Wang, Ji; Pi, Yangjun; Hu, Yumei; Zhu, Zhencai; Zeng, Lingbin
2017-11-01
In this paper, a new motion and vibration synthesized control system-a linear quadratic regulator/strain rate feedback controller (LQR/SRF) with adaptive disturbance attenuation is presented for a multi flexible-link mechanism subjected to uncertain harmonic disturbances with arbitrary frequencies and unknown magnitudes. In the proposed controller, nodal strain rates are introduced into the model of the multi flexible-link mechanism, based upon which a synthesized LQR controller where both rigid-body motion and elastic deformation are considered is designed. The uncertain harmonic disturbances would be canceled in the feedback loop by its approximated value which is computed online via an adaptive update law. Asymptotic stability of the closed-loop system is proved by the Lyapunov analysis. The effectiveness of the proposed controller is shown via simulation.
Harmonic vibrations of multispan beams
DEFF Research Database (Denmark)
Dyrbye, Claes
1996-01-01
Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....
Investigating student understanding of simple harmonic motion
Somroob, S.; Wattanakasiwich, P.
2017-09-01
This study aimed to investigate students’ understanding and develop instructional material on a topic of simple harmonic motion. Participants were 60 students taking a course on vibrations and wave and 46 students taking a course on Physics 2 and 28 students taking a course on Fundamental Physics 2 on the 2nd semester of an academic year 2016. A 16-question conceptual test and tutorial activities had been developed from previous research findings and evaluated by three physics experts in teaching mechanics before using in a real classroom. Data collection included both qualitative and quantitative methods. Item analysis and whole-test analysis were determined from student responses in the conceptual test. As results, most students had misconceptions about restoring force and they had problems connecting mathematical solutions to real motions, especially phase angle. Moreover, they had problems with interpreting mechanical energy from graphs and diagrams of the motion. These results were used to develop effective instructional materials to enhance student abilities in understanding simple harmonic motion in term of multiple representations.
Sunspots and Their Simple Harmonic Motion
Ribeiro, C. I.
2013-01-01
In this paper an example of a simple harmonic motion, the apparent motion of sunspots due to the Sun's rotation, is described, which can be used to teach this subject to high-school students. Using real images of the Sun, students can calculate the star's rotation period with the simple harmonic motion mathematical expression.
Unusual motions of a vibrating string
Hanson, Roger J.
2003-10-01
The actual motions of a sinusoidally driven vibrating string can be very complex due to nonlinear effects resulting from varying tension and longitudinal motion not included in simple linear theory. Commonly observed effects are: generation of motion perpendicular to the driving force, sudden jumps in amplitude, hysteresis, and generation of higher harmonics. In addition, these effects are profoundly influenced by wire asymmetries which in a brass harpsichord wire can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%), each associated with transverse motion along two orthogonal characteristic wire axes. Some unusual resulting patterns of complex motions of a point on the wire are exhibited on videotape. Examples include: sudden changes of harmonic content, generation of subharmonics, and motion which appears nearly chaotic but which has a pattern period of over 10 s. Another unusual phenomenon due to entirely different causes can occur when a violin string is bowed with a higher than normal force resulting in sounds ranging from about a musical third to a twelfth lower than the sound produced when the string is plucked.
Vibrational motion in a symmetric, double minimum potential
DEFF Research Database (Denmark)
Spanget-Larsen, Jens
2015-01-01
Molecular vibrational motion in a symmetric, double minimum potential is treated by means of a quartic model potential, by reference to the tables published by Jaan Laane and the results of harmonic analyses for the stationary points. The inversion vibration of ammonia is treated in detail. - Not...... on the harmonic approximation for polyatomic molecules are appended. - Presented at a NORFA Workshop in Hirtshals, Denmark, August 1997....
Relevance of motion artifact in electromyography recordings during vibration treatment.
Fratini, Antonio; Cesarelli, Mario; Bifulco, Paolo; Romano, Maria
2009-08-01
Electromyography readings (EMGs) from quadriceps of fifteen subjects were recorded during whole body vibration treatment at different frequencies (10-50 Hz). Additional electrodes were placed on the patella to monitor the occurrence of motion artifact, triaxial accelerometers were placed onto quadriceps to monitor motion. Signal spectra revealed sharp peaks corresponding to vibration frequency and its harmonics, in accordance with the accelerometer data. EMG total power was compared to that associated with vibration harmonics narrow bands, before and during vibration. On average, vibration associated power resulted in only 3% (+/-0.9%) of the total power prior to vibration and 29% (+/-13.4%) during vibration. Often, studies employ surface EMG to quantitatively evaluate vibration evoked muscular activity and to set stimulation frequency. However, previous research has not accounted for motion artifacts. The data presented in this study emphasize the need for the removal of motion artifacts, as they consistently affect RMS estimation, which is often used as a concise muscle activity index during vibrations. Such artifacts, rather unpredictable in amplitude, might be the cause of large inter-study differences and must be eliminated before analysis. Motion artifact filtering will contribute to thorough and precise interpretation of neuromuscular response to vibration treatment.
Tiltrotor Vibration Reduction Through Higher Harmonic Control
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5-scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing IP and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasional on-line recalculations of the system transfer matrix. HHC had only a small (usually beneficial) effect on blade loads but increased pitch link loads by 25%. No degradation in aeroelastic stability was noted for any of the conditions tested.
Higher Harmonic Control for Tiltrotor Vibration Reduction
Nixon, Mark W.; Kvaternik, Raymond G.; Settle, T. Ben
1997-01-01
The results of a joint NASA/Army/Bell Helicopter Textron wind-tunnel test to assess the potential of higher harmonic control (HHC) for reducing vibrations in tiltrotor aircraft operating in the airplane mode of flight, and to evaluate the effectiveness of a Bell-developed HHC algorithm called MAVSS (Multipoint Adaptive Vibration Suppression System) are presented. The test was conducted in the Langley Transonic Dynamics Tunnel using an unpowered 1/5- scale semispan aeroelastic model of the V-22 which was modified to incorporate an HHC system employing both the rotor swashplate and the wing flaperon. The effectiveness of the swashplate and the flaperon acting either singly or in combination in reducing 1P and 3P wing vibrations over a wide range of tunnel airspeeds and rotor rotational speeds was demonstrated. The MAVSS algorithm was found to be robust to variations in tunnel airspeed and rotor speed, requiring only occasion-al on-line recalculations of the system transfer matrix.
Responses of Multiple Nonlinear Tuned Vibration Absorbers under Harmonic Excitation
Alsuwaiyan, Abdullah S.
2017-05-01
In this paper, a system consisting of multiple perfectly tuned identical translational vibration absorbers, having both hardening and softening springs, attached to a main mass under harmonic excitation is considered. The existence of absorbers’ synchronous and non-synchronous responses is checked. The method of averaging is employed to reach to the averaged autonomous equations of motion that describe the dynamics of the absorbers. A graphical method is then employed to check the existence of different responses of the absorbers. It is found that for absorbers with hardening springs, only one synchronous response of the absorbers occurs and no other responses take place. However, for the case of absorbers with softening springs, other responses were found to exist. These include multi-valued synchronous responses and a jump instability. These findings are in agreement with those of another study by the author where a similar system was considered using different approach.
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.
Localized, Non-Harmonic Active Flap Motions for Low Frequency In-Plane Rotor Noise Reduction
Sim, Ben W.; Potsdam, Mark; Kitaplioglu, Cahit; LeMasurier, Philip; Lorber, Peter; Andrews, Joseph
2012-01-01
A first-of-its-kind demonstration of the use of localized, non-harmonic active flap motions, for suppressing low frequency, in-plane rotor noise, is reported in this paper. Operational feasibility is verified via testing of the full-scale AATD/Sikorsky/UTRC active flap demonstration rotor in the NFAC's 40- by 80-Foot anechoic wind tunnel. Effectiveness of using localized, non-harmonic active flap motions are compared to conventional four-per-rev harmonic flap motions, and also active flap motions derived from closed-loop acoustics implementations. All three approaches resulted in approximately the same noise reductions over an in-plane three-by-three microphone array installed forward and near in-plane of the rotor in the nearfield. It is also reported that using an active flap in this localized, non-harmonic manner, resulted in no more that 2% rotor performance penalty, but had the tendency to incur higher hub vibration levels.
MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations
Directory of Open Access Journals (Sweden)
Felix Weber
2016-12-01
Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.
Bounded relative motion under zonal harmonics perturbations
Baresi, Nicola; Scheeres, Daniel J.
2017-04-01
The problem of finding natural bounded relative trajectories between the different units of a distributed space system is of great interest to the astrodynamics community. This is because most popular initialization methods still fail to establish long-term bounded relative motion when gravitational perturbations are involved. Recent numerical searches based on dynamical systems theory and ergodic maps have demonstrated that bounded relative trajectories not only exist but may extend up to hundreds of kilometers, i.e., well beyond the reach of currently available techniques. To remedy this, we introduce a novel approach that relies on neither linearized equations nor mean-to-osculating orbit element mappings. The proposed algorithm applies to rotationally symmetric bodies and is based on a numerical method for computing quasi-periodic invariant tori via stroboscopic maps, including extra constraints to fix the average of the nodal period and RAAN drift between two consecutive equatorial plane crossings of the quasi-periodic solutions. In this way, bounded relative trajectories of arbitrary size can be found with great accuracy as long as these are allowed by the natural dynamics and the physical constraints of the system (e.g., the surface of the gravitational attractor). This holds under any number of zonal harmonics perturbations and for arbitrary time intervals as demonstrated by numerical simulations about an Earth-like planet and the highly oblate primary of the binary asteroid (66391) 1999 KW4.
An Arduino Investigation of Simple Harmonic Motion
Galeriu, Calin; Edwards, Scott; Esper, Geoffrey
2014-03-01
We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment. With this educational philosophy in mind, Massimo Banzi and his team have developed and popularized the open source Arduino microcontroller board. The Arduino board has helped countless people in their science, electronics, robotics, or engineering projects, allowing them to build things that we have not even dreamed of. Physics instructors have also realized the advantages of using Arduino boards for lab experiments. The schools are saving money because the homemade experimental equipment is much cheaper than the commercial alternatives. The students are thankful for an educational experience that is more interesting, more loaded with STEM content, and more fun. As further proof of this new trend in physics education, Vernier5 is now documenting the use of their probes with Arduino boards. This is why we have developed an Arduino-based physics investigation of the simple harmonic motion (SHM) of a mass on a spring. The experimental data are collected with the help of an ultrasonic distance sensor and an Arduino Uno board. The data are then graphed and analyzed using Origin 9. This rich cross-curricular STEM activity integrates electronics, computer programming, physics, and mathematics in a way that is both experimentally exciting and intellectually rewarding.
Harmonic vibrations and waves in a cylindrical helically anisotropic shell
Panfilov, I. A.; Ustinov, Yu. A.
2012-04-01
A Kirchhoff-Love type applied theory is used to study the specific characteristics of harmonic waves and vibrations of a helically anisotropic shell. Special attention is paid to axisymmetric and bending vibrations. In both cases, the dispersion equations are constructed and a qualitative and numerical analysis of their roots and the corresponding elementary solutions is performed. It is shown that the skew anisotropy in the axisymmetric case generates a relation between the longitudinal and torsional vibrations which is mathematically described by the amplitude coefficients of homogeneous waves. In the case of a shell with rigidly fixed end surfaces, the dependence of the first two natural frequencies on the shell length and the helical line slope α, i.e., the geometric parameter of helical anisotropy, is studied. A boundary value problem in which longitudinal vibrations are generated on one of the end surfaces and the other end is free of forces and moments is considered to analyze the degree of transformation of longitudinal vibrations into longitudinally torsional vibrations. In the case of bending vibrations, two problems for a half-infinite shell are studied as well. In the first problem, the waves are excited kinematically by generating harmonic vibrations of the shell end surface in the plane of the axial cross-section, and it is shown that the axis generally moves in some closed trajectories far from the end surface. In the second problem, the reflection of a homogeneous wave incident on the shell end is examined. It is shown that the "boundary resonance" phenomenon can arise in some cases.
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.
2012-10-01
We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.
Brownian motion with adhesion: harmonic oscillator with fluctuating mass.
Gitterman, M; Klyatskin, V I
2010-05-01
In contrast to the cases usually studied of a harmonic oscillator subject to a random force (Brownian motion) or having random frequency or random damping, we consider a random mass which corresponds to an oscillator for which the particles of the surrounding medium adhere to it for some (random) time after the collision, thereby changing the oscillator mass. This model, which describes Brownian motion with adhesion, can be useful for the analysis of chemical and biological solutions as well as nanotechnological devices. We consider dichotomous noise and its limiting case, white noise.
The Role of the Harmonic Vector Average in Motion Integration
Directory of Open Access Journals (Sweden)
Alan eJohnston
2013-10-01
Full Text Available The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition to the geometrically correct global velocity as indicated by the intersection of constraints (IOC solution. Here a new combination rule, the harmonic vector average (HVA, is introduced, as well as a new algorithm for computing the IOC solution. The vector sum can be discounted as an integration strategy as it increases with the number of elements. The vector average over local vectors that vary in direction always provides an underestimate of the true global speed. The harmonic vector average however provides the correct global speed and direction for an unbiased sample of local velocities with respect to the global motion direction, as is the case for a simple closed contour. The HVA over biased samples provides an aggregate velocity estimate that can still be combined through an IOC computation to give an accurate estimate of the global velocity, which is not true of the vector average. Psychophysical results for type II Gabor arrays show perceived direction and speed falls close to the intersection of constraints direction for Gabor arrays having a wide range of orientations but the IOC prediction fails as the mean orientation shifts away from the global motion direction and the orientation range narrows. In this case perceived velocity generally defaults to the harmonic vector average.
Electron motion enhanced high harmonic generation in xenon clusters
Li, Na; Bai, Ya; Peng, Peng; Li, Ruxin; Xu, Zhizhan
2016-01-01
Atomic clusters presents an isolated system that models the bulk materials whose mechanism of HHG remains uncertain, and a promising medium to produce HHG beyond the limited conversion efficiency for gaseous atoms. Here we reveal that the oscillation of collective electron motion within clusters develops after the interaction of intense laser fields, and it significantly enhances the harmonic dipole and increases the quantum phase of the harmonics. Experimentally, the phase matching conditions of HHG from nanometer xenon clusters and atoms are distinguished, which confirms the enhanced internal field that was proposed theoretically a decade ago. The separation of HHG from atoms and clusters allows the determination of the amplitude of the HHG for clusters to be 5 orders higher, corresponding to 4 times higher conversion efficiency for atomic response. The finding provides an insight on the HHG mechanism of bulk materials and a means by which an efficient coherent X-ray source can be developed.
Transient flow in a compressor blade row for a periodic vibration motion
Idres, Moumen; Labanie, Mohamed; Okasha, Mohamed
2018-01-01
The goal of this work is to conduct a transient compressor blade row flow simulation as part of blade flutter modeling. An integral step of blade flutter modeling is the calculation of the aerodynamic damping factor as a function of the possible vibration mode shapes. Using Fourier method, the number of blade passages required for transient flow analysis is kept to a minimum of two for all vibration modes. In this work, a compressor rotor blade row is considered. The vibration modes are obtained using ANSYS mechanical, then, unsteady flow is obtained for vibrating blades with a harmonic motion. Work of the flow on the blade is calculated and hence the aerodynamic damping is obtained.
Belichenko, M. V.
2016-11-01
The motion of a heavy rigid body one of whose points (the suspension point) executes horizontal harmonic high-frequency vibrations with small amplitude is considered. The problem of existence of high-frequency periodic motions with period equal to the period of the suspension point vibrations is considered. The stability conditions for the revealed motions are obtained in the linear approximation. The following three special cases of mass distribution in the body are considered; a body whose center of mass lies on the principal axis of inertia, a body whose center of mass lies in the principal plane of inertia, and a dynamically symmetric body.
Localized harmonic motion imaging for focused ultrasound surgery targeting.
Curiel, Laura; Hynynen, Kullervo
2011-08-01
Recently, an in vivo real-time ultrasound-based monitoring technique that uses localized harmonic motion (LHM) to detect changes in tissues during focused ultrasound surgery (FUS) has been proposed to control the exposure. This technique can potentially be used as well for targeting imaging. In the present study, we evaluated the potential of using LHM to detect changes in stiffness and the feasibility of using it for imaging purposes in phantoms and in vivo tumor detection. A single-element FUS transducer (80 mm focal length, 100 mm diameter, 1.485 MHz) was used for inducing a localized harmonic motion and a separate ultrasound diagnostic transducer excited by a pulser/receiver (5 kHz PRF, 5 MHz) was used to track motion. The motion was estimated using cross-correlation techniques on the acquired radio-frequency (RF) signal. Silicon phantom studies were performed to determine the size of inclusion that was possible to detect using this technique. Inclusions were discerned from the surroundings as a reduction on LHM amplitude and it was possible to depict inclusions as small as 4 mm. The amplitude of the induced LHM was always lower at the inclusions compared with the one obtained at the surroundings. Ten New Zealand rabbits had VX2 tumors implanted on their thighs and LHM was induced and measured at the tumor region. Tumors (as small as 10 mm in length and 4 mm in width) were discerned from the surroundings as a reduction on LHM amplitude. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Weber, F.
2014-09-01
The semi-active vibration absorber (SVA) based on controlled semi-active damper is formulated to realize the behaviour of the passive undamped vibration absorber tuned to the actual harmonic disturbing frequency. It is shown that the controlled stiffness force, which is emulated by the semi-active damper to realize the precise real-time frequency tuning of the SVA, is unpreventably combined with the generation of undesirable damping in the semi-active damper whereby the SVA does not behave as targeted. The semi-active stiffness force is therefore optimized for minimum primary structure response. The results point out that the optimal semi-active stiffness force reduces the undesirable energy dissipation in the SVA at the expenses of slight imprecise frequency tuning. Based on these findings, a real-time applicable suboptimal SVA is formulated that also takes the relative motion constraint of real mass dampers into account. The results demonstrate that the performance of the suboptimal SVA is closer to that of the active solution than that of the passive mass damper.
Communication: creation of molecular vibrational motions via the rotation-vibration coupling
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels Engholm
2015-01-01
whereas a fast rotational excitation leads to a non-stationary vibrational motion. As a result, under field-free postpulse conditions, either a stretched stationary bond or a vibrating bond can be created due to the coupling between the rotational and vibrational degrees of freedom. The latter corresponds......Building on recent advances in the rotational excitation of molecules, we show how the effect of rotation-vibration coupling can be switched on in a controlled manner and how this coupling unfolds in real time after a pure rotational excitation. We present the first examination of the vibrational...... motions which can be induced via the rotation-vibration coupling after a pulsed rotational excitation. A time-dependent quantum wave packet calculation for the HF molecule shows how a slow (compared to the vibrational period) rotational excitation leads to a smooth increase in the average bond length...
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
Straub, F. K.; Byrns, E. V., Jr.
1986-01-01
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.
Energy Technology Data Exchange (ETDEWEB)
Lan, C. B.; Qin, W. Y. [Department of Engineering Mechanics, Northwestern Polytechnical University, Xi' an 710072 (China)
2014-09-15
This letter investigates the energy harvesting from the horizontal coherent resonance of a vertical cantilever beam subjected to the vertical base excitation. The potential energy of the system has two symmetric potential wells. So, under vertical excitation, the system can jump between two potential wells, which will lead to the large vibration in horizontal direction. Two piezoelectric patches are pasted to harvest the energy. From experiment, it is found that the vertical excitation can make the beam turn to be bistable. The system can transform vertical vibration into horizontal vibration of low frequency when excited by harmonic motion. The horizontal coherence resonance can be observed when excited by a vertical white noise. The corresponding output voltages of piezoelectric films reach high values.
Unusual motions due to nonlinear effects in a driven vibrating string
Hanson, Roger J.
2005-09-01
Usual nonlinear effects observed in a sinusoidally driven vibrating string include generation of motion perpendicular to the driving plane, sudden jumps of amplitude and associated hysteresis, and generation of higher harmonics. In addition, under some conditions, there can be a rich variety of unusual, very complex motions of a point on the string, the pattern of which, together with associated harmonic (and sometimes subharmonic) content, can change dramatically with a slight change in driving frequency or sometimes with constant driving frequency and force. Intrinsic string asymmetries can also have a profound effect on the behavior. In a brass harpsichord string (wire) such asymmetries can cause a small splitting of each natural frequency of free vibration into two closely spaced frequencies (relative separation ~0.2% to 2%, strongly dependent on tension.) The two frequency components are associated, respectively, with the transverse motion along two orthogonal characteristic wire axes. Emphasis will be on display of optically detected unusual motion patterns of a point on the string, including an example of a pattern period of 10 s when driving at 50 Hz. See R. J. Hanson et al., J. Acoust. Soc. Am. 117, 400-412 (2005) for a more complete treatment.
Analysis and Modelling of Muscles Motion during Whole Body Vibration
Directory of Open Access Journals (Sweden)
La Gatta A
2010-01-01
Full Text Available The aim of the study is to characterize the local muscles motion in individuals undergoing whole body mechanical stimulation. In this study we aim also to evaluate how subject positioning modifies vibration dumping, altering local mechanical stimulus. Vibrations were delivered to subjects by the use of a vibrating platform, while stimulation frequency was increased linearly from 15 to 60 Hz. Two different subject postures were here analysed. Platform and muscles motion were monitored using tiny MEMS accelerometers; a contra lateral analysis was also presented. Muscle motion analysis revealed typical displacement trajectories: motion components were found not to be purely sinusoidal neither in phase to each other. Results also revealed a mechanical resonant-like behaviour at some muscles, similar to a second-order system response. Resonance frequencies and dumping factors depended on subject and his positioning. Proper mechanical stimulation can maximize muscle spindle solicitation, which may produce a more effective muscle activation.
sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity.
Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S
2015-03-01
The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG) spectrum recorded during whole-body vibration (WBV) exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental) and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity. Key pointsThe spikes observed in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activityThe motion artifacts are more pronounced in the first spike than the following spikes in the sEMG spectrumReflex activity during WBV exercises is enhanced with an additional load of approximately 50% of the body mass.
solution of free harmonic vibration equation of simply supported
African Journals Online (AJOL)
user
the safety of plates. The vibration of plates is thus important in the study of practical structural systems such as bridge decks, ship decks, airplanes, machine parts, highway pavements, airport runways and floor slabs. The theory of elastic plates is an approximation of the three dimensional elasticity theory to two dimensions,.
Manipulation of molecular vibrational motions via pure rotational excitations
DEFF Research Database (Denmark)
Shu, Chuan-Cun; Henriksen, Niels Engholm
2015-01-01
The coupling between different molecular degrees of freedom plays a decisive role in many quantum phenomena, including electron transfer and energy redistribution. Here, we demonstrate a quantum-mechanical time-dependent simulation to explore how a vibrational motion in a molecule can be affected...
Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator
Energy Technology Data Exchange (ETDEWEB)
Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)
2002-07-01
It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)
Ferré, A.; Boguslavskiy, A. E.; Dagan, M.; Blanchet, V.; Bruner, B. D.; Burgy, F.; Camper, A.; Descamps, D.; Fabre, B.; Fedorov, N.; Gaudin, J.; Geoffroy, G.; Mikosch, J.; Patchkovskii, S.; Petit, S.; Ruchon, T.; Soifer, H.; Staedter, D.; Wilkinson, I.; Stolow, A.; Dudovich, N.; Mairesse, Y.
2015-01-01
High-order harmonic generation in polyatomic molecules generally involves multiple channels of ionization. Their relative contribution can be strongly influenced by the presence of resonances, whose assignment remains a major challenge for high-harmonic spectroscopy. Here we present a multi-modal approach for the investigation of unaligned polyatomic molecules, using SF6 as an example. We combine methods from extreme-ultraviolet spectroscopy, above-threshold ionization and attosecond metrology. Fragment-resolved above-threshold ionization measurements reveal that strong-field ionization opens at least three channels. A shape resonance in one of them is found to dominate the signal in the 20–26 eV range. This resonance induces a phase jump in the harmonic emission, a switch in the polarization state and different dynamical responses to molecular vibrations. This study demonstrates a method for extending high-harmonic spectroscopy to polyatomic molecules, where complex attosecond dynamics are expected. PMID:25608712
Directory of Open Access Journals (Sweden)
Yufei Liu
2015-01-01
Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.
Retrogressive harmonic motion as structural and stylistic characteristic of pop-rock music
Carter, Paul S.
The central issue addressed in this dissertation is that of progressive and retrogressive harmonic motion as it is utilized in the repertoire of pop-rock music. I believe that analysis in these terms may prove to be a valuable tool for the understanding of the structure, style and perception of this music. Throughout my study of this music, various patterns of progressive and retrogressive harmonic motions within a piece reveal a kind of musical character about it, a character on which much of a work's style, organization and extramusical nature often depends. Several influential theorists, especially Jean-Phillipe Rameau, Hugo Riemann, and Arnold Schoenberg, have addressed the issues of functional harmony and the nature of the motion between chords of a tonal harmonic space. After assessing these views, I have found that it is possible to differentiate between two fundamental types of harmonic motions. This difference, one that I believe is instrumental in characterizing pop-rock music, is the basis for the analytical perspective I wish to embrace. After establishing a method of evaluating tonal harmonic root motions in these terms, I wish to examine a corpus of this music in order to discover what a characterization of its harmonic motion may reveal about each piece. Determining this harmonic character may help to establish structural and stylistic traits for that piece, its genre, composer, period, or even its sociological purpose. Conclusions may then be drawn regarding the role these patterns play in defining musical style traits of pop-rock. Partly as a tool for serving the study mentioned above I develop a graphical method of accounting for root motion I name the tonal "Space-Plot"; This apparatus allows the analyst to measure several facets about the harmonic motion of the music, and to see a wide scope of relations in and around a diatonic key.
Motions of elastic solids in fluids under vibration
DEFF Research Database (Denmark)
Sorokin, V. S.; Blekhman, I. I.; Thomsen, Jon Juel
2010-01-01
Motion of a rigid or deformable solid in a viscous incompressible fluid and corresponding fluid–solid interactions are considered. Different cases of applying high frequency vibrations to the solid or to the surrounding fluid are treated. Simple formulas for the mean velocity of the solid...... are derived, under the assumption that the regime of the fluid flow induced by its motion is turbulent and the fluid resistance force is nonlinearly dependent on its velocity. It is shown that vibrations of a fluid’s volume slow down the motion of a submerged solid. This effect is much pronounced in the case...... of a deformable solid (i.e., gas bubble) exposed to near-resonant excitation. The results are relevant to the theory of gravitational enrichment of raw materials, and also contribute to the theory of controlled locomotion of a body with an internal oscillator in continuous deformable (solid or fluid) media....
sEMG during Whole-Body Vibration Contains Motion Artifacts and Reflex Activity
Directory of Open Access Journals (Sweden)
Karin Lienhard
2015-01-01
Full Text Available The purpose of this study was to determine whether the excessive spikes observed in the surface electromyography (sEMG spectrum recorded during whole-body vibration (WBV exercises contain motion artifacts and/or reflex activity. The occurrence of motion artifacts was tested by electrical recordings of the patella. The involvement of reflex activity was investigated by analyzing the magnitude of the isolated spikes during changes in voluntary background muscle activity. Eighteen physically active volunteers performed static squats while the sEMG was measured of five lower limb muscles during vertical WBV using no load and an additional load of 33 kg. In order to record motion artifacts during WBV, a pair of electrodes was positioned on the patella with several layers of tape between skin and electrodes. Spectral analysis of the patella signal revealed recordings of motion artifacts as high peaks at the vibration frequency (fundamental and marginal peaks at the multiple harmonics were observed. For the sEMG recordings, the root mean square of the spikes increased with increasing additional loads (p < 0.05, and was significantly correlated to the sEMG signal without the spikes of the respective muscle (r range: 0.54 - 0.92, p < 0.05. This finding indicates that reflex activity might be contained in the isolated spikes, as identical behavior has been found for stretch reflex responses evoked during direct vibration. In conclusion, the spikes visible in the sEMG spectrum during WBV exercises contain motion artifacts and possibly reflex activity.
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available The paper presents numerical results analysis of main rotor vibration due to helicopter main rotor thrust pulsation.The calculation method, the object of research and numerical research results with the aim to reduce the amplitude of the vibrations transmitted to the hub from the helicopters main rotor by the individual blade control in azimuth by the installation angle of blades cyclic changes are set out in the article. The individual blades control law for a five-blade main rotor based on the blade frequencies is made. It allows reducing the vibration from thrust. Research takes into account the main rotor including and excluding the blade flapping motion. The minimal vibrations regime is identified.Numerical study of variable loads caused by unsteady flow around the main rotor blades at high relative speeds of flight, which transmitted to the rotor hub, is made. The scheme of a thin lifting surface and the rotor vortex theory are used for simulation of the aerodynamic loads on blades. Non - uniform loads caused by the thrust, decomposed on the blade harmonic and its overtones. The largest values of deviation from the mean amplitude thrust are received. The analysis of variable loads with a traditional control system is made. Algorithms of higher harmonics individual blade control capable of reducing the thrust pulsation under the average value of thrust are developed.Numerical research shows that individual blade control of high harmonics reduces variable loads. The necessary change in the blade installation is about ± 0,2 degree that corresponds to the maximum displacement of the additional con- trol stick is about 1 mm.To receive the overall picture is necessary to consider all six components of forces and moments. Control law with own constants will obtained for each of them. It is supposed, that each of six individual blade control laws have an impact on other components. Thus, the problem reduces to the optimization issue. The
Piezoelectric nonlinear vibration focusing on the second-harmonic vibration mode.
Ozaki, Ryohei; Liu, Yaoyang; Hosaka, Hiroshi; Morita, Takeshi
2018-01-01
Resonant piezoelectric devices are driven under high power condition. In such condition, a nonlinear piezoelectric vibration becomes apparent and this nonlinearity should be taken into account in the design procedure using the finite elemental method (FEM). The purpose of this study is to introduce the nonlinear parameter to the FEM and to establish the method for measuring the nonlinear parameter through evaluating a nonlinear model for a piezoelectric vibration. In a previous study about the nonlinear piezoelectric vibration, the third term was mainly focused on because the third mode vibration affects the fundamental vibration in the case of a simple bar-type transducer. On the other hand, we considered the second nonlinear parameter of the compliance to the piezoelectric constitutive equation. We observed that this parameter affects the vibration amplitude with each position and the velocity at the tip of the transducer with a double frequency at resonant. It was confirmed that two measured nonlinear parameters based on these two relationships were almost same. From these values, we concluded that the proposed model is reasonable. Copyright © 2017. Published by Elsevier B.V.
DEFF Research Database (Denmark)
Madsen, Christian Bruun; Abu-Samha, Mahmoud; Madsen, Lars Bojer
2010-01-01
as a nuclear correlation function. We express the nuclear correlation function in terms of Franck-Condon factors, which allows us to decompose nuclear motion into modes and identify the modes that are dominant in the high-order harmonic generation process. We show results for the isotopes CH4 and CD4......We present a generic approach for treating the effect of nuclear motion in high-order harmonic generation from polyatomic molecules. Our procedure relies on a separation of nuclear and electron dynamics where we account for the electronic part using the Lewenstein model and nuclear motion enters...... and thereby provide direct theoretical support for a recent experiment [S. Baker et al., Science 312, 424 (2006)] that uses high-order harmonic generation to probe the ultrafast structural nuclear rearrangement of ionized methane....
Løkberg, O J; Pedersen, H M; Valø, H; Wang, G
1994-08-01
We separately measure the higher harmonics vibration patterns of a periodic vibrating object by using time-average TV holography and phase modulation. During measurements the frequency of the phase modulation is adjusted to each harmonic component while the excitation of the object is set low enough to record all components on the linear part of the fringe function. Using acoustical phase stepping and calibration of the fringe function, we compute the amplitude and phase distributions of the frequency component. We measure components up to the 65th harmonic by using square-wave excitation.
The role of the harmonic vector average in motion integration
Johnston, Alan; Scarfe, Peter
2013-01-01
The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition t...
The role of the harmonic vector average in motion integration.
Johnston, A.; Scarfe, P.
2013-01-01
The local speeds of object contours vary systematically with the cosine of the angle between the normal component of the local velocity and the global object motion direction. An array of Gabor elements whose speed changes with local spatial orientation in accordance with this pattern can appear to move as a single surface. The apparent direction of motion of plaids and Gabor arrays has variously been proposed to result from feature tracking, vector addition and vector averaging in addition t...
Chen, Jun; Zhu, Guang; Yang, Weiqing; Jing, Qingshen; Bai, Peng; Yang, Ya; Hou, Te-Chien; Wang, Zhong Lin
2013-11-13
A harmonic-resonator-based triboelectric nanogenerator (TENG) is presented as a sustainable power source and an active vibration sensor. It can effectively respond to vibration frequencies ranging from 2 to 200 Hz with a considerably wide working bandwidth of 13.4 Hz. This work not only presents a new principle in the field of vibration energy harvesting but also greatly expands the applicability of TENGs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Motion Planning with Gamma-Harmonic Potential Fields
Masoud, Ahmad A.
2012-10-01
This paper extends the capabilities of the harmonic potential field (HPF) approach to planning. The extension covers the situation where the workspace of a robot cannot be segmented into geometrical subregions where each region has an attribute of its own. The suggested approach uses a task-centered, probabilistic descriptor of the workspace as an input to the planner. This descriptor is processed, along with a goal point, to yield the navigation policy needed to steer the agent from any point in its workspace to the target. The approach is easily adaptable to planning in a cluttered environment containing a vector drift field. The extension of the HPF approach is based on the physical analogy with an electric current flowing in a nonhomogeneous conducting medium. The resulting potential field is known as the gamma-harmonic potential (GHPF). Proofs of the ability of the modified approach to avoid zero-probability (definite threat) regions and to converge to the goal are provided. The capabilities of the planer are demonstrated using simulation.
Vibrational motions in rotating nuclei studied by Coulomb excitations
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)
DEFF Research Database (Denmark)
Ekaterinaris, J.A.; Sørensen, Niels N.; Rasmussen, F.
1998-01-01
Wind turbine blades are subject to complex flow conditions. For operation in yaw and turbulent inflow the blade sections appear to execute a motion more complex than a harmonic blade oscillation which causes dynamic stall. Predictions of dynamic stall caused by simple harmonic oscillation...... are crucial to efforts in understanding and improving wind turbine performance. investigation of dynamic stall development caused by a combined oscillatory and translatory motion contributes to better understand blade loading under complex flow conditions. In this paper, numerical predictions of light...... and deep stall caused by simple oscillatory motion are obtained first. The ability of the numerical solution to predict dynamic stall lends caused by a combined motion is further investigated The numerical solution is obtained with a factorized, upwind-biased numerical scheme. The turbulent flow region...
A piezoelectric pulse generator for low frequency non-harmonic vibration
Jiang, Hao; Yeatman, Eric M.
2013-12-01
This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.
Vibrational excitation of hydrogen molecules by two-photon absorption and third-harmonic generation
Miyamoto, Yuki; Hara, Hideaki; Hiraki, Takahiro; Masuda, Takahiko; Sasao, Noboru; Uetake, Satoshi; Yoshimi, Akihiro; Yoshimura, Koji; Yoshimura, Motohiko
2018-01-01
We report the coherent excitation of the vibrational state of hydrogen molecules by two-photon absorption and the resultant third-harmonic generation (THG). Parahydrogen molecules cooled by liquid nitrogen are irradiated by mid-infrared nanosecond pulses at 4.8 μm with a nearly Fourier-transform-limited linewidth. The first excited vibrational state of parahydrogen is populated by two-photon absorption of the mid-infrared photons. Because of the narrow linewidth of the mid-infrared pulses, coherence between the ground and excited states is sufficient to induce higher-order processes. Near-infrared photons from the THG are observed at 1.6 μm. The dependence of the intensity of the near-infrared radiation on mid-infrared pulse energy, target pressure, and cell length is determined. We used a simple formula for THG with consideration of realistic experimental conditions to explain the observed results.
Richardson, Tim H.; Brittle, Stuart A.
2012-01-01
This paper describes a set of experiments aimed at overcoming some of the difficulties experienced by students learning about the topics of moments of inertia and simple harmonic motion, both of which are often perceived to be complex topics amongst students during their first-year university courses. By combining both subjects in a discussion…
Development of Computer-Based Experiment Set on Simple Harmonic Motion of Mass on Springs
Musik, Panjit
2017-01-01
The development of computer-based experiment set has become necessary in teaching physics in schools so that students can learn from their real experiences. The purpose of this study is to create and to develop the computer-based experiment set on simple harmonic motion of mass on springs for teaching and learning physics. The average period of…
The Influence of Spring Length on the Physical Parameters of Simple Harmonic Motion
Triana, C. A.; Fajardo, F.
2012-01-01
The aim of this work is to analyse the influence of spring length on the simple harmonic motion of a spring-mass system. In particular, we study the effect of changing the spring length on the elastic constant "[kappa]", the angular frequency "[omega]" and the damping factor "[gamma]" of the oscillations. To characterize the behaviour of these…
Vertical motion of particles in vibration-induced granular capillarity
Directory of Open Access Journals (Sweden)
Fan Fengxian
2017-01-01
Full Text Available When a narrow tube inserted into a static container filled with particles is subjected to vertical vibration, the particles rise in the tube, much resembling the ascending motion of a liquid column in a capillary tube. To gain insights on the particle dynamics dictating this phenomenon – which we term granular capillarity – we numerically investigate the system using the Discrete Element Method (DEM. We reproduce the dynamical process of the granular capillarity and analyze the vertical motion of the individual particles in the tube, as well as the average vertical velocities of the particles. Our simulations show that the height of the granular column fluctuates in a periodic or period-doubling manner as the tube vibrates, until a steady-state (capillary height is reached. Moreover, our results for the average vertical velocity of the particles in the tube at different radial positions suggest that granular convection is one major factor underlying the particle-based dynamics that lead to the granular capillarity phenomenon.
Xu, Xiangbo; Chen, Shao
2015-08-31
Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.
Yang, Tao; Cao, Qingjie
2017-04-01
Based on the quasi-zero stiffness vibration isolation (QZS-VI) system, nonlinear transition dynamics have been investigated coupled with both time-delayed displacement and velocity feedbacks. Using a delayed nonlinear Langevin approach, we discuss a new mechanism for the transition of a vibration isolator in which the energy originates from harmonic and noise excitations. For this stochastic process, the effective displacement potential, stationary probability density function and the escape ratio are obtained. We investigate a variety of noise-induced behaviors affecting the transitions between system equilibria states. The results indicate that the phenomena of transition, resonant activation and delay-enhanced stability may emerge in the QZS-VI system. Moreover, we also show that the time delay, delay feedback intensities, and harmonic excitation play significant roles in the resonant activation and delay-enhanced stability phenomena. Finally, a quantitative measure for amplitude response has been carried out to evaluate the isolation performance of the controlled QZS-VI system. The results show that with properly designed feedback parameters, time delay and displacement feedback intensity can play the role of a damping force. This research provides instructive ideas on the application of the time-delayed control in practical engineering.
Directory of Open Access Journals (Sweden)
Nader Sawalhi
2016-01-01
Full Text Available This paper examines the spectrum and cepstrum content of vibration signals taken from a helicopter gearbox with two different configurations (3 and 4 planets. It presents a signal processing algorithm to separate synchronous and nonsynchronous components for complete shafts’ harmonic extraction and removal. The spectrum and cepstrum of the vibration signal for two configurations are firstly analyzed and discussed. The effect of changing the number of planets on the fundamental gear mesh frequency (epicyclic mesh frequency and its sidebands is discussed. The paper explains the differences between the two configurations and discusses, in particular, the asymmetry of the modulation sidebands about the epicyclic mesh frequency in the 4 planets arrangement. Finally a separation algorithm, which is based on resampling the order-tracked signal to have an integer number of samples per revolution for a specific shaft, is proposed for a complete removal of the shafts harmonics. The results obtained from the presented separation algorithms are compared to other separation schemes such as discrete random separation (DRS and time synchronous averaging (TSA with clear improvements and better results.
Simple Harmonics Motion experiment based on LabVIEW interface for Arduino
Tong-on, Anusorn; Saphet, Parinya; Thepnurat, Meechai
2017-09-01
In this work, we developed an affordable modern innovative physics lab apparatus. The ultrasonic sensor is used to measure the position of a mass attached on a spring as a function of time. The data acquisition system and control device were developed based on LabVIEW interface for Arduino UNO R3. The experiment was designed to explain wave propagation which is modeled by simple harmonic motion. The simple harmonic system (mass and spring) was observed and the motion can be realized using curve fitting to the wave equation in Mathematica. We found that the spring constants provided by Hooke’s law and the wave equation fit are 9.9402 and 9.1706 N/m, respectively.
Experimental Investigation of Unsteady Aerodynamic Forces on Airfoil in Harmonic Translatory Motion
DEFF Research Database (Denmark)
Gaunaa, Mac; Sørensen, Jens Nørkær
2003-01-01
The present paper describes the main results from an experimental investigation of the unsteady aerodynamic forces on a NACA 0015 airfoil subject to 1-degree-of-freedom (DOF) harmonic translatory motion. The focus of the experimental investigations was to determine the factors that influence...... the aerodynamic damping of harmonic translatory motion. The maximum negative aerodynamic damping was found to take place at moderate stall and an incidence of about 15, at a movement derection close to the chordwise direction. Up to three distinctively different stall modes (multiple stall) were observed near...... maximum lift for both stationary and moving airfoil configurations. The mean as well as the dynamic characteristics of the different stall levels were found to differ from each other. An investigation of the negative aerodynamically damped cases showed that the damping decrease as the reduced frequency...
DEFF Research Database (Denmark)
Zhou, Q.; Nielsen, Søren R.K.; Qu, W.L.
2007-01-01
The paper deals with the control of sub- and superharmonic resonances by means of magnetorheological (MR) dampers of an inclined shallow cable caused by parametric excitation from harmonically varying support points. A mechanical model based on the Dahl hysteretic model is used to describe...... amplitude is located in a certain range for the case OE2o1/3, the original zero out-of-plane vibration of the cable should be changed to the stable in-plane and out-of-plane coupled oscillation by using the optimal passive viscous damper or the MR damper with the SA-1 rule. It is also observed...
Madu, B. C.
2012-01-01
The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…
Polymer-based disposable microneedle array with insertion assisted by vibrating motion
Lee, F.-W.; Hung, W.-H.; Ma, C.-W.; Yang, Y.-J.
2016-01-01
This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and colle...
de Moraes, I. G.; Pereira, J. A. M.
2009-01-01
The motion of the four Galilean moons of Jupiter is studied in this work. The moons had their positions with respect to the centre of the planet measured during one week of observation by means of telescopic charge coupled device images. It is shown that their movement can be well described as a simple harmonic motion. The revolution period and…
Higher harmonic control analysis for vibration reduction of helicopter rotor systems
Nguyen, Khanh Q.
1994-01-01
An advanced higher harmonic control (HHC) analysis has been developed and applied to investigate its effect on vibration reduction levels, blade and control system fatigue loads, rotor performance, and power requirements of servo-actuators. The analysis is based on a finite element method in space and time. A nonlinear time domain unsteady aerodynamic model, based on the indicial response formulation, is used to calculate the airloads. The rotor induced inflow is computed using a free wake model. The vehicle trim controls and blade steady responses are solved as one coupled solution using a modified Newton method. A linear frequency-domain quasi-steady transfer matrix is used to relate the harmonics of the vibratory hub loads to the harmonics of the HHC inputs. Optimal HHC is calculated from the minimization of the vibratory hub loads expressed in term of a quadratic performance index. Predicted vibratory hub shears are correlated with wind tunnel data. The fixed-gain HHC controller suppresses completely the vibratory hub shears for most of steady or quasi-steady flight conditions. HHC actuator amplitudes and power increase significantly at high forward speeds (above 100 knots). Due to the applied HHC, the blade torsional stresses and control loads are increased substantially. For flight conditions where the blades are stalled considerably, the HHC input-output model is quite nonlinear. For such cases, the adaptive-gain controller is effective in suppressing vibratory hub loads, even though HHC may actually increase stall areas on the rotor disk. The fixed-gain controller performs poorly for such flight conditions. Comparison study of different rotor systems indicates that a soft-inplane hingeless rotor requires less actuator power at high speeds (above 130 knots) than an articulated rotor, and a stiff-inplane hingeless rotor generally requires more actuator power than an articulated or a soft-inplane hingeless rotor. Parametric studies for a hingeless rotor
Focused ultrasound treatment of VX2 tumors controlled by local harmonic motion
Energy Technology Data Exchange (ETDEWEB)
Curiel, Laura; Huang Yuexi; Hynynen, Kullervo [Imaging Research, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, M4N 3M5 (Canada); Vykhodtseva, Natalia [Department of Radiology, Brigham and Women' s Hospital, EBRC 521, 221 Longwood Avenue, Boston, MA 02115 (United States)], E-mail: curiell@tbh.net
2009-06-07
The purpose of this study was to evaluate the feasibility of using localized harmonic motion (LHM) to monitor and control focused ultrasound surgery (FUS) in VX2 tumors in vivo. FUS exposures were performed on 13 VX2 tumors implanted in nine rabbits. The same transducer induced coagulation and generated a localized oscillatory motion by periodically varying the radiation force. A separate diagnostic ultrasound transducer tracked motion by cross-correlating echo signals at different instances. A threshold in motion amplitude was instituted to cease exposure. Coagulation was confirmed by T2-weighted MR images, thermal dose obtained through MR thermometry and histological examinations. For tumor locations achieving coagulation, the LHM amplitude was 9% (p = 0.04) to 57% (p < 0.0001) lower than that before exposure. Control was successful for 74 (69%) out of 108 cases, with 52 (48%) reaching the threshold and achieving coagulation and 22 (21%) never reaching threshold nor coagulating. For the 34 (31%) unsuccessful exposures, 16 (15%) never reached the threshold but coagulation occurred, and 18 (16%) reached threshold without coagulation confirmed. Noise or radio-frequency signal changes explained motion over- or underestimation in 24 (22%) cases; the remaining 10 (9%) had other causes of error. The control was generally successful, but sudden change or noise in the acquired echo signal caused failure. Coagulation after exposure could be validated by comparing amplitudes before and after exposure.
Directory of Open Access Journals (Sweden)
Reem Yassine
2016-12-01
Full Text Available The frequency response function is a quantitative measure used in structural analysis and engineering design; hence, it is targeted for accuracy. For a large structure, a high number of substructures, also called cells, must be considered, which will lead to a high amount of computational time. In this paper, the recursive method, a finite element method, is used for computing the frequency response function, independent of the number of cells with much lesser time costs. The fundamental principle is eliminating the internal degrees of freedom that are at the interface between a cell and its succeeding one. The method is applied solely for free (no load nodes. Based on the boundary and interior degrees of freedom, the global dynamic stiffness matrix is computed by means of products and inverses resulting with a dimension the same as that for one cell. The recursive method is demonstrated on periodic structures (cranes and buildings under harmonic vibrations. The method yielded a satisfying time decrease with a maximum time ratio of 1 18 and a percentage difference of 19%, in comparison with the conventional finite element method. Close values were attained at low and very high frequencies; the analysis is supported for two types of materials (steel and plastic. The method maintained its efficiency with a high number of forces, excluding the case when all of the nodes are under loads.
Liu, Jinxin; Chen, Xuefeng; Gao, Jiawei; Zhang, Xingwu
2016-12-01
Air vehicles, space vehicles and underwater vehicles, the cabins of which can be viewed as variable section cylindrical structures, have multiple rotational vibration sources (e.g., engines, propellers, compressors and motors), making the spectrum of noise multiple-harmonic. The suppression of such noise has been a focus of interests in the field of active vibration control (AVC). In this paper, a multiple-source multiple-harmonic (MSMH) active vibration suppression algorithm with feed-forward structure is proposed based on reference amplitude rectification and conjugate gradient method (CGM). An AVC simulation scheme called finite element model in-loop simulation (FEMILS) is also proposed for rapid algorithm verification. Numerical studies of AVC are conducted on a variable section cylindrical structure based on the proposed MSMH algorithm and FEMILS scheme. It can be seen from the numerical studies that: (1) the proposed MSMH algorithm can individually suppress each component of the multiple-harmonic noise with an unified and improved convergence rate; (2) the FEMILS scheme is convenient and straightforward for multiple-source simulations with an acceptable loop time. Moreover, the simulations have similar procedure to real-life control and can be easily extended to physical model platform.
Rahman, Md. Saifur; Lee, Yiu-Yin
2017-10-01
In this study, a new modified multi-level residue harmonic balance method is presented and adopted to investigate the forced nonlinear vibrations of axially loaded double beams. Although numerous nonlinear beam or linear double-beam problems have been tackled and solved, there have been few studies of this nonlinear double-beam problem. The geometric nonlinear formulations for a double-beam model are developed. The main advantage of the proposed method is that a set of decoupled nonlinear algebraic equations is generated at each solution level. This heavily reduces the computational effort compared with solving the coupled nonlinear algebraic equations generated in the classical harmonic balance method. The proposed method can generate the higher-level nonlinear solutions that are neglected by the previous modified harmonic balance method. The results from the proposed method agree reasonably well with those from the classical harmonic balance method. The effects of damping, axial force, and excitation magnitude on the nonlinear vibrational behaviour are examined.
Charge transport in DNA model with vibrational and rotational coupling motions
National Research Council Canada - National Science Library
Ngoubi, H; Ben-Bolie, G H; Kofané, T C
2017-01-01
The dynamics of the Peyrard-Bishop model for vibrational motion of DNA dynamics, which has been extended by taking into account the rotational motion for the nucleotides (Silva et al., J. Biol. Phys. 34, 511–519, 2018) is studied...
Quantum harmonic Brownian motion in a general environment: A modified phase-space approach
Energy Technology Data Exchange (ETDEWEB)
Yeh, Leehwa [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1993-06-23
After extensive investigations over three decades, the linear-coupling model and its equivalents have become the standard microscopic models for quantum harmonic Brownian motion, in which a harmonically bound Brownian particle is coupled to a quantum dissipative heat bath of general type modeled by infinitely many harmonic oscillators. The dynamics of these models have been studied by many authors using the quantum Langevin equation, the path-integral approach, quasi-probability distribution functions (e.g., the Wigner function), etc. However, the quantum Langevin equation is only applicable to some special problems, while other approaches all involve complicated calculations due to the inevitable reduction (i.e., contraction) operation for ignoring/eliminating the degrees of freedom of the heat bath. In this dissertation, the author proposes an improved methodology via a modified phase-space approach which employs the characteristic function (the symplectic Fourier transform of the Wigner function) as the representative of the density operator. This representative is claimed to be the most natural one for performing the reduction, not only because of its simplicity but also because of its manifestation of geometric meaning. Accordingly, it is particularly convenient for studying the time evolution of the Brownian particle with an arbitrary initial state. The power of this characteristic function is illuminated through a detailed study of several physically interesting problems, including the environment-induced damping of quantum interference, the exact quantum Fokker-Planck equations, and the relaxation of non-factorizable initial states. All derivations and calculations axe shown to be much simplified in comparison with other approaches. In addition to dynamical problems, a novel derivation of the fluctuation-dissipation theorem which is valid for all quantum linear systems is presented.
Kinodynamic Motion Planning for an X4-Flyer Using a 2-Dimentional Harmonic Potential Field
Directory of Open Access Journals (Sweden)
Keigo Watanabe
2014-10-01
Full Text Available In this research, we present a control method using kinodynamic motion planning based on a harmonic potential field (HPF for an X4-Flyer moving in a 3-dimensional space. In the previous research, it was confirmed that a controller using two HPFs generated on the X-Y and X-Z planes was able to guide the X4-Flyer to the arbitrary target point in a 3-dimensional space. In this paper, the previous method is extended to the case where three HPFs generated on the X-Y, X-Z, and Y-Z planes are used, and it is verified that the X4-Flyer can move efficiently by using the proposed method through some simulations.
ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS
Directory of Open Access Journals (Sweden)
T. N. Mikulik
2011-01-01
Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.
Deng, Yufeng; Palmeri, Mark L; Rouze, Ned C; Haystead, Clare M; Nightingale, Kathryn R
2018-02-01
Harmonic imaging techniques have been applied in ultrasonic elasticity imaging to obtain higher-quality tissue motion tracking data. However, harmonic tracking can be signal-to-noise ratio and penetration depth limited during clinical imaging, resulting in decreased yield of successful shear wave speed measurements. A logical approach is to increase the source pressure, but the in situ pressures used in diagnostic ultrasound have been subject to a de facto upper limit based on the Food and Drug Administration guideline for the mechanical index (MI harmonic motion tracking for hepatic shear wave elasticity imaging. The studies indicate that high-MI harmonic tracking increased shear wave speed estimation yield by 27% at a focal depth of 5 cm, with larger yield increase in more difficult-to-image patients. High-MI tracking improved harmonic tracking data quality by increasing the signal-to-noise ratio and decreasing jitter in the tissue motion data. We conclude that there is clinical benefit to use of elevated acoustic output in shear wave tracking, particularly in difficult-to-image patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Active Damping of Vibrations in High-Precision Motion Systems
Babakhani, B.
2012-01-01
Technology advancements feed the need for ever faster and more accurate industrial machines. Vibration is a significant source of inaccuracy of such machines. A light-weight design in favor of the speed, and avoiding the use of energy-dissipating materials from the structure to omit any source of
Transient Vibration of Gyroscopic Systems with Unsteady Superposed Motion
Wickert, J. A.
1996-09-01
The equation of motion for a gyroscopic system with unsteady superposed motion is derived for the prototypical problem in which motion of an oscillating particle is measured relative to a non-inertial frame. The resulting coefficient matrices are time-dependent, and skew-symmetric acceleration terms are present both as Coriolis acceleration and as a component of net stiffness. Such mathematical structure is also demonstrated in the context of other unsteady gyroscopic systems, including flexible media that translate with time-dependent speed. Following the asymptotic approach of Krylov, Bogoliubov, and Mitropolsky, a perturbation method is developed for the case in which the superposed motion varies slowly when viewed on the time scale of the system's natural periods of oscillation. First-order approximations for the modal amplitude and phase are obtained in closed form. The method is illustrated through two examples of technical interest: a two-degree-of-freedom model of a rotating shaft, and a distributed parameter model of a moving tape or web.
Correlating electronic and vibrational motions in charge transfer systems
Energy Technology Data Exchange (ETDEWEB)
Khalil, Munira [Univ. of Washington, Seattle, WA (United States)
2014-06-27
The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.
Energy Technology Data Exchange (ETDEWEB)
Albert, Julian; Falge, Mirjam; Hildenbrand, Heiko; Engel, Volker [Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, Campus Nord, Am Hubland, 97074 Würzburg (Germany); Gomez, Sandra; Sola, Ignacio R. [Departamento de Quimica Fisica, Universidad Complutense, 28040 Madrid (Spain)
2015-07-28
We theoretically investigate the photon-echo spectroscopy of coupled electron-nuclear quantum dynamics. Two situations are treated. In the first case, the Born-Oppenheimer (adiabatic) approximation holds. It is then possible to interpret the two-dimensional (2D) spectra in terms of vibrational motion taking place in different electronic states. In particular, pure vibrational coherences which are related to oscillations in the time-dependent third-order polarization can be identified. This concept fails in the second case, where strong non-adiabatic coupling leads to the breakdown of the Born-Oppenheimer-approximation. Then, the 2D-spectra reveal a complicated vibronic structure and vibrational coherences cannot be disentangled from the electronic motion.
Converting Vertical Vibration of Anisotropic Ratchet Conveyors into Horizontal Droplet Motion.
Dong, Yan; Holmes, Hal R; Böhringer, Karl F
2017-10-10
An anisotropic ratchet conveyor is an asymmetric, periodic, micropatterned surface that propels droplets when vibrated with a sinusoidal signal at certain frequencies and amplitudes. For each input frequency, there is a threshold amplitude beyond which the droplet starts to move. In this paper, we study the parameters that initiate droplet motion and the relationship between the input frequency and threshold amplitude among droplets with different volume, density, viscosity, and surface tension. Through this investigation we demonstrate how nondimensionalization reveals consistent behavior for droplets of different volumes. Finally, we propose a compact model that captures the essential features of the system to describe how a pure vertical vibration results in horizontal droplet motion. This model provides an intuitive understanding of the underlying physics and explains how the surface asymmetry is the key for lateral droplet motion.
Directory of Open Access Journals (Sweden)
FENG HE
2017-03-01
Full Text Available In this paper, an effective tool based on harmonic balance method to assess the forced response of these systems under parametric changes is developed. A flexible rotor with multiple masses supported on a squeeze film damper at one end is investigated and modeled using finite element method. The forced response of this asymmetrically supported system is calculated using the harmonic balance method with a predictor-corrector procedure by changing unidirectional loads, stiffness of centering spring of the damper and the gyroscopic effects of the disks. It is observed that under large unbalance forces, jump phenomenon occurs due to the nonlinear forces of SFD which indicates the presence of multiple harmonics within the response of the SFD operating at high eccentricity ratios and shows the insensitivity of the damper to surrounding gyroscopic variation.
Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat
2017-06-01
Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.
The efficacy of airflow and seat vibration on reducing visually induced motion sickness.
D'Amour, Sarah; Bos, Jelte E; Keshavarz, Behrang
2017-09-01
Visually induced motion sickness (VIMS) is a well-known sensation in virtual environments and simulators, typically characterized by a variety of symptoms such as pallor, sweating, dizziness, fatigue, and/or nausea. Numerous methods to reduce VIMS have been previously introduced; however, a reliable countermeasure is still missing. In the present study, the effect of airflow and seat vibration to alleviate VIMS was investigated. Eighty-two participants were randomly assigned to one of four groups (airflow, vibration, combined airflow and vibration, and control) and then exposed to a 15 min long video of a bicycle ride shot from first-person view. VIMS was measured using the Fast Motion Sickness Scale (FMS) and the Simulator Sickness Questionnaire (SSQ). Results showed that the exposure of airflow significantly reduced VIMS, whereas the presence of seat vibration, in contrast, did not have an impact on VIMS. Additionally, we found that females reported higher FMS scores than males, however, this sex difference was not found in the SSQ scores. Our findings demonstrate that airflow can be an effective and easy-to-apply technique to reduce VIMS in virtual environments and simulators, while vibration applied to the seat is not a successful method.
Effects of vibrational motion on core-level spectra of prototype organic molecules
Energy Technology Data Exchange (ETDEWEB)
Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David
2008-08-21
A computational approach is presented for prediction and interpretation of core-level spectra of complex molecules. Applications are presented for several isolated organic molecules, sampling a range of chemical bonding and structural motifs. Comparison with gas phase measurements indicate that spectral lineshapes are accurately reproduced both above and below the ionization potential, without resort to ad hoc broadening. Agreement with experiment is significantly improved upon inclusion of vibrations via molecular dynamics sampling. We isolate and characterize spectral features due to particular electronic transitions enabled by vibrations, noting that even zero-point motion is sufficient in some cases.
Directory of Open Access Journals (Sweden)
P. A. Deymier
2016-12-01
Full Text Available We illustrate the concept of geometric phase in the case of two prototypical elastic systems, namely the one-dimensional harmonic oscillator and a one-dimensional binary superlattice. We demonstrate formally the relationship between the variation of the geometric phase in the spectral and wave number domains and the parallel transport of a vector field along paths on curved manifolds possessing helicoidal twists which exhibit non-conventional topology.
Zhang, Xue-Liang; Wen, Bang-Chun; Zhao, Chun-Yu
2012-10-01
In this paper, the synchronization problem of three homodromy coupled exciters in a non-resonant vibrating system of plane motion is studied. By introducing the average method of modified small parameters, we deduced dimensionless coupling equation of three exciters, which converted the problem of synchronization into that of the existence and stability of zero solutions for the average differential equations of the small parameters. Based on the dimensionless coupling torques and characteristics of the corresponding limited functions, the synchronization criterion for three exciters was derived as the absolute value of dimensionless residual torque difference between arbitrary two motors being less than the maximum of their dimensionless coupling torques. The stability criterion of its synchronous state lies in the double-condition that the inertia coupling matrix is positive definite and all its elements are positive as well. The synchronization determinants are the coefficients of synchronization ability, also called as the general dynamical symmetry coefficients. The double-equilibrium state of the vibrating system is manifested by numeric method, and the numeric and simulation results derived thereof indicate the indispensable and crucial role the structural parameters of the vibrating system play in the stability criterion of synchronous operation. Besides, by adjusting its structural parameters, the elliptical motion of the vibrating system successfully met the requirements in engineering applications.
Polymer-based disposable microneedle array with insertion assisted by vibrating motion.
Lee, F-W; Hung, W-H; Ma, C-W; Yang, Y-J
2016-01-01
This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and collect blood by puncturing the dermis layer of human skin. The fabricated device is advantageous because of its biocompatibility, simple fabrication process, and low associated costs. Additionally, the graph of the measured extraction flow rate versus the pressure drop that is presented shows an agreement with the results predicted by analytical models. A 40% reduction of insertion force was demonstrated when the microneedle insertion was assisted by actuator-induced vibratory motions. Buckling analyses for estimating the maximum loads that the microneedle can sustain before failure occurs were also evaluated. Finally, the relationship between the insertion force and the vibration frequency was demonstrated in this study.
Cheatham, Scott W; Stull, Kyle R; Kolber, Morey J
2017-08-08
The use of foam rollers to provide soft-tissue massage has become a common intervention among health and fitness professionals. Recently, manufacturers have merged the science of vibration therapy and foam rolling with the development of vibrating foam rollers. To date, no peer reviewed investigations have been published on this technology. The purpose of this study was to compare the effects of a vibrating roller and non-vibrating roller intervention on prone knee flexion passive range of motion (ROM) and pressure pain thresholds (PPT) of the quadriceps musculature. Forty-five recreationally active adults were randomly allocated to one of three groups: vibrating roller, non-vibrating roller, and control. Each roll intervention lasted a total of 2 minutes. The control group did not roll. Dependent variables included prone knee flexion ROM and PPT measures. Statistical analysis included parametric and non-parametric tests to measure changes among groups. The vibrating roller demonstrated the greatest increase in PPT (180kPa, p< 0.001), followed by the non-vibrating roller (112kPa, p< 0.001), and control (61kPa, p<0.001). For knee ROM, the vibrating roller demonstrated the greatest increase in ROM (7 degrees, p< 0.001), followed by the non-vibrating roller (5 degrees, p< 0.001), and control (2 degrees, p<0.001). Between groups, there was significant difference in PPT between the vibrating and non-vibrating roller (p=.03) and vibrating roller and control (p<.001). There was also a significant difference between the non-vibrating roller and control (p<.001). For knee ROM, there was no significant difference between the vibrating and non-vibrating roller (p=.31). A significant difference was found between the vibrating roller and control group (p<.001) and non-vibrating roller and control (p<.001). The results suggest that a vibrating roller may increase an individual's tolerance to pain greater than a non-vibrating roller. This investigation should be considered
Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa
2015-08-07
Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p HIFU focal spot without inducing thermal changes during
High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI)
Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa
2015-08-01
Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p technique to localize the HIFU focal spot without
On the Use of Active Higher Harmonic Blade Pitch Control for Helicopter Vibration Reduction,
1980-06-01
superimposing non-rotating swashplate motions at the blade passage frequency (4P for a 4 bladed rotor) upon the basic collective and cyclic flight...is changed using a remotely controlled hydraulic actuator and electric servo system. The rotor control system is a conventional swashplate system...measured by linear potentiometers connected to the swashplate . Rotor blade flapping and lagging are measured by rotary potentiometers mounted on the
Kwak, Moon K.; Yang, Dong-Ho
2013-09-01
This paper is concerned with the suppression of vibrations and radiated sound of a ring-stiffened circular cylindrical shell in contact with unbounded external fluid by means of piezoelectric sensors and actuators. The dynamic model of a circular cylindrical shell based on the Sanders shell theory was considered together with a ring stiffener model. The mass and stiffness matrices for a ring stiffener were newly derived in this study and added to the mass and stiffness matrices of the cylindrical shell, respectively. The fluid-added mass matrix, which was derived by using the baffled shell theory, was also added to the mass matrix. Finally, the equations representing the piezoelectric sensor measurement and piezoelectric actuation complete the theoretical model for the addressed problem. The natural vibration characteristics of the ring-stiffened cylindrical shell both in air and in water were investigated both theoretically and experimentally. The theoretical predictions were in good agreement with the experimental results. An active vibration controller which can cope with a harmonic disturbance was designed by considering the modified higher harmonic control, which is, in fact, a band rejection filter. An active vibration control experiment on the submerged cylindrical shell was carried out in a water tank and the digital control system was used. The experimental results showed that both vibrations and radiation sound of the submerged cylindrical shell were suppressed by a pair of piezoelectric sensor and actuator.
Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai
2014-10-01
By probing dielectric polarization originating from dipoles and electrons in materials, we can study dynamical carrier behaviors in materials and also in devices. Maxwell displacement current (MDC) measurement allows us to directly probe orientational dipolar motion in monolayers, while electric-field-induced optical second-harmonic generation (EFISHG) measurement allows dynamical electron and hole transport in solids to be probed directly. By probing nonlinear polarization induced in solids by coupling with incident electromagnetic waves of laser beam and dc electric field that originate from moving carriers, long-range carrier motion is visualized. Experiments using a time-resolved EFISHG technique reveal carrier transfer in organic devices such as organic field-effect transistors, organic light-emitting diodes, organic memory devices, and organic solar cells, and thus enable us to model the carrier transport mechanism. We anticipate that this novel technique using EFISHG can be a powerful tool for studying carrier behaviors in organic devices as well as in organic materials.
Target preparation by means of the vibrational motion of particles at one atmosphere
Sugai, I
1999-01-01
The new target preparation method, which is based on the vibrational motion of microparticles in the electric field between parallel electrodes, has been applied to prepare Pd and Si self-supporting foils at one atmosphere in air. We successfully prepared targets of 0.10-0.50 mg/cm sup 2 thick with an electrode separation of 10 mm and an applied voltage of 10 kV. The impurities in the prepared targets were examined by using the Rutherford scattering of a 65 MeV alpha-beam. It was found that the impurity amounts depend on the prepared element.
Oliver, Thomas A A; Lewis, Nicholas H C; Fleming, Graham R
2014-07-15
Multidimensional nonlinear spectroscopy, in the electronic and vibrational regimes, has reached maturity. To date, no experimental technique has combined the advantages of 2D electronic spectroscopy and 2D infrared spectroscopy, monitoring the evolution of the electronic and nuclear degrees of freedom simultaneously. The interplay and coupling between the electronic state and vibrational manifold is fundamental to understanding ensuing nonradiative pathways, especially those that involve conical intersections. We have developed a new experimental technique that is capable of correlating the electronic and vibrational degrees of freedom: 2D electronic-vibrational spectroscopy (2D-EV). We apply this new technique to the study of the 4-(di-cyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM) laser dye in deuterated dimethyl sulfoxide and its excited state relaxation pathways. From 2D-EV spectra, we elucidate a ballistic mechanism on the excited state potential energy surface whereby molecules are almost instantaneously projected uphill in energy toward a transition state between locally excited and charge-transfer states, as evidenced by a rapid blue shift on the electronic axis of our 2D-EV spectra. The change in minimum energy structure in this excited state nonradiative crossing is evident as the central frequency of a specific vibrational mode changes on a many-picoseconds timescale. The underlying electronic dynamics, which occur on the hundreds of femtoseconds timescale, drive the far slower ensuing nuclear motions on the excited state potential surface, and serve as a excellent illustration for the unprecedented detail that 2D-EV will afford to photochemical reaction dynamics.
Kiani, Keivan
2017-08-01
Until now various aspects of vibrations of single-walled carbon nanotubes (SWCNTs) have been explored; however, their dynamics and possible instabilities because of the excitation of matrix have not been addressed methodically. By considering a harmonic transverse excitation, the explicit expressions of elastic fields are obtained based on the nonlocal Rayleigh, Timoshenko, and higher-order beam models. The roles of the nonlocality, slenderness ratio, amplitude and frequency of matrix excitation and interactional behavior of the embedded nanotube on the dynamic transverse displacements of SWCNTs are comprehensively displayed. The capabilities of the Rayleigh model as well as the Timoshenko model in capturing the deflection of the nanostructure based on the higher-order beam theory are also explained in some detail. The nonlocal elastodynamic fields of the nanostructure in the resonance state as well as the critical values of lateral and rotational stiffness of the matrix are also introduced and the influences of crucial factors on such parameters are explained and discussed carefully.
Hou, Gary Yi
Cancer remains, one of the major public health problems in the United States as well as many other countries worldwide. According to According to the World Health Organization, cancer is currently the leading cause of death worldwide, accounting for 7.6 million deaths annually, and 25% of the annual death was due to Cancer during the year of 2011. In the long history of the cancer treatment field, many treatment options have been established up to date. Traditional procedures include surgical procedures as well as systemic therapies such as biologic therapy, chemotherapy, hormone therapy, and radiation therapy. Nevertheless, side-effects are often associated with such procedures due to the systemic delivery across the entire body. Recently technologies have been focused on localized therapy under minimally or noninvasive procedure with imaging-guidance, such as cryoablation, laser ablation, radio-frequency (RF) ablation, and High Intensity F-ocused Ultrasound (HIFU). HIFU is a non-invasive procedure aims to coagulate tissue thermally at a localized focal zone created with noninvasively emitting a set of focused ultrasound beams while the surrounding healthy tissues remain relatively untreated. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a dynamic, radiation-force-based imaging technique, which utilizes a single HIFU transducer by emitting an Amplitude-modulated (AM) beam to both thermally ablate the tumor while inducing a stable oscillatory tissue displacement at its focal zone. The oscillatory response is then estimated by a cross-correlation based motion tracking technique on the signal collected by a confocally-aligned diagnostic transducer. HMIFU addresses the most critical aspect and one of the major unmet needs of HIFU treatment, which is the ability to perform real-time monitoring and mapping of tissue property change during the HIFU treatment. In this dissertation, both the assessment and monitoring aspects of HMIFU have been investigated
Parnafes, Orit
2010-12-01
Many real-world phenomena, even "simple" physical phenomena such as natural harmonic motion, are complex in the sense that they require coordinating multiple subtle foci of attention to get the required information when experiencing them. Moreover, for students to develop sound understanding of a concept or a phenomenon, they need to learn to get the same type of information across different contexts and situations (diSessa and Sherin 1998; diSessa and Wagner 2005). Rather than simplifying complex situations, or creating a linear instructional sequence in which students move from one context to another, this paper demonstrates the use of computer-based representations to facilitate developing understanding of complex physical phenomena. The data is collected from 8 studies in which pairs of students are engaged in an exploratory activity, trying to understand the dynamic behavior of a simulation and, at the same time, to attribute meaning to it in terms of the physical phenomenon it represents. The analysis focuses on three episodes. The first two episodes demonstrate the epistemological complexity involved in attempting to make sense of natural harmonic oscillation. A third episode demonstrates the process by which students develop understanding in this complex perceptual and conceptual territory, through the mediation (Vygotsky 1978) of computer-based representations designed to facilitate understanding in this topic.
Hou, Gary Y.; Luo, Jianwen; Maleke, Caroline; Vappou, Jonathan; Marquet, Fabrice; Konofagou, Elisa E.
2012-10-01
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on Amplitude-modulated (AM) - Harmonic Motion Imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module, and an image-formation model. The objective of this study is to develop such a framework in order to 1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and 2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25-Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6, and 9, the estimated HMI displacement ratios were equal to 1.65, 3.19, 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28, 1.78 at 10-s, 20-s, and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was also found in both simulations (16.2, 73.1 and 334.7 mm2) and experiments (26.2, 94.2 and 206.2 mm2). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.
Stroboscopic shearography for vibration analysis
Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank
1999-09-01
Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.
An Approach to Automatic Motion Synthesis Harmonized with Music for Multiple Objects
Wang, Qi; Nakatani, Mie; Nishida, Shogo
This paper proposed a research approach to automatic choreography synthesis based on SMF(Standard Midi File) for multiple animated figures. Based on the K.Hevner’s theory, 8 types of emotion in each beat can be extracted from music structure elements, such as tempo, key, rythm, melody, harmony, pitch, which can be computed from SMF. The time of one beat is limited to transmit the emotion to human. By the analysis of emotion, a music can be integrated to several time intervals, every which includes several continuous beats. The top value of synthetic emotion vector represents the emotion type of the interval. Based on the experiment result of C.Matsumoto, 14 motion factors can be mapped from the emotion of interval. According to the 14 motion factors, the macro-motions at the terminals of every interval, and the micromotions between every interval can be generated by mapping rules. We made a prototype system and did a subjective evaluation experiment. The result is fairly good at the congruity between generated motions and given emotion music. A successful research to solve these issues should lead to aid the designation of 3DCG animation.
Ro-vibrational spectra of C2H2 based on variational nuclear motion calculations
Urru, Andrea; Kozin, Igor N.; Mulas, Giacomo; Braams, Bastiaan J.; Tennyson, Jonathan
2010-08-01
A published ab initio-based potential energy surface and newly constructed dipole moment surface of acetylene have been used to compute vibrational band intensities. The line intensity calculations employed the variational nuclear motion code WAVR4 for computation of wave functions and energy levels, and a newly developed code DIPOLE4 for computation of dipole transitions. Owing to the high computational cost of J > 0 transitions using direct variational methods only J = 0 and J = 1 states and transitions have been computed variationally. The intensities of J > 1 transitions were extrapolated from J = 0 and J = 1 using Hönl-London coefficients. The resulting effective rotational constants B and transition intensities are compared with experimental data for the (3ν4 + ν5) combination band, the ν3 and the ν5 fundamental band. The prospects of using this procedure for extensive calculations of a hot line list, important for cool stars and extrasolar planets are discussed.
Liao, Wei-Hsin
2017-04-01
Most of the ambient energy, which was regarded useless in the past, now is under the spotlight. With the rapid developments on low power electronics, future personal mobile devices and remote sensing systems might become self-powered by scavenging energy in different forms from their surroundings. Kinetic energy is one of the promising energy forms in our living environment, e.g., human motions and vibrations. We have proposed an energy flow to clarify the functions of piezoelectric energy harvesting, dissipation, and their effects on the structural damping of vibrating structures. Impedance modeling and analysis were performed. We have designed an improved self-powered switching interface for piezoelectric energy harvesting circuits. With electromagnetic transduction, we also proposed a knee-mounted energy harvester that could convert the mechanical power from knee joints into electricity during walking. On the other hand, we have developed magnetorheological (MR) fluid devices with multiple functions, including rotary actuators and linear dampers. Multifunctional rotary actuator was designed to integrate motor/generator part and MR fluids into a single device. The actuator could function as motor, generator, clutch and brake, with compact size and good energy efficiency. In addition, novel self-sensing MR dampers with power generation, so as to integrate the dynamic sensing, controllable damping and power generation functions, were developed and investigated. Prototypes were fabricated and tested. The developed actuators were promising for various applications. In this paper, related research in energy harvesting done at The Chinese University of Hong Kong and key results will be presented.
Steffen, T; Tanimura, Y
The quantum Fokker-Planck equation is derived for a system nonlinearly coupled to a harmonic oscillator bath. The system-bath interaction is assumed to be linear in the bath coordinates but quadratic in the system coordinate. The relaxation induced dynamics of a harmonic system are investigated by
Effective harmonic oscillator description of anharmonic molecular ...
Indian Academy of Sciences (India)
Administrator
Abstract. The validity of an effective harmonic oscillator approximation for anharmonic molecular vibrations is tested and compared with vibrational self consistent field and vibrational configurational interaction results. The effective harmonic oscillator is constructed variationally, by taking the trial wave function as a harmonic ...
Halim, M. A.; Cho, H. O.; Park, J. Y.
2014-11-01
We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.
Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.
2013-01-01
In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.
TU-EF-210-03: Real-Time Ablation Monitoring and Lesion Quantification Using Harmonic Motion Imaging
Energy Technology Data Exchange (ETDEWEB)
Konofagou, E. [Columbia University (United States)
2015-06-15
The use of therapeutic ultrasound to provide targeted therapy is an active research area that has a broad application scope. The invited talks in this session will address currently implemented strategies and protocols for both hyperthermia and ablation applications using therapeutic ultrasound. The role of both ultrasound and MRI in the monitoring and assessment of these therapies will be explored in both pre-clinical and clinical applications. Katherine Ferrara: High Intensity Focused Ultrasound, Drug Delivery, and Immunotherapy Rajiv Chopra: Translating Localized Doxorubicin Delivery to Pediatric Oncology using MRI-guided HIFU Elisa Konofagou: Real-time Ablation Monitoring and Lesion Quantification using Harmonic Motion Imaging Keyvan Farahani: AAPM Task Groups in Interventional Ultrasound Imaging and Therapy Learning Objectives: Understand the role of ultrasound in localized drug delivery and the effects of immunotherapy when used in conjunction with ultrasound therapy. Understand potential targeted drug delivery clinical applications including pediatric oncology. Understand the technical requirements for performing targeted drug delivery. Understand how radiation-force approaches can be used to both monitor and assess high intensity focused ultrasound ablation therapy. Understand the role of AAPM task groups in ultrasound imaging and therapies. Chopra: Funding from Cancer Prevention and Research Initiative of Texas (CPRIT), Award R1308 Evelyn and M.R. Hudson Foundation; Research Support from Research Contract with Philips Healthcare; COI are Co-founder of FUS Instruments Inc Ferrara: Supported by NIH, UCDavis and California (CIRM and BHCE) Farahani: In-kind research support from Philips Healthcare.
Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J
2014-02-11
A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.
Dada, Michael O; Jayeoba, Babatunde; Awojoyogbe, Bamidele O; Uno, Uno E; Awe, Oluseyi E
2017-09-13
Harmonic Phase-Magnetic Resonance Imaging (HARP-MRI) is a tagged image analysis method that can measure myocardial motion and strain in near real-time and is considered a potential candidate to make magnetic resonance tagging clinically viable. However, analytical expressions of radially tagged transverse magnetization in polar coordinates (which is required to appropriately describe the shape of the heart) have not been explored because the physics required to directly connect myocardial deformation of tagged Nuclear Magnetic Resonance (NMR) transverse magnetization in polar geometry and the appropriate harmonic phase parameters are not yet available. The analytical solution of Bloch NMR diffusion equation in spherical geometry with appropriate spherical wave tagging function is important for proper analysis and monitoring of heart systolic and diastolic deformation with relevant boundary conditions. In this study, we applied Harmonic Phase MRI method to compute the difference between tagged and untagged NMR transverse magnetization based on the Bloch NMR diffusion equation and obtained radial wave tagging function for analysis of myocardial motion. The analytical solution of the Bloch NMR equations and the computational simulation of myocardial motion as developed in this study are intended to significantly improve healthcare for accurate diagnosis, prognosis and treatment of cardiovascular related deceases at the lowest cost because MRI scan is still one of the most expensive anywhere. The analysis is fundamental and significant because all Magnetic Resonance Imaging techniques are based on the Bloch NMR flow equations.
Directory of Open Access Journals (Sweden)
Uğbreve;ur Dalli
2011-01-01
Full Text Available An active control method utilizing the multiple trailing edge flap configuration for rotorcraft vibration suppression and blade loads control is presented. A comprehensive model for rotor blade with active trailing edge flaps is used to calculate the vibration characteristics, natural frequencies and mode shapes of any complex composite helicopter rotor blade. A computer program is developed to calculate the system response, rotor blade root forces and moments under aerodynamic forcing conditions. Rotor blade system response is calculated using the proposed solution method and the developed program depending on any structural and aerodynamic properties of rotor blades, structural properties of trailing edge flaps and properties of trailing edge flap actuator inputs. Rotor blade loads are determined first on a nominal rotor blade without multiple active trailing edge flaps and then the effects of the active flap motions on the existing rotor blade loads are investigated. Multiple active trailing edge flaps are controlled by using open loop controllers to identify the effects of the actuator signal output properties such as frequency, amplitude and phase on the system response. Effects of using multiple trailing edge flaps on controlling rotor blade vibrations are investigated and some design criteria are determined for the design of trailing edge flap controller that will provide actuator signal outputs to minimize the rotor blade root loads. It is calculated that using the developed active trailing edge rotor blade model, helicopter rotor blade vibrations can be reduced up to 36% of the nominal rotor blade vibrations.
Tanimura, Y; Steffen, T
2000-01-01
The relaxation processes in a quantum system nonlinearly coupled to a harmonic Gaussian-Markovian heat bath are investigated by the quantum Fokker-Planck equation in the hierarchy form. This model describes frequency fluctuations in the quantum system with an arbitrary correlation time and thus
Directory of Open Access Journals (Sweden)
Gbeminiyi Sobamowo
2017-04-01
Full Text Available The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathematical analyses were employed. It is noted that such solutions do not provide general exact solutions. Inevitably, comparatively simple, flexible yet accurate and practicable solutions are required for the analyses of these structures. Therefore, in this study, approximate analytical solutions are provided to the nonlinear equations arising in flow-induced vibration of pipes, micro-pipes and nanotubes using Galerkin-Newton-Harmonic Method (GNHM. The developed approximate analytical solutions are shown to be valid for both small and large amplitude oscillations. The accuracies and explicitness of these solutions were examined in limiting cases to establish the suitability of the method.
The harmonic oscillator and nuclear physics
Rowe, D. J.
1993-01-01
The three-dimensional harmonic oscillator plays a central role in nuclear physics. It provides the underlying structure of the independent-particle shell model and gives rise to the dynamical group structures on which models of nuclear collective motion are based. It is shown that the three-dimensional harmonic oscillator features a rich variety of coherent states, including vibrations of the monopole, dipole, and quadrupole types, and rotations of the rigid flow, vortex flow, and irrotational flow types. Nuclear collective states exhibit all of these flows. It is also shown that the coherent state representations, which have their origins in applications to the dynamical groups of the simple harmonic oscillator, can be extended to vector coherent state representations with a much wider range of applicability. As a result, coherent state theory and vector coherent state theory become powerful tools in the application of algebraic methods in physics.
A modified variation-perturbation approach to zero-point vibrational motion
DEFF Research Database (Denmark)
Åstrand, Per-Olof; Ruud, K.; Sundholm, D.
2000-01-01
We present a detailed investigation of the perturbation approach for calculating zero-point vibrational contributions to molecular properties. It is demonstrated that if the sum of the potential energy and the zero-point vibrational energy is regarded as an effective potential energy, the leading...
Directory of Open Access Journals (Sweden)
Dashan Zhang
2016-04-01
Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.
Abdikarimov, R.; Bykovtsev, A.; Khodzhaev, D.; Research Team Of Geotechnical; Structural Engineers
2010-12-01
Long-period earthquake ground motions (LPEGM) with multiple oscillations have become a crucial consideration in seismic hazard assessment because of the rapid increase of tall buildings and special structures (SP).Usually, SP refers to innovative long-span structural systems. More specifically, they include many types of structures, such as: geodesic showground; folded plates; and thin shells. As continuation of previous research (Bykovtsev, Abdikarimov, Khodzhaev 2003, 2010) analysis of nonlinear vibrations (NV) and dynamic stability of SP simulated as shells with variable rigidity in geometrically nonlinear statement will be presented for two cases. The first case will represent NV example of a viscoelastic orthotropic cylindrical shell with radius R, length L and variable thickness h=h(x,y). The second case will be NV example of a viscoelastic shell with double curvature, variable thickness, and bearing the concentrated masses. In both cases we count, that the SP will be operates under seismic load generated by LPEGM with multiple oscillations. For different seismic loads simulations, Bykovtsev’s Model and methodology was used for generating LPEGM time history. The methodology for synthesizing LPEGM from fault with multiple segmentations was developed by Bykovtev (1978-2010) and based on 3D-analytical solutions by Bykovtsev-Kramarovskii (1987&1989) constructed for faults with multiple segmentations. This model is based on a kinematics description of displacement function on the fault and included in consideration of all possible combinations of 3 components of vector displacement (two slip vectors and one tension component). The opportunities to take into consideration fault segmentations with both shear and tension vector components of displacement on the fault plane provide more accurate LPEGM evaluations. Radiation patterns and directivity effects were included in the model and more physically realistic results for simulated LPEGM were considered. The
High harmonic generation in H2 and HD by two-colour femtosecond ...
Indian Academy of Sciences (India)
bonding molecular orbital (MO) [36], and the harmonics are generated by the nuclear motions on the two lowest ... strongly suppresses the long electronic trajectories, due to the rapidly decaying behaviour of the (vibrational) autocorrelation function ... free electron trajectory loses its relevance. Thus, from this viewpoint also, ...
Iradat, R. D.; Alatas, F.
2017-09-01
Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.
Howard, J Coleman; Tschumper, Gregory S
2015-05-12
A series of (H2O)n clusters ranging from the dimer to the hexamer have been characterized with the CCSD(T) and the 2-body:Many-body CCSD(T):MP2 methods near the complete basis set (CBS) limit to generate benchmark-quality optimized structures and harmonic vibrational frequencies for these important systems. Quadruple-ζ correlation-consistent basis sets that augment the O atoms with diffuse functions have been employed in the analytic computation of harmonic vibrational frequencies for the global minima of the dimer, trimer, tetramer, and pentamer as well as the ring, book, cage, and prism isomers of the hexamer. Prior calibration [J. Chem. Phys. 2013, 139, 184113 and J. Chem. Theory Comput. 2014, 10, 5426] suggests that harmonic frequencies computed with this approach will lie within a few cm(-1) of the canonical CCSD(T) CBS limit. These data are used as reference values to gauge the performance of harmonic frequencies obtained with other ab initio methods (e.g., LCCSD(T) and MP2) and water potentials (e.g., TTM3-F and WHBB). This comparison reveals that it is far more challenging to converge harmonic vibrational frequencies for the bound OH stretching modes in these (H2O)n clusters to the CCSD(T) CBS limit than the free OH stretches, the n intramonomer HOH bending modes and even the 6n - 6 intermonomer modes. Deviations associated with the bound OH stretching harmonic frequencies increase rapidly with the size of the cluster for all methods and potentials examined, as do the corresponding frequency shifts relative to the monomer OH stretches.
Tremblay, Jean Christophe
2013-06-28
A model for treating excitation and relaxation of adsorbates at metallic surfaces induced by non-adiabatic coupling is developed. The derivation is based on the concept of resonant electron transfer, where the adsorbate serves as a molecular bridge for the inelastic transition between an electron source and a sink. In this picture, energy relaxation and scanning tunneling microscopy (STM) at metallic surfaces are treated on an equal footing as a quasi-thermal process. The model goes beyond the local harmonic approximation and allows for an unbiased description of floppy systems with multiple potential wells. Further, the limitation of the product ansatz for the vibronic wave function to include the position-dependence of the non-adiabatic couplings is avoided by explicitly enforcing detailed balance. The theory is applied to the excitation of hydrogen on palladium, which has multiple local potential minima connected by low energy barriers. The main aspects investigated are the lifetimes of adsorbate vibrations in different adsorption sites, as well as the dependence of the excitation, response, and transfer rates on an applied potential bias. The excitation and relaxation simulations reveal intricate population dynamics that depart significantly from the simplistic tunneling model in a truncated harmonic potential. In particular, the population decay from an initially occupied local minimum induced by the contact with an STM tip is found to be better described by a double exponential. The two rates are interpreted as a response to the system perturbation and a transfer rate following the perturbation. The transfer rate is found to obey a power law, as was the case in previous experimental and theoretical work.
Coudeyras, N.; Sinou, J.-J.; Nacivet, S.
2009-01-01
Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system. The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm. Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness
Torczynski, J. R.; O'Hern, T. J.; Clausen, J. R.; Koehler, T. P.
2017-11-01
The motion of a solid object (a piston) that fits closely within a housing filled with viscous liquid is studied. If a small amount of gas is introduced and the system is subjected to axial vibration, then the piston exhibits rectified motion when the drag on the piston depends on its position within the housing. An idealized system, in which the piston is suspended freely between two springs and the gas is replaced with two compressible bellows, is analyzed theoretically and studied experimentally. For a given vibration amplitude or frequency, the piston either remains near its original position (``up'') or moves to a different position (``down''), where its spring suspension is compressed. Analytical and experimental regime maps of the amplitudes and frequencies at which the piston is up or down are in good agreement. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Nicu, Valentin P; Domingos, Sérgio R; Strudwick, Benjamin H; Brouwer, Albert M; Buma, Wybren J
2016-01-11
A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low-energy conformers of dehydroquinidine reveals the existence of families of pseudo-conformers, the structures of which differ mostly in the orientation of a single O-H bond. The pseudo-conformers in a family are separated by very small energy barriers (i.e., 1.0 kcal mol(-1) or smaller) and have very different VCD spectra. First, we demonstrate the unreliable character of the Boltzmann factors predicted with DFT. Then, we show that the large differences observed between the VCD spectra of the pseudo-conformers in a family are caused by large-amplitude motions involving the O-H bond, which trigger the appearance/disappearance of strong VCD exciton-coupling bands in the fingerprint region. This interplay between exciton coupling and large-amplitude-motion phenomena demonstrates that when dealing with flexible molecules with polar bonds, vibrational averaging of VCD spectra should not be neglected. In this regard, the dehydroquinidine molecule considered here is expected to be a typical example and not the exception to the rule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effect of large amplitude motions on the vibrational intensities in hydrogen bonded complexes
DEFF Research Database (Denmark)
Mackeprang, Kasper; Hänninen, Vesa; Halonen, Lauri
2015-01-01
We have developed a model to calculate accurately the intensity of the hydrogen bonded XH-stretching vibrational transition in hydrogen bonded complexes. In the Local Mode Perturbation Theory (LMPT) model, the unperturbed system is described by a local mode (LM) model, which is perturbed...... by the intermolecular modes of the hydrogen bonded system that couple with the intramolecular vibrations of the donor unit through the potential energy surface. We have applied the model to three complexes containing water as the donor unit and different acceptor units, providing a series of increasing complex binding...... of the fundamental hydrogen bonded OH-stretching transition relative to the simpler LM model....
Naïdja, H.; Bencheikh, K.; Bartel, J.; Quentin, P.
2011-05-01
Making use of the Bloch density matrix technique, we derive exact analytical expressions for the density profile in Fourier space, for the current density and the so-called integrated current for fermionic systems confined by a two-dimensional harmonic oscillator, in the presence of a magnetic field or in a rotating trap of arbitrary strength. We present numerical, illustrative examples with or without magnetic field (with or without rotation).
He, Liangguo; Pan, Chengliang; Wang, Hongbo; Feng, Zhihua
2013-09-01
We develop a novel approach to match harmonics and vibration modes based on the mechanism of multiple tuning fork structure (MTFS), through which it is promising to realize arbitrary periodical vibrations in the resonant state. A prototype three-layer MTFS with first three harmonics is presented to verify the feasibility of the proposed principle. The matching process and experimental results confirm the unique advantages of MTFS, as discussed in the theoretical analysis. Typical periodical motions, including sawtooth, square, half-wave rectified, and full-wave rectified waveforms, are achieved by the syntheses of resonant harmonics.
Cellular harmonic information transfer through a tissue tensegrity-matrix system.
Pienta, K J; Coffey, D S
1991-01-01
Cells and intracellular elements are capable of vibrating in a dynamic manner with complex harmonics, the frequency of which can now be measured and analyzed in a quantitative manner by Fourier analysis. Cellular events such as changes in shape, membrane ruffling, motility, and signal transduction occur within spatial and temporal harmonics that have potential regulatory importance. These vibrations can be altered by growth factors and the process of carcinogenesis. It is important to understand the mechanism by which this vibrational information is transferred directly throughout the cell. From these observations we propose that vibrational information is transferred through a tissue tensegrity-matrix which acts as a coupled harmonic oscillator operating as a signal transucing system from the cell periphery to the nucleus and ultimately to the DNA. The vibrational interactions occur through a tissue matrix system consisting of the nuclear matrix, the cytoskeleton, and the extracellular matrix that is poised to couple the biologic oscillations of the cell from the peripheral membrane to the DNA through a tensegrity-matrix structure. Tensegrity has been defined as a structural system composed of discontinuous compression elements connected by continuous tension cables, which interact in a dynamic fashion. A tensegrity tissue matrix system allows for specific transfer of information through the cell by direct transmission of vibrational chemomechanical energy through harmonic wave motion.
Energy Technology Data Exchange (ETDEWEB)
Rodriguez Vazquez, Ely Edmundo [Grupo de Investigacion Aplicada, Queretaro, Queretaro (Mexico); Silva Navarro, Gerardo [Cinvestav, IPN, Mexico, D.F. (Mexico); Zuniga Osorio, Helen Janeth [CIATEQ, Queretaro, Queretaro (Mexico)
2007-11-15
In this paper is presented the experimental development of an integral system for the monitoring and acquisition of involved physical variables in the performance analysis of the turbo-machinery. The integral system has been denominated SMD Turbo (System of Monitoring and Diagnosis for turbo-machinery) and has as fundamental intention to realize the analysis and diagnosis (on the basis of mathematical and graphical tools) of the performance of a machine through the physical measurement of physical variables such as pressure, temperature and vibration. The system is able to realize the analysis of the information in real time and to store it for its later processing of diagnosis by means of specialized software with which the calculations of the performance will be able to be realized. Preliminary results of the proposal are presented that confirm the viability of the proposal. [Spanish] En este trabajo se presenta el desarrollo experimental de un sistema integral para el monitoreo y adquisicion de variables fisicas involucradas en el analisis del rendimiento de la turbomaquinaria. El sistema integral se ha denominado SMD Turbo (Sistema de Monitoreo y Diagnostico para trubomaquinaria) y tiene como proposito fundamental realizar el analisis y diagnostico (en base a herramientas matematicas y graficas) del rendimiento de la turbo maquina a traves de la medicion de variable fisicas como por ejemplo, presion, temperatura y vibracion. El sistema es capaz de realizar el analisis de la informacion en tiempo real y almacenarla para su posterior proceso de diagnostico mediante un software especializado con el cual se podran realizar los calculos del rendimiento. Se presentan resultados preliminares de la propuesta que confirman la viabilidad de la propuesta.
Ye, Zhitong; Duan, Zhiyong; Takahata, Kenichi; Su, Yufeng
2015-01-01
In this paper, the force analysis and output performance of the micro-vibration energy harvester are elaborated. The force of the floating magnet in the magnetic field of the lifting magnet is firstly analyzed. Using COMSOL™, the change of magnetic force exerted on the floating magnet versus the vertical distance and the horizontal eccentric distance is obtained for different lifting magnets of a cylinder, a ring and an inner cylinder plus an outer ring, respectively. When the distance between the lifting and floating magnets ranges from 7.3 to 8.1 mm, the change rate of the magnetic force versus the vertical distance for the inner cylinder plus outer ring structure is the smallest, whose value is 619 µN/mm. In other words, if the inner cylinder plus outer ring structure is used as the lifting magnet, the vibration space of the floating magnet is the largest, which is 8 and 7.6 % larger than the cylinder and ring lifting magnets, respectively. The horizontal restoring forces of the three structures are substantially equal to each other at the horizontal eccentric distance of 4 mm, which is around 860 µN. Then the equilibrium position change of the floating magnet is discussed when the energy harvester is in an inclined position. Finally, by the analysis of the vibration model, the output performances of the energy harvester are comparatively calculated under the vertical and inclined positions. At the natural frequency of 6.93 Hz, the maximum power of 66.7 µW is generated.
Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa
2017-04-01
The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2 = 0.81, slope = 0.90), width (r 2 = 0.85, slope = 1.12) and area (r 2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.
Han, Yang; Wang, Shutao; Payen, Thomas; Konofagou, Elisa
2017-04-21
The successful clinical application of high intensity focused ultrasound (HIFU) ablation depends on reliable monitoring of the lesion formation. Harmonic motion imaging guided focused ultrasound (HMIgFUS) is an ultrasound-based elasticity imaging technique, which monitors HIFU ablation based on the stiffness change of the tissue instead of the echo intensity change in conventional B-mode monitoring, rendering it potentially more sensitive to lesion development. Our group has shown that predicting the lesion location based on the radiation force-excited region is feasible during HMIgFUS. In this study, the feasibility of a fast lesion mapping method is explored to directly monitor the lesion map during HIFU. The harmonic motion imaging (HMI) lesion map was generated by subtracting the reference HMI image from the present HMI peak-to-peak displacement map, as streamed on the computer display. The dimensions of the HMIgFUS lesions were compared against gross pathology. Excellent agreement was found between the lesion depth (r 2 = 0.81, slope = 0.90), width (r 2 = 0.85, slope = 1.12) and area (r 2 = 0.58, slope = 0.75). In vivo feasibility was assessed in a mouse with a pancreatic tumor. These findings demonstrate that HMIgFUS can successfully map thermal lesions and monitor lesion development in real time in vitro and in vivo. The HMIgFUS technique may therefore constitute a novel clinical tool for HIFU treatment monitoring.
Ganeev, Rashid A
2014-01-01
Preface; Why plasma harmonics? A very brief introduction Early stage of plasma harmonic studies - hopes and frustrations New developments in plasma harmonics studies: first successes Improvements of plasma harmonics; Theoretical basics of plasma harmonics; Basics of HHG Harmonic generation in fullerenes using few-cycle pulsesVarious approaches for description of observed peculiarities of resonant enhancement of a single harmonic in laser plasmaTwo-colour pump resonance-induced enhancement of odd and even harmonics from a tin plasmaCalculations of single harmonic generation from Mn plasma;Low-o
Bounds on the vibrational energy that can be harvested from random base motion
Langley, R. S.
2015-03-01
This paper is concerned with the development of upper bounds on the energy harvesting performance of a general multi-degree-of-freedom nonlinear electromechanical system that is subjected to random base motion and secondary applied periodic forces. The secondary forces are applied with the aim of enhancing the energy harvested from the base motion, and they may constitute direct excitation, or they may produce parametric terms in the equations of motion. It is shown that when the base motion has white noise acceleration then the power input by the base is always πS0 M / 2 where S0 is the single sided spectral density of the acceleration, and M is the mass of the system. This implies that although the secondary forces may enhance the energy harvested by causing a larger fraction of the power input from the base to be harvested rather than dissipated, there is an upper limit on the power that can be harvested. Attention is then turned to narrow band excitation, and it is found that in the absence of secondary forces a bound can be derived for a single degree of freedom system with linear damping and arbitrary nonlinear stiffness. The upper bound on the power input by the base is πM max [ S (ω) ] / 2, where S (ω) is the single sided base acceleration spectrum. The validity of this result for more general systems is found to be related to the properties of the first Wiener kernel, and this issue is explored analytically and by numerical simulation.
Nuriev, A. N.; Zakharova, O. S.; Zaitseva, O. N.; Yunusova, A. I.
2016-11-01
A rectilinear motion of a two-mass system in a viscous incompressible fluid is considered. The system consists of a shell having the form of an equilateral triangular cylinder and a movable internal mass. The motion of the system as a whole is forced by longitudinal oscillations of the internal mass relative to the shell. This mechanical system simulates a vibration-driven robot, i.e. a mobile device capable to move in a resistive medium without external moving parts. Investigation of the system is carried out by a direct numerical simulation. A comparative analysis of the characteristics of the motion and flow regimes around the vibration-driven robot is carried out for different internal mass oscillation laws.
Lien, Chi-Hsiang; Tilbury, Karissa; Chen, Shean-Jen; Campagnola, Paul J
2013-01-01
Second Harmonic Generation (SHG) microscopy coupled with polarization analysis has great potential for use in tissue characterization, as molecular and supramolecular structural details can be extracted. Such measurements are difficult to perform quickly and accurately. Here we present a new method that uses a liquid crystal modulator (LCM) located in the infinity space of a SHG laser scanning microscope that allows the generation of any desired linear or circular polarization state. As the device contains no moving parts, polarization can be rotated accurately and faster than by manual or motorized control. The performance in terms of polarization purity was validated using Stokes vector polarimetry, and found to have minimal residual polarization ellipticity. SHG polarization imaging characteristics were validated against well-characterized specimens having cylindrical and/or linear symmetries. The LCM has a small footprint and can be implemented easily in any standard microscope and is cost effective relative to other technologies.
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
Graybill, George
2007-01-01
Take the mystery out of motion. Our resource gives you everything you need to teach young scientists about motion. Students will learn about linear, accelerating, rotating and oscillating motion, and how these relate to everyday life - and even the solar system. Measuring and graphing motion is easy, and the concepts of speed, velocity and acceleration are clearly explained. Reading passages, comprehension questions, color mini posters and lots of hands-on activities all help teach and reinforce key concepts. Vocabulary and language are simplified in our resource to make them accessible to str
Stochastic vibration of the vehicle-bridge system subject to non-uniform ground motions
Zhu, D. Y.; Zhang, Y. H.; Kennedy, D.; Williams, F. W.
2014-03-01
A study of a train moving along a cable-stayed bridge is performed by considering both the stationary track irregularity and a non-stationary earthquake. A detailed bridge model with 3972 degrees of freedom is established while the train model consists of two locomotives and eight carriages. The equations of motion of the coupled system are obtained by using the displacement continuous condition at the contact, with track irregularities. The earthquake is assumed to occur once the train has entered the bridge. The pseudo-excitation method is used to find the random responses of the coupled system, and the results indicate that the effect of the earthquake is much greater than that of the track irregularities. The paper discusses the influence of the intensity of the earthquake, the wave propagation velocity, the speed of the train, and the dynamic interaction between the vehicles and the bridge.
Kostyukevich, Yury I.; Vladimirov, Gleb N.; Nikolaev, Eugene N.
2012-12-01
The recently introduced ion trap for FT-ICR mass spectrometers with dynamic harmonization showed the highest resolving power ever achieved both for ions with moderate masses 500-1000 Da (peptides) as well as ions with very high masses of up to 200 kDa (proteins). Such results were obtained for superconducting magnets of very high homogeneity of the magnetic field. For magnets with lower homogeneity, the time of transient duration would be smaller. In superconducting magnets used in FT-ICR mass spectrometry the inhomogeneity of the magnetic field in its axial direction prevails over the inhomogeneity in other directions and should be considered as the main factor influencing the synchronic motion of the ion cloud. The inhomogeneity leads to a dependence of the cyclotron frequency from the amplitude of axial oscillation in the potential well of the ion trap. As a consequence, ions in an ion cloud become dephased, which leads to signal attenuation and decrease in the resolving power. Ion cyclotron frequency is also affected by the radial component of the electric field. Hence, by appropriately adjusting the electric field one can compensate the inhomogeneity of the magnetic field and align the cyclotron frequency in the whole range of amplitudes of z-oscillations. A method of magnetic field inhomogeneity compensation in a dynamically harmonized FT-ICR cell is presented, based on adding of extra electrodes into the cell shaped in such a way that the averaged electric field created by these electrodes produces a counter force to the forces caused by the inhomogeneous magnetic field.
Chen, Shigao; Kinnick, Randall R; Greenleaf, James F; Fatemi, Mostafa
2007-07-01
Vibro-acoustography is an imaging method that uses the radiation force of two interfering ultrasound beams of slightly different frequency to probe an object. An image is made using the acoustic emission resulted from the object vibration at the difference frequency. In this paper, the feasibility of imaging objects at twice the difference frequency (harmonic acoustic emission) is studied. Several possible origins of harmonic acoustic emission are explored. As an example, it is shown that microbubbles close to resonance can produce significant harmonic acoustic emission due to its high nonlinearity. Experiments demonstrate that, compared to the fundamental acoustic emission, harmonic acoustic emission greatly improves the contrast between microbubbles and other objects in vibro-acoustography (an improvement of 17-23 dB in these experiments). Applications of this technique include imaging the nonlinearity of the object and selective detection of microbubbles for perfusion imaging. The impact of microbubble destruction during the imaging process also is discussed.
Li, Zhen-Jie; Zhang, Yan-Jun; Zhang, Li-Li; Du, Xin; Wang, Shu; Du, Yu-Zheng
2015-03-01
Hypertension is one of main risk factors for the occurrence and death of stroke and coronary heart disease. Its prevalence rate is rising year by year. It severely threatens the health of the human beings. The acupuncture method of "activating blood and dispersing wind, harmonizing Gan-Pi" for treating hypertension launched by Academician SHI Xue-min has aroused great attention due to good cur- ative effect and less adverse reactions. In this paper principles of the circular motion covered by the acupuncture method of "activating blood and dispersing wind, harmonizing Gan-Pi" were clarified.
Development and evaluation of a generic active helicopter vibration controller
Davis, M. W.
1984-01-01
A computerized generic active controller is developed, which alleviates helicopter vibration by closed-loop implementation of higher harmonic control (HHC). In the system, the higher harmonic blade pitch is input through a standard helicopter swashplate; for a four-blade helicopter rotor the 4/rev vibration in the rotorcraft is minimized by inducing cyclic pitch motions at 3, 4, and 5/rev in the rotating system. The controller employs the deterministic, cautious, and dual control approaches and two linear system models (local and global), as well as several methods of limiting control. Based on model testing, performed at moderate to high values of forward velocity and rotor thrust, reductions in the rotor test apparatus vibration from 75 to 95 percent are predicted, with HHC pitch amplitudes of less than one degree. Good performance is also noted for short-duration maneuvers.
Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E
2015-11-03
Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.
Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E
2015-09-01
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.
Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E
2014-11-01
Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.
Directory of Open Access Journals (Sweden)
M. Rezaee
2012-01-01
Full Text Available In this paper the free nonlinear vibration behavior of a cracked cantilever beam is investigated both theoretically and experimentally. For simplicity, the dynamic behavior of a cracked beam vibrating at its first mode is simulated using a simple single degree of freedom lumped parameter system. The time varying stiffness is modeled using a harmonic function. The governing equation of motion is solved by a perturbation method – the method of Multiple Scales.
Pilot-wave dynamics in a harmonic potential: Quantization and stability of circular orbits.
Labousse, M; Oza, A U; Perrard, S; Bush, J W M
2016-03-01
We present the results of a theoretical investigation of the dynamics of a droplet walking on a vibrating fluid bath under the influence of a harmonic potential. The walking droplet's horizontal motion is described by an integro-differential trajectory equation, which is found to admit steady orbital solutions. Predictions for the dependence of the orbital radius and frequency on the strength of the radial harmonic force field agree favorably with experimental data. The orbital quantization is rationalized through an analysis of the orbital solutions. The predicted dependence of the orbital stability on system parameters is compared with experimental data and the limitations of the model are discussed.
Energy Technology Data Exchange (ETDEWEB)
Naudin, M. [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)]|[FRAMATOME, 92 - Paris-La-Defense (France); Pugnet, J.M. [Conservatoire National des Arts et Metiers (CNAM), Grenoble-1 Univ., 38 (France)]|[FRAMATOME, 92 - Paris-La-Defense (France)
1999-07-01
Vibration phenomena are sources of mechanical incidents in turbomachineries. A calculation of the Eigenmodes of machine parts and a knowledge of their possible excitation during the machine operation can greatly improve the reliability and availability of the equipments. The development of computer tools and in particular the use of finite-element codes has allowed a more and more precise calculation of Eigenmodes and Eigenfrequencies. However, the analysis of excitation sources remains sometimes insufficient to explain and anticipate some complex vibrational phenomena encountered in rotative machines. The aim of this paper is to present, using two different examples, the methodology to be used in order to perform a complete vibrational analysis of mechanical components. The following aspects are reviewed successively: 1 - the damped vibrational system: study of the free motion, study of the response to an harmonic forced excitation; 2 - vibrational analysis of turbine blades: steam turbine blades, Eigenmodes of mobile blades, excitation sources, Campbell diagram, calculation of static and dynamical stresses, Haigh diagram, acceptance criteria and safety coefficient, influence of corrosion; 3 - dynamical analysis of the bending of a lineshaft: different flexion Eigenmodes, stiffness and damping of bearings, calculation of flexion Eigenmodes, excitation sources, vibrational stability of the lineshaft and vibration level; 3 - generalization: vibration of blades, shaft dynamics, alternative machines. (J.S.) 10 refs.
Directory of Open Access Journals (Sweden)
Antonio Raffo
2017-01-01
Full Text Available A vibration sensor based on the use of a Software-Defined Radio (SDR platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.
Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe
2017-01-08
A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.
Nanoscale piezoelectric vibration energy harvester design
Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin
2017-09-01
Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.
Nanoscale piezoelectric vibration energy harvester design
Directory of Open Access Journals (Sweden)
Hamid Reza Foruzande
2017-09-01
Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.
Chen, Jiangang; Hou, Gary Y; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa
2015-10-07
Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n = 5) and in vitro canine livers (n = 3) were tested, as well as HIFU lesions in in vitro canine livers (n = 5). Results demonstrated that attenuations obtained from the phantoms showed a good correlation (R² = 0.976) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32 ± 0.03 dB cm(-1) MHz(-1), which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58 ± 0.06 dB cm(-1) MHz(-1)) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.
Chen, Jiangang; Hou, Gary Y.; Marquet, Fabrice; Han, Yang; Camarena, Francisco; Konofagou, Elisa
2015-10-01
Acoustic attenuation represents the energy loss of the propagating wave through biological tissues and plays a significant role in both therapeutic and diagnostic ultrasound applications. Estimation of acoustic attenuation remains challenging but critical for tissue characterization. In this study, an attenuation estimation approach was developed using the radiation-force-based method of harmonic motion imaging (HMI). 2D tissue displacement maps were acquired by moving the transducer in a raster-scan format. A linear regression model was applied on the logarithm of the HMI displacements at different depths in order to estimate the acoustic attenuation. Commercially available phantoms with known attenuations (n=5 ) and in vitro canine livers (n=3 ) were tested, as well as HIFU lesions in in vitro canine livers (n=5 ). Results demonstrated that attenuations obtained from the phantoms showed a good correlation ({{R}2}=0.976 ) with the independently obtained values reported by the manufacturer with an estimation error (compared to the values independently measured) varying within the range of 15-35%. The estimated attenuation in the in vitro canine livers was equal to 0.32 ± 0.03 dB cm-1 MHz-1, which is in good agreement with the existing literature. The attenuation in HIFU lesions was found to be higher (0.58 ± 0.06 dB cm-1 MHz-1) than that in normal tissues, also in agreement with the results from previous publications. Future potential applications of the proposed method include estimation of attenuation in pathological tissues before and after thermal ablation.
Hou, Gary Y; Marquet, Fabrice; Wang, Shutao; Konofagou, Elisa E
2013-01-01
Harmonic Motion Imaging (HMI) for Focused Ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in silica, in vitro and in vivo. Its principle is based on emission of an Amplitude-modulated therapeutic ultrasound beam utilizing a therapeutic transducer to induce an oscillatory radiation force while tracking the focal tissue mechanical response during the HIFU treatment using a confocally-aligned diagnostic transducer. In order to translate towards the clinical implementation of HMIFU, a complete assessment study is required in order to investigate the optimal radiation force threshold for reliable monitoring the local tissue mechanical property changes, i.e., the estimation HMIFU displacement under thermal, acoustical, and mechanical effects within focal medium (i.e., boiling, cavitation, and nonlinearity) using biological specimen. In this study, HMIFU technique is applied on HIFU treatment monitoring on freshly excised ex vivo canine liver specimens. In order to perform the multi-characteristic assessment, the diagnostic transducer was operated as either a pulse-echo imager or Passive Cavitation Detector (PCD) to assess the acoustic and mechanical response, while a bare-wire thermocouple was used to monitor the focal temperature change. As the acoustic power of HIFU treatment was ranged from 2.3 to 11.4 W, robust HMI displacement was observed across the entire range. Moreover, an optimized range for high quality displacement monitoring was found to be between 3.6 to 5.2W, where displacement showed an increase followed by significant decrease, indicating a stiffening of focal medium due to thermal lesion formation, while the correlation coefficient was maintained above 0.95.
Burnell, E.E.; de Lange, C.A.; Barnhoorn, J.B.S.; Aben, I.; Levelt, P.F.
2005-01-01
An NMR study on ethane and five isotopomers dissolved in the nematic liquid crystal Merck ZLI 1132 is performed. A consistent set of dipolar and quadrupolar couplings is obtained. The dipolar couplings are corrected for harmonic vibrational effects, while the contribution from the torsional motion
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
2013-09-01
We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the coupled-cluster including single, double, and full perturbative triple excitations (CCSD(T))/aug-cc-pVDZ level of theory. All five examined hexamer isomer minima previously reported by Møller-Plesset perturbation theory (MP2) are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n = 2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ˜0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ˜15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) frequencies are found for the librational modes, while uniform increases of ˜15 and ˜25 cm-1 are observed for the bending and "free" OH harmonic frequencies. The largest differences between CCSD(T) and MP2 are observed for the harmonic hydrogen bonded frequencies, for which the former produces larger absolute values than the latter. Their CCSD(T) redshifts from the monomer values (Δω) are smaller than the MP2 ones, due to the fact that CCSD(T) produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to MP2
Czech Academy of Sciences Publication Activity Database
Brauer, B.; Gerber, R. B.; Kabeláč, Martin; Hobza, Pavel; Bakker, J. M.; Abo-Riziq, A.; Vries de, M. S.
2005-01-01
Roč. 109, - (2005), s. 6974-6984 ISSN 1089-5639 Grant - others:NSF(US) CHE-0244341 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleic acids bases * vibrational spectrum * frequencies anharmonicity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.898, year: 2005
Bifurcations and chaos of a vibration isolation system with magneto-rheological damper
Directory of Open Access Journals (Sweden)
Hailong Zhang
2016-03-01
Full Text Available Magneto-rheological (MR damper possesses inherent hysteretic characteristics. We investigate the resulting nonlinear behaviors of a two degree-of-freedom (2-DoF MR vibration isolation system under harmonic external excitation. A MR damper is identified by employing the modified Bouc-wen hysteresis model. By numerical simulation, we characterize the nonlinear dynamic evolution of period-doubling, saddle node bifurcating and inverse period-doubling using bifurcation diagrams of variations in frequency with a fixed amplitude of the harmonic excitation. The strength of chaos is determined by the Lyapunov exponent (LE spectrum. Semi-physical experiment on the 2-DoF MR vibration isolation system is proposed. We trace the time history and phase trajectory under certain values of frequency of the harmonic excitation to verify the nonlinear dynamical evolution of period-doubling bifurcations to chaos. The largest LEs computed with the experimental data are also presented, confirming the chaotic motion in the experiment. We validate the chaotic motion caused by the hysteresis of the MR damper, and show the transitions between distinct regimes of stable motion and chaotic motion of the 2-DoF MR vibration isolation system for variations in frequency of external excitation.
Wong, Bryan M; Steeves, Adam H; Field, Robert W
2006-09-28
A one-dimensional local bend model is used to describe the variation of electronic properties of acetylene in vibrational levels that embody large amplitude local motions on the S0 potential energy surface. Calculations performed at the CCSD(T) and MR-AQCC levels of theory predict an approximately linear dependence of the dipole moment on the number of quanta in either the local bending or local stretching excitation. In the local mode limit, one quantum of stretching excitation in one CH bond leads to an increase of 0.025 D in the dipole moment, and one quantum of bending vibration in the CCH angle leads to an increase of 0.068 D. The use of a one-dimensional model for the local bend is justified by comparison to the well-established polyad model which reveals a decoupling of the large amplitude bending from other degrees of freedom in the range of Nbend = 14-22. We find that the same one-dimensional large amplitude bending motion emerges from two profoundly different representations, a one-dimensional cut through an ab initio, seven-dimensional Hamiltonian and the three-dimensional (l = 0) pure-bending experimentally parametrized spectroscopic Hamiltonian.
Passarello, Marco; Abbate, Sergio; Longhi, Giovanna; Lepri, Susan; Ruzziconi, Renzo; Nicu, Valentin Paul
2014-06-19
The role played by the C*-H based modes (C* being the chiral carbon atom) and the large amplitude motions in the vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra is investigated. The example of an adduct of dimethyl fumarate and anthracene, i.e., dimethyl-(+)-(11R,12R)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboxylate, and two deuterated isotopomers thereof specially synthesized for this goal, are considered. By comparing the experimental and DFT calculated spectra of the undeuterated and deuterated species, we demonstrate that the C*-H bending, rocking, and stretching modes in the VA and VCD spectra are clearly identified in well defined spectroscopic features. Further, significant information about the conformer distribution is gathered by analyzing the VA and VCD data of both the fingerprint and the C-H stretching regions, with particular attention paid to the band shape data. Effects related to the large amplitude motions of the two methoxy moieties have been simulated by performing linear transit (LT) calculations, which consists of varying systematically the relative positions of the two methoxy moieties and calculating VCD spectra for the partially optimized structures obtained in this way. The LT method allows one to improve the quality of calculated spectra, as compared to experimental results, especially in regard to relative intensities and bandwidths.
Effective harmonic oscillator description of anharmonic molecular ...
Indian Academy of Sciences (India)
... a harmonic oscillator eigenfunction with the centroid and width parameter as variational paraeters. It is found that the effective harmonic oscillator approximation provides a description of the anharmonic eigenstates very similar to the vibrational self consistent field results. Coriolis coupling is also included in these studies.
Energy Technology Data Exchange (ETDEWEB)
Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
2013-01-01
We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the CCSD(T)/aug-cc-pVDZ level of theory. All five hexamer isomer minima previously reported by MP2 are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n=2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) are found for the librational modes, while uniform increases of ~15 and ~25 cm^{-1} are observed for the bending and “free” OH harmonic frequencies. The largest differences between MP2 and CCSD(T) are observed for the harmonic hydrogen bonded frequencies. The CCSD(T) red shifts from the monomer frequencies (Δω) are smaller than the MP2 ones, due to the fact that the former produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to the latter. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation - Δω = s · ΔR, with a rate of s = 20.3 cm^{-1} / 0.001 Å. The CCSD
Nicu, V.P.; Domingos, S.R.; Strudwick, B.H.; Brouwer, A.M.; Buma, W.J.
2015-01-01
A detailed analysis of the computed structure, energies, vibrational absorption (VA) and circular dichroism (VCD) spectra of 30 low-energy conformers of dehydroquinidine reveals the existence of families of pseudo-conformers, the structures of which differ mostly in the orientation of a single
Semi-active vibration absorber based on real-time controlled MR damper
Weber, F.
2014-06-01
A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.
Energy Technology Data Exchange (ETDEWEB)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2017-05-15
The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.
DEFF Research Database (Denmark)
Sorokin, Vladislav
2014-01-01
In the classical papers (see, e.g. P.L. Kapitsa, Pendulum with vibrating axis of suspension. Usp. Fiz. Nauk 44 1 (1954) 7-20 (in Russian)) motion of pendulum with vibrating suspension axis was considered in the case when frequency of external loading is much higher than the natural frequency...... of the pendulum in the absence of this loading. The present paper is concerned with the analysis of inverted pendulums motion at unconventional values of parameters. Case when frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied...
Energy Technology Data Exchange (ETDEWEB)
McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)
2004-11-24
The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm^{-1} occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.
Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef
2014-10-01
The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.
Time-series analysis of vibrational nuclear wave packet dynamics
Thumm, Uwe; Niederhausen, Thomas; Feuerstein, Bernold
2008-10-01
We discuss the extent to which measured time-dependent fragment kinetic energy release (KER) spectra and calculated nuclear probability densities can reveal 1) the transition frequencies between stationary vibrational states, 2) the nodal structure of stationary vibrational states, 3) the ground-state adiabatic electronic potential curve of the molecular ion, and 4) the progression of decoherence induced by random interactions with the environment. We illustrate our discussion with numerical simulations for the time-dependent nuclear motion of vibrational wave packets in the D2^+ molecular ion caused by the ionization of its neutral D2 parent molecule with an intense pump laser pulse. Based on a harmonic time-series analysis, we suggest a general scheme for the full reconstruction, up to an overall phase factor, of the initial wave packets based on measured KER spectra, cf., Phys. Rev. A 77, 063401 (2008).
Orzechowska, A; Lipińska, M; Fiedor, J; Chumakov, A; Zajac, M; Slezak, T; Matlak, K; Strzałka, K; Korecki, J; Fiedor, L; Burda, K
2010-10-01
Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~165K) than that of the low spin atom (~207K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17meV) and higher (17-25meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~6meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (Q(A) and Q(B)) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states. Copyright © 2010 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Eung-Young Choi
2016-05-01
Full Text Available A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ω±ωn5 and 2ωn5 between the excitation frequency (ω of a regular wave and the natural frequency of the pitching motion (ωn5 of the floating substructure.
Semi-active on-off damping control of a dynamic vibration absorber using Coriolis force
La, Viet Duc
2012-07-01
A passive dynamic vibration absorber (DVA) moving along a pendulum can cause the nonlinear Coriolis damping to reduce the pendulum swing. This paper proposes a simple semi-active on-off damping controller to improve the passive Coriolis DVA. The aim of the on-off damping control is to amplify the DVA resonance motion to increase the energy dissipated. Moreover, the paper finds the analytical solution of the harmonic vibration of semi-active controlled system. The accuracy of the analytical formulas and the superior performance of the semi-active DVA are verified by numerical simulations.
Application of OMA to an Operating Wind Turbine: now including Vibration Data from the Blades
DEFF Research Database (Denmark)
Tcherniak, Dmitri; Larsen, Gunner Chr.
2013-01-01
The presented study continues the work on application of Output Only Modal Analysis (OMA) to operating wind turbines. It is known from previous studies that issues like the time-varying nature of the equations of motion of an operating wind turbine (in particular the significant harmonic components...... the blades as well. It is believed that the availability of vibration data from the blades will improve the observability of the main global vibration modes (especially the heavily damped out-of-plane modes), and thus will assure a better estimation of modal parameters, especially the damping. The paper...
Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei
Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T
2010-01-01
Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.
The evolution of harmonic Indian musical drums: A mathematical perspective
Gaudet, Samuel; Gauthier, Claude; Léger, Sophie
2006-03-01
We explain using mathematics how harmonic musical drums were discovered by Indian artisans and musicians more than 2000 years ago. To this end, we introduce a harmonic error function which measures the quality of the harmonic relationship and degeneracy of the first modes of vibration of a centrally symmetric loaded membrane. We explain that although the tabla configuration found by the ancient Indians is the most natural one, other configurations exist and some are harmonically superior to the classical one.
Indian Academy of Sciences (India)
Harish-Chandra, Gelfand and several other mathematicians and physicists, group-theoretic harmonic analysis is a flourishing industry today paving the way to new developments in the con- text of noncompact Lie groups as well as quantum groups. Since B(n, z) = zn the expansion (3) suggests a link between Fourier series.
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 10. Harmonic Analysis Fourier Series and Beyond. K R Parthasarathy. Book Review Volume 1 Issue 10 October 1996 pp 87-91. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/001/10/0087-0091 ...
Analysis on Non-Resonance Standing Waves and Vibration Tracks of Strings
Fang, Tian-Shen
2007-01-01
This paper presents an experimental technique to observe the vibration tracks of string standing waves. From the vibration tracks, we can analyse the vibration directions of harmonic waves. For the harmonic wave vibrations of strings, when the driving frequency f[subscript s] = Nf[subscript n] (N = 1, 2, 3, 4,...), both resonance and non-resonance…
Bennett, Charles L [Livermore, CA
2009-10-20
A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.
Bravin, E; Sosa, A
2014-01-01
This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...
Bravin, E; Sosa, A
2014-01-01
This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving inside or outside the box. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), is driven by a stepper motor and has all the guiding mechanisms outside vacuum. The maximum speed of the scanning blade during the tests was 2.5 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 50 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements of the transve...
Fast and slow thermal processes in harmonic scalar lattices
Kuzkin, V. A.; Krivtsov, A. M.
2017-12-01
An approach for analytical description of thermal processes in harmonic lattices is presented. We cover longitudinal and transverse vibrations of chains and out-of-plane vibrations of two-dimensional lattices with interactions of an arbitrary number of neighbors. The motion of each particle is governed by a single scalar equation and therefore the notion ‘scalar lattice’ is used. The evolution of initial temperature field in an infinite lattice is investigated. An exact equation describing the evolution is derived. Continualization of this equation with respect to spatial coordinates is carried out. The resulting continuum equation is solved analytically. The solution shows that the kinetic temperature is represented as the sum of two terms, one describing short time behavior, the other large time behavior. At short times, the temperature performs high-frequency oscillations caused by redistribution of energy among kinetic and potential forms (fast process). Characteristic time of this process is of the order of ten periods of atomic vibrations. At large times, changes of the temperature are caused by ballistic heat transfer (slow process). The temperature field is represented as a superposition of waves having the shape of initial temperature distribution and propagating with group velocities dependent on the wave vector. Expressions describing fast and slow processes are invariant with respect to substitution t by -t . However, examples considered in the paper demonstrate that these processes are irreversible. Numerical simulations show that presented theory describes the evolution of temperature field at short and large time scales with high accuracy.
Vibrations in a moving flexible robot arm
Wang, P. K. C.; Wei, Jin-Duo
1987-01-01
The vibration in a flexible robot arm modeled by a moving slender prismatic beam is considered. It is found that the extending and contracting motions have destabilizing and stabilizing effects on the vibratory motions, respectively. The vibration analysis is based on a Galerkin approximation with time-dependent basis functions. Typical numerical results are presented to illustrate the qualitative features of vibrations.
Basin boundaries in asymmetric vibrations of a circular plate
Park, H. D.; Lee, W. K.
2008-08-01
In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation, we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653-665] in which at most three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.
Bennett, Charles L.; Sewall, Noel; Boroa, Carl
2014-08-19
An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.
Free and Forced Vibrations of Periodic Multispan Beams
Directory of Open Access Journals (Sweden)
Liping Zhu
1994-01-01
Full Text Available In this study, the following two topics are considered for uniform multispan beams of both finite and infinite lengths with rigid transversal and elastic rotational constraints at each support: (a free vibration and the associated frequencies and mode shapes; (b forced vibration under a convected harmonic loading. The concept of wave propagation in periodic structures of Brillouin is utilized to investigate the wave motion at periodic supports of a multispan beam. A dispersion equation and its asymptotic form is obtained to determine the natural frequencies. For the special case of zero rotational spring stiffness, an explicit asymptotic expression for the natural frequency is also given. New expressions for the mode shapes are obtained in the complex form for multispan beams of both finite and infinite lengths. The orthogonality conditions of the mode shapes for two cases are formulated. The exact responses of both finite and infinite span beams under a convected harmonic loading are obtained. Thus, the position and the value of each peak in the harmonic response function can be determined precisely, as well as the occurrence of the so-called coincidence phenomenon, when the response is greatly enhanced.
Gooh Pattader, Partho Sarathi
displacement that diminishes with observation time scale, we used another approach of integrated fluctuation theorem to identify athermal temperature of the system by characterizing a persistence time of negative fluctuations in terms of the measurable quantity. Specific experiments have also been designed to study the crossing of a small object over a physical barrier assisted by an external noise and a bias force. These results mimic the classical Arrhenius behavior from which another effective temperature may be deduced. All these studies confer that the nonlinear system does not possess any unique temperature. Detachment of a solid sphere as well as a liquid drop from a structured rubber surface during subcritical motion in presence of external noise was examined in the light of Arrhenius' activated rate equation. Drift velocity of small drops of water-glycerin solution behaves nonlinearly with viscosity which is reminiscence of Kramers' turn over theory of activated rate. In a designed experiment of barrier crossing of liquid drops we satisfactorily verified the Kramers' formalism of activated rate at the low friction limit.
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Helson, Henry
2010-01-01
This second edition has been enlarged and considerably rewritten. Among the new topics are infinite product spaces with applications to probability, disintegration of measures on product spaces, positive definite functions on the line, and additional information about Weyl's theorems on equidistribution. Topics that have continued from the first edition include Minkowski's theorem, measures with bounded powers, idempotent measures, spectral sets of bounded functions and a theorem of Szego, and the Wiener Tauberian theorem. Readers of the book should have studied the Lebesgue integral, the elementary theory of analytic and harmonic functions, and the basic theory of Banach spaces. The treatment is classical and as simple as possible. This is an instructional book, not a treatise. Mathematics students interested in analysis will find here what they need to know about Fourier analysis. Physicists and others can use the book as a reference for more advanced topics.
A first course in vibrations and waves
Samiullah, Mohammad
2015-01-01
This book builds on introductory physics and emphasizes understanding of vibratory motion and waves based on first principles. The book is divided into three parts. Part I contains a preliminary chapter that serves as a review of relevant ideas of mechanics and complex numbers. Part II is devoted to a detailed discussion of vibrations of mechanical systems. This part covers a simple harmonic oscillator, coupled oscillators, normal coordinates, beaded string, continuous string, standing waves, and Fourier series. Part II ends with a presentation of stationary solutions of driven finite systems. Part III is concerned with waves. Here, the emphasis is on the discussion of common aspects of all types of waves. The applications to sound, electromagnetic, and matter waves are illustrated. The book also includes examples from water waves and electromagnetic waves on a transmission line. The emphasis of the book is to bring out the similarities among various types of waves. The book includes treatment of reflection a...
Phononic High Harmonic Generation
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin A.
2016-01-01
This paper reports the first experimental evidence for phononic low-order to high-order harmonic conversion leading to high harmonic generation. Similar to parametric resonance, phononic high harmonic generation is also mediated by a threshold dependent instability of a driven phonon mode. Once the threshold for instability is met, a cascade of harmonic generation processes is triggered. Firstly, the up-conversion of first harmonic phonons into second harmonic phonons is established. Subseque...
Variable frequency harmonic vibration suppression using active vibration absorption
Directory of Open Access Journals (Sweden)
Francisco Beltrán-Carbajal
2014-01-01
Full Text Available Los absorbedores dinámicos pasivos de vibraciones se han utilizado ampliamente para atenuación de vibraciones dañinas en muchos sistemas de ingeniería prácticos. La aplicabilidad de estos dispositivos de absorción pasiva de vibraciones se limita a un ancho de banda angosto y especifico de frecuencias de operación. En este artículo se propone un nuevo esquema de absorción activa de vibraciones que permite extender la capacidad de supresión de vibraciones de un absorbedor masa-resorte-amortiguador pasivo para cualquier frecuencia de excitación, incluyendo fuerzas de perturbación armónica resonantes de interés. Los fundamentos centrales de un absorbedor pasivo se explotan en la etapa de diseño del esquema de absorción propuesto. Así, el dispositivo de absorción activa aplica fuerzas sobre el sistema mecánico primario que contrarrestan las fuerzas de perturbación desconocidas, conservando la propiedad de atenuación de vibraciones del absorbedor pasivo. La fuerza de perturbación se estima en línea usando un observador de estado extendido propuesto en este trabajo. Se incluyen resultados en simulación para mostrar la eficiencia del esquema de absorción activa de vibraciones para rechazar vibraciones forzadas resonantes y caóticas completamente desconocidas afectando el sistema mecánico primario, y para probar la efectividad de la estimación de fuerzas de perturbación exógenas.
Dai, Quanqi; Harne, Ryan L.
2018-01-01
The vibrations of mechanical systems and structures are often a combination of periodic and random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting systems for charging microelectronics may be challenged by such reality due to the potential to transition between favorable and unfavorable dynamic regimes for DC power delivery. Therefore, a need exists to devise an optimization method whereby charging power from nonlinear energy harvesters remains maximized when excitation conditions are neither purely harmonic nor purely random, which have been the attention of past research. This study meets the need by building from an analytical approach that characterizes the dynamic response of nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base accelerations. Here, analytical expressions are formulated and validated to optimize charging power while the influences of the relative proportions of excitation types are concurrently assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the charging power by 20% when the system is more prominently driven by harmonic base accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in power for the same resistance deviation. In addition, the results reveal that when the frequency of a predominantly harmonic excitation deviates by 50% from optimal conditions the charging power reduces by 70%, whereas the same frequency deviation for a more stochastically dominated excitation reduce total DC power by only 20%. These results underscore the need for maximizing direct current power delivery for nonlinear energy harvesting systems in practical operating environments.
Combet, Francois; Gelman, Leonid
2011-01-01
In this paper, a novel adaptive demodulation technique including a new diagnostic feature is proposed for gear diagnosis in conditions of variable amplitudes of the mesh harmonics. This vibration technique employs the time synchronous average (TSA) of vibration signals. The new adaptive diagnostic feature is defined as the ratio of the sum of the sideband components of the envelope spectrum of a mesh harmonic to the measured power of the mesh harmonic. The proposed adaptation of the technique...
Method and apparatus for vibrating a substrate during material formation
Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA
2008-10-21
A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
Directory of Open Access Journals (Sweden)
Suhuan NI
2017-10-01
Full Text Available To research and develop efficient vibrating type crusher, a single-sided dynamic model is established for the impact and vibration crushing system, and the differential equation of vibration is set up with Newton's law for dynamic analysis. By making amplitude frequency curve, hysteretic impact force curve and energy absorption curve, the influence of which on the system response is analyzed. Based on the conclusion and using numerical method, the primary forced resonance of the system is calculated, and the time history of displacement, velocity and acceleration is obtained, showing that the motion mass movement is not a simple harmonic motion, the nonlinear impact force is one of the factors that influences the vibration system, and the influence rules of clearance, vibration frequency on the amplitude frequency curve, impact force and energy absorption are also obtained. The gap between the material and the broken head should be kept as small as possible so as to achieve a better crushing effect with a smaller excitation force, and the system is best to work in the main resonant area to get a big impact. The research result provides reference for further study of rules and mechanism of the vibration systems.
Directory of Open Access Journals (Sweden)
Piotr FOLĘGA
2014-03-01
Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.
Harmonic polynomials, hyperspherical harmonics, and atomic spectra
Avery, John Scales
2010-01-01
The properties of monomials, homogeneous polynomials and harmonic polynomials in d-dimensional spaces are discussed. The properties are shown to lead to formulas for the canonical decomposition of homogeneous polynomials and formulas for harmonic projection. Many important properties of spherical harmonics, Gegenbauer polynomials and hyperspherical harmonics follow from these formulas. Harmonic projection also provides alternative ways of treating angular momentum and generalised angular momentum. Several powerful theorems for angular integration and hyperangular integration can be derived in this way. These purely mathematical considerations have important physical applications because hyperspherical harmonics are related to Coulomb Sturmians through the Fock projection, and because both Sturmians and generalised Sturmians have shown themselves to be extremely useful in the quantum theory of atoms and molecules.
Dancing drops over vibrating substrates
Borcia, Rodica; Borcia, Ion Dan; Helbig, Markus; Meier, Martin; Egbers, Christoph; Bestehorn, Michael
2017-04-01
We study the motion of a liquid drop on a solid plate simultaneously submitted to horizontal and vertical harmonic vibrations. The investigation is done via a phase field model earlier developed for describing static and dynamic contact angles. The density field is nearly constant in every bulk region (ρ = 1 in the liquid phase, ρ ≈ 0 in the vapor phase) and varies continuously from one phase to the other with a rapid but smooth variation across the interfaces. Complicated explicit boundary conditions along the interface are avoided and captured implicitly by gradient terms of ρ in the hydrodynamic basic equations. The contact angle θ is controlled through the density at the solid substrate ρ S , a free parameter varying between 0 and 1 [R. Borcia, I.D. Borcia, M. Bestehorn, Phys. Rev. E 78, 066307 (2008)]. We emphasize the swaying and the spreading modes, earlier theoretically identified by Benilov and Billingham via a shallow-water model for drops climbing uphill along an inclined plane oscillating vertically [E.S. Benilov, J. Billingham, J. Fluid Mech. 674, 93 (2011)]. The numerical phase field simulations will be completed by experiments. Some ways to prevent the release of the dancing drops along a hydrophobic surface into the gas atmosphere are also discussed in this paper.
On large amplitude motions of simplest amides in the ground and excited electronic states
Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.
2017-01-01
For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.
On large amplitude motions of simplest amides in the ground and excited electronic states
Directory of Open Access Journals (Sweden)
Tukachev N.V.
2017-01-01
Full Text Available For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0 and lowest excited singlet (S1 and triplet (T1 electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T, CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES sections corresponding to different large amplitude motions (LAM were calculated by means of MP2/aug-cc-pVTZ (S0 and CASPT2/cc-pVTZ (S1,T1. For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.
A seismic vertical vibrator driven by linear motors
Noorlandt, R.P.; Drijkoningen, G.G.; Schneider, R.M.
2012-01-01
In this paper we present a newly developed vertical seismic vibrator driven by linear motors. We explain the different components the vibrator consists of. We show that the harmonic distortion of the linear-motor vibrator signal is very small. We also show that, without applying a feedback loop on
Energy Technology Data Exchange (ETDEWEB)
Inatomi, T. (Port and Harbour Research Institute, Kanagawa (Japan)); Takeda, T.; Obi, N.; Yamanobe, S. (Kajima Corp., Tokyo (Japan))
1994-05-31
Records of seismic observation were analyzed for the purpose of proving the validity of antiseismic design for a prestressed concrete (PC) cable-stayed bridge. This bridge is a three span continuous PC cable-stayed bridge of 498 m in bridge length, and is constructed on alluvial soft ground. The seismometer used is a servo type accelerometer. The observed frequency and mode of seismic vibration are in good agreement with those in the analysis and hence the validity of modelling of the structure in designing was confirmed. It was also confirmed that the bending vibration and torsional vibration of the main girder are separated as designed. However, some points such as a large difference in the observed vibration and analysed vibration in the mode accompanying rotation of the base are listed as problems to be solved in antiseismic design. In order to investigate the attenuation constant of the upper structure, a seismic wave response analysis was performed and its results were compared with observed ones. When the attenuation constant is assumed to be 2%, agreement of data between analysis and observation is good, and it is considered that the attenuation constant of the upper structure only without the effects of attenuation of energy escape from the base and crack generation in concrete was about 2% in the observed earthquake (maximum acceleration on the ground: 51 Gal). 8 refs., 9 figs., 2 tabs.
An Arduino Investigation of Simple Harmonic Motion
Galeriu, Calin; Edwards, Scott; Esper, Geoffrey
2014-01-01
We cannot hope for a new generation of scientists and engineers if we don't let our young students take ownership of their scientific and engineering explorations, if we don't let them enjoy the hands-on cycle of design and production, and if we don't let them implant their creativity into a technologically friendly environment.…
High order harmonic generation in rare gases
Energy Technology Data Exchange (ETDEWEB)
Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)
1994-05-01
The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~10^{13}-10^{14} W/cm^{2}) is focused into a dense (~10^{17} particles/cm^{3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.
Unlocking higher harmonics in atomic force microscopy with gentle interactions
Directory of Open Access Journals (Sweden)
Sergio Santos
2014-03-01
Full Text Available In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.
Harmonic Morphisms Projecting Harmonic Functions to Harmonic Functions
Mustafa, M. T.
2012-01-01
For Riemannian manifolds $M$ and $N$ , admitting a submersion $\\varphi $ with compact fibres, we introduce the projection of a function via its decomposition intohorizontal and vertical components. By comparing the Laplacians on $M$ and $N$ , we determine conditions under which a harmonic function on $U={\\varphi }^{-1}(V)\\subset M$ projects down, via its horizontal component, to a harmonic function on $V\\subset N$ .
SEVENTH HARMONIC 20 GHz CO-GENERATOR
Energy Technology Data Exchange (ETDEWEB)
Hirshfield, Jay L
2014-04-08
To satisfy the need for multi-MW rf sources in frequency ranges where commercial sources do not exist, a study was undertaken on a class of devices based on gyro-harmonic frequency multiplication. This mechanism relies upon adding energy in gyrating motion to a linear electron beam that traverses a rotating-mode TE111-mode drive cavity in a dc magnetic field. The beam then drifts along the magnetic field into a second cavity, operating in the TEn11-mode tuned to the nth harmonic of the drive cavity. Studies of this configuration have been carried out for 2 < n < 7. Results are given for multi-MW, efficient operation of a 7th harmonic device operating at 20 GHz, and a 2nd harmonic device operating at 22.4 GHz.
Heemink, Arnold; de Jong, B.; Prins, Harrie
1991-01-01
In this paper we describe a new approach to the harmonic analysis of the tide. For a number of reasons the harmonic constants are not really constant but vary slowly in time. Therefore, we introduce a narrow-band noise process to model the time-varying behaviour of these harmonic parameters.
Xu, Xiangbo; Chen, Shao; Liu, Jinhao
2017-04-04
Harmonic force and torque, which are caused by rotor imbalance and sensor runout, are the dominant disturbances in active magnetic bearing (AMB) systems. To eliminate the harmonic force and torque, a novel control method based on repetitive control and notch filters is proposed. Firstly, the dynamics of a four radial degrees of freedom AMB system is described, and the AMB model can be described in terms of the translational and rotational motions, respectively. Next, a closed-loop generalized notch filter is utilized to identify the synchronous displacement resulting from the rotor imbalance, and a feed-forward compensation of the synchronous force and torque related to the AMB displacement stiffness is formulated by using the identified synchronous displacement. Then, a plug-in repetitive controller is designed to track the synchronous feed-forward compensation adaptively and to suppress the harmonic vibrations due to the sensor runout. Finally, the proposed control method is verified by simulations and experiments. The control algorithm is insensitive to the parameter variations of the power amplifiers and can precisely suppress the harmonic force and torque. Its practicality stems from its low computational load.
Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf
2012-04-01
Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Mizuho Fushitani
2016-11-01
Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.
Making space for harmonic oscillators
Energy Technology Data Exchange (ETDEWEB)
Michelotti, Leo; /Fermilab
2004-11-01
If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.
Axler, Sheldon; Ramey, Wade
2013-01-01
This is a book about harmonic functions in Euclidean space. Readers with a background in real and complex analysis at the beginning graduate level will feel comfortable with the material presented here. The authors have taken unusual care to motivate concepts and simplify proofs. Topics include: basic properties of harmonic functions, Poisson integrals, the Kelvin transform, spherical harmonics, harmonic Hardy spaces, harmonic Bergman spaces, the decomposition theorem, Laurent expansions, isolated singularities, and the Dirichlet problem. The new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bocher's Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package-designed by the authors and available by e-mail - supplements the text for readers who wish to explore harmonic function theory on a computer.
Time-series analysis of vibrational nuclear wave-packet dynamics in D2+
Thumm, Uwe; Niederhausen, Thomas; Feuerstein, Bernold
2008-06-01
We discuss the extent to which measured time-dependent fragment kinetic energy release (KER) spectra and calculated nuclear probability densities can reveal (1) the transition frequencies between stationary vibrational states, (2) the nodal structure of stationary vibrational states, (3) the ground-state adiabatic electronic potential curve of the molecular ion, and (4) the progression of decoherence induced by random interactions with the environment. We illustrate our discussion with numerical simulations for the time-dependent nuclear motion of vibrational wave packets in the D2+ molecular ion caused by the ionization of its neutral D2 parent molecule with an intense pump laser pulse. Based on a harmonic time-series analysis, we suggest a general scheme for the full reconstruction, up to an overall phase factor, of the initial wave packets based on measured KER spectra. We apply this scheme in a numerical simulation for vibrational wave packets in D2+ molecular ions and show how this reconstruction allows the clear distinction between commonly assumed stationary vibrational state distributions of the molecular ion following the ionization of D2 .
Analysis of potential helicopter vibration reduction concepts
Landgrebe, A. J.; Davis, M. W.
1985-01-01
Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.
Directory of Open Access Journals (Sweden)
Jared Wynn
2010-01-01
Full Text Available The objective of this project is to derive and solve the equation of motion for a pendulum swinging at small angles in one dimension. The pendulum may be either a simple pendulum like a ball hanging from a string or a physical pendulum like a pendulum on a clock. For simplicity, we only considered small rotational angles so that the equation of motion becomes a harmonic oscillator.
Nakai, Hiromi; Ishikawa, Atsushi
2014-11-01
We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor-liquid equilibration of water and ethanol, and dissolution of gaseous CO2 in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.
Nakai, Hiromi; Ishikawa, Atsushi
2014-11-07
We propose a novel quantum chemical method, called the harmonic solvation model (HSM), for calculating thermochemical parameters in the condensed phase, particularly in the liquid phase. The HSM represents translational and rotational motions of a solute as vibrations interacting with a cavity wall of solvent molecules. As examples, the HSM and the ideal-gas model (IGM) were used for the standard formation reaction of liquid water, combustion reactions of liquid formic acid, methanol, and ethanol, vapor-liquid equilibration of water and ethanol, and dissolution of gaseous CO2 in water. The numerical results confirmed the reliability and applicability of the HSM. In particular, the temperature dependence of the Gibbs energy of liquid molecules was accurately reproduced by the HSM; for example, the boiling point of water was reasonably determined using the HSM, whereas the conventional IGM treatment failed to obtain a crossing of the two Gibbs energy curves for gaseous and liquid water.
Coupled electromechanical model of an imperfect piezoelectric vibrating cylinder gyroscope
CSIR Research Space (South Africa)
Loveday, PW
1996-01-01
Full Text Available Coupled electromechanical equations of motion, describing the dynamics of a vibrating cylinder gyroscope, are derived using Hamilton's principle and the Rayleigh-Ritz method. The vibrating cylinder gyroscope comprises a thin walled steel cylinder...
Music of the heavens Kepler's harmonic astronomy
Stephenson, Bruce
2014-01-01
Valued today for its development of the third law of planetary motion, Harmonice mundi (1619) was intended by Kepler to expand on ancient efforts to discern a Creator's plan for the planetary system--an arrangement thought to be based on harmonic relationships. Challenging critics who characterize Kepler's theories of harmonic astronomy as ""mystical,"" Bruce Stephenson offers the first thorough technical analysis of the music the astronomer thought the heavens made, and the logic that led him to find musical patterns in his data. In so doing, Stephenson illuminates crucial aspects of Kepler'
Free Fall and Harmonic Oscillations: Analyzing Trampoline Jumps
Pendrill, Ann-Marie; Eager, David
2015-01-01
Trampolines can be found in many gardens and also in some playgrounds. They offer an easily accessible vertical motion that includes free fall. In this work, the motion on a trampoline is modelled by assuming a linear relation between force and deflection, giving harmonic oscillations for small amplitudes. An expression for the cycle-time is…
Directory of Open Access Journals (Sweden)
Aboozar Heydari
2017-09-01
Full Text Available In this paper, the effects of nonlinear forces due to the electromagnetic field of bearing and the unbalancing force on nonlinear vibration behavior of a rotor is investigated. The rotor is modeled as a rigid body that is supported by two magnetic bearings with eight-polar structures. The governing dynamics equations of the system that are coupled nonlinear second order ordinary differential equations (ODEs are derived, and for solving these equations, the homotopy perturbation method (HPM is used. By applying HPM, the possibility of presenting a harmonic semi-analytical solution, is provided. In fact, with equality the coefficient of auxiliary parameter (p, the system of coupled nonlinear second order and non-homogenous differential equations are obtained so that consists of unbalancing effects. By considering some initial condition for displacement and velocity in the horizontal and vertical directions, free vibration analysis is done and next, the forced vibration analysis under the effect of harmonic forces also is investigated. Likewise, various parameters on the vibration behavior of rotor are studied. Changes in amplitude and response phase per excitation frequency are investigated. Results show that by increasing excitation frequency, the motion amplitude is also increases and by passing the critical speed, it decreases. Also it shows that the magnetic bearing system performance is in stable maintenance of rotor. The parameters affecting on vibration behavior, has been studied and by comparison the results with the other references, which have a good precision up to 2nd order of embedding parameter, it implies the accuracy of this method in current research.
Plasma high-order-harmonic generation from ultraintense laser pulses
Tang, Suo; Kumar, Naveen; Keitel, Christoph H.
2017-05-01
Plasma high-order-harmonic generation from an extremely intense short-pulse laser is explored by including the effects of ion motion, electron-ion collisions, and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect, resulting in frequency shifting and widening of the harmonic spectra. The classical radiation reaction force slightly mitigates the frequency broadening caused by the ion motion. Based on the results and physical considerations, parameter maps highlighting the optimum regions for generating a single intense attosecond pulse and coherent XUV radiation are presented.
Free vibrations of circular cylindrical shells
Armenàkas, Anthony E; Herrmann, George
1969-01-01
Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are
Analysis of radial vibrations of poroelastic circular cylindrical shells ...
African Journals Online (AJOL)
DR OKE
Gazis (1959) discussed the propagation of free harmonic waves along a hollow elastic circular cylinder of infinite extent and solved the frequency equation ... The coefficient Q represents the coupling between the volume change of the ... can readily be evaluated for steady state harmonic vibrations from equations (1) are.
Chapman, Craig T.; Cina, Jeffrey A.
2007-09-01
Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculations of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Without resorting to a simple harmonic analysis, both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath. Both approaches expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intermolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude—but still perhaps coherent—motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials. Computational demands for propagation of the parameter equations of motion appear quite manageable for tens or hundreds of atoms and scale similarly with system size in the two cases. Because of the time-scale separation between intermolecular and lattice vibrations, the AVB/GB theory may in some instances require fewer vibrational basis states than the FVB/GB approach. Either framework should enable practical first-principles calculations of nonlinear optical
Vibration response of misaligned rotors
Patel, Tejas H.; Darpe, Ashish K.
2009-08-01
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.
Coupled rotor/airframe vibration analysis
Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.
1982-01-01
A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.
The Study of Damped Harmonic Oscillations Using an Electronic Counter
Wadhwa, Ajay
2009-01-01
We study damped harmonic oscillations in mechanical systems like the loaded spring and simple pendulum with the help of an oscillation measuring electronic counter. The experimental data are used in a software program that solves the differential equation for damped vibrations of any system and determines its position, velocity and acceleration as…
Cartmell, Matthew P.
2016-09-01
The Editor wishes to make the reader aware that the paper "Semi-active control of the rocking motion of monolithic art objects" by R. Ceravolo, M.L. Pecorelli, and L.Z. Fragonara, did not contain a direct citation of the fundamental and original work by D. Konstantinidis and N. Makris entitled "Experimental and analytical studies on the seismic response of free-standing and anchored laboratory equipment", Report No. PEER 2005/07. Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, 2005. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.
Qing Wang, Yan; Zu, Jean W.
2017-10-01
This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge-Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.
Bielawa, R. L.
1982-01-01
Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.
An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex
Directory of Open Access Journals (Sweden)
Shin-Woong Kim
2016-07-01
Full Text Available This paper presents results of an experimental investigation of vortex-induced vibration (VIV of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, f∗, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity (Vr range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with f∗.
Large amplitude forced vibration analysis of cross-beam system ...
African Journals Online (AJOL)
Large amplitude forced vibration behaviour of cross-beam system under harmonic excitation is studied, incorporating the effect of geometric non-linearity. The forced vibration analysis is carried out in an indirect way, in which the dynamic system is assumed to satisfy the force equilibrium condition at peak load value, thus ...
Vázquez, Juana; Harding, Michael E; Stanton, John F; Gauss, Jürgen
2011-05-10
A variational method for the calculation of low-lying vibrational energy levels of molecules with small amplitude vibrations is presented. The approach is based on the Watson Hamiltonian in rectilinear normal coordinates and characterized by a quasi-analytic integration over the kinetic energy operator (KEO). The KEO beyond the harmonic approximation is represented by a Taylor series in terms of the rectilinear normal coordinates around the equilibrium configuration. This formulation of the KEO enables its extension to arbitrary order until numerical convergence is reached for those states describing small amplitude motions and suitably represented with a rectilinear system of coordinates. A Gauss-Hermite quadrature grid representation of the anharmonic potential is used for all the benchmark examples presented. Results for a set of molecules with linear and nonlinear configurations, i.e., CO2, H2O, and formyl fluoride (HFCO), illustrate the performance of the method and the versatility of our implementation.
Vibration analysis of composite laminate plate excited by piezoelectric actuators.
Her, Shiuh-Chuan; Lin, Chi-Sheng
2013-03-01
Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.
W.H. van Boom (Willem)
2009-01-01
textabstractThis paper presents a review of the literature on comparative tort law and economics. It pays special attention to the economics arguments against and in favour of harmonization of tort law in Europe.
Strong nonlinear harmonic generation in a PZT/Aluminum resonator
Parenthoine, D.; Haumesser, L.; Vander Meulen, F.; Tran-Huu-Hue, L.-P.
2009-11-01
In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4×4 mm2 cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.
Multi-frequency response of a cylinder subjected to vortex shedding and support motions
Energy Technology Data Exchange (ETDEWEB)
Vikestad, Kyrre
1998-12-31
This thesis deals with an experimental investigation of vortex induced vibrations of a circular cylinder. The purpose of the experiment was to identify the influence from a controlled disturbance of the cylinder motions on the response caused by vortex shedding. The cylinder investigated is 2 m long and the diameter is 10 cm. The cylinder is elastically mounted in an apparatus using springs, where the foundation of one of the springs can have a harmonic motion. The apparatus is placed on a carriage in a 25 m long towing tank. Towing velocities are varied between 0.140 m/s and 0.655 m/s corresponding to reduced velocity range from 2.8 to 13.2. The still water natural frequency is 0.497 Hz, and the natural frequency in air is 0.634 Hz. The cylinder is only able to oscillate in the cross-flow direction. The support motion frequency was varied between 0.26 Hz and 1.01 Hz, and the force motion amplitude was varied using 2, 4 and 6 cm support amplitudes. Three sets of experiments were carried out: (1) Still water oscillations due to harmonic support motion excitation, support amplitude and frequencies varied, (2) Towing tests with no support motion, the velocity is varied, (3) Combined excitation: Towing tests with support motion. All possible combinations of experiments (1) and (2) are carried out. The two first experiments provide reference values for the combined excitation experiments and for verification purposes. The results reveal the ability of the external disturbance to influence the vortex shedding process both regarding frequency and the resulting response amplitudes. Results for added mass, in-line drag and damping are also obtained. The work may be of use in deep water floating petroleum production. 81 refs., 73 figs., 6 tabs.
Combet, F.; Gelman, L.
2011-04-01
In this paper, a novel adaptive demodulation technique including a new diagnostic feature is proposed for gear diagnosis in conditions of variable amplitudes of the mesh harmonics. This vibration technique employs the time synchronous average (TSA) of vibration signals. The new adaptive diagnostic feature is defined as the ratio of the sum of the sideband components of the envelope spectrum of a mesh harmonic to the measured power of the mesh harmonic. The proposed adaptation of the technique is justified theoretically and experimentally by the high level of the positive covariance between amplitudes of the mesh harmonics and the sidebands in conditions of variable amplitudes of the mesh harmonics. It is shown that the adaptive demodulation technique preserves effectiveness of local fault detection of gears operating in conditions of variable mesh amplitudes.
Structure and thermal motion of phosphorylethanolamine at 122 K from neutron diffraction
Energy Technology Data Exchange (ETDEWEB)
Weber, H.P.; McMullan, R.K.; Swaminathan, S.; Craven, B.M.
1984-01-01
At 122K, the crystalline structure of phosphorylethanolamine is monoclinic and the crystal parameters are reported. Nuclear anisotropic thermal parameters have been analyzed to describe the molecular thermal motion including the non-rigid vibrations. The C-H distances with both harmonic librational and anharmonic stretching-motion corrections range from 1.095(4) to 1.099(4)A. These estimated bond lengths are in satisfactory agreement with values determined for C-H theoretically and by other experimental methods. The configuration of the P-O bonds in the monoester H-O-P-O-C group is (+)-ac, (-)-sc. The terminal O-H and NH3 groups are twisted 40 to 20, respectively, from ideally expected for adjacent OCH3 groups alternating up and down.
H/sub 3/ /sup +/: Ab initio calculation of the vibration spectrum
Energy Technology Data Exchange (ETDEWEB)
Carney, G.D.; Porter, R.N.
1976-11-01
The vibration spectrum of H/sub 3/ /sup +/ is calculated from the representation of a previously reported (J. Chem Phys. 60, 4251 (1974)) ab initio potential-energy surface in a fifth degree Simons--Parr--Finlan (SPF) expansion. Morse- and harmonic-oscillator basis functions are used to describe the motions of the three oscillators and the Harris--Engerholm--Gwinn quadrature technique is used to obtain matrix elements of the Hamiltonian in the basis of vibrational configurations. Our variational method is thus analogous to configuration--interaction calculations for electronic states. The ground state is found to have a zero-point energy of 4345 cm/sup -1/ and a vibrationally averaged geometry of R/sub 1/=R/sub 2/=0.91396 A, theta=60.0012degree, where theta is the angle between the two equivalent bonds. The transition frequencies for the E and A/sub 1/ fundamentals are nu-bar/sub E/=2516 cm/sup -1/ and nu-bar/sub A/=3185 cm/sup -1/ and those for the corresponding first overtones of the bending mode are 2nu-bar/sub E/=5004 +- 4 cm/sup -1/ and 2nu-bar/sub A/=4799 cm/sup -1/. The first overtone of the breathing mode is 6264 cm/sup -1/. The first-excited A/sub 1/ vibration state is metastable with a dipole--radiation lifetime of 3 sec. Transition frequencies, Einstein coefficients, and lifetimes are reported for a total of 21 transitions. Analysis of results for Dunham number and normal-coordinate expansions in comparison with those for SPF expansion show the latter to be superior for ab initio vibrational calculations. A scheme for possible direct measurement of the fundamental A/sub 1/ and E vibrational bands is suggested. (AIP)
Design of the Active Elevon Rotor for Low Vibration
Fulton, Mark V.; Rutkowski, Michael (Technical Monitor)
2000-01-01
Helicopter fuselages vibrate more than desired, and traditional solutions have limited effectiveness and can impose an appreciable weight penalty. Alternative methods of combating high vibration, including Higher Harmonic Control (HHC) via harmonic swashplate motion and Individual Blade Control (IBC) via active pitch links, have been studied for several decades. HHC via an on-blade control surface was tested in 1977 on a full scale rotor using a secondary active swashplate and a mechanical control system. Recent smart material advances have prompted new research into the use of on-blade control concepts. Recent analytical studies have indicated that the use of on-blade control surfaces produces vibration reduction comparable to swashplate-based HHC but for less power. Furthermore, smart materials (such as piezoceramics) have been shown to provide sufficient control authority for preliminary rotor experiments. These experiments were initially performed at small scale for reduced tip speeds. More recent experiments have been conducted at or near full tip speeds, and a full-scale active rotor is under development by Boeing with Eurocopter et al. pursuing a similarly advanced full-scale implementation. The US Army Aeroflightdynamics Directorate has undertaken a new research program called the Active Elevon Rotor (AER) Focus Demo. This program includes the design, fabrication, and wind. tunnel testing of a four-bladed, 12.96 ft diameter rotor with one or two on-blade elevons per blade. The rotor, which will be Mach scaled, will use 2-5/rev elevon motion for closed-loop control and :will be tested in late 2001. The primary goal of the AER Focus Demo is the reduction of vibratory hub loads by 80% and the reduction of vibratory blade structural loads. A secondary goal is the reduction of rotor power. The third priority is the measurement and possible reduction of Blade Vortex Interaction (BVI) noise. The present study is focused on elevon effectiveness, that is, the elevon
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
Energy Technology Data Exchange (ETDEWEB)
Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering
2003-12-01
The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.
Directory of Open Access Journals (Sweden)
2016-01-01
Full Text Available The paper carried out a comparison of vibration sensors used to measure the vibration condition units with gas turbine engines, with motion sensors, microelectromechanical systems used in modern mobile devices (for example, devices on the platform "Android". It provides opinions on the possibility of assessment of vibration, using sensors of mobile devices.
A dynamic styrofoam-ball model for simulating molecular motion
Mak, Se-yuen; Cheung, Derek
2001-01-01
In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.
Vibrations of an ice-tongue using GPS records
Lescarmontier, Lydie; Legrésy, Benoit; Coleman, Richard; Young, Neal; Testut, Laurent
2010-05-01
In November 2007, during the IPEV R0 Astrolabe voyage, we deployed a network of year-round GPS beacons along a flow line of the Mertz glacier in East Antarctica (CRAC-ICE project, Legrésy et al.). Two months of GPS data were collected at the end of the field season from 2 stations (GPS4 & GPS5) around the main rift on the Mertz floating ice tongue. We investigate sub daily time scales of motion of the two sites using the GPS records. The observed vertical signal includes tides, but also more rapid signals at sub-hourly time scales. With GPS processing using Gins-PC software and Precise Point Positioning processing (PPP); we are able to confirm getting the sub hourly scale oscillations of the ice tongue with few centimeters amplitude from two different part of the floating ice tongue. One mechanism in calving events is ocean wave energy, which leads to the movement of the ice tongue. The glacier then acts like a filter, with filtering characteristics depending mainly of the ice thickness (Holsworth and Gynn 1981). If a dominant frequency of the ocean wave spectrum coincides with one of the fundamental vibration modes of the ice-tongue, cyclic bending stresses may lead to fatigue of the ice and hence to crack propagation. This kind of event is a good candidate to explain a part of a calving process of an ice-tongue. Therefore, we focused of these oscillations using Harmonic analysis, short term FFT and wavelets. We identified a main energetic mode of vibrations around 10-40 minutes (23% of the total energy of the signal) that we compared with simple modeling of the fundamental vibrations of a beam. The model has been run in different cases of ice thickness, ice-tongue length and directions of the observed vibrations. The most visible oscillations correspond to a main mode of vibration propagating in the across flow direction of the ice tongue, driven mostly by ocean forcing. Both GPS sites are recording these vibrations. Given that each beacon is situated on from
DEFF Research Database (Denmark)
Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm; Jensen, Jesper Rindom
2017-01-01
The harmonic chirp signal model has only very recently been in- troduced for modelling approximately periodic signals with a time- varying fundamental frequency. A number of estimators for the pa- rameters of this model have already been proposed, but they are ei- ther inaccurate, non-robust to n......The harmonic chirp signal model has only very recently been in- troduced for modelling approximately periodic signals with a time- varying fundamental frequency. A number of estimators for the pa- rameters of this model have already been proposed, but they are ei- ther inaccurate, non......-robust to noise, or very computationally inten- sive. In this paper, we propose a fast algorithm for the harmonic chirp summation method which has been demonstrated in the liter- ature to be accurate and robust to noise. The proposed algorithm is orders of magnitudes faster than previous algorithms which is also...
Bennett, Charles L.
2016-03-22
A reciprocating-piston uniflow engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. When released, the inlet valve head undergoes a single oscillation past the equilibrium position to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. In other embodiments, the harmonic oscillator arrangement of the inlet valve enables the uniflow engine to be reversibly operated as a uniflow compressor.
Second harmonic generation imaging
2013-01-01
Second-harmonic generation (SHG) microscopy has shown great promise for imaging live cells and tissues, with applications in basic science, medical research, and tissue engineering. Second Harmonic Generation Imaging offers a complete guide to this optical modality, from basic principles, instrumentation, methods, and image analysis to biomedical applications. The book features contributions by experts in second-harmonic imaging, including many pioneering researchers in the field. Written for researchers at all levels, it takes an in-depth look at the current state of the art and possibilities of SHG microscopy. Organized into three sections, the book: Provides an introduction to the physics of the process, step-by-step instructions on how to build an SHG microscope, and comparisons with related imaging techniques Gives an overview of the capabilities of SHG microscopy for imaging tissues and cells—including cell membranes, muscle, collagen in tissues, and microtubules in live cells—by summarizing experi...
Hyperbolic Harmonic Mapping for Surface Registration.
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2017-05-01
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture industries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards.
General Criterion for Harmonicity
Proesmans, Karel; Vandebroek, Hans; Van den Broeck, Christian
2017-10-01
Inspired by Kubo-Anderson Markov processes, we introduce a new class of transfer matrices whose largest eigenvalue is determined by a simple explicit algebraic equation. Applications include the free energy calculation for various equilibrium systems and a general criterion for perfect harmonicity, i.e., a free energy that is exactly quadratic in the external field. As an illustration, we construct a "perfect spring," namely, a polymer with non-Gaussian, exponentially distributed subunits which, nevertheless, remains harmonic until it is fully stretched. This surprising discovery is confirmed by Monte Carlo and Langevin simulations.
Harmonic arbitrary waveform generator
Energy Technology Data Exchange (ETDEWEB)
Roberts, Brock Franklin
2017-11-28
High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrary waveform.
Quantum harmonically kicked environments
Custódio, M. S.; Strunz, W. T.; Beims, M. W.
2017-11-01
In this work we derive a generalized map which describes the time evolution of a quantum system coupled to a quantum environment composed by a finite number of free particles kicked harmonically at periodic times. Dissipation is introduced via the interaction between system and environment, which is switched on and off simultaneously at regular time intervals. The dynamics of the environmental particles occurs along rotated ellipsis in phase space and can be described by unrotated harmonic oscillators with a new frequency which depends on the kicking time. With the definition of a thermal bath we show that our quantum kicked environment induces an unusual fluctuation-dissipation relation.
Booster Double Harmonic Setup Notes
Energy Technology Data Exchange (ETDEWEB)
Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.
2015-02-17
The motivation behind implementing a booster double harmonic include the reduced transverse space charge force from a reduced peak beam current and reduced momentum spread of the beam, both of which can be achieved from flattening the RF bucket. RF capture and acceleration of polarized protons (PP) is first set up in the single harmonic mode with RF harmonic h=1. Once capture and acceleration have been set up in the single harmonic mode, the second harmonic system is brought on and programmed to operate in concert with the single harmonic system.
Non-Linear Forced Vibrations of AN Inhomogeneous Layer
COSKUN, I.; ENGIN, H.; ERGÜVEN, M. E.
1999-11-01
The non-linear vibrations of an inhomogeneous soil layer which is subjected to a harmonic motion along its bottom are investigated in this study. The Ramberg-Osgood model is transformed to a suitable form to obtain an analytical solution and it is assumed that the shear modulus of the layer varies with depth. The governing equation is a non-linear partial differential equation. Because of weak non-linearity, the displacement and forcing frequency are expanded into perturbation series by using the Lindstedt-Poincaré technique, and it is assumed that the response has the same periodicity as the forcing. Then, the zeroeth and the first order linear equations of motion and boundary conditions are obtained. Different types of solutions are obtained for the zeroeth order equation depending on the inhomogeneity parameter α. The orthogonality condition of Millman-Keller [1] is used to extract secular terms which are important in the resonance region. Then, the variation of the amplitude at the top versus the forcing frequency Ω is investigated for some values of inhomogeneity and perturbation parameters.
Chaotic vortex induced vibrations
Energy Technology Data Exchange (ETDEWEB)
Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)
2014-12-15
This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.
Harmonic Intravascular Ultrasound
M.E. Frijlink (Martijn)
2006-01-01
textabstractMedical ultrasound is a popular imaging modality in cardiology. Harmonic Imaging is a technique that has been shown to increase the image quality of diagnostic ultrasound at frequencies below 10 MHz. However, Intravascular Ultrasound, which is a technique to acoustically investigate
The Local Stellar Velocity Field via Vector Spherical Harmonics
Makarov, V. V.; Murphy, D. W.
2007-01-01
We analyze the local field of stellar tangential velocities for a sample of 42,339 nonbinary Hipparcos stars with accurate parallaxes, using a vector spherical harmonic formalism.We derive simple relations between the parameters of the classical linear model (Ogorodnikov-Milne) of the local systemic field and low-degree terms of the general vector harmonic decomposition. Taking advantage of these relationships, we determine the solar velocity with respect to the local stars of (V(sub X), V(sub Y), V(sub Z)) = (10.5, 18.5, 7.3) +/- 0.1 km s(exp -1) not for the asymmetric drift with respect to the local standard of rest. If only stars more distant than 100 pc are considered, the peculiar solar motion is (V(sub X), V(sub Y), V(sub Z)) = (9.9, 15.6, 6.9) +/- 0.2 km s(exp -1). The adverse effects of harmonic leakage, which occurs between the reflex solar motion represented by the three electric vector harmonics in the velocity space and higher degree harmonics in the proper-motion space, are eliminated in our analysis by direct subtraction of the reflex solar velocity in its tangential components for each star...
Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)
1996-12-31
Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.
Jeong, Chanseok
2011-03-01
Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.
Young children's harmonic perception.
Costa-Giomi, Eugenia
2003-11-01
Harmony and tonality are two of the most difficult elements for young children to perceive and manipulate and are seldom taught in the schools until the end of early childhood. Children's gradual harmonic and tonal development has been attributed to their cumulative exposure to Western tonal music and their increasing experiential knowledge of its rules and principles. Two questions that are relevant to this problem are: (1) Can focused and systematic teaching accelerate the learning of the harmonic/tonal principles that seem to occur in an implicit way throughout childhood? (2) Are there cognitive constraints that make it difficult for young children to perceive and/or manipulate certain harmonic and tonal principles? A series of studies specifically addressed the first question and suggested some possible answers to the second one. Results showed that harmonic instruction has limited effects on children's perception of harmony and indicated that the drastic improvement in the perception of implied harmony noted approximately at age 9 is due to development rather than instruction. I propose that young children's difficulty in perceiving implied harmony stems from their attention behaviors. Older children have less memory constraints and more strategies to direct their attention to the relevant cues of the stimulus. Younger children focus their attention on the melody, if present in the stimulus, and specifically on its concrete elements such as rhythm, pitch, and contour rather than its abstract elements such as harmony and key. The inference of the abstract harmonic organization of a melody required in the perception of implied harmony is thus an elusive task for the young child.
Harmonic Patterns in Forex Trading
Nemček, Sebastian
2013-01-01
This diploma thesis is committed to examination of validity of Harmonic Patterns in Forex trading. Scott Carney described existing and introduced new Harmonic Patterns in 1999 in his book Harmonic Trader. These patterns use the Fibonacci principle to analyze price action and to provide both bullish and bearish trading signals. The goal of this thesis is to find out whether harmonic trading strategy on selected pairs is profitable in FX market, which patterns are the most profitable and what i...
Damping Estimation Using Free Decays and Ambient Vibration Tests
DEFF Research Database (Denmark)
Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro
2007-01-01
The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient...... vibration or from free vibration tests. In the last case, the structural response after application of an impulse or after the application of harmonic loads can be used. Ambient vibration tests have the strong advantage of being more practical and economical. However, recent applications of both approaches...
Wang, Yan Qing
2018-02-01
To provide reference for aerospace structural design, electro-mechanical vibrations of functionally graded piezoelectric material (FGPM) plates carrying porosities in the translation state are investigated. A modified power law formulation is employed to depict the material properties of the plates in the thickness direction. Three terms of inertial forces are taken into account due to the translation of plates. The geometrical nonlinearity is considered by adopting the von Kármán non-linear relations. Using the d'Alembert's principle, the nonlinear governing equation of the out-of-plane motion of the plates is derived. The equation is further discretized to a system of ordinary differential equations using the Galerkin method, which are subsequently solved via the harmonic balance method. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. Additionally, the stability of the steady state responses is examined by means of the perturbation technique. Linear and nonlinear vibration analyses are both carried out and results display some interesting dynamic phenomenon for translational porous FGPM plates. Parametric study shows that the vibration characteristics of the present inhomogeneous structure depend on several key physical parameters.
Active Vibration Control of a Nonlinear Beam with Self- and External Excitations
Directory of Open Access Journals (Sweden)
J. Warminski
2013-01-01
Full Text Available An application of the nonlinear saturation control (NSC algorithm for a self-excited strongly nonlinear beam structure driven by an external force is presented in the paper. The mathematical model accounts for an Euler-Bernoulli beam with nonlinear curvature, reduced to first mode oscillations. It is assumed that the beam vibrates in the presence of a harmonic excitation close to the first natural frequency of the beam, and additionally the beam is self-excited by fluid flow, which is modelled by a nonlinear Rayleigh term for self-excitation. The self- and externally excited vibrations have been reduced by the application of an active, saturation-based controller. The approximate analytical solutions for a full structure have been found by the multiple time scales method, up to the first-order approximation. The analytical solutions have been compared with numerical results obtained from direct integration of the ordinary differential equations of motion. Finally, the influence of a negative damping term and the controller's parameters for effective vibrations suppression are presented.
Recursive Harmonic Numbers and Binomial Coefficients
Maw, Aung Phone; Kyaw, Aung
2017-01-01
We define recursive harmonic numbers as a generalization of harmonic numbers. The table of recursive harmonic numbers, which is like Pascal's triangle, is constructed. A formula for recursive harmonic numbers containing binomial coefficients is also presented.
Piezoelectric energy harvesting from broadband random vibrations
Adhikari, S.; Friswell, M. I.; Inman, D. J.
2009-11-01
Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.
Principles of harmonic analysis
Deitmar, Anton
2014-01-01
This book offers a complete and streamlined treatment of the central principles of abelian harmonic analysis: Pontryagin duality, the Plancherel theorem and the Poisson summation formula, as well as their respective generalizations to non-abelian groups, including the Selberg trace formula. The principles are then applied to spectral analysis of Heisenberg manifolds and Riemann surfaces. This new edition contains a new chapter on p-adic and adelic groups, as well as a complementary section on direct and projective limits. Many of the supporting proofs have been revised and refined. The book is an excellent resource for graduate students who wish to learn and understand harmonic analysis and for researchers seeking to apply it.
High harmonic generation from impulsively aligned SO2
Devin, Julien; Wang, Song; Kaldun, Andreas; Bucksbaum, Phil
2016-05-01
Previous work in high harmonics generation (HHG) in aligned molecular gases has mainly focused on rotational dynamics in order to determine the contributions of different orbitals to the ionization step. In our experiment, we focus on the shorter timescale of vibrational dynamics. We generate high harmonics from impulsively aligned SO2 molecules in a gas jet and record the emitted attosecond pulse trains in a home-built high resolution vacuum ultra violet (VUV) spectrometer. Using the high temporal resolution of our setup, we are able to map out the effects of vibrational wavepackets with a sub-femtosecond resolution. The target molecule, SO2 gas, is impulsively aligned by a near-infrared laser pulse and has accessible vibrations on the timescale of the short laser pulse used. We present first experimental results for the response to this excitation in high-harmonics. We observe both fast oscillations in the time domain as well as shifts of the VUV photon energy outside of the pulse overlaps. Research supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences, and Biosciences Division and by the National Science Foundation Graduate Research Fellowship.
Harmonics in transmission power systems
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz
Some time ago, Energinet.dk, the Transmission System Operator of the 150 kV and 400 kV transmission network in Denmark, had experienced operational malfunctions of some of the measuring and protection equipment. Also an overloading of a harmonic filter has been reported, and therefore, a need...... to perform more detailed harmonic studies emerged. Since the transmission network has a complex structure and its impedance varies with frequency in a nonlinear fashion, such harmonic study would require a detailed computer model of the network. Consequently, a PhD project proposal titled "Harmonics......, provided that background harmonic distortion, and the network configuration, are not changing during the measurement. It is shown that switching of a shunt linear power system component can result in variation of the harmonic levels that can be measured and used to verify the harmonic model of the network...
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
2009-01-01
Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.
Vibrational Motion of Arctic Pack Ice
National Research Council Canada - National Science Library
Dugan, John
1997-01-01
... fracturing, and wind blown ice crystals. The sensors were frozen into the top surface of the ice, and they provided direct measurements of the vertical velocity that occurs in response to the different modes of waves that propagate away from these generation regions. The shape of the frequency spectrum is shown to be a strong function of the forcing mechanism, with the different ones being readily identifiable.
Graff, Karl F
1991-01-01
This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter
Three-dimensional simulations of harmonic radiation and harmonic lasing
Energy Technology Data Exchange (ETDEWEB)
Schmitt, M.J.; McVey, B.D.
1990-01-01
Characteristics of the harmonic emission from free-electron lasers (FELs) are examined in the spontaneous, coherent-spontaneous and stimulated emission regimes. The radiation at both odd and even harmonic frequencies is treated for electron beams with finite emittance and energy spread. In the spontaneous emission regime, the transverse radiation patterns including the transverse frequency dependences, are given. How this expression is modified to include energy spread and emittance is described. In the coherent-spontaneous emission and stimulated emission regimes, the interaction of the radiation fields with the electrons must be treated self-consistently. Here, a single-frequency distributed transverse source function for each electron is used in the harmonic version of the 3-D code FELEX to model the harmonic radiation. The code has recently been modified to simultaneously model the fundamental and harmonic interactions for multiple-pass oscillator simulations. These modifications facilitate the examination of FELs under various operating conditions. When the FEL is lasing at the fundamental, the evolution of the harmonic fields can be examined. This evolution is unique in the sense that the electron beam radiates at the harmonic frequencies in the presence of the harmonic radiation circulating in the cavity. As a result, enhancements of the harmonic emission can be observed. Finally, harmonic lasing can occur in cases where there is sufficient gain to overcome cavity losses and lasing at the fundamental can be suppressed. The characteristics and efficiency of these interactions are explored. 11 refs., 9 figs.
Hirsch, Sebastian; Klatt, Dieter; Freimann, Florian; Scheel, Michael; Braun, Jürgen; Sack, Ingolf
2013-09-01
Motion-sensitive phase contrast magnetic resonance imaging and magnetic resonance elastography are applied for the measurement of volumetric strain and tissue compressibility in human brain. Volumetric strain calculated by the divergence operator using a biphasic effective-medium model is related to dilatation and compression of fluid spaces during harmonic stimulation of the head or during intracranial passage of the arterial pulse wave. In six volunteers, phase contrast magnetic resonance imaging showed that the central cerebrum expands at arterial pulse wave to strain values of (2.8 ± 1.9)·10(-4). The evolution of volumetric strain agrees well with the magnitude of the harmonic divergence measured in eight volunteers by magnetic resonance elastography using external activation of 25 Hz vibration frequency. Intracranial volumetric strain was proven sensitive to venous pressure altered by abdominal muscle contraction. In eight volunteers, an increase in volumetric strain due to abdominal muscle contraction of approximately 45% was observed (P = 0.0001). The corresponding compression modulus in the range of 9.5-13.5 kPa demonstrated that the compressibility of brain tissue at 25 Hz stimulation is much higher than that of water. This pilot study provides the background for compression-sensitive magnetic resonance imaging with or without external head stimulation. Volumetric strain may be sensitive to fluid flow abnormalities or pressure imbalances between vasculature and parenchyma as seen in hydrocephalus. Copyright © 2012 Wiley Periodicals, Inc.
Monitoring Vibration of A Model of Rotating Machine
Directory of Open Access Journals (Sweden)
Arko Djajadi
2012-03-01
Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level.
Stress analysis of vibrating pipelines
Zachwieja, Janusz
2017-03-01
The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the
Mei, Chuh
1987-01-01
A finite element method is presented for the large amplitude vibrations of complex structures that can be modelled with beam and rectangular plate elements subjected to harmonic excitation. Both inplane deformation and inertia are considered in the formulation. Derivation of the harmonic force and nonlinear stiffness matrices for a beam and a rectangular plate element are presented. Solution procedures and convergence characteristics of the finite element method are described. Nonlinear response to uniform and concentrated harmonic loadings and improved nonlinear free vibration results are presented for beams and rectangular plates of various boundary conditions.
Efficiency of Nearly Periodic Structures for Mitigation of Ground Vibration
DEFF Research Database (Denmark)
Andersen, Lars Vabbersgaard; Peplow, Andrew; Bucinskas, Paulius
2017-01-01
be introduced by periodic inclusions or changes to the ground surface geometry. However, for vibration mitigation in the context of real civil-engineering problems related to ground-borne noise from railways, for example, the excitation is not strictly harmonic and a steady state of the response is usually......Periodic structures are known to produce passbands and stopbands for propagation of vibration energy within the frequency domain. Sources vibrating harmonically at a frequency within a passband can lead to propagation of energy through propagating modes over long distances. However, sources...... vibrating at a frequency within a stopband excite only nearfields in the form of attenuating and evanescent modes, and the energy decays with distance. The decay phenomena are due to destructive interference of waves reflected and scattered by interfaces or obstacles placed periodically within or between...
Daşdemir, A.
2017-08-01
The forced vibration of a multi-layered plate-strip with initial stress under the action of an arbitrary inclined time-harmonic force resting on a rigid foundation is considered. Within the framework of the piecewise homogeneous body model with the use of the three-dimensional linearized theory of elastic waves in initially stressed bodies (TLTEWISB), a mathematical modelling is presented in plane strain state. It is assumed that there exists the complete contact interaction at the interface between the layers and the materials of the layer are linearly elastic, homogeneous and isotropic. The governing system of the partial differential equations of motion for the considered problem is solved approximately by employing the Finite Element Method (FEM). Further, the influence of the initial stress parameter on the dynamic response of the plate-strip is presented.
Spectroscopy of Vibrational States in Diatomic Iodine Molecules
Mulholland, Mary; Harrill, Charles H.; Smith, R. Seth
2015-04-01
This project is focused on understanding the vibrational structure of iodine, which is a homonuclear diatomic molecule. A 20 mW, 532 nm cw diode laser was used to selectively excite neutral iodine molecules to a higher energy electronic state. By performing spectroscopy on the transitions from this state to a lower energy electronic state, the data only showed those vibrational bands which connect the two electronic states. Since a number of vibrational levels are populated in the higher energy electronic state, the transitions to all of the allowed vibrational levels in the lower energy electronic state provided sufficient data to determine the vibrational structures of both states. Emission spectra were collected with an Ocean Optics USB4000 Compact CCD Spectrometer. The spectrometer had a range of 500 - 770 nm with a resolution of approximately 0.5 nm and was sensitive enough to resolve the vibrational states in diatomic iodine molecules. The results were compared to a simple harmonic oscillator model.
Energy Technology Data Exchange (ETDEWEB)
Ganeev, R A [Ophthalmology and Advanced Laser Medical Center, Saitama Medical University, Saitama 350-0495 (Japan)
2015-09-30
We discuss the emergence of interest in the high-order harmonic generation (HHG) of ultrashort pulses propagated through laser-produced plasmas. It is shown that, during the last few years, substantial amendments of plasma HHG allowed in some cases the characteristics of gas HHG to be surpassed. The attractiveness of a new approach in coherent extreme ultraviolet radiation generation is demonstrated, which can also be used as a tool for laser-ablation-induced HHG spectroscopy of a giant class of solids. We present general ideas and prospects for this relatively new field of nonlinear optics. (review)
Harmonic analysis and applications
Heil, Christopher
2007-01-01
This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto's achievements and expresses an appreciation for the mathematical and personal inspiration he has given to
DEFF Research Database (Denmark)
Rasmussen, Birgit
insulation requirements seems unrealistic. However, by preparing a harmonized European classification scheme with a number of quality classes, member states could select a "harmonized" class fitting the national needs and conditions. A joint European Action, COST Action TU0901 "Integrating and Harmonizing...... and working groups. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Other goals are e.g. to establish a catalogue of sound insulation data and an on-line compendium......-in-Chief. Handbook of noise and vibration control, USA: Wiley and Son; 2007 [Ch. 114]. [4] COST Action TU0901 “Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions”, 2009-2013, www.cost.eu/index.php?id=240&action_number=tu0901 (public information at COST website) or http...
Vibrational mechanics nonlinear dynamic effects, general approach, applications
Blekhman, Iliya I
2000-01-01
This important book deals with vibrational mechanics - the new, intensively developing section of nonlinear dynamics and the theory of nonlinear oscillations. It offers a general approach to the study of the effect of vibration on nonlinear mechanical systems.The book presents the mathematical apparatus of vibrational mechanics which is used to describe such nonlinear effects as the disappearance and appearance under vibration of stable positions of equilibrium and motions (i.e. attractors), the change of the rheological properties of the media, self-synchronization, self-balancing, the vibrat
Lead-Lag Control for Helicopter Vibration and Noise Reduction
Gandhi, Farhan
1995-01-01
As a helicopter transitions from hover to forward flight, the main rotor blades experience an asymmetry in flow field around the azimuth, with the blade section tangential velocities increasing on the advancing side and decreasing on the retreating side. To compensate for the reduced dynamic pressure on the retreating side, the blade pitch angles over this part of the rotor disk are increased. Eventually, a high enough forward speed is attained to produce compressibility effects on the advancing side of the rotor disk and stall on the retreating side. The onset of these two phenomena drastically increases the rotor vibratory loads and power requirements, thereby effectively establishing a limit on the maximum achievable forward speed. The alleviation of compressibility and stall (and the associated decrease in vibratory loads and power) would potentially result in an increased maximum forward speed. In the past, several methods have been examined and implemented to reduce the vibratory hub loads. Some of these methods are aimed specifically at alleviating vibration at very high flight speeds and increasing the maximum flight speed, while others focus on vibration reduction within the conventional flight envelope. Among the later are several types passive as well as active schemes. Passive schemes include a variety of vibration absorbers such as mechanical springs, pendulums, and bifilar absorbers. These mechanism are easy to design and maintain, but incur significant weight and drag penalties. Among the popular active control schemes in consideration are Higher Harmonic Control (HHC) and Individual Blade Control (IBC). HHC uses a conventional swash plate to generate a multi-cyclic pitch input to the blade. This requires actuators capable of sufficiently high power and bandwidth, increasing the cost and weight of the aircraft. IBC places actuators in the rotating reference frame, requiring the use of slip rings capable of transferring enough power to the actuators
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
DEFF Research Database (Denmark)
Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar
2007-01-01
The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship am...
Liu, Hang; Feng, Liqiang
2017-09-01
Electron-nuclear dynamics of molecular high-order harmonic generation from H2+ and its isotopes has been theoretically investigated beyond the Born-Oppenheimer approximations. The results show that (i) due to the different ionisation probabilities and the harmonic emission times, the intensities of the harmonics from H2+ and its isotopes are very sensitive to the initial vibrational state, the pulse duration, and the pulse intensity. (ii) Due to the nonadiabatic effects in molecular high-order harmonic generation, the red-shifts of the harmonics can be found in the lower pulse intensity. With the increase of the pulse intensity, the harmonics are from the red-shifts to the blue-shifts. Moreover, as the pulse duration increases, the blue-shifts of the harmonics can be enhanced. As the initial vibrational state increases, the red-shifts of the harmonics can be decreased, whereas the blue-shifts of the harmonics can be enhanced. However, the shifts of the harmonics are decreased as the nuclear mass increases. (iii) Due to the coupled electron-nuclear dynamics in molecules, the spatial symmetry of the system is broken. As a result, non-odd harmonics can be generated at the larger internuclear distance. With the increase of the initial vibrational state or the nuclear mass, the generation of the non-odd harmonics can be enhanced and reduced, respectively. As the pulse duration or the pulse intensity increase, the generation of the non-odd harmonics can be enhanced. However, the intensities of the non-odd harmonics are decreased when using the longer pulse duration with the much higher laser intensity.
Aeroelastic simulation of higher harmonic control
Robinson, Lawson H.; Friedmann, Peretz P.
1994-01-01
This report describes the development of an aeroelastic analysis of a helicopter rotor and its application to the simulation of helicopter vibration reduction through higher harmonic control (HHC). An improved finite-state, time-domain model of unsteady aerodynamics is developed to capture high frequency aerodynamic effects. An improved trim procedure is implemented which accounts for flap, lead-lag, and torsional deformations of the blade. The effect of unsteady aerodynamics is studied and it is found that its impact on blade aeroelastic stability and low frequency response is small, but it has a significant influence on rotor hub vibrations. Several different HHC algorithms are implemented on a hingeless rotor and their effectiveness in reducing hub vibratory shears is compared. All the controllers are found to be quite effective, but very differing HHC inputs are required depending on the aerodynamic model used. Effects of HHC on rotor stability and power requirements are found to be quite small. Simulations of roughly equivalent articulated and hingeless rotors are carried out, and it is found that hingeless rotors can require considerably larger HHC inputs to reduce vibratory shears. This implies that the practical implementation of HHC on hingeless rotors might be considerably more difficult than on articulated rotors.
Harmonic Balance Computations of Fan Aeroelastic Stability
Bakhle, Milind A.; Reddy, T. S. R.
2010-01-01
A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.
Harmonic force field for nitro compounds.
Bellido, Edson P; Seminario, Jorge M
2012-06-01
Molecular simulations leading to sensors for the detection of explosive compounds require force field parameters that can reproduce the mechanical and vibrational properties of energetic materials. We developed precise harmonic force fields for alanine polypeptides and glycine oligopeptides using the FUERZA procedure that uses the Hessian tensor (obtained from ab initio calculations) to calculate precise parameters. In this work, we used the same procedure to calculate generalized force field parameters of several nitro compounds. We found a linear relationship between force constant and bond distance. The average angle in the nitro compounds was 116°, excluding the 90° angle of the carbon atoms in the octanitrocubane. The calculated parameters permitted the accurate molecular modeling of nitro compounds containing many functional groups. Results were acceptable when compared with others obtained using methods that are specific for one type of molecule, and much better than others obtained using methods that are too general (these ignore the chemical effects of surrounding atoms on the bonding and therefore the bond strength, which affects the mechanical and vibrational properties of the whole molecule).
DEFF Research Database (Denmark)
Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen
2012-01-01
lab studies in that we found a decreased detection rate in busy environments. Here we test with a much larger sample and age range, and contribute with the first vibration sensitivity testing outside the lab in an urban public...
Harmonic Series Meets Fibonacci Sequence
Chen, Hongwei; Kennedy, Chris
2012-01-01
The terms of a conditionally convergent series may be rearranged to converge to any prescribed real value. What if the harmonic series is grouped into Fibonacci length blocks? Or the harmonic series is arranged in alternating Fibonacci length blocks? Or rearranged and alternated into separate blocks of even and odd terms of Fibonacci length?
Egawa, Toru; Shinashi, Kiyoaki; Ueda, Toyotoshi; Ocola, Esther J; Chiang, Whe-Yi; Laane, Jaan
2014-02-13
The vapor-phase Raman spectra of cis- and trans-stilbene have been collected at high temperatures and assigned. The low-frequency skeletal modes were of special interest. The molecular structures and vibrational frequencies of both molecules have also been obtained using MP2/cc-pVTZ and B3LYP/cc-pVTZ calculations, respectively. The two-dimensional potential map for the internal rotations around the two Cphenyl-C(═C) bonds of cis-stilbene was generated by using a series of B3LYP/cc-pVTZ calculations. It was confirmed that the molecule has only one conformer with C2 symmetry. The energy level calculation with a two-dimensional Hamiltonian was carried out, and the probability distribution for each level was obtained. The calculation revealed that the "gearing" internal rotation in which the two phenyl rings rotate with opposite directions has a vibrational frequency of 26 cm(-1), whereas that of the "antigearing" internal rotation in which the phenyl rings rotate with the same direction is about 52 cm(-1). In the low vibrational energy region the probability distribution for the gearing internal rotation is similar to that of a one-dimensional harmonic oscillator, and in the higher region the motion behaves like that of a free rotor.
Directory of Open Access Journals (Sweden)
Ferfecki P.
2007-11-01
Full Text Available The coupling of bending and torsional vibration due to the presence of transverse fatigue crack in a rotor system supported by radial active magnetic bearings (AMB is investigated. For this purpose the modified stiffness matrix with six degrees of freedom per node is used and takes into account all the coupling phenomena that exists in a cracked rotor. The partial opening and closing of crack is considered by means of status of stress intensity factor along the crack edge. The equation of motion of rotor system is nonlinear due to response dependent non-linear breathing crack model and nonlinear force coupling introduced by AMB. A response of the rotor system is obtained by direct integration of nonlinear equation of motion. When the torsional harmonic excitation is applied to the rotor system with the crack then the sum and difference of torsional frequency around a bending natural frequency is observed in the lateral vibration spectrum. Influence of different values of crack parametersfor two different speeds of rotor is investigated with help of frequency spectra.
Lateral vibration effects in atomic-scale friction
Roth, R.; Fajardo, O. Y.; Mazo, J. J.; Meyer, E; Gnecco, E.
2014-01-01
The influence of lateral vibrations on the stick-slip motion of a nanotip elastically pulled on a flat crystal surface is studied by atomic force microscopy measurements on a NaCl(001) surface in ultra-high vacuum. The slippage of the nanotip across the crystal lattice is anticipated at increasing driving amplitude, similarly to what is observed in presence of normal vibrations. This lowers the average friction force, as explained by the Prandtl-Tomlinson model with lateral vibrations superim...
Low-cost facile interferometer for displacement mapping of harmonically excited MEMS
Mądzik, Mateusz; Viegas, Jaime
2016-03-01
In this work, we present a simple, assembled from readily available components, low cost, imaging vibrometer based on a Twyman-Green interferometer with digital interferogram acquisition, allowing to map displacement contour levels of a harmonically excited piezoelectric membrane, on the principle of exposure integration. We experimentally demonstrate the capabilities of our setup on imaging the 4th mechanical mode of vibration of a 200 micrometer radius piezoelectric micromachined ultrasonic transducer membrane vibrating at 842 kHz, with an out-of-plane amplitude of 475 nm. Our results allow a direct visualization of the influence of etching trenches onto the vibrating membrane, in excellent agreement with FEM simulations.
New Damped-Jerk trajectory for vibration reduction
BEAREE, Richard
2014-01-01
This paper derives a jerk-shaped profile to address the vibration reduction of underdamped flexible dynamics of motion system. The jerk-limited profile is a widespread smooth command pattern used by modern motion systems. The ability of the jerk-limited profile to cancel the residual vibration of an undamped flexible mode is clearly explained using an equivalent continuous filter representation and the input shaping formalism. This motivates the design of a new jerk-shaped profile, named Damp...
Bifurcations of phase portraits of pendulum with vibrating suspension point
Neishtadt, A. I.; Sheng, K.
2017-06-01
We consider a simple pendulum whose suspension point undergoes fast vibrations in the plane of motion of the pendulum. The averaged over the fast vibrations system is a Hamiltonian system with one degree of freedom depending on two parameters. We give a complete description of bifurcations of phase portraits of this averaged system.
Bifurcations of phase portraits of pendulum with vibrating suspension point
Neishtadt, Anatoly; Sheng, Kaicheng
2016-01-01
We consider a simple pendulum whose suspension point undergoes fast vibrations in the plane of motion of the pendulum. The averaged over the fast vibrations system is a Hamiltonian system with one degree of freedom depending on two parameters. We give complete description of bifurcations of phase portraits of this averaged system.
High harmonic generation in H2 and HD by two-colour femtosecond ...
Indian Academy of Sciences (India)
We have taken the pulse duration of T = 50 fs for both the fields, and the molecular initial vibrational level 0 = 0. We have argued that for these combinations, the harmonic generation due to transitions in the electronic continuum by tunnelling or multiphoton ionization may be neglected and only the electronic transitions ...
Simulations of vortex-induced vibrations of long cylinders with two degrees of freedom
Energy Technology Data Exchange (ETDEWEB)
Bell, T.A.; Militzer, J. [Dalhousie Univ., Dept. of Mechanical Engineering, Halifax, Nova Scotia (Canada)]. E-mail: tabell@dal.ca; Julio.Militzer@dal.ca; Ham, F. [Stanford Univ., Center for Turbulence Research, Stanford, California (United States)]. E-mail: fham@stanford.edu
2003-07-01
Long cylindrical risers are required for deep water exploration and production of petroleum or natural gas. The flow of seawater around these long cylinders is subject to vortex shedding. This is an unsteady oscillatory phenomenon, which causes the pressure distribution around the cylinders to fluctuate. If the vortex shedding frequency is equal to a natural frequency of the riser, then the vortex shedding will induce the riser to vibrate. These are known are Vortex Induced Vibrations or VIV. These vibrations cause premature fatigue or clashing between neighbouring risers. In the current contribution we carry out an unsteady two-dimensional numerical simulation of VIV. The numerical algorithm incorporates several desirable features for such simulations, namely, it uses an adaptive non-isotropic Cartesian grid and the Immersed Boundary Method for boundary condition specification around the cylinder. The current simulations use LES with a Smagorinsky model to calculate the effective viscosity. Its main advantage, however, is the ability to easily handle flows with moving boundaries. The cylinder is assumed to be 1800 m long with a diameter of 0.25 m and subjected to traction force of 10{sup 6} N, with a flow Reynolds number of 8640. The cylinder vibration is assumed to lock in to the 2nd natural mode with a frequency of 0.0473 Hz. At each time step the flow velocity and pressure distributions are calculated. The pressure distribution around the cylinder is used to calculate the drag and lift coefficients. This information is then used to solve two 2nd order simple harmonic motion ODEs, which give the velocity and displacement of the cylinder in cross flow and stream-wise directions. This information is used to update the position of the cylinder and its velocity. Most results available in the literature for cylinders subjected to vortex induced forces are limited to either stationary or one degree of freedom (usually compare the results for a rigid cylinder, a
Soliton ratchetlike dynamics by ac forces with harmonic mixing
DEFF Research Database (Denmark)
Salerno, Mario; Zolotaryuk, Yaroslav
2002-01-01
The possibility of unidirectional motion of a kink (topological soliton) of a dissipative sine-Gordon equation in the presence of ac forces with harmonic mixing (at least biharmonic) and of zero mean, is presented. The dependence of the kink mean velocity on system parameters is investigated....... The role played by the temporal symmetry of the system in establishing soliton dc motions that resemble usual soliton ratchets, is also emphasized. In particular, we show the existence of an asymmetric internal mode on the kink profile that couples to the kink translational mode through the damping...... in the system. Effective soliton transport is achieved when the internal mode and the external force get phase locked. We find that for kinks driven by biharmonic drivers consisting of the superposition of a fundamental driver with its first odd harmonic, the transport arises only due to this internal mode...
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2004-08-31
The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.
DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM
Energy Technology Data Exchange (ETDEWEB)
Martin E. Cobern
2004-10-13
The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was
Parameters Optimization for a Kind of Dynamic Vibration Absorber with Negative Stiffness
Directory of Open Access Journals (Sweden)
Yongjun Shen
2016-01-01
Full Text Available A new type of dynamic vibration absorber (DVA with negative stiffness is studied in detail. At first, the analytical solution of the system is obtained based on the established differential motion equation. Three fixed points are found in the amplitude-frequency curves of the primary system. The design formulae for the optimum tuning ratio and optimum stiffness ratio of DVA are obtained by adjusting the three fixed points to the same height according to the fixed-point theory. Then, the optimum damping ratio is formulated by minimizing the maximum value of the amplitude-frequency curves according to H∞ optimization principle. According to the characteristics of negative stiffness element, the optimum negative stiffness ratio is also established and it could still keep the system stable. In the end, the comparison between the analytical and the numerical solutions verifies the correctness of the analytical solution. The comparisons with three other traditional DVAs under the harmonic and random excitations show that the presented DVA performs better in vibration absorption. This result could provide theoretical basis for optimum parameters design of similar DVAs.
Reduction of Helicopter BVI Noise, Vibration, and Power Consumption Through Individual Blade Control
Jacklin, Stephen A.; Blaas, Achim; Teves, Dietrich; Kube, Roland; Warmbrodt, William (Technical Monitor)
1994-01-01
A wind tunnel test was conducted with a full-scale BO 105 helicopter rotor to evaluate the potential of open-loop individual blade control (IBC) to improve rotor performance, to reduce blade vortex interaction (BVI) noise, and to alleviate helicopter vibrations. The wind tunnel test was an international collaborative effort between NASA/U.S. Army AFDD, ZF Luftfahrttechnik, Eurocopter Deutschland, and the German Aerospace Laboratory (DLR) and was conducted under the auspices of the U.S./German MOU on Rotorcraft Aeromechanics. In this test the normal blade pitch links of the rotor were replaced by servo-actuators so that the pitch of each blade could be controlled independently of the other blades. The specially designed servoactuators and IBC control system were designed and manufactured by ZF Luftfahrttechnik, GmbH. The wind tunnel test was conducted in the 40- by 80-Foot Wind Tunnel at the NASA Ames Research Center. An extensive amount of measurement information was acquired for each IBC data point. These data include rotor performance, static and dynamic hub forces and moments, rotor loads, control loads, inboard and outboard blade pitch motion, and BVI noise data. The data indicated very significant (80 percent) simultaneous reductions in both BVI noise and hub vibrations could be obtained using multi-harmonic input at the critical descent (terminal approach) condition. The data also showed that performance improvements of up to 7 percent could be obtained using 2P input at high-speed forward flight conditions.
Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks.
Directory of Open Access Journals (Sweden)
Franco Mangussi
Full Text Available In oscillating mechanical systems, nonlinearity is responsible for the departure from proportionality between the forces that sustain their motion and the resulting vibration amplitude. Such effect may have both beneficial and harmful effects in a broad class of technological applications, ranging from microelectromechanical devices to edifice structures. The dependence of the oscillation frequency on the amplitude, in particular, jeopardizes the use of nonlinear oscillators in the design of time-keeping electronic components. Nonlinearity, however, can itself counteract this adverse response by triggering a resonant interaction between different oscillation modes, which transfers the excess of energy in the main oscillation to higher harmonics, and thus stabilizes its frequency. In this paper, we examine a model for internal resonance in a vibrating elastic beam clamped at its two ends. In this case, nonlinearity occurs in the form of a restoring force proportional to the cube of the oscillation amplitude, which induces resonance between modes whose frequencies are in a ratio close to 1:3. The model is based on a representation of the resonant modes as two Duffing oscillators, coupled through cubic interactions. Our focus is put on illustrating the diversity of behavior that internal resonance brings about in the dynamical response of the system, depending on the detailed form of the coupling forces. The mathematical treatment of the model is developed at several approximation levels. A qualitative comparison of our results with previous experiments and numerical calculations on elastic beams is outlined.
Ice-tongue vibrations modelled by a full 3-D depth-integrated elastic model
Konovalov, Yuri
2017-04-01
Ice tongue forced vibration modeling is performed using a full 3D depth-integrated finite-difference elastic model, which also takes into account sub-ice seawater flow. The ocean flow in the cavity is described by the wave equation, therefore ice tongue flexures result from hydrostatic pressure perturbations in sub-ice seawater layer. Numerical experiments have been carried out for idealized rectangular and trapezoidal ice-shelf geometries. The ice-plate vibrations are modeled for harmonic in-going pressure perturbations and for high-frequency wave spectra of ocean swell. The spectra show distinct resonance peaks, which demonstrate the ability to model a resonant-like motion in the suitable conditions of forcing. The spectra and ice tongue deformations obtained by the full 3D depth-integrated model are compared with exact solutions for an elastic thin plate with two fixed edges and two free edges (e.g., Landau and Lifshitz (1986)) - the exact solutions imply the consideration of the thin plate without the water layer. The spectra and ice tongue deformations obtained by the full 3D depth-integrated model also are compared with the spectra and the deformations modeled by the thin-plate Holdsworth and Glynn model (1978).
Directory of Open Access Journals (Sweden)
R. A. Jafari-Talookolaei
2011-01-01
Full Text Available The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration of the symmetrical laminated composite beam (LCB with simple and clamped end conditions. The equations of motion are derived by using Hamilton's principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken into account in the formulation. First, the geometric nonlinearity based on the von Karman's assumptions is incorporated in the formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first order of homotopy analysis method (HAM, we get the closed form solutions for the natural frequency and deflection of the LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load.
Research on Vibration Isolation Systems Used in Laser and Nanotechnologies
Directory of Open Access Journals (Sweden)
Justinas Kuncė
2012-12-01
Full Text Available The paper discusses the efficiency of a vibration isolation system made of the optical table and two negative-stiffness tables and considers excitation referring to harmonic and nonharmonic methods in the frequency range of 0,2–110 Hz. The article reviews the types and sources of vibrations and types of vibration isolation systems, including those of negative-stiffness. The paper also presents the methodology of experimental tests and proposes research on vibration transmissibility. A composite system consisting of two vibration isolation table having negative stiffness and an air table has been tested. The results and conclusions of experimental analysis are suggested at the end of the article.Article in Lithuanian
Vibration and noise analysis of a gear transmission system
Choy, F. K.; Qian, W.; Zakrajsek, J. J.; Oswald, F. B.
1993-01-01
This paper presents a comprehensive procedure to predict both the vibration and noise generated by a gear transmission system under normal operating conditions. The gearbox vibrations were obtained from both numerical simulation and experimental studies using a gear noise test rig. In addition, the noise generated by the gearbox vibrations was recorded during the experimental testing. A numerical method was used to develop linear relationships between the gearbox vibration and the generated noise. The hypercoherence function is introduced to correlate the nonlinear relationship between the fundamental noise frequency and its harmonics. A numerical procedure was developed using both the linear and nonlinear relationships generated from the experimental data to predict noise resulting from the gearbox vibrations. The application of this methodology is demonstrated by comparing the numerical and experimental results from the gear noise test rig.
Power quality issues current harmonics
Mikkili, Suresh
2015-01-01
Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi
Strong nonlinear harmonic generation in a PZT/Aluminum resonator
Energy Technology Data Exchange (ETDEWEB)
Parenthoine, D; Haumesser, L; Meulen, F Vander; Tran-Huu-Hue, L-P, E-mail: parenthoine@univ-tours.f [University Francois Rabelais of Tours, U 930 Imagerie et Cerveau, CNRS 2448, ENIVL, rue de la Chocolaterie, BP 3410, 41034 Blois (France)
2009-11-01
In this work, the extentional vibration mode of a coupled PZT/ Aluminum rod resonator is studied experimentally. Geometrical characteristics of the PZT are its 27 mm length and its 4x4 mm{sup 2} cross section area. The excitation voltage consists in sinusoidal bursts in the frequency range (20-80 kHz). Velocity measurements are performed at both ends of this system, using a laser probe. Strong harmonic distortions in the mechanical response (up to -20 dB with respect to the primary wave amplitude) have been observed. The corresponding input levels are far lower than those which are necessary to observe quadratic second harmonic generation in a free PZT resonator. The strong nonlinear effect can be explained as a super-harmonic resonance of the system due to a specific ratio between the eigen frequencies of the two parts of the resonator. Evolution of fundamental and harmonic responses are observed as a function of input levels, highlighting hysteretic behavior.
Mechanical vibration to electrical energy converter
Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM
2009-03-03
Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.
A nonlinear energy sink with an energy harvester: Harmonically forced responses
Kremer, Daniel; Liu, Kefu
2017-12-01
This study intends to achieve simultaneous vibration suppression and energy harvesting using a variant form of nonlinear energy sink (NES). The proposed apparatus is not a true NES as its spring is not essentially nonlinear. In a previous study [22] (Journal of Sound and Vibration, 333 (20) (2014)), it has been shown that the apparatus demonstrates the transient behaviors similar to those of the NES. As a sequel, the present paper focuses on harmonically forced responses of the system. First, the approximate solutions of steady state responses are derived. Using the approximate solutions, the steady state behaviors are investigated by using the numerical continuation method. This is followed by an experimental study. The study has shown that under harmonic excitation, the proposed apparatus functions similarly to the NES with the typical behaviors such as strongly modulated responses, amplitude jumping, excitation level dependence, etc. Overall, the apparatus meets the design objectives: the vibration suppression and energy harvesting in a broadband manner.
Observation of redshifting and harmonic radiation in inverse Compton scattering
Sakai, Y.; Pogorelsky, I.; Williams, O.; O'Shea, F.; Barber, S.; Gadjev, I.; Duris, J.; Musumeci, P.; Fedurin, M.; Korostyshevsky, A.; Malone, B.; Swinson, C.; Stenby, G.; Kusche, K.; Babzien, M.; Montemagno, M.; Jacob, P.; Zhong, Z.; Polyanskiy, M.; Yakimenko, V.; Rosenzweig, J.
2015-06-01
Inverse Compton scattering of laser photons by ultrarelativistic electron beam provides polarized x- to γ -ray pulses due to the Doppler blueshifting. Nonlinear electrodynamics in the relativistically intense linearly polarized laser field changes the radiation kinetics established during the Compton interaction. These are due to the induced figure-8 motion, which introduces an overall redshift in the radiation spectrum, with the concomitant emission of higher order harmonics. To experimentally analyze the strong field physics associated with the nonlinear electron-laser interaction, clear modifications to the angular and wavelength distributions of x rays are observed. The relativistic photon wave field is provided by the ps CO2 laser of peak normalized vector potential of 0.5 laser [M. Babzien et al., Phys. Rev. Lett. 96, 054802 (2006)]. The angular spectral characteristics are revealed using K -, L -edge, and high energy attenuation filters. The observation indicates existence of the electrons' longitudinal motion through frequency redshifting understood as the mass shift effect. Thus, the 3rd harmonic radiation has been observed containing on-axis x-ray component that is directly associated with the induced figure-8 motion. These are further supported by an initial evidence of off-axis 2nd harmonic radiation produced in a circularly polarized laser wave field. Total x-ray photon number per pulse, scattered by 65 MeV electron beam of 0.3 nC, at the interaction point is measured to be approximately 109 .
Application of higher harmonic control to hingeless rotor systems
Nguyen, Khanh; Chopra, Inderjit
1990-01-01
A comprehensive analytical formulation has been dveloped to predict the vibratory hub loads of a helicopter rotor system in forward flight. The analysis is used to calculate the optimal higher harmonic control inputs and associated actuator power required to minimize these hub loads. The present formulation is based on a finite element method in space and time. A nonlinear time domain, unsteady aerodynamic model is used to obtain the airloads, and the rotor induced inflow is calculated using a nonuniform inflow model. Predicted vibratory hub loads are correlated with experimental data obtained from a scaled model rotor. Results of a parametric study on a hingeless rotor show that blade flap, lag and torsion vibration characteristics, offset of blade center of mass from elastic axis, offset of elastic axis from quarter-chord axis, and blade thrust greatly affect the higher harmonic control actuator power requirement.
Motion sickness is a common problem in people traveling by car, train, airplanes, and especially boats. Anyone ... children, pregnant women, and people taking certain medicines. Motion sickness can start suddenly, with a queasy feeling ...
Introduction to abstract harmonic analysis
Loomis, Lynn H
2011-01-01
Written by a prominent figure in the field of harmonic analysis, this classic monograph is geared toward advanced undergraduates and graduate students and focuses on methods related to Gelfand's theory of Banach algebra. 1953 edition.
Tissue Harmonic Synthetic Aperture Imaging
DEFF Research Database (Denmark)
Rasmussen, Joachim
The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB....... The first part of the scientific contribution investigates an implementation of pulse inversion for THI on the experimental ultrasound system SARUS. The technique is initially implemented for linear array transducers and then expanded for convex array transducers. The technique is evaluated based on spatial...
Bles, W.; Bos, J.E.; Kruit, H.
2000-01-01
The number of recently published papers on motion sickness may convey the impression that motion sickness is far from being understood. The current review focusses on a concept which tends to unify the different manifestations and theories of motion sickness. The paper highlights the relations
Lin, Wang; Qiao, Ni
2008-03-01
In this note, the periodic and chaotic responses of two single-degree-of-freedom (SDOF) models are investigated and some interesting results obtained. The first model (original model) has been developed by Narayanan and Sekar [Periodic and chaotic responses of an SDOF system with piecewise linear stiffness subjected to combined harmonic and flow induced excitations, Journal of Sound and Vibration 184 (2) (1997) 281-298] and the second one corresponds to a modified system. The original model, involving a one-sided clearance ( y0) between the mass and the linear spring, is subjected to combined harmonic ( F cos ωt) and flow-induced excitations. Narayanan and Sekar (1997) has shown that periodic, quasi-periodic and chaotic motions of this original model may occur in a range of flow velocities for the case: y0=0 and F≠0. In the present work, numerical calculations are carried out for several other important cases of the original system, showing some interesting, and sometimes unexpected results. The modified model, in particular, involving both-sided clearances, is analyzed numerically subsequently. The effect of flow velocity, clearances on the global dynamics of this modified system is discussed finally.
Harmonic structures and intrinsic torsion
DEFF Research Database (Denmark)
Conti, Diego; Madsen, Thomas Bruun
We discuss the construction of 8-manifolds with harmonic Sp(2)Sp(1)-structures. In particular, we find 10 new examples of nilmanifolds that admit a closed 4-form Omega whose stabiliser is Sp(2)Sp(1). Our constructions entail the notion of SO(4)-structures on 7-manifolds. We present a thorough inv...... investigation of the intrinsic torsion of such structures; in addition to the construction of harmonic structures, this analysis leads to explicit Lie group examples with invariant intrinsic torsion....
Vibrational and electronic spectroscopic studies of melatonin
Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.
2014-01-01
We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.
Fan Flutter Computations Using the Harmonic Balance Method
Bakhle, Milind A.; Thomas, Jeffrey P.; Reddy, T.S.R.
2009-01-01
An experimental forward-swept fan encountered flutter at part-speed conditions during wind tunnel testing. A new propulsion aeroelasticity code, based on a computational fluid dynamics (CFD) approach, was used to model the aeroelastic behavior of this fan. This threedimensional code models the unsteady flowfield due to blade vibrations using a harmonic balance method to solve the Navier-Stokes equations. This paper describes the flutter calculations and compares the results to experimental measurements and previous results from a time-accurate propulsion aeroelasticity code.
Nonlinear dynamic modeling of a simple flexible rotor system subjected to time-variable base motions
Chen, Liqiang; Wang, Jianjun; Han, Qinkai; Chu, Fulei
2017-09-01
Rotor systems carried in transportation system or under seismic excitations are considered to have a moving base. To study the dynamic behavior of flexible rotor systems subjected to time-variable base motions, a general model is developed based on finite element method and Lagrange's equation. Two groups of Euler angles are defined to describe the rotation of the rotor with respect to the base and that of the base with respect to the ground. It is found that the base rotations would cause nonlinearities in the model. To verify the proposed model, a novel test rig which could simulate the base angular-movement is designed. Dynamic experiments on a flexible rotor-bearing system with base angular motions are carried out. Based upon these, numerical simulations are conducted to further study the dynamic response of the flexible rotor under harmonic angular base motions. The effects of base angular amplitude, rotating speed and base frequency on response behaviors are discussed by means of FFT, waterfall, frequency response curve and orbits of the rotor. The FFT and waterfall plots of the disk horizontal and vertical vibrations are marked with multiplications of the base frequency and sum and difference tones of the rotating frequency and the base frequency. Their amplitudes will increase remarkably when they meet the whirling frequencies of the rotor system.
General Lp-harmonic Blaschke bodies
Indian Academy of Sciences (India)
Lutwak introduced the harmonic Blaschke combination and the harmonic Blaschke body of a star body. Further, Feng and Wang introduced the concept of the -harmonic Blaschke body of a star body. In this paper, we define the notion of general -harmonic Blaschke bodies and establish some of its properties.
General Lp-harmonic Blaschke bodies
Indian Academy of Sciences (India)
Abstract. Lutwak introduced the harmonic Blaschke combination and the harmonic. Blaschke body of a star body. Further, Feng and Wang introduced the concept of the L p- harmonic Blaschke body of a star body. In this paper, we define the notion of general. L p-harmonic Blaschke bodies and establish some of its ...
Vibrational dephasing in matter-wave interferometers
Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.
2017-03-01
Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.
Prony Analysis for Power System Transient Harmonics
Directory of Open Access Journals (Sweden)
David Cartes
2007-01-01
Full Text Available Proliferation of nonlinear loads in power systems has increased harmonic pollution and deteriorated power quality. Not required to have prior knowledge of existing harmonics, Prony analysis detects frequencies, magnitudes, phases, and especially damping factors of exponential decaying or growing transient harmonics. In this paper, Prony analysis is implemented to supervise power system transient harmonics, or time-varying harmonics. Further, to improve power quality when transient harmonics appear, the dominant harmonics identified from Prony analysis are used as the harmonic reference for harmonic selective active filters. Simulation results of two test systems during transformer energizing and induction motor starting confirm the effectiveness of the Prony analysis in supervising and canceling power system transient harmonics.
Validation of phantom-based harmonization for patient harmonization.
Panetta, Joseph V; Daube-Witherspoon, Margaret E; Karp, Joel S
2017-07-01
To improve the precision of multicenter clinical trials, several efforts are underway to determine scanner-specific parameters for harmonization using standardized phantom measurements. The goal of this study was to test the correspondence between quantification in phantom and patient images and validate the use of phantoms for harmonization of patient images. The National Electrical Manufacturers' Association image quality phantom with hot spheres was scanned on two time-of-flight PET scanners. Whole-body [18 F]-fluorodeoxyglucose (FDG)-PET scans were acquired of subjects on the same systems. List-mode events from spheres (diam.: 10-28 mm) measured in air on each scanner were embedded into the phantom and subject list-mode data from each scanner to create lesions with known uptake with respect to the local background in the phantom and each subject's liver and lung regions, as a proxy to characterize true lesion quantification. Images were analyzed using the contrast recovery coefficient (CRC) typically used in phantom studies and serving as a surrogate for the standardized uptake value used clinically. Postreconstruction filtering (resolution recovery and Gaussian smoothing) was applied to determine if the effect on the phantom images translates equivalently to subject images. Three postfiltering strategies were selected to harmonize the CRCmean or CRCmax values between the two scanners based on the phantom measurements and then applied to the subject images. Both the average CRCmean and CRCmax values for lesions embedded in the lung and liver in four subjects (BMI range 25-38) agreed to within 5% with the CRC values for lesions embedded in the phantom for all lesion sizes. In addition, the relative changes in CRCmean and CRCmax resulting from the application of the postfilters on the subject and phantom images were consistent within measurement uncertainty. Further, the root mean squared percent difference (RMSpd ) between CRC values on the two scanners
Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.
Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2013-07-01
Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.
A closed-form solution procedure to the vibration of non-classically ...
African Journals Online (AJOL)
proportional damping subjected to harmonic loads is considered. Modal substitution is employed to transform the coupled differential equations of motion from geometric to modal coordinates. As might be expected, the modal transformation does ...
Optimization design of high power ultrasonic circular ring radiator in coupled vibration.
Xu, Long; Lin, Shuyu; Hu, Wenxu
2011-10-01
This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.
An electroactive polymer based concept for vibration reduction via adaptive supports
Wolf, Kai; Röglin, Tobias; Haase, Frerk; Finnberg, Torsten; Steinhoff, Bernd
2008-03-01
A concept for the suppression of resonant vibration of an elastic system undergoing forced vibration coupled to electroactive polymer (EAP) actuators based on dielectric elastomers is demonstrated. The actuators are utilized to vary the stiffness of the end support of a clamped beam, which is forced to harmonic vibration via a piezoelectric patch. Due to the nonlinear dependency of the elastic modulus of the EAP material, the modulus can be changed by inducing an electrostrictive deformation. The resulting change in stiffness of the EAP actuator leads to a shift of the resonance frequencies of the vibrating beam, enabling an effective reduction of the vibration amplitude by an external electric signal. Using a custom-built setup employing an aluminum vibrating beam coupled on both sides to electrodized strips of VHB tape, a significant reduction of the resonance amplitude was achieved. The effectiveness of this concept compared to other active and passive concepts of vibration reduction is discussed.
TAX HARMONIZATION VERSUS FISCAL COMPETITION
Directory of Open Access Journals (Sweden)
Florin Alexandru MACSIM
2016-12-01
Full Text Available Recent years have brought into discussion once again subjects like tax harmonization and fiscal competition. Every time the European Union tends to take a step forward critics enter the scene and give contrary arguments to European integration. Through this article we have offered our readers a compelling view over the “battle” between tax harmonization and fiscal competition. While tax harmonization has key advantages as less costs regarding public revenues, leads to higher degree of integration and allows the usage of fiscal transfers between regions, fiscal competition is no less and presents key advantages as high reductions in tax rates and opens a large path for new investments, especially FDI. Choosing tax harmonization or fiscal competition depends on a multitude of variables, of circumstances, the decision of choosing one path or the other being ultimately influenced by the view of central and local authorities. Our analysis indicates that if we refer to a group of countries that are a part of a monetary union or that form a federation, tax harmonization seems to be the best path to choose. Moving the analysis to a group of regions that aren’t taking any kind of correlated actions or that have not signed any major treaties regarding monetary or fiscal policies, the optimal solution is fiscal competition.
DFT studies on the vibrational and electronic spectra of acetylsalicylic acid
Ye, Yunfeng; Tang, Guodong; Han, Yonghong; Culnane, Lance F.; Zhao, Jianyin; Zhang, Yu
2016-05-01
The following is a theoretical and experimental study on the vibrational and electronic properties of acetylsalicylic acid (ASA). Vibrational information was obtained by FT-IR and Raman spectroscopy which agree well with harmonic vibrational frequency calculations. The calculations were carried out using density functional theory B3LYP methods with 6-311G** and LANL2DZ basis sets. The vibrational assignments were calculated by Gaussview. Absorption UV-Vis experiments of ASA reveal three maximum peaks at 203, 224 and 277 nm, which are in agreement with calculated electronic transitions using TD-B3LYP/6-311G**.
Topological material layout in plates for vibration suppression and wave propagation control
DEFF Research Database (Denmark)
Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard
2009-01-01
plate theory coupled with analytical sensitivity analysis using the adjoint method and an iterative design update procedure based on a mathematical programming tool. We demonstrate the capability of the method by designing bi-material plates that, when subjected to harmonic excitation, either......We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...... effectively suppress the overall vibration level or alternatively transport energy in predefined paths in the plates, including the realization of a ring wave device....
Ground motion studies in a backfilled stope at West Driefontein
CSIR Research Space (South Africa)
Goldbach, OD
1991-10-01
Full Text Available according to peak ground velocity, spectral peaks and vibration times. The results from this study, together with the results from previous work on ground motion analyses in backfilled and conventionally filled stopes, show how backfill can reduce...
HARMONIZED EUROPE OR EUROPEAN HARMONY?
Directory of Open Access Journals (Sweden)
Cosmin Marinescu
2007-07-01
Full Text Available Recent evolutions in Europe raise questions on the viability of the present economic and social model that defines the European construction project. In this paper, the author will try to explain the viability of institutional European model that sticks between free market mechanisms and protectionism. The main challenge for the EU is about the possibility to bring together the institutional convergence and the welfare for all Europeans. This is the result of the view, still dominant, of European politics elite, according to which institutional harmonization is the solution of a more dynamic and prosper Europe. But, economic realities convince us that, more and more, a harmonized, standardized Europe is not necessarily identical with a Europe of harmony and social cooperation. If „development through integration” seems to be harmonization through „institutional transplant”, how could then be the European model one sufficiently wide open to market, which creates the prosperity so long waited for by new member countries?
Elements of abstract harmonic analysis
Bachman, George
2013-01-01
Elements of Abstract Harmonic Analysis provides an introduction to the fundamental concepts and basic theorems of abstract harmonic analysis. In order to give a reasonably complete and self-contained introduction to the subject, most of the proofs have been presented in great detail thereby making the development understandable to a very wide audience. Exercises have been supplied at the end of each chapter. Some of these are meant to extend the theory slightly while others should serve to test the reader's understanding of the material presented. The first chapter and part of the second give
Harmonic functions with varying coefficients
Directory of Open Access Journals (Sweden)
Jacek Dziok
2016-05-01
Full Text Available Abstract Complex-valued harmonic functions that are univalent and sense preserving in the open unit disk can be written in the form f = h + g ‾ $f=h+\\overline{g}$ , where h and g are analytic. In this paper we investigate some classes of univalent harmonic functions with varying coefficients related to Janowski functions. By using the extreme points theory we obtain necessary and sufficient convolution conditions, coefficients estimates, distortion theorems, and integral mean inequalities for these classes of functions. The radii of starlikeness and convexity for these classes are also determined.
Vibration-rotation-tunneling dynamics in small water clusters
Energy Technology Data Exchange (ETDEWEB)
Pugliano, Nick [Univ. of California, Berkeley, CA (United States)
1992-11-01
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm^{-1} intermolecular vibration of the water dimer-d_{4}. Each of the VRT subbands originate from K_{a}''=0 and terminate in either K_{a}'=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K_{a}' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v_{12} acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D_{2 }
Vibration-rotation-tunneling dynamics in small water clusters
Energy Technology Data Exchange (ETDEWEB)
Pugliano, N.
1992-11-01
The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics in the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.
Optimal Selective Harmonic Control for Power Harmonics Mitigation
DEFF Research Database (Denmark)
Zhou, Keliang; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
of power harmonics. The proposed optimal SHC is of hybrid structure: all recursive SHC modules with weighted gains are connected in parallel. It bridges the real “nk+-m order RC” and the complex “parallel structure RC”. Compared to other IMP based control solutions, it offers an optimal trade-off among...
Probabilistic Harmonic Modeling of Wind Power Plants
DEFF Research Database (Denmark)
Guest, Emerson; Jensen, Kim H.; Rasmussen, Tonny Wederberg
2017-01-01
A probabilistic sequence domain (SD) harmonic model of a grid-connected voltage-source converter is used to estimate harmonic emissions in a wind power plant (WPP) comprised of Type-IV wind turbines. The SD representation naturally partitioned converter generated voltage harmonics into those...... with deterministic phase and those with probabilistic phase. A case study performed on a string of ten 3MW, Type-IV wind turbines implemented in PSCAD was used to verify the probabilistic SD harmonic model. The probabilistic SD harmonic model can be employed in the planning phase of WPP projects to assess harmonic...
Active isolation of vibrations with adaptive structures
Guigou, C.; Fuller, C. R.; Wagstaff, P. R.
1991-01-01
Vibration transmission in structures is controlled by means of a technique which employs distributed arrays of piezoelectric transducers bonded to the supporting structure. Distributed PVDF piezoelectric strips are employed as error sensors, and a two-channel feedforward adaptive LMS algorithm is used for minimizing error signals and thereby controlling the structure. A harmonic force input excites a thick plate, and a receiving plate is configured with three pairs of piezoelectric actuators. Modal analyses are performed to determine the resonant frequencies of the system, and a scanning laser vibrometer is used to study the shape of the response of the receiving plate during excitation with and without the control algorithm. Efficient active isolation of the vibrations is achieved with modal suppression, and good control is noted in the on-resonance cases in which increased numbers of PVDF sensors and piezoelectric actuators are employed.
Coupling between flexural modes in free vibration of single-walled carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Liu, Rumeng; Wang, Lifeng, E-mail: walfe@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)
2015-12-15
The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.
Coupling between flexural modes in free vibration of single-walled carbon nanotubes
Directory of Open Access Journals (Sweden)
Rumeng Liu
2015-12-01
Full Text Available The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.
Chaotic vibrations of heated plates
Fermen-Coker, Muge
1998-12-01
In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.
Tunable Passive Vibration Suppressor
Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)
2016-01-01
An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.
Indian Academy of Sciences (India)
We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.
Feedback-based mitigation of torque harmonics in interior permanent magnet synchronous machines
Vaks, Nir
Harmonics in the electromagnetic torque are a source of concern in permanent magnet synchronous machine (PMSM) drives. The harmonics are created by non-idealities in the electromagnetic fields produced by the magnets and the stator excitation. They lead to vibration that can cause premature wear of the drivetrain components as well as acoustic noise that may be bothersome to users. In this research, current- and voltage-based control schemes have been developed to mitigate the harmonics in a class of PMSMs in which the magnets are placed interior to the rotor iron. Interior permanent magnet synchronous machines (IPMSMs) have recently gained popularity for applications including hybrid electric vehicles and robot joint control. In the current-based control, a low-cost piezoelectric sensor is used to measure torque harmonics. A conjugate gradient algorithm is then applied to search for harmonics in the stator current that produce a commanded average torque while eliminating the measured torque harmonics. The algorithm is based upon analytical closed-form expressions for the average and harmonic components of torque that have been derived for IPMSMS with arbitrary back-emf waveforms. In the voltage-based control, a time-domain model of the machine is used to map the outputs of the conjugate gradient algorithm to commanded stator voltages. Since both utilize feedback, the controls are insensitive to changes in machine parameters that result from magnetic saturation, temperature, or parameter drift. In addition, the user has flexibility to select the harmonic(s) of torque to be eliminated.
Experimental Study on the Vibration of an Overhung Rotor with a Propagating Transverse Crack
Directory of Open Access Journals (Sweden)
S.A. Adewusi
2002-01-01
Full Text Available This paper presents an experimental study on the dynamic response of an overhung rotor with a propagating transverse crack. The effects of a propagating transverse crack and side load on the dynamic response of an overhung rotor are investigated in order to identify vibration signatures of a propagating crack in rotating shafts. Startup and steady state vibration signatures were analyzed and presented in the form of Bode plots, Frequency Spectrum Cascades, Frequency Spectrum Waterfalls and orbits. The startup results showed that crack reduces the critical speed and increases the vibration amplitude of the rotor system. It also excites 2X vibration in the startup vibration signatures. The steady state results showed that the propagating crack produces changes in vibration amplitudes of 1X and 2X vibration harmonics and excites 3X harmonic just before fracture. During crack propagation, 1X amplitude may increase or decrease depending on the location of the crack and the direction of vibration measurement while 2X amplitude always increases. The steady state vibration signal of a propagating crack also produces a two-loop orbit.
Effects of vibration on flexibility: a meta-analysis.
Osawa, Y; Oguma, Y
2013-12-01
Exogenous stimulation of skeletal muscle or tendon is often used to improve range of motion. Despite substantial research efforts, however, the effects of vibration on flexibility have not been clarified. In this review, we investigated the effects of acute and chronic intervention programs which used vibration to improve flexibility in young healthy individuals. Effect size was calculated using data from a total of 600 participants in 19 studies before and after the introduction of vibration-based intervention, and a total of 324 participants in 13 studies on the additive effects of vibration compared with the identical conditions without vibration. Sub-group analyses were performed based on intervention period, type of exercise, and type of vibration. Meta-analysis showed that vibration interventions had significant effects on flexibility (standardized mean difference [SMD]=-0.79, 95% confidence interval [CI]=-1.14- -0.43; panalysis revealed a significant additive effect of vibration on flexibility compared with the identical condition without vibration (SMD=0.25, 95%CI=0.03-0.48; P=0.03), with small heterogeneity (I(2)=0%). The risk of publication bias was low judged from Kendall's τ statistic. We concluded that the use of vibration might lead to additive improvements in flexibility.
Vibration Analysis of AN Induction Motor
WANG, C.; LAI, J. C. S.
1999-07-01
With the advent of power electronics, variable speed induction motors are finding increasing use in industries because of their low cost and potential savings in energy consumption. However, the acoustic noise emitted by the motor increases due to switching harmonics introduced by the electronic inverters. Consequently, the vibro-acoustic behaviour of the motor structure has attracted more attention. In this paper, considerations given to modelling the vibration behaviour of a 2·2 kW induction motor are discussed. By comparing the calculated natural frequencies and the mode shapes with the results obtained from experimental modal testing, the effects of the teeth of the stator, windings, outer casing, slots, end-shields and support on the overall vibration behaviour are analyzed. The results show that when modelling the vibration behaviour of a motor structure, the laminated stator should be treated as an orthotropic structure, and the teeth of the stator could be neglected. As the outer casing, end-shields and the support all affect the vibration properties of the whole structure, these substructures should be incorporated in the model to improve the accuracy.
Sums of Generalized Harmonic Series
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 9. Sums of Generalized Harmonic Series: For Kids from Five to Fifteen. Zurab Silagadze. General Article Volume 20 Issue 9 September 2015 pp 822-843 ... Keywords. Riemann zeta function; integral representation; Basel problem.
Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade
Directory of Open Access Journals (Sweden)
Osama N. Alshroof
2012-01-01
Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.
Tides and tidal harmonics at Umbharat, Gujarat
Digital Repository Service at National Institute of Oceanography (India)
Suryanarayana, A.; Swamy, G.N.
A part of the data on tides recorded at Machiwada near Umbharat, Gulf of Cambay during April 1978 was subjected to harmonic analysis following the Admiralty procedure. The general tidal characteristics and the value of four major harmonic...
Dynamic Properties of the Painter Street Overpass at Different Levels of Vibration
DEFF Research Database (Denmark)
Ventura, C. E.; Brincker, Rune; Andersen, P.
2005-01-01
This paper describes the results from a series of ambient vibration studies conducted on the Painter Street Overpass in Rio Dell, California. Painter Street is a two-span, skewed reinforced concrete bridge with two single piers near the middle and monolithic abutments, typical of bridge overpasses...... in California. Strong motion instruments were installed on the bridge in 1977, and since then it has recorded the motions from more than ten significant earthquakes. Because of the valuable amount of strong motion data available, the aim of the ambient vibration tests was to determine the dynamic...... characteristics of the bridge at low levels of vibration and to compare these with those measured during the strong motion events. In this paper, a description of the recorded strong motion events is presented first, then the ambient vibration tests are described and the results are compared with those obtained...
Melde's Experiment on a Vibrating Liquid Foam Microchannel
Cohen, Alexandre; Fraysse, Nathalie; Raufaste, Christophe
2017-12-01
We subject a single Plateau border channel to a transverse harmonic excitation, in an experiment reminiscent of the historical one by Melde on vibrating strings, to study foam stability and wave properties. At low driving amplitudes, the liquid string exhibits regular oscillations. At large ones, a nonlinear regime appears and the acoustic radiation splits the channel into two zones of different cross section area, vibration amplitude, and phase difference with the neighboring soap films. The channel experiences an inertial dilatancy that is accounted for by a new Bernoulli-like relation.
DEFF Research Database (Denmark)
Bak, KL; Bludsky, O.; Jorgensen, P
1995-01-01
A priori theory is derived for anharmonic calculations of vibrational circular dichroism (VCD). The anharmonic VCD expression is gauge origin independent and reduce to the magnetic field perturbation theory expression in the double-harmonic approximation. The theory has been implemented using...... for the atomic axial tensors and using second-order Moller-Plesset theory for the atomic polar tensors and the force fields, The changes of the vibrational rotatory strengths from anharmonicities are small, and do not explain the previously observed large discrepancies between the double-harmonic results...
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
Vibrational Energy Relaxation: A Benchmark for Mixed Quantum-Classical Methods.
Jain, Amber; Subotnik, Joseph E
2018-01-11
We investigate the ability of mixed quantum-classical methods to capture the dynamics of vibrational energy relaxation. Several methods, including surface hopping, and Ehrenfest and symmetrical quasiclassical (SQC) dynamics, are benchmarked for the exactly solvable model problem of a harmonic oscillator bilinearly coupled to a bath of harmonic oscillators. Results show that, very often, one can recover accurate vibrational relaxation rates and detailed balance using simple mixed quantum-classical approaches. A few anomalous results do appear, however, especially regarding Ehrenfest and SQC dynamics.
Comparing motion induction in lateral motion and motion in depth
Harris, Julie; German, KJ
2008-01-01
Induced motion, the apparent motion of an object when a nearby object moves, has been shown to occur in a variety of different conditions, including motion in depth. Here we explore whether similar patterns of induced motion result from induction in a lateral direction (frontoparallel motion) or induction in depth. We measured the magnitude of induced motion in a stationary target for: (a) binocularly viewed lateral motion of a pair of inducers, where the angular motion is in the same directi...
Detection of Harmonic Occurring using Kalman Filtering
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Shoro, Ghulam Mustafa; Imran, Raja Muhammed
2014-01-01
As long as the load to a power system is linear which has been the case before 80's, typically no harmonics are produced. However, the modern power electronic equipment for controlled power consumption produces harmonic disturbances, these devices/equipment possess nonlinear voltage/current chara...... using Kalman filter. This may be very useful for example to quickly switching on certain filters based on the harmonic present. We are using a unique technique to detect the occurrence of harmonics....
Vibration analysis of cryocoolers
Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui
2004-05-01
The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.
Vibration analysis of cryocoolers
Energy Technology Data Exchange (ETDEWEB)
Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)
2004-05-01
The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
Transverse vibration of nematic elastomer Timoshenko beams.
Zhao, Dong; Liu, Ying; Liu, Chuang
2017-01-01
Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.
Third Harmonic Imaging using a Pulse Inversion
DEFF Research Database (Denmark)
Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt
2011-01-01
The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...
Harmonic Detection at Initialization With Kalman Filter
DEFF Research Database (Denmark)
Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa
2014-01-01
the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...
Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
Park, Sangtak; Khater, Mahmoud; Effa, David; Abdel-Rahman, Eihab; Yavuz, Mustafa
2017-08-01
This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a = 1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation.
A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes
Kvaternik, R. G.; Walton, W. C., Jr.
1982-01-01
A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.
Pilot study of vibration stimulation on neurological rehabilitation.
Sui, Jianfeng; Shull, Pete; Ji, Linhong
2014-01-01
Robot-assisted therapy has been proved effective for dyskinesia, and has many unique advantages compared with traditional treatment, such as repeatability, accuracy, objectivity. But some studies show that the effect of the robot-assisted rehabilitation for improving patients' activities of daily life (ADLs) is not obvious. This study introduces a novel auxiliary method-vibration stimulation combined with robots which may improve patients' ADLs. In controlled trials, two kinds of feedback-vibration and visual feedback are applied to prompt subjects for rehabilitation, and electromyographic signals (EMGs) and motion parameters are recorded in real time. Experimental results show that subjects' EMGs using vibration feedback are similar to healthy people, and characteristics of motion are closer to the theoretical value compared with control group. Vibration stimulation may serve as a kind of efficient auxiliary means to improve the efficiency of neurological rehabilitation.
Pitchfork bifurcation and vibrational resonance in a fractional-order ...
Indian Academy of Sciences (India)
Duffing oscillator with delayed feedback and excited by two harmonic signals. Using an approxi- ... phenomenon in the fractional-order Duffing oscillator with time delay feedback. The equation of motion of the system we ..... where T = 2π/ω and r is a positive integer which should be chosen big enough. For convenience, we ...
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a
Remote identification of the vibration amplitude of ship hull
Directory of Open Access Journals (Sweden)
A. N. Pinchuk
2014-01-01
Full Text Available The aim is to develop the methodological support to determine vibration amplitude of the ship hull remotely using a coherent radar centimeter range based on the variation of the Doppler signal spectrum reflected from a vibrating surface.The paper presents a synthesized mathematical model of the radio signal reflected from the vibrating surface. It is the signal of coherent radar of continuous radiation with a known carrier frequency and the amplitude of the radiated signal. In the synthesis it was believed that the displacement in the radial direction with respect to the vibrating surface radar was sinusoidal.The dependences of the vibration amplitude on the value of the normalized Doppler radio signal spectrum at the second harmonic frequency are obtained. Cycle results of field experiments to study the variability of the sea surface, determining the level of its roughness, allows us to establish that the energy of surface waves of gravitational-capillary range has a high correlation with the wind speed. It is proved that the ratio of the spectral density levels at vibration frequency and its multiple frequencies is specified by the index of phase modulation linearly related to the amplitude of vibration of the ship hull.The results are significant for radar (radar detection of water targets using the coherent radar of centimeter range, ensuring the correct records of noise generated by the scattering of radio waves from the water surface.
Harmonized Probabilistic Seismic Hazard Assessment in Europe: Earthquake Geology Applied
Woessner, J.; Danciu, L.; Giardini, D.; Share Consortium
2012-04-01
Probabilistic seismic hazard assessment (PSHA) aims to characterize the best available knowledge on seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results from PSHAs form the baseline for informed decision-making and provide essential input to each risk assessment application. SHARE is an EC-FP7 funded project to create a testable time-independent community-based hazard model for the Euro-Mediterranean region. SHARE scientists are creating a model framework and infrastructure for a harmonized PSHA. The results will serve as reference for the Eurocode 8 application and are envisioned to provide homogeneous input for state-of-the art seismic safety assessment for critical industry. Harmonizing hazard is pursued on the input data level and the model building procedure across borders and tectonic features of the European-Mediterranean region. An updated earthquake catalog, a harmonized database of seismogenic sources together with adjusted ground motion prediction equations (GMPEs) form the bases for a borderless assessment. We require transparent and reproducible strategies to estimate parameter values and their uncertainties within the source model assessment and the contributions of the GMPEs. The SHARE model accounts for uncertainties via a logic tree. Epistemic uncertainties within the seismic source-model are represented by four source model options including area sources, fault sources and kernel-smoothing approaches, aleatory uncertainties for activity rates and maximum magnitudes. Epistemic uncertainties for predicted ground motions are considered by multiple GMPEs as a function of tectonic settings and treated as being correlated. For practical implementation, epistemic uncertainties in the source model (i.e. dip and strike angles) are treated as aleatory, and a mean seismicity model is considered. The final results contain the full distribution of ground motion variability. This contribution will feature preliminary
Analysis of real-time vibration data
Safak, E.
2005-01-01
In recent years, a few structures have been instrumented to provide continuous vibration data in real time, recording not only large-amplitude motions generated by extreme loads, but also small-amplitude motions generated by ambient loads. The main objective in continuous recording is to track any changes in structural characteristics, and to detect damage after an extreme event, such as an earthquake or explosion. The Fourier-based spectral analysis methods have been the primary tool to analyze vibration data from structures. In general, such methods do not work well for real-time data, because real-time data are mainly composed of ambient vibrations with very low amplitudes and signal-to-noise ratios. The long duration, linearity, and the stationarity of ambient data, however, allow us to utilize statistical signal processing tools, which can compensate for the adverse effects of low amplitudes and high noise. The analysis of real-time data requires tools and techniques that can be applied in real-time; i.e., data are processed and analyzed while being acquired. This paper presents some of the basic tools and techniques for processing and analyzing real-time vibration data. The topics discussed include utilization of running time windows, tracking mean and mean-square values, filtering, system identification, and damage detection.
Vibrations in glasses and Euclidean random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Grigera, T.S.; Martin-Mayor, V.; Parisi, G. [Dipartimento di Fisica, Universita di Roma ' La Sapienza' , Rome (Italy); INFN Sezione di Roma - INFM Unita di Roma, Rome (Italy); Verrocchio, P. [Dipartimento di Fisica, Universita di Trento, Povo, Trento (Italy); INFM Unita di Trento, Trento (Italy)
2002-03-11
We study numerically and analytically a simple off-lattice model of scalar harmonic vibrations by means of Euclidean random matrix theory. Since the spectrum of this model shares the most puzzling spectral features with the high-frequency domain of glasses (non-Rayleigh broadening of the Brillouin peak, boson peak and secondary peak), Euclidean random matrix theory provides a single and fairly simple theoretical framework for their explanation. (author)
Feed-forward control of gear mesh vibration using piezoelectric actuators
Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin
1994-01-01
This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.
Static harmonization of dynamically harmonized Fourier transform ion cyclotron resonance cell.
Zhdanova, Ekaterina; Kostyukevich, Yury; Nikolaev, Eugene
2017-08-01
Static harmonization in the Fourier transform ion cyclotron resonance cell improves the resolving power of the cell and prevents dephasing of the ion cloud in the case of any trajectory of the charged particle, not necessarily axisymmetric cyclotron (as opposed to dynamic harmonization). We reveal that the Fourier transform ion cyclotron resonance cell with dynamic harmonization (paracell) is proved to be statically harmonized. The volume of the statically harmonized potential distribution increases with an increase in the number of trap segments.
Dunn, Janette L.
2010-01-01
Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…
The vibration discomfort of standing people: evaluation of multi-axis vibration.
Thuong, Olivier; Griffin, Michael J
2015-01-01
Few studies have investigated discomfort caused by multi-axis vibration and none has explored methods of predicting the discomfort of standing people from simultaneous fore-and-aft, lateral and vertical vibration of a floor. Using the method of magnitude estimation, 16 subjects estimated their discomfort caused by dual-axis and tri-axial motions (octave-bands centred on either 1 or 4 Hz with various magnitudes in the fore-and-aft, lateral and vertical directions) and the discomfort caused by single-axis motions. The method of predicting discomfort assumed in current standards (square-root of the sums of squares of the three components weighted according to their individual contributions to discomfort) provided reasonable predictions of the discomfort caused by multi-axis vibration. Improved predictions can be obtained for specific stimuli, but no single simple method will provide accurate predictions for all stimuli because the rate of growth of discomfort with increasing magnitude of vibration depends on the frequency and direction of vibration.
Energy Technology Data Exchange (ETDEWEB)
Guo, Y.; Keller, J.; Parker, R. G.
2012-06-01
The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.
Data harmonization and model performance
The Joint Committee on Urban Storm Drainage of the International Association for Hydraulic Research (IAHR) and International Association on Water Pollution Research and Control (IAWPRC) was formed in 1982. The current committee members are (no more than two from a country): B. C. Yen, Chairman (USA); P. Harremoes, Vice Chairman (Denmark); R. K. Price, Secretary (UK); P. J. Colyer (UK), M. Desbordes (France), W. C. Huber (USA), K. Krauth (FRG), A. Sjoberg (Sweden), and T. Sueishi (Japan).The IAHR/IAWPRC Joint Committee is forming a Task Group on Data Harmonization and Model Performance. One objective is to promote international urban drainage data harmonization for easy data and information exchange. Another objective is to publicize available models and data internationally. Comments and suggestions concerning the formation and charge of the Task Group are welcome and should be sent to: B. C. Yen, Dept. of Civil Engineering, Univ. of Illinois, 208 N. Romine St., Urbana, IL 61801.
Representation Discovery using Harmonic Analysis
Mahadevan, Sridhar
2008-01-01
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu
Harmonic ratcheting for fast acceleration
Directory of Open Access Journals (Sweden)
N. Cook
2014-04-01
Full Text Available A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6 is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the “Q-loss” and “f-dot” loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a “harmonic ratcheting” acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details
Renormalization for free harmonic oscillators
Sonoda, H.
2013-01-01
We introduce a model of free harmonic oscillators that requires renormalization. The model is similar to but simpler than the soluble Lee model. We introduce two concrete examples: the first, resembling the three dimensional $\\phi^4$ theory, needs only mass renormalization, and the second, resembling the four dimensional $\\phi^4$ theory and the Lee model, needs additional renormalization of a coupling and a wave function.
Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.
Directory of Open Access Journals (Sweden)
Gunes Uzer
Full Text Available The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43 mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1% or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Modal simulation of gearbox vibration with experimental correlation
Choy, Fred K.; Ruan, Yeefeng F.; Zakrajsek, James J.; Oswald, Fred B.
1992-01-01
A newly developed global dynamic model was used to simulate the dynamics of a gear noise rig at NASA Lewis Research Center. Experimental results from the test rig were used to verify the analytical model. In this global dynamic model, the number of degrees of freedom of the system are reduced by transforming the system equations of motion into modal coordinates. The vibration of the individual gear-shaft system are coupled through the gear mesh forces. A three-dimensional, axial-lateral coupled, bearing model was used to couple the casing structural vibration to the gear-rotor dynamics. The coupled system of modal equations is solved to predict the resulting vibration at several locations on the test rig. Experimental vibration data was compared to the predicitions of the global dynamic model. There is excellent agreement between the vibration results from analysis and experiment.
Experimental Research on the Influence of Vibration on Knee Mobility
Directory of Open Access Journals (Sweden)
Radu Panaitescu-Liess
2013-09-01
Full Text Available Besides hand - arm system, the vibration can enter in the human body through the feet, too. In these case - when the subject was in a standing position and the vibrations have a vertical component - longer exposures may cause disease of joints, lower extremity and serious disorders of the cerebral blood vessels, internal organs and circulatory system. This paper focused on the influence of vibration on knee mobility. We used a MediTouch system which consists of a motion capture device (an ergonomic leg brace and a dedicated software.
Physiology responses of Rhesus monkeys to vibration
Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh
Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate
Input Harmonic Analysis on the Slim DC-Link Drive Using Harmonic State Space Model
DEFF Research Database (Denmark)
Yang, Feng; Kwon, Jun Bum; Wang, Xiongfei
2017-01-01
variation according to the switching instant, the harmonics at the steady-state condition, as well as the coupling between the multiple harmonic impedances. By using this model, the impaction on the harmonics performance by the film capacitor and the grid inductance is derived. Simulation and experimental......The harmonic performance of the slim dc-link adjustable speed drives has shown good performance in some studies but poor in some others. The contradiction indicates that a feasible theoretical analysis is still lacking to characterize the harmonic distortion for the slim dc-link drive. Considering...... the shortcomings of the present harmonic analysis methods, such as the time-domain simulation, or the Fourier analysis, this paper proposes a Harmonic State Space model to study the harmonics performance for this type of drive. In this study, this model is utilized to describe the behavior of the harmonic...
The influence of flywheel micro vibration on space camera and vibration suppression
Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo
2018-02-01
Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.
Ulker, Fatma Demet
In forward flight, helicopter rotor blades function within a highly complex aerodynamic environment that includes both near-blade and far-blade aerodynamic phenomena. These aerodynamic phenomena cause fluctuating aerodynamic loads on the rotor blades. These loads when coupled with the dynamic characteristics and elastic motion of the blade create excessive amount of vibration. These vibrations degrade helicopter performance, passenger comfort and contributes to high cost maintenance problems. In an effort to suppress helicopter vibration, recent studies have developed active control strategies using active pitch links, flaps, twist actuation and higher harmonic control of the swash plate. In active helicopter vibration control, designing a controller in a computationally efficient way requires accurate reduced-order models of complex helicopter aeroelasticity. In previous studies, controllers were designed using aeroelastic models that were obtained by coupling independently reduced aerodynamic and structural dynamic models. Unfortunately, these controllers could not satisfy stability and performance criteria when implemented in high-fidelity computer simulations or real-time experiments. In this thesis, we present a novel approach that provides accurate time-periodic reduced-order models and time-periodic H2 and H infinity controllers that satisfy the stability and performance criteria. Computational efficiency and the necessity of using the approach were validated by implementing an actively controlled flap strategy. In this proposed approach, the reduced-order models were directly identified from high-fidelity coupled aeroelastic analysis by using the time-periodic subspace identification method. Time-periodic H2 and Hinfinity controllers that update the control actuation at every time step were designed. The control synthesis problem was solved using Linear Matrix Inequality and periodic Riccati Equation based formulations, for which an in-house periodic
Harmonic generation in the generalized Sagdeev pseudopotential
Akbari-Moghanjoughi, M.
2017-09-01
In this paper, we study the nonlinear harmonic generation effect in different oscillator models. For weakly nonlinear systems, we use the generalized forced Korteweg de Vries Burgers (KdVB) and modified KdVB (mKdVB) models in order to classify three fundamentally different harmonic structures in a nonlinear dynamical system. The first is called the internal harmonic structure which exists due to the self oscillation of the system in the absence of dissipation effect and is shown to follow either relations of nf or (2n - 1)f depending on the symmetry of oscillator potential in which n is an integer number and f is the fundamental frequency which is exactly obtained for the Helmholtz oscillator. The second structure is the resonant harmonics which appears in the presence of damping and follows the harmonic structure nf0 in which f0 is the linear resonance frequency. Finally, the last harmonic structure appears in the presence of dissipation and external periodic forcing effects which we call the external harmonic pattern. It is shown that the external harmonic pattern, in which f1 is the driving frequency, always follows the nf1 rule regardless of the potential symmetry. We then extend our analysis to study the harmonic generation in the fully nonlinear generalized Sagdeev potential for real plasmas with isothermal and adiabatic ion fluids and investigate the effects of different plasma parameters such as the fractional ion temperature and normalized ion acoustic speed on all three kinds of harmonic generation.
Effect of pile-driving induced vibrations on nearby structures and other assets.
2013-11-01
The work described here represents an attempt to understand the mechanisms of energy : transfer from steel H-piles driven with diesel hammers to the surrounding soil and the energy : attenuation through the soil by measuring ground motion vibrations ...
Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method
Reddy, T. S. R.
2010-01-01
The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.
Bladed wheels damage detection through Non-Harmonic Fourier Analysis improved algorithm
Neri, P.
2017-05-01
Recent papers introduced the Non-Harmonic Fourier Analysis for bladed wheels damage detection. This technique showed its potential in estimating the frequency of sinusoidal signals even when the acquisition time is short with respect to the vibration period, provided that some hypothesis are fulfilled. Anyway, previously proposed algorithms showed severe limitations in cracks detection at their early stage. The present paper proposes an improved algorithm which allows to detect a blade vibration frequency shift due to a crack whose size is really small compared to the blade width. Such a technique could be implemented for condition-based maintenance, allowing to use non-contact methods for vibration measurements. A stator-fixed laser sensor could monitor all the blades as they pass in front of the spot, giving precious information about the wheel health. This configuration determines an acquisition time for each blade which become shorter as the machine rotational speed increases. In this situation, traditional Discrete Fourier Transform analysis results in poor frequency resolution, being not suitable for small frequency shift detection. Non-Harmonic Fourier Analysis instead showed high reliability in vibration frequency estimation even with data samples collected in a short time range. A description of the improved algorithm is provided in the paper, along with a comparison with the previous one. Finally, a validation of the method is presented, based on finite element simulations results.
Directory of Open Access Journals (Sweden)
Dae-Seung Cho
2010-06-01
Full Text Available The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.
Vibrational Suspension of Light Sphere in a Tilted Rotating Cylinder with Liquid
Victor G. Kozlov; Subbotin, Stanislav V.
2014-01-01
The dynamics of a light sphere in a quickly rotating inclined cylinder filled with liquid under transversal vibrations is experimentally investigated. Due to inertial oscillations of the sphere relative to the cavity, its rotation velocity differs from the cavity one. The intensification of the lagging motion of a sphere and the excitation of the outstripping differential rotation are possible under vibrations. It occurs in the resonant areas where the frequency of vibrations coincides with t...
Metrology of vibration measurements by laser techniques
von Martens, Hans-Jürgen
2008-06-01
Metrology as the art of careful measurement has been understood as uniform methodology for measurements in natural sciences, covering methods for the consistent assessment of experimental data and a corpus of rules regulating application in technology and in trade and industry. The knowledge, methods and tools available for precision measurements can be exploited for measurements at any level of uncertainty in any field of science and technology. A metrological approach to the preparation, execution and evaluation (including expression of uncertainty) of measurements of translational and rotational motion quantities using laser interferometer methods and techniques will be presented. The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and upgraded ISO standards are reviewed with respect to their suitability for ensuring traceable vibration measurements and calibrations in an extended frequency range of 0.4 Hz to higher than 100 kHz. Using adequate vibration exciters to generate sufficient displacement or velocity amplitudes, the upper frequency limits of the laser interferometer methods specified in ISO 16063-11 for frequencies <= 10 kHz can be expanded to 100 kHz and beyond. A comparison of different methods simultaneously used for vibration measurements at 100 kHz will be demonstrated. A statistical analysis of numerous experimental results proves the highest accuracy achievable currently in vibration measurements by specific laser methods, techniques and procedures (i.e. measurement uncertainty 0.05 % at frequencies <= 10 kHz, <= 1 % up to 100 kHz).
Steinchen, Wolfgang; Gan, Ymin; Kupfer, Gerhard; Maeckel, Peter
2003-05-01
University of Kassel and isi-sys have extended the application of shearography to quantitative vibration analysis and developed a portable automatic controlled shearography system. The Vibrograph is already used for vibration measurements in industry for example of electronic boards typically in combination with laboratory shakers in harmonic excitation modes. Now a small portable piezo shaker permits local excitation of the defects such as delaminations and disbonds. Vibrating in their natural mode shapes the Vibrograph detects the location of the defects within the fiber structure.
Analysis of the vibration of the vehicle body with the elimination of the influence of tires
Directory of Open Access Journals (Sweden)
Łukasz KONIECZNY
2015-09-01
Full Text Available The article presented the results of vibration measurements of selected elements of the vehicle during the test vibration carried out on a bench with a harmonic kinematic extortion. The results of research carried out for the car when replacing tire and wheels steel tripod eliminating the influence of elasticity and damping tires. The tests were performed at various values of the shock absorber fluid filling (from 100% to 50% of the shock absorber fluid. For registered vibration acceleration STFT analysis was performed.
Optimization of the impact multi-mass vibration absorbers
Directory of Open Access Journals (Sweden)
Ivan Kernytskyy
2017-09-01
Full Text Available The problem of attaching dynamic vibration absorber (DVA to a discrete multi-degree-of-freedom or continuous structure has been outlined in many papers and monographs. An impact damping system can overcome some limitations by impact as the damping medium and impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA with the several of the impact masses. Such originally designed absorbers reduce vibration selectively in maximum vibration mode without introducing vibration in other modes. An impact damper is a passive control device which takes the form of a freely moving mass, constrained by stops attached to the structure under control, i.e. the primary structure. The damping results from the exchange of momentum during impacts between the mass and the stops as the structure vibrates. The paper contemplates the provision of the impact multi-mass DVA’s with masses collisions for additional damping. For some cases of DVA optimization such a design seems more effective than conventional multi-mass DVA with independent mass moving. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in harmonic stochastic and impact loaded systems.
Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades
Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas
2012-01-01
Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.
Design of vibration sensor based on fiber Bragg grating
Zhang, Zhengyi; Liu, Chuntong
2017-12-01
Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.
Model Indepedent Vibration Control
Yuan, Jing
2010-01-01
A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...
DEFF Research Database (Denmark)
Nielsen, Søren R. K.
The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...
Hydroelastic Vibrations of Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Folsø, Rasmus
2002-01-01
A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...
Gearbox vibration diagnostic analyzer
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
The Harmonics of Kansei Images
DEFF Research Database (Denmark)
Su, Jianning; Restrepo-Giraldo, John Dairo
2008-01-01
Delivering the right product experience, which is a user’s reflection of a combination of functionality, usage, cost and appearance, is a key factor for product acquisition and commercial success. Establishing and representing the relation between a product’s shape and the perceived aesthetic...... sensibility it elicits on a person (kansei), is a key factor in the design of tools to support designers in delivering the right product’s appearance. This paper presents an approach to mathematically represent a product’s kansei based on the frequency signature (harmonics) of a shape. This mathematical...
Evaluation of Breaking Performance in Vibration-Assisted Electrostatic Surface Induction Actuator
DEFF Research Database (Denmark)
Nemoto, Takeru; Zsurzsan, Tiberiu-Gabriel; Yamamoto, Akio
2015-01-01
force can be changed by turning on and off the vibrator. The friction change can be utilized for high-performance slider motion control; for example, friction can be increased by switching off the vibrator when the slider needs to stop. In this paper, we evaluated how fast the slider can stop in several...
Neck Proprioception Shapes Body Orientation and Perception of Motion
Pettorossi, Vito Enrico; Schieppati, Marco
2014-01-01
This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject’s mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes. PMID:25414660
Directory of Open Access Journals (Sweden)
Shuai Wang
2017-04-01
Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.
Harmonic focus in thyroidectomy for substernal goiter
DEFF Research Database (Denmark)
Hahn, Christoffer Holst; Trolle, Waldemar; Sørensen, Christian Hjort
2015-01-01
OBJECTIVES: No previous prospective study has evaluated harmonic scalpel in thyroidectomy for substernal goiter. The objective of this study was to evaluate the use of harmonic scalpel (FOCUS shear, Ethicon Endo-Surgery) in thyroidectomy for substernal goiter for blood loss, operative time...... and 121 patients had harmonic scalpel thyroidectomy. RESULTS: The use of harmonic scalpel was associated with significant reduction in intraoperative blood loss (50 vs. 100mL, p=0.001), postoperative haemorrhage (4% vs. 12%, p=0.03) and length of hospital stay (2 vs. 3 days, p=0.001). The mean operative...... time was significantly longer in the harmonic group. CONCLUSION: Harmonic scalpel is a safe tool for thyroidectomy for substernal goiter. Its utilisation is associated with reduced blood loss, lower incidence of postoperative haemorrhage and shorter hospital stay....
Influence of foundation and axial force on the vibration of thin beam ...
African Journals Online (AJOL)
The influence of foundation and axial force on the vibration of a simply supported thin (Bernoulli Euler) beam, resting on a uniform foundation, under the action of a variable magnitude harmonic load moving with variable velocity is investigated in this paper. The governing equation is a fourth order partial differential ...
Analysis of the Vibration Spectrum Based on the Input Voltage Spectrum
DEFF Research Database (Denmark)
Mathe, Laszlo; Jakobsen, Uffe; Rasmussen, Peter Omand
2009-01-01
Pulse width modulation, present in most drives, gives rise to harmonics in the current and this generates radial forces that cause vibrations in the motor shell. This paper derives an analytical expression for the estimation of the spectrum of the radial force in a machine with an air gap, based...
Efficient third harmonic generation in photonic nanowires
Broderick, N.G.R.; Lohe, M. A.; Lee, T; Shaaram, Afshar V.; Monro, T.M.
2013-01-01
In a photonic nanowire the strong optical confinement allows for the phase matching of nonlinear interactions that would not normally be phase matched, while the large longitudinal component of the electric field serves to further enhance the effective nonlinearity. Thus such waveguides are good choices for studying nonlinear effects such as third harmonic generation. In this paper we analyse third harmonic generation analytically and present the criteria for optimal harmonic generation. In a...
Harmonics Monitoring Survey on LED Lamps
Abdelrahman Ahmed Akila; Kamelia Youssef; Ibrahim Yassin
2017-01-01
Light Emitting Diode (LED) lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles) generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluate...
Directory of Open Access Journals (Sweden)
Wei Wang
2014-01-01
Full Text Available Based on forced vibration tests for high-performance concrete (HPC, the influence of bridge vibration induced by traveling vehicle on compressive strength and durability of HPC has been studied. It is concluded that 1 d and 2 d compressive strength of HPC decreased significantly, and the maximum reduction rate is 9.1%, while 28 d compressive strength of HPC had a slight lower with a 3% maximal drop under the action of two simple harmonic vibrations with 2 Hz, 3 mm amplitude, and 4 Hz, 3 mm amplitude. Moreover, the vibration had a slight effect on the compressive strength of HPC when the simple harmonic vibration had 4 Hz and 1 mm amplitude; it is indicated that the amplitude exerts a more prominent influence on the earlier compressive strength with the comparison of the frequency. In addition, the impact of simple harmonic vibration on durability of HPC can be ignored; this shows the self-healing function of concrete resulting from later hydration reaction. Thus, the research achievements mentioned above can contribute to learning the laws by which bridge vibration affects the properties of concrete and provide technical support for the design and construction of the bridge deck pavement maintenance.
Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang
2017-06-01
The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.
Introduction to classical and quantum harmonic oscillators
Bloch, Sylvan C
2013-01-01
From conch shells to lasers . harmonic oscillators, the timeless scientific phenomenon As intriguing to Galileo as they are to scientists today, harmonic oscillators have provided a simple and compelling paradigm for understanding the complexities that underlie some of nature's and mankind's most fascinating creations. From early string and wind instruments fashioned from bows and seashells to the intense precision of lasers, harmonic oscillators have existed in various forms, as objects of beauty and scientific use. And harmonic oscillation has endured as one of science's most fascinating con
Effects of harmonic roving on pitch discrimination
DEFF Research Database (Denmark)
Santurette, Sébastien; de Kérangal, Mathilde le Gal; Joshi, Suyash Narendra
2015-01-01
to impair pitch discrimination performance. Fundamental-frequency difference limens (F0DLs) were obtained in normal-hearing listeners with and without musical training for complex tones filtered between 1.5 and 3.5 kHz with F0s of 300 Hz (resolved harmonics) and 75 Hz (unresolved harmonics). The harmonicity...... of the tone complexes was varied by systematically roving the frequency of individual harmonics, which was taken from a Gaussian distribution centered on the nominal frequency in every stimulus presentation. The amount of roving was determined by the standard deviation of this distribution, which varied...
Effect of undulator harmonics field on free-electron laser harmonic generation
Directory of Open Access Journals (Sweden)
Qika Jia
2011-06-01
Full Text Available The harmonics field effect of a planar undulator on free-electron laser (FEL harmonic generation has been analyzed. For both the linear case and the nonlinear case, the harmonic fraction of the radiation can be characterized by the coupling coefficients. The modification of the coupling coefficients is given when the third harmonics magnetic field component exists, thus the enhancement of the harmonic radiation can be predicted. The numerical results show that with the third harmonics magnetic field component that has the opposite sign to the fundamental, the intensity of third-harmonic radiation can be increased distinctly for both the small signal gain and the nonlinear harmonic generation. The increase is larger for the smaller undulator deflecting parameter.
Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir
2017-01-01
Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between
Patchkovskii, Serguei; Schuurman, Michael S.
2017-11-01
We present derivation and implementation of the multiconfigurational strong-field approximation with Gaussian nuclear wave packets (MC-SFA-GWP)—a version of the molecular strong-field approximation which treats all electronic and nuclear degrees of freedom, including their correlations, quantum mechanically. The technique allows realistic simulation of high-order-harmonic emission in polyatomic molecules without invoking reduced-dimensionality models for the nuclear motion or the electronic structure. We use MC-SFA-GWP to model isotope effects in high-order-harmonic-generation (HHG) spectroscopy of methane. The HHG emission in this molecule transiently involves the strongly vibronically coupled F22 electronic state of the CH4+ cation. We show that the isotopic HHG ratio in methane contains signatures of (a) field-free vibronic dynamics at the conical intersection (CI); (b) resonant features in the recombination cross sections; (c) laser-driven bound-state dynamics; as well as (d) the well-known short-time Gaussian decay of the emission. We assign the intrinsic vibronic feature (a) to a relatively long-lived (≥4 fs) vibronic wave packet of the singly excited ν4 (t2) and ν2 (e ) vibrational modes, strongly coupled to the components of the F22 electronic state. We demonstrate that these physical effects differ in their dependence on the wavelength, intensity, and duration of the driving pulse, allowing them to be disentangled. We thus show that HHG spectroscopy provides a versatile tool for exploring both conical intersections and resonant features in photorecombination matrix elements in the regime not easily accessible with other techniques.
Ghorbanpour Arani, A.; Sabzeali, M.; BabaAkbar Zarei, H.
2017-12-01
In this study, the nonlinear thermo-electro vibrations of double-walled boron nitride nanopeapods (DWBNNPPs) and double-walled carbon nanopeapods (DWCNPPs) under magnetic field embedded in an elastic medium is investigated. DWBNNPPs are made of piezoelectric and smart materials therefore, electric field is effective on them; meanwhile, DWCNPPs are made of carbon thus, magnetic field can be useful to control them. The Pasternak model is used to simulate the effects of elastic medium which surrounds the system. Nanotubes are modeled with assumption of the Euler-Bernoulli beam (EBB) theory and the surface effects are considered to achieve accurate response of the system. Moreover, interaction between two layers is modeled by van der Waals (vdW) forces. The equations of motion are derived using the energy method and the Hamilton principle. Then the governing equations are solved by using Galerkin's method and incremental harmonic balance method (IHBM). The influences of various parameters such as the magnetic field, different types of DWCNPPs and DWBNNPPs, elastic medium, existence of fullerene and surface effect on the vibration behavior of the system are investigated. The results demonstrate that DWBNNPPs have more influence on the frequency of the system than DWCNPPs. In addition, the presence of fullerene in nanotubes has a negative impact on the frequency behavior of revisionthe system.
Effects of Contraction Joints on Vibrational Characteristics of Arch Dams: Experimental Study
Directory of Open Access Journals (Sweden)
S. S. Wang
2015-01-01
Full Text Available This study experimentally investigates the effects of contraction joints on the vibrational characteristics of high arch dams. Three scale models of the world’s second highest dam, the Xiaowan Arch Dam, are used as experimental specimens identified by zero, one, and two contraction joints. When a scale model vibrates harmonically at a specific frequency, its operating deflection shape is acquired by using a scanning laser vibrometer to scan the side surface of the model. The effects of contraction joints on the vibrational characteristics of arch dams are studied by examining the changes in operating deflection shapes. Experimental results demonstrate that (i contraction joints can significantly affect the vibrational characteristics of arch dams, (ii the operating deflection shape intuitively illustrates the vibrational characteristics of arch dams, and (iii a scanning laser vibrometer has marked advantages over traditional equipment in accurately and efficiently acquiring full-field dynamic responses of a structure.
Directory of Open Access Journals (Sweden)
DONG Peng
2017-01-01
Full Text Available When one end of a fluid-filled pipe with an elastic wall is fixed and a harmonic force effect acts on the other end,a steady longitudinal vibration will be produced. Compared to the pipeline resonance mode,the amplitude of the steady longitudinal vibration of an elastic pipe is greater,and the effect on the sound is also greater. The study of the steady longitudinal vibration of pipes can better describe the effects of fluid-filled pipelines on the radiation sound field of the pipe opening. Through the contrast between the analysis calculation of the equivalent beam model and the experimental results,the accuracy of the equivalent beam model for the calculation of the steady longitudinal vibration of pipelines is verified,and a method of isolating the steady longitudinal vibration state is proposed and verified.
Advances in structural vibration control application of magneto-rheological visco-elastomer
Directory of Open Access Journals (Sweden)
Zuguang Ying
2017-03-01
Full Text Available Magneto-rheological visco-elastomer (MRVE as a new smart material developed in recent years has several significant advantages over magneto-rheological liquid. The adjustability of structural dynamics to random environmental excitations is required in vibration control. MRVE can supply considerably adjustable damping and stiffness for structures, and the adjustment of dynamic properties is achieved only by applied magnetic fields with changeless structure design. Increasing researches on MRVE dynamic properties, modeling, and vibration control application are presented. Recent advances in MRVE dynamic properties and structural vibration control application including composite structural vibration mitigation under uniform magnetic fields, vibration response characteristics improvement through harmonic parameter distribution, and optimal bounded parametric control design based on the dynamical programming principle are reviewed. Relevant main methods and results introduced are beneficial to understanding and researches on MRVE application and development.
Analysis of flow-induced vibrations in turbomachinery by mapping of complex fluid pressures
Directory of Open Access Journals (Sweden)
N Wirth
2016-10-01
Full Text Available In this paper we introduce a mapping procedure which facilitates the simulation of flow-induced vibrations in turbomachinery. The transient steady state pressure fluctuations in the flow field (which excite vibrations are computed in the frequency domain by what are generally referred to as “harmonic CFD” methods where the pressure oscillations are expressed by complex amplitudes. They are mapped using the Fraunhofer software FSIMapper to a structural vibration analysis. A main focus lies in the provision of mapping methods for cyclic symmetric models. The process provides a fast numerical assessment of flow-induced vibrations where the resulting vibration amplitudes can be used for realistic fatigue estimations of flow-excited turbine components. The procedure is applied to a ceramic impeller of a micro gas turbine.
Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems
DEFF Research Database (Denmark)
Christensen, Rene Hardam; Santos, Ilmar
2003-01-01
In rotor-blade systems basis as well as parametric vibration modes will appear due to the vibration coupling among flexible rotating blades and hub rigid body motion. Parametric vibration will typically occur when the hub operates at a constant angular velocity. Operating at constant velocity...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...
A coin vibrational motor swimming at low Reynolds number
Quillen, Alice C; Kelley, Douglas H; Friedmann, Tamar; Oakes, Patrick W
2016-01-01
Low-cost coin vibrational motors, used in haptic feedback, exhibit rotational internal motion inside a rigid case. Because the motor case motion exhibits rotational symmetry, when placed into a fluid such as glycerin, the motor does not swim even though its vibrations induce steady streaming in the fluid. However, a piece of rubber foam stuck to the curved case and giving the motor neutral buoyancy also breaks the rotational symmetry allowing it to swim. We measured a 1 cm diameter coin vibrational motor swimming in glycerin at a speed of a body length in 3 seconds or at 3 mm/s. The swim speed puts the vibrational motor in a low Reynolds number regime similar to bacterial motility, but because of the vibration it is not analogous to biological organisms. Rather the swimming vibrational motor may inspire small inexpensive robotic swimmers that are robust as they contain no external moving parts. A time dependent Stokes equation planar sheet model suggests that the swim speed depends on a steady streaming veloc...
Remote vibration monitoring system using wireless internet data transfer
Lemke, John
2000-06-01
Vibrations from construction activities can affect infrastructure projects in several ways. Within the general vicinity of a construction site, vibrations can result in damage to existing structures, disturbance to people, damage to sensitive machinery, and degraded performance of precision instrumentation or motion sensitive equipment. Current practice for monitoring vibrations in the vicinity of construction sites commonly consists of measuring free field or structural motions using velocity transducers connected to a portable data acquisition unit via cables. This paper describes an innovative way to collect, process, transmit, and analyze vibration measurements obtained at construction sites. The system described measures vibration at the sensor location, performs necessary signal conditioning and digitization, and sends data to a Web server using wireless data transmission and Internet protocols. A Servlet program running on the Web server accepts the transmitted data and incorporates it into a project database. Two-way interaction between the Web-client and the Web server is accomplished through the use of a Servlet program and a Java Applet running inside a browser located on the Web client's computer. Advantages of this system over conventional vibration data logging systems include continuous unattended monitoring, reduced costs associated with field data collection, instant access to data files and graphs by project team members, and the ability to remotely modify data sampling schemes.
Directory of Open Access Journals (Sweden)
Young H. YOU
2017-08-01
Full Text Available The best active twist schedules exploiting various waveform types are sought taking advantage of the global search algorithm for the reduction of hub vibration and/or power required of a rotor in high-speed conditions. The active twist schedules include two non-harmonic inputs formed based on segmented step functions as well as the simple harmonic waveform input. An advanced Particle Swarm assisted Genetic Algorithm (PSGA is employed for the optimizer. A rotorcraft Computational Structural Dynamics (CSD code CAMRAD II is used to perform the rotor aeromechanics analysis. A Computation Fluid Dynamics (CFD code is coupled with CSD for verification and some physical insights. The PSGA optimization results are verified against the parameter sweep study performed using the harmonic actuation. The optimum twist schedules according to the performance and/or vibration reduction strategy are obtained and their optimization gains are compared between the actuation cases. A two-phase non-harmonic actuation schedule demonstrates the best outcome in decreasing the power required while a four-phase non-harmonic schedule results in the best vibration reduction as well as the simultaneous reductions in the power required and vibration. The mechanism of reduction to the performance gains is identified illustrating the section airloads, angle-of-attack distribution, and elastic twist deformation predicted by the present approaches.
The Translational-Rotational Motion of an Earth Spheroid Satellite
Elshaboury, S. M.; Mostafa, A.
2012-06-01
In this paper we consider the translational-rotational motion of a spheroid satellite in the gravitational field, taking into account the asphericity of the earth. The harmonic coefficients of the earth's gravitational field are taken up to J 4. The equations of motion are obtained in terms of the canonical elements of Delaunay-Andoyer. A first order solution is obtained using the perturbing technique of Lie series.
A General Purpose Digital System for Field Vibration Testing
DEFF Research Database (Denmark)
Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos
2007-01-01
This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists...
Predicting vibration-induced displacement for a resonant friction slider
DEFF Research Database (Denmark)
Fidlin, A.; Thomsen, Jon Juel
2001-01-01
A mathematical model is set up to quantify vibration-induced motions of a slider, sandwiched between friction layers with different coefficients of friction, and equipped with an imbedded resonator that oscillates at high frequency and small amplitude. This model is highly nonlinear, involving no...
DEFF Research Database (Denmark)
Sarban, R.; Jones, R. W.; Mace, B. R.
2011-01-01
This contribution reviews the fabrication, characterization and active vibration isolation performance of a core-free rolled tubular dielectric elastomer (DE) actuator, which has been designed and developed by Danfoss PolyPower A/S. PolyPower DE material, PolyPower (TM), is produced in thin sheets...... the dominant dynamic characteristics of the core-free tubular actuator. It has been observed that all actuators have similar dynamic characteristics in a frequency range up to 1 kHz. A tubular actuator is then used to provide active vibration isolation (AVI) of a 250 g mass subject to shaker generated 'ground...... vibration'. An adaptive feedforward control approach is used to achieve this. The tubular actuator is shown to provide excellent isolation against harmonic vibratory disturbances with attenuation of the resulting 5 and 10 Hz harmonics being 66 and 23 dB, respectively. AVI against a narrow band vibratory...
Optical measurements of long-range protein vibrations
Acbas, Gheorghe; Niessen, Katherine A.; Snell, Edward H.; Markelz, A. G.
2014-01-01
Protein biological function depends on structural flexibility and change. From cellular communication through membrane ion channels to oxygen uptake and delivery by haemoglobin, structural changes are critical. It has been suggested that vibrations that extend through the protein play a crucial role in controlling these structural changes. While nature may utilize such long-range vibrations for optimization of biological processes, bench-top characterization of these extended structural motions for engineered biochemistry has been elusive. Here we show the first optical observation of long-range protein vibrational modes. This is achieved by orientation-sensitive terahertz near-field microscopy measurements of chicken egg white lysozyme single crystals. Underdamped modes are found to exist for frequencies >10 cm-1. The existence of these persisting motions indicates that damping and intermode coupling are weaker than previously assumed. The methodology developed permits protein engineering based on dynamical network optimization.
Structural Stability and Vibration
DEFF Research Database (Denmark)
Wiggers, Sine Leergaard; Pedersen, Pauli
This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....
The Harmonic Organization of Auditory Cortex
Directory of Open Access Journals (Sweden)
Xiaoqin eWang
2013-12-01
Full Text Available A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds.
Practical Tools to Foster Harmonic Understanding
Johnson, Erik
2013-01-01
Among the elements required to develop a comprehensive understanding of music is students' ability to perceive, recognize, and label the harmonies they hear. Harmonic dictation is among the strategies that teachers have traditionally chosen to help students develop harmonic awareness. However, the highly idiosyncratic ways that students approach…
Harmonic manifolds with minimal horospheres are flat
Indian Academy of Sciences (India)
MS received 28 May 2013; revised 12 November 2013 ... The known examples of harmonic manifolds include flat ... periodic functions. Finally, using the characteristic property of an almost periodic function we prove that M is Ricci flat. In view of this, it is natural to ask: Can one affirm that harmonic manifolds with mini-.
Harmonic dynamical behaviour of thallous halides
Indian Academy of Sciences (India)
Harmonic dynamical behaviour of thallous halides (TlCl and TlBr) have been studied using the ... that the incorporation of van der Waals interactions is essential for the complete harmonic dynamical behaviour of .... long-range coupling coefficients to the long-wavelength limit q → 0, the expression for zone centre optical ...
determination of determination of total harmonic distortion
African Journals Online (AJOL)
eobe
Harmonic Distortion (THD) of the Distribution lines in the 33kV distri. Harmonic Distortion (THD) of the Distribution lines in the 33kV distribution network of Island Business District, bution network of Island Business District,. Eko Electricity Distribution Plc, taken. Eko Electricity Distribution Plc, taken as a case study using a set ...
Achieving sustainable development through tax harmonization ...
African Journals Online (AJOL)
Using Nigeria as a case study, this article examines the efficacy of tax harmonization as an option for the achievement of two objectives: the integration of a developing country with other economies, and its sustainable development. It highlights the nexus between tax harmonization – a tax policy option – and sustainable ...
Harmonic Phase Response of Nonlinear Radar Targets
2015-10-01
ARL-TR-7513 ● OCT 2015 US Army Research Laboratory Harmonic Phase Response of Nonlinear Radar Targets by Sean F McGowan, Dr...Laboratory Harmonic Phase Response of Nonlinear Radar Targets by Sean F McGowan and Kelly D Sherbondy Sensors and Electron Devices Directorate...
The harmonic organization of auditory cortex
Wang, Xiaoqin
2013-01-01
A fundamental structure of sounds encountered in the natural environment is the harmonicity. Harmonicity is an essential component of music found in all cultures. It is also a unique feature of vocal communication sounds such as human speech and animal vocalizations. Harmonics in sounds are produced by a variety of acoustic generators and reflectors in the natural environment, including vocal apparatuses of humans and animal species as well as music instruments of many types. We live in an acoustic world full of harmonicity. Given the widespread existence of the harmonicity in many aspects of the hearing environment, it is natural to expect that it be reflected in the evolution and development of the auditory systems of both humans and animals, in particular the auditory cortex. Recent neuroimaging and neurophysiology experiments have identified regions of non-primary auditory cortex in humans and non-human primates that have selective responses to harmonic pitches. Accumulating evidence has also shown that neurons in many regions of the auditory cortex exhibit characteristic responses to harmonically related frequencies beyond the range of pitch. Together, these findings suggest that a fundamental organizational principle of auditory cortex is based on the harmonicity. Such an organization likely plays an important role in music processing by the brain. It may also form the basis of the preference for particular classes of music and voice sounds. PMID:24381544
Uniformly locally univalent harmonic map- pings
Indian Academy of Sciences (India)
63
Uniformly locally univalent harmonic map- pings. Saminathan Ponnusamy, Jinjing Qiao. ∗ and Xiantao Wang. Abstract. The primary aim of this paper is to characterize the uniformly locally univalent harmonic mappings in the unit disk. Then, we obtain sharp distortion, growth and covering theorems for one parameter fam-.
Hyperspherical Harmonics and Their Physical Applications
DEFF Research Database (Denmark)
Avery, James Emil; Avery, John Scales
Hyperspherical harmonics are extremely useful in nuclear physics and reactive scattering theory. However, their use has been confined to specialists with very strong backgrounds in mathematics. This book aims to change the theory of hyperspherical harmonics from an esoteric field, mastered...
Vibration Analysis and the Accelerometer
Hammer, Paul
2011-01-01
Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…
Pairwise harmonics for shape analysis
Zheng, Youyi
2013-07-01
This paper introduces a simple yet effective shape analysis mechanism for geometry processing. Unlike traditional shape analysis techniques which compute descriptors per surface point up to certain neighborhoods, we introduce a shape analysis framework in which the descriptors are based on pairs of surface points. Such a pairwise analysis approach leads to a new class of shape descriptors that are more global, discriminative, and can effectively capture the variations in the underlying geometry. Specifically, we introduce new shape descriptors based on the isocurves of harmonic functions whose global maximum and minimum occur at the point pair. We show that these shape descriptors can infer shape structures and consistently lead to simpler and more efficient algorithms than the state-of-the-art methods for three applications: intrinsic reflectional symmetry axis computation, matching shape extremities, and simultaneous surface segmentation and skeletonization. © 2012 IEEE.
Harmonic Interaction Analysis in Grid Connected Converter using Harmonic State Space (HSS) Modeling
DEFF Research Database (Denmark)
Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth
2015-01-01
An increasing number of power electronics based Distributed Generation (DG) systems and loads generate coupled harmonic as well as non-characteristic harmonic with each other. Several methods like impedance based analysis, which is derived from conventional small signal- and average...... during the modeling process. This paper investigates grid connected converter by means of Harmonic State Space (HSS) small signal model, which is modeled from Linear Time varying Periodically (LTP) system. Further, a grid connected converter harmonic matrix is investigated to analyze the harmonic...
Directory of Open Access Journals (Sweden)
M. Döntgen
2016-09-01
Full Text Available Energy-level densities are key for obtaining various chemical properties. In chemical kinetics, energy-level densities are used to predict thermochemistry and microscopic reaction rates. Here, an analytic energy-level density formulation is derived using inverse Laplace transformation of harmonic oscillator partition functions. Anharmonic contributions to the energy-level density are considered approximately using a literature model for the transition from harmonic to free motions. The present analytic energy-level density formulation for rigid rotor-harmonic oscillator systems is validated against the well-studied CO+O˙H system. The approximate hindered rotor energy-level density corrections are validated against the well-studied H2O2 system. The presented analytic energy-level density formulation gives a basis for developing novel numerical simulation schemes for chemical processes.
Rezaee, Mousa; Jahangiri, Reza
2015-05-01
In this study, in the presence of supersonic aerodynamic loading, the nonlinear and chaotic vibrations and stability of a simply supported Functionally Graded Piezoelectric (FGP) rectangular plate with bonded piezoelectric layer have been investigated. It is assumed that the plate is simultaneously exposed to the effects of harmonic uniaxial in-plane force and transverse piezoelectric excitations and aerodynamic loading. It is considered that the potential distribution varies linearly through the piezoelectric layer thickness, and the aerodynamic load is modeled by the first order piston theory. The von-Karman nonlinear strain-displacement relations are used to consider the geometrical nonlinearity. Based on the Classical Plate Theory (CPT) and applying the Hamilton's principle, the nonlinear coupled partial differential equations of motion are derived. The Galerkin's procedure is used to reduce the equations of motion to nonlinear ordinary differential Mathieu equations. The validity of the formulation for analyzing the Limit Cycle Oscillation (LCO), aero-elastic stability boundaries is accomplished by comparing the results with those of the literature, and the convergence study of the FGP plate is performed. By applying the Multiple Scales Method, the case of 1:2 internal resonance and primary parametric resonance are taken into account and the corresponding averaged equations are derived and analyzed numerically. The results are provided to investigate the effects of the forcing/piezoelectric detuning parameter, amplitude of forcing/piezoelectric excitation and dynamic pressure, on the nonlinear dynamics and chaotic behavior of the FGP plate. It is revealed that under the certain conditions, due to the existence of bi-stable region of non-trivial solutions, system shows the hysteretic behavior. Moreover, in absence of airflow, it is observed that variation of control parameters leads to the multi periodic and chaotic motions.
Harmonics Monitoring Survey on LED Lamps
Directory of Open Access Journals (Sweden)
Abdelrahman Ahmed Akila
2017-03-01
Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.
High orbital angular momentum harmonic generation
Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O
2016-01-01
We identify and explore a high orbital angular momentum (OAM) harmonics generation and amplification mechanism that manipulates the OAM independently of any other laser property, by preserving the initial laser wavelength, through stimulated Raman backscattering in a plasma. The high OAM harmonics spectra can extend at least up to the limiting value imposed by the paraxial approximation. We show with theory and particle-in-cell simulations that the orders of the OAM harmonics can be tuned according to a selection rule that depends on the initial OAM of the interacting waves. We illustrate the high OAM harmonics generation in a plasma using several examples including the generation of prime OAM harmonics. The process can also be realised in any nonlinear optical Kerr media supporting three-wave interactions.
Harmonic Generation by Microwave-frequency Microplasma
Parsons, Stephen; Hoskinson, Alan; Hopwood, Jeffrey
2013-09-01
A microplasma may operate as a nonlinear circuit element and generate power at the harmonics of the drive frequency. As an example, microplasma is sustained using 1 W of power at 1.3 GHz in a small discharge gap formed in a split-ring resonator. A probe extends into the microplasma and extracts the 3rd harmonic power through a tuned resonator at 3.9 GHz. The experimental data show that this non-optimized system produces a +38 dB increase in 3rd harmonic power in the presence of a microplasma. Two origins of nonlinearity are described: the harmonic conduction current due to electron collection by microelectrodes, and the harmonic displacement current due to the voltage-dependent sheath capacitance. PIC-MC simulations suggest that the microplasma nonlinearity may also be exploited at frequencies of 100 GHz. Support was provided by the DARPA Microscale Plasma Devices program under award FA9550-12-1-0006.
DEFF Research Database (Denmark)
Thomsen, Jon Juel
About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...
Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Kouichi; Onishi, Takaaki; Nishijo, Hisao
2016-01-01
Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.
Rotational isovector vibrations in titanium nuclei
Energy Technology Data Exchange (ETDEWEB)
Faessler, A.; Nojarov, R.; Taigel, T.
1989-01-30
The strong M1 states with K/sup ..pi../ = 1/sup +/ in /sup 44,46,48,50/Ti are described microscopically with a deformed Woods-Saxon potential plus QRPA using a parameter-free self-consistent quadrupole force and an interaction, which restores the rotational symmetry. The available experimental data (energies, B(M1) values and (e,e') form factors in /sup 46,48/Ti) are well described in terms of isovector quadrupole rotational vibrations. These RPA states correspond to the scissor-type of isovector motion described by the two-rotor model, but they overlap only 20-30% with the collective isovector rotational state of this model since only few quasiparticle configurations take part in the RPA rotational vibration.
Optomechanical proposal for monitoring microtubule mechanical vibrations
Barzanjeh, Sh.; Salari, V.; Tuszynski, J. A.; Cifra, M.; Simon, C.
2017-07-01
Microtubules provide the mechanical force required for chromosome separation during mitosis. However, little is known about the dynamic (high-frequency) mechanical properties of microtubules. Here, we theoretically propose to control the vibrations of a doubly clamped microtubule by tip electrodes and to detect its motion via the optomechanical coupling between the vibrational modes of the microtubule and an optical cavity. In the presence of a red-detuned strong pump laser, this coupling leads to optomechanical-induced transparency of an optical probe field, which can be detected with state-of-the art technology. The center frequency and line width of the transparency peak give the resonance frequency and damping rate of the microtubule, respectively, while the height of the peak reveals information about the microtubule-cavity field coupling. Our method opens the new possibilities to gain information about the physical properties of microtubules, which will enhance our capability to design physical cancer treatment protocols as alternatives to chemotherapeutic drugs.
Structural Vibration Monitoring Using Cumulative Spectral Analysis
Directory of Open Access Journals (Sweden)
Satoru Goto
2013-01-01
Full Text Available This paper describes a resonance decay estimation for structural health monitoring in the presence of nonstationary vibrations. In structural health monitoring, the structure's frequency response and resonant decay characteristics are very important for understanding how the structure changes. Cumulative spectral analysis (CSA estimates the frequency decay by using the impulse response. However, measuring the impulse response of buildings is impractical due to the need to shake the building itself. In a previous study, we reported on system damping monitoring using cumulative harmonic analysis (CHA, which is based on CSA. The current study describes scale model experiments on estimating the hidden resonance decay under non-stationary noise conditions by using CSA for structural condition monitoring.
Metzger, Bernd; Gui, Lili; Fuchs, Jaco; Floess, Dominik; Hentschel, Mario; Giessen, Harald
2015-06-10
We perform second harmonic spectroscopy of aluminum nanoantenna arrays that exhibit plasmonic resonances at the second harmonic wavelength between 450 and 570 nm by focusing sub-30 fs laser pulses tunable from 900 to 1140 nm onto the nanoantenna arrays. We find that a plasmonic resonance at the second harmonic wavelength boosts the overall nonlinear process by more than an order of magnitude. In particular, in the measurement the resonant second harmonic polarization component is a factor of about 70 stronger when compared to the perpendicular off-resonant second harmonic polarization. Furthermore, the maximum of the second harmonic conversion efficiency is found to be slightly blue-shifted with respect to the peak of the linear optical far-field spectrum. This fact can be understood from a simple model that accounts for the almost off-resonant absorption at the fundamental wavelength and the resonant emission process at the second harmonic.
Sortur, Veenasangeeta; Yenagi, Jayashree; Tonannavar, J; Jadhav, V B; Kulkarni, M V
2008-11-15
Infrared (4000-400 cm(-1)) and Raman (3500-50 cm(-1)) spectral measurements have been made for the solid sample of 7-methyl-4-bromomethylcoumarin. Electronic structure calculations at RHF/6-31G* and B3LYP/6-31G* levels of theory have been performed, giving equilibrium geometries, harmonic vibrational spectra and normal modes. Different orientations of bromomethyl group have yielded only two conformers, of which the most stable one lying lower from the other conformer by approximately 7.99 kJ/mol, is non-planar with no symmetry. A complete assignment of the vibrational modes, aided by the calculations, has been proposed. Coupled vibrations are manifest in many modes. Some spectral features, compared to 6-methyl-4-bromomethylcoumarin, show changes across both IR and Raman spectra, involving mainly skeletal vibrations, and to a lesser degree, methyl and bromomethyl vibrations. Low-frequency vibrations below 150 cm(-1) are assigned to lattice modes.
Pollak, Eli
2016-07-21
This year we celebrate the 80th anniversary of the Landau-Teller model for energy exchange in a collinear collision of an atom with a harmonic diatomic molecule. Even after 80 years though, the analytic theory to date has not included in it the back-influence of the oscillator's motion on the energy transfer between the approaching particle and the molecule. This is the topic of the present paper. The back-influence can be obtained by employing classical second-order perturbation theory. The second-order theory is used in both a classical and semiclassical context. Classically, analytic expressions are derived for the final phase and action of the diatom, after the collision. The energy loss of the atom is shown to decrease linearly with the increasing energy of the oscillator. The magnitude of this decrease is a direct consequence of the back-reaction of the oscillator on the translational motion. The qualitative result is universal, in the sense that it is not dependent on the details of the interaction of the atom with the oscillator. A numerical application to a model collision of an Ar atom with a Br2 diatom demonstrates the importance and accuracy of the second-order perturbation theory. The same results are then used to derive a second-order perturbation theory semiclassical expression for the quantum transition probability from initial vibrational state ni to final vibrational state nf of the oscillator. A comparison of the theory with exact quantum data is presented for a model collision of Br2 with a hydrogen molecule, where the hydrogen molecule is considered as a single approaching particle.
Noise and diffusion in vibrated self-propelled particles
Walsh, Lee; Schlossberg, Sarah; Baskaran, Aparna; Menon, Narayanan
Active-matter systems are often modeled in the lab by studying the two-dimensional dynamics of granular particles driven by vibration in the third dimension. If the vibrational noise is rectified by the shape of the particle, the resulting motion of the particle shows directed motion superimposed on diffusion. We use particles designed for polar motion along a body axis as well as others that break isotropy in various ways. The long-term motion is typically theoretically modeled by a Langevin equation that encodes a self-propulsion velocity along the body axis as well as uncorrelated rotational and translational noise, all of which are treated as independent parameters. For a dilute system of granular tiles confined to a horizontal plane and vertically vibrated, we measure the long-time single-particle dynamics as well as the short-time distributions of translational and rotational motion. From these we characterize the different correlation functions that determine the noise and test the assumptions of the conventional Langevin dynamics used for self-propelled particles.
Experimental Determination of the Hamiltonian for Synchrotron Motion with RF Phase Modulation
Energy Technology Data Exchange (ETDEWEB)
Minty, Michiko
2003-07-11
Synchrotron motion with rf phase modulation was studied experimentally. Poincare maps in the resonant processing frame were obtained from the experimental data and compared with the tori of the resonant Hamiltonian. The experimental data revealed island structure in longitudinal phase space. Experimental results for synchrotron motion excited by phase modulation at the third harmonic of the synchrotron frequency are also reported.
DESIGN OF VIBRATION AND NOISE CONTROL SYSTEM FOR FLEXIBLE STRUCTURES
Directory of Open Access Journals (Sweden)
В. Макаренко
2012-04-01
Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.
Effect of vibration on visual display terminal work performance.
Hsieh, Yao-Hung; Lin, Chiuhsiang Joe; Chen, Hsiao-Ching
2007-12-01
Today electronic visual displays have dramatic use in daily life. Reading these visual displays is subject to their vibration. Using a software-simulation of a vibrated environment, the study investigated the effect of vibration on visual performance and fatigue for several numerical display design characteristics including the font size and the number of digits displayed. Both the frequency and magnitude of vibration had significant effects on the reaction time, accuracy, and visual fatigue. 10 graduate students (23-30 years old; M = 25.6), randomly tested in this experiment, were offered about 25 U.S. dollars for their participation. Numbers in vertical presentation were affected more in vertical vibration than those in horizontal presentation. Analysis showed whenever the display is used in vibration environment, an increased font size may be an effective way to compensate the adverse effect of vibration. The software design of displayed materials must be designed to take the motion effect into consideration to increase the quality of the screen display.
Attenuation of cryocooler induced vibration in spaceborne infrared payloads
Veprik, A.; Twitto, A.
2014-01-01
Recent advancement of operational responsive space programs calls for a development of compact, reliable, low power and vibration free cryogenic cooling for sophisticated infrared payloads. The refrigeration in a typical closed cycle split Stirling linear cryocooler is achieved by a cyclic compression and expansion of a gaseous working agent due to a synchronized reciprocation of electro-dynamically and pneumatically actuated compressor and expander pistons. Attenuation of the cryocooler induced vibration usually relies on the concept of actively assisted momentum cancellation. In a typical dual-piston compressor this objective is achieved by actively synchronizing the motion of oppositely moving piston assemblies; a typical single-piston expander may be counterbalanced by a motorized counter-balancer. The above approach produces complexity, weight, size, high incurred costs and affects reliability. The authors analyze the case of passive attenuation the vibration export induced by the split Stirling linear cryocooler comprised of inline mounted single-piston compressor and expander. Placement of all the moving components onto a common axis results in a single axis consolidation of vibration export and enables use of single tuned dynamic absorber and low frequency vibration mount. From theoretical analysis and full-scale testing, the performance of such vibration protection arrangement is similar to known systems of active vibration cancellation.
Tomilin, A. K.; Kurilskaya, N. F.
2017-10-01
A model problem of transversal vibrations of an elastic conducting rod in the magnetic field is studied. Vibrations in the rod are excited due to kinematic and force factors. A partial differential equation of motion containing the integral term for the electromagnetic force was constructed. After applying the Fourier procedure, the problem is reduced to a set of ODEs. The condition for passive stabilization of the main vibrational mode’s amplitude is derived. A method of active electromagnetic suppression of certain vibrational modes is proposed.
Structure-borne sound structural vibrations and sound radiation at audio frequencies
Cremer, L; Petersson, Björn AT
2005-01-01
Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi
Investigation of structure and vibrational properties of cyclobutane pirimidine dimer
Directory of Open Access Journals (Sweden)
Petković Milena M.
2013-01-01
Full Text Available We performed a theoretical analysis of the structure and vibrational properties of cyclobutane pyrimidine dimer, which is the main product in a photochemical reaction involving two molecules of 1-methylthymine. Thymine is a pyrimidine base that has the highest yield of the dimerization photoproducts. Methylation in position one was chosen because in this position thymine is linked to sugar in DNA. The calculations were performed at the B3LYP/cc-pVTZ level with a Gaussian program package. All molecular geometries were optimized without symmetry constraints in vacuum and D2O. Vibrational frequencies were calculated in the harmonic approximation. It was shown that there are two stable isomers, CPD(cis-syn and CPD(trans-syn. CPD(trans-syn is more stable both in vacuum and in D2O. By dissolving these molecules in D2O, both structures become more stable, although the stabilization of the less stable isomer is more pronounced due to its larger dipole moment. Thus, the difference in stability of the two isomers in D2O is almost two times lower than in vacuum. Because of the similarity of the two isomers’ structures, the difference in their vibrational spectra is not pronounced. Within the harmonic approximation, there is only a slight difference in the C=O and C-H stretching region. The difference in the N-H stretching region is more pronounced; in the CPD(cis-syn molecule the two bonds vibrate separately, whereas in the CPD(trans-syn the two modes couple, and this coupling results in symmetric and asymmetric N-H stretching. The observation shows that a slight difference in geometry can be reflected in the shape of the infrared spectra. A more detailed analysis of the vibrational properties would involve computation of anharmonic coupling terms, which would enable a more precise determination of the peak positions.
Energy Technology Data Exchange (ETDEWEB)
Hougen, J.T. [NIST, Gaithersburg, MD (United States)
1993-12-01
The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.
Flow induced vibrations of the CLIC X-Band accelerating structures
Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre
2011-01-01
Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...
Vibration-induced displacement using high-frequency resonators and friction layers
DEFF Research Database (Denmark)
Thomsen, Jon Juel
1998-01-01
A mathematical model is set up to quantify vibration-induced motions of a slider with an imbedded resonator. A simple approximate expression is presented for predicting average velocities of the slider, agreeing fairly well with numerical integration of the full equations of motion. The simple ex...
Energy Technology Data Exchange (ETDEWEB)
Hirata, A. [Kumamoto Industries Univ, Kumamoto (Japan); Yamamoto, M. [Asahi Chemical Industry Co. Ltd., Tokyo (Japan); Inaba, C. [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Kaneko, K. [Hokkaido Univ (Japan)
1997-08-01
For avoiding the generation of public hazard due to ground vibration causes by blasting in tunneling, it is important to devise a blasting method for ensuring the level of the ground vibration caused thereby under a limit, and an exact predication of ground vibration before blasting is desirable. In this study, the characteristics of the ground vibration caused by tunnel blasting are analyzed, and a summary of amplitude spectra calculating method is described. A theoretical analysis method for predicting the vibration level is proposed based on spectrum-multiplicative method. Vibration caused by multistage blasting in tunneling is most strong and deemed as important. When observing the process of elastic wave motion caused by multistage blasting being measured, the process can be divided into three element processes in frequency area as vibration source spectrum, transmission attenuation spectrum and frequency response function vibrating test, and, with the multiplication of them, the amplitude spectra at an observation portion can be estimated. 12 refs., 12 figs.
Data compression in wireless sensors network using MDCT and embedded harmonic coding.
Alsalaet, Jaafar K; Ali, Abduladhem A
2015-05-01
One of the major applications of wireless sensors networks (WSNs) is vibration measurement for the purpose of structural health monitoring and machinery fault diagnosis. WSNs have many advantages over the wired networks such as low cost and reduced setup time. However, the useful bandwidth is limited, as compared to wired networks, resulting in relatively low sampling. One solution to this problem is data compression which, in addition to enhancing sampling rate, saves valuable power of the wireless nodes. In this work, a data compression scheme, based on Modified Discrete Cosine Transform (MDCT) followed by Embedded Harmonic Components Coding (EHCC) is proposed to compress vibration signals. The EHCC is applied to exploit harmonic redundancy present is most vibration signals resulting in improved compression ratio. This scheme is made suitable for the tiny hardware of wireless nodes and it is proved to be fast and effective. The efficiency of the proposed scheme is investigated by conducting several experimental tests. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Production of High Harmonic X-Ray Radiation from Non-linear Thomson at LLNL PLEIADES
Lim, Jae; Betts, Shawn; Crane, John; Doyuran, Adnan; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M
2005-01-01
We describe an experiment for production of high harmonic x-ray radiation from Thomson backscattering of an ultra-short high power density laser by a relativistic electron beam at the PLEIADES facility at LLNL. In this scenario, electrons execute a figure-8 motion under the influence of the high-intensity laser field, where the constant characterizing the field strength is expected to exceed unity: $aL=e*EL/m*c*ωL ≥ 1$. With large $aL$ this motion produces high harmonic x-ray radiation and significant broadening of the spectral peaks. This paper is intended to give a layout of the PLEIADES experiment, along with progress towards experimental goals.
GAUDET, S.; GAUTHIER, C.; LEBLANC, V. G.
2000-11-01
We study the small-amplitude transverse oscillations of a planar network of N sections of string which are all attached at one common extremity. This network is called an N -string. When the N sections of string are of finite length, we find Fourier series expressions describing the vibrations perpendicular to the plane containing the N -string at rest. The standing perpendicular wave energies of a plucked symmetric N -string are analyzed. It is found that higher harmonics can be excited to an energy level above that of the first harmonic simply by plucking at an appropriate location along one of the strings. This result is in contrast to an ordinary plucked string and may lead to interesting applications; most notably the construction of new musical instruments. We also describe the movements of one travelling perpendicular wave in an N -string as well as the interaction of such waves. A method for increasing or reducing the amplitude of travelling perpendicular waves is outlined.
Yadav, Amit; Panda, Sarat Kumar; Dey, Tanish
2017-11-01
Present analysis deals with nonlinear flexural-torsional vibration and dynamic instability of thin-walled stiffener beam with open section subjected to harmonic in-plane loading. The static and dynamic components of the applied harmonic in-plane loading are assumed to vary uniformly. A set of nonlinear partial differential equations (PDEs) describing the vibration of system is derived. Using Galerkin's method, these partial differential equations are reduced into coupled Mathieu equations. The steady state response of the system is determined by solving the condition for a non-trivial solution. The principal regions of parametric resonance are determined using the method suggested by Bolotin. The numerical results are presented to investigate the effect of aspect ratios, boundary conditions and static load factor on the frequency-amplitude responses and instability regions.
Vibration modes of injured spine at resonant frequencies under vertical vibration.
Guo, Li-Xin; Zhang, Ming; Zhang, Yi-Min; Teo, Ee-Chon
2009-09-01
A detailed three-dimensional finite element model of the spine segment T12-Pelvis was developed to investigate dynamic characteristics of whole lumbar spine with injured cases. This study investigates the motion mechanism of the human lumbar spine and the effect of component injuries on adjacent spinal components under whole body vibration. Several investigations have analyzed the influence of injured spines on adjacent spinal components under static loadings. However, it is not clear how the spine injury affects dynamic characteristics of whole lumbar spine and adjacent components of the injured segment under vibration. The T12-Pelvis model was used to obtain the modal vibration modes of the spine at resonant frequencies. Injury conditions of the spine were simulated and tested, including denucleation and/or facetectomy with removal of capsular ligaments. The results indicate the first-order vertical resonant frequency of the intact model is 7.21 Hz. After the denucleation at L4-L5, it decreases by more than 4% compared with the intact condition. All the injured conditions including disc injury and ligament injury decrease the resonant frequency of the spine. Due to the denucleation at L4-L5 the anteroposterior displacements of the vertebrae from L2 to L5 decrease and the vertical displacements of the vertebrae from L1 to L4 increase under vibration. The denucleation also decreases the rotational deformations of the vertebrae from L1 to L5. The material property sensitivity analysis shows intervertebral discs have a dominating effect on variation of vertical resonant frequency of the spine. The denucleation may decrease cushioning effects of adjacent motion segments at the injured level under vibration. The injured condition may increase the vertical displacement amplitudes of the spine above the injured level. All the injured conditions may decrease the resonant frequency of the spine system.
Tailored semiconductors for high-harmonic optoelectronics.
Sivis, Murat; Taucer, Marco; Vampa, Giulio; Johnston, Kyle; Staudte, André; Naumov, Andrei Yu; Villeneuve, D M; Ropers, Claus; Corkum, P B
2017-07-21
The advent of high-harmonic generation in gases 30 years ago set the foundation for attosecond science and facilitated ultrafast spectroscopy in atoms, molecules, and solids. We explore high-harmonic generation in the solid state by means of nanostructured and ion-implanted semiconductors. We use wavelength-selective microscopic imaging to map enhanced harmonic emission and show that the generation medium and the driving field can be locally tailored in solids by modifying the chemical composition and morphology. This enables the control of high-harmonic technology within precisely engineered solid targets. We demonstrate customized high-harmonic wave fields with wavelengths down to 225 nanometers (ninth-harmonic order of 2-micrometer laser pulses) and present an integrated Fresnel zone plate target in silicon, which leads to diffraction-limited self-focusing of the generated harmonics down to 1-micrometer spot sizes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.