015-09-18

    There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  1. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  2. CognitionMaster: an object-based image analysis framework

    National Research Council Canada - National Science Library

    Wienert, Stephan; Heim, Daniel; Kotani, Manato; Lindequist, Björn; Stenzinger, Albrecht; Ishii, Masaru; Hufnagl, Peter; Beil, Michael; Dietel, Manfred; Denkert, Carsten; Klauschen, Frederick

    2013-01-01

    Automated image analysis methods are becoming more and more important to extract and quantify image features in microscopy-based biomedical studies and several commercial or open-source tools are available...

  3. Evaluation of seatback vibration based on ISO 2631-1 (1997) standard method: The influence of vehicle seat structural resonance.

    Science.gov (United States)

    Ittianuwat, R; Fard, M; Kato, K

    2017-01-01

    Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.

  4. Imaging stem cell implant for cellular-based therapies.

    Science.gov (United States)

    Lee, Zhenghong; Dennis, James E; Gerson, Stanton L

    2008-08-01

    Stem cell-based cellular therapy represents a promising outlook for regenerative medicine. Imaging techniques provide a means for noninvasive, repeated, and quantitative tracking of stem cell implant or transplant. From initial deposition to the survival, migration and differentiation of the transplant/implanted stem cells, imaging allows monitoring of the infused cells in the same live object over time. The current review briefly summarizes and compares existing imaging methods for cell labeling and imaging in animal models. Several studies performed by our group using different imaging techniques are described, with further discussion on the issues with these current imaging approaches and potential directions for future development in stem cell imaging.

  5. Image Enhancement Algorithm based on Improved Fuzzy Filter

    OpenAIRE

    Shaosheng Sun

    2014-01-01

    Due to dynamic range compression and contrast enhancement realized simultaneously in traditional image enhancement algorithm based on frequency domain, which cause the low contrast degree, an improved image enhancement algorithm based on fuzzy filter is proposed in this paper. According to subjective feeling of the human visual system to light luminance, the image is processed with the global brightness transform. And the image with the global low contrast degree and the poor effect of edge p...

  6. Investigation of noise sources in upconversion based infrared hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Beato, Pablo

    2016-01-01

    Noise sources in infrared hyperspectral imaging based on nonlinear frequency upconversion are investigated. The effects on the spectral and spatial content of the images are evaluated and methods of combating them are suggested.......Noise sources in infrared hyperspectral imaging based on nonlinear frequency upconversion are investigated. The effects on the spectral and spatial content of the images are evaluated and methods of combating them are suggested....

  7. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    Science.gov (United States)

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  8. Multiple-Fault Detection Methodology Based on Vibration and Current Analysis Applied to Bearings in Induction Motors and Gearboxes on the Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Juan Jose Saucedo-Dorantes

    2016-01-01

    Full Text Available Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.

  9. Image Recovery Algorithm Based on Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Xinghui Zhu

    2014-01-01

    Full Text Available We proposed a recovery scheme for image deblurring. The scheme is under the framework of sparse representation and it has three main contributions. Firstly, considering the sparse property of natural image, the nonlocal overcompleted dictionaries are learned for image patches in our scheme. And, then, we coded the patches in each nonlocal clustering with the corresponding learned dictionary to recover the whole latent image. In addition, for some practical applications, we also proposed a method to evaluate the blur kernel to make the algorithm usable in blind image recovery. The experimental results demonstrated that the proposed scheme is competitive with some current state-of-the-art methods.

  10. Fibre laser based broadband THz imaging systems

    DEFF Research Database (Denmark)

    Eichhorn, Finn

    State-of-the-art optical fiber technology can contribute towards complex multi-element broadband terahertz imaging systems. Classical table-top terahertz imaging systems are generally limited to a single emitter/receiver pair, which constrains their imaging capability to tedious raster scanning...... imaging techniques. This thesis exhibits that fiber technology can improve the robustness and the flexibility of terahertz imaging systems both by the use of fiber-optic light sources and the employment of optical fibers as light distribution medium. The main focus is placed on multi-element terahertz...

  11. Image-Based Modeling of Trabecular Bones

    Science.gov (United States)

    Rajapakse, Chamith; Gunaratne, Gemunu

    2004-10-01

    Osteoporosis is a major health problem in the U.S. today. The detection and treatment of osteoporosis is currently based on Bone Mineral Density (BMD) measurements. Recent evidence suggests that the low bone mass alone does not account for the entire risk of osteoporotic fractures. It is also been known that the trabecular regions of bones play a major role in the bone strength . Trabecular bone has a complex structure with substantial heterogeneity, anisotropy and asymmetry. Although these properties effect BMD, the role of architecture and tissue material remain uncertain. Computer modeling of trabecular bone can be used predict responses that cannot be obtained experimentally, and they can compute responses that cannot be measured in-vivo. Due to the complexity of the Trabecular Architecture (TA) a model system based on scanned digital images is introduced to get substantial insight of TA and to predict the failure behavior. It is assumed that the added insight provided by these studies will lead to improved diagnostics and treatments of patient-specific osteoporotic fractures.

  12. Physical Optics Based Computational Imaging Systems

    Science.gov (United States)

    Olivas, Stephen Joseph

    There is an ongoing demand on behalf of the consumer, medical and military industries to make lighter weight, higher resolution, wider field-of-view and extended depth-of-focus cameras. This leads to design trade-offs between performance and cost, be it size, weight, power, or expense. This has brought attention to finding new ways to extend the design space while adhering to cost constraints. Extending the functionality of an imager in order to achieve extraordinary performance is a common theme of computational imaging, a field of study which uses additional hardware along with tailored algorithms to formulate and solve inverse problems in imaging. This dissertation details four specific systems within this emerging field: a Fiber Bundle Relayed Imaging System, an Extended Depth-of-Focus Imaging System, a Platform Motion Blur Image Restoration System, and a Compressive Imaging System. The Fiber Bundle Relayed Imaging System is part of a larger project, where the work presented in this thesis was to use image processing techniques to mitigate problems inherent to fiber bundle image relay and then, form high-resolution wide field-of-view panoramas captured from multiple sensors within a custom state-of-the-art imager. The Extended Depth-of-Focus System goals were to characterize the angular and depth dependence of the PSF of a focal swept imager in order to increase the acceptably focused imaged scene depth. The goal of the Platform Motion Blur Image Restoration System was to build a system that can capture a high signal-to-noise ratio (SNR), long-exposure image which is inherently blurred while at the same time capturing motion data using additional optical sensors in order to deblur the degraded images. Lastly, the objective of the Compressive Imager was to design and build a system functionally similar to the Single Pixel Camera and use it to test new sampling methods for image generation and to characterize it against a traditional camera. These computational

  13. Content-based image retrieval in homomorphic encryption domain.

    Science.gov (United States)

    Bellafqira, Reda; Coatrieux, Gouenou; Bouslimi, Dalel; Quellec, Gwenole

    2015-08-01

    In this paper, we propose a secure implementation of a content-based image retrieval (CBIR) method that makes possible diagnosis aid systems to work in externalized environment and with outsourced data as in cloud computing. This one works with homomorphic encrypted images from which it extracts wavelet based image features next used for subsequent image comparison. By doing so, our system allows a physician to retrieve the most similar images to a query image in an outsourced database while preserving data confidentiality. Our Secure CBIR is the first one that proposes to work with global image features extracted from encrypted images and does not induce extra communications in-between the client and the server. Experimental results show it achieves retrieval performance as good as if images were processed non-encrypted.

  14. Mechanical-plowing-based high-speed patterning on hard material via advanced-control and ultrasonic probe vibration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhihua; Zou, Qingze, E-mail: qzzou@rci.rutgers.edu [Mechanical and Aerospace Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States); Tan, Jun; Jiang, Wei [Electrical and Computer Engineering Department, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854 (United States)

    2013-11-15

    In this paper, we present a high-speed direct pattern fabrication on hard materials (e.g., a tungsten-coated quartz substrate) via mechanical plowing. Compared to other probe-based nanolithography techniques based on chemical- and/or physical-reactions (e.g., the Dip-pen technique), mechanical plowing is meritorious for its low cost, ease of process control, and capability of working with a wide variety of materials beyond conductive and/or soft materials. However, direct patterning on hard material faces two daunting challenges. First, the patterning throughput is ultimately hindered by the “writing” (plowing) speed, which, in turn, is limited by the adverse effects that can be excited/induced during high-speed, and/or large-range plowing, including the vibrational dynamics of the actuation system (the piezoelectric actuator, the cantilever, and the mechanical fixture connecting the cantilever to the actuator), the dynamic cross-axis coupling between different axes of motion, and the hysteresis and the drift effects related to the piezoelectric actuators. Secondly, it is very challenging to directly pattern on ultra-hard materials via plowing. Even with a diamond probe, the line depth of the pattern via continuous plowing on ultra-hard materials such as tungsten, is still rather small (<0.5 nm), particularly when the “writing” speed becomes high. To overcome these two challenges, we propose to utilize a novel iterative learning control technique to achieve precision tracking of the desired pattern during high-speed, large-range plowing, and introduce ultrasonic vibration of the probe in the normal (vertical) direction during the plowing process to enable direct patterning on ultra hard materials. The proposed approach was implemented to directly fabricate patterns on a mask with tungsten coating and quartz substrate. The experimental results demonstrated that a large-size pattern of four grooves (20 μm in length with 300 nm spacing between lines) can be

  15. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

    Directory of Open Access Journals (Sweden)

    Dan Lis

    2014-11-01

    Full Text Available Vibrational transitions contain some of the richest fingerprints of molecules and materials, providing considerable physicochemical information. Vibrational transitions can be characterized by different spectroscopies, and alternatively by several imaging techniques enabling to reach sub-microscopic spatial resolution. In a quest to always push forward the detection limit and to lower the number of needed vibrational oscillators to get a reliable signal or imaging contrast, surface plasmon resonances (SPR are extensively used to increase the local field close to the oscillators. Another approach is based on maximizing the collective response of the excited vibrational oscillators through molecular coherence. Both features are often naturally combined in vibrational nonlinear optical techniques. In this frame, this paper reviews the main achievements of the two most common vibrational nonlinear optical spectroscopies, namely surface-enhanced sum-frequency generation (SE-SFG and surface-enhanced coherent anti-Stokes Raman scattering (SE-CARS. They can be considered as the nonlinear counterpart and/or combination of the linear surface-enhanced infrared absorption (SEIRA and surface-enhanced Raman scattering (SERS techniques, respectively, which are themselves a branching of the conventional IR and spontaneous Raman spectroscopies. Compared to their linear equivalent, those nonlinear vibrational spectroscopies have proved to reach higher sensitivity down to the single molecule level, opening the way to astonishing perspectives for molecular analysis.

  16. Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams

    National Research Council Canada - National Science Library

    Shishkin, Andrei; Drozdova, Maria; Kozlov, Viktor; Hussainova, Irina; Lehmhus, Dirk

    2017-01-01

      The coating of hollow alumino-silicate microspheres or cenospheres with thin layers of Cu by means of vibration-assisted magnetron sputtering yields a starting material with considerable potential...

  17. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  18. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

    Science.gov (United States)

    Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.; Thiel, Walter

    2017-06-01

    We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

  19. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  20. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...