WorldWideScience

Sample records for vibrational frequencies relative

  1. Landslides in Vibrating Sand-Box; Preliminary Results Reporting Types of Slope-Failure and Apparent Frequency Magnitude (Area) Power Law Relations.

    Science.gov (United States)

    Aharonov, E.; Katz, O.

    2004-12-01

    It is recognized that hazardous natural phenomena such as earthquakes, forest fires and landslides often follow a power-law frequency-magnitude relations. Naturally occurring landslides populations, both seismic and hydrologically triggered, show non-cumulative power law frequency-magnitude (area) relations with slope of 2.3-3 for the large landslides part of the population. Numerical simulations of sand pile avalanches obtain a non-cumulative frequency-size distribution which also follows a power-law but with a slope of 1. In this work we study the nature and area distribution of slope failure triggered in a vibrating wet (1%wt) sand box. We used a 28 cubic cm box with sand pile crest resting on the top of one inner face and foot on the opposite face base. Initial slope angle was about 50deg, vibrating frequency 10Hz and individual test duration lasted a few minutes. Three different accelerations directions were tested: vertical, slope perpendicular, and normal horizontal accelerations. Acceleration magnitudes ranged from 0.1 to 1.2g. Slope performance was continuously recorded using a digital video camera. We observed that vertical vibrations larger than 1.0 g, induced mainly a few centimeter wide block-slides and toppling from a step like scarp that migrated up the slope. Block sliding rate was approximately one every few seconds. Final slope cross-section is S shaped with normal faulting at its crest. Final slope angle was about 35deg. Lower accelerations or lower initial slope angles yielded only surface grain flow. Horizontal shaking yielded different behavior: Above a threshold acceleration (0.5g and 0.7g for shaking parallel and normal to slope direction, respectively), surface flow occurred initially. It was followed by a box-wide slump, which first remained coherent and then progressively disintegrated. Lower accelerations or initial slope angle yield only surface grain flow. Finally, the upper surface areas of tens of block-slides induced in the above

  2. Vibration modes and frequencies of structures

    Science.gov (United States)

    Durling, R. J.; Kvaternik, R. G.

    1980-01-01

    SUDAN, Substructuring in Direct Analysis, analyzes natural modes and frequencies of vibration of structural systems. Based on direct method of analysis that employs substructures methodology, program is used with structures that may be represented as equivalent system of beam, springs, and rigid bodies.

  3. Geometry optimization and vibrational frequencies of tetracene ...

    African Journals Online (AJOL)

    Tetracene is an organic semiconductor with chemical formula C18H12 used in organic field effecttransistor (OFET) and organic light emitting diode (OLED). In this work, the molecular geometry (optimized bond lengths and bond angles), vibrational frequencies and intensities, HOMO-LUMO Energy gap and Atomic charge ...

  4. Nonlinear frequency response analysis of structural vibrations

    Science.gov (United States)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  5. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    Science.gov (United States)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  6. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...

  7. An Impact-Based Frequency Up-Converting Hybrid Vibration Energy Harvester for Low Frequency Application

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2017-11-01

    Full Text Available In this paper, a novel impact-based frequency up-converting hybrid energy harvester (FUCHEH was proposed. It consisted of a piezoelectric cantilever beam and a driving beam with a magnetic tip mass. A solenoid coil was attached at the end of the piezoelectric beam. This innovative configuration amplified the relative motion velocity between magnet and coil, resulting in an enhancement of the induced electromotive force in the coil. An electromechanical coupling model was developed and a numerical simulation was performed to study the principle of impact-based frequency up-converting. A prototype was fabricated and experimentally tested. The time-domain and frequency-domain analyses were performed. Fast Fourier transform (FFT analysis verified that fundamental frequencies and coupled vibration frequency contributes most of the output voltage. The measured maximum output power was 769.13 µW at a frequency of 13 Hz and an acceleration amplitude of 1 m/s2, which was 3249.4%- and 100.6%-times larger than that of the frequency up-converting piezoelectric energy harvesters (FUCPEH and frequency up-converting electromagnetic energy harvester (FUCEMEH, respectively. The root mean square (RMS voltage of the piezoelectric energy harvester subsystem (0.919 V was more than 16 times of that of the stand-alone PEH (0.055 V. This paper provided a new scheme to improve generating performance of the vibration energy harvester with high resonant frequency working in the low-frequency vibration environment.

  8. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  9. Lattice vibrational modes and their frequency shifts in semiconductor nanowires.

    Science.gov (United States)

    Yang, Li; Chou, M Y

    2011-07-13

    We have performed first-principles calculations to study the lattice vibrational modes and their Raman activities in silicon nanowires (SiNWs). Two types of characteristic vibrational modes are examined: high-frequency optical modes and low-frequency confined modes. Their frequencies have opposite size dependence with a red shift for the optical modes and a blue shift for the confined modes as the diameter of SiNWs decreases. In addition, our calculations show that these vibrational modes can be detected by Raman scattering measurements, providing an efficient way to estimate the size of SiNWs.

  10. Review of sensors for low frequency seismic vibration measurement

    CERN Document Server

    Collette, C; Janssens, S; Artoos, K; Guinchard, M; Hauviller, C

    2011-01-01

    The objective of this report is to review the main different types of sensors used to measure seismic vibrations at low frequencies. After some basic background preliminaries, the main different types of relative measurements are first reviewed. Then, the following inertial sensors are treated: geophones, accelerometers and broadband seismometers. For each of these sensors, the basic working principle is explained, along with the main performances limitations. Each section ends with a tentative comparison of some commercial products, far from being exhaustive, but hopefully representative of the average characteristics of each family of sensors. The report finishes with a brief discussion on the modelling and measurement of the sensor noise

  11. Electromyographic assessment of muscle fatigue during isometric vibration training at varying frequencies.

    Science.gov (United States)

    Mischi, M; Rabotti, C; Cardinale, M

    2010-01-01

    Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols.

  12. Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, Jean-Charles, E-mail: jcdumas@physics.uwa.edu.a [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Ju Li; Blair, David G. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2010-08-09

    We present an analytical model for a Roberts Linkage used as an ultra low frequency vibration isolator. The Roberts Linkage is a structure that simulates a very long radius conical pendulum, at a relatively small height. We show through an analytical solution that it is possible to independently tune the centre of percussion and the resonant frequency for arbitrary geometrical configurations. The result is shown to provide a practical tuning solution, which achieves near ideal vibration isolation.

  13. Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator

    Science.gov (United States)

    Dumas, Jean-Charles; Ju, Li; Blair, David G.

    2010-08-01

    We present an analytical model for a Roberts Linkage used as an ultra low frequency vibration isolator. The Roberts Linkage is a structure that simulates a very long radius conical pendulum, at a relatively small height. We show through an analytical solution that it is possible to independently tune the centre of percussion and the resonant frequency for arbitrary geometrical configurations. The result is shown to provide a practical tuning solution, which achieves near ideal vibration isolation.

  14. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  15. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2012-01-01

    The A 1B1 interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies

  16. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  17. Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers

    Science.gov (United States)

    Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao

    2015-09-01

    This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.

  18. Vibrational frequency fluctuations of ionic vibrational probe in water: Theoretical study with molecular dynamics simulation

    Science.gov (United States)

    Okuda, Masaki; Higashi, Masahiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke

    2017-09-01

    The vibrational dynamics of SCN- in H2O are theoretically investigated by molecular dynamics simulations. Based on the vibrational solvatochromism theory, we calculate the frequency-frequency time correlation function of the SCN anti-symmetric stretching mode, which is characterized by time constants of 0.13 and 1.41 ps. We find that the frequency fluctuation is almost determined by the electrostatic interaction from the water molecules in the first-hydration shell. The collective dynamics of the water molecules in the first-hydration shell is found to be similar to that of bulk water, though the hydrogen bond between the ion and water molecule is very strong.

  19. Low-frequency vibration measurement by a dual-frequency DBR fiber laser

    Science.gov (United States)

    Zhang, Bing; Cheng, Linghao; Liang, Yizhi; Jin, Long; Guo, Tuan; Guan, Bai-Ou

    2017-09-01

    A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.

  20. Vibrational frequencies in Car-Parrinello molecular dynamics.

    Science.gov (United States)

    Ong, Sheau Wei; Tok, Eng Soon; Kang, Hway Chuan

    2010-12-07

    Car-Parrinello molecular dynamics (CPMD) are widely used to investigate the dynamical properties of molecular systems. An important issue in such applications is the dependence of dynamical quantities such as molecular vibrational frequencies upon the fictitious orbital mass μ. Although it is known that the correct Born-Oppenheimer dynamics are recovered at zero μ, it is not clear how these dynamical quantities are to be rigorously extracted from CPMD calculations. Our work addresses this issue for vibrational frequencies. We show that when the system is sufficiently close to the ground state the calculated ionic vibrational frequencies are ω(M) = ω(0M)[1 -C(μ/M)] for small μ/M, where ω(0M) is the Born-Oppenheimer ionic frequency, M the ionic mass, and C a constant that depends upon the ion-orbital coupling force constants. Our analysis also provides a quantitative understanding of the orbital oscillation amplitudes, leading to a relationship between the adiabaticity of a system and the ion-orbital coupling constants. In particular, we show that there is a significant systematic dependence of calculated vibrational frequencies upon how close the CPMD trajectory is to the Born-Oppenheimer surface. We verify our analytical results with numerical simulations for N(2), Sn(2), and H/Si(100)-(2×1).

  1. Effect of vibration frequency on biopsy needle insertion force.

    Science.gov (United States)

    Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei

    2017-05-01

    Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  3. Theoretical molecular structure, vibrational frequencies and NMR ...

    African Journals Online (AJOL)

    Theoretical results have been successfully compared with available experimental data in the literature. Regarding the calculations, 2mpe-4bb prefers enol-imine form and DFT method is superior to HF approach except for predicting bond lengths. KEY WORDS: Schiff bases, Normal mode frequencies, HF, DFT, NMR. Bull.

  4. Analysis of vibration frequency in transversely-isotropic semilinear ...

    African Journals Online (AJOL)

    Analysis of vibration frequency in transversely-isotropic semilinear elastic thin plate. AP Akinola, BA Olokuntoye, OO Fadodun, AS Botokinni. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE ...

  5. Analysis of vibration frequency in transversely-isototropic semilinear ...

    African Journals Online (AJOL)

    Analysis of vibration frequency in transversely-isototropic semilinear elastic thin plate. A.P. Akinola, B.A. Olokuntoye, O.O. Fadodun, A.S. Borokinni. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online.

  6. Vibrational echo spectral observables and frequency fluctuations of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. Vibrational echo spectral observables and frequency fluctuations of hydration shell water around a fluoride ion from first principles simulations. DEEPAK OJHA AMALENDU CHANDRA. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp 1069-1080 ...

  7. Vibrational echo spectral observables and frequency fluctuations of ...

    Indian Academy of Sciences (India)

    Deepak Ojha

    Vibrational echo; frequency fluctuations; hydration shell water; fluoride ion; ab initio molecular dynamics. 1. Introduction. Ions dissolved in liquid water play important roles in several chemical and biological processes.1,2 Simi- larly, water molecules in aqueous ionic solutions exhibit different dynamics in comparison to pure ...

  8. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    Science.gov (United States)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one

  9. Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.

    Science.gov (United States)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2013-07-01

    Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.

  10. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  11. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  12. Vibration modes of injured spine at resonant frequencies under vertical vibration.

    Science.gov (United States)

    Guo, Li-Xin; Zhang, Ming; Zhang, Yi-Min; Teo, Ee-Chon

    2009-09-01

    A detailed three-dimensional finite element model of the spine segment T12-Pelvis was developed to investigate dynamic characteristics of whole lumbar spine with injured cases. This study investigates the motion mechanism of the human lumbar spine and the effect of component injuries on adjacent spinal components under whole body vibration. Several investigations have analyzed the influence of injured spines on adjacent spinal components under static loadings. However, it is not clear how the spine injury affects dynamic characteristics of whole lumbar spine and adjacent components of the injured segment under vibration. The T12-Pelvis model was used to obtain the modal vibration modes of the spine at resonant frequencies. Injury conditions of the spine were simulated and tested, including denucleation and/or facetectomy with removal of capsular ligaments. The results indicate the first-order vertical resonant frequency of the intact model is 7.21 Hz. After the denucleation at L4-L5, it decreases by more than 4% compared with the intact condition. All the injured conditions including disc injury and ligament injury decrease the resonant frequency of the spine. Due to the denucleation at L4-L5 the anteroposterior displacements of the vertebrae from L2 to L5 decrease and the vertical displacements of the vertebrae from L1 to L4 increase under vibration. The denucleation also decreases the rotational deformations of the vertebrae from L1 to L5. The material property sensitivity analysis shows intervertebral discs have a dominating effect on variation of vertical resonant frequency of the spine. The denucleation may decrease cushioning effects of adjacent motion segments at the injured level under vibration. The injured condition may increase the vertical displacement amplitudes of the spine above the injured level. All the injured conditions may decrease the resonant frequency of the spine system.

  13. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    Science.gov (United States)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

  14. Adaptive Semiactive Cable Vibration Control: A Frequency Domain Perspective

    Directory of Open Access Journals (Sweden)

    Z. H. Chen

    2017-01-01

    Full Text Available An adaptive solution to semiactive control of cable vibration is formulated by extending the linear quadratic Gaussian (LQG control from time domain to frequency domain. Frequency shaping is introduced via the frequency dependent weights in the cost function to address the control effectiveness and robustness. The Hilbert-Huang transform (HHT technique is further synthesized for online tuning of the controller gain adaptively to track the cable vibration evolution, which also obviates the iterative optimal gain selection for the trade-off between control performance and energy in the conventional time domain LQG (T-LQG control. The developed adaptive frequency-shaped LQG (AF-LQG control is realized by collocated self-sensing magnetorheological (MR dampers considering the nonlinear damper dynamics for force tracking control. Performance of the AF-LQG control is numerically validated on a bridge cable transversely attached with a self-sensing MR damper. The results demonstrate the adaptivity in gain tuning of the AF-LQG control to target for the dominant cable mode for vibration energy dissipation, as well as its enhanced control efficacy over the optimal passive MR damping control and the T-LQG control for different excitation modes and damper locations.

  15. Vibration of Cracked Circular Plates at Resonance Frequencies

    Science.gov (United States)

    HUANG, CHI-HUNG; MA, CHIEN-CHING

    2000-09-01

    It is well known that the presence of cracks will affect the dynamic characteristics of the vibrating plate. Such a problem is complicated because it combines the field of vibration analysis and fracture mechanics. In this study, an optical system called the AF-ESPI method with the out-of-plane displacement measurement is employed to investigate the vibration characteristics of a free circular plate with a radial crack emanating from the edge. The boundary conditions along the circular edge are free. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally at the same time by the proposed AF-ESPI method. Numerical finite element calculations are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. The vibrating mode shapes obtained in this study can be classified into two types, symmetric and antisymmetric modes with respect to the crack line. The influence of crack length on resonant frequencies is also investigated in terms of the dimensionless frequency parameter (λ2) versus crack length ratio (a/D). We find that if the crack face displacement is out of phase, i.e., the antisymmetric type, a large value of stress intensity factor may be induced and the cracked circular plate will be dangerous, from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, i.e., the symmetric type, which yields a zero stress intensity factor and the cracked plate will be safe.

  16. Beyond local group modes in vibrational sum frequency generation.

    Science.gov (United States)

    Chase, Hilary M; Psciuk, Brian T; Strick, Benjamin L; Thomson, Regan J; Batista, Victor S; Geiger, Franz M

    2015-04-09

    We combine deuterium labeling, density functional theory calculations, and experimental vibrational sum frequency generation spectroscopy into a form of "counterfactual-enabled molecular spectroscopy" for producing reliable vibrational mode assignments in situations where local group mode approximations are insufficient for spectral interpretation and vibrational mode assignments. We demonstrate the method using trans-β-isoprene epoxydiol (trans-β-IEPOX), a first-generation product of isoprene relevant to atmospheric aerosol formation, and one of its deuterium-labeled isotopologues at the vapor/silica interface. We use our method to determine that the SFG responses that we obtain from trans-β-IEPOX are almost exclusively due to nonlocal modes involving multiple C-H groups oscillating at the same frequency as one vibrational mode. We verify our assignments using deuterium labeling and use DFT calculations to predict SFG spectra of additional isotopologues that have not yet been synthesized. Finally, we use our new insight to provide a viable alternative to molecular orientation analysis methods that rely on local mode approximations in cases where the local mode approximation is not applicable.

  17. Internal resonance and low frequency vibration energy harvesting

    Science.gov (United States)

    Yang, Wei; Towfighian, Shahrzad

    2017-09-01

    A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.

  18. The effects of sound level and vibration magnitude on the relative discomfort of noise and vibration.

    Science.gov (United States)

    Huang, Yu; Griffin, Michael J

    2012-06-01

    The relative discomfort caused by noise and vibration, how this depends on the level of noise and the magnitude of vibration, and whether the noise and vibration are presented simultaneously or sequentially has been investigated in a laboratory study with 20 subjects. Noise and vertical vibration were reproduced with all 49 combinations of 7 levels of noise and 7 magnitudes of vibration to allow the discomfort caused by one of the stimuli to be judged relative to the other stimulus using magnitude estimation. In four sessions, subjects judged noise relative to vibration and vibration relative to noise, with both simultaneous and sequential presentations of the stimuli. The equivalence of noise and vibration was not greatly dependent on whether the stimuli were simultaneous or sequential, but highly dependent on whether noise was judged relative to vibration or vibration was judged relative to noise. When judging noise, higher magnitude vibrations appeared to mask the discomfort caused by low levels of noise. When judging vibration, higher level noises appeared to mask the discomfort caused by low magnitudes of vibration. The judgment of vibration discomfort was more influenced by noise than the judgment of noise discomfort was influenced by vibration.

  19. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  20. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.

    Science.gov (United States)

    Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin

    2012-12-17

    We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.

  1. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Yuksek, N. S.; Almasri, M. [Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Feng, Z. C. [Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States)

    2014-09-15

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  2. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  3. Nature of the Frequency Shift of Hydrogen Valence Vibrations

    CERN Document Server

    Zhyganiuk, I V

    2015-01-01

    The physical nature of a frequency shift of hydrogen valence vibrations in a water molecule due to its interaction with neighbor molecules has been studied. Electrostatic forces connected with the multipole moments of molecules are supposed to give a dominating contribution to the intermolecular interaction. The frequency shift was calculated in the case where two neighbor molecules form a dimer. The obtained result is in qualitative agreement with the frequency shifts observed for water vapor, hexagonal ice, and liquid water, as well as for aqueous solutions of alcohols. This fact testifies to the electrostatic nature of H-bonds used to describe both the specific features of the intermolecular interaction in water and the macroscopic properties of the latter.

  4. High force vibration testing with wide frequency range

    Science.gov (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn

    2013-04-02

    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  5. Vibration Modes at Terahertz and Infrared Frequencies of Ionic Liquids Consisting of an Imidazolium Cation and a Halogen Anion.

    Science.gov (United States)

    Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya; Fukunaga, Kaori

    2014-11-17

    The terahertz and infrared frequency vibration modes of room-temperature ionic liquids with imidazolium cations and halogen anions were extensively investigated. There is an intermolecular vibrational mode between the imidazolium ring of an imidazolium cation, a halogen atomic anion with a large absorption coefficient and a broad bandwidth in the low THz frequency region (13-130 cm(-1)), the intramolecular vibrational modes of the alkyl-chain part of an imidazolium cation with a relatively small absorption coefficient in the mid THz frequency region (130-500 cm(-1)), the intramolecular skeletal vibrational modes of an imidazolium ring affected by the interaction between the imidazolium ring, and a halogen anion with a relatively large absorption coefficient in a high THz frequency region (500-670 cm(-1)). Interesting spectroscopic features on the interaction between imidazolium cations and halogen anions was also obtained from spectroscopic studies at IR frequencies (550-3300 cm(-1)). As far as the frequency of the intermolecular vibrational mode is concerned, we found the significance of the reduced mass in determining the intermolecular vibration frequency.

  6. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    Science.gov (United States)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  7. Deviations of frequency and the mode of vibration of commercially available whole-body vibration training devices.

    Science.gov (United States)

    Kaeding, T S

    2015-06-01

    Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.

  8. Time-frequency vibration analysis for the detection of motor damages caused by bearing currents

    Science.gov (United States)

    Prudhom, Aurelien; Antonino-Daviu, Jose; Razik, Hubert; Climente-Alarcon, Vicente

    2017-02-01

    Motor failure due to bearing currents is an issue that has drawn an increasing industrial interest over recent years. Bearing currents usually appear in motors operated by variable frequency drives (VFD); these drives may lead to common voltage modes which cause currents induced in the motor shaft that are discharged through the bearings. The presence of these currents may lead to the motor bearing failure only few months after system startup. Vibration monitoring is one of the most common ways for detecting bearing damages caused by circulating currents; the evaluation of the amplitudes of well-known characteristic components in the vibration Fourier spectrum that are associated with race, ball or cage defects enables to evaluate the bearing condition and, hence, to identify an eventual damage due to bearing currents. However, the inherent constraints of the Fourier transform may complicate the detection of the progressive bearing degradation; for instance, in some cases, other frequency components may mask or be confused with bearing defect-related while, in other cases, the analysis may not be suitable due to the eventual non-stationary nature of the captured vibration signals. Moreover, the fact that this analysis implies to lose the time-dimension limits the amount of information obtained from this technique. This work proposes the use of time-frequency (T-F) transforms to analyse vibration data in motors affected by bearing currents. The experimental results obtained in real machines show that the vibration analysis via T-F tools may provide significant advantages for the detection of bearing current damages; among other, these techniques enable to visualise the progressive degradation of the bearing while providing an effective discrimination versus other components that are not related with the fault. Moreover, their application is valid regardless of the operation regime of the machine. Both factors confirm the robustness and reliability of these tools

  9. Natural vibration frequencies of horizontal tubes partially filled with liquid

    Science.gov (United States)

    Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto

    2017-11-01

    This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.

  10. Smart nanocoated structure for energy harvesting at low frequency vibration

    Science.gov (United States)

    Sharma, Sudhanshu

    Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz--1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 μW, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 μW, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection

  11. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

    Directory of Open Access Journals (Sweden)

    Shengwei He

    2017-01-01

    Full Text Available Objective(s:To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligan, and pre-collagen type 1 a were measured. Results:Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligand, and pre-collagen type 1 a were also markedly higher following 25 and 50 Hz treatment. Conclusion:Low frequency (25–50 Hz vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  12. Conformational energetics and low-frequency vibrations of cyclohexene and its oxygen analogs

    Science.gov (United States)

    Ocola, Esther J.; Brito, Teresa; McCann, Kathleen; Laane, Jaan

    2010-08-01

    Ab initio and DFT calculations with MP2/cc-pVTZ and B3LYP/cc-pVTZ basis sets have been carried out for cyclohexene and four of its oxygen analogs. All of the molecules possess a twisted structure while the bent forms represent saddle points in two-dimensional surfaces. The structures, relative energies, and frequencies for the lowest energy vibrations of the twisted, bent, and planar forms were calculated and compared to experimental results. The calculated results agree very well with the microwave data but the computed barriers are somewhat less than those based on low-frequency infrared data.

  13. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  14. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Directory of Open Access Journals (Sweden)

    Elie-Jacques Fares

    Full Text Available There is increasing recognition about the importance of enhancing energy expenditure (EE for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS. Whole-body vibration (WBV increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF and EE, nor if WBV influences respiratory quotient (RQ, and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz.EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz. Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest, separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest at 40 Hz, separated by 5 min seated rest.Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001. However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration.No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS.

  15. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine

    DEFF Research Database (Denmark)

    Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar

    2007-01-01

    The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship am...

  16. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    Science.gov (United States)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  17. Whole Body Vibration at Different Exposure Frequencies: Infrared Thermography and Physiological Effects

    Directory of Open Access Journals (Sweden)

    Anelise Sonza

    2015-01-01

    Full Text Available The aim of this study was to investigate the effects of whole body vibration (WBV on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3±2.6 years participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P≤0.05. Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature.

  18. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth.

    Science.gov (United States)

    Han, D; Kedzierski, Mark A

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°-80°), the vibration displacement (10 µm-50 µm), the vibration frequency (5 Hz-25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described.

  19. Effect of Frequency and Vibration Time on Shaker Performance for Mechanized Harvesting of Orange (Thomson cultivar

    Directory of Open Access Journals (Sweden)

    H Ghorbanpour

    2012-09-01

    Full Text Available Manual citrus harvesting is commonly performing hard, expensive and time consuming. In this study, a factorial experiment with a completely randomized design in three replications was performed to find out the effect of frequency (three levels of 5, 7.5 and 10 Hz, vibration time (three levels of 10, 15 and 20 seconds on harvesting capacity and losses of Thomson cultivar of orange. The results indicated that the effect of frequency and vibration time was significant (P≤0.01 on the harvesting capacity and losses, but their interaction effects weren’t significant. The harvesting capacity significantly increased by increasing frequency, and the highest harvesting capacity was 62.8 % at 10 Hz frequency. Although the harvesting capacity increased by increasing the vibration time, but there was no significant difference in vibration times between 15 and 20 seconds at 10 Hz frequency. Also the fruit loss was increased by increasing the vibration time. Due to these reasons, frequency of 10 Hz and vibration time of 15 seconds were selected as the most suitable condition for mechanized harvesting of this cultivar of orange. Finally a linear mathematical model was developed based on the frequency and vibration time for the harvesting capacity and fruit loss of Thomson cultivar of orange.

  20. Older Age Is Associated with Lower Optimal Vibration Frequency in Lower-Limb Muscles During Whole-Body Vibration.

    Science.gov (United States)

    Carlucci, Flaminia; Orlando, Giorgio; Haxhi, Jonida; Laudani, Luca; Giombini, Arrigo; Macaluso, Andrea; Pigozzi, Fabio; Sacchetti, Massimo

    2015-07-01

    The aim of this study was to compare the optimal vibration frequency (OVF), which corresponds to maximal electromyographic muscle response during whole-body vibration, between young, middle-aged, and older women in four muscles of the lower-limbs. OVF was measured as the frequency corresponding to maximal root mean square of the surface electromyogram (RMSmax) during a continuous incremental protocol, with a succession of vibration frequencies from 20 to 55 Hz (A = 2 mm), on the vastus lateralis, vastus medialis, rectus femoris, and gastrocnemius lateralis muscles of the dominant lower-limb. Seventy-eight women were divided into three age groups, that is, young, 21.6 ± 2.4 yrs; middle aged, 43.0 ± 5.2 yrs; and older, 74.2 ± 6.0 yrs. OVF in the vastus medialis was lower in the older women than in the middle-aged and young women, whereas OVF in the vastus lateralis was lower in the older than in the young women. There were no differences in OVF between muscles within each group. RMSmax was higher in the older than in the young women in all muscles. Age range should be taken into consideration when determining OVF because it decreases with age. Properly individualizing the vibration protocol might greatly influence neuromuscular effects of vibration training.

  1. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    Science.gov (United States)

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  2. Human comfort in relation to sinusoidal vibration

    Science.gov (United States)

    Jones, B.; Rao, B. K. N.

    1975-01-01

    An investigation was made to assess the overall subjective comfort levels to sinusoidal excitations over the range 1 to 19 Hz using a two axis electrohydraulic vibration simulator. Exposure durations of 16 minutes, 25 minutes, 1 hour, and 2.5 hours have been considered. Subjects were not exposed over such durations, but were instructed to estimate the overall comfort levels preferred had they been constantly subjected to vibration over such durations.

  3. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Science.gov (United States)

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G; Miles-Chan, Jennifer L

    2016-01-01

    There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, pvibration. No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS).

  4. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    Science.gov (United States)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  5. Diagnosis of industrial gearboxes condition by vibration and time-frequency, scale-frequency, frequency-frequency analysis

    Directory of Open Access Journals (Sweden)

    P. Czech

    2012-10-01

    Full Text Available In the article methods of vibroacoustic diagnostics of high-power toothed gears are described. It is shown below, that properly registered and processed acoustic signal or vibration signal may serve as an explicitly interpreted source of diagnostic symptoms. The presented analysis were based on vibration signals registered during the work of the gear of a rolling stand working in Katowice Steel Plant (presently one of the branches of Mittal Steel Poland JSC.

  6. Instantaneous pair theory for high-frequency vibrational energy relaxation in fluids

    Science.gov (United States)

    Larsen, Ross E.; Stratt, Richard M.

    1999-01-01

    Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motion in liquids, typically spanning no more than a few hundred cm-1. Landau-Teller-type theories explain rather easily how a solvent can absorb any vibrational energy within this "band," but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? In this paper we develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate — and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high-frequency relaxation. This highly reduced version of the dynamics has implications for some of the previous theoretical formulations of this problem. Previous instantaneous-normal-mode theories allowed us to understand the origin of a band of liquid frequencies, and even had some success in predicting relaxation within this band, but lacking a sensible picture of the effects of liquid anharmonicity on dynamics, were completely unable to treat higher frequency relaxation. When instantaneous-normal-mode dynamics is used to evaluate the instantaneous pair theory, though, we end up with a multiphonon picture of the relaxation which is in excellent agreement with the exact high-frequency dynamics — suggesting that the critical anharmonicity

  7. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  8. Analysis of muscle fatigue induced by isometric vibration exercise at varying frequencies.

    Science.gov (United States)

    Mischi, M; Rabotti, C; Cardinale, M

    2012-01-01

    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training device is used to perform vibration exercise at varying frequency and force, therefore enabling the analysis of the relationship between vibration frequency and muscle fatigue. Fatigue is estimated by maximum voluntary contraction measurement, as well as by EMG mean-frequency and conduction-velocity analysis. Seven volunteers performed five isometric contractions of the biceps brachii with a load consisting of a baseline of 80% of their maximum voluntary contraction (MVC), with no vibration and with a superimposed 20, 30, 40, and 50 Hz vibrational force of 40 N. Myoelectric and mechanical fatigue were estimated by EMG analysis and by assessment of the MVC decay, respectively. A dedicated motion artifact canceler, making use of accelerometry, is proposed to enable accurate EMG analysis. Use of this canceler leads to better interpolation of myoelectric fatigue trends and to better correlation between mechanical and myoelectric fatigue. In general, our results suggest vibration at 30 Hz to be the most fatiguing exercise. These results contribute to the analysis of vibration exercise and motivate further research aiming at improved training protocols.

  9. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  10. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  11. An approach to compatible multiple nonlinear vibrational spectroscopy measurements using a commercial sum frequency generation system.

    Science.gov (United States)

    Ye, Shuji; Wei, Feng

    2011-06-21

    In this paper, we designed a compatible multiple nonlinear vibrational spectroscopy system that can be used for recording infrared-visible sum frequency generation vibrational spectra (SFG) and infrared-infrared-visible three-pump-field four-wave-mixing (IIV-TPF-FWM) spectra using a commercial EKSPLA SFG system. This is the first time IIV-TPF-FWM signals were obtained using picosecond laser pulses. We have applied this compatible system to study the surface and vibrational structures of riboflavin molecules (also known as vitamin B2). The SFG spectra of eight polarization combinations have non-vanishing signals. The signals with incoming s-polarized IR are relatively weaker than the signals with incoming p-polarized IR. Under the double resonant conditions, the SFG signals of the conjugated tricyclic ring are greatly enhanced. For the IIV-TPF-FWM spectra with incoming p-polarized IR, only the sspp and pppp polarization combinations have non-vanishing signals. The IIV-TPF-FWM spectra show a very strong peak at 1585 cm(-1) that is mainly dominated by the N(5)-C(4a) stretch. The method developed in this study will be helpful for researchers, either using a home-built or commercial (EKSPLA) SFG system, to obtain independent and complementary measurements for SFG spectroscopy and more detailed structural information of interfacial molecules.

  12. Acid-hemolytic stability of erythrocytes of intense erythropoiesis under conditions of low-frequency vibration

    Directory of Open Access Journals (Sweden)

    O. I. Dotsenko

    2014-04-01

    Full Text Available This paper deals with the peculiarities of functioning of murine erythron system under vibrational stress on the basis of experimental data about erythrocytes acid resistance. Experiments were made on the outbred male mice at about one age and weight that were maintained in vivarium conditions on usual diet. Animals were divided into 5 groups. Animals of 1–4 groups were exposed to daily thirty-minute vibration at frequencies of 8, 16, 24 and 32 Hz respectively, with amplitude of 0.8 ±0.12 mmduring 14 days. Animal exposure to vibration was provided by the electromechanical converter connected to the generator of low frequency signals. The fifth group of animals was not exposed to vibration and it was used as a control. Kinetic dependences of acid hemolysis of erythrocytes was registered daily, from the 1st to the 5th day, and further at the 7th, 9th and 14th days of experiment. Blood for analysis was taken from tail veins in 15–20 min after stopping of vibration. As the basic indicators characterizing resistance of erythrocytes to the hemolytic agent influence we used the hemolysis rate constant, i.e. the value inverse to cell half-life time. For analysis of acid erythrograms we also used such indicators as hemolysis duration, maximum erythrogram’s time and width of the interval of erythrocyte group dominating in the population. We processed the results of research statistically. The study showed that acid resistance of erythrocytes decreased during the first five days of vibration influence at frequencies of 8–16 Hz. Besides, erythrocytes were divided into fractions that indicated the erythrocytes aging and strengthening of the population heterogeneity. On the fifth day of 16 Hz influence the emission of reticulocytes was recorded. At 8 Hz influence these processes were registered on the 7th day of the experiment. During the subsequent days the hemolysis curves were slightly displaced in relation to the control. Increase in hemolysis

  13. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  14. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data

    Science.gov (United States)

    Ocak, Hasan; Loparo, Kenneth A.

    2004-05-01

    This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.

  15. DIAGNOSIS SHAFT BEARINGS NODE KNIFE CUTTER FOR LOW-FREQUENCY VIBRATION

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The currently used system of preventive maintenance is not effective enough. Vibration diagnostics is one of the modern methods of non-destructive testing equipment components, allowing to define the appearance of defects in the early stages. The paper identifies the main areas of research, as well as selected research object, selected non-destructive testing method for efficiently determining the actual state of dynamically operating equipment. Is a schematic of vibration sensors. Measuring point vibration parameters were determined experimentally based on the conditions for obtaining the most informative vibroacoustic signal. Determine the behavior of the cutter under which minimizes the occurrence of a wide range of fluctuations that affects the accuracy of the measurements. For vibration analysis method was chosen direct spectral analysis, which involves the detection of repetitive vibrations. Presented graphically vibration spectra and spectra of vibration signals. Analysis of a wide range of vibration spectrum allowed to allocate land on which showed a significant increase in the values of vibration. Processing of the selected portion of the spectrum has led to the conclusion that in the bearing, shock pulses are in contact with each rolling body shell, and as a result, a number of harmonics in the individual frequencies. Was made a comparative analysis of the spectra of working with a defective bearing bearing on the same frequencies and determine the average increase in the values of vibration. Spectral analysis is an effective method to determine not only the extent of the defect and its location, but also allows you to effectively predict its development. The results may be useful for specialists involved in vibration diagnostics, calculation and design of rotary machines.

  16. Necessary relations for nucleotide frequencies.

    Science.gov (United States)

    Sinclair, Robert

    2015-06-07

    Genome composition analysis of di-, tri- and tetra-nucleotide frequencies is known to be evolutionarily informative, and useful in metagenomic studies, where binning of raw sequence data is often an important first step. Patterns appearing in genome composition analysis may be due to evolutionary processes or purely mathematical relations. For example, the total number of dinucleotides in a sequence is equal to the sum of the individual totals of the sixteen types of dinucleotide, and this is entirely independent of any assumptions made regarding mutation or selection, or indeed any physical or chemical process. Before any statistical analysis can be attempted, a knowledge of all necessary mathematical relations is required. I show that 25% of di-, tri- and tetra-nucleotide frequencies can be written as simple sums and differences of the remainder. The vast majority of organisms have circular genomes, for which these relations are exact and necessary. In the case of linear molecules, the absolute error is very nearly zero, and does not grow with contiguous sequence length. As a result of the new, necessary relations presented here, the foundations of the statistical analysis of di-, tri- and tetra-nucleotide frequencies, and k-mer analysis in general, need to be revisited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A smart and self-sufficient frequency tunable vibration energy harvester

    Science.gov (United States)

    Eichhorn, C.; Tchagsim, R.; Wilhelm, N.; Woias, P.

    2011-10-01

    We present a piezoelectric energy-harvesting system, which is able to self-tune its resonance frequency in an energy-autonomous way, in order to extend its efficient operation over a large frequency range. The system consists of a resonant and frequency-tunable piezoelectric generator and a control unit. In predefined temporal intervals, the control unit analyzes the ambient vibration frequency, decides whether an adjustment of the generator's resonance frequency is necessary or not and delivers the appropriate voltage to a piezoelectric actuator which alters the generator's mechanical stiffness to tune its resonance frequency. The control unit has been optimized to an ultralow power consumption which means that up to 90% of the harvested energy can be fed to the powered electrical load, which could be an embedded system. With frequency-tunable generators, the application range of vibration energy harvesters can be extended to environments with a non-constant vibration frequency, like e.g. the surface of an engine with a varying number of revolutions per minute. Furthermore, the presented system opens the door to off-the-shelf solutions for environments with constant but uncommon vibration frequencies. With the smart tuning algorithm presented in this work, our system is even able to compensate typical weak points of piezoelectrically tunable harvesters, like e.g. hysteresis effects, the temperature dependence of the mechanical stiffness and aging effects.

  18. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  19. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  20. The effects of low-frequency vibrations on hepatic profile of blood

    Science.gov (United States)

    Damijan, Z.

    2008-02-01

    Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of

  1. A Large Span Crossbeam Vibration Frequencies Analysis Based on an Analogous Beam Method

    Directory of Open Access Journals (Sweden)

    Zhifeng Liu

    2013-01-01

    Full Text Available The novel method of an analogous beam is studied, which the flexural rigidity and mass per unit length correspond was described as the reciprocal of the mass per unit and the reciprocal of the flexural rigidity of the beam. It is shown that both beams possess the same natural frequencies of flexural vibration. In order to approximate calculation of these frequencies, the continuously distributed mass of the original beam is substituted for a number of concentrated masses. The analogous beam then becomes a chain of rigid links connected by pins and equipped with springs restraining the relative rotation of adjacent links. The equations of motion for the analogous beam can be solved by a procedure which consists of assuming a value for the natural frequency and calculating the deflections successively from one end of the beam to the other. Under normal circumstances, there will be a certain error, and one boundary condition will not be satisfied. The procedure is repeated with different values of the frequency until the error is removed. The method is illustrated by an example of a Crossbeam for which the fundamental frequency is found.

  2. Individual Optimal Frequency in Whole-Body Vibration: Effect of Protocol, Joint Angle, and Fatiguing Exercise.

    Science.gov (United States)

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2016-12-01

    Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.

  3. A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Jiejian DI

    2014-08-01

    Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.

  4. Influence of low-frequency vibration on the erythrocytes acid resistance

    Directory of Open Access Journals (Sweden)

    O. I. Dotsenko

    2011-02-01

    Full Text Available The influence of low-frequency vibration (frequency range 8–32 Hz, amplitudes 0.5 ± 0.04 and 0.9 ± 0.08 mm on the erythrocytes’ acid resistance was studied. The kinetics of various hemolysis stages was investigated. The time-frequency dependences of the kinetics constants of hemolysis stages were obtained and discussed. It was shown that 8–16 Hz vibration with the 0.5 mm amplitude and 8 Hz with 0.9 mm causes destructive reorganizations of a cytoplasm’s water-protein structure. It leads to decrease in a permeability barrier for a hemolytic agent. As a result of oxidizing stress the vibration in the frequency range of 20–32 Hz causes the modifying reactions leading to the aggregation of cellular proteins and, in particular, the band 3 protein.

  5. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  6. Low-frequency, broadband vibration energy harvester using coupled oscillators and frequency up-conversion by mechanical stoppers

    Science.gov (United States)

    Dechant, Eduard; Fedulov, Feodor; Chashin, Dmitrii V.; Fetisov, Leonid Y.; Fetisov, Yuri K.; Shamonin, Mikhail

    2017-06-01

    The frequencies of ambient vibrations are often low (below 30 Hz). A broadband (3 dB bandwidth is larger than 10 Hz at an acceleration amplitude of 9.81 m s-2) vibration based energy harvester is proposed for transducing mechanical energy at such low frequencies into electrical energy. The mechanical setup converts low frequency mechanical vibrations into high frequency resonance oscillations of the transducer. This conversion is done by mechanical impacts on two mechanical stoppers. The originality of the presented design is that both low-frequency and high-frequency oscillators are permanently mechanically coupled. In the equivalent mechanical circuit, this coupling is achieved by connecting the ends of the stiff spring to both seismic masses, whereas one seismic mass (collison member) is also attached to the soft spring used as the constitutive element of a low-frequency oscillator. Further, both mechanical oscillators are not realized as conventional cantilever beams. In particular, the high frequency oscillator with the natural frequency of 340 Hz is a disc-shaped diaphragm with attached piezoelectric elements and a seismic mass. It is shown that it is possible to convert mechanical vibrations with acceleration amplitude of 9.81 m s-2 in the region between approximately 7 and 25 Hz into electrical power larger than 0.1 mW with the maximum value of 0.8 mW. A simplified mathematical model based on piecewise linear coupled oscillators shows good agreement with experimental results. The ways to enhance the performance of the harvester and improve agreement with experiments are discussed.

  7. Modelling of Mechanical Coupling for Piezoelectric Energy Harvester Adapted to Low-Frequency Vibration

    Science.gov (United States)

    Untoro, T.; Viridi, S.; Suprijanto; Ekawati, E.

    2017-07-01

    In our previous work, we have developed a mechanical coupling for energy harvester from vibration source. This energy harvester uses piezoelectric with additional cantilever beam and permanent magnets. Our work proposed alternative scheme of mechanical coupling for tune the vibration input into resonant frequency of piezoelectric. Based on the experiment, correlation between the length of cantilever beam and the output power also evaluated. In this paper, we try to modelling our work into mathematical model and apply it to some case study. For example application, we apply our energy harvester system to generate electrical energy to enlighten the street. The human footsteps can be used as vibration source to generate electrical energy.

  8. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  9. Effect of different vibration frequencies on heart rate variability and driving fatigue in healthy drivers.

    Science.gov (United States)

    Jiao, Kun; Li, Zengyong; Chen, Ming; Wang, Chengtao; Qi, Shaohua

    2004-04-01

    This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV) and driving fatigue in healthy subjects during simulated driving, by the use of power spectrum analysis and subjective evaluation. Sixty healthy subjects (29.6+/-3.3 years) were randomly divided into three groups, A, B and C, and the subjects of each group participated in the simulated driving for 90 min with vertical sinusoidal vibration (acceleration 0.05 g) of 1.8 Hz (group A), 6 Hz (group B) and no vibration (group C), respectively. Low-frequency (LF) and high-frequency (HF) components of HRV, reflecting sympathetic and parasympathetic activities, and the LF:HF ratio, indicating sympathovagal balance, were measured throughout all periods. All indices of HRV were calculated in the pre-experiment period, mid-experiment period and end-experiment period, and were analyzed by repeated measures analysis of variance. Subjective responses to a questionnaire were obtained after the simulated task for the three groups. Significant differences in all indices of HRV were observed between different experiment periods and between any two groups. The ratings of subjective fatigue exhibited significant differences between any two groups. The drivers' fatigue ratings were associated with vibration frequencies in simulated driving. The study quantitatively demonstrated that different effects on autonomic nerve activities were induced by different vibration frequencies.

  10. Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner.

    Directory of Open Access Journals (Sweden)

    Laura N Vandenberg

    Full Text Available Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs and Danio rerio (zebrafish, specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures.

  11. Vibration characteristics of composite piezoceramic plates at resonant frequencies: experiments and numerical calculations.

    Science.gov (United States)

    Huang, C H; Ma, C C

    2001-07-01

    The experimental measurement of the resonant frequencies for the piezoceramic material is generally performed by impedance analysis. In this paper, we employ an optical interferometry method called the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) to investigate the vibration characteristics of piezoceramic/aluminum laminated plates. The AF-ESPI is a powerful tool for the full-field, noncontact, and real-time measurement method of surface displacement for vibrating bodies. As compared with the conventional film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Because the clear fringe patterns measured by the AF-ESPI method will be shown only at resonant frequencies, both the resonant frequencies and corresponding vibration mode shapes are obtained experimentally at the same time. Excellent quality of the interferometric fringe patterns for both the in-plane and out-of-plane vibration mode shapes are demonstrated. Two different configurations of piezoceramic/aluminum laminated plates, which exhibit different vibration characteristics because of the polarization direction, are investigated in detail. From experimental results, we find that some of the out-of-plane vibration modes (Type A) with lower resonant frequencies cannot be measured by the impedance analysis; however, all of the vibration modes of piezoceramic/aluminum laminated plates can be obtained by the AF-ESPI method. Finally, the numerical finite element calculations are also performed, and the results are compared with the experimental measurements. Excellent agreements of the resonant frequencies and mode shapes are obtained for both results.

  12. A handy-motion driven, frequency up-converted hybrid vibration energy harvester using PZT bimorph and nonmagnetic ball

    Science.gov (United States)

    Halim, M. A.; Cho, H. O.; Park, J. Y.

    2014-11-01

    We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.

  13. An analytical model for a piezoelectric vibration energy harvester with resonance frequency tunability

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2015-06-01

    Full Text Available This article conceptually proposes a new method to tune the resonance frequency of piezoelectric vibration energy harvesters, in which the supporting position of the vibrator can be adjusted for frequency tuning. The corresponding analytical model is established to predict the performances of the harvester based on the principles of energy. First, the equivalent stiffness and mass of the vibrator in bending mode are derived explicitly for the different supporting positions. A simple analysis method is then established for the frequency, output voltage, and output power. Finally, some numerical examples are given to demonstrate the presented method. The results are also compared with those by finite element method and good agreement is observed.

  14. Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718

    Directory of Open Access Journals (Sweden)

    Deepak Rajendra Unune

    2017-02-01

    Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.

  15. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  16. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  17. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Wei, Wen-Mei [Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032 (China)

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  18. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  19. A semi-continuum model on vibration frequency of silicon nanowires in <111> orientation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hong, E-mail: h-yu@seu.edu.cn; Chen, Hong-Bo [Key Lab of MEMS of Ministry of Education, Nanjing, Jiangsu, 210096 (China)

    2016-06-15

    In this article, a new semi-continuum model is built to describe the fundamental vibration frequency of the silicon nanowires in <111> orientation. The Keating potential model and the discrete nature in the width and the thickness direction of the silicon nanowires in <111> orientation are applied in the new semi-continuum model. Based on the Keating model and the principle of conservation of energy, the vibration frequency of the silicon nanowires with the triangle, the rhombus, and the hexagon cross sections are derived. It is indicated that the calculation results based on this new model are accordant with the simulation results of the software based on molecular dynamics (MD).

  20. An induction motor model for high-frequency torsional vibration analysis

    Science.gov (United States)

    Widdle, R. D.; Krousgrill, C. M.; Sudhoff, S. D.

    2006-03-01

    High-frequency torsional oscillations of a 50 horsepower (hp) induction motor are investigated up to approximately 30 kHz. It is experimentally determined that torsional oscillations, due to the switching harmonics of the motor drive, contribute significantly to the torsional oscillation of the output shaft. Two torsional vibration models are developed. One model assumes the rotor to be rigid, while the other has a compliant rotor. The compliant model allows for greater transmission of high-frequency oscillations, and a better prediction of the measured output shaft vibration.

  1. Vibration Mode Observation of Piezoelectric Disk-type Resonator by High Frequency Laser Doppler Vibrometer

    Science.gov (United States)

    Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji

    For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.

  2. Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.

    Science.gov (United States)

    Azevedo, Anthony W; Wilson, Rachel I

    2017-10-11

    To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods

    Science.gov (United States)

    Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.

    2003-01-01

    In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.

  4. Effects of low frequency vibration of a limb

    Science.gov (United States)

    Agarwal, G. C.; Gottlieb, G. L.

    1975-01-01

    Low frequency oscillations were applied on the ankle joint in plantarflexion/dorsiflexion rotation using a torque motor. The torque, the angular rotation and the evoked electromyogram from the gastronemius soleus and the anterior tibial muscles were recorded. Significant nonlinearities were observed in the angular rotation from 8 to 12 Hz. The following methods are used for data analysis: (1) Two cycle averaged response; (2) Fourier transform; and (3) Fourier analysis at the driving frequency. Important observations are: (1) resonance near 6 to 8 Hz; (2) slowly increasing amplitudes of oscillation near resonance; (3) self sustaining oscillations after the motor is turned off, particularly in the fatigued limb; and (4) distortion of angular rotation during which there are spontaneous recurrences of oscillation at the driving frequency.

  5. First-principles calculations on anharmonic vibrational frequencies of polyethylene and polyacetylene in the Gamma approximation.

    Science.gov (United States)

    Keçeli, Murat; Hirata, So; Yagi, Kiyoshi

    2010-07-21

    The frequencies of the infrared- and/or Raman-active (k=0) vibrations of polyethylene and polyacetylene are computed by taking account of the anharmonicity in the potential energy surfaces (PESs) and the resulting phonon-phonon couplings explicitly. The electronic part of the calculations is based on Gaussian-basis-set crystalline orbital theory at the Hartree-Fock and second-order Møller-Plesset (MP2) perturbation levels, providing one-, two-, and/or three-dimensional slices of the PES (namely, using the so-called n-mode coupling approximation with n=3), which are in turn expanded in the fourth-order Taylor series with respect to the normal coordinates. The vibrational part uses the vibrational self-consistent field, vibrational MP2, and vibrational truncated configuration-interaction (VCI) methods within the Gamma approximation, which amounts to including only k=0 phonons. It is shown that accounting for both electron correlation and anharmonicity is essential in achieving good agreement (the mean and maximum absolute deviations less than 50 and 90 cm(-1), respectively, for polyethylene and polyacetylene) between computed and observed frequencies. The corresponding values for the calculations including only one of such effects are in excess of 120 and 300 cm(-1), respectively. The VCI calculations also reproduce semiquantitatively the frequency separation and intensity ratio of the Fermi doublet involving the nu(2)(0) fundamental and nu(8)(pi) first overtone in polyethylene.

  6. Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds.

    Science.gov (United States)

    Robles, Luis; Temchin, Andrei N; Fan, Yun-Hui; Ruggero, Mario A

    2015-08-01

    The vibratory responses to tones of the stapes and incus were measured in the middle ears of deeply anesthetized chinchillas using a wide-band acoustic-stimulus system and a laser velocimeter coupled to a microscope. With the laser beam at an angle of about 40 ° relative to the axis of stapes piston-like motion, the sensitivity-vs.-frequency curves of vibrations at the head of the stapes and the incus lenticular process were very similar to each other but larger, in the range 15-30 kHz, than the vibrations of the incus just peripheral to the pedicle. With the laser beam aligned with the axis of piston-like stapes motion, vibrations of the incus just peripheral to its pedicle were very similar to the vibrations of the lenticular process or the stapes head measured at the 40 ° angle. Thus, the pedicle prevents transmission to the stapes of components of incus vibration not aligned with the axis of stapes piston-like motion. The mean magnitude curve of stapes velocities is fairly flat over a wide frequency range, with a mean value of about 0.19 mm(.)(s Pa(-1)), has a high-frequency cutoff of 25 kHz (measured at -3 dB re the mean value), and decreases with a slope of about -60 dB/octave at higher frequencies. According to our measurements, the chinchilla middle ear transmits acoustic signals into the cochlea at frequencies exceeding both the bandwidth of responses of auditory-nerve fibers and the upper cutoff of hearing. The phase lags of stapes velocity relative to ear-canal pressure increase approximately linearly, with slopes equivalent to pure delays of about 57-76 μs.

  7. Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.

    Science.gov (United States)

    Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A

    2016-12-15

    The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO2-[C4C1im][PF6] clusters extracted from an MD simulation. When the map was tested on 500 different CO2-[C4C1im][PF6] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm-1. The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.

  8. Compact and Low-Frequency Vibration Energy Scavenger using the longitudinal excitation of a piezoelectric bar

    Science.gov (United States)

    Colin, M.; Mortier, Q.; Basrour, S.; Bencheikh, N.

    2013-12-01

    This paper introduces an innovative architecture of a piezoelectric harvester, which enables harvesting vibration energy at low frequency using the {33}-transduction mode of a piezoelectric element. Unlike cantilevers integrating ferroelectric material combined with interdigitated electrodes, the concept that we propose is based on the elongation/compression excitation of a piezoelectric bar.

  9. High frequency vibration conditioning stimulation centrally reduces myoelectrical manifestation of fatigue in healthy subjects.

    Science.gov (United States)

    Casale, Roberto; Ring, Haim; Rainoldi, Alberto

    2009-10-01

    Vibration conditioning has been adopted as a tool to improve muscle force and reduce fatigue onset in various rehabilitation settings. This study was designed to asses if high frequency vibration can induce some conditioning effects detectable in surface EMG (sEMG) signal; and whether these effects are central or peripheral in origin. 300 Hz vibration was applied for 30 min during 5 consecutive days, to the right biceps brachii muscle of 10 healthy males aged from 25 to 50 years. sEMG was recorded with a 16 electrode linear array placed on the skin overlying the vibrated muscle. The test protocol consisted of 30% and 60% maximal voluntary contraction (MVC) as well as involuntary (electrically elicited) contractions before and after treatment. No statistically significant differences were found between PRE and POST vibration conditioning when involuntary stimulus-evoked contraction and 30% MVC were used. Significant differences in the initial values and rates of change of muscle fibre conduction velocity were found only at 60% MVC. 300 Hz vibration did not induce any peripheral changes as demonstrated by the lack of differences when fatigue was electrically induced. Differences were found only when the muscle was voluntarily fatigued at 60% MVC suggesting a modification in the centrally driven motor unit recruitment order, and interpreted as an adaptive response to the reiteration of the vibratory conditioning.

  10. Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing

    Directory of Open Access Journals (Sweden)

    Toshiaki Natsuki

    2017-01-01

    Full Text Available In this study, the vibrational properties of single- and double-layer graphene sheets (GSs with attached nanoparticles are analyzed based on the nonlocal elasticity theory. The potential applications of atomic-scale mass sensing are presented using GSs with simply supported boundary condition. The frequency equation for GSs with an attached nanoparticle is derived to investigate the vibration frequency of the GSs under thermal environment. Using the proposed model, the relationship between the frequency shifts of graphene-based mass sensor and the attached nanoparticles is obtained. The nonlocal effect and the temperature dependence on the variation of frequency shifts with the attached nanomass and the positions on the GS are investigated and discussed in detail. The obtained results show that the nanomass can be easily detected by using GS resonator which provides a highly sensitive nanomechanical element in sensor systems. The vibrational frequency shift of GS increases with increasing the temperature dependence. The double-layer GSs (DLGSs have higher sensitivity than the single-layer GSs (SLGSs due to high frequency shifts.

  11. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  12. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Hilary M.; Chen, Shunli; Fu, Li; Upshur, Mary Alice; Rudshteyn, Benjamin; Thomson, Regan J.; Wang, Hong-Fei; Batista, Victor S.; Geiger, Franz M.

    2017-09-01

    Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.

  13. In vivo measurement of basilar membrane vibration in the unopened chinchilla cochlea using high frequency ultrasound.

    Science.gov (United States)

    Landry, Thomas G; Bance, Manohar L; Leadbetter, Jeffrey; Adamson, Robert B; Brown, Jeremy A

    2017-06-01

    The basilar membrane and organ of Corti in the cochlea are essential for sound detection and frequency discrimination in normal hearing. There are currently no methods used for real-time high resolution clinical imaging or vibrometry of these structures. The ability to perform such imaging could aid in the diagnosis of some pathologies and advance understanding of the causes. It is demonstrated that high frequency ultrasound can be used to measure basilar membrane vibrations through the round window of chinchilla cochleas in vivo. The basic vibration characteristics of the basilar membrane agree with previous studies that used other methods, although as expected, the sensitivity of ultrasound was not as high as optical methods. At the best frequency for the recording location, the average vibration velocity amplitude was about 4 mm/s/Pa with stimulus intensity of 50 dB sound pressure level. The displacement noise floor was about 0.4 nm with 256 trial averages (5.12 ms per trial). Although vibration signals were observed, which likely originated from the organ of Corti, the spatial resolution was not adequate to resolve any of the sub-structures. Improvements to the ultrasound probe design may improve resolution and allow the responses of these different structures to be better discriminated.

  14. The influence of high-frequency vibrations on derailment stability coefficient of cars at wheel flange climbing on the rail

    Directory of Open Access Journals (Sweden)

    N. Bezrukavyy

    2013-08-01

    Full Text Available Purpose. Taking into account the traffic safety priority on the railway transport the search of factors promoting increase of derailment stability coefficient is an actual task. Purpose of the paper is the influence researches of the high-frequency vibrations on the train traffic safety parameter. In this case the special form of the wheel rim, at which its rigidity changes according to the harmonious law, was considered as a source of vibrations. Methodology. For the analysis of the vibration influence on the change of friction coefficient values the methods of so called vibrational mechanics were used. For determination of vibration amplitudes through moving the wheel flange points the finite-elements method was also used in the paper. Findings. During calculations it was established that the derailment stability coefficient to a great extent depends on the friction coefficient between wheel and rail. The paper shows that the friction coefficient in turn is influenced by the high-frequency vibrations. The form of the wheel rim was considered as a vibration source and the parameters characterizing vibration were calculated. It was given the quantitative estimation of the friction coefficient change under the vibration influence. It was also scientifically based the high-frequency vibration influence on the derailment stability coefficient. Originality. The paper proved the possibility of high-frequency vibration influence on the derailment stability coefficient. The studies theoretically substantiated the traffic safety increase in the presence of vibrations in the contact area of the wheel flange with the rail caused by special form of the wheel disc. Practical value. It is shown that the use of undulating wheel disc form do not constitute a threat to the traffic safety, and the availability of high-frequency vibration can reduce the derailment probability.

  15. Elastic Metamaterial Insulator for Broadband Low-Frequency Flexural Vibration Shielding

    Science.gov (United States)

    Oh, Joo Hwan; Qi, Shuibao; Kim, Yoon Young; Assouar, Badreddine

    2017-11-01

    Achieving stop band over broadband at low-frequency range has remained a great scientific challenge in spite of various efforts made using metamaterials or other technologies. In this work, we propose an idea that creates a stop band for broadband at low-frequency range. The dual mechanism of shear stiffening and rotation softening is initiated here to achieve a broad stop band at low-frequency range. Through analytical, numerical, and experimental studies, we reveal the underlying physical mechanism and confirm the effectiveness of this metamaterial on vibration shielding for flexural elastic wave covering 235 to 4520 Hz. This work opens an avenue for the development of elastic metamaterials with performance and functionalities that are highly desirable in many fields such as vibration shielding.

  16. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  17. Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent.

    Science.gov (United States)

    Zory, Raphael F; Raphael, Zory F; Aulbrook, Wesley; Wesley, Aulbrook; Keir, Daniel A; Daniel, Keir A; Serresse, Olivier; Olivier, Serresse

    2013-09-01

    The aim of this study was to determine whether neuromuscular adaptations (magnitude and location) induced by isometric exercise performed on an oscillating platform are dependent on whole-body vibration (WBV) frequency. Eleven young men performed 4 separate fatigue sessions of static squatting exercise at 3 frequencies of WBV (V20, V40, and V60) and 1 session without vibration (V0). Isometric torque and electromyographic activity of the vastus lateralis, rectus femoris, and biceps femoris were recorded during maximal voluntary and evoked contractions of the knee extensor muscles before and after each fatigue session to examine both peripheral and central adaptations. Isometric torque decreased significantly after each of the 4 frequency sessions (V0: -9.4 ± 6.1%, p = 0.003; V20: -8.1 ± 9.9%, p = 0.010; V40: -11.9 ± 12.7%, p = 0.011; and V60: -7.8 ± 9.2%, p = 0.001, respectively), but this reduction was not significantly different between frequencies. The torque produced by evoked contraction significantly decreased from pre-exercise values after each session (V0: -14.9 ± 15.6%, p = 0.012; V20: -15.8 ± 16.4%, p = 0.010; V40: -21.0 ± 14.3%, p = 0.004; and V60: -17.3 ± 11.6%, p = 0.005, respectively); however, there was no effect of vibration frequency. In both conditions, the maximal voluntary contraction torque reduction observed was mainly attributable to peripheral fatigue and was not because of central modifications of the neuromuscular system. The present study demonstrates that the frequency of vibration does not significantly influence the magnitude and location of neuromuscular fatigue, suggesting that adding WBV to static squat exercise (on a vertically oscillating platform) does not provide an additional training stimulus.

  18. Coherent control of flexural vibrations in dual-nanoweb fibers using phase-modulated two-frequency light

    Science.gov (United States)

    Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Novoa, D.; Russell, P. St. J.

    2017-12-01

    Coherent control of the resonant response in spatially extended optomechanical structures is complicated by the fact that the optical drive is affected by the backaction from the generated phonons. Here we report an approach to coherent control based on stimulated Raman-like scattering, in which the optical pressure can remain unaffected by the induced vibrations even in the regime of strong optomechanical interactions. We demonstrate experimentally coherent control of flexural vibrations simultaneously along the whole length of a dual-nanoweb fiber, by imprinting steps in the relative phase between the components of a two-frequency pump signal, the beat frequency being chosen to match a flexural resonance. Furthermore, sequential switching of the relative phase at time intervals shorter than the lifetime of the vibrations reduces their amplitude to a constant value that is fully adjustable by tuning the phase modulation depth and switching rate. The results may trigger new developments in silicon photonics, since such coherent control uniquely decouples the amplitude of optomechanical oscillations from power-dependent thermal effects and nonlinear optical loss.

  19. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  20. Wide operation frequency band magnetostrictive vibration power generator using nonlinear spring constant by permanent magnet

    Science.gov (United States)

    Furumachi, S.; Ueno, T.

    2016-04-01

    We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.

  1. Gel performance in rheology and profile control under low-frequency vibration: coupling application of physical and chemical EOR techniques.

    Science.gov (United States)

    Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir

    2017-01-01

    Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.

  2. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-01-15

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  3. Relationship of the vibrational frequency of the uranyl ion with the uranium electronegativity; Relacion de la frecuencia vibracional del ion uranilo con la electronegatividad del uranio

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez S, A.; Martinez Q, E

    1990-07-15

    It has been demonstrated that the vibrational asymmetric frequency of the uranyl ion, it experiences a consistent spectrochemical displacement with the variations of electronegativity of the uranium in their complexes. The values of the electronegativity of the uranium they were dear by means of calculations that it involves measures of those lengths of the connection uranium-oxygen, obtained by vibrational spectroscopy, effective nuclear charges and the Allred and Rochow equation. The results show the evidence of a natural order that relates to the vibrational frequency with the electronegativity of the uranium atom; settling down that if the electronegativity is graph against it bond length to the oxygen or to it frequency value, a simple relationship is obtained as a form to obtain clear responses in absence of complementary information. (Author)

  4. Sparse Representation Based Frequency Detection and Uncertainty Reduction in Blade Tip Timing Measurement for Multi-Mode Blade Vibration Monitoring

    Science.gov (United States)

    Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong

    2017-01-01

    The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952

  5. Development of Low Frequency Vibration Method of Direct-Write Deposition Relevant to Layer Manufacturing Application

    Directory of Open Access Journals (Sweden)

    Susilo Widyanto

    2010-10-01

    Full Text Available The research of deposition process is the first step in development process of multi materials selective laser sintering. The deposition process enables to settle multi materials powder in horizontal formation on one layer. In this research we use low frequency (70 - 200Hz to vibrate a hopper nozzle in which powder is settled. The research method consists of two steps, the first step is to determine flow-ability parameters and the second is to join flow ability parameter with other parameters such that the line width can be controlled. The results show that the line width depends on uniformity of particle size, particle size, frequency of vibration, deposition gap, particle shape and feed-rate of hopper-nozzle.

  6. EEG frequency tagging to explore the cortical activity related to the tactile exploration of natural textures.

    Science.gov (United States)

    Moungou, Athanasia; Thonnard, Jean-Louis; Mouraux, André

    2016-02-08

    When sliding our fingertip against a textured surface, complex vibrations are produced in the skin. It is increasingly recognised that the neural transduction and processing of these vibrations plays an important role in the dynamic tactile perception of textures. The aim of the present study was to develop a novel means to tag the cortical activity related to the processing of these vibrations, by periodically modulating the amplitude of texture exploration-induced vibrations such as to record a steady-state evoked potential (SS-EP). The EEG was recorded while the right index fingertip was scanned against four different textures using a constant exploration velocity. Amplitude modulation of the elicited vibrations was achieved by periodically modulating the force applied against the finger. Frequency analysis of the recorded EEG signals showed that modulation of the vibrations induced by the fingertip-texture interactions elicited an SS-EP at the frequency of modulation (3 Hz) as well as its second harmonic (6 Hz), maximal over parietal regions contralateral to the stimulated side. Textures generating stronger vibrations also generated SS-EPs of greater magnitude. Our results suggest that frequency tagging using SS-EPs can be used to isolate and explore the brain activity related to the tactile exploration of natural textures.

  7. Damping of vibrational excitations in glasses at terahertz frequency: The case of 3-methylpentane

    KAUST Repository

    Baldi, Giacomo

    2017-10-24

    We report a compared analysis of inelastic X ray scattering (IXS) and of low frequency Raman data of glassy 3-methylpentane. The IXS spectra have been analysed allowing for the existence of two distinct excitations at each scattering wavevector obtaining a consistent interpretation of the spectra. In particular, this procedure allows us to interpret the linewidth of the modes in terms of a simple model which relates them to the width of the first sharp diffraction peak in the static structure factor. In this model, the width of the modes arises from the blurring of the dispersion curves which increases approaching the boundary of the first pseudo-Brillouin zone. The position of the boson peak contribution to the density of vibrational states derived from the Raman scattering measurements is in agreement with the interpretation of the two excitations in terms of a longitudinal mode and a transverse mode, the latter being a result of the mixed character of the transverse modes away from the center of the pseudo-Brillouin zone.

  8. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  9. O modelo AM1 na previsão de frequências vibracionais The vibration frequencies predicted by the AM1 model

    Directory of Open Access Journals (Sweden)

    João Carlos Silva Ramos

    1999-09-01

    Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.

  10. Algorithm for the calculation of vibration inherent frequencies bending from two-shafts transmission

    Directory of Open Access Journals (Sweden)

    Grigore Jan-Cristian

    2017-01-01

    Full Text Available The operation of the speed shaft transmissions at or near the natural frequency of the pulses at the resonance phenomenon leads to bending, when the amplitude of the oscillations increases sharply, causing deterioration or complete destruction thereof. To avoid system resonance operation is necessary to know the most accurate values its pulsations and taking appropriate constructive measures to avoid overlapping with disturbing frequency harmonics (operating speeds.This paper presents an algorithm for calculating the pulsation and vibration modes in bending, and based on numerical simulations performed on a real two-shafts transmission and will draw conclusions drawn diagrams.

  11. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  12. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity...

  13. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  14. Comparison of resonance frequencies between normal and tangential vibration modes of graphene-nanoribbon-resonators.

    Science.gov (United States)

    Kwon, Oh Kuen; Hwang, Ho Jung; Park, Jungcheol

    2013-12-01

    We investigate tunable graphene-nanoribbon (GNR)-resonators actuated in the tangential direction, and their properties are compared to those actuated in the normal direction, via classical molecular dynamics simulations. These GNR-resonators can be tuned both by the initial strain and the gate. The relationships between the frequency-versus-gate and the initial strain in this work are in good agreement with those in previous experimental works. With increasing initial strain, the resonance frequencies are greatly upshifted, whereas the tunable ranges in frequency are greatly decreased. The tunability in the dynamic operating range decreases with increasing initial strain. For very small strains, the GNR-resonators have large dynamic operating ranges in the normal vibration mode, and for large strains, the GNR-resonators have higher operating frequencies in the tangential vibration mode. The resonance frequencies are estimated by a classical continuum model, with tension acting on the GNR-resonators consisting of both initial tension by initial strain and induced tension by gate actuating.

  15. Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis.

    Science.gov (United States)

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2013-12-27

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.

  16. Vibration Frequencies Extraction of the Forth Road Bridge Using High Sampling GPS Data

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available This paper proposes a scheme for vibration frequencies extraction of the Forth Road Bridge in Scotland from high sampling GPS data. The interaction between the dynamic response and the ambient loadings is carefully analysed. A bilinear Chebyshev high-pass filter is designed to isolate the quasistatic movements, the FFT algorithm and peak-picking approach are applied to extract the vibration frequencies, and a GPS data accumulation counter is suggested for real-time monitoring applications. To understand the change in the structural characteristics under different loadings, the deformation results from three different loading conditions are presented, that is, the ambient circulation loading, the strong wind under abrupt wind speed change, and the specific trial with two 40 t lorries passing the bridge. The results show that GPS not only can capture absolute 3D deflections reliably, but also can be used to extract the frequency response accurately. It is evident that the frequencies detected using the filtered deflection time series in different direction show quite different characteristics, and more stable results can be obtained from the height displacement time series. The frequency responses of 0.105 and 0.269 Hz extracted from the lateral displacement time series correlate well with the data using height displacement time series.

  17. Electrostatic MEMS vibration energy harvester for HVAC applications with impact-based frequency up-conversion

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2016-12-01

    This paper reports on electrostatic MEMS vibration energy harvesters with gap-closing interdigitated electrodes, designed for and tested on HVAC air ducts. The harvesters were fabricated on SOI wafers with 200 µm device layer using a custom microfabrication process. Designs with aspects ratio (electrodes’ gap versus depth) of 10 and 20 were implemented, while the overall footprint was approximately 1 cm  ×  1 cm in both cases. In order to enhance the power output, a dual-level physical stopper system was designed to control the minimum gap between the electrodes, which is a key parameter in the conversion process. The dual-level stopper utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls. The parylene layer defines the absolute minimum gap and provides electrical insulation. The fabricated devices were first tested on a vibration shaker to characterize the resonant behavior. Devices with aspect ratio 10 were found to exhibit frequency up-conversion, which enhances the amount of converted power. Devices with both aspect ratios were found to exhibits spring hardening due to impact with the stoppers and spring softening behavior at increasing voltage bias. The highest power measured on shaker table for sinusoidal vibrations was 3.13 µW (includes enhancement due to frequency up-conversion driven by impact) for aspect ratio 10, and 0.166 µW for aspect ratio 20. The corresponding dimensional figure-of-merit, defined as the power output normalized to vibration acceleration and frequency, squared voltage and device mass, was in the range of 10 · 10-8 m V-2 for both devices, about an order of magnitude higher than state-of-the-art. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mg RMS, a primary frequency of 60 Hz and a PSD of 7.15 · 10-2 g2 Hz-1. The peak power measured was

  18. a Hamiltonian to Obtain a Global Frequency Analysis of all the Vibrational Bands of Ethane

    Science.gov (United States)

    Moazzen-Ahmadi, Nasser; Norooz Oliaee, Jalal

    2016-06-01

    The interest in laboratory spectroscopy of ethane stems from the desire to understand the methane cycle in the atmospheres of planets and their moons and from the importance of ethane as a trace species in the terrestrial atmosphere. Solar decomposition of methane in the upper part of these atmospheres followed by a series of reactions leads to a variety of hydrocarbon compounds among which ethane is often the second most abundant species. Because of its high abundance, ethane spectra have been measured by Voyager and Cassini in the regions around 30, 12, 7, and 3 μm. Therefore, a complete knowledge of line parameters of ethane is crucial for spectroscopic remote sensing of planetary atmospheres. Experimental characterization of torsion-vibration states of ethane lying below 1400 cm-1 have been made previously, but extension of the Hamiltonian model for treatment of the strongly perturbed νb{8} fundamental and the complex band system of ethane in the 3 micron region requires careful examination of the operators for many new torsionally mediated vibration-rotation interactions. Following the procedures outlined by Hougen, we have re-examined the transformation properties of the total angular momentum, the translational and vibrational coordinates and momenta of ethane, and for vibration-torsion-rotation interaction terms constructed by taking products of these basic operators. It is found that for certain choices of phase, the doubly degenerate vibrational coordinates with and symmetry can be made to transform under the group elements in such a way as to yield real matrix elements for the torsion-vibration-rotation couplings whereas other choices of phase may require complex algebra. In this talk, I will discuss the construction of a very general torsion-vibration-rotation Hamiltonian for ethane, as well as the prospect for using such a Hamiltonian to obtain a global frequency analysis (based in large part on an extension of earlier programs and ethane fits^a from

  19. Analysis of Vibration Exercise at Varying Frequencies by Different Fatigue Estimators.

    Science.gov (United States)

    Xu, Lin; Rabotti, Chiara; Mischi, Massimo

    2016-12-01

    Vibration exercise (VE) has been suggested to improve muscle strength and power performance, due to enhanced neuromuscular demand. However, understanding of the most appropriate VE protocols is lacking, limiting the optimal use of VE in rehabilitation programs. In this study, the fatiguing effect of vibration at different frequencies was investigated by employing a force-modulation VE system. Twenty volunteers performed 12-s isometric contractions of the biceps brachii with a load consisting of a baseline force of 80% of their maximum voluntary contraction (MVC) and a superimposed sinusoidal force at 0 (control condition with no vibration), 20, 30, and 40 Hz. Mechanical fatigue was estimated by assessment of MVC decay after each task while myoelectric fatigue was estimated by analysis of multichannel electromyography (EMG) signals recorded during VE. EMG conduction velocity, spectral compression, power, and fractal dimension were estimated as indicators of myoelectric fatigue. Our results suggest vibration, in particular at 30 Hz, to produce a larger degree of fatigue as compared to control condition. These results motivate further research aiming at introducing VE in rehabilitation programs with improved training protocols.

  20. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

    Science.gov (United States)

    Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-01

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

  1. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry.

    Science.gov (United States)

    Bovenzi, M

    1994-09-01

    To investigate the occurrence of disorders associated with the hand arm vibration syndrome in a large population of stone workers in Italy. The dose-response relation for vibration induced white finger (VWF) was also studied. The study population consisted of 570 quarry drillers and stonecarvers exposed to vibration and 258 control stone workers who performed only manual activity. Each subject was interviewed with health and workplace assessment questionnaires. Sensorineural and VWF disorders were staged according to the Stockholm workshop scales. Vibration was measured on a representative sample of percussive and rotary tools. The 8 h energy equivalent frequency weighted acceleration (A (8)) and lifetime vibration doses were calculated for each of the exposed stone workers. Sensorineural and musculoskeletal symptoms occurred more frequently in the workers exposed to vibration than in the controls, but trend statistics did not show a linear exposure-response relation for these disorders. The prevalence of VWF was found to be 30.2% in the entire group exposed to vibration. Raynaud's phenomenon was discovered in 4.3% of the controls. VWF was strongly associated with exposure to vibration and a monotonic dose-response relation was found. According to the exposure data of this study, the expected percentage of stone workers affected with VWF tends to increase roughly in proportion to the square root of A(8) (for a particular exposure period) or in proportion to the square root of the duration of exposure (for a constant magnitude of vibration). Even although limited to a specific work situation, the dose-response relation for VWF estimated in this study suggests a time dependency such that halving the years of exposure allows a doubling of the energy equivalent vibration. According to these findings, the vibration exposure levels currently under discussion within the European Community seem to represent reasonable exposure limits for the protection of workers against

  2. Multiple vibrations measurement using phase-sensitive OTDR merged with Mach-Zehnder interferometer based on frequency division multiplexing.

    Science.gov (United States)

    He, Haijun; Shao, Li-Yang; Luo, Bin; Li, Zonglei; Zou, Xihua; Zhang, Zhiyong; Pan, Wei; Yan, Lianshan

    2016-03-07

    A novel measurement scheme for multiple high-frequency vibrations has been demonstrated by combining phase-sensitive optical time domain reflectometry (Ф-OTDR) and Mach-Zehnder interferometer (MZI) based on frequency division multiplexing. The light source is directly launched into the MZI structure, while it was modulated by an acoustic optical modulator (AOM) with a frequency shift of 200 MHz for the Ф-OTDR part. The vibration frequency is obtained by demodulating the interference signal obtained by the MZI structure, while the vibration position is located by Ф-OTDR system. The spatial resolution of 10m is obtained over 3 km sensing fiber. And the detectable vibration frequency reaches up to 40 kHz. Compared to the previous schemes, this system works without dead zone in the detectable frequency range. Furthermore, the frequency spectrum mapping method has been adopted to determine multiple high-frequency vibrations simultaneously. The experimental results prove the concept and match well with the theoretical analysis.

  3. Time-domain filtered-x-Newton narrowband algorithms for active isolation of frequency-fluctuating vibration

    Science.gov (United States)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei

    2016-04-01

    A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.

  4. Analytical Expressions for Frequency and Buckling of Large Amplitude Vibration of Multilayered Composite Beams

    Directory of Open Access Journals (Sweden)

    R. A. Jafari-Talookolaei

    2011-01-01

    Full Text Available The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration of the symmetrical laminated composite beam (LCB with simple and clamped end conditions. The equations of motion are derived by using Hamilton's principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken into account in the formulation. First, the geometric nonlinearity based on the von Karman's assumptions is incorporated in the formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first order of homotopy analysis method (HAM, we get the closed form solutions for the natural frequency and deflection of the LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load.

  5. Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy

    Science.gov (United States)

    Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.

    2012-04-01

    By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.

  6. A piezoelectric pulse generator for low frequency non-harmonic vibration

    Science.gov (United States)

    Jiang, Hao; Yeatman, Eric M.

    2013-12-01

    This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.

  7. Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations

    Science.gov (United States)

    Courtier, A. M.; Constantin, C.; Wilson, C. F.

    2013-12-01

    We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.

  8. Low resonance frequency vibration affects strength of paretic and non-paretic leg differently in patients with stroke.

    Science.gov (United States)

    Tihanyi, J; Di Giminiani, R; Tihanyi, T; Gyulai, G; Trzaskoma, L; Horváth, M

    2010-06-01

    The objective of the study was to investigate the chronic effect of low frequency whole body vibration (WBV) on isometric and eccentric strength of knee extensors with different force exertion capacity. It was hypothesized that (1) four-week WBV intervention with the low frequency domain would enhance muscle strength and (2) the improvement would be more pronounced in the weaker muscle. To test our hypothesis twenty patients with acute stroke were recruited. Ten patients were randomly assigned to vibration and the remaining ten patients served for control.The patients in the vibration group received WBV with 20 Hz frequency three times per week standing on a vibration platform in half squat position meanwhile flexing and extending the joints and placing the weight from one leg to the other. Knee extensor strength was determined under isometric and eccentric contraction before and after WBV intervention. Myoelectrical activity (EMG) of the vastus lateralis muscle was also measured.Significant improvement was revealed in the vibration group only. The maximum isometric torque and EMG activity increased significantly for both paretic and non-paretic leg, but the improvement was threefold greater in the vibration group. No significant alteration was found in rate of torque development. Maximum eccentric torque and EMG increased significantly for the paretic leg only. Mechanical work enhanced significantly in the paretic side only.The results of our study indicate that the selection of the effective vibration frequency depends upon the physical condition of neuromuscular system. Low vibration frequency intervention can increase the strength in weak muscles due to neuromuscular impairment and restricted physical activity.

  9. Comparative Study of Time-Frequency Decomposition Techniques for Fault Detection in Induction Motors Using Vibration Analysis during Startup Transient

    Directory of Open Access Journals (Sweden)

    Paulo Antonio Delgado-Arredondo

    2015-01-01

    Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.

  10. Fast vibrational calculation of anharmonic OH-stretch frequencies for two low-energy noradrenaline conformers

    Science.gov (United States)

    Benoit, David M.

    2008-12-01

    We introduce a new reduced-coupling technique to accelerate direct calculations of a selected number of vibrational frequencies in large molecular systems. Our method combines the advantages of the single-to-all correlation-corrected vibrational self-consistent field (STA-CC-VSCF) approach [D. M. Benoit, J. Chem. Phys. 125, 244110 (2006)] with those of the fast-CC-VSCF technique [D. M. Benoit, J. Chem. Phys. 120, 562 (2004)] and allows the ab initio calculation of only the relevant parts of the required potential energy surface (PES). We demonstrate, using a set of five aliphatic alcohol molecules, that the new fast-STA-CC-VSCF method is accurate and leads to very substantial time gains for the computations of the PES. We then use the fast-STA-CC-VSCF method to accelerate the computation of the OH-stretch and NH-stretch frequencies of the two lowest-energy conformers of noradrenaline, namely, AG1a and GG1a. Our new approach enables us to run the calculation 89 times faster than the standard CC-VSCF technique and makes it possible to use a high-level MP2/TZP description of the PES. We demonstrate that the influence of the strong mode-mode couplings is crucial for a realistic description of the particular OH-stretch vibrational signature of each conformer. Finally, of the two possible low-energy conformers, we identify AG1a as the one most likely to have been observed in the experiments of Snoek et al. [Mol. Phys. 101, 1239 (2003)].

  11. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  12. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Directory of Open Access Journals (Sweden)

    Pengwei Li

    2015-04-01

    Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  13. Natural frequency and vibration analysis of jacket type foundation for offshore wind power

    Science.gov (United States)

    Hung, Y.-C.; Chang, Y.-Y.; Chen, S.-Y.

    2017-12-01

    There are various types of foundation structure for offshore wind power, engineers may assess the condition of ocean at wind farm, and arrange the transportation, installation of each structure members, furthermore, considering the ability of manufacture steel structure as well, then make an optimum design. To design jacket offshore structure, unlike onshore cases, offshore structure also need to estimate the wave excitation effect. The aim of this paper is to study the difference of natural frequency between different kinds of structural stiffness and discuss the effect of different setting of boundary condition during analysis, besides, compare this value with the natural frequency of sea wave, in order to avoid the resonance effect. In this paper, the finite element analysis software ABAQUS is used to model and analyze the natural vibration behavior of the jacket structure.

  14. Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering

    NARCIS (Netherlands)

    Siegel, JH; Cerka, AJ; Recio-Spinoso, A; Temchin, AN; van Dijk, P; Ruggero, MA

    2005-01-01

    When stimulated by tones, the ear appears to emit tones of its own, stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs were measured in 17 chinchillas and their group delays were compared with a place map of basilar-membrane vibration group delays measured at the characteristic frequency. The

  15. Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model

    Science.gov (United States)

    PEELUKHANA, Srikara V.; GOENKA, Shilpi; KIM, Brian; KIM, Jay; BHATTACHARYA, Amit; STRINGER, Keith F.; BANERJEE, Rupak K.

    2015-01-01

    To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s2, for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D). PMID:25843564

  16. Time-frequency analysis of DC bias vibration of transformer core on the basis of Hilbert–Huang transform

    Directory of Open Access Journals (Sweden)

    Xingmou Liu

    2016-01-01

    Full Text Available This paper presents a time–frequency analysis of the vibration of transformer under direct current (DC bias through Hilbert–Huang transform (HHT. First, the theory of DC bias for the transformer was analyzed. Next, the empirical mode decomposition (EMD process, which is the key in HHT, was introduced. The results of EMD, namely, intrinsic mode functions (IMFs, were calculated and summed by Hilbert transform(HT to obtain time-dependent series in a 2D time–frequency domain. Lastly, a test system of vibration measurement for the transformer was set up. Three direction (x, y, and z axes components of core vibration were measured. Decomposition of EMD and HHT spectra showed that vibration strength increased, and odd harmonics were produced with DC bias. Results indicated that HHT is a viable signal processing tool for transformer health monitoring.

  17. CONTRIBUTIONS TO THE STUDY OF THE VIBRATIONS FREQUENCY OF THE DRILL TOOL IN THE PROCESS OF MANUFACTURING THE BRONZE MATERIALS

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2013-05-01

    Full Text Available In this paper we present the experimental testings used to study the vibration of the drill tool, during the drilling of the bronze products. We have used the experimental setup presented in Miriţoiu (2013[1]. In this paper the vibrations are analyzed during the drilling on the universal lathe machines. The main purpose of to find a correlation between the cutting speed and the frequency of the vibration by using the experimental results and the regression analysis

  18. Collective excitations in liquid DMSO : FIR spectrum, Low frequency vibrational density of states and ultrafast dipolar solvation dynamics

    OpenAIRE

    Hazra, Milan; Bagchi, Biman

    2016-01-01

    Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work we investigate the intermolecular vibrational spectrum of DMSO through three different computat...

  19. Recording of unexpectedly high frequency vibrations of blood vessel walls in experimental arteriovenous fistulae of rabbits using a laser vibrometer.

    Science.gov (United States)

    Stehbens, W E; Liepsch, D W; Poll, A; Erhardt, W

    1995-01-01

    Because arteriovenous fistulae are associated with a palpable thrill and an audible murmur, the vibrational activity of the blood vessel walls about experimental arteriovenous fistulae in rabbits was investigated using, for the first time, a high-resolution laser vibrometer. Frequencies of mural vibrations up to 2200 Hz were recorded at different sites about the fistulae. The relationship of this vibratory activity of blood vessel walls to physiological and pathological conditions warrants further investigation.

  20. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    Science.gov (United States)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, ;sub-sampling training examples;-based and ;manipulating input features;-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  1. A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution-mode superposition approach

    Science.gov (United States)

    Seçgin, Abdullah; Saide Sarıgül, A.

    2009-03-01

    This study introduces a novel scheme for the discrete high-frequency forced vibration analysis based on discrete singular convolution (DSC) and mode superposition (MS) approaches. The accuracy of the DSC-MS is validated for thin beams and plates by comparing with available analytical solutions. The performance of the DSC-MS is evaluated by predicting spatial distribution and discrete frequency spectra of the vibration response of thin plates with two different boundary conditions. The frequency spectra of the time-harmonic excitation forces are in the form of ideal and band-limited white noise so that the natural modes in the frequency band are provoked. The solution exposes high-frequency response behaviour definitely. Therefore, it is hoped with this paper to contribute the studies on the treatment of uncertainties in the high-frequency design applications.

  2. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  3. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  4. Analysis of subsystem randomness effects on the mid-frequency vibrations of built-up structures

    Science.gov (United States)

    Ji, Lin; Huang, Zhenyu

    2013-06-01

    The paper concerns the analysis of subsystem randomness effects on the mid-frequency vibration responses of built-up systems. The system model considered, in the first instance, is a long-wavelength finite element (FE) subsystem connected with a short-wavelength statistical energy analysis (SEA) subsystem via discrete couplings. The randomness effects of the SEA subsystem on both the displacement response of the FE subsystem and the energy response of the SEA subsystem are then investigated under the frame of the hybrid FE/SEA theory [P. Shorter, R. Langley, Vibro-acoustic analysis of complex systems, Journal of Sound and Vibration, 288 (2005) 669-700]. It is found that the subsystem randomness effects may be well indicated by a dimensionless parameter α, which is a function of the number of coupling points, the dynamic mismatch between the FE and SEA subsystems and the modal overlap factor of the SEA subsystem. The smaller the value of α is, the more insignificant the randomness effects are. As a result, a so-called "α-criterion" is derived which states that, if a built-up structure satisfies the condition of α≪1, the randomness effects of the SEA subsystem can be neglected. In this case, the SEA subsystem can be simply treated as an infinite (or semi-infinite as appropriate) structure regardless of its mode count being sufficiently high or not. Numerical examples are presented to illustrate the validity of the present theory.

  5. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  6. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  7. Stability of high-frequency periodic motions of a heavy rigid body with a horizontally vibrating suspension point

    Science.gov (United States)

    Belichenko, M. V.

    2016-11-01

    The motion of a heavy rigid body one of whose points (the suspension point) executes horizontal harmonic high-frequency vibrations with small amplitude is considered. The problem of existence of high-frequency periodic motions with period equal to the period of the suspension point vibrations is considered. The stability conditions for the revealed motions are obtained in the linear approximation. The following three special cases of mass distribution in the body are considered; a body whose center of mass lies on the principal axis of inertia, a body whose center of mass lies in the principal plane of inertia, and a dynamically symmetric body.

  8. Structure of the ethylammonium nitrate surface: an X-ray reflectivity and vibrational sum frequency spectroscopy study.

    Science.gov (United States)

    Niga, Petru; Wakeham, Deborah; Nelson, Andrew; Warr, Gregory G; Rutland, Mark; Atkin, Rob

    2010-06-01

    X-ray reflectivity and vibrational sum frequency spectroscopy are used to probe the structure of the ethylammonium nitrate (EAN)-air interface. X-ray reflectivity reveals that the EAN-air interface is structured and consists of alternating nonpolar and charged layers that extend 31 A into the bulk. Vibrational sum frequency spectroscopy reveals interfacial cations have their ethyl moieties oriented toward air, with the CH(3) C(3) axis positioned approximately 36.5 degrees from interface normal. This structure is invariant between 15 and 51 degrees C. On account of its molecular symmetry, the orientation of the nitrate anion cannot be determined with certainty.

  9. A study of the eigenvectors of the low-frequency vibrational modes in crystalline adenosine via high pressure Raman spectroscopy.

    Science.gov (United States)

    Lee, Scott A; Pinnick, David A; Anderson, A

    2014-12-01

    High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes.

  10. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies.

    Science.gov (United States)

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark

    2014-07-01

    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations.

  11. Note: A kinematic shaker system for high amplitude, low frequency vibration testing.

    Science.gov (United States)

    Swaminathan, Anand; Poese, Matthew E; Smith, Robert W M; Garrett, Steven L

    2015-11-01

    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  12. Sum Frequency Generation Vibrational Spectroscopy of Pyridine Hydrogenation on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2008-02-22

    Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.

  13. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Science.gov (United States)

    Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank

    2015-08-01

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  14. Coupled rotor-fuselage vibration reduction with multiple frequency blade pitch control

    Science.gov (United States)

    Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.

    1991-01-01

    A nonlinear coupled rotor/flexible fuselage analysis has been developed and used to study the effects of higher harmonic blade pitch control on the vibratory hub loads and fuselage acceleration levels. Previous results, obtained with this model have shown that conventional higher harmonic control (HHC) inputs aimed at hub shear reduction cause an increase in the fuselage accelerations and vice-versa. It was also found that for simultaneous reduction of hub shears and fuselage accelerations, a pitch input representing a combination of two higher harmonic components of different frequencies was needed. Subsequently, it was found that this input could not be implemented through a conventional swashplate. This paper corrects a mistake originally made in the representation of the multiple frequency pitch input and shows that such a pitch input can be only implemented in the rotating reference frame. A rigorous mathematical solution is found, for the pitch input in the rotating reference frame, which produces simultaneous reduction of hub shears and fuselage acceleration. New insight on vibration reduction in coupled rotor/fuselage systems is obtained from the sensitivity of hub shears to the frequency and amplitude of the open loop HHC signal in the rotating reference frame. Finally the role of fuselage flexibility in this class of problems is determined.

  15. Fundamental Frequencies of Vibration of Footbridges in Portugal: From In Situ Measurements to Numerical Modelling

    Directory of Open Access Journals (Sweden)

    C. S. Oliveira

    2014-01-01

    Full Text Available Since 1995, we have been measuring the in situ dynamic characteristics of different types of footbridges built in Portugal (essentially steel and precast reinforced concrete decks with single spans running from 11 to 110 m long, using expedite exciting and measuring techniques. A database has been created, containing not only the fundamental dynamic characteristics of those structures (transversal, longitudinal, and vertical frequencies but also their most important geometric and mechanical properties. This database, with 79 structures organized into 5 main typologies, allows the setting of correlations of fundamental frequencies as a negative power function of span lengths L  (L-0.6 to L-1.4. For 63 footbridges of more simple geometry, it was possible to obtain these correlations by typology. A few illustrative cases representing the most common typologies show that linear numerical models can reproduce the in situ measurements with great accuracy, not only matching the frequencies of vibration but also the amplitudes of motion caused by several pedestrian load patterns.

  16. Accurate Lineshapes from Sub-1 cm-1 Resolution Sum Frequency Generation Vibrational Spectroscopy of α-Pinene at Room Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.

    2015-02-26

    Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.

  17. Influence of high-frequency vibrations on the onset of convection in a two-layer system

    Science.gov (United States)

    Zenkovskaya, Svetlana M.; Novosiadliy, Vasili A.

    2008-03-01

    This Note deals with the influence of high-frequency translational oscillations on the onset of convection in a two-layer system of weakly heterogeneous immiscible fluids with deformable interface. The averaging method is applied to the generalized Oberbeck-Boussinesq equations. Vibration-generated forces and tensions appear as the result. A transition to the Oberbeck-Boussinesq approximation is made in the averaged equations. Analysis of averaged equations leads to the following conclusions. Horizontal vibrations are obtained not influencing the onset of convection, and in the cases of other directions the influence of vibration is determined by a single parameter, depending on velocity amplitude and direction. Vibration is shown to generate effective surface tension, smoothing the interface. Critical parameters are calculated for the case of homogeneous fluids. To cite this article: S.M. Zenkovskaya, V.A. Novosiadliy, C. R. Mecanique 336 (2008).

  18. Analytical Harmonic Vibrational Frequencies for the Green Fluorescent Protein Computed with ONIOM: Chromophore Mode Character and Its Response to Environment.

    Science.gov (United States)

    Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J

    2014-02-11

    A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.

  19. Design of serial linkage-type vibration energy harvester with three resonant frequencies

    Science.gov (United States)

    Kim, Hyun Soo; Kim, Jun Woo; Park, Shi-Baek; Choi, Yong Je

    2017-11-01

    This paper presents a new design method of a planar 3 degrees-of-freedom(DOF) serial linkage-type vibration energy harvester with a single proof mass. The harvester is designed to generate electrical power at equally spaced three target resonant frequencies which can be chosen arbitrarily. For given target frequencies and a proof mass, the design method involves (1) the determination of the stiffness matrix, (2) the synthesis of the stiffness by means of a parallel connection of three line springs and (3) its conversion into a 3DOF device connected serially by torsional springs. The torsional springs are realized by the flexible hinge joints and the polyvinylidene fluoride(PVDF) films are attached on the joints. Upon determination of the desired stiffness matrix, the SQP algorithm is utilized to find the optimum locations and spring constants of the serial hinge joints for the minimum difference among three electrical power peaks. The FEM analysis and experiments are conducted to verify the proposed design method. Three measured resonant power peaks occur at 24.7, 30.4 and 33.6 Hz comparing to the target frequencies of 25, 30 and 35 Hz. The normalized maximum power of 14.5 {{uW}}/{({{{ms}}}-2)}2 is generated at 24.7 Hz. The experimental results also demonstrate that the harvester can generate at least 18.6% of the peak power throughout the frequency range from 23.1 to 36.5 Hz, which ensures consistently acquirable power within the operating frequency range by virtue of the coupled effect of a serial linkage-type structure.

  20. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  1. Rovibrational spectroscopic constants and fundamental vibrational frequencies for isotopologues of cyclic and bent singlet HC{sub 2}N isomers

    Energy Technology Data Exchange (ETDEWEB)

    Inostroza, Natalia; Fortenberry, Ryan C.; Lee, Timothy J. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Huang, Xinchuan, E-mail: Timothy.J.Lee@nasa.gov [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States)

    2013-12-01

    Through established, highly accurate ab initio quartic force fields, a complete set of fundamental vibrational frequencies, rotational constants, and rovibrational coupling and centrifugal distortion constants have been determined for both the cyclic 1 {sup 1} A' and bent 2 {sup 1} A' DCCN, H{sup 13}CCN, HC{sup 13}CN, and HCC{sup 15}N isotopologues of HCCN. Spectroscopic constants are computed for all isotopologues using second-order vibrational perturbation theory (VPT2), and the fundamental vibrational frequencies are computed with VPT2 and vibrational configuration interaction (VCI) theory. Agreement between VPT2 and VCI results is quite good, with the fundamental vibrational frequencies of the bent isomer isotopologues in accord to within a 0.1-3.2 cm{sup –1} range. Similar accuracies are present for the cyclic isomer isotopologues. The data generated here serve as a reference for astronomical observations of these closed-shell, highly dipolar molecules using new, high-resolution telescopes and as reference for laboratory studies where isotopic labeling may lead to elucidation of the formation mechanism for the known interstellar molecule: X {sup 3} A' HCCN.

  2. The recruiter's excitement--features of thoracic vibrations during the honey bee's waggle dance related to food source profitability.

    Science.gov (United States)

    Hrncir, Michael; Maia-Silva, Camila; Mc Cabe, Sofia I; Farina, Walter M

    2011-12-01

    The honey bee's waggle dance constitutes a remarkable example of an efficient code allowing social exploitation of available feeding sites. In addition to indicating the position (distance, direction) of a food patch, both the occurrence and frequency of the dances depend on the profitability of the exploited resource (sugar concentration, solution flow rate). During the waggle dance, successful foragers generate pulsed thoracic vibrations that putatively serve as a source of different kinds of information for hive bees, who cannot visually decode dances in the darkness of the hive. In the present study, we asked whether these vibrations are a reliable estimator of the excitement of the dancer when food profitability changes in terms of both sugar concentration and solution flow rate. The probability of producing thoracic vibrations as well as several features related to their intensity during the waggle phase (pulse duration, velocity amplitude, duty cycle) increased with both these profitability variables. The number of vibratory pulses, however, was independent of sugar concentration and reward rate exploited. Thus, pulse number could indeed be used by dance followers as reliable information about food source distance, as suggested in previous studies. The variability of the dancer's thoracic vibrations in relation to changes in food profitability suggests their role as an indicator of the recruiter's motivational state. Hence, the vibrations could make an important contribution to forager reactivation and, consequently, to the organisation of collective foraging processes in honey bees.

  3. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

    Directory of Open Access Journals (Sweden)

    Ted W Cranford

    Full Text Available Hearing mechanisms in baleen whales (Mysticeti are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT scans. We CT scanned the head of a small fin whale (Balaenoptera physalus in a scanner designed for solid-fuel rocket motors. Our computer (finite element modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1 the skull-vibration enabled bone conduction mechanism and (2 a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

  4. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

    Science.gov (United States)

    Cranford, Ted W; Krysl, Petr

    2015-01-01

    Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

  5. Fin Whale Sound Reception Mechanisms: Skull Vibration Enables Low-Frequency Hearing

    Science.gov (United States)

    Cranford, Ted W.; Krysl, Petr

    2015-01-01

    Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale’s head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies. PMID:25633412

  6. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: Methodology and diborane as a test case

    Science.gov (United States)

    Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.

    2012-10-01

    We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.

  7. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm‑3 and 378.79 μW cm‑3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  8. Prediction of high-frequency vibration transmission across coupled, periodic ribbed plates by incorporating tunneling mechanisms.

    Science.gov (United States)

    Yin, Jianfei; Hopkins, Carl

    2013-04-01

    Prediction of structure-borne sound transmission on built-up structures at audio frequencies is well-suited to Statistical Energy Analysis (SEA) although the inclusion of periodic ribbed plates presents challenges. This paper considers an approach using Advanced SEA (ASEA) that can incorporate tunneling mechanisms within a statistical approach. The coupled plates used for the investigation form an L-junction comprising a periodic ribbed plate with symmetric ribs and an isotropic homogeneous plate. Experimental SEA (ESEA) is carried out with input data from Finite Element Methods (FEM). This indicates that indirect coupling is significant at high frequencies where bays on the periodic ribbed plate can be treated as individual subsystems. SEA using coupling loss factors from wave theory leads to significant underestimates in the energy of the bays when the isotropic homogeneous plate is excited. This is due to the absence of tunneling mechanisms in the SEA model. In contrast, ASEA shows close agreement with FEM and laboratory measurements. The errors incurred with SEA rapidly increase as the bays become more distant from the source subsystem. ASEA provides significantly more accurate predictions by accounting for the spatial filtering that leads to non-diffuse vibration fields on these more distant bays.

  9. Stain-free Histopathology of Basal Cell Carcinoma by Dual Vibration Resonance Frequency CARS Microscopy.

    Science.gov (United States)

    Kiss, Norbert; Krolopp, Ádám; Lőrincz, Kende; Bánvölgyi, András; Szipőcs, Róbert; Wikonkál, Norbert

    2017-11-04

    Basal cell carcinoma (BCC) is the most common malignancy in Caucasians. Nonlinear microscopy has been previously utilized for the imaging of BCC, but the captured images do not correlate with H&E staining. Recently, Freudiger et al. introduced a novel method to visualize tissue morphology analogous to H&E staining, using coherent anti-Stokes Raman scattering (CARS) technique. In our present work, we introduce a novel algorithm to post-process images obtained from dual vibration resonance frequency (DVRF) CARS measurements to acquire high-quality pseudo H&E images of BCC samples. We adapted our CARS setup to utilize the distinct vibrational properties of CH 3 (mainly in proteins) and CH 2 bonds (primarily in lipids). In a narrowband setup, the central wavelength of the pump laser is set to 791 nm and 796 nm to obtain optimal excitation. Due to the partial overlap of the excitation spectra and the 5-10 nm FWHM spectral bandwidth of our lasers, we set the wavelengths to 790 nm (proteins) and 800 nm (lipids). Nonresonant background from water molecules also reduces the chemical selectivity which can be significantly improved if we subtract the DVRF images from each other. As a result, we acquired two images: one for "lipids" and one for" proteins" when we properly set a multiplication factor to minimize the non-specific background. By merging these images, we obtained high contrast H&E "stained" images of BBC's. Nonlinear microscope systems upgraded for real time DVRF CARS measurements, providing pseudo H&E images can be suitable for in vivo assessment of BCC in the future.

  10. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  11. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.

    Science.gov (United States)

    Koven, Robert; Mills, Matthew; Gale, Richard; Aksak, Burak

    2017-11-01

    Piezoelectric vibration energy harvesters often consist of a cantilevered beam composed of a support layer and one or two piezoelectric layers with a tip mass. While this configuration is advantageous for maximizing electromechanical coupling, the mechanical properties of the piezoelectric material can place limitations on harvester size and resonant frequency. Here, we present numerical and experimental results from a new type of piezoelectric energy harvester in which the mechanical properties and the resonant frequency of the cantilever beam resonator are effectively decoupled from the piezoelectric component. Referred to as a base-mounted piezoelectric (BMP) harvester in this paper, this new design features a piezoelectric transducer mounted beneath the base of the cantilevered beam resonator. The flexibility in the material choice for the cantilever beam resonator means that the resonant frequency and the beam dimensions are essentially free parameters. A prototype made with a 1.6 mm mm mm polyurethane beam, a PZT-5H piezoelectric transducer, and an 8.36-g tip mass is shown to produce an average power of 8.75 and at 45 Hz across a 13.0- load under harmonic base excitations of constant peak acceleration at 0.25 and 1.0-g, respectively. We also show an increase in full-width half-maximum bandwidth approximately from 1.5 to 5.6 Hz using an array of four individual BMP harvesters of similar dimensions with peak power generation of at 37.6 Hz across a 1.934- load at 0.25-g peak base excitation. Finite elements-based numerical simulations are shown to be in reasonable agreement with experimental results, indicating that the harvester behaves like a damped mass-spring system as proposed in this paper. Fabricated using casting and laser machining techniques, this harvester shows potential as a low-cost option for powering small, low-power wireless sensor nodes and other low-power devices.

  12. Matrix effect on vibrational frequencies: Experiments and simulations for HCl and HNgCl (Ng = Kr and Xe)

    Energy Technology Data Exchange (ETDEWEB)

    Kalinowski, Jaroslaw; Räsänen, Markku; Lignell, Antti; Khriachtchev, Leonid, E-mail: leonid.khriachtchev@helsinki.fi [Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 (Finland); Gerber, R. Benny [Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 (Finland); Department of Physical Chemistry, Hebrew University, Jerusalem 91904, Israel and Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2014-03-07

    We study the environmental effect on molecules embedded in noble-gas (Ng) matrices. The experimental data on HXeCl and HKrCl in Ng matrices is enriched. As a result, the H−Xe stretching bands of HXeCl are now known in four Ng matrices (Ne, Ar, Kr, and Xe), and HKrCl is now known in Ar and Kr matrices. The order of the H−Xe stretching frequencies of HXeCl in different matrices is ν(Ne) < ν(Xe) < ν(Kr) < ν(Ar), which is a non-monotonous function of the dielectric constant, in contrast to the “classical” order observed for HCl: ν(Xe) < ν(Kr) < ν(Ar) < ν(Ne). The order of the H−Kr stretching frequencies of HKrCl is consistently ν(Kr) < ν(Ar). These matrix effects are analyzed theoretically by using a number of quantum chemical methods. The calculations on these molecules (HCl, HXeCl, and HKrCl) embedded in single Ng{sup ′} layer cages lead to very satisfactory results with respect to the relative matrix shifts in the case of the MP4(SDQ) method whereas the B3LYP-D and MP2 methods fail to fully reproduce these experimental results. The obtained order of frequencies is discussed in terms of the size available for the Ng hydrides in the cages, probably leading to different stresses on the embedded molecule. Taking into account vibrational anharmonicity produces a good agreement of the MP4(SDQ) frequencies of HCl and HXeCl with the experimental values in different matrices. This work also highlights a number of open questions in the field.

  13. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response

    Science.gov (United States)

    Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping

    2017-01-01

    A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.

  14. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method

    Science.gov (United States)

    Li, Q.; Wu, D. J.

    2013-09-01

    The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring

  15. Report of workshop on vibration related to fluid in atomic energy field. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Because of the nonlinearity of the equation that governs flow, sometimes vibration occurs in an unexpected system, and it causes trouble. This 7th workshop on vibration related to fluid in atomic energy field was held at Nuclear Engineering Research Laboratory of University of Tokyo on August 25 and 26, 1997. Two themes were ``Vibration of liquid surface by flow`` and ``Numerical analysis of coupled vibration of fluid-structures``. The former is related to the problem in the development of a demonstration FBR, and the latter is related to the numerical analysis technology such as the handling of boundary conditions and the method of taking position, moving velocity and acceleration into account. This workshop aims at thoroughly discussing a small number of themes, and deepening the understanding. In this report, the summaries of 17 papers are collected, of which the titles are as follows. Liquid surface self-exciting vibration by flow, vibration of upper plenum liquid surface of fast reactor, stability analysis of multiple liquid surfaces, flow instability phenomena of multi-loop system, sloshing in a vessel in which fluid flows, the mechanism of occurrence of self-exciting sloshing in a vessel elucidated by numerical analysis, numerical analysis of manometer vibration excited by flow, numerical analysis of flutter phenomena of aircraft, numerical analysis of aerodynamic elastic problem, mechanism of in-line excitation, numerical analysis of hydrodynamic elastic vibration of tube nest and so on. (K.I.)

  16. Nonnegative Matrix Factorization of time frequency representation of vibration signal for local damage detection - comparison of algorithms

    Science.gov (United States)

    Wodecki, Jacek

    2018-01-01

    Local damage detection in rotating machine elements is very important problem widely researched in the literature. One of the most common approaches is the vibration signal analysis. Since time domain processing is often insufficient, other representations are frequently favored. One of the most common one is time-frequency representation hence authors propose to separate internal processes occurring in the vibration signal by spectrogram matrix factorization. In order to achieve this, it is proposed to use the approach of Nonnegative Matrix Factorization (NMF). In this paper three NMF algorithms are tested using real and simulated data describing single-channel vibration signal acquired on damaged rolling bearing operating in drive pulley in belt conveyor driving station. Results are compared with filtration using Spectral Kurtosis, which is currently recognized as classical method for impulsive information extraction, to verify the validity of presented methodology.

  17. Impact-based piezoelectric energy harvester for multidimensional, low-level, broadband, and low-frequency vibrations

    Science.gov (United States)

    Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng

    2017-05-01

    This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.

  18. Effect of surface related organic vibrational modes in luminescent upconversion dynamics of rare earth ions doped nanoparticles.

    Science.gov (United States)

    Wang, Yu; Smolarek, Szymon; Kong, Xianggui; Buma, Wybren Jan; Brouwer, Albert Manfred; Zhang, Hong

    2010-11-01

    Physical and chemical properties of nanoparticles are known to be subject to the surface factors. For their biological/biomedical applications, typically, surface of the nanoparticles has to be modified which inevitably affects their performance. In this work we have studied the interaction between the surface related organic vibrational modes and the luminescent centers--rare earth ions--in one of the most efficient luminescence upconversion nanosystems--NaYF4. Specifically, the surface quenching centers, the surface related luminescent centers, as well as the role of shell properties, are investigated spectroscopically. Our results demonstrate that the surface related high-frequency vibrational modes can be critical to the spectral properties of the nanosystems once the surface is not well separated from the discrete luminescent centers.

  19. Low-frequency vibration isolation in six degrees of freedom: the Hummingbird

    NARCIS (Netherlands)

    Rijnveld, N.; Braber, R. van den; Fraanje, P.R.; Dool, T.C. van den

    2010-01-01

    TNO Science and Industry and MECAL have developed a six degree of freedom vibration isolation system that suppresses both floor vibrations and direct forces on a table top. The achieved reduction of transmissibility and compliance is 40 dB between 1 and 50 Hz in vertical direction, and 30 dB between

  20. Low-frequency vibrational excitations in the amorphous and crystalline states of triphenyl phosphite: A neutron and Raman scattering investigation

    Science.gov (United States)

    Hédoux, Alain; Derollez, Patrick; Guinet, Yannick; Dianoux, Albert José; Descamps, Marc

    2001-04-01

    The vibrational density of states in the triphenyl phosphite, measured by inelastic neutron scattering, were obtained during isothermal aging at Ta=210, 213, and 216 K. The low-frequency ωn behavior of the vibrational density of states was observed to be time dependent. This is suggestive of an abortive crystallization process because the ω exponent has not reached the characteristic value of the crystalline state (n=2) at the end of the transformation. The confrontation of inelastic neutron scattering and Raman data in the low-frequency range reveals interesting information about the structural organization in the liquid, the glass, the undercooled liquid, and the glacial state, through the observation of the boson peak.

  1. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...... the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments....

  2. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Eduard Dechant

    2017-12-01

    Full Text Available Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs. The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.

  3. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    Energy Technology Data Exchange (ETDEWEB)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-08-28

    Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  4. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    Science.gov (United States)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  5. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  6. Feedback Controller Stabilizing Vibrations of a Flexible Cable Related to an Overhead Crane

    Directory of Open Access Journals (Sweden)

    Abdelhadi Elharfi

    2010-01-01

    Full Text Available The problem of stabilizing vibrations of flexible cable related to an overhead crane is considered. The cable vibrations are described by a hyperbolic partial differential equation (HPDE with an update boundary condition. We provide in this paper a systematic way to derive a boundary feedback law which restores in a closed form the cable vibrations to the desired zero equilibrium. Such a control law is explicitly constructed in terms of the solution of an appropriate kernel PDE. The pursued approach combines the “backstepping method” and “semigroup theory”.

  7. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Science.gov (United States)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  8. Relationship Between Psychomotor Efficiency and Sensation Seeking of People Exposed to Noise and Low Frequency Vibration Stimuli

    Science.gov (United States)

    Korchut, Aleksander; Kowalska-Koczwara, Alicja; Romanska – Zapała, Anna; Stypula, Krzysztof

    2017-10-01

    At the workplace of the machine operator, low frequency whole body and hand- arm vibrations are observed. They occur together with noise. Whole body vibration in the range of 3-25 Hz are detrimental to the human body due to the location of the resonant frequency of large organs of the human body in this range. It can be assumed that for this reason people working every day in such conditions can have reduced working efficiency. The influence of low frequency vibration and noise on the human body leads to both physiological and functional changes. The result of the impact of noise and vibration stimuli depends largely on the specific characteristics of the objects, which include among other personality traits, temperament and emotional factor. The pilot study conducted in the laboratory was attended by 30 young men. The aim of the study was to look for correlations between the need for stimulation of the objects and their psychomotor efficiency in case of vibration exposure and vibration together with noise exposure in variable conditions task. The need for stimulation of the objects as defined in the study is based on theoretical assumptions of one dimensional model of temperament developed by Marvin Zuckerman. This theory defines the need for stimulation as the search for different, new, complex and intense sensations, as well as the willingness to take risks. The aim of research was to verify if from four factors such as: the search for adventure and horror, sensation seeking, disinhibition and susceptibility to boredom, we can choose the ones that in conjunction with varying operating conditions, may significantly determine the efficiency of the task situation. The objects performed the test evaluation of their motor skills which consisted in keeping the cursor controlled by a joystick through the path. The number of exceeds of the cursor beyond the path and its maximum deviation was recorded. The collected data were used to determine the correlation between the

  9. Vibrational sum‐frequency generation as a probe for composition, chemical reactivity, and film formation dynamics of the sea surface nanolayer

    National Research Council Canada - National Science Library

    Laβ, Kristian; Kleber, Joscha; Friedrichs, Gernot

    2010-01-01

    Vibrational Sum Frequency Generation (VSFG) is a surface sensitive nonlinear laser spectroscopic technique, which has been widely used in physics and physical chemistry to investigate interface processes and heterogeneous chemistry...

  10. Comparisons of the Structure of Water at Neat Oil/Water and Air/Water Interfaces as Determined by Vibrational Sum Frequency Generation

    National Research Council Canada - National Science Library

    Gragson, D

    1997-01-01

    We have employed vibrational sum frequency generation (VSFG) to investigate the structure of water at neat oil/water and air/water interfaces through the OH stretching modes of the interfacial water molecules...

  11. Optimization of linear zigzag insert metastructures for low-frequency vibration attenuation using genetic algorithms

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Inman, Daniel J.

    2017-02-01

    Vibration suppression remains a crucial issue in the design of structures and machines. Recent studies have shown that with the use of metamaterial inspired structures (or metastructures), considerable vibration attenuation can be achieved. Optimization of the internal geometry of metastructures maximizes the suppression performance. Zigzag inserts have been reported to be efficient for vibration attenuation. It has also been reported that the geometric parameters of the inserts affect the vibration suppression performance in a complex manner. In an attempt to find out the most efficient parameters, an optimization study has been conducted on the linear zigzag inserts and is presented here. The research reported in this paper aims at developing an automated method for determining the geometry of zigzag inserts through optimization. This genetic algorithm based optimization process searches for optimal zigzag designs which are properly tuned to suppress vibrations when inserted in a specific host structure (cantilever beam). The inserts adopted in this study consist of a cantilever zigzag structure with a mass attached to its unsupported tip. Numerical simulations are carried out to demonstrate the efficiency of the proposed zigzag optimization approach.

  12. Collective excitations in liquid DMSO : FIR spectrum, Low frequency vibrational density of states and ultrafast dipolar solvation dynamics

    CERN Document Server

    Hazra, Milan

    2016-01-01

    Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infra red spectrum obtained through Fourier transform of total dipole moment auto time correlation function, (ii) from Fourier transform of the translational and angular velocity time autocorrelation functions and a (iii) quenched normal mode analysis of the parent liquid at 300K. The three spectrum, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. Study of participation ratio of the density...

  13. Random vibration of linear and nonlinear structural systems with singular matrices: A frequency domain approach

    Science.gov (United States)

    Kougioumtzoglou, I. A.; Fragkoulis, V. C.; Pantelous, A. A.; Pirrotta, A.

    2017-09-01

    A frequency domain methodology is developed for stochastic response determination of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate the formulation of the equations of motion in a less labor intensive manner. Specifically, relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based frequency response function (FRF) is determined for a linear structural system with singular matrices. Next, relying on the M-P FRF a spectral input-output (excitation-response) relationship is derived in the frequency domain for determining the linear system response power spectrum. Further, the above methodology is extended via statistical linearization to account for nonlinear systems. This leads to an iterative determination of the system response mean vector and covariance matrix. Furthermore, to account for singular matrices, the generalization of a widely utilized formula that facilitates the application of statistical linearization is proved as well. The formula relates to the expectation of the derivatives of the system nonlinear function and is based on a Gaussian response assumption. Several linear and nonlinear MDOF structural systems with singular matrices are considered as numerical examples for demonstrating the validity and applicability of the developed frequency domain methodology.

  14. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  15. Vibration-induced displacement using high-frequency resonators and friction layers

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    1998-01-01

    A mathematical model is set up to quantify vibration-induced motions of a slider with an imbedded resonator. A simple approximate expression is presented for predicting average velocities of the slider, agreeing fairly well with numerical integration of the full equations of motion. The simple ex...

  16. Natural Frequencies and Modal Damping Ratios Identification of Civil Structures from Ambient Vibration Data

    Directory of Open Access Journals (Sweden)

    Minh-Nghi Ta

    2006-01-01

    Full Text Available Damping is a mechanism that dissipates vibration energy in dynamic systems and plays a key role in dynamic response prediction, vibration control as well as in structural health monitoring during service. In this paper a time domain and a time-scale domain approaches are used for damping estimation of engineering structures, using ambient response data only. The use of tests under ambient vibration is increasingly popular today because they allow to measure the structural response in service. In this paper we consider two engineering structures excited by ambient forces. The first structure is the 310 m tall TV tower recently constructed in the city of Nanjing in China. The second example concerns the Jinma cable-stayed bridge that connects Guangzhou and Zhaoqing in China. It is a single tower, double row cable-stayed bridge supported by 112 stay cables. Ambient vibration of each cable is carried out using accelerometers. From output data only, the modal parameter are extracted using a subspace method and the wavelet transform method.

  17. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree-Fock and density functional theory calculations

    Science.gov (United States)

    Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile

    2007-06-01

    The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.

  18. Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly--a cluster-randomized controlled trial.

    Science.gov (United States)

    Leung, K S; Li, C Y; Tse, Y K; Choy, T K; Leung, P C; Hung, V W Y; Chan, S Y; Leung, A H C; Cheung, W H

    2014-06-01

    This study is a prospective cluster-randomized controlled clinical trial involving 710 elderly subjects to investigate the long-term effects of low-magnitude high-frequency vibration (LMHFV) on fall and fracture rates, muscle performance, and bone quality. The results confirmed that LMHFV is effective in reducing fall incidence and enhancing muscle performance in the elderly. Falls are direct causes of fragility fracture in the elderly. LMHFV has been shown to improve muscle function and bone quality. This study is to investigate the efficacy of LMHFV in preventing fall and fractures among the elderly in the community. A cluster-randomized controlled trial was conducted with 710 postmenopausal females over 60 years. A total of 364 participants received daily 20 min LMHFV (35 Hz, 0.3 g), 5 days/week for 18 months; 346 participants served as control. Fall or fracture rate was taken as the primary outcome. Also, quadriceps muscle strength, balancing abilities, bone mineral density (BMD), and quality of life (QoL) assessments were done at 0, 9, and 18 months. With an average of 66.0% compliance in the vibration group, 18.6% of 334 vibration group subjects reported fall or fracture incidences compared with 28.7% of 327 in the control (adjusted HR = 0.56, p = 0.001). The fracture rate of vibration and control groups were 1.1 and 2.3 % respectively (p = 0.171). Significant improvements were found in reaction time, movement velocity, and maximum excursion of balancing ability assessment, and also the quadriceps muscle strength (p < 0.001). No significant differences were found in the overall change of BMD. Minimal adverse effects were documented. LMHFV is effective in fall prevention with improved muscle strength and balancing ability in the elderly. We recommend its use in the community as an effective fall prevention program and to decrease related injuries.

  19. Properties of axial or torsional free-vibration frequency of rods

    Science.gov (United States)

    Segenreich, S. A.; Rizzi, P.

    1975-01-01

    The investigation reported shows that for a clamped rod with an odd number of degrees of freedom, the middle frequency is independent of any nonuniformity in the area distribution. The frequencies in the lower half of the spectrum of a rod are found to be conjugate to the frequencies in the upper half. In the case of a design modification which leaves a certain frequency in the lower half spectrum unchanged, the conjugate frequency in the upper half will also remain unchanged.

  20. Morphological determinants of signal carrier frequency in katydids (Orthoptera): a comparative analysis using biophysical evidence of wing vibration.

    Science.gov (United States)

    Montealegre-Z, F; Ogden, J; Jonsson, T; Soulsbury, C D

    2017-11-01

    Male katydids produce mating calls by stridulation using specialized structures on the forewings. The right wing (RW) bears a scraper connected to a drum-like cell known as the mirror and a left wing (LW) that overlaps the RW and bears a serrated vein on the ventral side, the stridulatory file. Sound is generated with the scraper sweeping across the file, producing vibrations that are amplified by the mirror. Using this sound generator, katydids exploit a range of song carrier frequencies (CF) unsurpassed by any other insect group, with species singing as low as 600 Hz and others as high as 150 kHz. Sound generator size has been shown to scale negatively with CF, but such observations derive from studies based on few species, without phylogenetic control, and/or using only the RW mirror length. We carried out a phylogenetic comparative analysis involving 94 species of katydids to study the relationship between LW and RW components of the sound generator and the CF of the male's mating call, while taking into account body size and phylogenetic relationships. The results showed that CF negatively scaled with all morphological measures, but was most strongly related to components of the sound generation system (file, LW and RW mirrors). Interestingly, the LW mirror (reduced and nonfunctional) predicted CF more accurately than the RW mirror, and body size is not a reliable CF predictor. Mathematical models were verified on known species for predicting CF in species for which sound is unknown (e.g. fossils or museum specimens). © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  1. Comparative study of time-dependent effects of 4 and 8 Hz mechanical vibration at infrasound frequency on E. coli K-12 cells proliferation.

    Science.gov (United States)

    Martirosyan, Varsik; Ayrapetyan, Sinerik

    2015-01-01

    The aim of the present work is to study the time-dependent effects of mechanical vibration (MV) at infrasound (IS) frequency at 4 and 8 Hz on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. In our previous work it was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. At the same time it was shown that microbes have mechanosensors on the surface of the cells and can sense small changes of the external environment. The obtained results were shown that the time-dependent effects of MV at 4 and 8 Hz frequency could either stimulate or inhibit the growth of microbes depending from exposure time. It more particularly, the invention relates to a method for controlling biological functions through the application of mechanical vibration, thus making it possible to artificially control the functions of bacterial cells, which will allow us to develop method that can be used in agriculture, industry, medicine, biotechnology to control microbial growth.

  2. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2018-01-01

    Full Text Available Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode. Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  3. Interfacial Water Structure and Cation Binding with the Dppc Phosphate at Air /aqueous Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy

    Science.gov (United States)

    Hua, Wei; Allen, Heather C.

    2012-06-01

    Molecular-level knowledge of water structure and cation binding specificity to lipid headgroups at lipid/water interfaces plays a key role in many relevant chemical, biological, and environmental processes. To obtain information on the molecular organization at aqueous interfaces, vibrational sum frequency generation (VSFG) has been applied extensively as an interface-specific technique. Dipalmitoylphosphocholine (DPPC) is a major component of cell membranes and has been used as a proxy for the organic coating on fat-coated aerosols. In the present work, in addition to conventional VSFG studies on cation interaction with the phosphate headgroup moiety of DPPC, we employ phase-sensitive vibrational sum frequency generation (PS-VSFG) to investigate the average direction of the transition dipole moment of interfacial water molecules. The average orientation of water structure at DPPC/water interfaces is inferred. DPPC orients interfacial water molecules on average with their net transition dipole moment pointing towards the surface. The influence of Na+, K+, Mg2+, Ca2+ is identified in regard to interfacial water structure and DPPC headgroup organization. Ca2+ is observed to have greater impact on the water structure and a unique binding affinity to the phosphate headgroup relative to other cations tested. In highly concentrated Ca2+ regimes the already disturbed interfacial hydrogen-bonding network reorganizes to resemble that of the neat salt solution interface.

  4. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy.

    Science.gov (United States)

    Zhang, Xiaofei; Gao, Fengli; Li, Xide

    2018-01-24

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  5. Analytical expressions for bulk moduli and frequencies of volumetrical vibrations of fullerenes C20 and C60

    OpenAIRE

    KOVALEV OLEG; KUZKIN VITALY

    2011-01-01

    In the present paper simple analytical expressions connecting bulk moduli for fullerenes C20 and C60 with stiffness of interatomic bond and geometrical characteristics of the fullerenes are derived. Ambiguities related to definition of the bulk modulus are discussed. Nonlinear volumetrical deformation of the fullerenes is considered. Pressure-volume dependence for the fullerenes under volumetrical compression are derived. Simple analytical model for volumetrical vibrations of the fullerenes i...

  6. The acute effects of local muscle vibration frequency on peak torque, rate of torque development, and EMG activity.

    Science.gov (United States)

    Pamukoff, Derek N; Ryan, Eric D; Blackburn, J Troy

    2014-12-01

    Vibratory stimuli enhance muscle activity and may be used for rehabilitation and performance enhancement. Efficacy of vibration varies with the frequency of stimulation, but the optimal frequency is unclear. The purpose of this study was to examine the effects of 30 Hz and 60 Hz local muscle vibration (LMV) on quadriceps function. Twenty healthy volunteers (age = 20.4 ± 1.4 years, mass = 68.1 ± 11.0 kg, height = 170.1 ± 8.8 cm, males = 9) participated. Isometric knee extensor peak torque (PT), rate of torque development (RTD), and electromyography (EMG) of the quadriceps were assessed followed by one of the three LMV treatments (30 Hz, 60 Hz, control) applied under voluntary contraction, and again immediately, 5, 15, and 30 min post-treatment in three counterbalanced sessions. Dependent variables were analyzed using condition by time repeated-measures ANOVA. The condition × time interaction was significant for EMG amplitude (p = 0.001), but not for PT (p=0.324) or RTD (p = 0.425). The increase in EMG amplitude following 30 Hz LMV was significantly greater than 60 Hz LMV and control. These findings suggest that 30 Hz LMV may elicit an improvement in quadriceps activation and could be used to treat quadriceps dysfunction resulting from knee pathologies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. N-H stretching modes around 3300 wavenumber from peptide backbones observed by chiral sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Wang, Zhuguang; Yan, Elsa C Y

    2014-09-01

    We present a detailed analysis of the molecular origin of the chiral sum frequency generation (SFG) signals of proteins and peptides at interfaces in the N-H stretching vibrational region. The N-H stretching can be a probe for investigating structural and functional properties of proteins, but remains technically difficult to analyze due to the overlapping with the O-H stretching of water molecules. Chiral SFG spectroscopy offers unique tools to study the N-H stretching from proteins at interfaces without interference from the water background. However, the molecular origin of the N-H stretching signals of proteins is still unclear. This work provides a justification of the origin of chiral N-H signals by analyzing the vibrational frequencies, examining chiral SFG theory, studying proton (hydrogen/deuterium) exchange kinetics, and performing optical control experiments. The results demonstrate that the chiral N-H stretching signals at ~3300 cm(-1) originate from the amide group of the protein backbones. This chiral N-H stretching signal offers an in situ, real-time, and background-free probe for interrogating the protein structures and dynamics at interfaces at the molecular level. © 2014 Wiley Periodicals, Inc.

  8. Collective excitations in liquid dimethyl sulfoxide (DMSO): FIR spectrum, low frequency vibrational density of states, and ultrafast dipolar solvation dynamics

    Science.gov (United States)

    Hazra, Milan K.; Bagchi, Biman

    2017-01-01

    Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through a study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work, we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infrared spectrum obtained through the Fourier transform of total dipole moment auto-time correlation function, (ii) from the Fourier transform of the translational and angular velocity time autocorrelation functions, and (iii) a quenched normal mode analysis of the parent liquid at 300 K. The three spectra, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. The study of participation ratio of the density of states obtained from the normal mode analysis shows that the broad spectrum around 100 cm-1 involves collective oscillations of 300-400 molecules. Dipolar solvation dynamics exhibit ultrafast energy relaxation with an initial time constant around 157 fs which can be attributed to the coupling to the collective excitations. We compare the properties of DMSO with those of water vis-a-vis the existence of the low frequency collective modes. Last, we find that the collective excitation spectrum exhibits strong temperature dependence.

  9. Collective excitations in liquid dimethyl sulfoxide (DMSO): FIR spectrum, low frequency vibrational density of states, and ultrafast dipolar solvation dynamics.

    Science.gov (United States)

    Hazra, Milan K; Bagchi, Biman

    2017-01-14

    Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through a study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work, we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infrared spectrum obtained through the Fourier transform of total dipole moment auto-time correlation function, (ii) from the Fourier transform of the translational and angular velocity time autocorrelation functions, and (iii) a quenched normal mode analysis of the parent liquid at 300 K. The three spectra, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. The study of participation ratio of the density of states obtained from the normal mode analysis shows that the broad spectrum around 100 cm -1 involves collective oscillations of 300-400 molecules. Dipolar solvation dynamics exhibit ultrafast energy relaxation with an initial time constant around 157 fs which can be attributed to the coupling to the collective excitations. We compare the properties of DMSO with those of water vis-a-vis the existence of the low frequency collective modes. Last, we find that the collective excitation spectrum exhibits strong temperature dependence.

  10. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Chao Sun

    2015-01-01

    Full Text Available Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n=6. Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT, PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT, PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve.

  11. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue.

    Science.gov (United States)

    Sun, Chao; Zeng, Ruixia; Cao, Ge; Song, Zhibang; Zhang, Yibo; Liu, Chang

    2015-01-01

    Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT) became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve.

  12. Symptoms of Nervous System Related Disorders Among Workers Exposed to Occupational Noise and Vibration in Korea.

    Science.gov (United States)

    Lee, Seunghyun; Lee, Wanhyung; Roh, Jaehoon; Won, Jong-Uk; Yoon, Jin-Ha

    2017-02-01

    The aim of this study was to determine the relationship between vibration and noise exposure in the workplace and certain nervous system related symptoms (NSRS) among Korean workers. Using data from the fourth Korean Working Conditions Survey, we investigated the influence of vibration and noise with three categories; none, mild, and severe, on sleep disturbance, overall fatigue, and headache/eye strain using logistic regression analysis with stratification by personal protective equipment (PPE) wearing status. Severe noise/vibration exposure was associated in a dose-response fashion with NSRS; the odds ratios (ORs) for sleep disturbance, headache/eyestrain, and overall fatigue were 1.48/1.06, 1.46/1.26, and 1.56/1.28 for severe and mild noise/vibration exposure, respectively, compared with no exposure. Workers who did not wear PPEs were the most affected. Occupational exposures to vibration and noise are associated with NSRS. Additional longitudinal studies and tightened education and safety measures are warranted.

  13. Research of Relation of Samplers Frequency Characteristics

    Directory of Open Access Journals (Sweden)

    Tomaš Tankeliun

    2016-06-01

    Full Text Available This paper proposes an algorithm to reduce limitations in band-width measurements of sampling oscilloscopes then using a swept sine-wave measurement method. The traditional swept sine-wave method allow measure only magnitude response. Phase response can be computed only if a sampler is a minimal phase circuit. In this paper alternative bandwidth measurement algorithm using the nose-to-nose method with measurements corrections for the non-idle properties of oscilloscope is de-scribed. Algorithm includes for noise, time base distortions and jitter in measurement signals corrections methods. Proposed algorithm allows to measure phase and magnitude responses when only two similar oscilloscopes and the source of sync pulse are used. Algorithm performs as well as the swept sine-wave method in case when both samplers have the same frequency characteristics.

  14. The Effects of Vibration Frequencies on Physical, Perceptual and Cognitive Performance

    Science.gov (United States)

    2006-10-01

    l’intégration d’un réseau multicouches de vétronique, dans lequel tous les systèmes pourront être accessibles sur chacun des postes de travail de l’équipe...fournir ainsi un environnement de travail suffisamment stable pour utiliser le réseau de vétronique. Une suspension active absorbe l’énergie dynamique...du sol , l’analyse, puis applique un signal d’énergie équivalent visant à compenser les aspérités du sol , ce qui permet d’amortir les vibrations lors

  15. A frequency-domain multichannel optimal adaptive algorithm for active control of sound and vibration

    Science.gov (United States)

    Shen, Qun

    A frequency-domain multichannel optimal adaptive algorithm has been described in this paper. The domain multichannel optimal adaptive (FOMA) algorithm is an exact implementation of the multichannel optimal block adaptive (MOBA) algorithm in the frequency domain. It therefore converges to the same optimal solution with the same stability characteristics. The time-varying convergence factor was computed efficiently in the frequency domain to minimize a frequency-domain cost function at each step. The FMOA becomes efficient when the filter order is high. Different updating schemes, from block-by-block to sample-by-sample, can also be implemented with the proposed algorithm.

  16. The Influence of Amplitude- and Frequency-Dependent Stiffness of Rail Pads on the Random Vibration of a Vehicle-Track Coupled System

    Directory of Open Access Journals (Sweden)

    Kai Wei

    2016-01-01

    Full Text Available The nonlinear curves between the external static loads of Thermoplastic Polyurethane Elastomer (TPE rail pads and their compressive deformations were measured. A finite element model (FEM for a rail-fastener system was produced to determine the nonlinear compressive deformations of TPE rail pads and their nonlinear static stiffness under the static vehicle weight and the preload of rail fastener. Next, the vertical vehicle-track coupled model was employed to investigate the influence of the amplitude- and frequency-dependent stiffness of TPE rail pads on the vehicle-track random vibration. It is found that the static stiffness of TPE rail pads ranges from 19.1 to 37.9 kN/mm, apparently different from the classical secant stiffness of 26.7 kN/mm. Additionally, compared with the nonlinear amplitude- and frequency-dependent stiffness of rail pads, the classical secant stiffness would not only severely underestimate the random vibration acceleration levels of wheel-track coupled system at frequencies of 65–150 Hz but also alter the dominant frequency-distribution of vehicle wheel and steel rail. Considering that these frequencies of 65–150 Hz are the dominant frequencies of ground vibration accelerations caused by low-speed railway, the nonlinear amplitude- and frequency-dependent stiffness of rail pads should be taken into account in prediction of environment vibrations due to low-speed railway.

  17. Design, Simulation, and Optimization of a Frequency-Tunable Vibration Energy Harvester That Uses a Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Wan Sun

    2015-01-01

    Full Text Available This study focuses on the design, simulation, and load power optimization for the development of a novel frequency-tunable electromagnetic vibrational energy harvester. The unique characteristic of a magnetorheological elastomer (MRE is utilized, that the shear modulus can be varied by changing the strength of an applied magnetic field. The electromagnetic energy harvester is fabricated, the external electric circuit is connected, and the performance is evaluated through a series of experiments. The resonant frequencies and the parasitic damping constant are measured experimentally for different tuning magnet gap distances, which validate the application of the MRE to the development of a frequency-tunable energy harvesting system. The harvested energy of the system is measured by the voltage across the load resistor. The maximum load power is attained by optimizing the external circuit connected to the coil system. The analysis results are presented for harvesting the maximum load power in terms of the coil parameters and external circuit resistance. The optimality of the load resistance is validated by comparing the analytical results with experimental results. The optimal load resistances under various resonance frequencies are also found for the design and composition of the optimal energy harvesting circuit of the energy harvester system.

  18. Radio Frequency Ranging for Swarm Relative Localization

    Science.gov (United States)

    2017-10-01

    Path Loss GPS Global Positioning System ID identification IDE integrated development environment IO input/output ISM industrial, scientific, and...information. This is particularly important in GPS-denied environments where there are limited positioning options. Many applications exist for relative...4 Fig. 3 Atmel sampling rate tests results .......................................................... 6 Fig. 4 Zoomed medium and slow

  19. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal.

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    Full Text Available Low magnitude high frequency vibration (LMHFV has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm, 15min/d, on multipotent stem cells (MSCs, which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.

  20. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    Science.gov (United States)

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  1. A second, low-frequency mode of vibration in the intact mammalian cochlea

    Science.gov (United States)

    Lukashkin, Andrei N.; Russell, Ian J.

    2003-03-01

    The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.

  2. Case study of system effects on high frequency vibration isolation in aircraft structure

    Science.gov (United States)

    Simmons, William E.; Marshall, Steven E.

    In an attempt to improve isolator selection criteria for use in commercial airplanes, a modeling technique was developed. This technique was used to map the vibrational energy transfer from a resiliently mounted electric motor-driven hydraulic pump (or ACMP) to its foundation, a keel beam in the main wheelwell of a large airplane. The system level parameters that strongly influence mount transmissibility were investigated. Using common elastomeric material properties model, predictions were found to compare favorably to measured transmissibility data. The present study discusses the modeling technique and test data comparison, Potential improvements in isolator performance are evaluated. Isolator properties are then identified whch, when combined with transmissibility data, would enhance the isolator selection process.

  3. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  4. The effect of the training with the different combinations of frequency and peak-to-peak vibration displacement of whole-body vibration on the strength of knee flexors and extensors

    Directory of Open Access Journals (Sweden)

    M Stania

    2017-01-01

    Full Text Available Whole-body vibration training has become a popular method used in sports and physiotherapy. The study aimed to evaluate the effect of different vibration frequency and peak-to-peak displacement combinations on men knee flexors and extensors strength in isokinetic conditions. The sample consisted of 49 male subjects randomly allocated to seven comparative groups, six of which exercised on a vibration platform with parameters set individually for the groups. The experimental groups were exposed to vibrations 3 times a week for 4 weeks. The pre- and post- isokinetic strength tests, with the angular velocities of 240°/s and 30°/s, were recorded prior to and 2 days after the training. After 4 weeks of whole-body vibration training, a significant increase was noted regarding the mean values of peak torque, average peak torque and total work for knee flexors at high angular velocity in Groups I (60 Hz/ 4 mm and V (40 Hz/ 2 mm (p<0.05. The mean percentage values of post-training changes to study parameters suggest that the training had the most beneficial effect in Groups I (60 Hz/4 mm and IV (60 Hz/2 mm (p<0.05. Whole-body vibrations during static exercise beneficially affected knee flexor strength profile in young men at high angular velocity. The combinations of 60 Hz/4 mm seem to have the most advantageous effects on muscle strength parameters.

  5. Topology Optimization of Distributed Mass Dampers for Low-frequency Vibration Suppression

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Lazarov, Boyan Stefanov

    2007-01-01

    In this paper the method of topology optimization is used to find optimized parameter distributions for a multiple mass damper system with the purpose of minimizing the low-frequency steady-state response of a carrier structure. An effective density model that describes the steady-state effect...... of the dampers is derived based on a continuous approximation of the damper distribution. The dampers are optimized with respect to the point-wise distribution of mass ratio, natural frequency, and damping ratio....

  6. A Practical Method to Increase the Frequency Readability for Vibration Signals

    Directory of Open Access Journals (Sweden)

    Jean Loius Ntakpe

    2016-10-01

    Full Text Available Damage detection and nondestructive evaluation of mechanical and civil engineering structures are nowadays very important to assess the integrity and ensure the reliability of structures. Thus, frequency evaluation becomes a crucial issue, since this modal parameter is mainly used in structural integrity assessment. The herein presented study highligts the possibility of increasing the frequency readability by involving a simple and cost-effective method.

  7. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2016-01-01

    Full Text Available This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH. It consists of a piezoelectric energy harvester (PEH and an electromagnetic energy harvester (EMEH, which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios on the output power were investigated. A prototype was fabricated and characterized by experiments. The measured first peak power increases by 16.7% and 833.3% compared with that of the multi-frequency EMEH and the multi-frequency PEH, respectively. It is 2.36 times more than the combined output power of the linear PEH and linear EMEH at 22.6 Hz. The half-power bandwidth for the first peak power is also broadened. Numerical results agree well with the experimental data. It is indicated that magnetic interaction can tune the resonant frequencies. Both magnetic coupling configuration and hybrid conversion mechanism contribute to enhancing the output power and widening the operation bandwidth. The magnitude and direction of magnetic force have significant effects on the performance of the HEH. This proposed HEH is an effective approach to improve the generating performance of the micro-scale energy harvesting devices in low-frequency range.

  8. A low frequency assignment for infrared and Raman spectra of (-)-isobornyl acetate using related compounds and deuterated derivatives

    Science.gov (United States)

    Kim, S. B.; Hammaker, R. M.; Fateley, W. G.

    Nineteen fundamentals of (-)-isobornyl acetate and seven deuterium substituted modifications (2- d1;3,3- d2;2,3,3- d3; acetate- d3; 2- d1, acetate- d3; 3,3- d2 acetate- d3; 2,3,3- d3 acetate- d3) have been assigned between 200 and 900 cm -1. These fundamentals are: skeletal vibrations of the quaternary carbons, ring breathing and bending vibrations, and vibrations of the acetate group. Key model compounds used in this analysis are norbornane, neopentane, methyl acetate and cyclopentanol. A series of related compounds (norbornane, bornane, exo-norbornyl acetate, 1-methyl-exo-norbornyl acetate, apoisobornyl acetate and (-)-isobornyl acetate) is used to identify frequencies associated with the quaternary carbon and the acetate group. Raman spectra are more useful for the quaternary carbon frequencies and i.r. spectra are more useful for acetate group frequencies. Quaternary carbon skeletal stretching frequencies and ring breathing frequencies are responsible for prominent Raman bands between 580 and 670 cm -1 and between 780 and 940 cm -1, respectively.

  9. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Science.gov (United States)

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

    Science.gov (United States)

    Lee, Norman; Schrode, Katrina M.; Johns, Anastasia R.; Christensen-Dalsgaard, Jakob; Bee, Mark A.

    2014-01-01

    Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs. PMID:24504183

  11. Investigation of polyvinylidene fluoride (PVDF) films in identifying high-frequency vibration modes of flexible plates.

    Science.gov (United States)

    Chuang, Kuo-Chih; Liou, Hong-Cin; Ma, Chien-Ching

    2014-06-01

    Compared with piezoelectric ceramics such as lead zirconate titanate (PZT) ceramics, the low density and high compliance of the PVDF films make them a more suitable choice in modal testing, especially for detecting high-frequency modes in flexible or inflatable structures. In this work, dynamic sensing performances of PVDF films for flexible structures in modal testing are examined, with considerations including the repeatability of the impact source, the accuracy of the sensing responses, and the influences of the nodal lines on the frequency spectra of the transient responses. Two flexible plates with different boundary conditions and thickness are considered. Experimental results, compared with FEM computations or theoretical predictions, demonstrate the excellent dynamic sensing performance of the PVDF film in modal testing applications, especially for identification of high-frequency modes on flexible structures.

  12. Non-Gaussian statistics of amide I mode frequency fluctuation of N-methylacetamide in methanol solution: Linear and nonlinear vibrational spectra

    Science.gov (United States)

    Kwac, Kijeong; Lee, Hochan; Cho, Minhaeng

    2004-01-01

    By carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in methanol solution, the amide I mode frequency fluctuation and hydrogen bonding dynamics were theoretically investigated. Combining an extrapolation formula developed from systematic ab initio calculation studies of NMA-(CH3OH)n clusters with a classical molecular dynamics simulation method, we were able to quantitatively describe the solvatochromic vibrational frequency shift induced by the hydrogen-bonding interaction between NMA and solvent methanol. It was found that the fluctuating amide I mode frequency distribution is notably non-Gaussian and it can be decomposed into two Gaussian peaks that are associated with two distinctively different solvation structures. The ensemble-average-calculated linear response function associated with the IR absorption is found to be oscillating, which is in turn related to the doublet amide I band shape. Numerically calculated infrared absorption spectra are directly compared with experiment and the agreement was found to be excellent. By using the Onsager's regression hypothesis, the rate constants of the interconversion process between the two solvation structures were obtained. Then, the nonlinear response functions associated with two-dimensional infrared pump-probe spectroscopy were simulated. The physics behind the two-dimensional line shape and origin of the cross peaks in the time-resolved pump-probe spectra is explained and the result is compared with 2D spectra experimentally measured recently by Woutersen et al. [S. Woutersen, Y. Mu, G. Stock, and P. Hamm, Chem. Phys. 266, 137 (2001)].

  13. Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1.

    Science.gov (United States)

    Zorn, Reiner; Yin, Huajie; Lohstroh, Wiebke; Harrison, Wayne; Budd, Peter M; Pauw, Brian R; Böhning, Martin; Schönhals, Andreas

    2018-01-17

    Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering.

  14. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Linear- and nonlinear-electromyographic analysis of supracutaneous vibration stimuli of the forearm using diverse frequencies and considering skin physiological properties.

    Science.gov (United States)

    Ko, Chang-Yong; Chang, Yunhee; Kim, Sol-Bi; Kim, Shinki; Kim, Gyoosuk; Ryu, Jeicheong; Mun, Musung

    2014-01-01

    Numerous studies have reported the efficacy of vibration in sensory feedback or substitution devices for users of myoelectric hand prostheses. Although most myoelectric hand prostheses are presently manipulated by a surface electromyogram (sEMG), only a few studies have been conducted on the effect of vibration on an sEMG. This study aimed to determine whether vibration stimulation affects the linear and nonlinear properties of surface electromyography (sEMG) considering the skin properties. The vibration stimuli, with frequencies ranging from 37 to 258 Hz, were applied to the proximal part of the arms of the eight female and seven male subjects. The skinfold thickness, hardness, and vibration threshold at the stimuli loci were measured. The root mean square (rms) and fractal dimension (DF) of the sEMG were measured at a distance of 1 cm in the upward direction from the stimuli loci. Above 223 Hz there were no differences between the rms of the genders in between the vibration stimuli (p > 0.05). Moreover, no differences were observed between the DF of the genders for any frequency (p > 0.05). Above 149 Hz, there were correlations between the rms and the skin hardness in the females. Otherwise, no correlations were observed between the rms and DF and the skin properties in both genders for most of the frequencies (all p > 0.05). These results suggest that vibration stimuli affect the linear properties of the sEMG, but not the nonlinear properties.

  16. Vibration isolation performance of an ultra-low frequency folded pendulum resonator

    Science.gov (United States)

    Liu, Jiangfeng; Ju, Li; Blair, David G.

    1997-02-01

    We present an analysis of the transfer function of a very low frequency folded pendulum resonator. It is shown that performance depends critically on centre of percussion tuning of the pendulum arms. Experimental measurements of the transfer function are shown to agree well with theory. The isolator achieves 90 dB isolation at 7 Hz.

  17. Design and fabrication of a PZT cantilever for low frequency vibration energy harvesting.

    Science.gov (United States)

    Kim, Moonkeun; Hwang, Beomseok; Min, Nam Ki; Jeong, Jaehwa; Kwon, Kwang-Ho; Park, Kang-Bak

    2011-07-01

    In this study, a PZT cantilever with a Si proof mass is designed and fabricated for a low frequency energy harvesting application. A mathematical model of a multi-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. Our cantilever design was based on MATLAB and ANSYS simulations. For this simulation, the proof mass volumes were varied from 0 to 0.5 mm3 and resonant frequencies were calculated from 833.5 Hz to 125.5 Hz, respectively. Based on simulation, we fabricated a device with beam dimensions of about 4.10 mm x 0.48 mm x 0.012 mm, and an integrated Si proof mass with dimensions of about 0.481 mm x 0.48 mm x 0.45 mm. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 224.8 Hz, 4.8 mV, and 2.24 nW, respectively.

  18. Vibrational power flow and structural intensity: Measurements and limitations at low frequencies

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    1991-01-01

    The cross-spectral methods and their sensitivity to phase errors are investigated for the two and four-accelerometer arrays. From experiments on a beam structure it is attempted to verify the influence of phase errors and to determine the usable frequency ranges of the two methods. Measurements a...

  19. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear...

  20. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  1. Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.

    Science.gov (United States)

    Yang, Feng; Munoz, Jose; Han, Long-Zhu; Yang, Fei

    2017-05-24

    This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Search for the Variation in (mp/me) Using Two Vibrational Transition Frequencies of Molecular Ions

    Science.gov (United States)

    Kajita, Masatoshi

    2017-12-01

    We propose a method to search for the variation in the proton-to-electron mass ratio μ = (mp/me) based on the precise measurement of Q(v') = [f(v') - f(2v')/2]/f(v'), where f(v') is the 16O2+ X2Π 1/2(v,J) = (0,1/2) \\to (v',1/2) transition frequency. Q(v') is proportional to μ-1/2, and it can be measured with an uncertainty of 10-18. This method is also applicable to other molecular transition frequencies (i) J = 0 → 0 or 1/2 → 1/2 transition, (ii) transition between stretched states, and (iii) the same sign for the light shift induced by the clock lasers in f(v') and f(2v').

  3. Density functional theory for prediction of far-infrared vibrational frequencies: molecular crystals of astrophysical interest

    Science.gov (United States)

    Ennis, C.; Auchettl, R.; Appadoo, D. R. T.; Robertson, E. G.

    2017-11-01

    Solid-state density functional theory code has been implemented for the structure optimization of crystalline methanol, acetaldehyde and acetic acid and for the calculation of infrared frequencies. The results are compared to thin film spectra obtained from low-temperature experiments performed at the Australian Synchrotron. Harmonic frequency calculations of the internal modes calculated at the B3LYP-D3/m-6-311G(d) level shows higher deviation from infrared experiment than more advanced theory applied to the gas phase. Importantly for the solid-state, the simulation of low-frequency molecular lattice modes closely resembles the observed far-infrared features after application of a 0.92 scaling factor. This allowed experimental peaks to be assigned to specific translation and libration modes, including acetaldehyde and acetic acid lattice features for the first time. These frequency calculations have been performed without the need for supercomputing resources that are required for large molecular clusters using comparable levels of theory. This new theoretical approach will find use for the rapid characterization of intermolecular interactions and bonding in crystals, and the assignment of far-infrared spectra for crystalline samples such as pharmaceuticals and molecular ices. One interesting application may be for the detection of species of prebiotic interest on the surfaces of Kuiper-Belt and Trans-Neptunian Objects. At such locations, the three small organic molecules studied here could reside in their crystalline phase. The far-infrared spectra for their low-temperature solid phases are collected under planetary conditions, allowing us to compile and assign their most intense spectral features to assist future far-infrared surveys of icy Solar system surfaces.

  4. Benchmark Structures and Harmonic Vibrational Frequencies Near the CCSD(T) Complete Basis Set Limit for Small Water Clusters: (H2O)n = 2, 3, 4, 5, 6.

    Science.gov (United States)

    Howard, J Coleman; Tschumper, Gregory S

    2015-05-12

    A series of (H2O)n clusters ranging from the dimer to the hexamer have been characterized with the CCSD(T) and the 2-body:Many-body CCSD(T):MP2 methods near the complete basis set (CBS) limit to generate benchmark-quality optimized structures and harmonic vibrational frequencies for these important systems. Quadruple-ζ correlation-consistent basis sets that augment the O atoms with diffuse functions have been employed in the analytic computation of harmonic vibrational frequencies for the global minima of the dimer, trimer, tetramer, and pentamer as well as the ring, book, cage, and prism isomers of the hexamer. Prior calibration [J. Chem. Phys. 2013, 139, 184113 and J. Chem. Theory Comput. 2014, 10, 5426] suggests that harmonic frequencies computed with this approach will lie within a few cm(-1) of the canonical CCSD(T) CBS limit. These data are used as reference values to gauge the performance of harmonic frequencies obtained with other ab initio methods (e.g., LCCSD(T) and MP2) and water potentials (e.g., TTM3-F and WHBB). This comparison reveals that it is far more challenging to converge harmonic vibrational frequencies for the bound OH stretching modes in these (H2O)n clusters to the CCSD(T) CBS limit than the free OH stretches, the n intramonomer HOH bending modes and even the 6n - 6 intermonomer modes. Deviations associated with the bound OH stretching harmonic frequencies increase rapidly with the size of the cluster for all methods and potentials examined, as do the corresponding frequency shifts relative to the monomer OH stretches.

  5. Atomization off thin water films generated by high-frequency substrate wave vibrations

    Science.gov (United States)

    Collins, David J.; Manor, Ofer; Winkler, Andreas; Schmidt, Hagen; Friend, James R.; Yeo, Leslie Y.

    2012-11-01

    Generating aerosol droplets via the atomization of thin aqueous films with high frequency surface acoustic waves (SAWs) offers several advantages over existing nebulization methods, particularly for pulmonary drug delivery, offering droplet sizes in the 1-5-μm range ideal for effective pulmonary therapy. Nevertheless, the physics underlying SAW atomization is not well understood, especially in the context of thin liquid film formation and spreading and how this affects the aerosol production. Here, we demonstrate that the film geometry, governed primarily by the applied power and frequency of the SAW, indeed plays a crucial role in the atomization process and, in particular, the size of the atomized droplets. In contrast to the continuous spreading of low surface energy liquids atop similar platforms, high surface energy liquids such as water, in the present case, are found to undergo transient spreading due to the SAW to form a quasisteady film whose height is determined by self-selection of the energy minimum state associated with the acoustic resonance in the film and whose length arises from a competition between acoustic streaming and capillary effects. This is elucidated from a fundamental model for the thin film spreading behavior under SAW excitation, from which we show good agreement between the experimentally measured and theoretically predicted droplet dimension, both of which consistently indicate a linear relationship between the droplet diameter and the mechanical power coupled into the liquid by the SAW (the latter captured by an acoustic Weber number to the two thirds power, and the reciprocal of the SAW frequency).

  6. The transversal creeping vibrations of a fractional derivative order constitutive relation of nonhomogeneous beam

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We considered the problem on transversal oscillations of two-layer straight bar, which is under the action of the lengthwise random forces. It is assumed that the layers of the bar were made of nonhomogenous continuously creeping material and the corresponding modulus of elasticity and creeping fractional order derivative of constitutive relation of each layer are continuous functions of the length coordinate and thickness coordinates. Partial fractional differential equation and particular solutions for the case of natural vibrations of the beam of creeping material of a fractional derivative order constitutive relation in the case of the influence of rotation inertia are derived. For the case of natural creeping vibrations, eigenfunction and time function, for different examples of boundary conditions, are determined. By using the derived partial fractional differential equation of the beam vibrations, the almost sure stochastic stability of the beam dynamic shapes, corresponding to the n th shape of the beam elastic form, forced by a bounded axially noise excitation, is investigated. By the use of S. T. Ariaratnam's idea, as well as of the averaging method, the top Lyapunov exponent is evaluated asymptotically when the intensity of excitation process is small.

  7. Calculated vibrational frequencies for FeMo-co, the active site of nitrogenase, bearing hydrogen atoms and carbon monoxide.

    Science.gov (United States)

    Dance, Ian

    2011-06-28

    The intramolecular hydrogenation paradigm for the reducing actions of the enzyme nitrogenase postulates that the iron-molybdenum cofactor (FeMo-co, Fe(7)MoS(9)N(homocitrate)) as active site contains H atoms bound to Fe and S during the catalytic cycle, and that these H atoms are the reducing agents. The reduction of N(2) and of all other non-physiological substrates is strongly inhibited by carbon monoxide, except for the formation of H(2) from protons. It has been recently reported that vanadium nitrogenase and modified molybdenum nitrogenase reduce CO to hydrocarbons. Therefore many questions now arise about relationships between CO and H on the nitrogenase cofactors. In order to assist the interpretation of kinetic infrared spectral data, vibrational frequencies and modes have been calculated for a variety of possible structures in which FeMo-co bears H atoms, or CO ligands, or both. Fe-H stretching frequencies occur in the same spectral window as the C-O stretching frequencies, with lesser intensity, and both stretches are strongly coupled in some structures. Symmetrical bridging of CO between two Fe atoms of FeMo-co is destabilised by the presence of other ligands on Fe, and the reason for this is evident. Two results for bound formyl, HCO, are reported. These calculations of reference structures allow some interpretation of existing experimental spectra, but, more significantly, they suggest further kinetic infrared experiments to elucidate the chemical mechanism of catalysis by nitrogenase under normal turnover conditions. This journal is © The Royal Society of Chemistry 2011

  8. Stochastic resonance energy harvesting for a rotating shaft subject to random and periodic vibrations: influence of potential function asymmetry and frequency sweep

    Science.gov (United States)

    Kim, Hongjip; Che Tai, Wei; Zhou, Shengxi; Zuo, Lei

    2017-11-01

    Stochastic resonance is referred to as a physical phenomenon that is manifest in nonlinear systems whereby a weak periodic signal can be significantly amplified with the aid of inherent noise or vice versa. In this paper, stochastic resonance is considered to harvest energy from two typical vibrations in rotating shafts: random whirl vibration and periodic stick-slip vibration. Stick-slip vibrations impose a constant offset in centrifugal force and distort the potential function of the harvester, leading to potential function asymmetry. A numerical analysis based on a finite element method was conducted to investigate stochastic resonance with potential function asymmetry. Simulation results revealed that a harvester with symmetric potential function generates seven times higher power than that with asymmetric potential function. Furthermore, a frequency-sweep analysis also showed that stochastic resonance has hysteretic behavior, resulting in frequency difference between up-sweep and down-sweep excitations. An electromagnetic energy harvesting system was constructed to experimentally verify the numerical analysis. In contrast to traditional stochastic resonance harvesters, the proposed harvester uses magnetic force to compensate the offset in the centrifugal force. System identification was performed to obtain the parameters needed in the numerical analysis. With the identified parameters, the numerical simulations showed good agreement with the experiment results with around 10% error, which verified the effect of potential function asymmetry and frequency sweep excitation condition on stochastic resonance. Finally, attributed to compensating the centrifugal force offset, the proposed harvester generated nearly three times more open-circuit output voltage than its traditional counterpart.

  9. Influence of surface micro-beams with large deflection on the resonance frequency of a quartz crystal resonator in thickness-shear mode vibrations

    Directory of Open Access Journals (Sweden)

    Chi Luo

    2017-03-01

    Full Text Available We study the dynamic behavior of a quartz crystal resonator (QCR in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left translation for increasing elastic modulus (length/radius ratio of MBs. Moreover, the frequency right (left translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one.

  10. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  11. Analysis of algorithms for detection of resonance frequencies in vibration measurements on super heater tubes; Analys av algoritmer foer detektering av resonansfrekvenser i vibrationsmaetningar paa oeverhettartuber

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    2010-07-01

    Combustion of fuel in thermal power plants emits particles which creates coatings on the super heater tubes. The coatings isolate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running but without any knowledge of the actual coating. A change in frequency corresponds to a change in mass of the coatings. This thesis has been focusing in estimating resonance frequencies in vibration measurements made by strain gauges on the tubes. To improve the estimations a target tracking algorithm had been added. The results indicates that it is possible to estimate the resonance frequencies but the algorithms need to be verified on more signals.

  12. Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift

    Science.gov (United States)

    Zhong, Shuncong; Zhong, Jianfeng; Zhang, Qiukun; Maia, Nuno

    2017-09-01

    A novel quasi-optical coherence vibration tomography (Quasi-OCVT) measurement system suitable for structural damage detection is proposed by taking the concept of two-dimensional optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP) similar to the interferogram of 2D-OCVT system, as a sensor, was pasted on the surface of a vibrating structure. Image sequences of QIFP were captured by a high-speed camera that worked as a detector. The period density of the imaged QIFP changed due to the structural vibration, from which the vibration information of the structure could be obtained. Noise influence on the measurement accuracy, torsional sensitivity and optical distortion effect of the Quasi-OCVT system were investigated. The efficiency and reliability of the proposed method were demonstrated by applying the system to damage detection of a cracked beam-like structure with a roving auxiliary mass. The roving of the mass along the cracked beam brings about the change of natural frequencies that could be obtained by the Quasi-OCVT technique. Therefore, frequency-shift curves can be achieved and these curves provide additional spatial information for structural damage detection. Same cases were also analyzed by the finite element method (FEM) and conventional accelerometer-based measurement method. Comparisons were carried out among these results. Results obtained by the proposed Quasi-OCVT method had a good agreement with the ones obtained by FEM, from which the damage could be directly detected. However, the results obtained by conventional accelerometer showed misleading ambiguous peaks at damage position owing to the mass effect on the structure, where the damage location cannot be identified confidently without further confirmation. The good performance of the cost-effective Quasi-OCVT method makes it attractive for vibration measurement and damage detection of beam-like structures.

  13. Experimental Investigation of the Effect of Radial Gap and Impeller Blade Exit on Flow-Induced Vibration at the Blade-Passing Frequency in a Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    A. Al-Qutub

    2009-01-01

    Full Text Available It has been recognized that the pressure pulsation excited by rotor-stator interaction in large pumps is strongly influenced by the radial gap between impeller and volute diffusers/tongues and the geometry of impeller blade at exit. This fluid-structure interaction phenomenon, as manifested by the pressure pulsation, is the main cause of flow-induced vibrations at the blade-passing frequency. In the present investigation, the effects of the radial gap and flow rate on pressure fluctuations, vibration, and pump performance are investigated experimentally for two different impeller designs. One impeller has a V-shaped cut at the blade's exit, while the second has a straight exit (without the V-cut. The experimental findings showed that the high vibrations at the blade-passing frequency are primarily raised by high pressure pulsation due to improper gap design. The existence of V-cut at blades exit produces lower pressure fluctuations inside the pump while maintaining nearly the same performance. The selection of proper radial gap for a given impeller-volute combination results in an appreciable reduction in vibration levels.

  14. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  15. Experiments on Suppression of Thermocapillary Oscillations in Sodium Nitrate Floating Half-Zones by High-frequency End-wall Vibrations

    Science.gov (United States)

    Anilkumar, A.; Grugel, R. N.; Bhowmick, J.; Wang, T.

    2004-01-01

    Experiments to suppress thermocapillary oscillations using high-frequency vibrations were carried out in sodium nitrate floating half-zones. Such a half-zone is formed by melting one end of a vertically held sodium nitrate crystal rod in contact with a hot surface at the top. Thermocapillary convection occurs in the melt because of the temperature gradient at the free surface of the melt. In the experiments, when thermocapillary oscillations occurred, the bottom end of the crystal rod was vibrated at a high frequency to generate a streaming flow in a direction opposite to that of the thermocapillary convection. It is observed that, by generating a sufficiently strong streaming flow, the thermocapillary flow can be offset enough such that the associated thermocapillary oscillations can be quenched.

  16. The Role of Symmetric-Stretch Vibration in Asymmetric-Stretch Vibrational Frequency Shift: the Case of 2CH Excitation Infrared Spectra of Acetylene-Hydrogen Van Der Waals Complex

    Science.gov (United States)

    Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Zhai, Yu; Li, Hui

    2016-06-01

    Direct infrared spectra predictions for van der Waals (vdW) complexes rely on accurate intra-molecular vibrationally excited inter-molecular potential. Due to computational cost increasing with number of freedom, constructing an effective reduced-dimension potential energy surface, which only includes direct relevant intra- molecular modes, is the most feasible way and widely used in the recent potential studies. However, because of strong intra-molecular vibrational coupling, some indirect relevant modes are also play important roles in simulating infrared spectra of vdW complexes. The questions are how many intra-molecular modes are needed, and which modes are most important in determining the effective potential and direct infrared spectra simulations. Here, we explore these issues using a simple, flexible and efficient vibration-averaged approach, and apply the method to vdW complex C_2H_2-H_2. With initial examination of the intra-molecular vibrational coupling, an effective seven-dimensional ab initio potential energy surface(PES) for C_2H_2-H_2, which explicitly takes into account the Q_1,Q_2 symmetric-stretch and Q_3 asymmetric-stretch normal modes of the C_2H_2 monomer, has been generated. Analytic four-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies for νb{3}(C_2H_2)=0 and 1 to the Morse/long-range(MLR) potential function form. We provide the first prediction of the infrared spectra and band origin shifts for C_2H_2-H_2 dimer. We particularly examine the dependence of the symmetric-stretch normal mode on asymmetric-stretch frequency shift for the complex.

  17. Doppler frequency in interplanetary radar and general relativity

    Science.gov (United States)

    Mcvittie, G. C.

    1972-01-01

    The change of frequency of an interplanetary radar signal sent from the earth to another planet or to a space probe is worked out according to general relativity. The Schwarzschild spacetime is employed and its null geodesics control the motion of the signals. Exact Doppler frequency formulas are derived for one-way and two-way radar in terms of an arbitrary Schwarzschild radial coordinate. A reduction to the special relativity case is used to interpret the formulas in terms of the relative radial velocity of emitter and target. The general relativity corrections are worked out approximately for each of three possible Schwarzschild radial coordinates, and a numerical example is given. The amount of the correction is different according as one or the other of the Schwarzschild coordinates is identified with the radius vector deduced from classical celestial mechanics. The identification problem is discussed.

  18. Vibrational sum frequency spectroscopy studies at solid/liquid interfaces : Influence of the experimental geometry in the spectral shape and enhancement

    OpenAIRE

    Liljeblad, Jonathan F.D.; Tyrode, Eric

    2012-01-01

    The influence of the experimental geometry, specifically the angles of incidence (AOI) of the exciting beams, on the enhancement of the vibrational sum frequency spectroscopy (VSFS) spectra has been systematically investigated, particularly when approaching total internal reflection (TIR) conditions. Theoretical simulations of the spectral intensity as a function of the AOI and infrared wavelength at three different polarization combinations were critically compared to experimental data obtai...

  19. Relative vibrational overtone intensity of cis-cis and trans-perp peroxynitrous acid

    Science.gov (United States)

    Matthews, Jamie; Sinha, Amitabha; Francisco, Joseph S.

    2004-06-01

    The vibrational overtone spectrum of HOONO is examined in the region of the 2νOH and 3νOH bands using action spectroscopy in conjunction with ab initio intensity calculations. The present measurements indicate that the oscillator strength associated with the higher energy trans-perp conformer of HOONO is stronger relative to the lower energy cis-cis conformer for both these vibrational overtone levels. Ab initio intensity calculations carried out at the QCISD level of theory suggest that this disparity in oscillator strength apparently arises from differences in the second derivative of the transition dipole moment function of the two isomers. The calculations indicate that the oscillator strength for the trans-perp isomer is ˜5.4 times larger than that of the cis-cis isomer for the 2νOH band and ˜2 times larger for 3νOH band. The band positions and intensities predicted by the calculations are used to aid in the assignment of features in the experimental action spectra associated with the OH stretching overtones of HOONO. The observed relative intensities in the experimental action spectra when normalized to the calculated oscillator strengths appears to suggest that the concentration of the higher energy trans-perp isomer is comparable to the concentration of the cis-cis isomer in these room temperature experiments.

  20. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  1. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kweskin, Sasha Joseph [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  2. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  3. Relating new graduate nurse competence to frequency of use.

    Science.gov (United States)

    Hengstberger-Sims, Cecily; Cowin, Leanne S; Eagar, Sandy C; Gregory, Linda; Andrew, Sharon; Rolley, John

    2008-01-01

    The healthcare workplace can be a stress-laden environment for new graduates and job performance indicators are an important sign of developing confidence and expertise that will lead to improved patient outcomes. What is not evident from nursing studies is whether new graduate nurse competencies relate to the frequency of their use. This study sought to determine the relationship between perceived nursing competence and self-assessed frequency of use by new graduate nurses. Three cohorts (n = 116) of new graduate nurses undertaking year-long transition to graduate practice programs responded to a questionnaire that utilised the 2001 ANCI competencies and the Nurse Competency Scale and a Visual Analogue scale to self assess their perceived competence and the relative frequency of use for specific competence items. Results indicate that a relationship exists between perceived competence and frequency of use and that research competency scores are substantially lower than all other categories of competency. Implications for education and practice indicate that assessment of nurse competency for the new graduate nurse should focus on the development of generic nursing competencies rather than current expectation of advanced and workplace specific nurse competencies.

  4. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  5. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    Science.gov (United States)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  6. Dynamic stiffness of chemically and physically ageing rubber vibration isolators in the audible frequency range. Part 1: constitutive equations

    Science.gov (United States)

    Kari, Leif

    2017-09-01

    The constitutive equations of chemically and physically ageing rubber in the audible frequency range are modelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The constitutive equations are derived by assuming nearly incompressible material with elastic spherical response and viscoelastic deviatoric response, using Mittag-Leffler relaxation function of fractional derivative type, the main advantage being the minimum material parameters needed to successfully fit experimental data over a broad frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple while using a modified William-Landel-Ferry shift function to take into account temperature dependence and physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation with relaxation time identical to that of the stress response and related to the fractional free volume by Doolittle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of natural rubber over a broad audible frequency range, and various parameter studies are performed including comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

  7. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  8. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue

    OpenAIRE

    Chao Sun; Ruixia Zeng; Ge Cao; Zhibang Song; Yibo Zhang; Chang Liu

    2015-01-01

    Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibrat...

  9. Absolute configuration of podophyllotoxin related lignans from Bursera fagaroides using vibrational circular dichroism.

    Science.gov (United States)

    Velázquez-Jiménez, René; Torres-Valencia, J Martín; Cerda-García-Rojas, Carlos M; Hernández-Hernández, Juan D; Román-Marín, Luisa U; Manríquez-Torres, J Jesús; Gómez-Hurtado, Mario A; Valdez-Calderón, Alejandro; Motilva, Virginia; García-Mauriño, Sofía; Talero, Elena; Avila, Javier; Joseph-Nathan, Pedro

    2011-12-01

    The ethanol extract from the dried exudate of Bursera fagaroides (Burseraceae) showed significant cytotoxic activity in the HT-29 (human colon adenocarcinoma) test system. The extract provided four podophyllotoxin related lignans, identified as (7'R,8R,8'R)-(-)-deoxypodophyllotoxin (3), (7'R,8R,8'R)-(-)-morelensin (4), (8R,8'R)-(-)-yatein (5), and (8R,8'R)-(-)-5'-desmethoxyyatein (6), whose spectroscopic and chiroptical properties were compared with those of (7R,7'R,8R,8'R)-(-)-podophyllotoxin (1) and its acetyl derivative (2). Their absolute configurations were assigned by comparison of the vibrational circular dichroism spectra of 1 and 3 with those obtained by density functional theory calculations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Vibrational spectrum of Ar3+ and relative importance of linear and perpendicular isomers in its photodissociation

    Science.gov (United States)

    Karlický, František; Lepetit, Bruno; Kalus, René; Gadéa, Florent Xavier

    2011-02-01

    The photodissociation dynamics of the argon ionized trimer Ar_3^+ is revisited in the light of recent experimental results of Lepère et al. [J. Chem. Phys. 134, 194301 (2009)], which show that the fragment with little kinetic energy is always a neutral one, thus the available energy is shared by a neutral and ionic fragments as in Ar_2^+. We show that these results can be interpreted as the photodissociation of the linear isomer of the system. We perform a 3D quantum computation of the vibrational spectrum of the system and study the relative populations of the linear (trimer-core) and perpendicular (dimer-core) isomers. We then show that the charge initially located on the central atom in the ground electronic state of the linear isomer migrates toward the extreme ones in the photoexcitation process such that photodissociation of the linear isomer produces a neutral central atom at rest in agreement with measured product state distributions.

  11. Vibrational spectrum of Ar3(+) and relative importance of linear and perpendicular isomers in its photodissociation.

    Science.gov (United States)

    Karlický, Frantisek; Lepetit, Bruno; Kalus, René; Gadéa, Florent Xavier

    2011-02-28

    The photodissociation dynamics of the argon ionized trimer Ar(3)(+) is revisited in the light of recent experimental results of Lepère et al. [J. Chem. Phys. 134, 194301 (2009)], which show that the fragment with little kinetic energy is always a neutral one, thus the available energy is shared by a neutral and ionic fragments as in Ar(2)(+). We show that these results can be interpreted as the photodissociation of the linear isomer of the system. We perform a 3D quantum computation of the vibrational spectrum of the system and study the relative populations of the linear (trimer-core) and perpendicular (dimer-core) isomers. We then show that the charge initially located on the central atom in the ground electronic state of the linear isomer migrates toward the extreme ones in the photoexcitation process such that photodissociation of the linear isomer produces a neutral central atom at rest in agreement with measured product state distributions.

  12. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya

    2010-11-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  14. An oxorhenium complex bearing a chiral cyclohexane-1-olato-2-thiolato ligand: Synthesis, stereochemistry, and theoretical study of parity violation vibrational frequency shifts.

    Science.gov (United States)

    Saleh, Nidal; Bast, Radovan; Vanthuyne, Nicolas; Roussel, Christian; Saue, Trond; Darquié, Benoît; Crassous, Jeanne

    2017-11-15

    In our effort towards measuring the parity violation energy difference between two enantiomers, a simple chiral oxorhenium complex 5 bearing enantiopure 2-mercaptocyclohexan-1-ol has been prepared as a potential candidate species. Vibrational circular dichroism revealed a chiral environment surrounding the rhenium atom, even though the rhenium is not a stereogenic center itself, and enabled to assign the (1S,2S)-(-) and (1R,2R)-(+) absolute configuration for 5. For both compound 5 and complex 4, previously studied by us and bearing a propane-2-olato-3-thiolato ligand, relativistic calculations predict parity violating vibrational frequency differences of a few hundreds of millihertz, above the expected sensitivity attainable by a molecular beam Ramsey interferometer that we are constructing. © 2017 Wiley Periodicals, Inc.

  15. The frequency and severity of metabolic acidosis related to topiramate.

    Science.gov (United States)

    Türe, Hatice; Keskin, Özgül; Çakır, Ülkem; Aykut Bingöl, Canan; Türe, Uğur

    2016-12-01

    Objective We planned a cross-sectional analysis to determine the frequency and severity of metabolic acidosis in patients taking topiramate while awaiting craniotomy. Methods Eighty patients (18 - 65 years) taking topiramate to control seizures while awaiting elective craniotomy were enrolled. Any signs of metabolic acidosis or topiramate-related side effects were investigated. Blood chemistry levels and arterial blood gases, including lactate, were obtained. The severity of metabolic acidosis was defined according to base excess levels as mild or moderate. Results Blood gas analysis showed that 71% ( n = 57) of patients had metabolic acidosis. The frequency of moderate metabolic acidosis was 56% ( n = 45), while that of mild metabolic acidosis was 15% ( n = 12). A high respiratory rate was reported in only 10% of moderately acidotic patients. Conclusions In patients receiving topiramate, baseline blood gas analysis should be performed preoperatively to determine the presence and severity of metabolic acidosis.

  16. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  17. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  18. Droplet impact on vibrating superhydrophobic surfaces

    Science.gov (United States)

    Weisensee, Patricia B.; Ma, Jingcheng; Shin, Young Hwan; Tian, Junjiao; Chang, Yujin; King, William P.; Miljkovic, Nenad

    2017-10-01

    Many unanswered questions remain pertaining to droplet dynamics during impact on vibrating surfaces. Using optical high-speed imaging, we investigate the impact dynamics of macroscopic water droplets (≈2.5 mm ) on rigid and elastic superhydrophobic surfaces vibrating at 60-320 Hz and amplitudes of 0.2-2.7 mm. Specifically, we study the influence of the frequency, amplitude, rigidity, and substrate phase at the moment of impact on the contact time of impacting droplets. We show that a critical impact phase exists at which the contact time transitions from a minimum to a maximum greater than the theoretical contact time on a rigid, nonvibrating superhydrophobic surface. For impact at phases higher than the critical phase, contact times decrease until reaching a minimum of half the theoretical contact time just before the critical phase. The frequency of oscillation determines the phase-dependent variability of droplet contact times at different impact phases: higher frequencies (> 120 Hz) show less contact time variability and have overall shorter contact times compared to lower frequencies (60-120 Hz). The amplitude of vibration has little direct effect on the contact time. Through semiempirical modeling and comparison to experiments, we show that phase-averaged contact times can increase or decrease relative to a nonvibrating substrate for low (100 Hz ) vibration frequencies, respectively. This study not only provides new insights into droplet impact physics on vibrating surfaces, but also develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

  19. Analysis of motion of inverted pendulum with vibrating suspension axis at low-frequency excitation as an illustration of a new approach for solving equations without explicit small parameter

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2014-01-01

    In the classical papers (see, e.g. P.L. Kapitsa, Pendulum with vibrating axis of suspension. Usp. Fiz. Nauk 44 1 (1954) 7-20 (in Russian)) motion of pendulum with vibrating suspension axis was considered in the case when frequency of external loading is much higher than the natural frequency...... of the pendulum in the absence of this loading. The present paper is concerned with the analysis of inverted pendulums motion at unconventional values of parameters. Case when frequency of external loading and the natural frequency of the pendulum in the absence of this loading are of the same order is studied...

  20. Subsurface melting of nylon by friction-induced vibrations

    NARCIS (Netherlands)

    Vroegop, P.H.; Bosma, R.

    1985-01-01

    Dry sliding of nylon on steel may lead to subsurface recrystallization of the polymer. This phenomenon is described and explained by subsurface melting due to internal heating as a result of the dissipation of frictioninduced vibrations at frequencies above 10 kHz. A vibration model relating the

  1. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Michael James [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH2, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH2 signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H2O and D2O, the only spectral feature was in the range of

  2. The acoustic power of a vibrating clamped circular plate revisited in the wide low frequency range using expansion into the radial polynomials.

    Science.gov (United States)

    Rdzanek, Wojciech P

    2016-06-01

    This study deals with the classical problem of sound radiation of an excited clamped circular plate embedded into a flat rigid baffle. The system of the two coupled differential equations is solved, one for the excited and damped vibrations of the plate and the other one-the Helmholtz equation. An approach using the expansion into radial polynomials leads to results for the modal impedance coefficients useful for a comprehensive numerical analysis of sound radiation. The results obtained are accurate and efficient in a wide low frequency range and can easily be adopted for a simply supported circular plate. The fluid loading is included providing accurate results in resonance.

  3. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states.

    Science.gov (United States)

    Pan, Huilin; Liu, Kopin

    2018-01-07

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them-including partially and fully deuterated isotopologs-four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands-CHD2(611), CH2D(311), CH2D(511), and CH2D(611)-are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  4. The study of the effects of mechanical vibration at infrasound frequency on [(3)H]-thymidine incorporation into DNA of E. coli K-12.

    Science.gov (United States)

    Martirosyan, Varsik; Baghdasaryan, Naira; Ayrapetyan, Sinerik

    2013-03-01

    The aim of the present work was to investigate the frequency-dependent effects of mechanical vibration at infrasound frequency (MV at IS frequency or MV) on E. coli K-12 growth by investigating the cell proliferation, using radioactive [(3)H]-thymidine assay. The frequency-dependent effects of MV were shown that it could either stimulate or inhibit the growth of microbes. However, the mechanism through which the MV effects affect the bacterial cells is not clear yet. It was suggested that the aqua medium can serve as a target through which the biological effect of MV on microbes could be realized. To check this hypothesis the frequency-dependent effect (2, 4, 6, 8, 10 Hz) of MV on the bacterial growth in cases of exposure the preliminary treated microbes-free medium and microbes containing medium were studied. It has been shown that MV at 4, 8, and 10 Hz frequency has inhibition effects, while at 2 and 6 Hz has stimulation effects on cell proliferation.

  5. A batch-fabricated electret-biased wideband MEMS vibration energy harvester with frequency-up conversion behavior powering a UHF wireless sensor node

    Science.gov (United States)

    Lu, Y.; O'Riordan, E.; Cottone, F.; Boisseau, S.; Galayko, D.; Blokhina, E.; Marty, F.; Basset, P.

    2016-12-01

    This paper reports a batch-fabricated, low-frequency and wideband MEMS electrostatic vibration energy harvester (e-VEH), which implements corona-charged vertical electrets and nonlinear elastic stoppers. A numeric model is used to perform parametric study, where we observe a wideband bi-modality resulting from nonlinearity. The nonlinear stoppers improve the bandwidth and induce a frequency-up feature at low frequencies. When the e-VEH works with a bias of 45 V, the power reaches a maximum value of 6.6 μW at 428 Hz and 2.0 g rms, and is above 1 μW at 50 Hz. When the frequency drops below 60 Hz, a ‘frequency-up’ conversion behavior is observed with peaks of power at 34 Hz and 52 Hz. The  -3 dB bandwidth is more than 60% of its central frequency, both including and excluding the hysteresis introduced by the nonlinear stoppers. We also perform experiments with wideband Gaussian noise. The device is eventually tested with an RF data transmission setup, where a communication node with an internal temperature sensor is powered. Every 2 min, a data transmission at 868 MHz is performed by the sensor node supplied by the e-VEH, and received at a distance of up to 15 m.

  6. RF environment survey of Space Shuttle related EEE frequency bands

    Science.gov (United States)

    Simpson, J.; Prigel, B.; Postelle, J.

    1977-01-01

    Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.

  7. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  8. Low-frequency vibrational spectrum of molecular nitrogen complex rhenium(1) chloro(dinitrogen) tetrakis(dimethylphenylphosphine)

    Energy Technology Data Exchange (ETDEWEB)

    Kachapina, L.M.; Kichigina, G.A.; Makhaev, V.D.; Borisov, A.P. (AN SSSR, Chernogolovka. Inst. Khimicheskoj Fiziki)

    1981-10-01

    The investigation results of IR and Raman spectra in the region of 600-170 cm/sup -1/ of molecular nitrogen complex-rhenium (1) chloro (dinitrogen) tetrakis (dimethyl-phenylphosphine)- Cl(PMe/sub 2/Ph)/sub 4/ReN/sub 2/ are presented. The IR spectra have been recorded using the ''Perkin-Elmer 325'' spectrophotometer. The samples have been prepared in the form of tablets with KBr (650-400 cm/sup -1/) and CsI (450-200 cm/sup -1/) and suspensions in vaseline oil. The Raman spectra have been measured using the ''Coderg-PHO'' spectrometer with the recording by FEhU-106. The samples have been taken in the form of polycrystals. The lines attributed to the valent vibration of the Re-N bond and deformation vibration of ReNN fragment have been identified in the spectra.

  9. Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy

    Directory of Open Access Journals (Sweden)

    Vadim Selivorstov

    2017-05-01

    Full Text Available One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modification by ultrafine powder and a combination of these two methods. Microstructural studies followed by image analysis revealed the refinement of α-Al grains with an increase in the Si network area around them. As evidence, the improvement of the mechanical properties of Al casting alloy was detected. It was found that the alloys subjected to the vibration treatment displayed an increase in tensile and yield strengths by 20% and 10%, respectively.

  10. Vibration-related extrusion of capillary blood from the calf musculature depends upon directions of vibration of the leg and of the gravity vector.

    Science.gov (United States)

    Çakar, Halil Ibrahim; Doğan, Serfiraz; Kara, Sadık; Rittweger, Jörn; Rawer, Rainer; Zange, Jochen

    2017-06-01

    In this study, we investigated the effects of vibration of the whole lower leg on the content and the oxygenation of hemoglobin in the unloaded relaxed lateral gastrocnemius muscle. Vibration was applied orthogonal to and in parallel with leg axis to examine whether the extrusion of blood depends on an alignment of main vessel direction, axis of vibration and gravity. The blood volume in the muscles was altered by horizontal and 30° upright body posture. Fifteen male subjects were exposed to 4 sets of experiments with both vibration directions and both tilt angles applied in permutated order. The absence of voluntary muscular activity and the potential occurrence of compound action potentials by stretch reflexes were monitored using electromyography. Total hemoglobin and tissue saturation index were measured with near infrared spectroscopy. Changes of lower leg circumference were measured with strain gauge system placed around the calf. Vibration caused decrease in tHb and increase in TSI indicating extrusion of predominantly venous blood from the muscle. In 30° tilted position, muscles contained more blood at baseline and vibration ejected more blood from the muscle compared with horizontal posture (p vibration was applied in parallel with the length axis of muscle. It is concluded that the vibration extrudes more blood in 30° head up posture and the vibration applied in parallel with the length axis of the muscle is more effective than orthogonal vibration.

  11. Vibration Analysis of a Split Path Gearbox

    Science.gov (United States)

    Krantz, Timothy L.; Rashidi, Majid

    1995-01-01

    Split path gearboxes can be attractive alternatives to the common planetary designs for rotorcraft, but because they have seen little use, they are relatively high risk designs. To help reduce the risk of fielding a rotorcraft with a split path gearbox, the vibration and dynamic characteristics of such a gearbox were studied. A mathematical model was developed by using the Lagrangian method, and it was applied to study the effect of three design variables on the natural frequencies and vibration energy of the gearbox. The first design variable, shaft angle, had little influence on the natural frequencies. The second variable, mesh phasing, had a strong effect on the levels of vibration energy, with phase angles of 0 deg and 180 deg producing low vibration levels. The third design variable, the stiffness of the shafts connecting the spur gears to the helical pinions, strongly influenced the natural frequencies of some of the vibration modes, including two of the dominant modes. We found that, to achieve the lowest level of vibration energy, the natural frequencies of these two dominant modes should be less than those of the main excitation sources.

  12. Vibrational frequency analysis, FT-IR, FT-Raman, ab initio, HF and DFT studies, NBO, HOMO-LUMO and electronic structure calculations on pycolinaldehyde oxime

    Science.gov (United States)

    Suvitha, A.; Periandy, S.; Boomadevi, S.; Govindarajan, M.

    2014-01-01

    In this work, the vibrational spectral analysis is carried out by using Raman and infrared spectroscopy in the range 100-4000 cm-1and 50-4000 cm-1, respectively, for pycolinaldehyde oxime (PAO) (C6H6N2O) molecule. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on HF and B3LYP methods with 6-311++G(d,p) basis set. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The optimized geometric parameters are compared with experimental values of PAO. The non linear optical properties, NBO analysis, thermodynamics properties and mulliken charges of the title molecule are also calculated and interpreted. A study on the electronic properties, such as HOMO and LUMO energies, are performed by time-dependent DFT (TD-DFT) approach. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) are performed. The effects due to the substitutions of CHdbnd NOH ring are investigated. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  13. Spectral assignment and orientational analysis in a vibrational sum frequency generation study of DPPC monolayers at the air/water interface.

    Science.gov (United States)

    Feng, Rong-Juan; Li, Xia; Zhang, Zhen; Lu, Zhou; Guo, Yuan

    2016-12-28

    The interfacial behavior of the benchmark zwitterionic phospholipid molecule dipalmitoylphosphatidylcholine (DPPC) has been extensively investigated by surface-selective vibrational sum frequency generation spectroscopy (VSFG). However, there is still a lack of agreement between various orientational measurements of phospholipid monolayers at the air/water interface, mainly because of the difficulty in assigning congested VSFG features. In this study, polarization-dependent VSFG measurements reveal a frequency shift between the in-plane and out-of-plane antisymmetric stretching modes of the terminal methyl groups in the DPPC alkyl tails, favoring the model of Cs local symmetry rather than the previously assumed C3v symmetry. Further VSFG experiments of isotopically labeled DPPC successfully capture the vibrational signatures of the glycerol backbone. With the newly derived VSFG polarization selection rules for Cs symmetry and the refreshed spectral assignments, the average tilt angles of the alkyl tail groups, choline headgroup, and glycerol backbone of DPPC molecules can all be determined, showing the powerful capability of VSFG spectroscopy in revealing the structural details at interfaces. The VSFG polarization dependence rules and the orientational analysis procedures developed for Cs symmetry in this work are applicable to other bulky molecules in which the methyl group cannot freely rotate, and they therefore have general applications in future VSFG studies.

  14. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    Science.gov (United States)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  15. ANALYSIS OF LATERAL VIBRATION OF THE WHEEL RELATIVE TO THE RAIL WITH VIDEO

    Directory of Open Access Journals (Sweden)

    V. O. Melnychuk

    2010-03-01

    Full Text Available In the article the videotape recordings of wheel motion on rail track, done during the dynamic tests of carriages, are analyzed. The treatment includes fixing of wheel rim positions in relation to a rail, construction of the spline function of displacement and its frequency description. The purpose of analysis is to determine the presence of harmonic components in the transversal wheel displacements.

  16. Frequency and seasonal variation of ophthalmology-related internet searches.

    Science.gov (United States)

    Leffler, Christopher T; Davenport, Byrd; Chan, Dana

    2010-06-01

    To use internet search activity to reveal the intensity of public interest and seasonal variation in ophthalmology-related diseases, symptoms, and treatments. Time-series analysis of internet search data. Google trend data for ophthalmology terms for the United States, the United Kingdom, Canada, and Australia from 2004 through 2008 were studied. Mean population-weighted temperature and fraction of schools in session were estimated from databases, and relative potential sunlight intensity was calculated. Multivariable linear regression was used to predict search term frequency based on environmental variables. Relative to diabetes searches (100%), common US eye-related searches were: "glasses" (44%), "Lasik" (16%), "contact lenses" (12.4%), "pink eye" (9.5%), "glaucoma" (5.9%), "cataract" (4.1%), "dry eyes" (2.1%), "eye twitching" (1.9%), and "eye pain" (1.9%). Seasonal nature was high for "conjunctivitis" (r(2) = 0.37), "pink eye" (r(2) = 0.32), "eye floaters" (r2 = 0.26), and "stye" (r(2) = 0.19), moderate for "glaucoma" (r(2) = 0.09) and "eye twitching" (r(2) = 0.06), and low for "uveitis" (r(2) = 0.02) and "macular degeneration" (r(2) pink eye," "conjunctivitis," and "glaucoma" (all p eyes" and "eye floaters" (p eye twitching" (p >= 0.001) and negatively with "eyeglasses." "Eye allergy," "itchy eyes," and "watery eyes" were highly seasonal (r(2) = 0.75-0.38) and associated with "pollen" searches. Internet ophthalmology searches relate (in decreasing order) to refractive correction, eye diseases, and eye symptoms. Search study reveals the seasonality and environmental associations of interest in health terms.

  17. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  18. Low back pain in drivers: The relative role of whole-body vibration, posture and manual materials handling

    Science.gov (United States)

    Okunribido, O. O.; Magnusson, M.; Pope, M. H.

    2006-12-01

    A cross-sectional study was conducted to investigate the relative role of whole-body vibration (WBV), posture and manual materials handling (MMH) as risk factors for low back pain (LBP). Using a validated questionnaire, information about health history, posture and MMH performed was obtained from 394 workers who drove vehicles as part of their job (according to seven predefined occupational groups) and 59 who did not. The intention was to reflect a wide range of exposures with the lower end of the exposure spectrum defined as that of non-manual workers who do not drive as part of their job. Based on the questionnaire responses and direct measurements of vibration exposure, personal aggregate measures of exposure were computed for each of the respondents, i.e., total vibration dose (TVD), posture score (PS) and manual handling score (MHS). Odds ratios (and 95% confidence intervals) for back pain were obtained from logistics regression models and log-linear backward elimination analysis was performed. The findings showed that 'combined exposure' due to posture and one or both of vibration and MMH, rather than the individual exposure to one of the three factors (WBV, posture, MMH) is the main contributor of the increased prevalence of LBP.

  19. Influence of the relative deformation rate on tube processing by ultrasonic vibration drawing

    Directory of Open Access Journals (Sweden)

    Susan, M.

    2004-04-01

    Full Text Available After a brief review of the "friction reversion mechanism" during ultrasonic vibration drawing of tubes (UVD, the paper introduces a method to determine the drawing force based on the theorem of total consumed power, in the case of tube processing. The experiments performed on tubes made from 10TiNiCr180 (AISI321 austenitic stainless steel confirm the superiority of UVD technology regarding the diminution of the drawing force, the increase of the plasticity and the improvement of the safety coefficient, tendencies that are enhanced with the decrease of the relative drawing rate. The best results were obtained for the relative drawing rate of 0.12 for which the drawing force decreased with 33 %, plasticity increased with 9 % and safety coefficient with 22 %, as compared to CT.

    Después de un breve resumen del mecanismo de reversión de la fricción al estirado por vibraciones ultrasonoras (EVU, el trabajo propone un método para calcular la fuerza de estirado en base al teorema de la potencia total consumida, en el caso particular de la elaboración de tubos. Los experimentos realizados con tubos de acero inoxidable austenítico 10TiNiCr180 (AISI321 demuestran la superioridad de la tecnología EVU sobre la tecnología clásica (TC, en lo concerniente a la reducción de la fuerza de estirado, el incremento de la plasticidad y la mejora del coeficiente de seguridad, tendencias que se acentúan al diminuirse la velocidad relativa de estirado. Los mejores resultados se han obtenido en el caso de la velocidad relativa de 0,12, para la cual la fuerza de estirado se redujo, aproximadamente, un 33 %; la plasticidad se incrementó en el 9 %; y el coeficiente de seguridad aumentó un 22 % frente a la TC.

  20. Simulation studies for multichannel active vibration control

    Science.gov (United States)

    Prakash, Shashikala; Balasubramaniam, R.; Praseetha, K. K.

    2003-10-01

    Traditional approach to vibration control uses passive techniques, which are relatively large, costly and ineffective at low frequencies. Active Vibration Control (AVC) is used to overcome these problems & in AVC additional sources (secondary) are used to cancel vibration from primary source based on the principle of superposition theorem Since the characteristics of the vibration source and environment are time varying, the AVC system must be adaptive. Adaptive systems have the ability to track time varying disturbances and provide optimal control over a much broader range of conditions than conventional fixed control systems. In multi channel AVC vibration fields in large dimensions are controlled & is more complicated. Therefore to actively control low frequency vibrations on large structures, multi channel AVC requires a control system that uses multiple secondary sources to control the vibration field simultaneously at multiple error sensor locations. The error criterion that can be directly measured is the sum of squares of outputs of number of sensors. The adaptive algorithm is designed to minimize this & the algorithm implemented is the "Multiple error LMS algorithm." The best known applications of multiple channel FXLMS algorithm is in real time AVC and system identification. More wider applications are in the control of propeller induced noise in flight cabin interiors. In the present paper the results of simulation studies carried out in MATLAB as well as on TMS320C32 DSP processor will be brought out for a two-channel case.

  1. Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human finger muscle contraction may reflect rhythmicities of central neural firing.

    Science.gov (United States)

    McAuley, J H; Rothwell, J C; Marsden, C D

    1997-05-01

    The output from the central nervous system to muscles may be rhythmic in nature. Previous recordings investigating peripheral manifestations of such rhythmic activity are conflicting. This study attempts to resolve these conflicts by employing a novel arrangement to measure and correlate rhythms in tremor, electromyographic (EMG) activity and muscle vibration sounds during steady index finger abduction. An elastic attachment of the index finger to a strain gauge allowed a strong but relatively unfixed abducting contraction of the first dorsal interosseous (1DI). An accelerometer attached to the end of the finger recorded tremor, surface electrodes over 1DI recorded EMG signals and a heart-sounds monitor placed over 1DI recorded vibration. This arrangement enabled maintenance of a constant overall muscle contraction strength while still allowing measurement of the occurrence of tremulous movements of the finger. Ten normal subjects were studied with the index finger first extended at rest and then contracting 1DI to abduct the index finger against three different steady forces up to 50% of maximal voluntary contraction (MVC). Power spectral analysis of tremor, EMG activity and muscle vibration signals each revealed three frequency peaks occurring together at around 10 Hz, 20 Hz and 40 Hz. Coherence analysis showed that the same three peaks were present in the three signals. Phase analysis indicated a fixed time lag of tremor behind EMG of around 6.5 ms. This is compared with previous measurements of electromechanical delay. Other experiments indicated that the three peaks were of central nervous origin. Introducing mechanical perturbations or extra loading to the finger and making recordings under partial anaesthesia of the hand and forearm demonstrated preservation of all the peaks, suggesting that they did not originate from mechanical resonances or peripheral feedback loop resonances. It is concluded that, at least for a small hand muscle, there exist not one but

  2. The Relation between Frequency of E-Cigarette Use and Frequency and Intensity of Cigarette Smoking among South Korean Adolescents

    OpenAIRE

    Jung Ah Lee; Sungkyu Lee; Hong-Jun Cho

    2017-01-01

    Introduction: The prevalence of adolescent electronic cigarette (e-cigarette) use has increased in most countries. This study aims to determine the relation between the frequency of e-cigarette use and the frequency and intensity of cigarette smoking. Additionally, the study evaluates the association between the reasons for e-cigarette use and the frequency of its use. Materials and Methods: Using the 2015 Korean Youth Risk Behavior Web-Based Survey, we included 6655 adolescents with an exper...

  3. Frequency tuning and directional sensitivity of tympanal vibrations in the field cricket Gryllus bimaculatus

    DEFF Research Database (Denmark)

    Lankheet, Martin J.; Cerkvenik, Uroš; Larsen, Ole Næsbye

    2017-01-01

    Female field crickets use phonotaxis to locate males by their calling song. Male song production and female behavioural sensitivity form a pair of matched frequency filters, which in Gryllus bimaculatus are tuned to a frequency of about 4.7 kHz. Directional sensitivity is supported by an elaborat...

  4. Nerve conduction in relation to vibration exposure - a non-positive cohort study

    Directory of Open Access Journals (Sweden)

    Nilsson Tohr

    2010-07-01

    Full Text Available Abstract Background Peripheral neuropathy is one of the principal clinical disorders in workers with hand-arm vibration syndrome. Electrophysiological studies aimed at defining the nature of the injury have provided conflicting results. One reason for this lack of consistency might be the sparsity of published longitudinal etiological studies with both good assessment of exposure and a well-defined measure of disease. Against this background we measured conduction velocities in the hand after having assessed vibration exposure over 21 years in a cohort of manual workers. Methods The study group consisted of 155 male office and manual workers at an engineering plant that manufactured pulp and paper machinery. The study has a longitudinal design regarding exposure assessment and a cross-sectional design regarding the outcome of nerve conduction. Hand-arm vibration dose was calculated as the product of self-reported occupational exposure, collected by questionnaire and interviews, and the measured or estimated hand-arm vibration exposure in 1987, 1992, 1997, 2002, and 2008. Distal motor latencies in median and ulnar nerves and sensory nerve conduction over the carpal tunnel and the finger-palm segments in the median nerve were measured in 2008. Before the nerve conduction measurement, the subjects were systemically warmed by a bicycle ergometer test. Results There were no differences in distal latencies between subjects exposed to hand-arm vibration and unexposed subjects, neither in the sensory conduction latencies of the median nerve, nor in the motor conduction latencies of the median and ulnar nerves. Seven subjects (9% in the exposed group and three subjects (12% in the unexposed group had both pathological sensory nerve conduction at the wrist and symptoms suggestive of carpal tunnel syndrome. Conclusion Nerve conduction measurements of peripheral hand nerves revealed no exposure-response association between hand-arm vibration exposure and

  5. Nightmare frequency is related to a propensity for mirror behaviors.

    Science.gov (United States)

    Nielsen, Tore; Powell, Russell A; Kuiken, Don

    2013-12-01

    We previously reported that college students who indicated engaging in frequent dream-enacting behaviors also scored high on a new measure of mirror behaviors, which is the propensity to imitate another person's emotions or actions. Since dream-enacting behaviors are frequently the culmination of nightmares, one explanation for the observed relationship is that individuals who frequently display mirror behaviors are also prone to nightmares. We used the Mirror Behavior Questionnaire (MBQ) and self-reported frequencies of nightmares to assess this possibility. A sample of 480 students, consisting of 188 males (19.2±1.73 years) and 292 females (19.0±1.55 years) enrolled in a first-year university psychology course, participated for course credit. They completed a battery of questionnaires that included the 16-item MBQ, plus an item about nightmare frequency (NMF) in the past 30 days. NMF scores were split to create low, medium, and high NMF groups. MBQ total scores were significantly higher for female than for male subjects, but an interaction revealed that this was true only for Hi-NMF subjects. MBQ Factor 4, Motor Skill Imitation, paralleled this global interaction for females, whereas MBQ Factor 3, Sleepiness/Anger Contagion, was elevated only for Hi-NMF males. Item analyses indicated that Hi- and Med-NMF females scored higher than Lo-NMF females on the 3 items of Factor 4 that reflect voluntary imitation (imitating famous/cartoon voices, being a physically active spectator, and learning new skills by observing), as well as on 2 other items that reflect involuntary imitation (contagious yawning and self-rated empathy). Although Hi- and Lo-NMF males differed most clearly on the sleepiness item of Factor 3, all 3 items on this factor (including anger contagion and contagious yawning) are plausibly associated with perception of and response to social threat. Results provide evidence that among females nightmares are associated with voluntary and involuntary mirror

  6. Theoretical molecular structure, vibrational frequencies and NMR investigations of 2-[(1E-2-aza-2-(5-methyl(2-pyridylethenyl]-4-bromobenzen-1-ol

    Directory of Open Access Journals (Sweden)

    Cemal Parlak

    2012-08-01

    Full Text Available The normal mode frequencies and corresponding vibrational assignments, 1H and 13C NMR chemical shifts and structural parameters (bond lengths, bond and dihedral angles of 2-[(1E-2-aza-2-(5-methyl(2-pyridylethenyl]-4-bromobenzen-1-ol (2mpe-4bb Schiff base compound have been theoretically examined by means of Hartree-Fock (HF and Becke-3-Lee-Yang-Parr (B3LYP density functional methods with 6-31G(d and 6-311++G(d,p basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO of 2mpe-4bb have been predicted. Theoretical results have been successfully compared with available experimental data in the literature. Regarding the calculations, 2mpe-4bb prefers enol-imine form and DFT method is superior to HF approach except for predicting bond lengths.DOI: http://dx.doi.org/10.4314/bcse.v26i2.11

  7. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  8. Using high-frequency vibrations and non-linear inclusions to create metamaterials with adjustable effective properties

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel

    2009-01-01

    We investigate how high-frequency (HF) excitation combined with strongly non-linear elasticity may influence the effective properties for low-frequency wave propagation. The HF effects are demonstrated for linear spring-mass chains with embedded non-linear parts. The investigated mechanical syste...... static displacements and forces can be created by using HF excitation with structures having asymmetric displacement-force characteristics....

  9. Pyrrole Hydrogenation over Rh(111) and Pt(111) Single-Crystal Surfaces and Hydrogenation Promotion Mediated by 1-Methylpyrrole: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J.; Bieri, Marco; Somorjai, Gabor A.

    2008-03-04

    Sum-frequency generation (SFG) surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to study the adsorption and hydrogenation of pyrrole over both Pt(111) and Rh(111) single-crystal surfaces at Torr pressures (3 Torr pyrrole, 30 Torr H{sub 2}) to form pyrrolidine and the minor product butylamine. Over Pt(111) at 298 K it was found that pyrrole adsorbs in an upright geometry cleaving the N-H bond to bind through the nitrogen evidenced by SFG data. Over Rh(111) at 298 K pyrrole adsorbs in a tilted geometry relative to the surface through the p-aromatic system. A pyrroline surface reaction intermediate, which was not detected in the gas phase, was seen by SFG during the hydrogenation over both surfaces. Significant enhancement of the reaction rate was achieved over both metal surfaces by adsorbing 1-methylpyrrole before reaction. SFG vibrational spectroscopic results indicate that reaction promotion is achieved by weakening the bonding between the N-containing products and the metal surface because of lateral interactions on the surface between 1-methylpyrrole and the reaction species, reducing the desorption energy of the products. It was found that the ring-opening product butylamine was a reaction poison over both surfaces, but this effect can be minimized by treating the catalyst surfaces with 1-methylpyrrole before reaction. The reaction rate was not enhanced with elevated temperatures, and SFG suggests desorption of pyrrole at elevated temperatures.

  10. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    Science.gov (United States)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  11. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there has been significant progress in the development of methodology and instrumentation in the SFG-VS toolbox that has significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are to be discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  12. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar

    2011-04-28

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm average size, synthesized by colloidal methods and cleaned by ultraviolet light and ozone treatment. Reactions carried out at atmospheric pressure in the temperature range of 20-120 °C produced dihydro and tetrahydro species, as well as ring-opening products (alcohols) and ring-cracking products, showing high selectivity toward ring opening throughout the entire temperature range. The aromatic rings (MF and DMF) adsorbed parallel to the nanoparticle surface. Results yield insight into various surface reaction intermediates and the reason for the significantly lower selectivity for ring cracking in DMF hydrogenation compared to MF hydrogenation. © 2011 American Chemical Society.

  13. Whole-Body Vibration Training and Its Application to Age-Related Performance Decrements: An Exploratory Analysis.

    Science.gov (United States)

    Hawkey, Adam; Griffiths, Katie; Babraj, John; Cobley, James N

    2016-02-01

    Middle age is associated with a pronounced decline in power and flexibility. Whilst whole-body vibration training (WBVT) improves performance in a range of populations, whether WBVT can improve muscle power and flexibility in a middle-aged population is not known. The present study aimed to determine the influence of 5 weeks progressive WBVT in middle-aged (45-55 years) and younger (20-30 years) recreationally active females. Participants in each age group were randomly allocated to an intervention (WBVT) or control group. The WBVT groups trained for 5 weeks on a vibration platform, while the control groups performed identical exercises, with no vibration. Prior to, and after, the 5-week study vertical countermovement jump (VCMJ) and range of motion (ROM) performance were measured. WBVT significantly (p = 0.001) improved VCMJ performance when compared to the control groups. This improvement was significantly (p = 0.001) greater in the middle-aged compared with the younger WBVT group. WBVT significantly (p = 0.001) improved ROM irrespective of age. Taken together, these results suggest that WBVT can off-set age related performance decrements, which has therapeutic implications for musculoskeletal aging. Therefore, WBVT could be undertaken to minimise age-related performance deterioration in middle-aged female populations.

  14. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  15. Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework

    Science.gov (United States)

    Ryder, Matthew R.; Van de Voorde, Ben; Civalleri, Bartolomeo; Bennett, Thomas D.; Mukhopadhyay, Sanghamitra; Cinque, Gianfelice; Fernandez-Alonso, Felix; De Vos, Dirk; Rudić, Svemir; Tan, Jin-Chong

    2017-06-01

    We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (˜100 cm-1 ), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO (O2C-C 6H4-CO2) ]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (Gmin ).

  16. Palladium(II) and platinum(II) complexes containing benzimidazole ligands: Molecular structures, vibrational frequencies and cytotoxicity

    Science.gov (United States)

    Abdel Ghani, Nour T.; Mansour, Ahmed M.

    2011-04-01

    (1H-benzimidazol-2-ylmethyl)-(4-methoxyl-phenyl)-amine (L 1), (1H-benzimidazol-2-ylmethyl)-(4-methyl-phenyl)-amine (L 2) and their Pd(II) and Pt(II) complexes have been synthesized as potential anticancer compounds and their structures were elucidated using a variety of physico-chemical techniques. Theoretical calculations invoking geometry optimization, vibrational assignments, 1H NMR, charge distribution and molecular orbital description HOMO and LUMO were done using density functional theory. Natural bond orbital analysis (NBO) method was performed to provide details about the type of hybridization and the nature of bonding in the studied complexes. Strong coordination bonds (LP(1)N11 → σ *(M sbnd Cl22)) and (LP(1)N21 → σ *(M sbnd Cl23)) (M = Pd or Pt) result from donation of electron density from a lone pair orbital on the nitrogen atoms to the acceptor metal molecular orbitals. The experimental results and the calculated molecular parameters revealed square-planar geometries around the metallic centre through the pyridine-type nitrogen of the benzimidazole ring and secondary amino group and two chlorine atoms. The activation thermodynamic parameters were calculated using non-isothermal methods. The synthesized ligands, in comparison to their metal complexes were screened for their antibacterial activity. In addition, the studied complexes showed activity against three cell lines of different origin, breast cancer (MCF-7), Colon Carcinoma (HCT) and human heptacellular carcinoma (Hep-G2) comparable to cis-platin.

  17. Frequency of Aneuploidy Related to Age in Porcine Oocytes

    Science.gov (United States)

    Musilova, Petra; Pavlok, Antonin; Kubelka, Michal; Motlik, Jan; Rubes, Jiri; Anger, Martin

    2011-01-01

    It is generally accepted that mammalian oocytes are frequently suffering from chromosome segregation errors during meiosis I, which have severe consequences, including pregnancy loss, developmental disorders and mental retardation. In a search for physiologically more relevant model than rodent oocytes to study this phenomenon, we have employed comparative genomic hybridization (CGH), combined with whole genome amplification (WGA), to study the frequency of aneuploidy in porcine oocytes, including rare cells obtained from aged animals. Using this method, we were able to analyze segregation pattern of each individual chromosome during meiosis I. In contrast to the previous reports where conventional methods, such as chromosome spreads or FISH, were used to estimate frequency of aneuploidy, our results presented here show, that the frequency of this phenomenon was overestimated in porcine oocytes. Surprisingly, despite the results from human and mouse showing an increase in the frequency of aneuploidy with advanced maternal age, our results obtained by the most accurate method currently available for scoring the aneuploidy in oocytes indicated no increase in the frequency of aneuploidy even in oocytes from animals, whose age was close to the life expectancy of the breed. PMID:21556143

  18. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.

    Science.gov (United States)

    Basri, Bazil; Griffin, Michael J

    2014-11-01

    The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The 'seat effective amplitude transmissibility' (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1-20 Hz at magnitudes of vibration from 0.2 to 1.6 ms(-2) r.m.s. The 'measured seat dynamic discomfort' (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. Remote identification of the vibration amplitude of ship hull

    Directory of Open Access Journals (Sweden)

    A. N. Pinchuk

    2014-01-01

    Full Text Available The aim is to develop the methodological support to determine vibration amplitude of the ship hull remotely using a coherent radar centimeter range based on the variation of the Doppler signal spectrum reflected from a vibrating surface.The paper presents a synthesized mathematical model of the radio signal reflected from the vibrating surface. It is the signal of coherent radar of continuous radiation with a known carrier frequency and the amplitude of the radiated signal. In the synthesis it was believed that the displacement in the radial direction with respect to the vibrating surface radar was sinusoidal.The dependences of the vibration amplitude on the value of the normalized Doppler radio signal spectrum at the second harmonic frequency are obtained. Cycle results of field experiments to study the variability of the sea surface, determining the level of its roughness, allows us to establish that the energy of surface waves of gravitational-capillary range has a high correlation with the wind speed. It is proved that the ratio of the spectral density levels at vibration frequency and its multiple frequencies is specified by the index of phase modulation linearly related to the amplitude of vibration of the ship hull.The results are significant for radar (radar detection of water targets using the coherent radar of centimeter range, ensuring the correct records of noise generated by the scattering of radio waves from the water surface.

  20. Analysis of mechanical vibrations in large vertical pumps: two cases of natural frequency excitations; Analisis de vibraciones mecanicas en grandes bombas verticales: dos casos de excitacion de frecuencias naturales

    Energy Technology Data Exchange (ETDEWEB)

    Ercoli, L.; La Malfa, S. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Bahia Blanca (Argentina). Inst. de Mecanica Aplicada]|[Universidad Tecnologica Nacional (Argentina). Grupo Analisis de Sistemas Mecanicos

    1995-07-01

    This study presents experimental dynamic analysis of two big vertical pumps induced to vibrate due to the excitation of natural frequencies of the structural systems: pump-mounting. It is demonstrated that a proper diagnostic of the working condition avoids unecessary and time-consuming equipment stops, with the consequent saving in the production costs. (author)

  1. A low frequency assignment for infrared and Raman spectra of (+)-bornyl acetate using related compounds and deuterated derivatives

    Science.gov (United States)

    Kim, S. B.; Hammaker, R. M.; Fateley, W. G.

    Twenty-one fundamentals of (+)-bornyl acetate and nine deuterium substituted modifications (2- d1; 3,3- d2; 2,3,3- d3; acetate- d3; 2- d1 acetate- d3; 3,3- d2 acetate- d3; 2,3,3- d3 acetate- d3; 10- d1; 10,10,10- d3) as well as (-)-isobornyl-1-10,10.10- d3 acetate have been assigned between 200 and 850cm -1. These results supplement the previous assignment of nineteen fundamentals of (-)-isobornyl acetate and seven deuterium substituted modifications (2- d1,; 3,3- d2; 2,3,3- d3; acetate- d3; 2- d1 acetate- d3; 3,3- d2 acetate- d3; 2,3,3- d3 acetate- d3) between 200 and 900cm -1 [8]. These fundamentals are: skeletal vibrations of the quaternary carbons, ring breathing, bending, and twisting vibrations, and vibrations of the acetate group. Key model compounds used in this analysis are norbornane, neopentane, methyl acetate, cyclopentanol, and the (-)-isobornyl acetate system. A series of related compounds (norbornane, bornane, endo-norbomyl acetate, 1-methyl-endo-norbornyl acetate, apobornyl acetate, and (+)-bornyl acetate) is used to identify frequencies associated with the quaternary carbon and the acetate group. Raman spectra are more useful for the quaternary carbon frequencies and i.r. spectra are more useful for acetate group frequencies. Four exo stereoisomer alcohols (1-methyl-exo-norborneol, 1-methy d3-exonorborneoI, apoisoborneol, (-)-isoborneol) and three endo stereoisomer alcohols (1-methyl-endo-norborneol, apoborneol, (+)-borneol) serve as model compounds for a modification of the earlier assignment [8] for the skeletal stretching of the quaternary carbons in the (-)-isobornyl acetate system and extension of this modified assignment to the (+)-bornyl acetate system. Quaternary carbon symmetric skeletal stretching is believed to be responsible for prominent Raman bands between 580 and 680cm -1 in the 36 bicyclic ring compounds investigated to date. Fermi resonance is proposed as the explanation for a number of unexpected intensity patterns observed in the

  2. Efficiency of Nearly Periodic Structures for Mitigation of Ground Vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Peplow, Andrew; Bucinskas, Paulius

    2017-01-01

    be introduced by periodic inclusions or changes to the ground surface geometry. However, for vibration mitigation in the context of real civil-engineering problems related to ground-borne noise from railways, for example, the excitation is not strictly harmonic and a steady state of the response is usually......Periodic structures are known to produce passbands and stopbands for propagation of vibration energy within the frequency domain. Sources vibrating harmonically at a frequency within a passband can lead to propagation of energy through propagating modes over long distances. However, sources...... vibrating at a frequency within a stopband excite only nearfields in the form of attenuating and evanescent modes, and the energy decays with distance. The decay phenomena are due to destructive interference of waves reflected and scattered by interfaces or obstacles placed periodically within or between...

  3. Experimental Study on Interfacial Area Transport of Two-Phase Flow under Vibration Conditions

    Directory of Open Access Journals (Sweden)

    Xiu Xiao

    2017-01-01

    Full Text Available An experimental study on air-water two-phase flow under vibration condition has been conducted using double-sensor conductivity probe. The test section is an annular geometry with hydraulic diameter of 19.1 mm. The vibration frequency ranges from 0.47 Hz to 2.47 Hz. Local measurements of void fraction, interfacial area concentration (IAC, and Sauter mean diameter have been performed along one radius in the vibration direction. The result shows that local parameters fluctuate continuously around the base values in the vibration cycle. Additional bubble force due to inertia is used to explain lateral bubble motions. The fluctuation amplitudes of local void fraction and IAC increase significantly with vibration frequency. The radial distribution of local parameters at the maximum vibration displacement is specifically analyzed. In the void fraction and IAC profiles, the peak near the inner wall is weakened or even disappearing and a strong peak skewed to outer wall is gradually observed with the increase of vibration frequency. The nondimensional peak void fraction can reach a maximum of 49% and the mean relative variation of local void fraction can increase to more than 29% as the vibration frequency increases to 2.47 Hz. But the increase of vibration frequency does not bring significant change to bubble diameter.

  4. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  5. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  6. Probing the structure and nano-scale mechanical properties of polymer surfaces with scanning force microscopy and sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gracias, David Hugo [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    Scanning Force Microscopy (SFM) has been used to quantitatively measure the elastic modulus, friction and hardness of polymer surfaces with special emphasis on polyethylene and polypropylene. In the experiments, tips of different radii of curvature ranging from 20 nm to 1000 nm have been used and the high pressure applied by the SFM have been observed to affect the values obtained in the measurements. The contact of the SFM tip with the polymer surface is explained by fitting the experimental curves to theoretical predictions of contact mechanics. Sum Frequency Generation (SFG) Vibrational Spectroscopy has been used to measure vibrational spectra of polymer surfaces in the vibrational range of 2700 to 3100 cm-1. Strong correlations are established between surface chemistry and surface structure as probed by SFG and mechanical properties measured by SFM on the surfaces. In these studies segregation of low surface energy moieties, from the bulk of the polymer to the surface have been studied. It was found that surface segregation occurs in miscible polymer blends and a small concentration of surface active polymer can be used to totally modify the surface properties of the blend. A novel high vacuum SFM was built to do temperature dependent measurements of mechanical changes occurring at the surface of polypropylene during the glass transition of the polymer. Using this instrument the modulus and friction of polypropylene was measured in the range of room temperature to ˜-60°C. An increase in the ordering of the backbone of the polymer chains below the glass transition measured by SFG correlates well with the increase in modulus measured on the same surface with SFM. Friction measurements have been done on polyethylene with three different instruments by applying loads ranging from nN to sub newton i.e. over eight orders of magnitude. Pressure and contact area effects were observed to play a significant role in determining the frictional response of the polymer

  7. The effects of two different frequencies of whole-body vibration on knee extensors strength in healthy young volunteers: a randomized trial

    Science.gov (United States)

    Esmaeilzadeh, S.; Akpinar, M.; Polat, S.; Yildiz, A.; Oral, A.

    2015-01-01

    The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women. PMID:26636279

  8. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  9. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  10. Vibrational Suspension of Light Sphere in a Tilted Rotating Cylinder with Liquid

    OpenAIRE

    Victor G. Kozlov; Subbotin, Stanislav V.

    2014-01-01

    The dynamics of a light sphere in a quickly rotating inclined cylinder filled with liquid under transversal vibrations is experimentally investigated. Due to inertial oscillations of the sphere relative to the cavity, its rotation velocity differs from the cavity one. The intensification of the lagging motion of a sphere and the excitation of the outstripping differential rotation are possible under vibrations. It occurs in the resonant areas where the frequency of vibrations coincides with t...

  11. Aircraft vibration and other factors related to high systolic blood pressure in Indonesian Air Force pilots

    Directory of Open Access Journals (Sweden)

    Minarma Siagian

    2013-05-01

    Full Text Available AbstrakLatar belakang: Penerbangan dapat berdampak pada sistem kardiovaskular manusia. Penerbang terpajan antara lain pada bising dan vibrasi pesawat. Penelitian bertujuan untuk mengetahui pengaruh beberapa faktor penerbangan pada tekanan darah sistolik.Metode: Penelitian nested case-control dilakukan pada penerbang Angkatan Udara Republik Indonesia yang melakukan pemeriksaan fisik tahunan di Lembaga Kesehatan Penerbangan dan Ruang Angkasa (LAKESPRA Saryanto tahun 2003–2008. Data yang diperoleh dari rekam medik berupa umur, jumlah jam terbang, jenis pesawat, kadar glukosa puasa dan kadar kholesterol darah, lingkaran pinggang, tinggi dan berat badan, tinggi badan, serta tekanan darah.Hasil: Dari 336 penerbang, terdapat 16 penerbanga dengan tekanan sistolik ³ 140 mmHg. Penerbang dengan rata-rata jam penerbangan 300-622 jam per tahun dibandingkan dengan 29-299 jam per tahun mempunyai risiko peningkatan tekanan darah sistolik tinggi sebesarf 5 kali [rasio odds suaian (ORa = 5,05, 95% interval kepercayaan (CI = 0,88 -23,30, P = 0,070]. Menurut jam terbang total, mereka yang memiliki 1.401-1,1125 jam dibandingkan 147-1.400 jam berisiko 3,6 kali mengalami tekanan darah sistolik tinggi (ORa = 3,58, 95% CI = 1,24-10,38. Selain itu, mereka dengan denyut nadi istirahat tinggi dibandingkan dengan denyut nadi normal istirahat memiliki 2,4 kali mengalami tekanan darah sistolik tinggi (ORa = 2,37, CI = 0,74-7,50 95, P = 0,147].Kesimpulan: Vibrasi pesawat terbang tinggi, rata-rata jam terbang per tahun tinggi, dan frekuensi nadi istirahat yang tinggi meningkatkan risiko tekanan sistolik tinggi.Kata kunci:tekanan darah sistolik, vibrasi pesawat terbang, frekuensi nadi istirahat, pilotAbstractBackground:Flight may affect the human cardiovascular system. Pilots are exposed among others to aircraft noise and vibration. This study aimed to investigate the effects of aircraft flight on systolic blood pressure.Methods:A nested case-control study was conducted on

  12. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  13. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2-6, and several hexamer local minima at the CCSD(T) level of theory

    Science.gov (United States)

    Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

    2013-09-01

    . Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation -Δω = s . ΔR, with a rate of s = 20.2 cm-1/0.001 Å for hydrogen bonded frequencies with IR intensities >400 km/mol. The CCSD(T) harmonic frequencies, when corrected using the MP2 anharmonicities obtained from second order vibrational perturbation theory, produce anharmonic CCSD(T) estimates that are within <60 cm-1 from the measured infrared (IR) active bands of the n = 2-6 clusters. Furthermore, the CCSD(T) harmonic redshifts (with respect to the monomer) trace the measured ones quite accurately. The energetic order between the various hexamer isomers on the PES (prism has the lowest energy) previously reported at MP2 was found to be preserved at the CCSD(T) level, whereas the inclusion of anharmonic corrections further stabilizes the cage among the hexamer isomers.

  14. Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control.

    Science.gov (United States)

    Pfister, Roland; Janczyk, Markus; Gressmann, Marcel; Fournier, Lisa R; Kunde, Wilfried

    2014-03-01

    Previous research suggests that motor actions are intentionally generated by recollecting their sensory consequences. Whereas this has been shown to apply to visual or auditory consequences in the environment, surprisingly little is known about the contribution of immediate, body-related consequences, such as proprioceptive and tactile reafferences. Here, we report evidence for a contribution of vibrotactile reafferences to action selection by using a response-effect compatibility paradigm. More precisely, anticipating actions to cause spatially incompatible vibrations delayed responding to a small but reliable degree. Whereas this observation suggests functional equivalence of body-related and environment-related reafferences to action control, the future application of the described experimental procedure might reveal functional peculiarities of specific types of sensory consequences in action control.

  15. On the influence of freight trains on humans: a laboratory investigation of the impact of nocturnal low frequency vibration and noise on sleep and heart rate.

    Science.gov (United States)

    Smith, Michael G; Croy, Ilona; Ogren, Mikael; Persson Waye, Kerstin

    2013-01-01

    A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude. The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance. We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic.

  16. On the influence of freight trains on humans: a laboratory investigation of the impact of nocturnal low frequency vibration and noise on sleep and heart rate.

    Directory of Open Access Journals (Sweden)

    Michael G Smith

    Full Text Available BACKGROUND: A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude. METHODOLOGY/PRINCIPAL FINDINGS: The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance. CONCLUSIONS/SIGNIFICANCE: We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic.

  17. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  18. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H

    2014-06-14

    This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.

  19. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  20. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  1. Water Orientation at Ceramide/Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation

    KAUST Repository

    Adhikari, Aniruddha

    2016-10-10

    Lipid/water interaction is essential for many biological processes. The water structure at the nonionic lipid interface remains little known, and there is no scope of a priori prediction of water orientation at nonionic interfaces, either. Here, we report our study combining advanced nonlinear spectroscopy and molecular dynamics simulation on the water orientation at the ceramide/water interface. We measured χ spectrum in the OH stretch region of ceramide/isotopically diluted water interface using heterodyne-detected vibrational sum-frequency generation spectroscopy and found that the interfacial water prefers an overall hydrogen-up orientation. Molecular dynamics simulation indicates that this preferred hydrogen-up orientation of water is determined by a delicate balance between hydrogen-up and hydrogen-down orientation induced by lipid-water and intralipid hydrogen bonds. This mechanism also suggests that water orientation at neutral lipid interfaces depends highly on the chemical structure of the lipid headgroup, in contrast to the charged lipid interfaces where the net water orientation is determined solely by the charge of the lipid headgroup.

  2. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  3. Surface structures of an amphiphilic tri-block copolymer in air and in water probed using sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Kristalyn, Cornelius B; Lu, Xiaolin; Weinman, Craig J; Ober, Christopher K; Kramer, Edward J; Chen, Zhan

    2010-07-06

    Sum frequency generation (SFG) vibrational spectroscopy has been applied to investigate surface structures of an amphiphilic surface-active block copolymer (SABC) film deposited on a CaF(2) substrate, in air and in water in situ. Developed as a surface-active component of an antifouling coating for marine applications, this amphiphilic triblock copolymer contains both hydrophobic fluorinated alkyl groups as well as hydrophilic ethoxy groups. It was found that surface structures of the copolymer film in air and in water cannot be probed directly using the SFG experimental geometry we adopted because SFG signals can be contributed from the polymer/air (or polymer/water) interface as well as the buried polymer/CaF(2) substrate interface. Using polymer films with varied thicknesses, structural information about the polymer surfaces in air and in water can be deduced from the detected SFG signals. With SFG, surface restructuring of this polymer has been observed in water, especially the methyl and methylene groups change orientations upon contact with water. However, the hydrophobic fluoroalkyl group was present on the surface in both air and water, and we believe that it was held near the surface in water by its neighboring ethoxy groups.

  4. Hydrogen Bonds and Vibrations of Water on (110) Rutile

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nitin [ORNL; Neogi, Sanghamitra [Pennsylvania State University; Kent, Paul R [ORNL; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Wesolowski, David J [ORNL; Cole, David R [ORNL; Sofo, Jorge O. [Pennsylvania State University

    2009-01-01

    We study the relation between hydrogen bonding and the vibrational frequency spectra of water on the (110) surface of rutile (α-TiO2) with three structural layers of adsorbed water. Using ab-initio molecular dynamics simulations at 280, 300 and 320K, we find strong, crystallographically-controlled adsorption sites, in general agreement with synchrotron X-ray and classical MD simulations. We demonstrate that these sites are produced by strong hydrogen bonds formed between the surface oxygen atoms and sorbed water molecules. The strength of these bonds is manifested by substantial broadening of the stretching mode vibrational band. The overall vibrational spectrum obtained from our simulations is in good agreement with inelastic neutron scattering experiments. We correlate the vibrational spectrum with different bonds at the surface in order to transform these vibrational measurements into a spectroscopy of surface interactions.

  5. The Relation between Frequency of E-Cigarette Use and Frequency and Intensity of Cigarette Smoking among South Korean Adolescents

    Directory of Open Access Journals (Sweden)

    Jung Ah Lee

    2017-03-01

    Full Text Available Introduction: The prevalence of adolescent electronic cigarette (e-cigarette use has increased in most countries. This study aims to determine the relation between the frequency of e-cigarette use and the frequency and intensity of cigarette smoking. Additionally, the study evaluates the association between the reasons for e-cigarette use and the frequency of its use. Materials and Methods: Using the 2015 Korean Youth Risk Behavior Web-Based Survey, we included 6655 adolescents with an experience of e-cigarette use who were middle and high school students aged 13–18 years. We compared smoking experience, the frequency and intensity of cigarette smoking, and the relation between the reasons for e-cigarette uses and the frequency of e-cigarette use. Results: The prevalence of e-cigarette ever and current (past 30 days users were 10.1% and 3.9%, respectively. Of the ever users, approximately 60% used e-cigarettes not within 1 month. On the other hand, 8.1% used e-cigarettes daily. The frequent and intensive cigarette smoking was associated with frequent e-cigarette uses. The percentage of frequent e-cigarette users (≥10 days/month was 3.5% in adolescents who did not smoke within a month, but 28.7% among daily smokers. Additionally, it was 9.1% in smokers who smoked less than 1 cigarette/month, but 55.1% in smokers who smoked ≥20 cigarettes/day. The most common reason for e-cigarette use was curiosity (22.9%, followed by the belief that they are less harmful than conventional cigarettes (18.9%, the desire to quit smoking (13.1%, and the capacity for indoor use (10.7%. Curiosity was the most common reason among less frequent e-cigarette users; however, the desire to quit smoking and the capacity for indoor use were the most common reasons among more frequent users. Conclusions: Results showed a positive relation between frequency or intensity of conventional cigarette smoking and the frequency of e-cigarette use among Korean adolescents, and

  6. The Relation between Frequency of E-Cigarette Use and Frequency and Intensity of Cigarette Smoking among South Korean Adolescents.

    Science.gov (United States)

    Lee, Jung Ah; Lee, Sungkyu; Cho, Hong-Jun

    2017-03-14

    The prevalence of adolescent electronic cigarette (e-cigarette) use has increased in most countries. This study aims to determine the relation between the frequency of e-cigarette use and the frequency and intensity of cigarette smoking. Additionally, the study evaluates the association between the reasons for e-cigarette use and the frequency of its use. Using the 2015 Korean Youth Risk Behavior Web-Based Survey, we included 6655 adolescents with an experience of e-cigarette use who were middle and high school students aged 13-18 years. We compared smoking experience, the frequency and intensity of cigarette smoking, and the relation between the reasons for e-cigarette uses and the frequency of e-cigarette use. The prevalence of e-cigarette ever and current (past 30 days) users were 10.1% and 3.9%, respectively. Of the ever users, approximately 60% used e-cigarettes not within 1 month. On the other hand, 8.1% used e-cigarettes daily. The frequent and intensive cigarette smoking was associated with frequent e-cigarette uses. The percentage of frequent e-cigarette users (≥10 days/month) was 3.5% in adolescents who did not smoke within a month, but 28.7% among daily smokers. Additionally, it was 9.1% in smokers who smoked less than 1 cigarette/month, but 55.1% in smokers who smoked ≥20 cigarettes/day. The most common reason for e-cigarette use was curiosity (22.9%), followed by the belief that they are less harmful than conventional cigarettes (18.9%), the desire to quit smoking (13.1%), and the capacity for indoor use (10.7%). Curiosity was the most common reason among less frequent e-cigarette users; however, the desire to quit smoking and the capacity for indoor use were the most common reasons among more frequent users. Results showed a positive relation between frequency or intensity of conventional cigarette smoking and the frequency of e-cigarette use among Korean adolescents, and frequency of e-cigarette use differed according to the reason for the use of

  7. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2–6, and several hexamer local minima at the CCSD(T) level of theory

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

    2013-01-01

    We report the first optimum geometries and harmonic vibrational frequencies for the ring pentamer and several water hexamer (prism, cage, cyclic and two book) at the CCSD(T)/aug-cc-pVDZ level of theory. All five hexamer isomer minima previously reported by MP2 are also minima on the CCSD(T) potential energy surface (PES). In addition, all CCSD(T) minimum energy structures for the n=2-6 cluster isomers are quite close to the ones previously obtained by MP2 on the respective PESs, as confirmed by a modified Procrustes analysis that quantifies the difference between any two cluster geometries. The CCSD(T) results confirm the cooperative effect of the homodromic ring networks (systematic contraction of the nearest-neighbor (nn) intermolecular separations with cluster size) previously reported by MP2, albeit with O-O distances shorter by ~0.02 Å, indicating that MP2 overcorrects this effect. The harmonic frequencies at the minimum geometries were obtained by the double differentiation of the CCSD(T) energy using an efficient scheme based on internal coordinates that reduces the number of required single point energy evaluations by ~15% when compared to the corresponding double differentiation using Cartesian coordinates. Negligible differences between MP2 and CCSD(T) are found for the librational modes, while uniform increases of ~15 and ~25 cm-1 are observed for the bending and “free” OH harmonic frequencies. The largest differences between MP2 and CCSD(T) are observed for the harmonic hydrogen bonded frequencies. The CCSD(T) red shifts from the monomer frequencies (Δω) are smaller than the MP2 ones, due to the fact that the former produces shorter elongations (ΔR) of the respective hydrogen bonded OH lengths from the monomer value with respect to the latter. Both the MP2 and CCSD(T) results for the hydrogen bonded frequencies were found to closely follow the relation - Δω = s · ΔR, with a rate of s = 20.3 cm-1 / 0.001 Å. The CCSD

  8. Downhole vibration causing a drill collar failure and solutions

    Directory of Open Access Journals (Sweden)

    Quanta Zhu

    2017-03-01

    Full Text Available In large borehole drilling of some blocks or formations, due to serious downhole vibration, fatigue failure of a drill collar occurs frequently and most washouts and fractures are in thread root. An analysis of the above failure shows that the drill collar fatigue failure is caused by the cyclic bending stress due to serious downhole vibration. Therefore, downhole vibration modes were theoretically analyzed in terms of axial vibration, lateral vibration, stick-slip, and the physical model established by the mechanical vibration field. Then the resonance damage caused by the actual different downhole vibrations and its theoretical basis were analyzed; and according to the downhole drill string lateral vibration and whirling law, the best area to ensure drilling parameter stability based on the given boundary conditions was figured out, and the theory was clarified that in the best area of drilling, the maximum ROP will be achieved by maintaining the drill string stable or eliminating the vibration/stick-slip, meanwhile the stress fatigue of BHA will be reduced or eliminated especially for drill collar. Finally, solutions were provided as follows: (1 According to the special BHA, drilling conditions, together with physical and mathematical models listed above, downhole resonance speed and related parameters to be avoided can be easily figured out. It was also clarified that resonance speed is exactly the vibration speed that need to be avoided; and that the resonance frequency can be avoided with software for vibration analysis in BHA design and application at well sites; (2 V-Stab is a new and efficient tool which can reduce or eliminate downhole lateral vibration and stick-slip.

  9. Kappa Delta Award. Low back pain and whole body vibration.

    Science.gov (United States)

    Pope, M H; Magnusson, M; Wilder, D G

    1998-09-01

    The investigators describe their multifaceted approach to the study of the relationship between whole body vibration and low back pain. The epidemiologic study was a two center study of drivers and sedentary workers in the United States and Sweden. The vibration exposure was measured in the vehicles. It was found that the career vibration exposure was related to low back, neck, and shoulder pain. However, disability was related to job satisfaction. In vivo experiments, using percutaneous pin mounted accelerometers have shown that the natural frequency is at 4.5 Hz. The frequency response is affected by posture, seating, and seat back inclination. The response appears to be determined largely by the rocking of the pelvis. Electromyographic studies have shown that muscle fatigue occurs under whole body vibration. After whole body vibration exposure the muscle response to a sudden load has greater latency. Vehicle driving may be a reason for low back pain or herniated nucleus pulposus. Prolonged seating exposure, coupled with the whole body vibration, should be reduced for those recovering from these problems. Vibration attenuating seats and correct ergonomic layout of the cabs may reduce the risks of recurrence.

  10. ERPWAVELAB A toolbox for multi-channel analysis of time-frequency transformed event related potentials

    DEFF Research Database (Denmark)

    Mørup, Morten; Hansen, Lars Kai; Arnfred, Sidse M.

    2006-01-01

    The toolbox 'ERPWAVELAB' is developed for multi-channel time-frequency analysis of event related activity of EEG and MEG data. The toolbox provides tools for data analysis and visualization of the most commonly used measures of time-frequency transformed event related data as well as data...

  11. The Event-Related Low-Frequency Activity of Highly and Average Intelligent Children

    Science.gov (United States)

    Liu, Tongran; Shi, Jiannong; Zhao, Daheng; Yang, Jie

    2008-01-01

    Using time-frequency analysis techniques to investigate the event-related low-frequency (delta: 0.5-4 Hz; theta: 4-8 Hz) activity of auditory event-related potentials (ERPs) data of highly and average intelligent children, 18 intellectually gifted children, and 18 intellectually average children participated the present study. Present findings…

  12. Personality disorder symptoms are differentially related to divorce frequency.

    Science.gov (United States)

    Disney, Krystle L; Weinstein, Yana; Oltmanns, Thomas F

    2012-12-01

    Divorce is associated with a multitude of outcomes related to health and well-being. Data from a representative community sample (N = 1,241) of St. Louis residents (ages 55-64) were used to examine associations between personality pathology and divorce in late midlife. Symptoms of the 10 DSM-IV personality disorders were assessed with the Structured Interview for DSM-IV Personality and the Multisource Assessment of Personality Pathology (both self and informant versions). Multiple regression analyses showed Paranoid and Histrionic personality disorder symptoms to be consistently and positively associated with number of divorces across all three sources of personality assessment. Conversely, Avoidant personality disorder symptoms were negatively associated with number of divorces. The present paper provides new information about the relationship between divorce and personality pathology at a developmental stage that is understudied in both domains. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  13. Personality Disorder Symptoms Are Differentially Related to Divorce Frequency

    Science.gov (United States)

    Disney, Krystle L.; Weinstein, Yana; Oltmanns, Thomas F.

    2013-01-01

    Divorce is associated with a multitude of outcomes related to health and well-being. Data from a representative community sample (N = 1,241) of St. Louis residents (ages 55–64) were used to examine associations between personality pathology and divorce in late midlife. Symptoms of the 10 DSM–IV personality disorders were assessed with the Structured Interview for DSM–IV Personality and the Multisource Assessment of Personality Pathology (both self and informant versions). Multiple regression analyses showed Paranoid and Histrionic personality disorder symptoms to be consistently and positively associated with number of divorces across all three sources of personality assessment. Conversely, Avoidant personality disorder symptoms were negatively associated with number of divorces. The present paper provides new information about the relationship between divorce and personality pathology at a developmental stage that is understudied in both domains. PMID:23244459

  14. Effects of 8 weeks of vibration training at different frequencies (1 or 15 Hz) in senior sportsmen on torque and force development and of 1 year of training on muscle fibers.

    Science.gov (United States)

    Kern, H; Kovarik, J; Franz, C; Vogelauer, M; Löfler, S; Sarabon, N; Grim-Stieger, M; Biral, D; Adami, N; Carraro, U; Zampieri, S; Hofer, Ch

    2010-02-01

    To examine the effects of 8 weeks of vibration training at different frequencies (1 and 15 Hz) on maximal isometric torque and force development in senior sportsmen, and of 1 year of heavy-resistance and vibration trainings on muscle fibers. Seven healthy senior sportsmen (mean age: 69.0 +/- 5.4 years) performed an 8 weeks of strength training of knee extensors. Vibrations were applied vertically to the axis of movement during training. One leg of each subject was trained at a frequency of 1 Hz, while the other leg was trained at 15 Hz. Measures of isometric peak torque (at knee-angles of 60, 90 and 120 degrees ) and force development were recorded before and after training. Four sportsmen continued a year-long heavy-resistance training adding every second week a session of vibration training. After training, muscle biopsies were harvested from their quadriceps muscles and used for structural analyses. Morphometry of muscle fibers was performed by light microscopy. Immunohistochemistry using anti-MHCemb and anti-N-CAM antibodies was performed to measure potential muscle damage. Data from muscle morphometry were compared to that of a series of vastus lateralis biopsies harvested from 12 young sportsmen and four healthy elderly. Our results showed a significant increase in isometric peak torque at both 1 and 15 Hz vibration frequency in all three measured angles of the knee. There was no significant difference between the two frequencies, but we could find a higher increase in percentage of maximum power after the 1 Hz training. The results of force development showed a slight increase at the 1 Hz training in measured time frames from 0 to 50 and 200 ms, without statistical significance. A trend to significance was found at the 1 Hz training at the time window up to 200 ms. The 15 Hz training showed no significant changes of force development. Muscle biopsies show that the muscles of these well trained senior sportsmen contain muscle fibers which are 35% larger than

  15. Phase behaviour of transfer functions in vibrating systems

    DEFF Research Database (Denmark)

    Zhu, Jianyuan; Ohlrich, Mogens

    1998-01-01

    This paper investigates the applicabilities of pole-zero models and wave propagation theory in estimating the phase characteristics of vibrating systems. The measured phase spectra are compared with the estimated reverberant phase limit and wave propagation phase. The relations between transfer...... on frequency in this band, but from the transition frequency and onwards the phase increases only with the square root of frequency. This behaviour is characteristic for free propagating waves....

  16. Vibration perception threshold in relation to postural control and fall risk assessment in elderly.

    Science.gov (United States)

    de Mettelinge, Tine Roman; Calders, Patrick; Palmans, Tanneke; Vanden Bossche, Luc; Van Den Noortgate, Nele; Cambier, Dirk

    2013-09-01

    This study investigates (i) the potential discriminative role of a clinical measure of peripheral neuropathy (PN) in assessing postural performance and fall risk and (ii) whether the integration of a simple screening vibration perception threshold (VPT) for PN in any physical (fall risk) assessment among elderly should be recommended, even if they do not suffer from DM. One hundred and ninety-five elderly were entered in a four-group model: DM with PN (D+; n = 75), DM without PN (D-; n = 28), non-diabetic elderly with idiopathic PN (C+; n = 31) and non-diabetic elderly without PN (C-; n = 61). Posturographic sway parameters were captured during different static balance conditions (AMTI AccuGait, Watertown, MA). VPT, fall data, Mini-Mental State Examination and Clock Drawing Test were registered. Two-factor repeated-measures ANOVA was used to compare between groups and across balance conditions. The groups with PN demonstrated a strikingly comparable, though bigger sway, and a higher prospective fall incidence than their peers without PN. The indication of PN, irrespective of its cause, interferes with postural control and fall incidence. The integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. Implications for Rehabilitation The indication of peripheral neuropathy (PN), irrespective of its cause, interferes with postural control and fall incidence. Therefore, the integration of a simple screening for PN (like bio-thesiometry) in any fall risk assessment among elderly is highly recommended. It might be useful to integrate somatosensory stimulation in rehabilitation programs designed for fall prevention.

  17. Quality Structures, Vibrational Frequencies, and Thermochemistry of the Products of Reaction of BrHg(•) with NO2, HO2, ClO, BrO, and IO.

    Science.gov (United States)

    Jiao, Yuge; Dibble, Theodore S

    2015-10-22

    Quantum chemical calculations have been carried out to investigate the structures, vibrational frequencies, and thermochemistry of the products of BrHg(•) reactions with atmospherically abundant radicals Y(•) (Y = NO2, HO2, ClO, BrO, or IO). The coupled cluster method with single and double excitations (CCSD), combined with relativistic effective core potentials, is used to determine the equilibrium geometries and harmonic vibrational frequencies of BrHgY species. The BrHg-Y bond energies are refined using CCSD with a noniterative estimate of the triple excitations (CCSD(T)) combined with core-valence correlation consistent basis sets. We also assess the performances of various DFT methods for calculating molecular structures and vibrational frequencies of BrHgY species. We attempted to estimate spin-orbit coupling effects on bond energies computed by comparing results from standard and two-component spin-orbit density functional theory (DFT) but obtained unphysical results. The results of the present work will provide guidance for future studies of the halogen-initiated chemistry of mercury.

  18. Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koffas, Telly Stelianos [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical parameters that influence the molecular composition and ordering of a polymer chain's side groups at the polymer/air and polymer/liquid interfaces. In general, side groups with increasingly greater hydrophobic character will be more surface active in air. Larger side groups impose steric restrictions, thus they will tend to be more randomly ordered than smaller hydrophobic groups. If exposed to a hydrophilic environment, such as water, the polymer chain will attempt to orient more of its hydrophilic groups to

  19. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  20. Vibration test report for in-chimney bracket and instrumented fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket.

  1. Predicting the health risks related to whole-body vibration and shock: a comparison of alternative assessment methods for high-acceleration events in vehicles.

    Science.gov (United States)

    Rantaharju, Taneli; Mansfield, Neil J; Ala-Hiiro, Jussi M; Gunston, Thomas P

    2015-01-01

    In this paper, alternative assessment methods for whole-body vibration and shocks are compared by means of 70 vibration samples measured from 13 work vehicles, deliberately selected to represent periods containing shocks. Five methodologies (ISO 2631-1:1997, BS 6841:1987, ISO 2631-5:2004, DIN SPEC 45697:2012 and one specified by Gunston [2011], 'G-method') were applied to the vibration samples. In order to compare different evaluation metrics, limiting exposures were determined by calculating times to reach the upper limit thresholds given in the methods. Over 10-fold shorter times to exposure thresholds were obtained for the tri-axial VDV (BS 6841) than for the dominant r.m.s. (ISO 2631-1) when exposures were of high magnitude or contained substantial shocks. Under these exposure conditions, the sixth power approaches (ISO 2631-5, DIN SPEC, G-method) are more stringent than a fourth power VDV method. The r.m.s. method may lead to misleading outcomes especially if a lengthy measurement includes a small number of severe impacts. In conclusion, methodologies produce different evaluations of the vibration severity depending on the exposure characteristics, and the correct method must be selected. Health risks related to whole-body vibration and high acceleration events may be predicted by means of several different methods. This study compares five such methods giving emphasis on their applicability in the presence of shocks. The results showed significant discrepancies between the risk assessments, especially for the most extreme exposures.

  2. Properties of low-frequency head-related transfer functions in the barn owl (Tyto alba).

    Science.gov (United States)

    Hausmann, Laura; von Campenhausen, Mark; Wagner, Hermann

    2010-09-01

    The barn owl (Tyto alba) possesses several specializations regarding auditory processing. The most conspicuous features are the directionally sensitive facial ruff and the asymmetrically arranged ears. The frequency-specific influence of these features on sound has consequences for sound localization that might differ between low and high frequencies. Whereas the high-frequency range (>3 kHz) is well investigated, less is known about the characteristics of head-related transfer functions for frequencies below 3 kHz. In the present study, we compared 1/3 octaveband-filtered transfer functions of barn owls with center frequencies ranging from 0.5 to 9 kHz. The range of interaural time differences was 600 micros at frequencies above 4 kHz, decreased to 505 micros at 3 kHz and increased again to about 615 micros at lower frequencies. The ranges for very low (0.5-1 kHz) and high frequencies (5-9 kHz) were not statistically different. Interaural level differences and monaural gains increased monotonically with increasing frequency. No systematic influence of the body temperature on the measured localization cues was observed. These data have implications for the mechanism underlying sound localization and we suggest that the barn owl's ears work as pressure receivers both in the high- and low-frequency ranges.

  3. Vibronic energy map and excited state vibrational characteristics of magnesium myoglobin determined by energy-selective fluorescence.

    OpenAIRE

    Kaposi, A D; Vanderkooi, J. M.

    1992-01-01

    The vibrational frequencies of the singlet excited state of Mg-substituted myoglobin and relative absorption probabilities were determined by fluorescence line-narrowing spectroscopy. These spectra contain information on the structure of the excited state species, and the availability of vibrationally resolved spectra from excited state biomolecules should aid in elucidating their structure and reactivity.

  4. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.

    2014-01-01

    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...... peaks in the nonlinear frequency response for a large range of forcing amplitudes. An analytical tuning procedure is developed and provides the load-deflection characteristic of the NLTVA. Based on this prescribed relation, the NLTVA design is performed by two different approaches, namely thanks to (i...

  5. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    Directory of Open Access Journals (Sweden)

    Gunes Uzer

    Full Text Available The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43 mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1% or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  6. On the relation between activity-related frequency shifts and the sunspot distribution over the solar cycle 23

    Directory of Open Access Journals (Sweden)

    Santos Ângela R. G.

    2017-01-01

    Full Text Available The activity-related variations in the solar acoustic frequencies have been known for 30 years. However, the importance of the different contributions is still not well established. With this in mind, we developed an empirical model to estimate the spot-induced frequency shifts, which takes into account the sunspot properties, such as area and latitude. The comparison between the model frequency shifts obtained from the daily sunspot records and those observed suggests that the contribution from a stochastic component to the total frequency shifts is about 30%. The remaining 70% is related to a global, long-term variation. We also propose a new observable to investigate the short-and mid-term variations of the frequency shifts, which is insensitive to the long-term variations contained in the data. On the shortest time scales the variations in the frequency shifts are strongly correlated with the variations in the total area covered by sunspots. However, a significant loss of correlation is still found, which cannot be fully explained by ignoring the invisible side of the Sun when accounting for the total sunspot area. We also verify that the times when the frequency shifts and the sunspot areas do not vary in a similar way tend to coincide with the times of the maximum amplitude of the quasi-biennial variations found in the seismic data.

  7. The Relative Weight of Temporal Envelope Cues in Different Frequency Regions for Mandarin Sentence Recognition

    Directory of Open Access Journals (Sweden)

    Yang Guo

    2017-01-01

    Full Text Available Acoustic temporal envelope (E cues containing speech information are distributed across the frequency spectrum. To investigate the relative weight of E cues in different frequency regions for Mandarin sentence recognition, E information was extracted from 30 contiguous bands across the range of 80–7,562 Hz using Hilbert decomposition and then allocated to five frequency regions. Recognition scores were obtained with acoustic E cues from 1 or 2 random regions from 40 normal-hearing listeners. While the recognition scores ranged from 8.2% to 16.3% when E information from only one region was available, the scores ranged from 57.9% to 87.7% when E information from two frequency regions was presented, suggesting a synergistic effect among the temporal E cues in different frequency regions. Next, the relative contributions of the E information from the five frequency regions to sentence perception were computed using a least-squares approach. The results demonstrated that, for Mandarin Chinese, a tonal language, the temporal E cues of Frequency Region 1 (80–502 Hz and Region 3 (1,022–1,913 Hz contributed more to the intelligence of sentence recognition than other regions, particularly the region of 80–502 Hz, which contained fundamental frequency (F0 information.

  8. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-11-01

    Full Text Available A novel wireless and passive surface acoustic wave (SAW based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements.

  9. Vibrational Probes: From Small Molecule Solvatochromism Theory and Experiments to Applications in Complex Systems.

    Science.gov (United States)

    Błasiak, Bartosz; Londergan, Casey H; Webb, Lauren J; Cho, Minhaeng

    2017-04-18

    vibrational Stark effect theory has been considered to be quite appealing and, even in some cases, e.g., carbonyl stretch modes in amide, ester, ketone, and carbonate compounds or proteins, it works quantitatively well, which makes it highly useful in determining the strength of local electric field around the IR chromophore. However, noting that the vibrational frequency shift results from changes of solute-solvent intermolecular interaction potential along its normal coordinate, Pauli exclusion repulsion, polarization, charge transfer, and dispersion interactions, in addition to the electrostatic interaction between distributed charges of both vibrational chromophore and solvent molecules, are to be properly included in the theoretical description of vibrational solvatochromism. Since the electrostatic and nonelectrostatic intermolecular interaction components have distinctively different distance and orientation dependences, they affect the solvatochromic vibrational properties in a completely different manner. Over the past few years, we have developed a systematic approach to simulating vibrational solvatochromic data based on the effective fragment potential approach, one of the most accurate and rigorous theories on intermolecular interactions. We have further elucidated the interplay of local electric field with the general vibrational solvatochromism of small IR probes in either solvents or complicated biological systems, with emphasis on contributions from non-Coulombic intermolecular interactions to vibrational frequency shifts and fluctuations. With its rigorous foundation and close relation to quantitative interpretation of experimental data, this and related theoretical approaches and experiments will be of use in studying and quantifying the structure and dynamics of biomolecules with unprecedented time and spatial resolution when combined with time-resolved vibrational spectroscopy and chemically sensitive vibrational imaging techniques.

  10. Continuum vibration analysis of dielectric elastomer membranes

    Science.gov (United States)

    Nalbach, S.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomer (DE) transducers are well known for the possibility of responding to an applied voltage with relatively large actuation strains, often larger than 100%, and for their relatively high actuation bandwidth (order of several kHz). However, up to date there are relatively few applications which use the dynamic behavior of DEs. Some relevant examples include loudspeakers and fluid dispensers. Motivated by the potentialities of DEs in high-frequency applications, the aim of this work is the investigation of the continuous vibrations observed when DE membranes are actuated electrically. The system under analysis consists of a circular DE membrane pre-loaded with a spring. While exciting the DE membrane actuator with high-voltage, high-frequency signals, the motion of the membrane is detected with a 3D laser vibrometer which uses Doppler effect to reconstruct the system spectrum and vibration modes. An extensive experimental investigation is performed to study the influence of system parameters, such as membrane geometry and pre-stress, on the membrane frequency spectrum and vibrational modes.

  11. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  12. Vibration fatigue using modal decomposition

    Science.gov (United States)

    Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.

  13. Frequency and damping ratio assessment of high-rise buildings using an Automatic Model-Based Approach applied to real-world ambient vibration recordings

    Science.gov (United States)

    Nasser, Fatima; Li, Zhongyang; Gueguen, Philippe; Martin, Nadine

    2016-06-01

    This paper deals with the application of the Automatic Model-Based Approach (AMBA) over actual buildings subjected to real-world ambient vibrations. In a previous paper, AMBA was developed with the aim of automating the estimation process of the modal parameters and minimizing the estimation error, especially that of the damping ratio. It is applicable over a single-channel record, has no parameters to be set, and no manual initialization phase. The results presented in this paper should be regarded as further documentation of the approach over real-world ambient vibration signals.

  14. Analysis of cracked RC beams under vibration

    Science.gov (United States)

    Capozucca, R.; Magagnini, E.

    2017-05-01

    Among the methods of monitoring of integrity, vibration analysis is more convenient as non-destructive testing (NDT) method. Many aspects regarding the vibration monitoring of the structural integrity of damaged RC elements have not been completely analysed in literature. The correlation between the development of the crack pattern on concrete surface under bending loadings, as well as the width and depth of cracks, and the variation of dynamic parameters on a structural element is an important aspects that has to be more investigated. This paper deals with cracked RC beams controlled by NDT based on natural vibration, which may be correlated to damage degree due to cracking of concrete under severe state of loading. An experimental investigation on the assessment of RC beams in different scale under loading has been done through dynamic tests in different constraint conditions of edges measuring frequency values and frequency variation. Envelope of Frequency Response Functions (FRFs) are shown and the changes of natural frequency values are related to the damage degree of RC beams subjected to static tests. Finally, a comparison between data obtained by finite element analysis and experimental results is shown.

  15. Free Vibration of Uncertain Unsymmetrically Laminated Beams

    Science.gov (United States)

    Kapania, Rakesh K.; Goyal, Vijay K.

    2001-01-01

    Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.

  16. Resonant vibration control of rotating beams

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2011-01-01

    Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....

  17. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  18. Time-Frequency Data Reduction for Event Related Potentials: Combining Principal Component Analysis and Matching Pursuit

    Directory of Open Access Journals (Sweden)

    Selin Aviyente

    2010-01-01

    Full Text Available Joint time-frequency representations offer a rich representation of event related potentials (ERPs that cannot be obtained through individual time or frequency domain analysis. This representation, however, comes at the expense of increased data volume and the difficulty of interpreting the resulting representations. Therefore, methods that can reduce the large amount of time-frequency data to experimentally relevant components are essential. In this paper, we present a method that reduces the large volume of ERP time-frequency data into a few significant time-frequency parameters. The proposed method is based on applying the widely used matching pursuit (MP approach, with a Gabor dictionary, to principal components extracted from the time-frequency domain. The proposed PCA-Gabor decomposition is compared with other time-frequency data reduction methods such as the time-frequency PCA approach alone and standard matching pursuit methods using a Gabor dictionary for both simulated and biological data. The results show that the proposed PCA-Gabor approach performs better than either the PCA alone or the standard MP data reduction methods, by using the smallest amount of ERP data variance to produce the strongest statistical separation between experimental conditions.

  19. Quantifying discipline practices using absolute versus relative frequencies: clinical and research implications for child welfare.

    Science.gov (United States)

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J

    2014-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139). Discipline practices (aggressive and nonaggressive) were assessed using the Conflict Tactics Scale. The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects.

  20. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  1. Vibration Analysis Of a Self-Excited Elastic Beam

    Directory of Open Access Journals (Sweden)

    M. A. Barrón-M

    2010-08-01

    Full Text Available The vibration behavior and the energy exchange among the normal modes of a clamped-free self-excited elasticbeam are analyzed in this work. To model this kind of beam, the damping term of a van der Pol oscillator is directlyadded to the equation of a linear elastic beam, yielding a single nonlinear partial differential equation. To solve thisequation, a spectral method is employed. Three vibration modes are considered in the analysis, and the values of theself-exciting constant are varied in order to cover from linear to nonlinear vibration behavior. Multiple frequencies ofthe nonlinear beam are determined through the power spectral density of the beam free-end time series. Given thatthis relatively simple model mimics at least in a qualitative way some key issues of the fluid-structure problem, it couldbe potentially useful for fatigue studies and vibration analysis of rotating blades in turbomachinery.

  2. Dispersion relations for low-frequency waves in a warm, underdense, two-fluid plasma

    Science.gov (United States)

    Kakuwa, Jun

    2017-10-01

    Analytical forms of dispersion relations for three lower-frequency waves in a two-fluid plasma are presented. In underdense plasmas, ωp2≲Ωce 2, that is, low density or strongly magnetized plasmas, where ωp and Ωce are respectively the plasma frequency and the electron cyclotron frequency, the displacement current can become important in higher-frequency (non-magnetohydrodynamic) region. Focusing on only three branches that become magnetohydrodynamic waves in the low-frequency limit, we derive dispersion relations applicable to both underdense and overdense plasmas by the full set of equations of two-fluid plasmas including the displacement current. It is shown that our analytical results well agree with the exact numerical ones in all frequency ranges when the following conditions are satisfied: normal (i.e., not pair) plasma; low plasma β, and not extremely small electron to ion temperature ratio, me/mi≪Te/Ti, while more exact dispersion relations are needed to perform polarization analysis.

  3. Incorporating a disturbance observer with direct velocity feedback for control of human-induced vibrations

    Science.gov (United States)

    Nyawako, Donald; Reynolds, Paul; Hudson, Emma

    2016-04-01

    Feedback control strategies are desirable for disturbance rejection of human-induced vibrations in civil engineering structures as human walking forces cannot easily be measured. In relation to human-induced vibration control studies, most past researches have focused on floors and footbridges and the widely used linear controller implemented in the trials has been the direct velocity feedback (DVF) scheme. With appropriate compensation to enhance its robustness, it has been shown to be effective at damping out the problematic modes of vibration of the structures in which the active vibration control systems have been implemented. The work presented here introduces a disturbance observer (DOB) that is used with an outer-loop DVF controller. Results of analytical studies presented in this work based on the dynamic properties of a walkway bridge structure demonstrate the potential of this approach for enhancing the vibration mitigation performance offered by a purely DVF controller. For example, estimates of controlled frequency response functions indicate improved attenuation of vibration around the dominant frequency of the walkway bridge structure as well as at higher resonant frequencies. Controlled responses from three synthesized walking excitation forces on a walkway bridge structure model show that the inclusion of the disturbance observer with an outer loop DVF has potential to improve on the vibration mitigation performance by about 3.5% at resonance and 6-10% off-resonance. These are realised with hard constraints being imposed on the low frequency actuator displacements.

  4. Actuator design for vibration assisted machining of high performance materials with ultrasonically modulated cutting speed

    Science.gov (United States)

    Rinck, Philipp M.; Sitzberger, Sebastian; Zaeh, Michael F.

    2017-06-01

    In vibration assisted machining, an additional high-frequency oscillation is superimposed on the kinematics of the conventional machining process. This generates oscillations on the cutting edge in the range of a few micrometers, thereby causing a high-frequency change in the cutting speed or the feed. Consequently, a reduction of cutting forces, an increase of the tool life as well as an improvement of the workpiece quality can be achieved. In milling and grinding it has been shown that these effects are already partially present in the case of a vibration excitation in axial direction relative to the workpiece, which is perpendicular to the cutting direction. Further improvements of the process results can be achieved by superimposing a vibration in cutting direction and thus modifying the cutting speed at high frequency. The presented work shows the design of an ultrasonic actuator that enables vibration-assisted milling and grinding with ultrasonically modulated cutting speed. The actuator system superimposes a longitudinal torsional ultrasonic oscillation to the milling or grinding tool. It uses a bolt clamped Langevin transducer and a helically slotted horn, which degenerates the longitudinal vibration into a combined longitudinal torsional (L-T) vibration at the output surface. A finite element analysis is used to determine the vibration resonance frequency and mode shapes to maximize the torsional output. Afterwards, the simulation has been experimentally validated.

  5. Comparative Vibration Levels Perceived Among Species in a Laboratory Animal Facility

    Science.gov (United States)

    Norton, John N; Kinard, Will L; Reynolds, Randall P

    2011-01-01

    The current study was performed to determine the vibration levels that were generated in cages on a ventilated rack by common construction equipment in frequency ranges likely to be perceived by humans, rats, and mice. Vibration generated by the ventilated rack blower caused small but significant increases in some of the abdominal, thoracic, and head resonance frequency ranges (RFR) and sensitivity frequency ranges (SFR) in which each species is most likely to be affected by and perceive vibration, respectively. Vibration caused by various items of construction equipment at 3 ft from the cage were evaluated relative to the RFR and SFR of humans, rats, and mice in 3 anatomic locations. In addition, the vibration levels in the RFR and SFR that resulted from the use of a large jackhammer and were measured at various locations and distances in the facility and evaluated in terms of humans, rats, and mice in 3 anatomic locations. Taken together, the data indicate that a given vibration source generates vibration in frequency ranges that are more likely to affect rats and mice as compared with humans. PMID:22330711

  6. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    Science.gov (United States)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  7. Whole-body vibration dosage alters leg blood flow

    NARCIS (Netherlands)

    Lythgo, Noel; Eser, Prisca; de Groot, Patricia; Galea, Mary

    The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used

  8. High-accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 11 A' l-C3H-: A Possible Link to Lines Observed in the Horsehead Nebula Photodissociation Region

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-07-01

    It has been shown that rotational lines observed in the Horsehead nebula photodissociation region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 1 A' C3H-. The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D eff for C3H- is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H+. As a result, 1 1 A' C3H- is a more viable candidate for these observed rotational transitions. It has been previously proposed that at least C6H- may be present in the Horsehead nebular PDR formed by way of radiative attachment through its dipole-bound excited state. C3H- could form in a similar way through its dipole-bound state, but its valence excited state increases the number of relaxation pathways possible to reach the ground electronic state. In turn, the rate of formation for C3H- could be greater than the rate of its destruction. C3H- would be the seventh confirmed interstellar anion detected within the past decade and the first C n H- molecular anion with an odd n.

  9. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  10. An algorithm for on-line detection of high frequency oscillations related to epilepsy.

    Science.gov (United States)

    López-Cuevas, Armando; Castillo-Toledo, Bernardino; Medina-Ceja, Laura; Ventura-Mejía, Consuelo; Pardo-Peña, Kenia

    2013-06-01

    Recent studies suggest that the appearance of signals with high frequency oscillations components in specific regions of the brain is related to the incidence of epilepsy. These oscillations are in general small in amplitude and short in duration, making them difficult to identify. The analysis of these oscillations are particularly important in epilepsy and their study could lead to the development of better medical treatments. Therefore, the development of algorithms for detection of these high frequency oscillations is of great importance. In this work, a new algorithm for automatic detection of high frequency oscillations is presented. This algorithm uses approximate entropy and artificial neural networks to extract features in order to detect and classify high frequency components in electrophysiological signals. In contrast to the existing algorithms, the one proposed here is fast and accurate, and can be implemented on-line, thus reducing the time employed to analyze the experimental electrophysiological signals. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of radio frequency identification-related radiation on in vitro biologics.

    Science.gov (United States)

    Uysal, Ismail; Hohberger, Clive; Rasmussen, R Scott; Ulrich, David A; Emond, Jean-Pierre; Gutierrez, Alfonso

    2012-01-01

    The recent developments on the use of e-pedigree to identify the chain of custody of drugs suggests the use of advanced track and trace technologies such as two-dimensional barcodes and radio frequency identification (RFID) tags. RFID technology is used mainly for valuable commodities such as pharmaceutical products while incorporating additional functionalities like monitoring environmental variables to ensure product safety and quality. In its guidance for the use of RFID technologies for drugs (Compliance Policy Guide Section 400.210), the Food and Drug Administration outlined multiple parameters that would apply to any study or application using RFID. However, drugs approved under a Biologics License Application or protein drugs covered by a New Drug Application were excluded mainly due to concerns about the effects of radio frequency radiation (thermal and/or non-thermal) on biologics. Even though the thermal effects of radio frequency on biologics are relatively well understood, there are few studies in the literature about the non-thermal effects of radio frequency with regards to the protein structure integrity. In this paper, we analyze the non-thermal effects of radio frequency radiation by exposing a wide variety of biologics including biopharmaceuticals with vaccines, hormones, and immunoglobulins, as well as cellular blood products such as red blood cells and whole blood-derived platelets as well as fresh frozen plasma. In order to represent the majority of the frequency spectrum used in RFID applications, five different frequencies (13.56 MHz, 433 MHz, 868 MHz, 915 MHz, and 2.4 GHz) are used to account for the most commonly used international frequency bands for RFID. With the help of specialized radio frequency signal-generating hardware, magnetic and electromagnetic fields are created around the exposed products with power levels greater than Federal Communications Commission-regulated limits. The in vitro test results on more than 100

  12. Sex ratios, mating frequencies and relative abundance of sympatric millipedes in the genus Chersastus (Diplopoda: Pachybolidae

    Directory of Open Access Journals (Sweden)

    Mark Ian Cooper

    2014-12-01

    Full Text Available Three hypotheses exist for explaining climbing behavior in millipedes: 1 waterlogging, 2 detritus limiting, and 3 mate avoidance. Data of sex ratios, mating frequency and relative abundance are provided to suggest an alternative explanation for the pattern in sympatric forest millipedes. Sex ratio differences - from equality - were tested using a G-test comparing millipedes on and above ground. Mating frequencies were calculated based on the percentage of paired individuals. Relative abundance may correlate with male-biases in the sex ratios. All three factors suggest Chersastus inscriptus has a higher reproductive potential than C. anulatus. This is evidence for mating hotspots.

  13. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  14. Semi-active vibration absorber based on real-time controlled MR damper

    Science.gov (United States)

    Weber, F.

    2014-06-01

    A semi-active vibration absorber with real-time controlled magnetorheological damper (MR-SVA) for the mitigation of harmonic structural vibrations is presented. The MR damper force targets to realize the frequency and damping adaptations to the actual structural frequency according to the principle of the undamped vibration absorber. The relative motion constraint of the MR-SVA is taken into account by an adaptive nonlinear control of the internal damping of the MR-SVA. The MR-SVA is numerically and experimentally validated for harmonic excitation of the primary structure when the natural frequency of the passive mass spring system of the MR-SVA is correctly tuned to the targeted structural resonance frequency and when de-tuning is present. The results demonstrate that the MR-SVA outperforms the passive TMD at structural resonance frequency by at least 12.4% and up to 60.0%.

  15. Individual Differences in Frequency of Inner Speech: Differential Relations with Cognitive and Non-cognitive Factors

    Directory of Open Access Journals (Sweden)

    Xuezhu Ren

    2016-11-01

    Full Text Available Inner speech plays a crucial role in behavioral regulation and the use of inner speech is very common among adults. However, less is known about individual differences in the frequency of inner speech use and about the underlying processes that may explain why people exhibit individual differences in the frequency of inner speech use. This study was conducted to investigate how individual differences in the frequency of inner speech use are related to cognitive and non-cognitive factors. Four functions of inner speech including self-criticism, self-reinforcement, self-management, and social assessment measured by an adapted version of Brinthaupt’s Self-Talk Scale were examined. The cognitive factors that were considered included executive functioning and complex reasoning and the non-cognitive factors consisted of trait anxiety and impulsivity. Data were collected from a large Chinese sample. Results revealed that anxiety and impulsivity were mainly related to the frequency of the affective function of inner speech (self-criticism and self-reinforcement and executive functions and complex reasoning were mainly related to the frequency of the cognitive, self-regulatory function of inner speech (self-management.

  16. Bayesian analysis of rotating machines - A statistical approach to estimate and track the fundamental frequency

    DEFF Research Database (Denmark)

    Pedersen, Thorkild Find

    2003-01-01

    Rotating and reciprocating mechanical machines emit acoustic noise and vibrations when they operate. Typically, the noise and vibrations are concentrated in narrow frequency bands related to the running speed of the machine. The frequency of the running speed is referred to as the fundamental...... frequency estimation techniques are considered for predicting the true fundamental frequency from measured acoustic noise or vibration signal. Among the methods are auto-correlation based methods, subspace methods, interpolated Fourier transform methods, and adaptive filters. A modified version...... for the probability density function (PDF) of the parameters conditioned on observation. Considering the fundamental frequency as a parameter and the acoustic and vibration signals as observations, a novel Bayesian frequency estimator is developed. With simulations the new estimator is shown to be superior to any...

  17. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  18. Natural frequencies of a flat viaduct road part simply supported on ...

    Indian Academy of Sciences (India)

    related environmental pollution. In this study, bending vibrations of rectangular plate viaduct roads, which are supported by six fixed elements of rectangular cross-sectional elements are con- sidered. Natural frequencies are obtained using the ...

  19. Nonlocal vibration and biaxial buckling of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.C. [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); Zhang, Y.Q., E-mail: cyqzhang@zju.edu.cn [College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058 (China); State Key Laboratory of Mechanical Structural Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China); Fan, L.F. [College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100084 (China)

    2017-04-11

    The general equation for transverse vibration of double-viscoelastic-FGM-nanoplate system with viscoelastic Pasternak medium in between and each nanoplate subjected to in-plane edge loads is formulated on the basis of the Eringen's nonlocal elastic theory and the Kelvin model. The factors of the structural damping, medium damping, small size effect, loading ratio, and Winkler modulus and shear modulus of the medium are incorporated in the formulation. Based on the Navier's method, the analytical solutions for vibrational frequency and buckling load of the system with simply supported boundary conditions are obtained. The influences of these factors on vibrational frequency and buckling load of the system are discussed. It is demonstrated that the vibrational frequency of the system for the out-of-phase vibration is dependent upon the structural damping, small size effect and viscoelastic Pasternak medium, whereas the vibrational frequency for the in-phase vibration is independent of the viscoelastic Pasternak medium. While the buckling load of the system for the in-phase buckling case has nothing to do with the viscoelastic Pasternak medium, the buckling load for the out-of-phase case is related to the small size effect, loading ratio and Pasternak medium. - Highlights: • Vibration of double-viscoelastic-FGM-nanoplate system under in-plane edge loads is investigated. • Biaxial buckling of the system with simply supported boundary conditions is analyzed. • Explicit expression for the vibrational frequency and buckling load is obtained. • Impacts of viscoelastic Pasternak medium on vibrational frequency and buckling load are discussed. • Influences of structural damping, small size effect and loading ratio are also considered.

  20. Development of a semi-active dynamic vibration absorber for longitudinal vibration of propulsion shaft system based on magnetorheological elastomer

    Science.gov (United States)

    Liu, Gaoyu; Lu, Kun; Zou, Donglin; Xie, Zhongliang; Rao, Zhushi; Ta, Na

    2017-07-01

    The control of the longitudinal pulsating force and the vibration generated is very important to improve the stealth performance of a submarine. Magnetorheological elastomer (MRE) is a kind of intelligent composite material, whose mechanical properties can be continuously, rapidly and reversibly controlled by an external magnetic field. It can be used as variable-stiffness components in the design of a semi-active dynamic vibration absorber (SDVA), which is one of the effective means of longitudinal vibration control. In this paper, an SDVA is designed based on the MRE’s magnetic-induced variable stiffness characteristic. Firstly, a mechanical model of the propulsion shaft system with the SDVA is proposed, theoretically discussed and numerically validated. Then, the mechanical performance of the MRE under different magnetic fields is tested. In addition, the magnetic circuit and the overall structure of the SDVA are designed. Furthermore, electromagnetic and thermodynamic simulations are carried out to guarantee the structural design. The frequency shift property of the SDVA is found through dynamic simulations and validated by a frequency shift experiment. Lastly, the vibration absorption capacity of the SDVA is investigated. The results show that the magnetorheological effect of the MRE and the frequency shift of the SDVA are obvious; the SDVA has relatively acceptable vibration absorption capacity.

  1. LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies

    Science.gov (United States)

    Kokotanekov, G.; Wise, M.; Heald, G. H.; McKean, J. P.; Bîrzan, L.; Rafferty, D. A.; Godfrey, L. E. H.; de Vries, M.; Intema, H. T.; Broderick, J. W.; Hardcastle, M. J.; Bonafede, A.; Clarke, A. O.; van Weeren, R. J.; Röttgering, H. J. A.; Pizzo, R.; Iacobelli, M.; Orrú, E.; Shulevski, A.; Riseley, C. J.; Breton, R. P.; Nikiel-Wroczyński, B.; Sridhar, S. S.; Stewart, A. J.; Rowlinson, A.; van der Horst, A. J.; Harwood, J. J.; Gürkan, G.; Carbone, D.; Pandey-Pommier, M.; Tasse, C.; Scaife, A. M. M.; Pratley, L.; Ferrari, C.; Croston, J. H.; Pandey, V. N.; Jurusik, W.; Mulcahy, D. D.

    2017-09-01

    We present a new analysis of the widely used relation between cavity power and radio luminosity in clusters of galaxies with evidence for strong AGN feedback. We studied the correlation at low radio frequencies using two new surveys - the first alternative data release of the TIFR GMRT Sky Survey (TGSS ADR1) at 148 MHz and LOFAR's firstall-sky survey, the Multifrequency Snapshot Sky Survey (MSSS) at 140 MHz. We find a scaling relation Pcav ∝ Lβ148, with a logarithmic slope of β = 0.51 ± 0.14, which is in good agreement with previous results based on data at 327 MHz. The large scatter present in this correlation confirms the conclusion reached at higher frequencies that the total radio luminosity at a single frequency is a poor predictor of the total jet power. Previous studies have shown that the magnitude of this scatter can be reduced when bolometric radio luminosity corrected for spectral aging is used. We show that including additional measurements at 148 MHz alone is insufficient to improve this correction and further reduce the scatter in the correlation. For a subset of four well-resolved sources, we examined the detected extended structures at low frequencies and compare with the morphology known from higher frequency images and Chandra X-ray maps. In the case of Perseus we discuss details in the structures of the radio mini-halo, while in the 2A 0335+096 cluster we observe new diffuse emission associated with multiple X-ray cavities and likely originating from past activity. For A2199 and MS 0735.6+7421, we confirm that the observed low-frequency radio lobes are confined to the extents known from higher frequencies. This new low-frequency analysis highlights the fact that existing cavity power to radio luminosity relations are based on a relatively narrow range of AGN outburst ages. We discuss how the correlation could be extended using low frequency data from the LOFAR Two-metre Sky Survey (LoTSS) in combination with future, complementary deeper X

  2. Selective attention modulates human auditory brainstem responses: relative contributions of frequency and spatial cues.

    Directory of Open Access Journals (Sweden)

    Alexandre Lehmann

    Full Text Available Selective attention is the mechanism that allows focusing one's attention on a particular stimulus while filtering out a range of other stimuli, for instance, on a single conversation in a noisy room. Attending to one sound source rather than another changes activity in the human auditory cortex, but it is unclear whether attention to different acoustic features, such as voice pitch and speaker location, modulates subcortical activity. Studies using a dichotic listening paradigm indicated that auditory brainstem processing may be modulated by the direction of attention. We investigated whether endogenous selective attention to one of two speech signals affects amplitude and phase locking in auditory brainstem responses when the signals were either discriminable by frequency content alone, or by frequency content and spatial location. Frequency-following responses to the speech sounds were significantly modulated in both conditions. The modulation was specific to the task-relevant frequency band. The effect was stronger when both frequency and spatial information were available. Patterns of response were variable between participants, and were correlated with psychophysical discriminability of the stimuli, suggesting that the modulation was biologically relevant. Our results demonstrate that auditory brainstem responses are susceptible to efferent modulation related to behavioral goals. Furthermore they suggest that mechanisms of selective attention actively shape activity at early subcortical processing stages according to task relevance and based on frequency and spatial cues.

  3. Support Effects in Catalysis Studied by in-situ Sum Frequency Generation Vibrational Spectroscopy and in-situ X-Ray Spectroscopies

    Science.gov (United States)

    Kennedy, Griffin John

    Kinetic measurements are paired with in-situ spectroscopic characterization tools to investigate colloidally based, supported Pt catalytic model systems in order to elucidate the mechanisms by which metal and support work in tandem to dictate activity and selectivity. The results demonstrate oxide support materials, while inactive in absence of Pt nanoparticles, possess unique active sites for the selective conversion of gas phase molecules when paired with an active metal catalyst. In order to establish a paradigm for metal-support interactions using colloidally synthesized Pt nanoparticles the ability of the organic capping agent to inhibit reactivity and interaction with the support must first be assessed. Pt nanoparticles capped by poly(vinylpyrrolidone) (PVP), and those from which the PVP is removed by UV light exposure, are investigated for two reactions, the hydrogenation of ethylene and the oxidation of methanol. It is shown that prior to PVP removal the particles are moderately active for both reactions. Following removal, the activity for the two reactions diverges, the ethylene hydrogenation rate increases 10-fold, while the methanol oxidation rate decreases 3-fold. To better understand this effect the capping agent prior to, and the residual carbon remaining after UV treatment are probed by sum frequency generation vibrational spectroscopy. Prior to removal no major differences are observed when the particles are exposed to alternating H2 and O2 environments. When the PVP is removed, carbonaceous fragments remain on the surface that dynamically restructure in H2 and O2. These fragments create a tightly bound shell in an oxygen environment and a porous coating of hydrogenated carbon in the hydrogen environment. Reaction rate measurements of thermally cleaned PVP and oleic acid capped particles show this effect to be independent of cleaning method or capping agent. In all this demonstrates the ability of the capping agent to mediate nanoparticle catalysis

  4. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  5. Relative Fundamental Frequency Distinguishes between Phonotraumatic and Non-Phonotraumatic Vocal Hyperfunction

    Science.gov (United States)

    Murray, Elizabeth S. Heller; Lien, Yu-An S.; Van Stan, Jarrad H.; Mehta, Daryush D.; Hillman, Robert E.; Noordzij, J. Pieter; Stepp, Cara E.

    2017-01-01

    Purpose: The purpose of this article is to examine the ability of an acoustic measure, relative fundamental frequency (RFF), to distinguish between two subtypes of vocal hyperfunction (VH): phonotraumatic (PVH) and non-phonotraumatic (NPVH). Method: RFF values were compared among control individuals with typical voices (N = 49), individuals with…

  6. The Relationship between Relative Fundamental Frequency and a Kinematic Estimate of Laryngeal Stiffness in Healthy Adults

    Science.gov (United States)

    McKenna, Victoria S.; Heller Murray, Elizabeth S.; Lien, Yu-An S.; Stepp, Cara E.

    2016-01-01

    Purpose: This study examined the relationship between the acoustic measure relative fundamental frequency (RFF) and a kinematic estimate of laryngeal stiffness. Method: Twelve healthy adults (mean age = 22.7 years, SD = 4.4; 10 women, 2 men) produced repetitions of /ifi/ while varying their vocal effort during simultaneous acoustic and video…

  7. Sex Comparisons for Relative Peak Torque and Electromyographic Mean Frequency during Fatigue

    Science.gov (United States)

    Stock, Matt S.; Beck, Travis W.; DeFreitas, Jason M.; Ye, Xin

    2013-01-01

    Purpose: This study compared the relative peak torque and normalized electromyographic (EMG) mean frequency (MNF) responses during fatiguing isokinetic muscle actions for men versus women. Method: Twenty men M[subscript age] ± SD = 22 ± 2 years) and 20 women M[subscript age] ± SD = 22 ± 1 years) performed 50 maximal concentric isokinetic muscle…

  8. Parental work demands and the frequency of child-related routine and interactive activities

    NARCIS (Netherlands)

    Roeters, A.; Lippe, T. van der; Kluwer, E.

    2009-01-01

    This study examined whether the frequency of child-related activities was associated with parents’ own work demands and those of their partners. In addition to parental paid working hours, we considered the parents’ organizational culture and experienced job insecurity. Moreover, we differentiated

  9. Parental work demands and the frequency of child-related routine and interactive activities

    NARCIS (Netherlands)

    Roeters, A.; Lippe, A.G. van der; Kluwer, E.S.

    2009-01-01

    This study examined whether the frequency of child-related activities was associated with parents' own work demands and those of their partners. In addition to parental paid working hours, we considered the parents' organizational culture and experienced job insecurity. Moreover, we differentiated

  10. Individual Monitoring of Vocal Effort with Relative Fundamental Frequency: Relationships with Aerodynamics and Listener Perception

    Science.gov (United States)

    Lien, Yu-An S.; Michener, Carolyn M.; Eadie, Tanya L.; Stepp, Cara E.

    2015-01-01

    Purpose: The acoustic measure relative fundamental frequency (RFF) was investigated as a potential objective measure to track variations in vocal effort within and across individuals. Method: Twelve speakers with healthy voices created purposeful modulations in their vocal effort during speech tasks. RFF and an aerodynamic measure of vocal effort,…

  11. Sensors and Sensory Processing for Airborne Vibrations in Silk Moths and Honeybees

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ai

    2013-07-01

    Full Text Available Insects use airborne vibrations caused by their own movements to control their behaviors and produce airborne vibrations to communicate with conspecific mates. In this review, I use two examples to introduce how insects use airborne vibrations to accurately control behavior or for communication. The first example is vibration-sensitive sensilla along the wing margin that stabilize wingbeat frequency. There are two specialized sensors along the wing margin for detecting the airborne vibration caused by wingbeats. The response properties of these sensors suggest that each sensor plays a different role in the control of wingbeats. The second example is Johnston’s organ that contributes to regulating flying speed and perceiving vector information about food sources to hive-mates. There are parallel vibration processing pathways in the central nervous system related with these behaviors, flight and communication. Both examples indicate that the frequency of airborne vibration are filtered on the sensory level and that on the central nervous system level, the extracted vibration signals are integrated with other sensory signals for executing quick adaptive motor response.

  12. Stimulated angiogenesis for fracture healing augmented by low-magnitude, high-frequency vibration in a rat model-evaluation of pulsed-wave doppler, 3-D power Doppler ultrasonography and micro-CT microangiography.

    Science.gov (United States)

    Cheung, Wing-Hoi; Sun, Ming-Hui; Zheng, Yong-Ping; Chu, Winnie Chiu-Wing; Leung, Andraay Hon-Chi; Qin, Ling; Wei, Fang-Yuan; Leung, Kwok-Sui

    2012-12-01

    This study aimed to investigate the mechanism of low-magnitude high-frequency vibration (LMHFV) treatment on angiogenesis and blood flow for enhancement of fracture healing. Nine-month-old ovariectomized (OVX) and sham-operated (Sham) rats received closed fractures creation at the femora and were randomized into LMHFV treatment (Sham-V, OVX-V) or control (Sham-C, OVX-C) groups. Pulsed-wave Doppler indicated an increase in blood flow velocity of the femoral artery at weeks 2 (OVX pair: p = 0.030) and 4 (OVX pair: p = 0.012; Sham pair: p = 0.020) post-treatment. Significantly enhanced vascular volume (VV) at the fracture site in the vibration groups was demonstrated by 3-D high-frequency power Doppler at week 2 (Sham pair: p = 0.021) and micro-computed tomography (microCT) microangiography at weeks 2 (OVX pair: p = 0.009) and 4 (OVX pair: p = 0.034), which echoed the osteogenesis findings by radiographic and microCT analysis. VV in the OVX groups was inferior to the Sham groups. However, OVX-V showed higher percentages of angiogenic enhancement than Sham-V. Despite impaired neo-angiogenesis in osteoporotic fractures, LMHFV could increase blood flow and angiogenesis in both normal and osteoporotic fractures, thus enhancing fracture healing. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. [Influence of consanguinity on clinical characteristics and affective disorders frequency in relatives of bipolar I patients].

    Science.gov (United States)

    Mechri, Anwar; Rouissi, Khadija; Mehdi, Boutheina; Khiari, Geneviève; Abdelhak, Sonia; Gaha, Lotfi

    2007-11-01

    The genetic transmission of bipolar disorder remained undetermined up to now, partly due to clinical and genetically heterogeneity. In Tunisia, genetic study will profit from the existence of high rates of consanguinity. To determine the rate of consanguinity in bipolar I disorders sample and to compare the clinical characteristics and the frequency of affective disorders in first and second degree relatives of probands with and without consanguinity. One hundred thirty subjects met DSM-IV criteria for a bipolar I disorder were recruited. Available Information was obtained from a structured clinical interview, collateral history and medical records. The family investigation allowed completion of genealogies over three generations. The comparison was based on the clinical characteristics (age of onset, numbers of affective episodes, nature and severity of the last affective episode) and the frequency of affective disorders in first and second degree relatives of probands with and without consanguinity. the rate of consanguinity was estimated to 28,5% It was higher in patients with family history of affective disorders : 34,2% versus 20,4% (p=0,08). Bipolar I patients with consanguinity were characterised by a high frequency of affective episodes and a more severe of the last affective episode, but theses differences were not significantly. However, the frequency of affective disorders was significantly increased in first degree relatives of probands with consanguinity: 10,5% versus 6,1% (p=0,01), and in first and second degree relatives of probands with consanguinity : 4,5% versus 29% (p=0,02). The influence of consanguinity on the clinical characteristics and the frequency of affective disorders in first and second degree relatives of bipolar patients is en favour the recessive polygenetic transmission of bipolar disorders.

  14. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  15. Alcohol drinking frequency in relation to subsequent changes in waist circumference

    DEFF Research Database (Denmark)

    Tolstrup, Janne S; Halkjaer, Jytte; Heitmann, Berit Lilienthal

    2008-01-01

    a prospective cohort study conducted in 1993-1997 (baseline) and 1999-2002 (follow-up) and included 43 543 men and women. Baseline information on alcohol drinking frequency was related to 1) change in waist circumference by linear regression and 2) major gain and major loss in waist circumference (defined...... as waist change in the lowest or highest quintile of waist changes) by polytomous logistic regression, also taking into account amount of alcohol intake. RESULTS: Drinking frequency was inversely associated with changes in waist circumference in women and was unassociated with changes in waist...

  16. Transient vibration of wind turbine blades

    Science.gov (United States)

    Li, Yuanzhe; Li, Minghai; Jiang, Feng

    2017-09-01

    This article aims to the transient vibration of wind turbine blades. We firstly introduce transient vibration and previous studies in this area. The report then shows the fundamental equations and derivation of Euler Equation. A 3-D beam are created to compare the analytical and numerical result. In addition we operate the existing result and Patran result of a truncation wedge beam, especially the frequencies of free vibration and transient vibration. Transient vibration cannot be vanished but in some case it can be reduced.

  17. Feed-forward control of gear mesh vibration using piezoelectric actuators

    Science.gov (United States)

    Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin

    1994-01-01

    This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.

  18. Relative frequency, clinical, neuroimaging, and postsurgical features of pediatric temporal lobe epilepsy

    Directory of Open Access Journals (Sweden)

    L.V. Sales

    2006-10-01

    Full Text Available We describe the relative frequency, clinical features, neuroimaging and pathological results, and outcome after pharmacological or surgical intervention for a series of pediatric patients with temporal lobe epilepsy (TLE from an epilepsy center in Brazil. The medical records of children younger than 12 years with features strongly suggestive of TLE were reviewed from January 1999 to June 1999. Selected children were evaluated regarding clinical, EEG, and magnetic resonance imaging (MRI investigation and divided into three groups according to MRI: group 1 (G1, N = 9, patients with hippocampal atrophy; group 2 (G2, N = 10, patients with normal MRI, and group 3 (G3, N = 12, patients with other specific temporal lesions. A review of 1732 records of children with epilepsy revealed 31 cases with TLE (relative frequency of 1.79%. However, when the investigation was narrowed to cases with intractable seizures that needed video-EEG monitoring (N = 68 or epilepsy surgery (N = 32, the relative frequency of TLE increased to 19.11 (13/68 and 31.25% (10/32, respectively. At the beginning of the study, 25 of 31 patients had a high seizure frequency (80.6%, which declined to 11 of 31 (35.5% at the conclusion of the study, as a consequence of pharmacological and/or surgical therapy. This improvement in seizure control was significant in G1 (P 0.1, McNemar's test. These results indicate that the relative frequency of TLE in children was low, but increased considerably among cases with pharmacoresistant seizures. Patients with specific lesions were likely to undergo surgery, with good postoperative outcomes.

  19. Alcohol drinking frequency in relation to subsequent changes in waist circumference

    DEFF Research Database (Denmark)

    Tolstrup, Janne S; Halkjaer, Jytte; Heitmann, Berit L

    2008-01-01

    BACKGROUND: Cross-sectional studies have reported a lower prevalence of abdominal obese persons among frequent drinkers than among nonfrequent drinkers. OBJECTIVE: We tested the hypothesis that drinking frequency is associated with subsequent changes in waist circumference. DESIGN: Data come from...... a prospective cohort study conducted in 1993-1997 (baseline) and 1999-2002 (follow-up) and included 43 543 men and women. Baseline information on alcohol drinking frequency was related to 1) change in waist circumference by linear regression and 2) major gain and major loss in waist circumference (defined...... as waist change in the lowest or highest quintile of waist changes) by polytomous logistic regression, also taking into account amount of alcohol intake. RESULTS: Drinking frequency was inversely associated with changes in waist circumference in women and was unassociated with changes in waist...

  20. Solar system and related topics study by the methods of the low-frequency radio astronomy

    Science.gov (United States)

    Konovalenko, A. A.; Rucker, H. O.; Melnik, V. N.; Falkovich, I. S.; Litvinenko, G. V.; Kolyadin, V. L.; Zakharenko, V. V.; Lecacheux, A.; Zarka, Ph.; Reznik, A. P.

    2010-05-01

    In the present report the possibilities and some results of the high sensitive investigations of the Solar system objects at lowest frequencies have been reviewed. The Sun, Jupiter, Saturn, interplanetary medium, and other objects have been considered. Special attention has been paid to the space weather problem. The stellar-planetary relations have been also investigated, particularly a search of active stars and exo-planets radio emission. During the last years many observations have been performed with the largest decameter arrays UTR-2 (Kharkov, Ukraine) and URAN system (Ukraine) and new receiving equipment. These investigations provided the possibility to get the important information about the fine time-frequency structures of the weak sporadic radio emission. Very good perspectives come into existence in connection to the creation and implementation of the new generation of low-frequency radio telescopes, i.e. LOFAR (the Netherlands), E-LOFAR (European countries), LWA (USA), LSS (France), GURT (Ukraine), etc.

  1. Investigation of Frequency of Leftover Drugs at Home and Related Factors

    Directory of Open Access Journals (Sweden)

    Muharrem Ucar

    2009-04-01

    Full Text Available AIM: The purpose of this survey was to investigate the frequency of leftover drugs at homes and related factors regarding this problem. METHOD: This descriptive study was performed among 692 non-medical personnel servicing at two military bases in December 2006. Data were collected by using a questionnaire, which had been developed by the investigators. Frequencies and percents were used as descriptive statistics. Chi-square test was used to compare the frequencies of leftover drugs according to certain variables. RESULTS: Of the total participants 78,8% were males, 72,8% aged between 18 to 39, and 29,6% were unmarried. The findings revealed that 61,3% of the participants had leftover drugs at their homes. Participants living with together 2 to 4 family members had higher frequencies of leftover drugs at homes. When we looked at the frequencies of leftover drugs according to drug use behaviors; the frequency of leftover drug was determined higher among those who stated; the recipe was not explained sufficiently, he did not use drugs as directed, he kept drugs until due time when did not use all of the drugs, he kept drugs in a box or bag, he visited a health center in order to have a recipe (p<0,05. CONCLUSION: It was determined leftover drugs were kept at nearly two third of the participants’ homes. Regarding incompleteness of treatment, the intoxication risk for children, and drug waste, this frequency of drug leftover was high, and all responsible professions in the chain of rationale drug use particularly physicians should be awaked on this issue. The use of drugs in a recipe should be explained to patients clearly. [TAF Prev Med Bull 2009; 8(2.000: 113-118

  2. A study of event related potential frequency domain coherency using multichannel electroencephalogram subspace analysis.

    Science.gov (United States)

    Razavipour, Fatemeh; Sameni, Reza

    2015-07-15

    Event related potentials (ERP) are time-locked electrical activities of the brain in direct response to a specific sensory, cognitive, or motor stimulus. ERP components, such as the P300 wave, which are involved in the process of decision-making, help scientists diagnose specific cognitive disabilities. In this study, we utilize the angles between multichannel electroencephalogram (EEG) subspaces in different frequency bands, as a similarity factor for studying the spatial coherency between ERP frequency responses. A matched filter is used to enhance the ERP from background EEG. While previous researches have focused on frequencies below 10 Hz, as the major frequency band of ERP, it is shown that by using the proposed method, significant ERP-related information can also be found in the 25-40 Hz band. These frequency bands are selected by calculating the correlation coefficient between P300 response segments and synthetic EEG, and ERP segments without P300 waves, and by rejecting the bands having the most association with background EEG and non-P300 components. The significance of the results is assessed by real EEG acquired in brain computer interface experiments versus synthetic EEG produced by existing methods in the literature, to assure that the results are not systematic side effects of the proposed framework. The overall results show that the equivalent dipoles corresponding to narrow-band events in the brain are spatially coherent within different (not necessarily adjacent) frequency bands. The results of this study can lead into novel perspectives in ERP studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  4. Short-Term Effects of Whole-Body Vibration Combined with Task-Related Training on Upper Extremity Function, Spasticity, and Grip Strength in Subjects with Poststroke Hemiplegia: A Pilot Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Jung-Sun; Kim, Chang-Yong; Kim, Hyeong-Dong

    2016-08-01

    The aim of this study was to determine the effect of whole-body vibration training combined with task-related training on arm function, spasticity, and grip strength in subjects with poststroke hemiplegia. Forty-five subjects with poststroke were randomly allocated to 3 groups, each with 15 subjects as follows: control group, whole-body vibration group, and whole-body vibration plus task-related training group. Outcome was evaluated by clinical evaluation and measurements of the grip strength before and 4 weeks after intervention. Our results show that there was a significantly greater increase in the Fugl-Meyer scale, maximal grip strength of the affected hand, and grip strength normalized to the less affected hand in subjects undergoing the whole-body vibration training compared with the control group after the test. Furthermore, there was a significantly greater increase in the Wolf motor function test and a decrease in the modified Ashworth spasticity total scores in subjects who underwent whole-body vibration plus task-related training compared with those in the other 2 groups after the test. The findings indicate that the use of whole-body vibration training combined with task-related training has more benefits on the improvement of arm function, spasticity, and maximal grip strength than conventional upper limb training alone or with whole-body vibration in people with poststroke hemiplegia.

  5. Skyrmion Vibration Modes within the Rational Map Ansatz

    OpenAIRE

    Lin, W.T.; Piette, B.

    2008-01-01

    We study the vibration modes of the Skyrme model within the rational map ansatz. We show that the vibrations of the radial profiles and the rational maps are decoupled and we consider explicitly the cases B=1, B=2, and B=4. We then compare our results with the vibration modes obtained numerically by Barnes et al. and show that qualitatively the rational map reproduces the vibration modes obtained numerically but that the vibration frequencies of these modes do not match very well.

  6. Method and apparatus for vibrating a substrate during material formation

    Science.gov (United States)

    Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA

    2008-10-21

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  7. Broadband characteristics of vibration energy harvesting using one-dimensional phononic piezoelectric cantilever beams

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhongsheng, E-mail: czs_study@sina.com [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Yang Yongmin; Lu Zhimiao; Luo Yanting [Key Laboratory of Science and Technology on Integrated Logistics Support, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2013-02-01

    Nowadays broadband vibration energy harvesting using piezoelectric effect has become a research hotspot. The innovation in this paper is the widening of the resonant bandwidth of a piezoelectric harvester based on phononic band gaps, which is called one-dimensional phononic piezoelectric cantilever beams (PPCBs). Broadband characteristics of one-dimensional PPCBs are analyzed deeply and the vibration band gap can be calculated. The effects of different parameters on the vibration band gap are presented by both numerical and finite element simulations. Finally experimental tests are conducted to validate the proposed method. It can be concluded that it is feasible to use the PPCB for broadband vibration energy harvesting and there should be a compromise among related parameters for low-frequency vibrations.

  8. Quantifying Discipline Practices Using Absolute vs. Relative Frequencies: Clinical and Research Implications for Child Welfare

    Science.gov (United States)

    Lindhiem, Oliver; Shaffer, Anne; Kolko, David J.

    2014-01-01

    In the parent intervention outcome literatures, discipline practices are generally quantified as absolute frequencies or, less commonly, as relative frequencies. These differences in methodology warrant direct comparison as they have critical implications for study results and conclusions among treatments targeted at reducing parental aggression and harsh discipline. In this study, we directly compared the absolute frequency method and the relative frequency method for quantifying physically aggressive, psychologically aggressive, and nonaggressive discipline practices. Longitudinal data over a 3-year period came from an existing data set of a clinical trial examining the effectiveness of a psychosocial treatment in reducing parental physical and psychological aggression and improving child behavior (N = 139; Kolko et al., 2009). Discipline practices (both aggressive and nonaggressive) were assessed using the Conflict Tactics Scale (CTS; Straus et al., 1998). The two methods yielded different patterns of results, particularly for nonaggressive discipline strategies. We suggest that each method makes its own unique contribution to a more complete understanding of the association between parental aggression and intervention effects. PMID:24106146

  9. Genetic frequencies related to severe or profound sensorineural hearing loss in Inner Mongolia Autonomous Region

    Directory of Open Access Journals (Sweden)

    Yongzhi Liu

    Full Text Available Abstract The aim was to study the frequencies of common deafness-related mutations and their contribution to hearing loss in different regions of Inner Mongolia. A total of 738 deaf children were recruited from five different ethnic groups of Inner Mongolia, including Han Chinese (n=486, Mongolian (n=216, Manchurian (n=24, Hui (n=6 and Daur (n=6. Nine common mutations in four genes (GJB2, SLC26A4, GJB3 and mitochondrial MT-RNR1 gene were detected by allele-specific PCR and universal array. At least one mutated allele was detected in 282 patients. Pathogenic mutations were detected in 168 patients: 114 were homozygotes and 54 were compound heterozygotes. The 114 patients were carriers of only one mutated allele. The frequency of GJB2 variants in Han Chinese (21.0% was higher than that in Mongolians (16.7%, but not significantly different. On the other hand, the frequency of SLC26A4 variants in Han Chinese (14.8% was lower than that in Mongolians (19.4%, but also not significantly different. The frequency of patients with pathogenic mutations was different in Ulanqab (21.4%, Xilingol (40.0%, Chifeng (40.0%, Hulunbeier (30.0%, Hohhot (26.3%, and in Baotou (0%. In conclusion, the frequency of mutated alleles in deafness-related genes did not differ between Han Chinese and Mongolians. However, differences in the distribution of common deafness-related mutations were found among the investigated areas of Inner Mongolia.

  10. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  11. Determination of optimal whole body vibration amplitude and frequency parameters with plyometric exercise and its influence on closed-chain lower extremity acute power output and EMG activity in resistance trained males

    Science.gov (United States)

    Hughes, Nikki J.

    The optimal combination of Whole body vibration (WBV) amplitude and frequency has not been established. Purpose. To determine optimal combination of WBV amplitude and frequency that will enhance acute mean and peak power (MP and PP) output EMG activity in the lower extremity muscles. Methods. Resistance trained males (n = 13) completed the following testing sessions: On day 1, power spectrum testing of bilateral leg press (BLP) movement was performed on the OMNI. Days 2 and 3 consisted of WBV testing with either average (5.8 mm) or high (9.8 mm) amplitude combined with either 0 (sham control), 10, 20, 30, 40 and 50 Hz frequency. Bipolar surface electrodes were placed on the rectus femoris (RF), vastus lateralis (VL), bicep femoris (BF) and gastrocnemius (GA) muscles for EMG analysis. MP and PP output and EMG activity of the lower extremity were assessed pre-, post-WBV treatments and after sham-controls on the OMNI while participants performed one set of five repetitions of BLP at the optimal resistance determined on Day 1. Results. No significant differences were found between pre- and sham-control on MP and PP output and on EMG activity in RF, VL, BF and GA. Completely randomized one-way ANOVA with repeated measures demonstrated no significant interaction of WBV amplitude and frequency on MP and PP output and peak and mean EMGrms amplitude and EMG rms area under the curve. RF and VL EMGrms area under the curve significantly decreased (p power output.

  12. Expressions For Total Energy And Relativistic Kinetic Energy At Low Speeds In Special Relativity Must Include Rotational And Vibrational As Well As Linear Kinetic Energies

    Science.gov (United States)

    Brekke, Stewart

    2017-09-01

    Einstein calculated the total energy at low speeds in the Special Theory of Relativity to be Etotal =m0c2 + 1 / 2m0v2 . However, the total energy must include the rotational and vibrational kinetic energies as well as the linear kinetic energies. If 1 / 2 Iω2 is the expression for the rotational kinetic energy of mass and 1 / 2 kx02 is the vibrational kinetic energy expression of a typical mass, the expression for the total energy of a mass at low speeds must be Etotal =m0c2 + 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 . If this expression is correct, the relativistic kinetic energy of a mass. at low speeds must include the rotational and vibrational kinetic energies as well as the linear kinetic energies since according to Einstein K = (m -m0) c2 and therefore, K = 1 / 2m0v2 + 1 / 2 Iω2 + 1 / 2 kx02 .

  13. Performance improvement for GPS single frequency kinematic relative positioning under poor satellite visibility

    OpenAIRE

    Chen, Wantong

    2016-01-01

    Reliable ambiguity resolution in difficult environments such as during setting/rising events of satellites or during limited satellite visibility is a significant challenge for GPS single frequency kinematic relative positioning. Here, a recursive estimation method combining both code and carrier phase measurements was developed that can tolerate recurrent satellite setting/rising and accelerate initialization in motion. We propose an ambiguity dimension expansion method by utilizing the part...

  14. The relation between pairing preference and chiasma frequency in tetrasomics of rye.

    Science.gov (United States)

    Benavente, E; Sybenga, J

    2004-02-01

    The association pattern of marked tetrasomes of Secale chromosome 1R at meiotic first metaphase was analyzed. Two of the four chromosomes were identical with terminal C-bands at both arms; the other two were also identical but lacked C-bands and were homologous or homeologous with the first two. Four different types of heterozygotes for 1R were studied: (i). autotetraploid hybrids between genetic variants within Secale cereale subsp. cereale, (ii). tetraploid hybrids between subspecies of Secale cereale, (iii). tetraploid hybrids between species of Secale, and (iv). autotetrasomes of S. cereale in a wheat background. Earlier observations that heterozygous associations (banded with unbanded) had consistently higher chiasma frequencies than homozygous associations were extended and confirmed. To analyze this phenomenon more closely, the possible relations between this correlation and several other meiotic phenomena were studied. For this analysis, three genetically different autotetraploid hybrids within S. cereale were selected that differed with respect to the relation between pairing type and chiasma frequency. Special attention was given to different patterns of interference and other meiotic phenomena in the two chromosome arms of chromosome 1R. No relations between such phenomena and the relation between pairing type and chiasma frequency could be established. A hypothesis is formulated assuming that long-distance homologue attraction is concentrated in a limited number of sites and that in different genotypes, different patterns of active sites are present. Moderately weak attraction sites can pair with strong homologous sites under favorable genetic conditions, but two weak sites cannot. Then, heterozygotes have more effective pairing initiation and consequently chiasma formation than homozygotes. Under less favorable conditions, only strong sites are effective, and then, homozygotes pair better, but the chiasma frequency is lower. A model of the forces

  15. High relative frequency of SCA1 in Poland reflecting a potential founder effect.

    Science.gov (United States)

    Krysa, Wioletta; Sulek, Anna; Rakowicz, Maria; Szirkowiec, Walentyna; Zaremba, Jacek

    2016-08-01

    Spinocerebellar ataxias (SCAs) have irregular distributions worldwide. SCA1 is the most frequent in Poland, and no cases of SCA3 of Polish origin has yet been identified. In view of such patterns of SCAs occurrence, the relative frequency, geographical distribution and a possible founder effect of SCA1 were investigated. DNA samples of 134 probands with SCA1 and 228 controls were analysed. The genotyping of four markers, D6S89, D6S109, D6S274, D6S288, around the ATXN1 gene (SCA1) and sequencing of the selected variant of D6S89 were performed. The relative frequency of SCA1 was 68 %. The studied SCA1 pedigrees were irregularly distributed, with the highest concentration in Central Poland. Haplotyping revealed the association of ATXN1 gene mutation with a 197-bp variant of D6S89 marker (63 % of probands) and with a 184-bp variant of DS6274 (50.7 % of probands). Out of 61 SCA1 probands from Mazowieckie, 41 carried the same 197-bp variant. SCA1 relative frequency in Poland shows the highest value compared with the data from other countries worldwide. Due to the association with the mutation obtained for the investigated markers and the SCA1 pedigrees concentration in Central Poland, we hypothesise that it represents a potential founder effect.

  16. Event-related potentials to conjunctions of spatial frequency and orientation as a function of stimulus parameters and response requirements.

    NARCIS (Netherlands)

    Kenemans, J.L.; Kok, A.; Smulders, F.T.

    1993-01-01

    Event-related potentials (ERPs) were recorded from 7 male graduate students who were required to push a button in response to a given conjunction of spatial frequency and orientation (target) and to ignore conjunctions sharing with the target only frequency (frequency-relevant), only orientation

  17. Induced Current Measurement of Rod Vibrations

    Science.gov (United States)

    Sawicki, Charles A.

    2003-01-01

    The longitudinal normal modes of vibration of rods are similar to the modes seen in pipes open at both ends. A maximum of particle displacement exists at both ends and an integral number (n) of half wavelengths fit into the rod length. The frequencies fn of the normal modes is given by Eq. (1), where L is the rod length and V is the wave velocity: fn = nV/2L. Many methods have been used to measure the velocity of these waves. The Kundt's tube method commonly used in student labs will not be discussed here. A simpler related method has been described by Nicklin.2 Kluk3 measured velocities in a wide range of materials using a frequency counter and microphone to study sounds produced by impacts. Several earlier methods4,5 used phonograph cartridges complete with needles to detect vibrations in excited rods. A recent interesting experiment6 used wave-induced changes in magnetization produced in an iron rod by striking one end. The travel time, measured as the impulsive wave reflects back and forth, gave the wave velocity for the iron rod. In the method described here, a small magnet is attached to the rod with epoxy, and vibrations are detected using the current induced in a few loops of wire. The experiment is simple and yields very accurate velocity values.

  18. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.

    2015-01-14

    © 2014 American Chemical Society. 1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

  19. Anharmonic Calculation of the Structure, Vibrational Frequencies, and Intensities of the NH3···cis-HONO and NH3···cis-DONO Complexes.

    Science.gov (United States)

    Bulychev, V P; Buturlimova, M V; Tokhadze, K G

    2016-08-25

    The geometrical parameters, the frequencies, and absolute intensities for transitions between vibrational states of NH3···cis-HONO and NH3···cis-DONO hydrogen-bonded complexes are calculated using the approach earlier tested in calculations of isolated molecules of nitrous acid and the NH3···trans-HONO and NH3··trans-DONO complexes. Vibrational wave functions and energy values of the complexes are derived from variational solutions of anharmonic equations in one to four dimensions. The equilibrium nuclear configuration and potential energy surfaces are calculated by the MP2/aug-cc-pVTZ method with the basis set superposition error taken into account. Comparison of the obtained results with the analogous data calculated in the same approximation for isolated cis- and trans-HONO (DONO) molecules and the NH3···trans-HONO (DONO) complexes provides information about the changes in the spectroscopic and geometrical parameters of nitrous acid upon cis-trans transition, H/D substitution, and H-bond formation.

  20. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  1. Reproducibility and relative validity of a semi-quantitative food-frequency questionnaire in an adult population of Rosario, Argentina

    OpenAIRE

    María Elisa Zapata; Romina Buffarini; Nadia Lingiardi; Ana Luiza Gonçalves-Soares

    2016-01-01

    Introduction: Dietary assessment of nutrients and food groups by food frequency questionnaire needs to be validated in each population. The objective of this cross-sectional study was to evaluate the reproducibility and relative validity of a semi-quantitative food frequency questionnaire among adults of Rosario, Argentina.Material and Methods: Two food frequency questionnaires and four 24-hour dietary recalls were applied in a sample of 88 adults. Reproducibility of food frequency questionna...

  2. Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.

    Science.gov (United States)

    George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W

    2016-10-07

    From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.

  3. The development of implicit learning from infancy to adulthood: item frequencies, relations, and cognitive flexibility.

    Science.gov (United States)

    Amso, Dima; Davidow, Juliet

    2012-09-01

    The majority of cognitive processes show measurable change over the lifespan. However, some argue that implicit learning from environmental structure is development invariant [e.g., Muelemans et al. [1998] Experimental Child Psychology, 69, 199-221; Reber [1993] Implicit learning and tacit knowledge: An essay on the cognitive unconscious. Oxford University Press], while others have shown that adults learn faster than children [Thomas et al. [2004] Journal of Cognitive Neuroscience, 16, 1339-1351]. In two experiments, we tested infants through adults using the same saccade latency measure and behavioral learning paradigm. We examined implicit learning when subjects are presented with interleaved regularities acting on one item, as well as the ability to adjust behavior when learned information is violated. In one comparison, the first- (item frequencies) and second- (spatiotemporal item relations) order statistics are in conflict, allowing us to examine flexibility in learning from multiple parameters. Data from Experiment 1 (N = 90, 6- to 30-year olds) showed no developmental differences in either implicit learning from environmental regularity or flexibility of learning from conflicting parameters across our age range. Accuracy data showed that children are especially sensitive to low frequency relative to high frequency items. In Experiment 2, we showed that 7- to 11-month-old infants had a saccade latency profile that was consistent with task structure, that is, they simultaneously learned both item frequencies and spatiotemporal relations, as indicated by data patterns similar to those obtained in Experiment 1. Taken together, these data provide support for developmental invariance in implicit learning from environmental regularities. Copyright © 2012 Wiley Periodicals, Inc.

  4. Motivational pathways from reward sensitivity and punishment sensitivity to gambling frequency and gambling-related problems.

    Science.gov (United States)

    Wardell, Jeffrey D; Quilty, Lena C; Hendershot, Christian S; Bagby, R Michael

    2015-12-01

    Motives for gambling have been shown to have an important role in gambling behavior, consistent with the literature on motives for substance use. While studies have demonstrated that traits related to sensitivity to reward (SR) and sensitivity to punishment (SP) are predictive of substance use motives, little research has examined the role of these traits in gambling motives. This study investigated motivational pathways from SR and SP to gambling frequency and gambling problems via specific gambling motives, while also taking into account history of substance use disorder (SUD). A community sample of gamblers (N = 248) completed self-report questionnaires assessing SR, SP, gambling frequency, gambling-related problems, and motives for gambling (social, negative affect, and enhancement/winning motives). Lifetime SUD was also assessed with a structured clinical interview. The results of a path analysis showed that SR was uniquely associated with all 3 types of gambling motives, whereas SP and SUD were associated with negative affect and enhancement/winning motives but not social motives. Also, both negative affect and enhancement/winning motives were associated with gambling problems, but only enhancement/winning motives were significantly related to gambling frequency. Analyses of indirect associations revealed significant indirect associations from SR, SP, and SUD to gambling frequency mediated through enhancement/winning motives and to gambling problems mediated through both negative affect and enhancement/winning motives. The findings highlight the importance of SR and SP as independent predictors of gambling motives and suggest that specific motivational pathways underlie their associations with gambling outcomes. (c) 2016 APA, all rights reserved).

  5. Harmonic vibrations and waves in a cylindrical helically anisotropic shell

    Science.gov (United States)

    Panfilov, I. A.; Ustinov, Yu. A.

    2012-04-01

    A Kirchhoff-Love type applied theory is used to study the specific characteristics of harmonic waves and vibrations of a helically anisotropic shell. Special attention is paid to axisymmetric and bending vibrations. In both cases, the dispersion equations are constructed and a qualitative and numerical analysis of their roots and the corresponding elementary solutions is performed. It is shown that the skew anisotropy in the axisymmetric case generates a relation between the longitudinal and torsional vibrations which is mathematically described by the amplitude coefficients of homogeneous waves. In the case of a shell with rigidly fixed end surfaces, the dependence of the first two natural frequencies on the shell length and the helical line slope α, i.e., the geometric parameter of helical anisotropy, is studied. A boundary value problem in which longitudinal vibrations are generated on one of the end surfaces and the other end is free of forces and moments is considered to analyze the degree of transformation of longitudinal vibrations into longitudinally torsional vibrations. In the case of bending vibrations, two problems for a half-infinite shell are studied as well. In the first problem, the waves are excited kinematically by generating harmonic vibrations of the shell end surface in the plane of the axial cross-section, and it is shown that the axis generally moves in some closed trajectories far from the end surface. In the second problem, the reflection of a homogeneous wave incident on the shell end is examined. It is shown that the "boundary resonance" phenomenon can arise in some cases.

  6. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  7. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  8. Frequency and Efficacy of Talk-Related Tasks in Primary Science

    Science.gov (United States)

    Braund, Martin; Leigh, Joanne

    2013-04-01

    Pupil talk and discussion are seen as having important social and cognitive outcomes. In science classes, pupils' collaborative talk supports the construction of meaning and helps examine the status of evidence, theory and knowledge. However, pupil interactive talk in groups is rare in science lessons. The research reported is part of a project to increase the amount of pupil-pupil talk in primary schools through a programme of teaching and professional development. Pupils' self-reports of the frequency and learning efficacies of talk related activities in science lessons were collected before and after a programme of teaching in 24 schools in one of the most socially and educationally deprived areas of England. Findings showed pupils valued talking about their ideas over listening to those of other pupils. Science talk frequency (STF) was closely correlated with science talk efficacy (STE) and both were positively correlated with pupils' attitudes to school science. Analysis of covariance (ANCOVA) of the correlation of STF with STE showed values were independent of gender and ability but that school experience was a significant factor. After the teaching programme and, contrary to expectations, the frequency of talk activities in science lessons appeared to have decreased but varied according to class grades. The degree of correlation between STF and STE was stronger after the teaching in over half of the schools. Schools where STF/STE strengthened most as a result of teaching were those involved in an additional initiative to use modelled talk related to industrial contexts.

  9. Efeito da frequência e amplitude de vibração sobre a derriça de frutos de café Frequency and amplitude of vibration on coffee harvesting

    Directory of Open Access Journals (Sweden)

    Fábio L. Santos

    2010-04-01

    Full Text Available Parâmetros de qualidade podem alterar significativamente o preço do café; entretanto, a colheita seletiva dos frutos é frequentemente associada à boa qualidade do produto, procedimento que pode ser realizado por meio de vibrações mecânicas. Desta forma, o estudo e a avaliação do efeito localizado de fatores como frequência, amplitude e grau de maturação dos frutos, são fundamentais para construção de máquinas adequadas a este tipo de prática. O trabalho foi desenvolvido com o objetivo de se avaliar os fatores frequência, amplitude, grau de maturação, direção de excitação e número de frutos por pedúnculo, na eficiência de derriça. Para a realização dos ensaios de vibração em laboratório utilizou-se uma máquina vibradora eletromagnética. Amplitudes na faixa de 3,75 a 7,50 mm e frequências na faixa de 13,33 a 26,67 Hz foram testadas para a variedade Mundo Novo, em que os resultados mostraram que a frequência de 26,67 Hz apresentou uma eficiência maior de derriça para os frutos cereja e a amplitude de 7,5 mm indicou maior eficiência de derriça. Verificou-se, também, que o número de frutos por pedúnculo influencia a eficiência de derriça dos frutos de café da variedade Mundo Novo.Quality parameters influence directly the coffee price. However, selective coffee harvesting is frequently associated to good quality of this product. This procedure can be performed by mechanical vibration. Therefore, the study of the frequency and amplitude parameters is important for the design of a specific harvesting machine. The objective of this work was to evaluate the effect of the frequency and amplitude of vibration, the coffee variety and the ripeness condition of the fruits upon the harvesting efficiency. The vibration tests were done in laboratory using an electromagnetic shaker. The tests were done using amplitudes in the range of 3.75 to 7.50 mm and frequencies in the range of 13.33 to 16.67 Hz. Branches of

  10. Alcohol drinking frequency in relation to subsequent changes in waist circumference

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Halkjaer, J.; Heitmann, B.L.

    2008-01-01

    drinking, drinking on 1, 2-4, 5-6, and 7 d/wk, respectively, compared with men who drank alcohol on energy intake did not affect results considerably. CONCLUSIONS: Drinking pattern may......BACKGROUND: Cross-sectional studies have reported a lower prevalence of abdominal obese persons among frequent drinkers than among nonfrequent drinkers. OBJECTIVE: We tested the hypothesis that drinking frequency is associated with subsequent changes in waist circumference. DESIGN: Data come from...... a prospective cohort study conducted in 1993-1997 (baseline) and 1999-2002 (follow-up) and included 43 543 men and women. Baseline information on alcohol drinking frequency was related to 1) change in waist circumference by linear regression and 2) major gain and major loss in waist circumference (defined...

  11. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10-5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  12. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  13. LOFAR/H-ATLAS: The low-frequency radio luminosity - star-formation rate relation

    Science.gov (United States)

    Gürkan, G.; Hardcastle, MJ; Smith, DJB; Best, PN; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, MJ; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, WL

    2018-01-01

    Radio emission is a key indicator of star-formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of SDSS galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star-formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star-formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects which were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  14. The Relative Frequency of Allergic Fungal Rhinosinusitis in Patients with Nasal Polyposis in Rasht City, Iran

    Directory of Open Access Journals (Sweden)

    Hooshang Gerami

    2017-03-01

    Full Text Available Background and Objectives: Allergic fungal rhinosinusitis (AFRS is a relatively new and known disease with effective treatment, which belongs to the group of nasal polyposis diseases. According to high prevalence of AFRS in regions with warm and humid climate, the aim of this study was to detect the frequency of AFRS in patients with chronic rhinosinusitis (CRS and nasal polyposis in Amir-al-momenin Hospital in Rasht city. Methods: During functional endoscopic sinus surgery, the samples were collected from 55 patients with CRS along with nasal polyposis and were examined in terms of histopathology, mycology, culture and total serum IgE level. Data were analyzed using chi-square and exact Fisher’s tests. Results: In this study, 17 (30.9% female and 38 (69.1% male patients with the mean age of 38.34±12.67 years, were participated. History of Atopia was seen in 54.5% of the patients, asthma in 25.5%, and blood eosinophilia (>6% in 26.9%. Total serum IgE level was reported higher than natural value in 48.9% of the patients. Based on Kuhn and Benet criteria, the relative frequency of AFRS was 5.5% (3 patients and nonfungal eosinophilic mucin rhinosinusitis (NF-EMRS was 16.4% (9 patients. In AFRS patients, 3 cases had atopy, 3 were eosinophilic mucin positive, 2 cases had asthma, 1 direct smear-positive, 3 positive PAS staining, and 1 positive (Aspergillus fumigatus culture. Conclusion: In sinus samples of the studied patients, the frequency of eosinophilic mucin was much higher compared to other reports. Although, the frequency of positive smear and fungal culture is lower than other similar studies.

  15. Self-excited and subharmonic vibrations in a pilot rotor

    Science.gov (United States)

    Kumenko, A. I.; Kostyukov, V. N.; Kuzminykh, N. Yu.; Timin, A. V.

    2017-08-01

    The paper reviews the publications on low-frequency vibration in power plants. It is noted that the regulatory literature poorly defines the issues of rating and diagnosing self-excited and subharmonic vibrations. Analysis of the literature and ISO standards shows that despite the considerable experience gained by specialists in low-frequency vibration control, a number of issues, such as subharmonic resonances and nonlinear properties of complicated multi-seated rotor systems supported by journal bearings, are still understudied and require further calculations and experiments. The paper presents some results obtained in experiments of low-frequency vibrations for a rotor supported by journal bearings and having a residual deflection. The experimental results confirmed the classical hysteresis of self-excited vibrations - the difference in the boundaries of self-excited vibrations during ascent and descent is about 4 Hz. The arears of appearance and disappearance of subharmonic vibrations are shown using the spectral characteristics of vibrations and cascade spectra.

  16. Frequency, types and severity of medication use-related problems among medical outpatients in Nigeria.

    Science.gov (United States)

    Yusuff, Kazeem B; Tayo, Fola

    2011-06-01

    To determine the frequency, types and severity of medications use-related problems among medical outpatients in a tertiary care setting in southwestern Nigeria. Medical outpatient clinics of a 900-bed Teaching Hospital located in Ibadan, Southwestern Nigeria. A prospective cross-sectional medication use review was conducted by ten pharmacists for 400 randomly selected medical outpatients over a 4 week period at a 900-bed premier teaching hospital located in Ibadan, Nigeria. Severity assessment of medication use-related problems was done by 3 independent assessors with a modified severity index. Frequency, types and severity of medication use-related problems identified through pharmacist-initiated medication use review. Of the 400 randomly selected patients, 324 (81.0%) consented and were interviewed. One hundred and sixty-three (50.3%) of the cohort were males and 161 (49.7%) were females; with mean ages 51.5 ± 17.6 and 52.1 ± 17.4 years respectively. Median no. of drugs prescribed per patient per day was 4 (Minimum-Maximum, 1-7). About 27.5% were self medicating with orthodox (prescription-only and over-the-counter) and/or herbal medicines; and only 14.6% claimed disclosure to their physicians. The proportion of patients self medicating with orthodox medicines was significantly higher (P medication use-related problems were identified from 58.6% of patients, but the highest number (5) was identified among 2.6% of patients. The frequency of medication use-related problems appear strongly related to the number of medicines prescribed (r = 0.71, P = 0.006). The majority of medication use-related problems were ranked as potentially harmful [Inter-rater reliability coefficient: Gwet AC1: 0.7214 (P ≤ 0.001)]. Non-adherence (43.8%), problems associated with self medication (39.3%) and adverse drug reactions (15.6%) were the most frequent. Unauthorized drug holidays (46.5%) and stoppage of prescribed prescription-only medications for local herbs (29.3%) were the

  17. Passively damped vibration welding system and method

    Science.gov (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  18. Relation between frequency of seismic wave and resolution of tomography; Danseiha tomography kaiseki ni okeru shuhasu to bunkaino no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, M.; Watanabe, T.; Ashida, Y.; Sassa, K. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1997-05-27

    With regard to the elastic wave exploration, discussions have been given on the relationship between frequency and resolution in P-wave velocity tomography using the initial travel time. The discussions were carried out by using a new analysis method which incorporates the concept of Fresnel volume into tomography analysis. The following two arrangements were used in the calculation: a cross hole arrangement, in which seismic source and vibration receiving points were arranged so as to surround the three directions of a region extending 250 m in the horizontal direction and 500 m in the vertical direction, and observation is performed between two wells, and a permeation VSP arrangement in which the seismic source is installed on the ground surface and receiving points installed in wells. Restructuring was performed on the velocity structure by using a total of 819 observation travel times. This method has derived results of the restructuring according to frequencies of the seismic source used for the exploration. The resolution shown in the result of the restructuring has become higher as elastic waves with higher frequency are used, and the size of the structure identified from the restructuring result has decreased. This fact reveals that sufficient considerations must be given on frequencies of elastic waves used according to size of objects to be explored. 4 refs., 4 figs.

  19. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties

    Science.gov (United States)

    Lal, Shankar; Pant, K. K.; Krishnagopal, S.

    2011-12-01

    Developing a photocathode RF gun with the desired RF properties of the π-mode, such as field balance (eb) ˜1, resonant frequency fπ = 2856 MHz, and waveguide-to-cavity coupling coefficient βπ ˜1, requires precise tuning of the resonant frequencies of the independent full- and half-cells (ff and fh), and of the waveguide-to-full-cell coupling coefficient (βf). While contemporary electromagnetic codes and precision machining capability have made it possible to design and tune independent cells of a photocathode RF gun for desired RF properties, thereby eliminating the need for tuning, access to such computational resources and quality of machining is not very widespread. Therefore, many such structures require tuning after machining by employing conventional tuning techniques that are iterative in nature. Any procedure that improves understanding of the tuning process and consequently reduces the number of iterations and the associated risks in tuning a photocathode gun would, therefore, be useful. In this paper, we discuss a method devised by us to tune a photocathode RF gun for desired RF properties under operating conditions. We develop and employ a simple scaling law that accounts for inter-dependence between frequency of independent cells and waveguide-to-cavity coupling coefficient, and the effect of brazing clearance for joining of the two cells. The method has been employed to successfully develop multiple 1.6 cell BNL/SLAC/UCLA type S-band photocathode RF guns with the desired RF properties, without the need to tune them by a tiresome cut-and-measure process. Our analysis also provides a physical insight into how the geometrical dimensions affect the RF properties of the photo-cathode RF gun.

  20. Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2015-01-01

    Full Text Available Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rates, especially low flow rates, vibration level increases rapidly with the onset of rotating stall. At cavitation condition, it is proved that cavitation process has a significant impact on low frequency signals. With cavitation number decreasing, vibration level first rises to a local maximum, then it drops to a local minimum, and finally it rises again. At different flow rates, vibration trends in variable frequency bands differ obviously. Critical point inferred from vibration level is much larger than that from 3% head drop, which indicates that cavitation occurs much earlier than that reflected in head curve. Also, it is noted that high frequency signals almost increase simultaneously with cavitation occurring, which can be used to detect cavitation in centrifugal pump.

  1. Use of the Morlet mother wavelet in the frequency-scale domain decomposition technique for the modal identification of ambient vibration responses

    Science.gov (United States)

    Le, Thien-Phu

    2017-10-01

    The frequency-scale domain decomposition technique has recently been proposed for operational modal analysis. The technique is based on the Cauchy mother wavelet. In this paper, the approach is extended to the Morlet mother wavelet, which is very popular in signal processing due to its superior time-frequency localization. Based on the regressive form and an appropriate norm of the Morlet mother wavelet, the continuous wavelet transform of the power spectral density of ambient responses enables modes in the frequency-scale domain to be highlighted. Analytical developments first demonstrate the link between modal parameters and the local maxima of the continuous wavelet transform modulus. The link formula is then used as the foundation of the proposed modal identification method. Its practical procedure, combined with the singular value decomposition algorithm, is presented step by step. The proposition is finally verified using numerical examples and a laboratory test.

  2. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab.

    Science.gov (United States)

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W

    2011-06-01

    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators.

  3. Stochastic unilateral free vibration of an in-plane cable network

    Science.gov (United States)

    Giaccu, Gian Felice; Barbiellini, Bernardo; Caracoglia, Luca

    2015-03-01

    Cross-ties are often used on cable-stayed bridges for mitigating wind-induced stay vibration since they can be easily installed on existing systems. The system obtained by connecting two (or more) stays with a transverse restrainer is designated as an "in-plane cable-network". Failures in the restrainers of an existing network have been observed. In a previous study [1] a model was proposed to explain the failures in the cross-ties as being related to a loss in the initial pre-tensioning force imparted to the connector. This effect leads to the "unilateral" free vibration of the network. Deterministic free vibrations of a three-cable network were investigated by using the "equivalent linearization method". Since the value of the initial vibration amplitude is often not well known due to the complex aeroelastic vibration regimes, which can be experienced by the stays, the stochastic nature of the problem must be considered. This issue is investigated in the present paper. Free-vibration dynamics of the cable network, driven by an initial stochastic disturbance associated with uncertain vibration amplitudes, is examined. The corresponding random eigen-value problem for the vibration frequencies is solved through an implementation of Stochastic Approximation, (SA) based on the Robbins-Monro Theorem. Monte-Carlo methods are also used for validating the SA results.

  4. Relative frequency of Human T-cell Lymphotropic Virus I/II in HIV/AIDS patients

    Directory of Open Access Journals (Sweden)

    Mohsen Meidani

    2014-01-01

    Conclusion: In our survey, relative frequency of HTLV-I/II was 1.8% in HIV+ patients. This study reveals that relative frequency of HTLV-I/II in HIV positive patients is considerable but determining the need for screening of HTLV-I/II requires further investigation.

  5. Experimental and Numerical Investigation of Thermoacoustic Sources Related to High-Frequency Instabilities

    Directory of Open Access Journals (Sweden)

    Mathieu Zellhuber

    2014-03-01

    Full Text Available Flame dynamics related to high-frequency instabilities in gas turbine combustors are investigated using experimental observations and numerical simulations. Two different combustor types are studied, a premix swirl combustor (experiment and a generic reheat combustor (simulation. In both cases, a very similar dynamic behaviour of the reaction zone is observed, with the appearance of transverse displacement and coherent flame wrinkling. From these observations, a model for the thermoacoustic feedback linked to transverse modes is proposed. The model splits heat release rate fluctuations into distinct contributions that are related to flame displacement and variations of the mass burning rate. The decomposition procedure is applied on the numerical data and successfully verified by comparing a reconstructed Rayleigh index with the directly computed value. It thus allows to quantify the relative importance of various feedback mechanisms for a given setup.