WorldWideScience

Sample records for vibrational frequencies infrared

  1. Circularly polarized infrared and visible sum-frequency-generation spectroscopy: Vibrational optical activity measurement

    International Nuclear Information System (INIS)

    Cheon, Sangheon; Cho, Minhaeng

    2005-01-01

    Vibrational optical activity spectroscopies utilizing either circularly polarized ir or circularly polarized visible beams were theoretically investigated by considering the infrared and visible sum-frequency-generation (IV-SFG) schemes. In addition to the purely electric dipole-allowed chiral component of the IV-SFG susceptibility, the polarizability-electric quadrupole hyperpolarizability term also contributes to the vibrationally resonant IV-SFG susceptibility. The circular-intensity-difference signal is shown to be determined by the interferences between the all-electric dipole-allowed chiral component and the polarizability-electric-dipole or electric-dipole-electric-quadrupole Raman optical activity tensor components. The circularly polarized SFG methods are shown to be potentially useful coherent spectroscopic tools for determining absolute configurations of chiral molecules in condensed phases

  2. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-01-01

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed

  3. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Hiroaki; Sul, Soohwan [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States); Ge, Nien-Hui, E-mail: nhge@uci.edu [Department of Chemistry, University of California at Irvine, Irvine, CA 92697-2025 (United States)

    2013-08-30

    Highlights: ► Vibrational dynamics of conjugated C=O and N=N modes of ethyl diazoacetate was studied. ► Their frequency–frequency correlation functions are different. ► The dual-frequency 2D IR spectrum indicates anticorrelated frequency fluctuations. ► Correlation effects on dual-frequency 2D IR spectra are discussed. ► The existence of cis and trans conformers is revealed in 2D IR spectra. - Abstract: We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester C=O and diazo N=N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency–frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single C=O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  4. Density functional theory for prediction of far-infrared vibrational frequencies: molecular crystals of astrophysical interest

    Science.gov (United States)

    Ennis, C.; Auchettl, R.; Appadoo, D. R. T.; Robertson, E. G.

    2017-11-01

    Solid-state density functional theory code has been implemented for the structure optimization of crystalline methanol, acetaldehyde and acetic acid and for the calculation of infrared frequencies. The results are compared to thin film spectra obtained from low-temperature experiments performed at the Australian Synchrotron. Harmonic frequency calculations of the internal modes calculated at the B3LYP-D3/m-6-311G(d) level shows higher deviation from infrared experiment than more advanced theory applied to the gas phase. Importantly for the solid-state, the simulation of low-frequency molecular lattice modes closely resembles the observed far-infrared features after application of a 0.92 scaling factor. This allowed experimental peaks to be assigned to specific translation and libration modes, including acetaldehyde and acetic acid lattice features for the first time. These frequency calculations have been performed without the need for supercomputing resources that are required for large molecular clusters using comparable levels of theory. This new theoretical approach will find use for the rapid characterization of intermolecular interactions and bonding in crystals, and the assignment of far-infrared spectra for crystalline samples such as pharmaceuticals and molecular ices. One interesting application may be for the detection of species of prebiotic interest on the surfaces of Kuiper-Belt and Trans-Neptunian Objects. At such locations, the three small organic molecules studied here could reside in their crystalline phase. The far-infrared spectra for their low-temperature solid phases are collected under planetary conditions, allowing us to compile and assign their most intense spectral features to assist future far-infrared surveys of icy Solar system surfaces.

  5. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    Science.gov (United States)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  6. Ultrafast infrared vibrational spectroscopy

    CERN Document Server

    Fayer, Michael D

    2013-01-01

    The past ten years or so have seen the introduction of multidimensional methods into infrared and optical spectroscopy. The technology of multidimensional spectroscopy is developing rapidly and its applications are spreading to biology and materials science. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results and will serve as an excellent resource for other researchers.

  7. MOLECULAR STRUCTURE AND VIBRATIONAL FREQUENCIES OF

    Directory of Open Access Journals (Sweden)

    Fatih UCUN

    2009-02-01

    Full Text Available Abstract: The molecular structure, vibrational frequencies and the corresponding assignments of N-aminophthalimide (NAPH in the ground state have been calculated using the Hartree-Fock (HF and density functional methods (B3LYP with 6-31G (d, p basis set. The calculations were utilized in the CS symmetry of NAPH. The obtained vibrational frequencies and optimized geometric parameters (bond lengths and bond angles were seen to be in good agreement with the experimental data. The comparison of the observed and calculated results showed that B3LYP is superior to the scaled HF method. Theoretical infrared intensities and Raman activities were also reported. Key words: N-aminophthalimide; vibrations; IR spectra; Raman spectra; HF; DFT N-AMİNOFİTALOMİD'İN MOLEKÜLER YAPISI VE TİTREŞİM FREKANSLARI Özet: Temel haldeki N-aminofitalamidin (NAPH moleküler yapısı, titreşim frekansları ve uygun mod tanımlamaları, 6-31 G (d, p temel setli Hartree-Fock (HF ve yoğunluk fonksiyonu metodları (B3LYP kullanılarak hesaplandı. Hesaplamalar, NAPH'ın CS simetrisine uyarlandı. Elde edilen titreşim frekansları ve optimize geometrik parametreleri (bağ uzunlukları ve bağ açıları, deneysel değerlerle iyi bir uyum içinde olduğu görüldü. Deneysel ve teorik sonuçların karşılaştırılması, B3LYP'nin HF metodundan daha üstün olduğunu gösterdi. Ayrıca teorik infrared şiddetleri ve Raman aktiviteleri verildi. Anahtar Kelimeler: N-aminofitalamidin; titreşimler; IR spektrumu; Raman Spektrumu; HF; DFT

  8. Frequency adjustable MEMS vibration energy harvester

    Science.gov (United States)

    Podder, P.; Constantinou, P.; Amann, A.; Roy, S.

    2016-10-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators.

  9. Frequency adjustable MEMS vibration energy harvester

    International Nuclear Information System (INIS)

    Podder, P; Constantinou, P; Roy, S; Amann, A

    2016-01-01

    Ambient mechanical vibrations offer an attractive solution for powering the wireless sensor nodes of the emerging “Internet-of-Things”. However, the wide-ranging variability of the ambient vibration frequencies pose a significant challenge to the efficient transduction of vibration into usable electrical energy. This work reports the development of a MEMS electromagnetic vibration energy harvester where the resonance frequency of the oscillator can be adjusted or tuned to adapt to the ambient vibrational frequency. Micro-fabricated silicon spring and double layer planar micro-coils along with sintered NdFeB micro-magnets are used to construct the electromagnetic transduction mechanism. Furthermore, another NdFeB magnet is adjustably assembled to induce variable magnetic interaction with the transducing magnet, leading to significant change in the spring stiffness and resonance frequency. Finite element analysis and numerical simulations exhibit substantial frequency tuning range (25% of natural resonance frequency) by appropriate adjustment of the repulsive magnetic interaction between the tuning and transducing magnet pair. This demonstrated method of frequency adjustment or tuning have potential applications in other MEMS vibration energy harvesters and micromechanical oscillators. (paper)

  10. Correlations between frequency of infra-red active vibrational modes and copper-oxygen distance in copper oxides, application to superconductors

    International Nuclear Information System (INIS)

    Ganguly, P.; Infante, C.; Siddiqi, S.A.; Sreedhar, K.

    1990-05-01

    The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency, υ max , is found to correlate extremely well with the shortest Cu-O distance. υ max increases at an impressive rate of ∼ 20 cm -1 per .01 A when the Cu-O distance becomes less than 1.97 A, which is the Cu 2+ -O 2- distance in square-planar CuO 4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ''titration'' procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa 2 Cu 3 O 7-d structure such as LaCaBaCu 3 O 7-d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La 2 (Ca,Sr)Cu 2 O 6 . the significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu-O distance is decreased. (author). 52 refs, 6 figs

  11. Synchrotron radiation in the Far-Infrared: Adsorbate-substrate vibrations and resonant interactions

    International Nuclear Information System (INIS)

    Hoffmann, F.M.; Williams, G.P.; Hirschmugl, C.J.; Chabal, Y.J.

    1991-01-01

    Synchrotron radiation in the Far Infrared offers the potential for a broadband source of high brightness and intensity. Recent development of a Far-Infrared Beamline at the NSLS in Brookhaven provides an unique high intensity source in the FIR spectral range (800-10 cm -1 ). This talk reviews its application to surface vibrational spectroscopy of low frequency adsorbate-substrate vibrations and resonant interactions on metal surfaces

  12. Determination of low-frequency vibrational states in glasses

    International Nuclear Information System (INIS)

    Ahmad, N.; Hasan, M.M.

    1996-01-01

    It is shown that density of low frequency (v < 1 THz) vibrational states g(v) in glasses can be determined from heat capacities measured at low temperature. These g(v) are identical to those determined from inelastic neutron scattering studies. The form of g(v) is non quadratic and therefore the Debye density of states may not be used to interpret the Raman, and infrared absorption in glasses. (author)

  13. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  14. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  15. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  16. Sum frequency generation for surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-01-01

    Surface vibrational spectroscopy is one of the best means for characterizing molecular adsorbates. For this reason, many techniques have been developed in the past. However, most of them suffer from poor sensitivity, low spectral and temporal resolution, and applications limited to vacuum solid interfaces. Recently, the second harmonic generation (SHG) technique was proved repeatedly to be a simple but versatile surface probe. It is highly sensitive and surface specific; it is also capable of achieving high temporal, spatial, and spectral resolution. Being an optical technique, it can be applied to any interface accessible by light. The only serious drawback is its lack of molecular selectivity. An obvious remedy is the extension of the technique to IR-visible sum frequency generation (SFG). Surface vibrational spectroscopy with submonolayer sensitivity is then possible using SFG with the help of a tunable IR laser. The authors report here an SFG measurement of the C-H stretch vibration of monolayers of molecules at air-solid and air-liquid interfaces

  17. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  18. Theoretical Investigation of Vibrational Frequencies for Tetrabromopalladate (II Ion

    Directory of Open Access Journals (Sweden)

    Metin Bilge

    2010-11-01

    Full Text Available The normal mode frequencies and corresponding vibrational assignments of tetrabromopalladate (II ion ([Pd(Br4]2- have been theoretically examined by means of standard quantum chemical technique. All normal modes have been successfully assigned utilizing the D4h symmetry of [Pd(Br4]2-. Calculation has been performed at the Becke-3-Lee-Yang-Parr (B3LYP density functional method using the Lanl2dz basis set. Infrared intensities and Raman activities have also been calculated and reported. Theoretical results have been successfully compared against available experimental data. Key words: [Pd(Br4]2-, DFT, vibrational assignment, normal mode frequency, Lanl2dz Tetrabromopaladyum (II İyonunun Titreşim Frekanslarının Teorik Olarak İncelenmesi Tetrabromopaladyum (II iyonunun ([Pd(Br4]2- normal mod frekansları ve bunlara karşılık gelen titreşim işaretlemeleri standart kuantum kimyasal teknik yardımıyla teorik olarak incelenmektedir. Tüm normal modlar [Pd(Br4]2- iyonunun D4h nokta grubu kullanılarak başarılı bir şekilde işaretlenmiştir. Hesaplama Lanl2dz baz seti kullanılarak B3LYP (Becke-3-Lee-Yang-Parr yoğunluk fonksiyonel metoduyla gerçekleştirilmiş ve infrared intensiteleri ile Raman aktiviteleri de hesaplanmıştır. Teorik sonuçlar mevcut deneysel değerler ile başarılı bir şekilde karşılaştırılmaktadır. Anahtar kelimeler: [Pd(Br4]2-, DFT, titreşim işaretlemesi, normal mod frekansı, Lanl2dz

  19. The structure of oleamide films at the aluminum/oil interface and aluminum/air interface studied by Sum Frequency Generation (SFG) vibrational spectroscopy and Reflection Absorption Infrared Spectroscopy (RAIRS).

    Science.gov (United States)

    Casford, Michael T L; Davies, Paul B

    2009-08-01

    The structure of oleamide (cis-9-octadecenamide) films on aluminum has been investigated by sum frequency generation vibrational spectroscopy (SFG) and reflection absorption infrared spectroscopy (RAIRS). Three different film deposition strategies were investigated: (i) films formed by equilibrium adsorption from oleamide solutions in oil, (ii) Langmuir-Blodgett films cast at 1 and 25 mN m(-1), (iii) thick spin-cast films. Both L-B and spin-cast films were examined in air and under oil. The adsorbate formed in the 1 mN m(-1) film in air showed little orientational order. For this film, the spectroscopic results and the ellipsometric thickness point to a relatively conformationally disordered monolayer that is oriented principally in the plane of the interface. Direct adsorption to the metal interface from oil results in SFG spectra of oleamide that are comparable to those observed for the 1 mN m(-1) L-B film in air. In contrast, SFG and RAIRS results for the 25 mN m(-1) film in air and SFG spectra of the spin-cast film in air both show strong conformational ordering and orientational alignment normal to the interface. The 25 mN m(-1) film has an ellipsometric thickness almost twice that of the 1 mN m(-1) L-B film. Taken in combination with the spectroscopic results, this is indicative of a well packed monolayer in air in which the hydrocarbon chain is in an essentially defect-free extended conformation with the methyl terminus oriented away from the surface. A similar structure is also deduced for the surface of the spin-cast film in air. Upon immersion of the 25 mN m(-1) L-B film in oil the SFG spectra show that this film rapidly adopts a relatively disordered structure similar to that seen for the 1 mN m(-1) L-B film in air. Immersion of the spin-cast film in oil results in the gradual disordering of the amide film over a period of several days until the observed spectra become essentially identical to those observed for direct adsorption of oleamide from oil.

  20. Molecular-level mechanisms of vibrational frequency shifts in a polar liquid.

    Science.gov (United States)

    Morales, Christine M; Thompson, Ward H

    2011-06-16

    A molecular-level analysis of the origins of the vibrational frequency shifts of the CN stretching mode in neat liquid acetonitrile is presented. The frequency shifts and infrared spectrum are calculated using a perturbation theory approach within a molecular dynamics simulation and are in good agreement with measured values reported in the literature. The resulting instantaneous frequency of each nitrile group is decomposed into the contributions from each molecule in the liquid and by interaction type. This provides a detailed picture of the mechanisms of frequency shifts, including the number of surrounding molecules that contribute to the shift, the relationship between their position and relative contribution, and the roles of electrostatic and van der Waals interactions. These results provide insight into what information is contained in infrared (IR) and Raman spectra about the environment of the probed vibrational mode. © 2011 American Chemical Society

  1. Effect of low-frequency vibrations on speckle interferometry fringes

    International Nuclear Information System (INIS)

    Vikram, C.S.; Pechersky, M.J.

    1998-01-01

    The effects of low-frequency vibrations on speckle correlation fringes have been investigated. The relatively short capture time of the camera in the low-frequency case may yield usable fringe contrast in spite of vibration. It has been shown that the fringes also shift due to the vibration. The study is in agreement with experimental observations of good-contrast correlation fringes even if the object is not on a vibration-isolated table. Some such experimental observations are also presented. copyright 1998 Society of Photo-Optical Instrumentation Engineers

  2. Two-dimensional infrared spectroscopy of vibrational polaritons.

    Science.gov (United States)

    Xiang, Bo; Ribeiro, Raphael F; Dunkelberger, Adam D; Wang, Jiaxi; Li, Yingmin; Simpkins, Blake S; Owrutsky, Jeffrey C; Yuen-Zhou, Joel; Xiong, Wei

    2018-04-19

    We report experimental 2D infrared (2D IR) spectra of coherent light-matter excitations--molecular vibrational polaritons. The application of advanced 2D IR spectroscopy to vibrational polaritons challenges and advances our understanding in both fields. First, the 2D IR spectra of polaritons differ drastically from free uncoupled excitations and a new interpretation is needed. Second, 2D IR uniquely resolves excitation of hybrid light-matter polaritons and unexpected dark states in a state-selective manner, revealing otherwise hidden interactions between them. Moreover, 2D IR signals highlight the impact of molecular anharmonicities which are applicable to virtually all molecular systems. A quantum-mechanical model is developed which incorporates both nuclear and electrical anharmonicities and provides the basis for interpreting this class of 2D IR spectra. This work lays the foundation for investigating phenomena of nonlinear photonics and chemistry of molecular vibrational polaritons which cannot be probed with traditional linear spectroscopy.

  3. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  4. Infrared frequency-tunable coherent thermal sources

    International Nuclear Information System (INIS)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-01-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor–capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm −1 . The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region. (paper)

  5. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  6. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  7. Two-Dimensional Infrared Study of Vibrational Coupling between Azide and Nitrile Reporters in a RNA Nucleoside.

    Science.gov (United States)

    Schmitz, Andrew J; Hogle, David G; Gai, Xin Sonia; Fenlon, Edward E; Brewer, Scott H; Tucker, Matthew J

    2016-09-08

    The vibrations in the azide, N3, asymmetric stretching region and nitrile, CN, symmetric stretching region of 2'-azido-5-cyano-2'-deoxyuridine (N3CNdU) are examined by two-dimensional infrared (2D IR) spectroscopy. At earlier waiting times, the 2D IR spectrum shows the presence of both vibrational transitions along the diagonal and off-diagonal cross peaks indicating vibrational coupling. The coupling strength is determined from the off-diagonal anharmonicity to be 66 cm(-1) for the intramolecular distance of ∼7.9 Å, based on a structural map generated for this model system. In addition, the frequency-frequency correlation decay is detected, monitoring the solvent dynamics around each individual probe position. Overall, these vibrational reporters can be utilized in tandem to simultaneously track global structural information and fast structural fluctuations.

  8. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    Science.gov (United States)

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  9. Gearbox Vibration Signal Amplitude and Frequency Modulation

    Directory of Open Access Journals (Sweden)

    Fakher Chaari

    2012-01-01

    Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.

  10. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    International Nuclear Information System (INIS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Alici, Gursel; Deng, Huaxia; Du, Haiping; Yan, Tianhong

    2016-01-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy. (paper)

  11. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  12. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  13. Theory of sum-frequency generation spectroscopy of adsorbed molecules using the density matrix method-broadband vibrational sum-frequency generation and applications

    International Nuclear Information System (INIS)

    Bonn, M; Ueba, H; Wolf, M

    2005-01-01

    A generalized theory of frequency- and time-resolved vibrational sum-frequency generation (SFG) spectroscopy of adsorbates at surfaces is presented using the density matrix formalism. Our theoretical treatment is specifically aimed at addressing issues that accompany the relatively novel SFG approach using broadband infrared pulses. The ultrashort duration of these pulses makes them ideally suited for time-resolved investigations, for which we present a complete theoretical treatment. A second key characteristic of these pulses is their large bandwidth and high intensity, which allow for highly non-linear effects, including vibrational ladder climbing of surface vibrations. We derive general expressions relating the density matrix to SFG spectra, and apply these expressions to specific experimental results by solving the coupled optical Bloch equations of the density matrix elements. Thus, we can theoretically reproduce recent experimentally demonstrated hot band SFG spectra using femtosecond broadband infrared excitation of carbon monoxide (CO) on a Ru(001) surface

  14. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  15. High frequency vibration analysis by the complex envelope vectorization.

    Science.gov (United States)

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  16. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  17. Frequency identification of vibration signals using video camera image data.

    Science.gov (United States)

    Jeng, Yih-Nen; Wu, Chia-Hung

    2012-10-16

    This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  18. Frequency Identification of Vibration Signals Using Video Camera Image Data

    Directory of Open Access Journals (Sweden)

    Chia-Hung Wu

    2012-10-01

    Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.

  19. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2011-01-01

    This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone

  20. Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)

    2009-06-15

    In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural

  1. A low frequency vibration energy harvester using magnetoelectric laminate composite

    International Nuclear Information System (INIS)

    Ju, Suna; Chae, Song Hee; Choi, Yunhee; Lee, Seungjun; Ji, Chang-Hyeon; Lee, Hyang Woon

    2013-01-01

    In this paper, we present a vibration energy harvester using magnetoelectric laminate composite and a springless spherical permanent magnet as a proof mass. The harvester utilizes a freely movable spherical permanent magnet to transform external vibration into a time varying magnetic field applied to the magnetoelectric transducer. The laminate composite consists of a Ni–Mn–Ga-based MSMA (magnetic shape memory alloy) element and a PZT (lead zirconate titanate) plate. A proof-of-concept harvester has been fabricated and characterized at various input accelerations and frequencies. A maximum open circuit voltage of 1.18 V has been obtained in response to a 3g vibration at 17 Hz with the fabricated device. Moreover, a maximum output voltage of 10.24 V and output power of 4.1 μW have been achieved on a 950 Ω load, when the fabricated energy harvester was mounted on a smartphone and shaken by hand. (paper)

  2. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    Science.gov (United States)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

  3. Electromagnetic energy harvesting from vibrations of multiple frequencies

    International Nuclear Information System (INIS)

    Yang Bin; Lee Chengkuo; Xie Jin; Han He, Johnny; Kotlanka, Rama Krishna; Feng Hanhua; Xiang Wenfeng; Low, Siew Ping

    2009-01-01

    A novel multi-frequency energy harvester has been designed and fabricated, which consists of three permanent magnets, three sets of two-layer copper coils and a supported beam of acrylic, while these coils are made of thin fire resistant 4 (FR4) substrates using a standard printed circuit board. The energy under the first, second and third resonant modes can be harvested, corresponding to the resonant frequencies of 369 Hz, 938 Hz and 1184 Hz, respectively. The maximum output voltage and power of the first and second vibration modes are 1.38 mV, 0.6 µW and 3.2 mV, 3.2 µW for a 14 µm exciting vibration amplitude and a 0.4 mm gap between the magnet and coils, respectively. The feasibility study results are in good agreement with the theoretical calculations and show promising application potentials

  4. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    International Nuclear Information System (INIS)

    Black, S.J.; Spalek, G.

    1992-01-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations

  5. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    International Nuclear Information System (INIS)

    Black, S.J.; Spalek, G.

    1992-01-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL-modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations. (Author) 6 figs., 5 tabs., 4 refs

  6. Sensibility to Changes of Vibrational Modes of Excited Electron: Sum Frequency Signals Versus Difference Frequency Signals

    International Nuclear Information System (INIS)

    Gu Anna; Liang Xianting

    2011-01-01

    In this paper, we investigate a two electronic level system with vibrational modes coupled to a Brownian oscillator bath. The difference frequency generation (DFG) signals and sum frequency generation (SFG) signals are calculated. It is shown that, for the same model, the SFG signals are more sensitive than the DFG signals to the changes of the vibrational modes of the electronic two-level system. Because the SFG conversion efficiency can be improved by using the time-delay method, the findings in this paper predict that the SFG spectrum may probe the changes of the microstructure more effectively. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  8. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

    Science.gov (United States)

    Guo, Hairun; Herkommer, Clemens; Billat, Adrien; Grassani, Davide; Zhang, Chuankun; Pfeiffer, Martin H. P.; Weng, Wenle; Brès, Camille-Sophie; Kippenberg, Tobias J.

    2018-06-01

    Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500-4,000 cm-1), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.

  10. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  11. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  12. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    International Nuclear Information System (INIS)

    Ju, S; Chae, S H; Choi, Y; Jun, S; Park, S M; Lee, S; Ji, C-H; Lee, H W

    2013-01-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken

  13. Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect

    Science.gov (United States)

    Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.

    2013-12-01

    This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.

  14. Refinements in the vibration frequencies of H3+ and D3+

    International Nuclear Information System (INIS)

    Carney, G.D.

    1980-01-01

    Refinements in vibration intervals of the order of 1 per cent are reported for H 3 + and D 3 + . These improved intervals result from the addition of polarization terms to the electronic wavefunction previously obtained with a complete configuration-interaction treatment of electron correlation using a 21 floating gaussian lobe basis. Twelve additional floating gaussian lobe orbitals were used to construct 78 additional configuration-interaction functions. Positions and exponents of these additional floating gaussian lobe orbitals were carefully chosen to allow for polarization of the correlated wavefunctions. Calculated vibrational state-averaged and observed geometries for H 3 + agree to within 0.01 A; refined fundamental frequencies are νsub(A) = 3220.48 and νsub(E) = 2545.99 cm -1 for H 3 + , and νsub(A) = 2332.94 and νsub(E) = 1848.12 cm -1 for D 3 + . Einstein coefficients for spontaneous emission of radiation from infrared active states of H 3 + and D 3 + are reported, and an alternative to the Carney-Porter method of vibration analysis is used to confirm the accuracy of their method for axial molecules such as H 3 + . (author)

  15. A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment

    International Nuclear Information System (INIS)

    Ashraf, K; Md Khir, M H; Baharudin, Z; Dennis, J O

    2013-01-01

    This paper presents a bounded vibration energy harvester to effectively harvest energy from a wide band of low-frequency environmental vibrations ranging from 10 to 18 Hz. Rigid mechanical stoppers are used to confine the seismic mass movement within the elastic limits of the spring. Experimental results show the effectiveness of the proposed technique in increasing the efficiency of the energy harvester. When excited at a frequency of 10 Hz with a peak acceleration of 1 g, the harvester responds at a higher frequency of 20 Hz and gives a peak power of 2.68 mW and a peak to peak voltage of 2.62 V across a load of 220 Ω. The average power density of 65.74 μW cm −3 obtained at 10 Hz 1 g excitation monotonically increases with frequency up to 341.86 μW cm −3 at 18 Hz. An analytical model describing the nonlinear dynamics of the proposed harvester is also presented. A simple technique to estimate the energy losses during impact and thereof a method to incorporate these losses in the model are suggested. The presented model not only predicts the experimental voltage waveform and frequency response of the device with good similarity but also predicts the RMS voltage from the harvester for the whole range of operating frequencies with an RMS error of 5.2%. (paper)

  16. The Influence of Various Vibration Frequency on Barium Sulfate Scale Formation Of Vibrated Piping System In The Presence Citric Acid

    Science.gov (United States)

    Karaman, N.; Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2018-01-01

    In this paper, the influence of vibrated piping system for BaSO4 scale formation was investigated. The vibration frequency and presence of citric acid were independent variables determining the kinetics, mass deposit and polymorph of the crystals. Correspondingly, induction time and mass of scale were obtained during the experiments. The crystalline scale was observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) to investigate the morphology and the phase mineral deposits, respectively. This effect indicated that the increase in vibration frequency promoted the increased deposition rate, while the pure barite with a plate-like morphology was produced in the experiments.

  17. Structure and vibrational frequencies of gaseous europium dibromide

    International Nuclear Information System (INIS)

    Giricheva, N.I.; Girichev, S.A.; Shlykov, S.A.; Pelipets, O.V.

    2000-01-01

    Structure of EuBr 2 molecule is studied in the framework of synchronous electron diffraction and mass-spectrometric experiment at the temperature of 1373(20) K. It is found that the molecule has a nonlinear equilibrium configuration, being characterized by the following effective parameters: r g (Eu - Br) = 2.767 A, r g (Br - Br) = 5.11(5) A, l g (Eu - Br) = 0.109(2) A, l g (Br - Br) = 0.388(5) A, valence angle (Br - Eu - Br) = 135.0(3.5) deg. The electron diffraction data permit ascertaining vibration frequencies ν 1 225(10) cm -1 and ν 2 = 40(4) cm -1 [ru

  18. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  19. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  20. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...

  1. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  2. Generation of Mid-Infrared Frequency Combs for Spectroscopic Applications

    Science.gov (United States)

    Maser, Daniel L.

    Mid-infrared laser sources prove to be a valuable tool in exploring a vast array of phenomena, finding their way into applications ranging from trace gas detection to X-ray generation and carbon dating. Mid-infrared frequency combs, in particular, are well-suited for many of these applications, owing to their inherent low-noise and broadband nature. Frequency comb technology is well-developed in the near-infrared as a result of immense technological development by the telecommunication industry in silica fiber and the existence of readily-available glass dopants such as ytterbium and erbium that enable oscillators at 1 and 1.5 ?m. However, options become substantially more limited at longer wavelengths, as silica is no longer transparent and the components required in a mid-infrared frequency comb system (oscillators, fibers, and both fiber and free-space components) are far less technologically mature. This thesis explores several different approaches to generating frequency comb sources in the mid-infrared region, and the development of sources used in the nonlinear processes implemented to reach these wavelengths. An optical parametric oscillator, two approaches to difference frequency generation, and nonlinear spectral broadening in chip-scale waveguides are developed, characterized, and spectroscopic potential for these techniques is demonstrated. The source used for these nonlinear processes, the erbium-doped fiber amplifier, is also studied and discussed throughout the design and optimization process. The nonlinear optical processes critical to this work are numerically modeled and used to confirm and predict experimental behavior.

  3. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  4. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree-Fock and density functional theory calculations

    Science.gov (United States)

    Ucun, Fatih; Sağlam, Adnan; Güçlü, Vesile

    2007-06-01

    The molecular structures, vibrational frequencies and corresponding vibrational assignments of xanthine and its methyl derivatives (caffeine and theobromine) have been calculated using ab initio Hartree-Fock (HF) and density functional theory (B3LYP) methods with 6-31G(d, p) basis set level. The calculations were utilized to the CS symmetries of the molecules. The obtained vibrational frequencies and optimised geometric parameters (bond lengths and bond angles) were seen to be well agreement with the experimental data. The used scale factors which have been obtained the ratio of the frequency values of the strongest peaks in the calculated and experimental spectra seem to cause the gained vibrations well corresponding to the experimental ones. Theoretical infrared intensities and Raman activities are also reported.

  5. Vibrational relaxation of CDCl3 induced by infrared laser radiation

    International Nuclear Information System (INIS)

    Alvarez, R.F.; Azcarate, M.L.; Alonso, E.M.; Dangelo, R.J.; Quel, E.J.

    1990-01-01

    A CO 2 TEA laser was used to excite mode ν 4 of CDCl 3 (914cm- 1 ). The laser was constructed at the laboratory, tuned in line 10P(48), (10.91 μm). Infrared fluorescence technique was used to determine V-T/R relaxation times for CDCl 3 both pure and in Ar mixtures. (Author). 9 refs., 3 figs

  6. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  7. Characteristics in Molecular Vibrational Frequency Patterns between Agonists and Antagonists of Histamine Receptors

    Directory of Open Access Journals (Sweden)

    S. June Oh

    2012-06-01

    Full Text Available To learn the differences between the structure-activity relationship and molecular vibration-activity relationship in the ligand-receptor interaction of the histamine receptor, 47 ligands of the histamine receptor were analyzed by structural similarity and molecular vibrational frequency patterns. The radial tree that was produced by clustering analysis of molecular vibrational frequency patterns shows its potential for the functional classification of histamine receptor ligands.

  8. Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine

    DEFF Research Database (Denmark)

    Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar

    2007-01-01

    The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship am...

  9. Low frequency vibration tests on a floating slab track in an underground laboratory

    Institute of Scientific and Technical Information of China (English)

    De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU

    2011-01-01

    Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.

  10. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    Science.gov (United States)

    Miller, Lindsay Margaret

    hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency harvester

  11. Multispectral mid-infrared imaging using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Jensen, Ole Bjarlin

    2013-01-01

    It has recently been shown that it is possible to upconvert infrared images to the near infrared region with high quantum efficiency and low noise by three-wave mixing with a laser field [1]. If the mixing laser is single-frequency, the upconverted image is simply a band-pass filtered version...... parameter, allowing for fast tuning and hence potentially fast image acquisition, paving the way for upconversion based real time multispectral imaging. In the present realization the upconversion module consists of an external cavity tapered diode laser in a Littrow configuration with a computer controlled...

  12. Vibration mitigation in J-TEXT far-infrared diagnostic systems

    International Nuclear Information System (INIS)

    Li, Q.; Chen, J.; Zhuang, G.; Wang, Z. J.; Gao, L.; Chen, W.

    2012-01-01

    Optical structure stability is an important issue for far-infrared (FIR) phase measurements. To ensure good signal quality, influence of vibration should be minimized. Mechanical amelioration and optical optimization can be taken in turn to decrease vibration's influence and ensure acceptable measurement. J-TEXT (Joint Texal Experiment Tokamak, formerly TEXT-U) has two FIR diagnostic systems: a HCN interferometer system for electron density measurement and a three-wave polarimeter-interferometer system (POLARIS) for electron density and Faraday effect measurements. All use phase detection techniques. HCN interferometer system has almost eliminated the influence of vibration after mechanical amelioration and optical optimization. POLARIS also obtained first experimental results after mechanical stability improvements and is expected to further reduce vibration's influence on Faraday angle to 0.1° after optical optimization.

  13. The Utilization of Low Frequency Raman Spectra of Gases for the Study of Molecules with Large Amplitude Vibration

    Institute of Scientific and Technical Information of China (English)

    James R. Durig; Sarah Xiao-hua Zhou; Joshua Klaassen; Arindam Ganguly

    2009-01-01

    The utilization of the Raman spectra of the low frequency bending mode for three quasi-linear molecules, disiloxane, (SiH3)2 O; methylisocyanate, CH3NCO; and dimethy lisocyanate, (CH3)2SiHNCO for observing the low frequency anharmonic bending vibration is demonstrated which is superior to the corresponding far infrared spectra. From the observed frequencies from the Raman spectra the potential function governing the heavy atom motion to linearity has been obtained from which the barrier has been determined. These experimental values are compared to the ab ini-tio predicted values. Also low frequency Raman spectra of the ring puckering vibration of chlorocy-clobutane, c-C4H7Cl, bromocyclobutane, c-C4H7Br, and aminocyclobutane, c-C4H7NH2, have been utilized to obtain the potential function governing the ring inversion for these molecules. The deter-mined barriers to planarity are compared to those obtained from MP2 (full) ab initio and density functional theory B3LYP calculations by utilizing a variety of basis sets. For all of these studies it is shown that the Raman spectra are superior to the infrared spectra for determining the frequencies of the excited state transitions.

  14. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  15. Examining the impact of harmonic correlation on vibrational frequencies calculated in localized coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Hanson-Heine, Magnus W. D., E-mail: magnus.hansonheine@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-10-28

    Carefully choosing a set of optimized coordinates for performing vibrational frequency calculations can significantly reduce the anharmonic correlation energy from the self-consistent field treatment of molecular vibrations. However, moving away from normal coordinates also introduces an additional source of correlation energy arising from mode-coupling at the harmonic level. The impact of this new component of the vibrational energy is examined for a range of molecules, and a method is proposed for correcting the resulting self-consistent field frequencies by adding the full coupling energy from connected pairs of harmonic and pseudoharmonic modes, termed vibrational self-consistent field (harmonic correlation). This approach is found to lift the vibrational degeneracies arising from coordinate optimization and provides better agreement with experimental and benchmark frequencies than uncorrected vibrational self-consistent field theory without relying on traditional correlated methods.

  16. Applying Low-Frequency Vibration for the Experimental Investigation of Clutch Hub Forming

    Directory of Open Access Journals (Sweden)

    De’an Meng

    2018-05-01

    Full Text Available A vibration-assisted plastic-forming method was proposed, and its influence on clutch hub forming process was investigated. The experiments were conducted on a vibration-assisted hydraulic extrusion press with adjustable frequency and amplitude. Vibration frequency and amplitude were considered in investigating the effect of vibration on forming load and surface quality. Results showed that applying vibration can effectively reduce forming force and improve surface quality. The drop in forming load was proportional to the vibration frequency and amplitude, and the load decreased by up to 25%. Such reduction in forming load raised with amplitude increase because the increase in amplitude would accelerate punch relative speed, which then weakened the adhesion between workpiece and dies. By increasing the vibration frequency, the punch movement was enhanced, and the number of attempts to drag the lubricant out of the pits was increased. In this manner, the lubrication condition was improved greatly. The 3D surface topography testing confirmed the assumption. Moreover, vibration frequency exerted a more significant effect on the forming load reduction than vibration amplitude.

  17. Nature of infrared-active phonon sidebands to internal vibrations: Spectroscopic studies of solid oxygen and nitrogen

    Science.gov (United States)

    Brodyanski, A. P.; Medvedev, S. A.; Vetter, M.; Kreutz, J.; Jodl, H. J.

    2002-09-01

    The ir-active phonon sidebands to internal vibrations of oxygen and nitrogen were precisely investigated by Fourier transform infrared spectroscopy in the fundamental and first overtone spectral regions from 10 K to the boiling points at ambient pressure. We showed that an analysis of ir-active phonon sidebands yields important information on the internal vibrations of molecules in a condensed medium (solid or liquid), being complementary to Raman data on vibron frequencies. Analyzing the complete profile of these bands, we determined the band origin frequencies and explored their temperature behavior in all phases of both substances. We present unambiguous direct experimental proofs that this quality corresponds to the frequency of internal vibrations of single molecules. Considering solid oxygen and nitrogen as two limiting cases for simple molecular solids, we interpret this result as a strong evidence for a general fact that an ir-active phonon sideband possesses the same physical origin in pure molecular solids and in impurity centers. The key characteristics of the fundamental vibron energy zone (environmental and resonance frequency shifts) were deduced from the combined analysis of ir and Raman experimental data and their temperature behavior was explored in solid and liquid phases of oxygen and nitrogen at ambient pressure. The character of the short-range orientational order was established in the β-nitrogen based on our theoretical analysis consistent with the present experimental results. We also present the explanation of the origin of pressure-caused changes in the frequency of the Raman vibron mode of solid oxygen at low temperatures.

  18. Low frequency torsional vibration gaps in the shaft with locally resonant structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing

    2006-01-01

    The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control

  19. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water

    Science.gov (United States)

    Ivanov, Sergei D.; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik

    2010-01-01

    Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."

  20. A broadband frequency-tunable dynamic absorber for the vibration control of structures

    International Nuclear Information System (INIS)

    Komatsuzaki, T; Inoue, T; Terashima, O

    2016-01-01

    A passive-type dynamic vibration absorber (DVA) is basically a mass-spring system that suppresses the vibration of a structure at a particular frequency. Since the natural frequency of the DVA is usually tuned to a frequency of particular excitation, the DVA is especially effective when the excitation frequency is close to the natural frequency of the structure. Fixing the physical properties of the DVA limits the application to a narrowband, harmonically excited vibration problem. A frequency-tunable DVA that can modulate its stiffness provides adaptability to the vibration control device against non-stationary disturbances. In this paper, we suggest a broadband frequency-tunable DVA whose natural frequency can be extended by 300% to the nominal value using the magnetorheological elastomers (MREs). The frequency adjustability of the proposed absorber is first shown. The real-time vibration control performance of the frequency-tunable absorber for an acoustically excited plate having multiple resonant peaks is then evaluated. Investigations show that the vibration of the structure can be effectively reduced with an improved performance by the DVA in comparison to the conventional passive- type absorber. (paper)

  1. Mid-Infrared Frequency-Agile Dual-Comb Spectroscopy

    Science.gov (United States)

    Luo, Pei-Ling; Yan, Ming; Iwakuni, Kana; Millot, Guy; Hänsch, Theodor W.; Picqué, Nathalie

    2016-06-01

    We demonstrate a new approach to mid-infrared dual-comb spectroscopy. It opens up new opportunities for accurate real-time spectroscopic diagnostics and it significantly simplifies the technique of dual-comb spectroscopy. Two mid-infrared frequency combs of slightly different repetition frequencies and moderate, but rapidly tunable, spectral span are generated in the 2800-3200 cm-1 region. The generators rely on electro-optic modulators, nonlinear fibers for spectral broadening and difference frequency generation and do not involve mode-locked lasers. Flat-top frequency combs span up to 10 cm-1 with a comb line spacing of 100 MHz (3×10-3 cm-1). The performance of the spectrometer without any phase-lock electronics or correction scheme is illustrated with spectra showing resolved comb lines and Doppler-limited spectra of methane. High precision on the spectroscopic parameter (line positions and intensities) determination is demonstrated for spectra measured on a millisecond time scale and it is validated with comparison with literature data. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T.W. Hänsch, N. Picqué, Frequency-agile dual-comb spectroscopy, Nature Photonics 10, 27-30 (2016).

  2. Sensitivity analysis of the stiffness between the frame structure and the frequency and vibration mode

    Science.gov (United States)

    Chen, Wenyuan

    2018-03-01

    The modal parameters such as natural frequency and vibration mode of the frame structure of the layer stiffness sensitivity is inconsistent. This article focuses on the theoretical derivation of the frequency and mode of the frame structure layer stiffness of the first-order sensitivity. The numerical examples show that the frame structure of layer stiffness higher than with the first order sensitivity vibration frequency.

  3. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    Science.gov (United States)

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  4. Separate recording of rationally related vibration frequencies using digital stroboscopic holographic interferometry

    International Nuclear Information System (INIS)

    Alexeenko, Igor; Gusev, Michael; Gurevich, Vadim

    2009-01-01

    A method for separate recording of rationally related vibration frequencies is presented. To record and measure the mode shape of vibrations, a synchronized stroboscopic CCD camera is used. Synchronization and control of the camera acquisition for recording stroboscopic holographic sequence has been realized. The phase for different states of the object vibration is calculated using the Fourier-transform method. Experimental results are presented, and the advantages and disadvantages of the proposed method are discussed.

  5. Diagnosis of industrial gearboxes condition by vibration and time-frequency, scale-frequency, frequency-frequency analysis

    Directory of Open Access Journals (Sweden)

    P. Czech

    2012-10-01

    Full Text Available In the article methods of vibroacoustic diagnostics of high-power toothed gears are described. It is shown below, that properly registered and processed acoustic signal or vibration signal may serve as an explicitly interpreted source of diagnostic symptoms. The presented analysis were based on vibration signals registered during the work of the gear of a rolling stand working in Katowice Steel Plant (presently one of the branches of Mittal Steel Poland JSC.

  6. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    Science.gov (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  7. Low-frequency wideband vibration energy harvesting by using frequency up-conversion and quin-stable nonlinearity

    Science.gov (United States)

    Wang, Chen; Zhang, Qichang; Wang, Wei

    2017-07-01

    This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.

  8. Low frequency vibrations disrupt left-right patterning in the Xenopus embryo.

    Directory of Open Access Journals (Sweden)

    Laura N Vandenberg

    Full Text Available The development of consistent left-right (LR asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia. Investigating one frequency (7 Hz, we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.

  9. The application of infrared synchrotron radiation to the study of interfacial vibrational modes

    International Nuclear Information System (INIS)

    Hirschmugl, C.J.; Williams, G.P.

    1992-01-01

    Synchrotron radiation provides an extremely bright broad-band source in the infrared which is ideally suited to the study of surface and interface vibrational modes in the range 50--3,000 cm -1 . Thus it covers the important range of molecule-substrate interactions, as well as overlapping with the more easily accessible near-ir region where molecular internal modes are found. Compared to standard broadband infrared sources such as globars, not only is it 1,000 times brighter, but its emittance matches the phase-space of the electrochemical cell leading to full utilization of this brightness advantage. In addition, the source is more stable even than water-cooled globars in vacuum for both short-term and long-term fluctuations. The authors summarize the properties of synchrotron radiation in the infrared, in particular pointing out the distinct differences between this and the x-ray region. They use experimental data in discussing important issues of signal to noise and address the unique problems and advantages of the synchrotron source. Thus they emphasize the important considerations necessary for developing new facilities. This analysis then leads to a discussion of phase-space matching to electrochemical cells, and to other surfaces in vacuum. Finally they show several examples of the application of infrared synchrotron radiation to surface vibrational spectroscopy. The examples are for metal crystal surfaces in ultra-high vacuum and include CO/Cu(100) and (111) and CO/K/Cu(100). The experiments show how the stability of the synchrotron source allows subtle changes in the background to be observed in addition to the discrete vibrational modes. These changes are due to electronic states induced by the adsorbate. In some cases the authors have seen interferences between these and the discrete vibrational modes, leading to a breakdown of the dipole selection rules, and the observation of additional modes

  10. Dispersion of low frequency vibrations in the deuterated naphthalene crystal

    International Nuclear Information System (INIS)

    Bokhenkov, E.L.; Sheka, E.; Natkaniec, I.

    1977-01-01

    The dispersion curves of the lattice vibrations and of the two lowest intramolecular vibrations in d 8 -naphthalene (C 10 D 8 ) crystal have been measured by coherent inelastic neutron scattering for the [010] and the [100] directions at the temperature of 98 K and partially at 5 K. The results are compared with calculations based on the Kitaigorodskii parameters for C-C, C-H and H-H interactions in organic molecular crystals. (author)

  11. Vibrational frequencies and structural investigation of (M(CN)4)2- (M Cd, Hg and Zn) ions

    International Nuclear Information System (INIS)

    Gurkan, Keshan; Tomas, Polivka; Cemal, Parlak; Mustafa, Shenyel

    2011-01-01

    The normal mode frequencies and corresponding vibrational assignments of tetracyanometallate (II) ions ([M(CN) 4 ] 2 -, M = Cd, Hg and Zn) have been theoretically examined by means of standard quantum chemical techniques. All normalmodes have been successfully assigned to one of six types of motion utilizing the T d symmetry of M(CN) 4 2 -. Calculations have been performed at the Becke-3-Lee-Yang-Parr (B3LYP) density functional method using the Lanl2dz effective core basis set. Furthermore, reliable vibrational assignments have been made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of the title ions have been predicted together with their infrared intensities and Raman activities. Theoretical results have been successfully compared against available experimental data

  12. Quantitative Surface Chirality Detection with Sum Frequency Generation Vibrational Spectroscopy: Twin Polarization Angle Approach

    International Nuclear Information System (INIS)

    Wei, Feng; Xu, Yanyan; Guo, Yuan; Liu, Shi-lin; Wang, Hongfei

    2009-01-01

    Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG-VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm -1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (25.4±1.3)%, respectively.

  13. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  14. Structure-borne sound structural vibrations and sound radiation at audio frequencies

    CERN Document Server

    Cremer, L; Petersson, Björn AT

    2005-01-01

    Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi

  15. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  16. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study.

    Science.gov (United States)

    Jang, Sung Ho; Yeo, Sang Seok; Lee, Seung Hyun; Jin, Sang Hyun; Lee, Mi Young

    2017-08-01

    To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise) were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy), the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy), premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  17. The low frequency 2D vibration sensor based on flat coil element

    Energy Technology Data Exchange (ETDEWEB)

    Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli [Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics, UIN Syarif Hidayatullah, Jl. Ir.H. Djuanda 95 Ciputat 15412 (Indonesia); MTs NW Nurul Iman Kembang Kerang, Jl. Raya Mataram - Lb.Lombok, NTB (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics,Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25132 (Indonesia)

    2012-06-20

    Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.

  18. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    Science.gov (United States)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  19. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.; Michalak, William D.; Baker, L. Robert; An, Kwangjin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2012-01-01

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous

  20. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 3{sub 10}- and α-helix of acetyl(alanine){sub n}NH{sub 2} (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm{sup −1} is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine){sub 20} and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  1. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  2. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  3. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  4. An analytical study of the effects of transverse shear deformation and anisotropy on natural vibration frequencies of laminated cylinders

    Science.gov (United States)

    Jegley, Dawn C.

    1988-01-01

    Natural vibration frequencies of orthotropic and anisotropic simply supported right circular cylinders are predicted using a higher-order transverse-shear deformation theory. A comparison of natural vibration frequencies predicted by first-order transverse-shear deformation theory and the higher-order theory shows that an additional allowance for transverse shear deformation has a negligible effect on the lowest predicted natural vibration frequencies of laminated cylinders but significantly reduces the higher natural vibration frequencies. A parametric study of the effects of ply orientation on the natural vibration frequencies of laminated cylinders indicates that while stacking sequence affects natural vibration frequencies, cylinder geometry is more important in predicting transverse-shear deformation effects. Interaction curves for cylinders subjected to axial compressive loadings and low natural vibration frequencies indicate that transverse shearing effects are less important in predicting low natural vibration frequencies than in predicting axial compressive buckling loads. The effects of anisotropy are more important than the effects of transverse shear deformation for most strongly anisotropic laminated cylinders in predicting natural vibration frequencies. However, transverse-shear deformation effects are important in predicting high natural vibration frequencies of thick-walled laminated cylinders. Neglecting either anisotropic effects or transverse-shear deformation effects leads to non-conservative errors in predicted natural vibration frequencies.

  5. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-02-01

    The feasibility of calculating natural frequencies and mode shapes of major equipment in a CANDU reactor from the measurements of their response to background excitation has been studied. A review of vibration data measured at various locations in CANDU plants shows that structures responded to a combination of random and harmonic background excitation. Amplitude of measured vibration is sufficient to allow meaningful data analysis. Frequency content in the 0 to 50-Hz range, which is of interest for earthquake response, is present in some of the vibration measurements studied. Spectral techniques have been developed for determining the response function of structures from measured vibration response to background excitation. The natural frequencies and mode shapes are then evaluated graphically from the frequency function plots. The methodology has been tested on a simple cantilever beam with known natural frequencies and mode shapes. The comparison between the theoretical and the computed natural frequencies and mode shapes is good for the lower modes. However, better curve-fitting techniques will be required in future, especially for higher modes. Readily available equipment necessary for the measurement of background vibration in a CANDU plant (which is commercially available) has been identified. An experimental program has been proposed to verify the methodology developed in this study. Recommendations are also made to study methods to improve the accuracy of the mode shape and natural frequency prediction

  6. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  7. INTERPRETATION OF INFRARED VIBRATION-ROTATION SPECTRA OF INTERSTELLAR AND CIRCUMSTELLAR MOLECULES

    International Nuclear Information System (INIS)

    Lacy, John H.

    2013-01-01

    Infrared vibration-rotation lines can be valuable probes of interstellar and circumstellar molecules, especially symmetric molecules, which have no pure rotational transitions. But most such observations have been interpreted with an isothermal absorbing slab model, which leaves out important radiative transfer and molecular excitation effects. A more realistic non-LTE and non-isothermal radiative transfer model has been constructed. The results of this model are in much better agreement with the observations, including cases where lines in one branch of a vibration-rotation band are in absorption and another in emission. In general, conclusions based on the isothermal absorbing slab model can be very misleading, but the assumption of LTE may not lead to such large errors, particularly if the radiation field temperature is close to the gas temperature.

  8. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    Science.gov (United States)

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  9. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application.

    Science.gov (United States)

    Ye, Shuji; Wei, Feng; Li, Hongchun; Tian, Kangzhen; Luo, Yi

    2013-01-01

    In situ and real-time characterization of molecular structures and orientation of proteins at interfaces is essential to understand the nature of interfacial protein interaction. Such work will undoubtedly provide important clues to control biointerface in a desired manner. Sum frequency generation vibrational spectroscopy (SFG-VS) has been demonstrated to be a powerful technique to study the interfacial structures and interactions at the molecular level. This paper first systematically introduced the methods for the calculation of the Raman polarizability tensor, infrared transition dipole moment, and SFG molecular hyperpolarizability tensor elements of proteins/peptides with the secondary structures of α-helix, 310-helix, antiparallel β-sheet, and parallel β-sheet, as well as the methodology to determine the orientation of interfacial protein secondary structures using SFG amide I spectra. After that, recent progresses on the determination of protein structure and orientation at different interfaces by SFG-VS were then reviewed, which provides a molecular-level understanding of the structures and interactions of interfacial proteins, specially understanding the nature of driving force behind such interactions. Although this review has focused on analysis of amide I spectra, it will be expected to offer a basic idea for the spectral analysis of amide III SFG signals and other complicated molecular systems such as RNA and DNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  11. An extension of command shaping methods for controlling residual vibration using frequency sampling

    Science.gov (United States)

    Singer, Neil C.; Seering, Warren P.

    1992-01-01

    The authors present an extension to the impulse shaping technique for commanding machines to move with reduced residual vibration. The extension, called frequency sampling, is a method for generating constraints that are used to obtain shaping sequences which minimize residual vibration in systems such as robots whose resonant frequencies change during motion. The authors present a review of impulse shaping methods, a development of the proposed extension, and a comparison of results of tests conducted on a simple model of the space shuttle robot arm. Frequency shaping provides a method for minimizing the impulse sequence duration required to give the desired insensitivity.

  12. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  13. Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan

    2018-05-01

    Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    Science.gov (United States)

    Kogut, J.; Larduinat, E.

    1985-01-01

    The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.

  15. Protonated Nitrous Oxide, NNOH(+): Fundamental Vibrational Frequencies and Spectroscopic Constants from Quartic Force Fields

    Science.gov (United States)

    Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.

    2013-01-01

    The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.

  16. Tuning and sensitivity of the human vestibular system to low-frequency vibration.

    Science.gov (United States)

    Todd, Neil P McAngus; Rosengren, Sally M; Colebatch, James G

    2008-10-17

    Mechanoreceptive hair-cells of the vertebrate inner ear have a remarkable sensitivity to displacement, whether excited by sound, whole-body acceleration or substrate-borne vibration. In response to seismic or substrate-borne vibration, thresholds for vestibular afferent fibre activation have been reported in anamniotes (fish and frogs) in the range -120 to -90 dB re 1g. In this article, we demonstrate for the first time that the human vestibular system is also extremely sensitive to low-frequency and infrasound vibrations by making use of a new technique for measuring vestibular activation, via the vestibulo-ocular reflex (VOR). We found a highly tuned response to whole-head vibration in the transmastoid plane with a best frequency of about 100 Hz. At the best frequency we obtained VOR responses at intensities of less than -70 dB re 1g, which was 15 dB lower than the threshold of hearing for bone-conducted sound in humans at this frequency. Given the likely synaptic attenuation of the VOR pathway, human receptor sensitivity is probably an order of magnitude lower, thus approaching the seismic sensitivity of the frog ear. These results extend our knowledge of vibration-sensitivity of vestibular afferents but also are remarkable as they indicate that the seismic sensitivity of the human vestibular system exceeds that of the cochlea for low-frequencies.

  17. Building Modern Vibration Diagnostics Systems Based on the Frequency-Time Transformations of A Measured Signal

    Directory of Open Access Journals (Sweden)

    Yasoveev Vasikh

    2016-01-01

    Full Text Available Basic methods of analysis of vibration transducers signals were reviewed. Continuous wavelet transform, being a time-frequency transform, was found to be an advanced mathematical tool for analysis of vibration signals. Experimental studies revealed obvious changes in the continuous wavelet transform spectrum depending on the existing defects. A method for detection and identification of technological violations based on the analysis of CWT spectrum components and normalized correlation coefficient was suggested. In accordance with the suggested method software for vibration diagnostics was developed.

  18. Calculation of vibrational frequencies through a variational reduced-coupling approach.

    Science.gov (United States)

    Scribano, Yohann; Benoit, David M

    2007-10-28

    In this study, we present a new method to perform accurate and efficient vibrational configuration interaction computations for large molecular systems. We use the vibrational self-consistent field (VSCF) method to compute an initial description of the vibrational wave function of the system, combined with the single-to-all approach to compute a sparse potential energy surface at the chosen ab initio level of theory. A Davidson scheme is then used to diagonalize the Hamiltonian matrix built on the VSCF virtual basis. Our method is applied to the computation of the OH-stretch frequency of formic acid and benzoic acid to demonstrate the efficiency and accuracy of this new technique.

  19. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  20. Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)

    2014-05-14

    A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.

  1. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  2. Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner.

    Directory of Open Access Journals (Sweden)

    Laura N Vandenberg

    Full Text Available Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs and Danio rerio (zebrafish, specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures.

  3. High-precision and low-cost vibration generator for low-frequency calibration system

    Science.gov (United States)

    Li, Rui-Jun; Lei, Ying-Jun; Zhang, Lian-Sheng; Chang, Zhen-Xin; Fan, Kuang-Chao; Cheng, Zhen-Ying; Hu, Peng-Hao

    2018-03-01

    Low-frequency vibration is one of the harmful factors that affect the accuracy of micro-/nano-measuring machines because its amplitude is significantly small and it is very difficult to avoid. In this paper, a low-cost and high-precision vibration generator was developed to calibrate an optical accelerometer, which is self-designed to detect low-frequency vibration. A piezoelectric actuator is used as vibration exciter, a leaf spring made of beryllium copper is used as an elastic component, and a high-resolution, low-thermal-drift eddy current sensor is applied to investigate the vibrator’s performance. Experimental results demonstrate that the vibration generator can achieve steady output displacement with frequency range from 0.6 Hz to 50 Hz, an analytical displacement resolution of 3.1 nm and an acceleration range from 3.72 mm s-2 to 1935.41 mm s-2 with a relative standard deviation less than 1.79%. The effectiveness of the high-precision and low-cost vibration generator was verified by calibrating our optical accelerometer.

  4. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    Science.gov (United States)

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  5. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Slenkamp, Karla M.; Lynch, Michael S.; Van Kuiken, Benjamin E.; Brookes, Jennifer F.; Bannan, Caitlin C.; Daifuku, Stephanie L.; Khalil, Munira, E-mail: mkhalil@chem.washington.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (ν{sub CN}) vibrations found in [(NH{sub 3}){sub 5}Ru{sup III}NCFe{sup II}(CN){sub 5}]{sup −} (FeRu) dissolved in D{sub 2}O and formamide and [(NC){sub 5}Fe{sup II}CNPt{sup IV}(NH{sub 3}){sub 4}NCFe{sup II}(CN){sub 5}]{sup 4−} (FePtFe) dissolved in D{sub 2}O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the ν{sub CN} modes in the electronic ground state. The FTIR spectra of the ν{sub CN} modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic ν{sub CN} modes. The vibrational mode anharmonicities of the individual ν{sub CN} modes range from 14 to 28 cm{sup −1}. The mixed-mode anharmonicities range from 2 to 14 cm{sup −1}. In general, the bridging ν{sub CN} mode is most weakly coupled to the radial ν{sub CN} mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four ν{sub CN} modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D{sub 2}O. The ν{sub CN} modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm{sup −1}. This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the ν{sub CN} modes in cyanide-bridged transition metal mixed valence complexes.

  6. Relationship of the vibrational frequency of the uranyl ion with the uranium electronegativity

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1990-07-01

    It has been demonstrated that the vibrational asymmetric frequency of the uranyl ion, it experiences a consistent spectrochemical displacement with the variations of electronegativity of the uranium in their complexes. The values of the electronegativity of the uranium they were dear by means of calculations that it involves measures of those lengths of the connection uranium-oxygen, obtained by vibrational spectroscopy, effective nuclear charges and the Allred and Rochow equation. The results show the evidence of a natural order that relates to the vibrational frequency with the electronegativity of the uranium atom; settling down that if the electronegativity is graph against it bond length to the oxygen or to it frequency value, a simple relationship is obtained as a form to obtain clear responses in absence of complementary information. (Author)

  7. Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718

    Directory of Open Access Journals (Sweden)

    Deepak Rajendra Unune

    2017-02-01

    Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.

  8. A low-frequency vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo

    2017-04-01

    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  9. Vibration-tolerant narrow-linewidth semiconductor disk laser using novel frequency-stabilisation schemes

    Science.gov (United States)

    Hunter, Craig R.; Jones, Brynmor E.; Schlosser, Peter; Sørensen, Simon Toft; Strain, Michael J.; McKnight, Loyd J.

    2018-02-01

    This paper will present developments in narrow-linewidth semiconductor-disk-laser systems using novel frequencystabilisation schemes for reduced sensitivity to mechanical vibrations, a critical requirement for mobile applications. Narrow-linewidth single-frequency lasers are required for a range of applications including metrology and highresolution spectroscopy. Stabilisation of the laser was achieved using a monolithic fibre-optic ring resonator with free spectral range of 181 MHz and finesse of 52 to act as passive reference cavity for the laser. Such a cavity can operate over a broad wavelength range and is immune to a wide band of vibrational frequency noise due to its monolithic implementation. The frequency noise of the locked system has been measured and compared to typical Fabry-Perotlocked lasers using vibration equipment to simulate harsh environments, and analysed here. Locked linewidths of portable, narrow-linewidth laser system for harsh environments that can be flexibly designed for a range of applications.

  10. Peculiarities of the Third Natural Frequency Vibrations of a Cantilever for the Improvement of Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Vytautas Ostasevicius

    2015-05-01

    Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

  11. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    Science.gov (United States)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  12. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  13. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  14. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations

    International Nuclear Information System (INIS)

    Yuksek, N. S.; Almasri, M.; Feng, Z. C.

    2014-01-01

    In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.

  15. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  16. Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter

    Science.gov (United States)

    Zhao, Yipeng; Liu, Jinyue; Guo, Shijie; Li, Tiejun

    2018-04-01

    Cameras offer a unique capability of collecting high density spatial data from a distant scene of interest. They can be employed as remote monitoring or inspection sensors to measure vibrating objects because of their commonplace availability, simplicity, and potentially low cost. A defect of vibrating measurement with the camera is to process the massive data generated by camera. In order to reduce the data collected from the camera, the camera using electronic rolling shutter (ERS) is applied to measure the frequency of one-dimensional vibration, whose frequency is much higher than the speed of the camera. Every row in the image captured by the ERS camera records the vibrating displacement at different times. Those displacements that form the vibration could be extracted by local analysis with sliding windows. This methodology is demonstrated on vibrating structures, a cantilever beam, and an air compressor to identify the validity of the proposed algorithm. Suggestions for applications of this methodology and challenges in real-world implementation are given at last.

  17. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  18. Investigation of a vibration-damping unit for reduction in low-frequency vibrations of electric motors

    Science.gov (United States)

    Grigoryey, N. V.; Fedorovich, M. A.

    1973-01-01

    The vibroacoustical characteristics of different types of electric motors are discussed. It is shown that the basic source of low frequency vibrations is rotor unbalance. A flexible damping support, with an antivibrator, is used to obtain the vibroacoustical effect of reduction in the basic harmonic of the electric motor. A model of the electric motor and the damping apparatus is presented. Mathematical models are developed to show the relationships of the parameters. The basic purpose in using a calculation model id the simultaneous replacement of the exciting force created by the rotor unbalance and its inertial rigidity characteristics by a limiting kinematic disturbance.

  19. Magnetic activity at infrared frequencies in structured metallic photonic crystals

    International Nuclear Information System (INIS)

    O'Brien, S.; Pendry, J.P.

    2002-01-01

    We derive the effective permeability and permittivity of a nanostructured metallic photonic crystal by analysing the complex reflection and transmission coefficients for slabs of various thicknesses. These quantities were calculated using the transfer matrix method. Our results indicate that these structures could be used to realize a negative effective permeability, at least up to infrared frequencies. The origin of the negative permeability is a resonance due to the internal inductance and capacitance of the structure. We also present an analytic model for the effective permeability of the crystal. The model reveals the importance of the inertial inductance due to the finite mass of the electrons in the metal. We find that this contribution to the inductance has implications for the design of metallic magnetic structures in the optical region of the spectrum. We show that the magnetic activity in the structure is accompanied by the concentration of the incident field energy into very small volumes within the structure. This property will allow us to considerably enhance non-linear effects with minute quantities of material. (author)

  20. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyong, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Yan, Xiaojun, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2016-06-15

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  1. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

    International Nuclear Information System (INIS)

    Zhang, Xiaoyong; Yan, Xiaojun; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei

    2016-01-01

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  2. Frequency tuning and directional sensitivity of tympanal vibrations in the field cricket Gryllus bimaculatus

    DEFF Research Database (Denmark)

    Lankheet, Martin J.; Cerkvenik, Uroš; Larsen, Ole Næsbye

    2017-01-01

    Female field crickets use phonotaxis to locate males by their calling song. Male song production and female behavioural sensitivity form a pair of matched frequency filters, which in Gryllus bimaculatus are tuned to a frequency of about 4.7 kHz. Directional sensitivity is supported by an elaborate...... play a major role in tuning directional sensitivity to the calling song frequency, by measuring tympanal vibrations as a function of sound direction and frequency. Rather than sharp frequency tuning of directional sensitivity corresponding to the calling song, we found broad frequency tuning......, with optima shifted to higher frequencies. These findings agree with predictions from a vector summation model for combining external and internal sounds. We show that the model provides robust directional sensitivity that is, however, broadly tuned with an optimum well above the calling song frequency. We...

  3. The vibrating reed frequency meter : digital investigation of an early cochlear model

    NARCIS (Netherlands)

    Bell, Andrew; Wit, Hero P.

    2015-01-01

    The vibrating reed frequency meter, originally employed by Bekesy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system,

  4. The effect of an external electric field on the vibrational frequency of CO

    Science.gov (United States)

    Bauschlicher, C. W., Jr.

    1985-01-01

    Ab initio calculations, using a CAS SCF wavefunction and extended basis set, show a change in the vibrational frequency with electric field strength for the ground 1sigma(+) state of CO of one third that observed for CO/Ni(110). This result supports the view of Lambert.

  5. Low Frequency Vibration approach to asess the Performance of wood structural Systems

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Michael O. Hunt

    2004-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...

  6. Low frequency vibration approach for assessing performance of wood floor systems

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Michael O. Hunt; John R. Erickson; John W. Forsman

    2005-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to...

  7. Molecular Structure And Vibrational Frequencies of Tetrafluoro isophthalonitrile By Hartree-Fock And Density Functional Theory Calculations

    International Nuclear Information System (INIS)

    Ayikoglu, A.

    2008-01-01

    The molecular structure, vibrational frequencies and corresponding vibrational assignments of tetrafluoro isophthalonitrile (TFPN) in the ground state have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were utilized in the CS symmetry of TFPN. The obtained vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the observed and calculated results showed that the B3LYP method is superior to the HF method for both the vibrational frequencies and geometric parameters

  8. Research on a new type of precision cropping method with variable frequency vibration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Aiming at the cropping operations widely applied in practical industry production, a new method of bar cropping is presented. The rotational speeds of actuating motor of eccentric blocks are controlled by a frequency-changer, and the shearing die provides the bar with the controllable force, frequency and amplitude of vibration. By utilizing the stress concentration at the bottom of V shape groove on the bar, the low stress bar cropping is realized. The bar cropping experiments of duralumin alloy and steel ...

  9. High-resolution sub-Doppler infrared spectroscopy of atmospherically relevant Criegee precursor CH2I radicals: CH2 stretch vibrations and "charge-sloshing" dynamics

    Science.gov (United States)

    Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.

    2018-05-01

    The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and

  10. FREQUENCY ANALYSIS OF VIBRATIONS OF THE ROUND PARACHUTE EDGE

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The article is addressed to the analysis of the videos obtained during flight experiment at the launch of meteo-rocket MMP-06 in order to determine main characteristics of the oscillatory process the edges of the canopy at subsonic speeds at altitudes from 42,2 km to 34.2 km. Data analysis demonstrated that the oscillations of the edge of the canopy has a random character. The structure frequency of 2.4 Hz was identified from the analysis to be determined by the nylon sling stiffness.

  11. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    Science.gov (United States)

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing. Additionally, the enhanced gene expression in response to low-magnitude, high-frequency vibration in the intact Achilles tendon suggests the

  12. Low-frequency elastic vibrations localized near fracture in solid

    International Nuclear Information System (INIS)

    Kosevich, Yu.A.; Syrkin, E.S.

    1994-11-01

    We propose a consistent macroscopic description of the thermodynamic and dynamical properties of two-dimensional surface layers on the interface between two crystals or between different media. Such description enables one to elucidate the effect of two-dimensional defects (fracture) on the frequency, dispersion and polarization characteristics of surface waves and scattered on two-dimensional defects bulk waves of various nature, starting from rather general assumptions and without using of the microscopic models of surface or interface layers. A new thermodynamic variable for two-dimensional defect with an internal dynamical degree of freedom is introduced. The coupled long-wavelength and low-frequency equations of motion of the defect layer are obtained as a set of nontraditional boundary conditions for the bulk equations of the theory of elasticity. New types of surface and pseudo-surface (resonance) waves caused by two-dimensional absorbed or segregated layers with different strength of bonding with elastic substrate are analyzed. (author). 31 refs, 4 figs

  13. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.; Williams, S. D.

    2018-02-01

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.

  14. Eulerian frequency analysis of structural vibrations from high-speed video

    International Nuclear Information System (INIS)

    Venanzoni, Andrea; De Ryck, Laurent; Cuenca, Jacques

    2016-01-01

    An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motion of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency content

  15. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  16. Low-frequency vibrational spectra of crystals of tutton salts

    Science.gov (United States)

    Barashkov, M. V.; Zazhogin, A. A.; Komyak, A. I.; Shashkov, S. N.

    2000-07-01

    IR absorption spectra and polarized Raman spectra of crystals of Tutton salts K2M(SO4)26H2O and (NH4)2M(SO4)2·6H2O, where M=Co, Ni, Zn, have been obtained by experiment at 93 K and at room temperature. The frequencies and forms of normal modes of the [Zn(H2O)6]2+ octahedral complex have been calculated. The observed lines are assigned to the internal modes of the [M(H2O)6]2+ complex and external modes of the crystal lattice in accordance with the results of the calculations and factor-group analysis.

  17. Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    DEFF Research Database (Denmark)

    Fereidoon, A.; Ghadimi, M.; Barari, Amin

    2012-01-01

    In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown that t...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....

  18. THE POSSIBLE INTERSTELLAR ANION CH2CN–: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    International Nuclear Information System (INIS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Crawford, T. Daniel

    2013-01-01

    The A 1 B 1 ⇽ X-tilde 1 A' excitation into the dipole-bound state of the cyanomethyl anion (CH 2 CN – ) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde 1 A' CH 2 CN – in order to assist in laboratory studies and astronomical observations.

  19. Orientations of nonlocal vibrational modes from combined experimental and theoretical sum frequency spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chase, Hilary M.; Chen, Shunli; Fu, Li; Upshur, Mary Alice; Rudshteyn, Benjamin; Thomson, Regan J.; Wang, Hong-Fei; Batista, Victor S.; Geiger, Franz M.

    2017-09-01

    Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.

  20. Energy conversion by ‘T-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources

    International Nuclear Information System (INIS)

    Siddique, Abu Raihan Mohammad; Mahmud, Shohel; Van Heyst, Bill

    2017-01-01

    Highlights: • A T-shaped cantilever type electromagnetic vibration based MPG has been described. • The designed EVMPG is useful for low frequency based vibration sources. • Both experimental tests and theoretical analysis have been performed. • The final compact prototype was tested at different conditions of human movements. • The prototype can generate 35.2 mV and 0.22 mW at 7 Hz with 5.6 Ω. - Abstract: The design, development, and analyses of low-frequency vibration based T-shaped cantilever type electromagnetic micro power generators (EVMPGs) are presented in this paper. Four different configurations (Configurations A to D) of EVMPGs were designed and fabricated and subsequently characterized using detailed experimental and limited analytical techniques. Configuration A and B consisted of a single and a double cylindrical moving magnets (NdFeB), respectively, while Configuration C consisted of four rectangular moving magnets with respect to a fixed copper coil. In contrast, Configuration D used a moving coil between four rectangular magnets with a back-iron bar. The open circuit RMS voltage output was observed to be a maximum from Configuration D (98.2 mV at 6.29 Hz) with a base vibration acceleration of 0.8 m s"−"2. Therefore, Configuration D was selected for further experimental investigations, which included changing the back-iron bar thickness, changing the base acceleration level, and changing the air gap separation between the magnets in order to optimize this configuration. The maximum load RMS voltage and power outputs of Configuration D were 105.4 mV and 1.35 mW at 6.29 Hz for load resistance 8.2 Ω and a base acceleration of 0.8 m s"−"2 with a 4.2 mm back-iron bar when the air gap between the magnets was 20 mm. Finally, a small portable EVMPG prototype was developed based on the Configuration D and was tested at different human movement conditions (i.e., walking, quick walking, and running). The developed EVMPG prototype was capable of

  1. Rotational and High-resolution Infrared Spectrum of HC3N: Global Ro-vibrational Analysis and Improved Line Catalog for Astrophysical Observations

    Science.gov (United States)

    Bizzocchi, Luca; Tamassia, Filippo; Laas, Jacob; Giuliano, Barbara M.; Degli Esposti, Claudio; Dore, Luca; Melosso, Mattia; Canè, Elisabetta; Pietropolli Charmet, Andrea; Müller, Holger S. P.; Spahn, Holger; Belloche, Arnaud; Caselli, Paola; Menten, Karl M.; Garrod, Robin T.

    2017-11-01

    HC3N is a ubiquitous molecule in interstellar environments, from external galaxies to Galactic interstellar clouds, star-forming regions, and planetary atmospheres. Observations of its rotational and vibrational transitions provide important information on the physical and chemical structures of the above environments. We present the most complete global analysis of the spectroscopic data of HC3N. We recorded the high-resolution infrared spectrum from 450 to 1350 cm-1, a region dominated by the intense {ν }5 and {ν }6 fundamental bands, located at 660 and 500 cm-1, respectively, and their associated hot bands. Pure rotational transitions in the ground and vibrationally excited states were recorded in the millimeter and submillimeter regions in order to extend the frequency range so far considered in previous investigations. All of the transitions from the literature and from this work involving energy levels lower than 1000 cm-1 were fitted together to an effective Hamiltonian. Because of the presence of various anharmonic resonances, the Hamiltonian includes a number of interaction constants, in addition to the conventional rotational and vibrational l-type resonance terms. The data set contains about 3400 ro-vibrational lines of 13 bands and some 1500 pure rotational lines belonging to 12 vibrational states. More than 120 spectroscopic constants were determined directly from the fit, without any assumption deduced from theoretical calculations or comparisons with similar molecules. An extensive list of highly accurate rest frequencies was produced to assist astronomical searches and data interpretation. These improved data enabled a refined analysis of the ALMA observations toward Sgr B2(N2).

  2. Rotational structure of the five lowest frequency fundamental vibrational states of dimethylsulfoxide

    Science.gov (United States)

    Cuisset, Arnaud; Drumel, Marie-Aline Martin; Hindle, Francis; Mouret, Gaël; Sadovskií, Dmitrií A.

    2013-10-01

    We report on the successful extended analysis of the high-frequency (200-700 GHz) part of the gas phase (sub)mm-wave spectra of dimethylsulfoxide (DMSO). The spectrum was recorded at 100 kHz resolution using a solid state subTHz spectrometer. The five lowest energy fundamental vibrational states of DMSO with frequencies below 400 cm-1 were observed as sidebands along with the main 0←0 band. Neglecting the internal rotation of methyls, our rotational Hamiltonian reproduced the spectrum to the subMHz accuracy. We have found that the asymmetric bending state ν23 is the only low frequency fundamental vibrational state with the "anomalous" rotational structure uncovered in Cuisset et al. [1]. dmsomw 2013-09-04 15:03

  3. Simultaneous rotational and vibrational CARS generation through a multiple-frequency combination technique

    International Nuclear Information System (INIS)

    Alden, M.; Bengtsson, P.E.; Edner, H.

    1987-01-01

    One most promising laser technique for probing combustion processes is coherent anti-Stokes Raman scattering (CARS), which due to its coherent nature and signal strength is applied in several real-world applications. Until today almost all CARS experiments are based on probing the population of molecular vibrational energy levels. However, there are several reasons rotational CARS, i.e. probing of rotational energy levels, may provide a complement to or even a better choice than vibrational CARS. Recently an alternative way to produce rotational CARS spectra is proposed, which is based on a multiple-frequency combination technique. The energy-level diagram for this process is presented. Two dye laser beams at ω/sub r/, and one fix frequency laser beam at ω/sub g/ are employed. ω/sub r,1/ and ω/sub r,2/ are two frequencies of many possible pairs with a frequency difference matching a rotational transition in a molecule. The excitation induced by ω/sub r,1/ and ω/sub r,2/ is then scattered by the narrowband ω/sub g/ beam resulting in a CARS beam ω/sub g/ at ω/sub g/ + ω/sub r,1/ - ω/sub r,2/. An interesting feature with this technique is that it is possible to generate simultaneously a rotational and vibrational CARS spectrum by using a double-folded boxcars phase matching approach. The authors believe that the proposed technique for producing rotational and vibration CARS spectra could be of interest, e.g., when measuring in highly turbulent flows. In this case the rotational CARS spectra could use for temperature measurements in the cooler parts, whereas vibrational CARS are to be preferred when measuring in the hotter parts

  4. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  5. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  6. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Directory of Open Access Journals (Sweden)

    Lan Zhang

    2014-01-01

    Full Text Available Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V and currents (<1 mA with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  7. Frontside-micromachined planar piezoresistive vibration sensor: Evaluating performance in the low frequency test range

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Lu, Jian, E-mail: jian-lu@aist.go.jp; Takagi, Hideki; Maeda, Ryutaro [Research Center for Ubiquitous MEMS and Micro Engineering (UMEMSME), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8564 (Japan)

    2014-01-15

    Using a surface piezoresistor diffusion method and front-side only micromachining process, a planar piezoresistive vibration sensor was successfully developed with a simple structure, lower processing cost and fewer packaging difficulties. The vibration sensor had a large sector proof mass attached to a narrow flexure. Optimization of the boron diffusion piezoresistor placed on the edge of the narrow flexure greatly improved the sensitivity. Planar vibration sensors were fabricated and measured in order to analyze the effects of the sensor dimensions on performance, including the values of flexure width and the included angle of the sector. Sensitivities of fabricated planar sensors of 0.09–0.46 mV/V/g were measured up to a test frequency of 60 Hz. The sensor functioned at low voltages (<3 V) and currents (<1 mA) with a high sensitivity and low drift. At low background noise levels, the sensor had performance comparable to a commercial device.

  8. Theory and experiment research for ultra-low frequency maglev vibration sensor

    International Nuclear Information System (INIS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Fan, Shangchun; Zhao, Xiaomeng

    2015-01-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements

  9. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Science.gov (United States)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  10. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  11. Identification of Natural Frequency of Low Rise Building on Soft Ground Profile using Ambient Vibration Method

    Science.gov (United States)

    Kamarudin, A. F.; Zainal Abidin, M. H.; Mokhatar, S. N.; Daud, M. E.; Ibrahim, A.; Ibrahim, Z.; Noh, M. S. Md

    2018-04-01

    Natural frequency is the rate at which a body to vibrate or oscillate. Application of ambient vibration (AV) excitation is widely used nowadays as the input motion for building predominant frequency, fo, and ground fundamental frequency, Fo, prediction due to simple, fast, non-destructive, simple handling operation and reliable result. However, it must be emphasized and caution to isolate these frequencies (fo and Fo) from spurious frequencies of site-structure effects especially to low rise building on soft ground deposit. In this study, identification of fo and Fo by using AV measurements were performed on ground and 4-storey primary school reinforced concrete (RC) building at Sekolah Kebangsaan (SK) Sg. Tongkang, Rengit, Johor using 1 Hz of tri-axial seismometer sensor. Overlapping spectra between Fourier Amplitude Spectra (FAS) from and Horizontal to Vertical Spectra Ratio (HVSR) were used to distinguish respective frequencies of building and ground natural frequencies. Three dominant frequencies were identified from the FAS curves at 1.91 Hz, 1.98 Hz and 2.79 Hz in longitudinal (East West-EW), transverse (North South-NS) and vertical (UD) directions. It is expected the building has deformed in translational mode based on the first peak frequency by respective NS and EW components of FAS spectrum. Vertical frequency identified from the horizontal spectrums, might induces to the potential of rocking effect experienced by the school building. Meanwhile, single peak HVSR spectrum at low ground fundamental frequency concentrated at 0.93 Hz indicates to the existence deep contrast of soft deposit. Strong interaction between ground and building at similar frequency (0.93 Hz) observed from the FAS curves on the highest floor has shown the building to behave as a dependent unit against ground response as one rigid mass.

  12. The vibrational behaviour of the generator support structure for Koeberg nuclear power station at high frequencies

    International Nuclear Information System (INIS)

    Lee, D.E.

    1988-06-01

    The vibrational behaviour of the generator support structure at Koeberg nuclear power station at frequencies primarily in the region of 80 Hz to 110 Hz was examined. The effect of soil-structure interaction and the change in stiffness of the foundation soil was investigated. Vibration tests were performed on the generator support structure and the results were compared with a theoretical finite element analysis of the structure. By varying the soil-cement foundation stiffness it was possible to demonstrate the change in dynamic behaviour of the structure in the higher frequency band 80 Hz to 110 Hz. Comment has been made on the design code DIN 4024 in view of the findings of this thesis. It was concluded that the empirical rules regarding the inclusion of the foundation in an analysis specified by the code do not cover all cases and greater cognisance of the effect of the foundation stiffness on the vibration behaviour of such machine foundations is necessary. Obvious machine frequencies higher than the operational frequencies should be analysed where it is considered necessary. 24 refs., 25 tabs., 83 figs

  13. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  14. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    International Nuclear Information System (INIS)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life

  15. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies.

    Science.gov (United States)

    Zhao, Nian; Yang, Jin; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping

    2016-01-01

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  16. Three-dimensional piezoelectric vibration energy harvester using spiral-shaped beam with triple operating frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-01-15

    This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.

  17. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    Science.gov (United States)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  18. Amplitude-cyclic frequency decomposition of vibration signals for bearing fault diagnosis based on phase editing

    Science.gov (United States)

    Barbini, L.; Eltabach, M.; Hillis, A. J.; du Bois, J. L.

    2018-03-01

    In rotating machine diagnosis different spectral tools are used to analyse vibration signals. Despite the good diagnostic performance such tools are usually refined, computationally complex to implement and require oversight of an expert user. This paper introduces an intuitive and easy to implement method for vibration analysis: amplitude cyclic frequency decomposition. This method firstly separates vibration signals accordingly to their spectral amplitudes and secondly uses the squared envelope spectrum to reveal the presence of cyclostationarity in each amplitude level. The intuitive idea is that in a rotating machine different components contribute vibrations at different amplitudes, for instance defective bearings contribute a very weak signal in contrast to gears. This paper also introduces a new quantity, the decomposition squared envelope spectrum, which enables separation between the components of a rotating machine. The amplitude cyclic frequency decomposition and the decomposition squared envelope spectrum are tested on real word signals, both at stationary and varying speeds, using data from a wind turbine gearbox and an aircraft engine. In addition a benchmark comparison to the spectral correlation method is presented.

  19. Injection-seeded tunable mid-infrared pulses generated by difference frequency mixing

    Science.gov (United States)

    Miyamoto, Yuki; Hara, Hideaki; Masuda, Takahiko; Hiraki, Takahiro; Sasao, Noboru; Uetake, Satoshi

    2017-03-01

    We report on the generation of nanosecond mid-infrared pulses having frequency tunability, a narrow linewidth, and a high pulse energy. These pulses are obtained by frequency mixing between injection-seeded near-infrared pulses in potassium titanyl arsenate crystals. A continuous-wave external cavity laser diode or a Ti:sapphire ring laser is used as a tunable seeding source for the near-infrared pulses. The typical energy of the generated mid-infrared pulses is in the range of 0.4-1 mJ/pulse. The tuning wavelength ranges from 3142 to 4806 nm. A narrow linewidth of 1.4 GHz and good frequency reproducibility of the mid-infrared pulses are confirmed by observing a rovibrational absorption line of gaseous carbon monoxide at 4587 nm.

  20. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  1. Derivatives of buckling loads and vibration frequencies with respect to stiffness and initial strain parameters

    Science.gov (United States)

    Haftka, Raphael T.; Cohen, Gerald A.; Mroz, Zenon

    1990-01-01

    A uniform variational approach to sensitivity analysis of vibration frequencies and bifurcation loads of nonlinear structures is developed. Two methods of calculating the sensitivities of bifurcation buckling loads and vibration frequencies of nonlinear structures, with respect to stiffness and initial strain parameters, are presented. A direct method requires calculation of derivatives of the prebuckling state with respect to these parameters. An adjoint method bypasses the need for these derivatives by using instead the strain field associated with the second-order postbuckling state. An operator notation is used and the derivation is based on the principle of virtual work. The derivative computations are easily implemented in structural analysis programs. This is demonstrated by examples using a general purpose, finite element program and a shell-of-revolution program.

  2. Frequency Response of the Sample Vibration Mode in Scanning Probe Acoustic Microscope

    International Nuclear Information System (INIS)

    Ya-Jun, Zhao; Qian, Cheng; Meng-Lu, Qian

    2010-01-01

    Based on the interaction mechanism between tip and sample in the contact mode of a scanning probe acoustic microscope (SPAM), an active mass of the sample is introduced in the mass-spring model. The tip motion and frequency response of the sample vibration mode in the SPAM are calculated by the Lagrange equation with dissipation function. For the silicon tip and glass assemblage in the SPAM the frequency response is simulated and it is in agreement with the experimental result. The living myoblast cells on the glass slide are imaged at resonance frequencies of the SPAM system, which are 20kHz, 30kHz and 120kHz. It is shown that good contrast of SPAM images could be obtained when the system is operated at the resonance frequencies of the system in high and low-frequency regions

  3. Frequency Equations for the In-Plane Vibration of Circular Annular Disks

    Directory of Open Access Journals (Sweden)

    S. Bashmal

    2010-01-01

    Full Text Available This paper deals with the in-plane vibration of circular annular disks under combinations of different boundary conditions at the inner and outer edges. The in-plane free vibration of an elastic and isotropic disk is studied on the basis of the two-dimensional linear plane stress theory of elasticity. The exact solution of the in-plane equation of equilibrium of annular disk is attainable, in terms of Bessel functions, for uniform boundary conditions. The frequency equations for different modes can be obtained from the general solutions by applying the appropriate boundary conditions at the inner and outer edges. The presented frequency equations provide the frequency parameters for the required number of modes for a wide range of radius ratios and Poisson's ratios of annular disks under clamped, free, or flexible boundary conditions. Simplified forms of frequency equations are presented for solid disks and axisymmetric modes of annular disks. Frequency parameters are computed and compared with those available in literature. The frequency equations can be used as a reference to assess the accuracy of approximate methods.

  4. Reduction of low frequency vibration of truck driver and seating system through system parameter identification, sensitivity analysis and active control

    Science.gov (United States)

    Wang, Xu; Bi, Fengrong; Du, Haiping

    2018-05-01

    This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.

  5. Research on the Vibration Insulation of High-Speed Train Bogies in Mid and High Frequency

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2018-01-01

    Full Text Available According to a large amount of the test data, the mid and high frequency vibrations of high-speed bogies are very notable, especially in the 565~616 Hz range, which are just the passing frequencies corresponding to the 22nd to 24th polygonal wear of the wheel. In order to investigate the main cause of wheel higher-order polygon formation, a 3D flexible model of a Chinese high-speed train bogie is developed using the explicit finite element method. The results show that the couple vibration of bogie and wheelset may lead to the high-order wears of wheel. In order to reduce the coupled resonance of the wheelset and the bogie frame, the effects of the stiffness and damping of the primary suspensions, wheelset axle radius, and bogie frame strength on the vibration transmissibility are discussed carefully. The numerical results show that the resonance peaks in high frequency range can be reduced by reducing the stiffness of axle box rotary arm joint, reducing the wheelset axle radius or strengthening the bogie frame location. The related results may provide a reference for structure improvement of the existing bogies and structure design of the new high-speed bogies.

  6. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    Science.gov (United States)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  7. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo.

    Science.gov (United States)

    He, Shengwei; Zhao, Wenzhi; Zhang, Lu; Mi, Lidong; Du, Guangyu; Sun, Chuanxiu; Sun, Xuegang

    2017-01-01

    To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo . Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz) were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligan, and pre-collagen type 1 α were measured. Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligand, and pre-collagen type 1 α were also markedly higher following 25 and 50 Hz treatment. Low frequency (25-50 Hz) vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  8. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

    Directory of Open Access Journals (Sweden)

    Shengwei He

    2017-01-01

    Full Text Available Objective(s:To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligan, and pre-collagen type 1 a were measured. Results:Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligand, and pre-collagen type 1 a were also markedly higher following 25 and 50 Hz treatment. Conclusion:Low frequency (25–50 Hz vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.

  9. Algorithm for the calculation of vibration inherent frequencies bending from two-shafts transmission

    Directory of Open Access Journals (Sweden)

    Grigore Jan-Cristian

    2017-01-01

    Full Text Available The operation of the speed shaft transmissions at or near the natural frequency of the pulses at the resonance phenomenon leads to bending, when the amplitude of the oscillations increases sharply, causing deterioration or complete destruction thereof. To avoid system resonance operation is necessary to know the most accurate values its pulsations and taking appropriate constructive measures to avoid overlapping with disturbing frequency harmonics (operating speeds.This paper presents an algorithm for calculating the pulsation and vibration modes in bending, and based on numerical simulations performed on a real two-shafts transmission and will draw conclusions drawn diagrams.

  10. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  11. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)

    2016-03-15

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  12. Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies

    International Nuclear Information System (INIS)

    Lavazec, Deborah; Cumunel, Gwendal; Duhamel, Denis; Soize, Christian; Batou, Anas

    2016-01-01

    At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected. (paper)

  13. Effect of vibration frequency on microstructure and performance of high chromium cast iron prepared by lost foam casting

    Directory of Open Access Journals (Sweden)

    Wen-qi Zou

    2016-07-01

    Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.

  14. Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis.

    Science.gov (United States)

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2013-12-27

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.

  15. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  16. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  17. Two-dimensional spectroscopy at infrared and optical frequencies

    OpenAIRE

    Hochstrasser, Robin M.

    2007-01-01

    This Perspective on multidimensional spectroscopy in the optical and infrared spectral regions focuses on the principles and the scientific and technical challenges facing these new fields. The methods hold great promise for advances in the visualization of time-dependent structural changes in complex systems ranging from liquids to biological assemblies, new materials, and fundamental physical processes. The papers in this special feature on multidimensional spectroscopy in chemistry, physic...

  18. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses

    NARCIS (Netherlands)

    Chen, K.; Manning, M.L.; Yunker, P.J.; Ellenbroek, W.G.; Zhang, Zexin; Liu, Andrea J.; Yodh, A.G.

    2011-01-01

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance

  19. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    Science.gov (United States)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  20. Low frequency noise and air vibration generated by a simple cycle gas turbine installation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, C.; Hertil, S. [ATCO Noise Management, Calgary, AB (Canada)

    2005-07-01

    Low-frequency noise refers to infrasound whose frequency is lower than the minimum human audible frequency of about 20 Hz. Recently, there have been serious complaints on noise pollution in the frequency range of 1-100 Hz. This presentation outlined ASHRAE noise criteria regions and discussed human perceptions to vibration. It also presented methods that ATCO used for measuring noise at a simple gas turbine installation, inside the site at the administration buildings, at the paths of vibration and noise propagation, and at noise sensitive receptors. A 70 dBC at the closes noise-sensitive receptor was used as a noise limit to minimize annoyance. In addition, 96 dBC was measured at 400 feet. It was noted that reducing the C-weighted sound level depends on reducing the stack noise emissions in the 16 and 31.5 band levels. ATCO evaluated silencer designs and recommended reactive silencers to achieve a 10 dB reduction in noise emitted by the 3 exhaust stacks. 6 figs.

  1. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  2. The Possible Interstellar Anion CH2CN-: Spectroscopic Constants, Vibrational Frequencies, and Other Considerations

    Science.gov (United States)

    Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    The A\\ ^1B_1 \\leftarrow \\tilde{X}\\ ^1A^{\\prime } excitation into the dipole-bound state of the cyanomethyl anion (CH2CN-) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for \\tilde{X}\\ ^1A^{\\prime } CH2CN- in order to assist in laboratory studies and astronomical observations.

  3. Natural frequencies and forms of flexural vibrations of a beam with a crack

    Directory of Open Access Journals (Sweden)

    Gordon Vladimir Aleksandrovich

    2014-03-01

    Full Text Available In view of providing durability of constructions, the urgent problem is studying dynamic processes in loaded rod structures occurring in the process of sudden local defects formation, such as breakage of support bonds, partial destruction, transverse and longitudinal cracks etc., which are united under general term "beyond design impacts". To date, a number of problems related to this topic are solved: the problem of dynamic loadings at sudden formation of transverse cracks, the problem of partial tie breaks in the bearings, partial destruction and longitudinal lamination of compound bars. In the paper the authors propose a method of determining the spectrum of natural frequencies of flexural vibrations of a rod system with this type of injury. The results are to be used for modal analysis of forced vibrations of a beam with a defect of longitudinal lamination, depending on its level.

  4. Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester

    Science.gov (United States)

    Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh

    2018-03-01

    This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].

  5. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects

    Science.gov (United States)

    Zhao, Yaobing; Huang, Chaohui; Chen, Lincong; Peng, Jian

    2018-03-01

    The aim of this paper is to investigate temperature effects on the nonlinear vibration behaviors of suspended cables under two-frequency excitation. For this purpose, two combination and simultaneous resonances are chosen and studied in detail. First of all, based on the assumptions of the temperature effects, the partial differential equations of the in-plane and out-of-plane motions with thermal effects under multi-frequency excitations are obtained. The Galerkin method is adopted to discretize the nonlinear dynamic equations, and the single-mode planar discretization is considered. Then, in the absence of the primary and internal resonances, the frequency response equations are obtained by using the multiple scales method. The stability analyses are conducted via investigating the nature of the singular points of equations. After that, temperature effects on nonlinear vibration characteristics of the first symmetric mode are studied. Parametric investigations of temperature effects on corresponding non-dimensional factors and coefficients of linear and nonlinear terms are performed. Numerical results are presented to show the temperature effects via the frequency-response curves and detuning-phase curves of four different sag-to-span ratios. It is found out that effects of temperature variations would lead to significant quantitative and/or qualitative changes of the nonlinear vibration properties, and these effects are closely related to the sag-to-span ratio and the degree of the temperature variation. Specifically, the softening/hardening-type spring behaviors, the response amplitude, the range of the resonance, the intersection and number of branches, the number and phase of the steady-state solutions are all affected by the temperature changes.

  6. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices

    International Nuclear Information System (INIS)

    Deng, Jiadong; Rorschach, Katherine; Baker, Evan; Sun, Cheng; Chen, Wei

    2015-01-01

    Topological design of miniaturized resonating structures capable of harvesting electrical energy from low frequency environmental mechanical vibrations encounters a particular physical challenge, due to the conflicting design requirements: low resonating frequency and miniaturization. In this paper structural static stiffness to resist undesired lateral deformation is included into the objective function, to prevent the structure from degenerating and forcing the solution to be manufacturable. The rational approximation of material properties interpolation scheme is introduced to deal with the problems of local vibration and instability of the low density area induced by the design dependent body forces. Both density and level set based topology optimization (TO) methods are investigated in their parameterization, sensitivity analysis, and applicability for low frequency energy harvester TO problems. Continuum based variation formulations for sensitivity analysis and the material derivative based shape sensitivity analysis are presented for the density method and the level set method, respectively; and their similarities and differences are highlighted. An external damper is introduced to simulate the energy output of the resonator due to electrical damping and the Rayleigh proportional damping is used for mechanical damping. Optimization results for different scenarios are tested to illustrate the influences of dynamic and static loads. To demonstrate manufacturability, the designs are built to scale using a 3D microfabrication method and assembled into vibration energy harvester prototypes. The fabricated devices based on the optimal results from using different TO techniques are tested and compared with the simulation results. The structures obtained by the level set based TO method require less post-processing before fabrication and the structures obtained by the density based TO method have resonating frequency as low as 100 Hz. The electrical voltage response

  7. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  8. Frequency-varying synchronous micro-vibration suppression for a MSFW with application of small-gain theorem

    Science.gov (United States)

    Peng, Cong; Fan, Yahong; Huang, Ziyuan; Han, Bangcheng; Fang, Jiancheng

    2017-01-01

    This paper presents a novel synchronous micro-vibration suppression method on the basis of the small gain theorem to reduce the frequency-varying synchronous micro-vibration forces for a magnetically suspended flywheel (MSFW). The proposed synchronous micro-vibration suppression method not only eliminates the synchronous current fluctuations to force the rotor spinning around the inertia axis, but also considers the compensation caused by the displacement stiffness in the permanent-magnet (PM)-biased magnetic bearings. Moreover, the stability of the proposed control system is exactly analyzed by using small gain theorem. The effectiveness of the proposed micro-vibration suppression method is demonstrated via the direct measurement of the disturbance forces for a MSFW. The main merit of the proposed method is that it provides a simple and practical method in suppressing the frequency varying micro-vibration forces and preserving the nominal performance of the baseline control system.

  9. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...

  10. Natural Frequencies and Vibrating Modes for a Magnetic Planetary Gear Drive

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2012-01-01

    Full Text Available In this paper, a dynamic model for a magnetic planetary gear drive is proposed. Based on the model, the dynamic equations for the magnetic planetary gear drive are given. From the magnetic meshing forces and torques between the elements for the drive system, the tangent and radial magnetic meshing stiffness is obtained. Using these equations, the natural frequencies and the modes of the magnetic planetary gear drive are investigated. The sensitivity of the natural frequencies to the system parameters is discussed. Results show that the pole pair number and the air gap have obvious effects on the natural frequencies. For the planetary gear number larger than two, the vibrations of the drive system include the torsion mode of the center elements, the translation mode of the center elements, and the planet modes. For the planetary gear number equal to two, the planet mode does not occur, the crown mode and the sun gear mode occur.

  11. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Science.gov (United States)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  12. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    International Nuclear Information System (INIS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-01-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N 2 , Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  13. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui [CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2}, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  14. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Directory of Open Access Journals (Sweden)

    Elie-Jacques Fares

    Full Text Available There is increasing recognition about the importance of enhancing energy expenditure (EE for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS. Whole-body vibration (WBV increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF and EE, nor if WBV influences respiratory quotient (RQ, and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz.EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz. Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest, separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest at 40 Hz, separated by 5 min seated rest.Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001. However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration.No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS.

  15. Influence of Traffic Vehicles Against Ground Fundamental Frequency Prediction using Ambient Vibration Technique

    Science.gov (United States)

    Kamarudin, A. F.; Noh, M. S. Md; Mokhatar, S. N.; Anuar, M. A. Mohd; Ibrahim, A.; Ibrahim, Z.; Daud, M. E.

    2018-04-01

    Ambient vibration (AV) technique is widely used nowadays for ground fundamental frequency prediction. This technique is easy, quick, non-destructive, less operator required and reliable result. The input motions of ambient vibration are originally collected from surrounding natural and artificial excitations. But, careful data acquisition controlled must be implemented to reduce the intrusion of short period noise that could imply the quality of frequency prediction of an investigated site. In this study, investigation on the primary noise intrusion under peak (morning, afternoon and evening) and off peak (early morning) traffic flows (only 8 meter from sensor to road shoulder) against the stability and quality of ground fundamental frequency prediction were carried out. None of specific standard is available for AV data acquisition and processing. Thus, some field and processing parameters recommended by previous studies and guideline were considered. Two units of 1 Hz tri-axial seismometer sensor were closely positioned in front of the main entrance Universiti Tun Hussein Onn Malaysia. 15 minutes of recording length were taken during peak and off peak periods of traffic flows. All passing vehicles were counted and grouped into four classes. Three components of ambient vibration time series recorded in the North-South: NS, East-West: EW and vertical: UD directions were automatically computed into Horizontal to Vertical Spectral Ratio (HVSR), by using open source software of GEOPSY for fundamental ground frequency, Fo determination. Single sharp peak pattern of HVSR curves have been obtained at peak frequencies between 1.33 to 1.38 Hz which classified under soft to dense soil classification. Even identical HVSR curves pattern with close frequencies prediction were obtained under both periods of AV measurement, however the total numbers of stable and quality windows selected for HVSR computation were significantly different but both have satisfied the requirement

  16. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  17. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  18. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR

    Science.gov (United States)

    Xu, Chengjin; Guan, Junjun; Bao, Ming; Lu, Jiangang; Ye, Wei

    2018-01-01

    Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distributed optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine, the performance of the classifier is enhanced. Experiments show that after using this method to process 4000 vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing, and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this method can automatically make an effective feature selection and greatly improve the classification accuracy of vibrational events in distributed optical fiber sensing systems.

  19. Comparative Study of Time-Frequency Decomposition Techniques for Fault Detection in Induction Motors Using Vibration Analysis during Startup Transient

    Directory of Open Access Journals (Sweden)

    Paulo Antonio Delgado-Arredondo

    2015-01-01

    Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.

  20. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor; Lamperti, Marco; Gatti, Davide; Laporta, Paolo; Fermann, Martin E.; Farooq, Aamir; Marangoni, Marco

    2017-01-01

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  1. Frequency locking of an extended-cavity quantum cascade laser to a frequency comb for precision mid infrared spectroscopy

    KAUST Repository

    Alsaif, Bidoor

    2017-11-02

    Extended-cavity quantum cascade lasers (EC-QCLs) enable mode-hope-free frequency sweeps in the mid-infrared region over ranges in excess of 100 cm−1, at speeds up to 1 THz/s and with a 100-mW optical power level. This makes them ideally suited for broadband absorption spectroscopy and for the simultaneous detection of multiple gases. On the other hand, their use for precision spectroscopy has been hampered so far by a large amount of frequency noise, resulting in an optical linewidth of about 30 MHz over 50 ms [1]. This is one of the reasons why neither their frequency nor their phase have been so far locked to a frequency comb. Their use in combination with frequency combs has been performed in an open loop regime only [2], which has the merit of preserving the inherently fast modulation speed of these lasers, yet not to afford high spectral resolution and accuracy.

  2. Transmission of High Frequency Vibrations in Rotating Systems. Application to Cavitation Detection in Hydraulic Turbines

    Directory of Open Access Journals (Sweden)

    David Valentín

    2018-03-01

    Full Text Available One of the main causes of damage in hydraulic turbines is cavitation. While not all cavitation appearing in a turbine is of a destructive type, erosive cavitation can severely affect the structure, thus increasing maintenance costs and reducing the remaining useful life of the machine. Of all types of cavitation, the maximum erosion occurs when clouds of bubbles collapse on the runner surface (cloud cavitation. When this occurs it is associated with a substantial increase in noise, and vibrations that are propagated everywhere throughout the machine. The generation of these cavitation clouds may occur naturally or it may be the response to a periodic pressure fluctuation, like the rotor/stator interaction in a hydraulic turbine. Erosive bubble cavitation generates high-frequency vibrations that are modulated by the shedding frequency. Therefore, the methods for the detection of erosive cavitation in hydraulic turbines are based on the measurement and demodulation of high-frequency vibrations. In this paper, the feasibility of detecting erosive cavitation in hydraulic turbines is investigated experimentally in a rotating disk system, which represents a simplified hydraulic turbine structure. The test rig used consists of a rotating disk submerged in a tank of water and confined with nearby axial and radial rigid surfaces. The excitation patterns produced by cloud cavitation are reproduced with a PZT (piezoelectric patch located on the disk. These patterns include pseudo-random excitations of different frequency bands modulated by one low carrier frequency, which model the erosive cavitation characteristics. Different types of sensors have been placed in the stationary and in the rotating parts (accelerometers, acoustic emission (AE, and a microphone in order to detect the excitation pattern. The results obtained for all the sensors tested have been compared in detail for the different excitation patterns applied to the disk. With this information

  3. High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data.

    Science.gov (United States)

    Bhargava, Rohit; Fernandez, Daniel C; Hewitt, Stephen M; Levin, Ira W

    2006-07-01

    Vibrational spectroscopy allows a visualization of tissue constituents based on intrinsic chemical composition and provides a potential route to obtaining diagnostic markers of diseases. Characterizations utilizing infrared vibrational spectroscopy, in particular, are conventionally low throughput in data acquisition, generally lacking in spatial resolution with the resulting data requiring intensive numerical computations to extract information. These factors impair the ability of infrared spectroscopic measurements to represent accurately the spatial heterogeneity in tissue, to incorporate robustly the diversity introduced by patient cohorts or preparative artifacts and to validate developed protocols in large population studies. In this manuscript, we demonstrate a combination of Fourier transform infrared (FTIR) spectroscopic imaging, tissue microarrays (TMAs) and fast numerical analysis as a paradigm for the rapid analysis, development and validation of high throughput spectroscopic characterization protocols. We provide an extended description of the data treatment algorithm and a discussion of various factors that may influence decision-making using this approach. Finally, a number of prostate tissue biopsies, arranged in an array modality, are employed to examine the efficacy of this approach in histologic recognition of epithelial cell polarization in patients displaying a variety of normal, malignant and hyperplastic conditions. An index of epithelial cell polarization, derived from a combined spectral and morphological analysis, is determined to be a potentially useful diagnostic marker.

  4. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Directory of Open Access Journals (Sweden)

    Pengwei Li

    2015-04-01

    Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  5. Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)

    2015-04-15

    As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.

  6. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.

    2016-11-01

    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  7. Natural frequency and vibration analysis of jacket type foundation for offshore wind power

    Science.gov (United States)

    Hung, Y.-C.; Chang, Y.-Y.; Chen, S.-Y.

    2017-12-01

    There are various types of foundation structure for offshore wind power, engineers may assess the condition of ocean at wind farm, and arrange the transportation, installation of each structure members, furthermore, considering the ability of manufacture steel structure as well, then make an optimum design. To design jacket offshore structure, unlike onshore cases, offshore structure also need to estimate the wave excitation effect. The aim of this paper is to study the difference of natural frequency between different kinds of structural stiffness and discuss the effect of different setting of boundary condition during analysis, besides, compare this value with the natural frequency of sea wave, in order to avoid the resonance effect. In this paper, the finite element analysis software ABAQUS is used to model and analyze the natural vibration behavior of the jacket structure.

  8. Natural Frequencies Evaluation on Partially Damaged Building using Ambient Vibration Technique

    Science.gov (United States)

    Kamarudin, A. F.; Zainal Abidin, M. H.; Daud, M. E.; Noh, M. S. Md; Madun, A.; Ibrahim, A.; Matarul, J.; Mokhatar, S. N.

    2018-04-01

    Severe damages observed on the school blocks, roads, retaining walls and drainage within the compound of SMK Kundasang Sabah possibly due to the ground movements triggered by the Ranau earthquake in 1991. Ambient vibration measurements were carried on the remaining demolished 3-storey building which partially damaged in order to measure the predominant building frequencies using tri-axial 1 Hz seismometer sensors. Popular methods of Horizontal-to-vertical spectral ratios (HVSR) and Fourier amplitude spectra (FAS) were used to compute the ambient vibration wave fields of each building axes (Transverse or North-South (NS), Longitudinal or East-West (EW) and vertical) into Fourier spectra. Two main modes of translation and torsion were observed from the peaks frequencies obtained at 2.99 to 3.10 Hz (1st mode), 4.85 Hz (2nd mode) and 5.63 to 5.85 Hz (3rd mode). The building experiencing translation modes of bending and shear in the NS and EW directions. It could be seen when the amplitudes tends to increase when the floor are increased. Meanwhile, the torsional bending mode is expected to occur when the deformation amplitudes are found to be increasing horizontally, when moving into partially structural damaged section located on the East wing of building.

  9. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  10. Parallel β-sheet vibrational couplings revealed by 2D IR spectroscopy of an isotopically labeled macrocycle: quantitative benchmark for the interpretation of amyloid and protein infrared spectra.

    Science.gov (United States)

    Woys, Ann Marie; Almeida, Aaron M; Wang, Lu; Chiu, Chi-Cheng; McGovern, Michael; de Pablo, Juan J; Skinner, James L; Gellman, Samuel H; Zanni, Martin T

    2012-11-21

    Infrared spectroscopy is playing an important role in the elucidation of amyloid fiber formation, but the coupling models that link spectra to structure are not well tested for parallel β-sheets. Using a synthetic macrocycle that enforces a two stranded parallel β-sheet conformation, we measured the lifetimes and frequency for six combinations of doubly (13)C═(18)O labeled amide I modes using 2D IR spectroscopy. The average vibrational lifetime of the isotope labeled residues was 550 fs. The frequencies of the labels ranged from 1585 to 1595 cm(-1), with the largest frequency shift occurring for in-register amino acids. The 2D IR spectra of the coupled isotope labels were calculated from molecular dynamics simulations of a series of macrocycle structures generated from replica exchange dynamics to fully sample the conformational distribution. The models used to simulate the spectra include through-space coupling, through-bond coupling, and local frequency shifts caused by environment electrostatics and hydrogen bonding. The calculated spectra predict the line widths and frequencies nearly quantitatively. Historically, the characteristic features of β-sheet infrared spectra have been attributed to through-space couplings such as transition dipole coupling. We find that frequency shifts of the local carbonyl groups due to nearest neighbor couplings and environmental factors are more important, while the through-space couplings dictate the spectral intensities. As a result, the characteristic absorption spectra empirically used for decades to assign parallel β-sheet secondary structure arises because of a redistribution of oscillator strength, but the through-space couplings do not themselves dramatically alter the frequency distribution of eigenstates much more than already exists in random coil structures. Moreover, solvent exposed residues have amide I bands with >20 cm(-1) line width. Narrower line widths indicate that the amide I backbone is solvent

  11. CONTRIBUTIONS TO THE STUDY OF THE VIBRATIONS FREQUENCY OF THE DRILL TOOL IN THE PROCESS OF MANUFACTURING THE BRONZE MATERIALS

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2013-05-01

    Full Text Available In this paper we present the experimental testings used to study the vibration of the drill tool, during the drilling of the bronze products. We have used the experimental setup presented in Miriţoiu (2013[1]. In this paper the vibrations are analyzed during the drilling on the universal lathe machines. The main purpose of to find a correlation between the cutting speed and the frequency of the vibration by using the experimental results and the regression analysis

  12. Surprising performance for vibrational frequencies of the distinguishable clusters with singles and doubles (DCSD) and MP2.5 approximations

    Science.gov (United States)

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-11-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empirical parameters. DCSD is also quite suitable for computing zero-point vibrational energies in computational thermochemistry.

  13. [Dynamics of vegetative indicators induced by low-frequency magnetotherapy and EHF-puncture in hypertensive workers exposed to vibration].

    Science.gov (United States)

    Drobyshev, V A; Efremov, A V; Loseva, M I; Sukharevskaia, T M; Michurin, A I

    2002-01-01

    Low-frequency magnetic fields and EHF-therapy have been used in correction of autonomic homeostasis in workers exposed to vibration for different periods of time. The workers suffered from early arterial hypertension. Vegetative status and central hemodynamics improved best in workers exposed to vibration for less than 5 years. If the exposure was 6-15 years, a positive trend occurred in the tension of regulatory mechanisms. Workers with long exposure to vibration suffering from vagotonia showed an inadequate response of the autonomic parameters to treatment. This necessitates enhancement of therapeutic measures with medicines.

  14. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    International Nuclear Information System (INIS)

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  15. Communication: Quantitative multi-site frequency maps for amide I vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Reppert, Mike [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States); Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu [Department of Chemistry, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-08-14

    An accurate method for predicting the amide I vibrational spectrum of a given protein structure has been sought for many years. Significant progress has been made recently by sampling structures from molecular dynamics simulations and mapping local electrostatic variables onto the frequencies of individual amide bonds. Agreement with experiment, however, has remained largely qualitative. Previously, we used dipeptide fragments and isotope-labeled constructs of the protein G mimic NuG2b as experimental standards for developing and testing amide I frequency maps. Here, we combine these datasets to test different frequency-map models and develop a novel method to produce an optimized four-site potential (4P) map based on the CHARMM27 force field. Together with a charge correction for glycine residues, the optimized map accurately describes both experimental datasets, with average frequency errors of 2–3 cm{sup −1}. This 4P map is shown to be convertible to a three-site field map which provides equivalent performance, highlighting the viability of both field- and potential-based maps for amide I spectral modeling. The use of multiple sampling points for local electrostatics is found to be essential for accurate map performance.

  16. The use of displacement threshold for switching frequency strategy for structural vibration mitigation

    International Nuclear Information System (INIS)

    Widjaja, Joko; Samali, Bijan; Li, Jianchun

    2007-01-01

    This paper presents a study of controllable real-time frequency shift using a fluid pin damper, so called 'smart pin', mounted at a beam-column connection. Unlike the stationary frequency shifter, the pin can increase or decrease the rotational stiffness of the connection, leading to an actively adjustable structural frequency due to real-time responses of polarised magneto-rheological (MR) fluid, whose rheological properties can change in milliseconds. The feedback to the pin damper governs the structural frequency changes. To demonstrate this concept, a single storey plane steel frame model with one hinge and one 'smart pin' damper, mounted at each beam-column connection and subjected to two scaled earthquake excitations, namely El-Centro 1940 and Northridge 1994, which respectively represent near- and farfield excitations, was tested using the shake table at the University of Technology, Sydney (UTS) structures laboratory, for 'proof-of-concept' investigation. Further, the dynamic performance of the model using a proposed switching strategy with a displacement threshold as an indicator for alternately supplied current level (flip-flop) was examined, assuming the earthquake records were known. The results showed some potential use of this control technique for structural vibration mitigation, however, further study to optimize the performance of the switching strategy is still required

  17. Fatigue of 1 {mu}m-scale gold by vibration with reduced resonant frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Matsumoto, Kenta [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tsuchiya, Toshiyuki [Department of Micro Engineering, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2012-10-30

    In order to investigate the fatigue strength of micro-metal (1 {mu}m-scale), a testing method using resonant vibration is developed. Although the loading by vibration can solve the difficulties associated with the fatigue experiment of micro-specimen (e.g., specimen gripping and high-cycle loading under tension-compression), it inherently has an excessively high resonance frequency (more than several GHz at least) in a 1 {mu}m-scale metal specimen. For control of the fatigue cycle, the resonance frequency must be reduced to several hundreds of kHz by tuning the specimen shape. We design a cantilever specimen of 1 {mu}m scale gold with a weight at the tip, which reduces the resonant frequency to about 330 kHz. The unique specimen with the test section of 1.26 {mu}m Multiplication-Sign 0.94 {mu}m Multiplication-Sign 1.52 {mu}m is successfully fabricated by a novel technique using a focused ion beam and the tension-compression fatigue cycle is applied to it by means of a piezoelectric actuator. The test section breaks at about 1.6 Multiplication-Sign 10{sup 6} cycles under {Delta}{sigma}/2=230 MPa, which is within the targeted range of this project. It is easy to extend this method to high-cycle fatigue for actual use (including the failure cycles of over 10{sup 8} cycles). The slip bands observed on the surface, which have concavity and convexity similar to the intrusions/extrusions of PSBs, indicate that the failure is induced by the fatigue.

  18. Dew Frequency across the NEON Network from Infrared Radiometry

    Science.gov (United States)

    Ritter, F.; Berkelhammer, M. B.; Beysens, D.

    2017-12-01

    The surface energy budget is more difficult to close at night because of the absence of strong atmospheric turbulence, central in the eddy-covariance calculations. One approach to assessing the direction of the nocturnal latent heat flux is through studying the frequency and magnitude of dew formation in different ecosystems. However, most former dew studies on dew dynamics utilized artificial surfaces to collect dew, and did not have access to the surface temperature of natural surfaces in an ecosystem to provide a continuous whole-plot approach to constrain dew formation. Hourly in-situ measurements recently made available by the National Ecological Observatory Network (NEON) of the radiometric surface temperature and the meteorological variables provide a unique opportunity to make continuous estimates of dew formation across 19 ecosystems (9 grasslands and 10 forests) at the plot-scale. Here, dew duration was calculated for each night based on the difference between the surface temperature and the dew point temperature of the air. The results from this analysis show that dew duration is limited by wind speed during the night, with a maximum dew yield at 1.1 m/s and no dew occurrence when the wind speed exceeds 7 m/s. This observation is consistent with previous studies but has been expanded here across multiple biomes to produce a well-defined turbulent limit on dew formation. The sensitivity of dew to wind speed arises because of the exhaustion of the water vapor supply close to the surface of the leaf at very low wind speed, and because the enhanced thermal exchange between the air and the surface counteracts dewfall at high wind speed. This well-defined wind speed limit that persists across sites and seasons could help to estimate the surface energy budget at night by constraining the latent heat flux.

  19. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  20. Simulation of the vibrational chemistry and the infrared signature induced by a Sprite streamer in the mesosphere

    Science.gov (United States)

    Romand, F.; Payan, S.; Croize, L.

    2017-12-01

    Since their first observation in 1989, effect of TLEs on the atmospheric composition has become an open and important question. The lack of suitable experimental data is a shortcoming that hampers our understanding of the physics and chemistry induced by these effects. HALESIS (High-Altitude Luminous Events Studied by Infrared Spectro-imagery) is a future experiment dedicated to the measurement of the atmospheric perturbation induced by a TLE in the minutes following its occurrence, from a stratospheric balloon flying at an altitude of 25 km to 40 km. This work aims to quantify the local chemical impact of sprites in the stratosphere and mesosphere. In this paper, we will present the development of a tool which simulates (i) the impact of a sprite on the vibrational chemistry, (ii) the resulting infrared signature and (iii) the propagation of this signature through the atmosphere to an observer. First the Non Local Thermodynamic Equilibrium populations of a background atmosphere were computed using SAMM2 code. The initial thermodynamic and chemical description of atmosphere comes from the Whole Atmosphere community Climate Model (WACCM). Then a perturbation was applied to simulate a sprite. Chemistry due to TLEs was computed using Gordillo-Vazquez kinetic model. Rate coefficients that depend on the electron energy distribution function were calculated from collision cross-section data by solving the electron Boltzmann equation (BE). Time evolutions of the species densities and of vibrational populations in the non-thermal plasma consecutive to sprite discharge were simulated using the computer code ZDPlasKin (S. Pancheshn et al.). Finally, the resulting infrared signatures were propagated from the disturbed area through the atmosphere to an instrument placed in a limb line of sight using a line by line radiative transfer model. We will conclude that sprite could produce a significant infrared signature that last a few tens of seconds after the visible flash.

  1. Comparing the accuracy of perturbative and variational calculations for predicting fundamental vibrational frequencies of dihalomethanes

    Science.gov (United States)

    Krasnoshchekov, Sergey V.; Schutski, Roman S.; Craig, Norman C.; Sibaev, Marat; Crittenden, Deborah L.

    2018-02-01

    Three dihalogenated methane derivatives (CH2F2, CH2FCl, and CH2Cl2) were used as model systems to compare and assess the accuracy of two different approaches for predicting observed fundamental frequencies: canonical operator Van Vleck vibrational perturbation theory (CVPT) and vibrational configuration interaction (VCI). For convenience and consistency, both methods employ the Watson Hamiltonian in rectilinear normal coordinates, expanding the potential energy surface (PES) as a Taylor series about equilibrium and constructing the wavefunction from a harmonic oscillator product basis. At the highest levels of theory considered here, fourth-order CVPT and VCI in a harmonic oscillator basis with up to 10 quanta of vibrational excitation in conjunction with a 4-mode representation sextic force field (SFF-4MR) computed at MP2/cc-pVTZ with replacement CCSD(T)/aug-cc-pVQZ harmonic force constants, the agreement between computed fundamentals is closer to 0.3 cm-1 on average, with a maximum difference of 1.7 cm-1. The major remaining accuracy-limiting factors are the accuracy of the underlying electronic structure model, followed by the incompleteness of the PES expansion. Nonetheless, computed and experimental fundamentals agree to within 5 cm-1, with an average difference of 2 cm-1, confirming the utility and accuracy of both theoretical models. One exception to this rule is the formally IR-inactive but weakly allowed through Coriolis-coupling H-C-H out-of-plane twisting mode of dichloromethane, whose spectrum we therefore revisit and reassign. We also investigate convergence with respect to order of CVPT, VCI excitation level, and order of PES expansion, concluding that premature truncation substantially decreases accuracy, although VCI(6)/SFF-4MR results are still of acceptable accuracy, and some error cancellation is observed with CVPT2 using a quartic force field.

  2. Observation of the low frequency vibrational modes of bacteriophage M13 in water by Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2006-09-01

    Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.

  3. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  4. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  5. Hyperfine-resolved transition frequency list of fundamental vibration bands of H35Cl and H37Cl

    Science.gov (United States)

    Iwakuni, Kana; Sera, Hideyuki; Abe, Masashi; Sasada, Hiroyuki

    2014-12-01

    Sub-Doppler resolution spectroscopy of the fundamental vibration bands of H35Cl and H37Cl has been carried out from 87.1 to 89.9 THz. We have determined the absolute transition frequencies of the hyperfine-resolved R(0) to R(4) transitions with a typical uncertainty of 10 kHz. We have also yielded six molecular constants for each isotopomer in the vibrational excited state, which reproduce the determined frequencies with a standard deviation of about 10 kHz.

  6. Combined IR-Raman vs vibrational sum-frequency heterospectral correlation spectroscopy

    Science.gov (United States)

    Roy, Sandra; Beutier, Clémentine; Hore, Dennis K.

    2018-06-01

    Vibrational sum-frequency generation spectroscopy is a valuable probe of surface structure, particularly when the same molecules are present in one of the adjacent bulk solid or solution phases. As a result of the non-centrosymmetric requirement of SFG, the signal generated is a marker of the extent to which the molecules are ordered in an arrangement that breaks the up-down symmetry at the surface. In cases where the accompanying changes in the bulk are of interest in understanding and interpreting the surface structure, simultaneous analysis of the bulk IR absorption or bulk Raman scattering is helpful, and may be used in heterospectral surface-bulk two-dimensional correlation. We demonstrate that, in such cases, generating a new type of bulk spectrum that combines the IR and Raman amplitudes is a better candidate than the individual IR and Raman spectra for the purpose of correlation with the SFG signal.

  7. Potassium-cobalt sulphate crystal growth assisted by low frequency vibrations

    Science.gov (United States)

    Sadovsky, A.; Ermochenkov, I.; Dubovenko, E.; Sukhanova, E.; Bebyakin, M.; Dubov, V.; Avetissov, I.

    2018-02-01

    Single crystals of K2Co(SO4)2·6H2O were grown from solution using the temperature reduction method enhanced by the axial low frequency vibration control technique (AVC-technique). Physical modeling of heat-mass transfer in solution under the AVC action was performed. The growth rate of the AVC grown crystal was found to be twice that of the crystal grown under natural convection conditions. Analysis of spectral characteristics (absorption and Raman spectra) as well as structural properties (dislocation density and microhardness) of the grown crystals showed the significant superiority of the AVC technique for the growth of K2Co(SO4)2·6H2O crystals.

  8. Mode shape and natural frequency identification for seismic analysis from background vibration

    International Nuclear Information System (INIS)

    Bhan, S.; Wozniak, Z.

    1986-10-01

    Background vibration in a CANDU plant can be used to determine the dynamic characteristics of major items of equipment, such as calandria, the fuelling machines and the primary heat transport pumps. These dynamic characteristics can then be used to verify the seismic response of the equipment which, at present, is based on theoretical models only. The feasibility and basic theory of this new approach (which uses accelerations measured at several points on a structure and does not require knowledge of the source of excitation) was established in Phase I of the study. This report is based on Phase II in which the methods of analysis developed in Phase I were improved and verified experimentally. A Fast Fourier Transform (FFT) algorithm was incorporated and an interactive curve fitting technique was developed to obtain the dynamic characteristics in the form of natural frequencies, mode shapes and damping ratios. The method is now available for use at a CANDU plant

  9. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    International Nuclear Information System (INIS)

    Zheng, Ren-Hui; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang; Wei, Wen-Mei

    2014-01-01

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed

  10. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Wei, Wen-Mei [Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032 (China)

    2014-03-14

    By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.

  11. Characterization of polymer surface structure and surface mechanical behaviour by sum frequency generation surface vibrational spectroscopy and atomic force microscopy

    International Nuclear Information System (INIS)

    Opdahl, Aric; Koffas, Telly S; Amitay-Sadovsky, Ella; Kim, Joonyeong; Somorjai, Gabor A

    2004-01-01

    Sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM) have been used to study polymer surface structure and surface mechanical behaviour, specifically to study the relationships between the surface properties of polymers and their bulk compositions and the environment to which the polymer is exposed. The combination of SFG surface vibrational spectroscopy and AFM has been used to study surface segregation behaviour of polyolefin blends at the polymer/air and polymer/solid interfaces. SFG surface vibrational spectroscopy and AFM experiments have also been performed to characterize the properties of polymer/liquid and polymer/polymer interfaces, focusing on hydrogel materials. A method was developed to study the surface properties of hydrogel contact lens materials at various hydration conditions. Finally, the effect of mechanical stretching on the surface composition and surface mechanical behaviour of phase-separated polyurethanes, used in biomedical implant devices, has been studied by both SFG surface vibrational spectroscopy and AFM. (topical review)

  12. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  13. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy.

    Science.gov (United States)

    Xiong, Wei; Laaser, Jennifer E; Mehlenbacher, Randy D; Zanni, Martin T

    2011-12-27

    In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple "atop" configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces.

  14. Analysis of musle fatigue induced by isometric vibration exercise at varying frequencies

    NARCIS (Netherlands)

    Mischi, M.; Rabotti, C.; Cardinale, M. (Marco)

    2012-01-01

    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training

  15. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  16. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    Science.gov (United States)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  17. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

    Directory of Open Access Journals (Sweden)

    Ted W Cranford

    Full Text Available Hearing mechanisms in baleen whales (Mysticeti are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT scans. We CT scanned the head of a small fin whale (Balaenoptera physalus in a scanner designed for solid-fuel rocket motors. Our computer (finite element modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1 the skull-vibration enabled bone conduction mechanism and (2 a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

  18. Hybrid nanogenerators for low frequency vibration energy harvesting and self-powered wireless locating

    Science.gov (United States)

    Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan

    2018-01-01

    Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm-3 and 378.79 μW cm-3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.

  19. Gray bootstrap method for estimating frequency-varying random vibration signals with small samples

    Directory of Open Access Journals (Sweden)

    Wang Yanqing

    2014-04-01

    Full Text Available During environment testing, the estimation of random vibration signals (RVS is an important technique for the airborne platform safety and reliability. However, the available methods including extreme value envelope method (EVEM, statistical tolerances method (STM and improved statistical tolerance method (ISTM require large samples and typical probability distribution. Moreover, the frequency-varying characteristic of RVS is usually not taken into account. Gray bootstrap method (GBM is proposed to solve the problem of estimating frequency-varying RVS with small samples. Firstly, the estimated indexes are obtained including the estimated interval, the estimated uncertainty, the estimated value, the estimated error and estimated reliability. In addition, GBM is applied to estimating the single flight testing of certain aircraft. At last, in order to evaluate the estimated performance, GBM is compared with bootstrap method (BM and gray method (GM in testing analysis. The result shows that GBM has superiority for estimating dynamic signals with small samples and estimated reliability is proved to be 100% at the given confidence level.

  20. An analysis of vibration-rotation lines of OH in the solar infrared spectrum

    NARCIS (Netherlands)

    Grevesse, N.; Sauval, A.J.; Dishoeck, van E.F.

    1984-01-01

    High resolution solar spectra have permitted the measurement with great accuracy of equivalent widths of vibration-rotation lines of OH in the X2Pi state near 3-micron wavelength. Using recent theoretical results for the transition probabilities, a solar oxygen abundance of (8.93 + or - 0.02) is

  1. [Influence of low-frequency magnetotherapy and HF-puncture on the heart rhythm in hypertensive workers exposed to vibration].

    Science.gov (United States)

    Drobyshev, V A; Loseva, M I; Sukharevskaia, T M; Michurin, A I

    2001-01-01

    The authors present results concerning use of low-frequency magnetic fields and HF-therapy for correction of vegetative homeostasis in workers with variable length of service, exposed to vibration, having early forms of arterial hypertension. The most positive changes of vegetative status and central hemodynamics are seen in workers with low length of service.

  2. Molecular Structure And Vibrational Frequencies of 2,3,4 Nitro anilines By Hartree-Fock And Density Functional Theory Calculations

    International Nuclear Information System (INIS)

    Sert, Y.

    2008-01-01

    The optimised molecular structure, vibrational frequencies and corresponding vibrational assignments of 2-, 3- and 4- nitro anilines have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were adapted to the C S symmetries of all the molecules. The calculated vibrational frequencies and geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the experimental and theoretical results showed that the HF method is superior to the B3LYP method for both the vibrational frequencies and geometric parameters

  3. Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Wang, Hong-Fei; Gan, Wei; Lu, Rong; Rao, Yi; Wu, Bao-Hua

    Sum frequency generation vibrational spectroscopy (SFG-VS) has been proven to be a uniquely effective spectroscopic technique in the investigation of molecular structure and conformations, as well as the dynamics of molecular interfaces. However, the ability to apply SFG-VS to complex molecular interfaces has been limited by the ability to abstract quantitative information from SFG-VS experiments. In this review, we try to make assessments of the limitations, issues and techniques as well as methodologies in quantitative orientational and spectral analysis with SFG-VS. Based on these assessments, we also try to summarize recent developments in methodologies on quantitative orientational and spectral analysis in SFG-VS, and their applications to detailed analysis of SFG-VS data of various vapour/neat liquid interfaces. A rigorous formulation of the polarization null angle (PNA) method is given for accurate determination of the orientational parameter D = /, and comparison between the PNA method with the commonly used polarization intensity ratio (PIR) method is discussed. The polarization and incident angle dependencies of the SFG-VS intensity are also reviewed, in the light of how experimental arrangements can be optimized to effectively abstract crucial information from the SFG-VS experiments. The values and models of the local field factors in the molecular layers are discussed. In order to examine the validity and limitations of the bond polarizability derivative model, the general expressions for molecular hyperpolarizability tensors and their expression with the bond polarizability derivative model for C3v, C2v and C∞v molecular groups are given in the two appendixes. We show that the bond polarizability derivative model can quantitatively describe many aspects of the intensities observed in the SFG-VS spectrum of the vapour/neat liquid interfaces in different polarizations. Using the polarization analysis in SFG-VS, polarization selection rules or

  4. Determination of vibrational parameters of methanol from matrix-isolation infrared spectroscopy and ab initio calculations. Part 1 - Spectral analysis in the domain 11 000-200 cm{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Perchard, J.P. [Universite Pierre et Marie Curie, CNRS, Laboratoire de Dynamique, Interactions et Reactivite, UMR 7075, Case 49, 4 Place Jussieu, 75252 Paris (France)], E-mail: jpp@spmol.jussieu.fr; Romain, F. [Universite Pierre et Marie Curie, CNRS, Laboratoire de Dynamique, Interactions et Reactivite, UMR 7075, Case 49, 4 Place Jussieu, 75252 Paris (France); Bouteiller, Y. [Universite Paris-Nord, CNRS, Laboratoire de Physique des Lasers, UMR 7538, 93430 Villetaneuse (France)

    2008-01-22

    Infrared spectra of three isotopic species of methanol ({sup 12}CH{sub 3}{sup 16}OH, {sup 13}CH{sub 3}{sup 16}OH, {sup 12}CH{sub 3}{sup 18}OH) trapped in neon and nitrogen matrices have been recorded between 11 000 and 200 cm{sup -1}. Their analysis is based on the isotopic effects which slightly modify the frequencies without significantly changing the nature of vibrations nor the band intensities. From the assignment of most of the two quanta transitions 45 out of the 78 anharmonicity coefficients have been deduced. The value of some of them has been confirmed by the identification of three quanta transitions mainly involving the OH stretching mode. The problem of vibrational resonances between methyl bending and stretching modes has been tackled by performing complementary experiments: use of other isotopic species (CH{sub 3}OD, CH{sub 2}DOH) and acquisition of Raman spectra in the gas phase.

  5. Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-08-31

    Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.

  6. A Stark-tuned, far-infrared laser for high frequency plasma diagnostics

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Vocaturo, M.; Guttadora, L.; Rockmore, M.; Micai, K.; Krug, P.A.

    1992-03-01

    A Stark-tuned optically pumped far-infrared methanol laser operating at 119 micrometers has been built. The laser is designed to operate at high power while exhibiting a well-separated Stark doublet. At a pump power of 65 Watts and electric field of 1 kV/cm the laser has delivered over 100 mW c.w. while exhibiting a frequency splitting of 34 MHz. These parameters indicate that this laser would be suitable for use in the present generation of modulated interferometers on large thermonuclear plasma devices. The achieved modulation frequency is more than an order of magnitude higher than could be achieved using standard techniques

  7. Amplitude and frequency stabilized solid-state lasers in the near infrared

    International Nuclear Information System (INIS)

    Laporta, P.; Taccheo, S.; Marano, M.; Svelto, O.; Bava, E.; Galzerano, G.; Svelto, C.

    2001-01-01

    In this article we present a comprehensive review of the work done by our group on the amplitude and frequency stabilization of diode-pumped near-infrared solid-state lasers. In particular, we describe experiments based on single-mode Nd:YAG (1064 nm), Er-Yb:glass (1530-1560 nm), and Tm-Ho:YAG (2097 nm) lasers, end-pumped by semiconductor laser diodes. Amplitude stabilization is achieved by means of optoelectronic control loops sensing the laser intensity fluctuations and feeding back the error signal to the current of the pump diodes. Frequency stabilization is pursued using rovibrational molecular lines as absolute frequency references by means of various frequency locking techniques. The most interesting stability results are described in some detail whereas the wide literature cited through the paper provides for a useful reference list of related topics and experiments. (author)

  8. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    Science.gov (United States)

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  9. Surprising Performance for Vibrational Frequencies of the Distinguishable Clusters with Singles and Doubles (DCSD) and MP2.5 Approximations

    OpenAIRE

    Kesharwani, Manoj K.; Sylvetsky, Nitai; Martin, Jan M. L.

    2017-01-01

    We show that the DCSD (distinguishable clusters with all singles and doubles) correlation method permits the calculation of vibrational spectra at near-CCSD(T) quality but at no more than CCSD cost, and with comparatively inexpensive analytical gradients. For systems dominated by a single reference configuration, even MP2.5 is a viable alternative, at MP3 cost. MP2.5 performance for vibrational frequencies is comparable to double hybrids such as DSD-PBEP86-D3BJ, but without resorting to empir...

  10. Ocular vestibular evoked myogenic potentials to vertex low frequency vibration as a diagnostic test for superior canal dehiscence.

    Science.gov (United States)

    Verrecchia, Luca; Westin, Magnus; Duan, Maoli; Brantberg, Krister

    2016-04-01

    To explore ocular vestibular evoked myogenic potentials (oVEMP) to low-frequency vertex vibration (125 Hz) as a diagnostic test for superior canal dehiscence (SCD) syndrome. The oVEMP using 125 Hz single cycle bone-conducted vertex vibration were tested in 15 patients with unilateral superior canal dehiscence (SCD) syndrome, 15 healthy controls and in 20 patients with unilateral vestibular loss due to vestibular neuritis. Amplitude, amplitude asymmetry ratio, latency and interaural latency difference were parameters of interest. The oVEMP amplitude was significantly larger in SCD patients when affected sides (53 μVolts) were compared to non-affected (17.2 μVolts) or compared to healthy controls (13.6 μVolts). Amplitude larger than 33.8 μVolts separates effectively the SCD ears from the healthy ones with sensitivity of 87% and specificity of 93%. The other three parameters showed an overlap between affected SCD ears and non-affected as well as between SCD ears and those in the two control groups. oVEMP amplitude distinguishes SCD ears from healthy ones using low-frequency vibration stimuli at vertex. Amplitude analysis of oVEMP evoked by low-frequency vertex bone vibration stimulation is an additional indicator of SCD syndrome and might serve for diagnosing SCD patients with coexistent conductive middle ear problems. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Molecular Geometry And Vibrational Spectra of 2'-chloroacetanilide

    International Nuclear Information System (INIS)

    Gokce, H.

    2008-01-01

    The molecular structure, vibrational frequencies and the corresponding vibrational assingments of 2'-chloroacetanilide in the ground state have been calculated by using Hartree-Fock (HF) and Density Functional Theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The obtained vibrational frequencies and optimized geometric parameters (bond lenghts and angles) are in very good agreement with the experimental data. The comparison of the observed and calculated vibrational frequencies assignments of 2'-chloroacetanilide exhibit that the scaled DFT/B3LYP method is superior to be scaled HF method. Furthermore the calculated Infrared and Raman intensities are also reported

  12. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates.

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M; Bačić, Zlatko

    2018-04-14

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H 2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H 2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H 2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H 2 inside a hydrate domain is assumed to be pairwise additive. The H 2 -H 2 O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H 2 , v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H 2 -H 2 O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H 2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H 2 change very little with the domain size, unlike the H 2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H 2 O molecules in the first three complete hydration shells around H 2 .

  13. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  14. Damping of vibrational excitations in glasses at terahertz frequency: The case of 3-methylpentane

    KAUST Repository

    Baldi, Giacomo

    2017-10-24

    We report a compared analysis of inelastic X ray scattering (IXS) and of low frequency Raman data of glassy 3-methylpentane. The IXS spectra have been analysed allowing for the existence of two distinct excitations at each scattering wavevector obtaining a consistent interpretation of the spectra. In particular, this procedure allows us to interpret the linewidth of the modes in terms of a simple model which relates them to the width of the first sharp diffraction peak in the static structure factor. In this model, the width of the modes arises from the blurring of the dispersion curves which increases approaching the boundary of the first pseudo-Brillouin zone. The position of the boson peak contribution to the density of vibrational states derived from the Raman scattering measurements is in agreement with the interpretation of the two excitations in terms of a longitudinal mode and a transverse mode, the latter being a result of the mixed character of the transverse modes away from the center of the pseudo-Brillouin zone.

  15. A proof-of-principle for frequency-domain vibration analysis

    International Nuclear Information System (INIS)

    Mobley, R.K.

    1987-01-01

    The economic and regulatory pressures on operating utilities to improve efficiency, availability, and reliability and to extend the effective operating life of existing electric power generating plants have created a real need for instrumentation, systems, and programs that can monitor, analyze, and provide the means to correct incipient machine and process problems. Predictive maintenance programs, properly utilized, can be one key to achieving these goals. Recent developments in microprocessor technology have provided the ability to routinely monitor the actual mechanical condition of all rotating and reciprocating machinery and process variables (i.e., pressure, temperature, flow, etc.) of other process equipment within an operating electric power generating plant. This direct correlation between frequency-domain vibration and actual mechanical condition of machinery and trending process variables of nonrotating equipment can provide the key to improving availability, reliability, and thermal efficiency and can provide the baseline information necessary for developing a realistic plan for extending the useful life of power plants. The premise of utilizing microprocessor-based predictive maintenance to improve power plant operation has been proven by a number of utilities

  16. Damping of vibrational excitations in glasses at terahertz frequency: The case of 3-methylpentane

    KAUST Repository

    Baldi, Giacomo; Benassi, Paola; Fontana, Aldo; Giugni, Andrea; Monaco, Giulio; Nardone, Michele; Rossi, Flavio

    2017-01-01

    We report a compared analysis of inelastic X ray scattering (IXS) and of low frequency Raman data of glassy 3-methylpentane. The IXS spectra have been analysed allowing for the existence of two distinct excitations at each scattering wavevector obtaining a consistent interpretation of the spectra. In particular, this procedure allows us to interpret the linewidth of the modes in terms of a simple model which relates them to the width of the first sharp diffraction peak in the static structure factor. In this model, the width of the modes arises from the blurring of the dispersion curves which increases approaching the boundary of the first pseudo-Brillouin zone. The position of the boson peak contribution to the density of vibrational states derived from the Raman scattering measurements is in agreement with the interpretation of the two excitations in terms of a longitudinal mode and a transverse mode, the latter being a result of the mixed character of the transverse modes away from the center of the pseudo-Brillouin zone.

  17. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S.; Gruenbaum, S. M.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, 1101 University Ave., University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-14

    Understanding the structure of water near cell membranes is crucial for characterizing water-mediated events such as molecular transport. To obtain structural information of water near a membrane, it is useful to have a surface-selective technique that can probe only interfacial water molecules. One such technique is vibrational sum-frequency generation (VSFG) spectroscopy. As model systems for studying membrane headgroup/water interactions, in this paper we consider lipid and surfactant monolayers on water. We adopt a theoretical approach combining molecular dynamics simulations and phase-sensitive VSFG to investigate water structure near these interfaces. Our simulated spectra are in qualitative agreement with experiments and reveal orientational ordering of interfacial water molecules near cationic, anionic, and zwitterionic interfaces. OH bonds of water molecules point toward an anionic interface leading to a positive VSFG peak, whereas the water hydrogen atoms point away from a cationic interface leading to a negative VSFG peak. Coexistence of these two interfacial water species is observed near interfaces between water and mixtures of cationic and anionic lipids, as indicated by the presence of both negative and positive peaks in their VSFG spectra. In the case of a zwitterionic interface, OH orientation is toward the interface on the average, resulting in a positive VSFG peak.

  18. Vibrational microspectroscopic identification of powdered traditional medicines: Chemical micromorphology of Poria observed by infrared and Raman microspectroscopy

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-01

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm-1. Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria.

  19. An approach for modeling the influence of wheel tractor loads and vibration frequencies on soil compaction

    Science.gov (United States)

    Verotti, M.; Servadio, P.; Belfiore, N. P.; Bergonzoli, S.

    2012-04-01

    -soil-man interaction. In particular, a model based on elasto-visco-plastic concentrated parameters, with multiple degrees of freedom, will be used in order to build a method for detecting a soil damage index, especially expressed in terms of increasing of soil compaction. Besides the axle load, the model will take into account the frequency of the vibrations that the vehicle is transmitting to the soil. Such model expresses a numerical value for the transmissibility coefficient and also allows evaluating the damage at the surface and on the bulk medium where the agricultural crops initially develop. Key words: vehicle-soil interaction, vibration, compaction, models. Acknowledgements This work was carried out under the auspices of the special project "Sceneries of adaptation of the Italian agriculture to the climatic changes" (AGROSCENARI) of the Agricultural Research Council, and Italian Ministry of the Agricultural and Forestry Politics.

  20. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    Science.gov (United States)

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  1. Bandwidth Widening of Piezoelectric Cantilever Beam Arrays by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Eduard Dechant

    2017-12-01

    Full Text Available Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs. The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.

  2. Crack recognition on vertical rotors by means of frequency selective vibration monitoring

    International Nuclear Information System (INIS)

    Nink, A.; Stoelben, H.

    1990-01-01

    Shaft cracks on primary coolant pumps in pressurized water reactors have led to intensive vibration monitoring, in particular of vertically arranged rotors. However, the interpretation of shaft vibrations with respect to crack recognition proved to be very difficult. Appropriate experimental approaches resulted in an improved interpretation base. The article describes both the problems related to primary coolant pumps and first experimental experience gained from tests on a pre-cracked vertical rotor. Differential vectors of rotational speed harmonics provide an optimum description of the effect of a crack on shaft vibration. Diagnostics can be supported by observing the vectors, while purposefully changing axial loads. (orig.) [de

  3. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS)

    Science.gov (United States)

    Velarde, Luis; Wang, Hong-fei

    2013-08-01

    While in principle the frequency-domain and time-domain spectroscopic measurements should generate identical information for a given molecular system, the inhomogeneous character of surface vibrations in sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with time-domain SFG-VS by mapping the decay of the vibrational polarization using ultrafast lasers, this due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough lineshape. Here, with the recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) technique, we show that the inhomogeneous lineshape can be obtained in the frequency-domain for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 ± 0.01 cm-1 with a total linewidth of 10.9 ± 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4.7 ± 0.4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8.1 ± 0.2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57° ± 2° from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accommodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.

  4. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  5. Phonon vibrational frequencies of all single-wall carbon nanotubes at the lambda point: reduced matrix calculations.

    Science.gov (United States)

    Wang, Yufang; Wu, Yanzhao; Feng, Min; Wang, Hui; Jin, Qinghua; Ding, Datong; Cao, Xuewei

    2008-12-01

    With a simple method-the reduced matrix method, we simplified the calculation of the phonon vibrational frequencies according to SWNTs structure and their phonon symmetric property and got the dispersion properties of all SWNTs at Gamma point in Brillouin zone, whose diameters lie between 0.6 and 2.5 nm. The calculating time is shrunk about 2-4 orders. A series of the dependent relationships between the diameters of SWNTs and the frequencies of Raman and IR active modes are given. Several fine structures including "glazed tile" structures in omega approximately d figures are found, which might predict a certain macro-quantum phenomenon of the phonons in SWNTs.

  6. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    Directory of Open Access Journals (Sweden)

    Yingliang Liu

    2017-07-01

    Full Text Available Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  7. Low frequency noise in p-InAsSbP/n-InAs infrared photodiodes

    Science.gov (United States)

    Dyakonova, N.; Karandashev, S. A.; Levinshtein, M. E.; Matveev, B. A.; Remennyi, M. A.

    2018-06-01

    We report the first experimental study of low-frequency noise in p-InAsSbP/n-InAs infrared photodiodes. For forward bias, experiments have been carried out at 300 and 77 K, in the photovoltaic regime the measurements have been done at 300 K. At room temperature the current noise spectral density, SI , exhibits the ∼1/f frequency dependence. For low currents, I ≤ I 0 ∼ 4 × 10‑5 A, S I is proportional to I 2, at higher currents this dependence changes to S I ∼ I. At 77 K the noise spectral density is significantly higher than at 300 K, and Lorentzian contributions to noise are observed. The current dependences of spectral noise density can be approximately described as S I ∼ I 1.5 and show particularities suggesting the contribution of defects.

  8. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Science.gov (United States)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  9. A near infrared laser frequency comb for high precision Doppler planet surveys

    Directory of Open Access Journals (Sweden)

    Bally J.

    2011-07-01

    Full Text Available Perhaps the most exciting area of astronomical research today is the study of exoplanets and exoplanetary systems, engaging the imagination not just of the astronomical community, but of the general population. Astronomical instrumentation has matured to the level where it is possible to detect terrestrial planets orbiting distant stars via radial velocity (RV measurements, with the most stable visible light spectrographs reporting RV results the order of 1 m/s. This, however, is an order of magnitude away from the precision needed to detect an Earth analog orbiting a star such as our sun, the Holy Grail of these efforts. By performing these observations in near infrared (NIR there is the potential to simplify the search for distant terrestrial planets by studying cooler, less massive, much more numerous class M stars, with a tighter habitable zone and correspondingly larger RV signal. This NIR advantage is undone by the lack of a suitable high precision, high stability wavelength standard, limiting NIR RV measurements to tens or hundreds of m/s [1, 2]. With the improved spectroscopic precision provided by a laser frequency comb based wavelength reference producing a set of bright, densely and uniformly spaced lines, it will be possible to achieve up to two orders of magnitude improvement in RV precision, limited only by the precision and sensitivity of existing spectrographs, enabling the observation of Earth analogs through RV measurements. We discuss the laser frequency comb as an astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.

  10. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  11. Vibrational microspectroscopic identification of powdered traditional medicines: chemical micromorphology of Poria observed by infrared and Raman microspectroscopy.

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-15

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm(-1). Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Microwave, infrared and Raman spectra, adjusted r{sub 0} structural parameters, conformational stability, and vibrational assignment of cyclopropylfluorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Panikar, Savitha S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Guirgis, Gamil A.; Eddens, Matthew T.; Dukes, Horace W. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Conrad, Andrew R.; Tubergen, Michael J. [Department of Chemistry, Kent State University, Kent, OH 44242 (United States); Gounev, Todor K. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Durig, James R., E-mail: durigj@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2013-03-29

    Highlights: ► The most stable gauche conformer has been identified from microwave spectra. ► Enthalpy difference has been determined between the two forms. ► Adjusted r{sub 0} structures were obtained for the gauche form. ► Ab initio calculations were performed for the two conformers. - Abstract: FT-microwave, infrared spectra of gas and Raman spectra of liquid for cyclopropylfluorosilane, c-C{sub 3}H{sub 5}SiH{sub 2}F have been recorded. 51 transitions for the {sup 28}Si, {sup 29}Si, and {sup 30}Si isotopomers have been assigned for the gauche conformer. Enthalpy differences in xenon solution by variable temperature infrared spectra between the more stable gauche and lesser stable cis form gave 109 ± 9 cm{sup −1}. From the microwave rotational constants for the three isotopomers ({sup 28}Si, {sup 29}Si, {sup 30}Si) combined with structural parameters predicted from MP2(full)/6-311+G(d, p) calculations, adjusted r{sub 0} structural parameters were obtained for the gauche conformer. The heavy atom distances (Å): Si–C{sub 2} = 1.836(3); C{sub 2}–C{sub 4} = 1.525(3); C{sub 2}–C{sub 5} = 1.519(3); C{sub 4}–C{sub 5} = 1.494(3); Si–F = 1.594(3) and angles (°): ∠CSiF = 111.2(5); ∠SiC{sub 2}C{sub 4} = 117.5(5); ∠SiC{sub 2}C{sub 5} = 119.2(5). To support the vibrational assignments, MP2(full)/6-31G(d) calculations were carried out. Results are discussed and compared to the corresponding properties of some similar molecules.

  13. Relationship Between Psychomotor Efficiency and Sensation Seeking of People Exposed to Noise and Low Frequency Vibration Stimuli

    Science.gov (United States)

    Korchut, Aleksander; Kowalska-Koczwara, Alicja; Romanska – Zapała, Anna; Stypula, Krzysztof

    2017-10-01

    At the workplace of the machine operator, low frequency whole body and hand- arm vibrations are observed. They occur together with noise. Whole body vibration in the range of 3-25 Hz are detrimental to the human body due to the location of the resonant frequency of large organs of the human body in this range. It can be assumed that for this reason people working every day in such conditions can have reduced working efficiency. The influence of low frequency vibration and noise on the human body leads to both physiological and functional changes. The result of the impact of noise and vibration stimuli depends largely on the specific characteristics of the objects, which include among other personality traits, temperament and emotional factor. The pilot study conducted in the laboratory was attended by 30 young men. The aim of the study was to look for correlations between the need for stimulation of the objects and their psychomotor efficiency in case of vibration exposure and vibration together with noise exposure in variable conditions task. The need for stimulation of the objects as defined in the study is based on theoretical assumptions of one dimensional model of temperament developed by Marvin Zuckerman. This theory defines the need for stimulation as the search for different, new, complex and intense sensations, as well as the willingness to take risks. The aim of research was to verify if from four factors such as: the search for adventure and horror, sensation seeking, disinhibition and susceptibility to boredom, we can choose the ones that in conjunction with varying operating conditions, may significantly determine the efficiency of the task situation. The objects performed the test evaluation of their motor skills which consisted in keeping the cursor controlled by a joystick through the path. The number of exceeds of the cursor beyond the path and its maximum deviation was recorded. The collected data were used to determine the correlation between the

  14. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  15. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar; Tsung, Chia-Kuang; Alayoglu, Selim; Komvopoulos, Kyriakos; Yang, Peidong; Somorjai, Gabor A.

    2011-01-01

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm

  16. Multimodal Broadband Vibrational Sum Frequency Generation (MM-BB-V-SFG) Spectrometer and Microscope.

    Science.gov (United States)

    Lee, Christopher M; Kafle, Kabindra; Huang, Shixin; Kim, Seong H

    2016-01-14

    A broadband sum frequency generation (BB-SFG) spectrometer with multimodal (MM) capabilities was constructed, which could be routinely reconfigured for tabletop experiments in reflection, transmission, and total internal reflection (TIR) geometries, as well as microscopic imaging. The system was constructed using a Ti:sapphire amplifier (800 nm, pulse width = 85 fs, repetition rate = 2 kHz), an optical parameter amplification (OPA) system for production of broadband IR pulses tunable between 1000 and 4000 cm(-1), and two Fabry-Pérot etalons arranged in series for production of narrowband 800 nm pulses. The key feature allowing the MM operation was the nearly collinear alignment of the visible (fixed, 800 nm) and infrared (tunable, 1000-4000 cm(-1)) pulses which were spatially separated. Physical insights discussed in this paper include the comparison of spectral bandwidth produced with 40 and 85 fs pump beams, the improvement of spectral resolution using etalons, the SFG probe volume in bulk analysis, the normalization of SFG signals, the stitching of multiple spectral segments, and the operation in different modes for air/liquid and adsorbate/solid interfaces, bulk samples, as well as spectral imaging combined with principle component analysis (PCA). The SFG spectral features obtained with the MM-BB-SFG system were compared with those obtained with picosecond-scanning-SFG system and high-resolution BB-SFG system (HR-BB-SFG) for dimethyl sulfoxide, α-pinene, and various samples containing cellulose (purified commercial products, Cladophora cell wall, cotton and flax fibers, and onion epidermis cell wall).

  17. Nonlinear generation of non-acoustic modes by low-frequency sound in a vibrationally relaxing gas

    International Nuclear Information System (INIS)

    Perelomova, A.

    2010-01-01

    Two dynamic equations referring to a weakly nonlinear and weakly dispersive flow of a gas in which molecular vibrational relaxation takes place, are derived. The first one governs an excess temperature associated with the thermal mode, and the second one describes variations in vibrational energy. Both quantities refer to non-wave types of gas motion. These variations are caused by the nonlinear transfer of acoustic energy into thermal mode and internal vibrational degrees of freedom of a relaxing gas. The final dynamic equations are instantaneous; they include a quadratic nonlinear acoustic source, reflecting the nonlinear character of interaction of low-frequency acoustic and non-acoustic motions of the fluid. All types of sound, periodic or aperiodic, may serve as an acoustic source of both phenomena. The low-frequency sound is considered in this study. Some conclusions about temporal behavior of non-acoustic modes caused by periodic and aperiodic sound are made. Under certain conditions, acoustic cooling takes place instead of heating. (author)

  18. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  19. Effect of Sampling Frequency for Real-Time Tablet Coating Monitoring Using Near Infrared Spectroscopy.

    Science.gov (United States)

    Igne, Benoît; Arai, Hiroaki; Drennen, James K; Anderson, Carl A

    2016-09-01

    While the sampling of pharmaceutical products typically follows well-defined protocols, the parameterization of spectroscopic methods and their associated sampling frequency is not standard. Whereas, for blending, the sampling frequency is limited by the nature of the process, in other processes, such as tablet film coating, practitioners must determine the best approach to collecting spectral data. The present article studied how sampling practices affected the interpretation of the results provided by a near-infrared spectroscopy method for the monitoring of tablet moisture and coating weight gain during a pan-coating experiment. Several coating runs were monitored with different sampling frequencies (with or without co-adds (also known as sub-samples)) and with spectral averaging corresponding to processing cycles (1 to 15 pan rotations). Beyond integrating the sensor into the equipment, the present work demonstrated that it is necessary to have a good sense of the underlying phenomena that have the potential to affect the quality of the signal. The effects of co-adds and averaging was significant with respect to the quality of the spectral data. However, the type of output obtained from a sampling method dictated the type of information that one can gain on the dynamics of a process. Thus, different sampling frequencies may be needed at different stages of process development. © The Author(s) 2016.

  20. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  1. Tight beta-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects

    Czech Academy of Sciences Publication Activity Database

    Kim, J.; Kapitán, Josef; Lakhani, A.; Bouř, Petr; Keiderling, T. A.

    2008-01-01

    Roč. 119, 1/3 (2008), s. 81-97 ISSN 1432-881X R&D Projects: GA ČR GA203/06/0420 Grant - others:NSF(US) CHE03-16014 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide beta -turn * density functional theory * infrared absorption * vibrational circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.370, year: 2008

  2. THE POSSIBLE INTERSTELLAR ANION CH{sub 2}CN{sup -}: SPECTROSCOPIC CONSTANTS, VIBRATIONAL FREQUENCIES, AND OTHER CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fortenberry, Ryan C.; Lee, Timothy J. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Crawford, T. Daniel, E-mail: Ryan.C.Fortenberry@nasa.gov, E-mail: Timothy.J.Lee@nasa.gov [Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 (United States)

    2013-01-10

    The A {sup 1}B{sub 1} Leftwards-Open-Headed-Arrow X-tilde{sup 1}A' excitation into the dipole-bound state of the cyanomethyl anion (CH{sub 2}CN{sup -}) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X-tilde{sup 1} A' CH{sub 2}CN{sup -} in order to assist in laboratory studies and astronomical observations.

  3. Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy.

    Science.gov (United States)

    Barnette, Anna L; Bradley, Laura C; Veres, Brandon D; Schreiner, Edward P; Park, Yong Bum; Park, Junyeong; Park, Sunkyu; Kim, Seong H

    2011-07-11

    The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.

  4. Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline.

    Science.gov (United States)

    Jose, Sujin P; Mohan, S

    2006-05-01

    The Fourier transform infrared (FT-IR) and Raman (FT-R) spectra of 2-aminopyridine and 2-amino picoline were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal co-ordinate analysis was also carried out for the proper assignment of the vibrational frequencies using simple valence force field. A complete vibrational analysis is presented here for the molecules and the results are briefly discussed.

  5. Isotope-selective dissociation of the OsO4 molecule by two pulses of infrared radiation at different frequencies

    International Nuclear Information System (INIS)

    Ambartzumian, R.V.; Furzikov, N.P.; Gorokhov, Y.A.; Letokhov, V.S.; Makarov, G.N.; Puretzky, A.A.

    1977-01-01

    The dissociation of the OsO 4 molecule in a two-frequency infrared laser field has been investigated. A twentyfold increase in the dissociation rate was obtained when the dissociation frequency was shifted to the ''red'' side of the linear absorption spectrum of OsO 4 . Osmium isotope separation was carried out by this two-frequency method. Optimal conditions for a scalable isotope separation process have been formulated

  6. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.

  7. The Biological Effect of Extremely Low Frequency Electromagnetic Fields and Vibrations on Barley Seed Hydration and Germination

    Directory of Open Access Journals (Sweden)

    Armine Amyan

    2004-01-01

    Full Text Available The changes of wet and dry weights and germination of barley seed in different periods of its swelling in nontreated (control, extremely low frequency electromagnetic fields (ELF EMF –treated, and extremely low frequency vibrations (ELFV–treated cold (4°C and warm (20°C distilled water (DW were studied. The metabolic-dependent seed hydration, dry weight dissolving, germination, and water binding in seed were modulated by preliminary EMF- and ELFV-treated DW. Frequency “windows” for the effect of EMF and ELFV on seed hydration, solubility, water binding in seed, and germination were discovered. These “windows” were different for EMF and ELFV, as well as in various phases of seed swelling. It is suggested that EMF-induced water structure modification has a different biological effect on the process of seed hydration, solubility, water binding in seed, and germination compared to ELFV.

  8. Vibration-induced displacement using high-frequency resonators and friction layers

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    1998-01-01

    A mathematical model is set up to quantify vibration-induced motions of a slider with an imbedded resonator. A simple approximate expression is presented for predicting average velocities of the slider, agreeing fairly well with numerical integration of the full equations of motion. The simple ex...

  9. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  10. Introducing Discrete Frequency Infrared Technology for High-Throughput Biofluid Screening

    Science.gov (United States)

    Hughes, Caryn; Clemens, Graeme; Bird, Benjamin; Dawson, Timothy; Ashton, Katherine M.; Jenkinson, Michael D.; Brodbelt, Andrew; Weida, Miles; Fotheringham, Edeline; Barre, Matthew; Rowlette, Jeremy; Baker, Matthew J.

    2016-02-01

    Accurate early diagnosis is critical to patient survival, management and quality of life. Biofluids are key to early diagnosis due to their ease of collection and intimate involvement in human function. Large-scale mid-IR imaging of dried fluid deposits offers a high-throughput molecular analysis paradigm for the biomedical laboratory. The exciting advent of tuneable quantum cascade lasers allows for the collection of discrete frequency infrared data enabling clinically relevant timescales. By scanning targeted frequencies spectral quality, reproducibility and diagnostic potential can be maintained while significantly reducing acquisition time and processing requirements, sampling 16 serum spots with 0.6, 5.1 and 15% relative standard deviation (RSD) for 199, 14 and 9 discrete frequencies respectively. We use this reproducible methodology to show proof of concept rapid diagnostics; 40 unique dried liquid biopsies from brain, breast, lung and skin cancer patients were classified in 2.4 cumulative seconds against 10 non-cancer controls with accuracies of up to 90%.

  11. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  12. Deposition of a conductive near-infrared cutoff filter by radio-frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Jang-Hoon; Lee, Seung-Hyu; Yoo, Kwang-Lim; Kim, Nam-Young; Hwangbo, Chang Kwon

    2002-01-01

    We have designed a conductive near-infrared (NIR) cutoff filter for display application, i.e., a modified low-emissivity filter based on the three periods of the basic design of [TiO2|Ti|Ag| TiO2] upon a glass substrate and investigated the optical, structural, chemical, and electrical properties of the conductive NIR cutoff filter prepared by a radio frequency magnetron sputtering system. The results show that the average transmittance is 61.1% in the visible, that the transmittance in the NIR is less than 6.6%, and that the sheet resistance and emissivity are 0.9 Ω/□ (where □ stands for a square film) and 0.012, respectively, suggesting that the conductive NIR cutoff filter can be employed as a shield against the hazard of electromagnetic waves as well as to cut off the NIR

  13. Near infrared spatial frequency domain fluorescence imaging of tumor phantoms containing erythrocyte-derived optical nanoplatforms

    Science.gov (United States)

    Burns, Joshua M.; Schaefer, Elise; Anvari, Bahman

    2018-02-01

    Light-activated theranostic constructs provide a multi-functional platform for optical imaging and phototherapeutic applications. Our group has engineered nano-sized vesicles derived from erythrocytes that encapsulate the FDAapproved near infrared (NIR) absorber indocyanine green (ICG). We refer to these constructs as NIR erythrocytemimicking transducers (NETs). Once photo-excited by NIR light these constructs can transduce the photons energy to emit fluorescence, generate heat, or induce chemical reactions. In this study, we investigated fluorescence imaging of NETs embedded within tumor phantoms using spatial frequency domain imaging (SFDI). Using SFDI, we were able to fluorescently image simulated tumors doped with different concentration of NETs. These preliminary results suggest that NETs can be used in conjunction with SFDI for potential tumor imaging applications.

  14. Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Daniel H., E-mail: daniel.h.friese@uit.no [Centre for Theoretical and Computational Chemistry CTCC, Department of Chemistry, University of Tromsø, N-9037 Tromsø (Norway); Törk, Lisa; Hättig, Christof, E-mail: christof.haettig@rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum (Germany)

    2014-11-21

    We present scaling factors for vibrational frequencies calculated within the harmonic approximation and the correlated wave-function methods coupled cluster singles and doubles model (CC2) and Møller-Plesset perturbation theory (MP2) with and without a spin-component scaling (SCS or spin-opposite scaling (SOS)). Frequency scaling factors and the remaining deviations from the reference data are evaluated for several non-augmented basis sets of the cc-pVXZ family of generally contracted correlation-consistent basis sets as well as for the segmented contracted TZVPP basis. We find that the SCS and SOS variants of CC2 and MP2 lead to a slightly better accuracy for the scaled vibrational frequencies. The determined frequency scaling factors can also be used for vibrational frequencies calculated for excited states through response theory with CC2 and the algebraic diagrammatic construction through second order and their spin-component scaled variants.

  15. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  16. Superconducting electron tunneling as detection method for low frequency resonant vibration modes of interstitials in fcc lead

    International Nuclear Information System (INIS)

    Adrian, H.

    1981-01-01

    The influence of crystal defects on the phonon spectra was studied for fcc lead using superconducting tunneling spectroscopy. The theory predicts low frequency modes for the vibrational states of interstitials in (100) dumbbell configuration. Low temperature irradiation of superconducting point contacts with fast ions (point contact thickness small compared to the average ion range) showed radiation-induced structures in the low-energy part of the Eliashberg function for lead. These resonant modes are reduced by annealing at 18.5 K; they are attributed to small interstitial clusters. The radiation-induced structures are completely removed by room temperature annealing. (orig.)

  17. Understanding the influence of low-frequency vibrations on the hydrogen bonds of acetic acid and acetamide dimers.

    Science.gov (United States)

    Copeland, Christopher; Menon, Omkaran; Majumdar, D; Roszak, Szczepan; Leszczynski, Jerzy

    2017-09-20

    Low-frequency vibrations coupled to high-frequency modes are known to influence the hydrogen bond strengths in a weakly interacting dimer. In this context, various acetic acid and acetamide dimers were analyzed using Møller-Plesset second-order perturbation (MP2) and density functional theory (DFT)-based approaches with explicit anharmonicity corrections. The computed low-frequency fundamentals as well as the high-frequency modes, which were found to be related to hydrogen bonding (OH/NH stretching modes), were analyzed and their computed intensities were correlated with their hydrogen-bond strengths/binding energies. There are similarities in the nature of eight low-frequency fundamentals of these two dimers, and the in-plane bending and stretch-bend fundamentals of the different dimers of these two species (in this low-frequency region) have specific roles in their relative stability order. The computed linear correlations were further verified against the results from coupled cluster calculations including triple excitation (CCSD(T)), Gaussian-G4 (G4), Gaussian-G2-MP2 (G2MP2) and complete basis set (CBS-QB3) methods of high accuracy energy calculations. As a consequence of such linear correlations, an additive property of local fragment energies (responsible for hydrogen bonding) was found to be a valid approximation to predict the binding energies of such dimers and the idea was found to be extendable to the other homologues of these acids/amides.

  18. Adsorption of 1- and 2-butylimidazoles at the copper/air and steel/air interfaces studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Casford, Michael T L; Davies, Paul B

    2012-07-24

    The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.

  19. In situ speciation of the functional groups at mineral/electrolyte interfaces by sum frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Floersheimer, M.; Kruse, K.; Klenze, R.; Kim, J.I. [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Fanghaenel, Th. [Institut fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Postfach 3640, D-76021 Karlsruhe (Germany); Physikalisch-Chemisches Institut, Ruprecht-Karls-Universitaet Heidelberg, Im Neuenheimer Feld 253, D-69120, Heidelberg (Germany)

    2005-07-01

    Full text of publication follows: In order to describe surface reactivity and adsorption/desorption processes on the molecular level, a large number of functional groups has been postulated. In most cases, however, a direct proof for the existence of these species in real aquatic environment is lacking because it is difficult to obtain chemical analytical information in situ under electrolyte with interface selectivity. Here we apply interface selective sum frequency (SF) vibrational spectroscopy to study the (001) and (110) surfaces of sapphire ({alpha}-Al{sub 2}O{sub 3}) under water between pH 4 and 12. This work is part of an ongoing fundamental study of the sorption mechanism of actinides on single crystals faces of sapphire by various experimental and theoretical techniques. Sapphire is used as a simple model for natural clay minerals and related iron phases. In the O-H stretch region of the infrared spectrum between 2800 and 4000 cm{sup -1}, we observe a surprisingly large number of 8 SF bands in total. Two of them are due to the polar ordered water film near the mineral surface which is well known from various aquatic interfaces. The other bands originate from up to 6 different aluminol species or from specifically [1] bound water molecules. The prominent peak of the (001) surface (SF intensity maximum at 3690 cm{sup -1}), we attribute to an OH species bridging two [1-4] aluminium atoms. At the (110) surface, the concentration of this species is considerably smaller. Another aluminol species that can be detected at the (001) and the (110) surface (signal maximum near 3450 cm{sup -1}) exhibits O-H bonds which are almost parallel to the interface plane. This species is probably the in-plane aluminol group predicted in recent molecular dynamics calculations [4]. SF spectroscopy allows us also to measure the absolute polar orientation of the water molecules adjacent to the mineral surface. The inversion of the molecules polar orientation upon alteration of the p

  20. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    Science.gov (United States)

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that

  1. Low-Frequency MEMS Electrostatic Vibration Energy Harvester With Corona-Charged Vertical Electrets and Nonlinear Stoppers

    Science.gov (United States)

    Lu, Y.; Cottone, F.; Boisseau, S.; Galayko, D.; Marty, F.; Basset, P.

    2015-12-01

    This paper reports for the first time a MEMS electrostatic vibration energy harvester (e-VEH) with corona-charged vertical electrets on its electrodes. The bandwidth of the 1-cm2 device is extended in low and high frequencies by nonlinear elastic stoppers. With a bias voltage of 46 V (electret@21 V + DC external source@25 V) between the electrodes, the RMS power of the device reaches 0.89 μW at 33 Hz and 6.6 μW at 428 Hz. The -3dB frequency band including the hysteresis is 223∼432 Hz, the one excluding the hysteresis 88∼166 Hz. We also demonstrate the charging of a 47 μF capacitor used for powering a wireless and autonomous temperature sensor node with a data transmission beyond 10 m at 868 MHz.

  2. Far Infrared High Resolution Synchrotron FTIR Spectroscopy of the Low Frequency Bending Modes of Dmso

    Science.gov (United States)

    Cuisset, Arnaud; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gael; Sadovskii, Dmitrii A.; Pirali, Olivier; Roy, Pascale

    2010-06-01

    In addition to its importance for industrial and environmental studies, the monitoring of DiMethylSulfOxyde (DMSO, (CH_3)_2SO) concentrations is of considerable interest for civil protection. The existing high resolution gas phase spectroscopic data of DMSO only concerned the pure rotational transitions in the ground state. In the Far-IR domain, the low-frequency rovibrational transitions have never previously resolved. The high brightness of the AILES beamline of the synchrotron SOLEIL and the instrumental sensitivity provided by the multipass cell allowed to measure for the first time these transitions. 1581 A-type and C-type transitions in the ν11 band have been assigned and 25 molecular constants of Watson's s-form hamiltonian developed to degree 8 have been fitted within the experimental accuracy. The use of then synchrotron radiation has opened many possibilities for new spectroscopic studies. Together with several other recent studies, our successful measurement and analysis of DMSO convincingly demonstrates the potential of the AILES beamline for high resolution FIR spectroscopy. Thus our present work is just at the beginning of unraveling the rovibrational structure of low frequency bending and torsional vibrational states of DMSO and yielding important comprehensive structural and spectroscopic information on this molecule. L. Margules, R. A. Motienko, E. A. Alekseev, J. Demaison, J. Molec. Spectrosc., 260(23),2009 V. Typke, M. Dakkouri, J. Molec. Struct., 599(177),2001 A. Cuisset, L. Nanobashvili, I. Smirnova, R. Bocquet, F. Hindle, G. Mouret, O. Pirali, P. Roy, D. Sadovskii, Chem. Phys. Lett., accepted for publication

  3. Natural frequencies, modeshapes and modal interactions for strings vibrating against an obstacle: Relevance to Sitar and Veena

    Science.gov (United States)

    Mandal, A. K.; Wahi, P.

    2015-03-01

    We study the vibration characteristics of a string with a smooth unilateral obstacle placed at one of the ends similar to the strings in musical instruments like sitar and veena. In particular, we explore the correlation between the string vibrations and some unique sound characteristics of these instruments like less inharmonicity in the frequencies, a large number of overtones and the presence of both frequency and amplitude modulations. At the obstacle, we have a moving boundary due to the wrapping of the string and an appropriate scaling of the spatial variable leads to a fixed boundary at the cost of introducing nonlinearity in the governing equation. Reduced order system of equations has been obtained by assuming a functional form for the string displacement which satisfies all the boundary conditions and gives the free length of the string in terms of the modal coordinates. To study the natural frequencies and mode-shapes, the nonlinear governing equation is linearized about the static configuration. The natural frequencies have been found to be harmonic and they depend on the shape of the obstacle through the effective free length of the string. Expressions have been obtained for the time-varying mode-shapes as well as the variation of the nodal points. Modal interactions due to coupling have been studied which show the appearance of higher overtones as well as amplitude modulations in our theoretical model akin to the experimental observations. All the obtained results have been verified with an alternate formulation based on the assumed mode method with polynomial shape functions.

  4. How does high-frequency sound or vibration activate vestibular receptors?

    Science.gov (United States)

    Curthoys, I S; Grant, J W

    2015-03-01

    The mechanism by which vestibular neural phase locking occurs and how it relates to classical otolith mechanics is unclear. Here, we put forward the hypothesis that sound and vibration both cause fluid pressure waves in the inner ear and that it is these pressure waves which displace the hair bundles on vestibular receptor hair cells and result in activation of type I receptor hair cells and phase locking of the action potentials in the irregular vestibular afferents, which synapse on type I receptors. This idea has been suggested since the early neural recordings and recent results give it greater credibility.

  5. Lattice dynamics and vibration modes frequencies for substitutional impurities in InP, GaP and ZnS

    International Nuclear Information System (INIS)

    Vandevyver, Michel; Plumelle, Pierre.

    1977-01-01

    The model used is a rigid-ion model with an effective ionic charge including general interactions for nearest and next nearest neighbours and long range Coulomb interactions. It provides a good fit with available neutron data and with infrared absorption results for InP. In this model, no hypothesis is made a priori on the interatomic forces and the eleven parameters given by the model are used. A mathematical model which employs a Green's function technique in the mass defect and the nearest neighbour force constant defect approximation is used to calculate the lattice dynamics of the imperfect crystal. The frequencies of the local modes, the gap modes and the band modes, are given for isolated substitutional impurities. The same calculation is achieved for GaP and ZnS and the results are compared with infrared data [fr

  6. A study on the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise

    Directory of Open Access Journals (Sweden)

    Yukio Takahashi

    2011-01-01

    Full Text Available To investigate the contribution of body vibrations to the vibratory sensation induced by high-level, complex low-frequency noise, we conducted two experiments. In Experiment 1, eight male subjects were exposed to seven types of low-frequency noise stimuli: two pure tones [a 31.5-Hz, 100-dB(SPL tone and a 50-Hz, 100-dB(SPL tone] and five complex noises composed of the pure tones. For the complex noise stimuli, the sound pressure level of one tonal component was 100 dB(SPL and that of another one was either 90, 95, or 100 dB(SPL. Vibration induced on the body surface was measured at five locations, and the correlation with the subjective rating of the vibratory sensation at each site of measurement was examined. In Experiment 2, the correlation between the body surface vibration and the vibratory sensation was similarly examined using seven types of noise stimuli composed of a 25-Hz tone and a 50-Hz tone. In both the experiments, we found that at the chest and the abdomen, the rating of the vibratory sensation was in close correlation with the vibration acceleration level (VAL of the body surface vibration measured at each corresponding location. This was consistent with our previous results and suggested that at the trunk of the body (the chest and the abdomen, the mechanoreception of body vibrations plays an important role in the experience of the vibratory sensation in persons exposed to high-level low-frequency noise. At the head, however, no close correlation was found between the rating of the vibratory sensation and the VAL of body surface vibration. This suggested that at the head, the perceptual mechanisms of vibration induced by high-level low-frequency noise were different from those in the trunk of the body.

  7. Narrowband widely tunable CW mid-infrared generator based on difference frequency generation in periodically poled KTP and KTA crystals

    Czech Academy of Sciences Publication Activity Database

    Baravets, Yauhen; Honzátko, Pavel; Todorov, Filip; Gladkov, Petar

    2016-01-01

    Roč. 48, č. 5 (2016), May ISSN 0306-8919 R&D Projects: GA MŠk LD14112 Grant - others:COST(XE) MP1204 Institutional support: RVO:67985882 Keywords : Fiber optics amplifiers * Difference-frequency generation * Mid-infrared tunable laser source Subject RIV: BH - Optics , Masers, Lasers Impact factor: 1.055, year: 2016

  8. Design, Simulation, and Optimization of a Frequency-Tunable Vibration Energy Harvester That Uses a Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Wan Sun

    2015-01-01

    Full Text Available This study focuses on the design, simulation, and load power optimization for the development of a novel frequency-tunable electromagnetic vibrational energy harvester. The unique characteristic of a magnetorheological elastomer (MRE is utilized, that the shear modulus can be varied by changing the strength of an applied magnetic field. The electromagnetic energy harvester is fabricated, the external electric circuit is connected, and the performance is evaluated through a series of experiments. The resonant frequencies and the parasitic damping constant are measured experimentally for different tuning magnet gap distances, which validate the application of the MRE to the development of a frequency-tunable energy harvesting system. The harvested energy of the system is measured by the voltage across the load resistor. The maximum load power is attained by optimizing the external circuit connected to the coil system. The analysis results are presented for harvesting the maximum load power in terms of the coil parameters and external circuit resistance. The optimality of the load resistance is validated by comparing the analytical results with experimental results. The optimal load resistances under various resonance frequencies are also found for the design and composition of the optimal energy harvesting circuit of the energy harvester system.

  9. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  10. Explicit frequency equations of free vibration of a nonlocal Timoshenko beam with surface effects

    Science.gov (United States)

    Zhao, Hai-Sheng; Zhang, Yao; Lie, Seng-Tjhen

    2018-02-01

    Considerations of nonlocal elasticity and surface effects in micro- and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged-hinged, clamped-clamped and clamped-hinged ends. For a hinged-hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped-clamped and clamped-hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short, explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.

  11. A second, low-frequency mode of vibration in the intact mammalian cochlea.

    Science.gov (United States)

    Lukashkin, Andrei N; Russell, Ian J

    2003-03-01

    The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.

  12. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal.

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    Full Text Available Low magnitude high frequency vibration (LMHFV has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm, 15min/d, on multipotent stem cells (MSCs, which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.

  13. Vibration Isolation Study in Scanning Probe Microscopy Part I: Low Frequency

    International Nuclear Information System (INIS)

    Oliva, A.I.; Espinosa-Faller, F.J.; Aguilar, M.

    1998-01-01

    A study of a low frequency isolation device based in a pneumatic system is presented. It consists of four cylinders which are closed and sealed with an elastic membrane on which the load is applied. Each cylinder made of PVC is formed by two chambers divided by a plate with a small hole for communication and damping. Air contained into chambers acts, in combination with the the elastic membranes, as a damper. Scanning probe techniques can be supported by this device in order to reduce the low frequency noises that affects them. Advantages of this isolator are discussed and compared. A theoretical approximation for this model is presented and compared with the experimental results obtained and show that it can isolate noises up to ∼ 2 Hz. The low frequency isolator has stability and fast response to external perturbations. This simple and economical low frequency isolator can be reproduced easily and its design depends on the work specific requirements. (Author) 9 refs

  14. Effect of centrifugal force on natural frequency of lateral vibration of rotating shafts

    Science.gov (United States)

    Behzad, M.; Bastami, A. R.

    2004-07-01

    This paper investigates the effect of shaft rotation on its natural frequency. Apart from gyroscopic effect, the axial force originated from centrifugal force and the Poisson effect results in change of shaft natural frequency. D'Alembert principle for shaft in cylindrical co-ordinate system, along with the stress-strain relation, gives the non-homogenous linear differential equation, which can be used to calculate axial stress in the shaft. Numerical results of this study show that axial stress produced by shaft rotation has a major effect on the natural frequency of long high-speed shafts, while shaft diameter has no influence on the results. In addition, change in lateral natural frequency due to gyroscopic effect is compared with the results of this study.

  15. O modelo AM1 na previsão de frequências vibracionais The vibration frequencies predicted by the AM1 model

    Directory of Open Access Journals (Sweden)

    João Carlos Silva Ramos

    1999-09-01

    Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.

  16. Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers

    International Nuclear Information System (INIS)

    Moutinho, Carlos

    2015-01-01

    This paper is focused on the control problems related to semi-active tuned mass dampers (TMDs) used to reduce harmonic vibrations, specially involving civil structures. A simplified version of the phase control law is derived and its effectiveness is investigated and evaluated. The objective is to improve the functioning of control systems of this type by simplifying the measurement process and reducing the number of variables involved, making the control system more feasible and reliable. Because the control law is of ON/OFF type, combined with appropriate trigger conditions, the activity of the actuation system may be significantly reduced, which may be of few seconds a day in many practical cases, increasing the durability of the device and reducing its maintenance. Moreover, due to the ability of the control system to command the motion of the inertial mass, the semi-active TMD is relatively insensitive to its initial tuning, resulting in the capability of self-tuning and in the possibility of controlling several vibration modes of a structure over a significant broadband frequency. (paper)

  17. Sum Frequency Generation Vibrational Spectroscopy of Adsorbed Amino Acids, Peptides and Proteins of Hydrophilic and Hydrophobic Solid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Holinga IV, George Joseph [Univ. of California, Berkeley, CA (United States)

    2010-09-01

    Sum frequency generation (SFG) vibrational spectroscopy was used to investigate the interfacial properties of several amino acids, peptides, and proteins adsorbed at the hydrophilic polystyrene solid-liquid and the hydrophobic silica solid-liquid interfaces. The influence of experimental geometry on the sensitivity and resolution of the SFG vibrational spectroscopy technique was investigated both theoretically and experimentally. SFG was implemented to investigate the adsorption and organization of eight individual amino acids at model hydrophilic and hydrophobic surfaces under physiological conditions. Biointerface studies were conducted using a combination of SFG and quartz crystal microbalance (QCM) comparing the interfacial structure and concentration of two amino acids and their corresponding homopeptides at two model liquid-solid interfaces as a function of their concentration in aqueous solutions. The influence of temperature, concentration, equilibration time, and electrical bias on the extent of adsorption and interfacial structure of biomolecules were explored at the liquid-solid interface via QCM and SFG. QCM was utilized to quantify the biological activity of heparin functionalized surfaces. A novel optical parametric amplifier was developed and utilized in SFG experiments to investigate the secondary structure of an adsorbed model peptide at the solid-liquid interface.

  18. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    Science.gov (United States)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  19. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    Science.gov (United States)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  20. Vibrational sum-frequency generation spectroscopy of lipid bilayers at repetition rates up to 100 kHz

    Science.gov (United States)

    Yesudas, Freeda; Mero, Mark; Kneipp, Janina; Heiner, Zsuzsanna

    2018-03-01

    Broadband vibrational sum-frequency generation (BB-VSFG) spectroscopy has become a well-established surface analytical tool capable of identifying the orientation and structure of molecular layers. A straightforward way to boost the sensitivity of the technique could be to increase the laser repetition rate beyond that of standard BB-VSFG spectrometers, which rely on Ti:sapphire lasers operating at repetition rates of 1-5 kHz. Nevertheless, possible thermally induced artifacts in the vibrational spectra due to higher laser average powers are unexplored. Here, we discuss laser power induced temperature accumulation effects that distort the BB-VSFG spectra of 1,2-diacyl-sn-glycero-3-phosphocholine at an interface between two transparent phases at repetition rates of 5, 10, 50, and 100 kHz at constant pulse energy. No heat-induced distortions were found in the spectra, suggesting that the increase in the laser repetition rate provides a feasible route to an improved signal-to-noise ratio or shorter data acquisition times in BB-VSFG spectroscopy for thin films on transparent substrates. The results have implications for future BB-VSFG spectrometers pushing the detection limit for molecular layers with low surface coverage.

  1. A Practical Method to Increase the Frequency Readability for Vibration Signals

    Directory of Open Access Journals (Sweden)

    Jean Loius Ntakpe

    2016-10-01

    Full Text Available Damage detection and nondestructive evaluation of mechanical and civil engineering structures are nowadays very important to assess the integrity and ensure the reliability of structures. Thus, frequency evaluation becomes a crucial issue, since this modal parameter is mainly used in structural integrity assessment. The herein presented study highligts the possibility of increasing the frequency readability by involving a simple and cost-effective method.

  2. Analysis of methods for calculating the transition frequencies of the torsional vibration of acrolein isomers in the ground ( S 0) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2013-05-01

    B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.

  3. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  4. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  5. Chemical reaction surface vibrational frequencies evaluated in curvilinear internal coordinates: Application to H + CH(4) H(2) + CH(3).

    Science.gov (United States)

    Banks, Simon T; Clary, David C

    2009-01-14

    We consider the general problem of vibrational analysis at nonglobally optimized points on a reduced dimensional reaction surface. We discuss the importance of the use of curvilinear internal coordinates to describe molecular motion and derive a curvilinear projection operator to remove the contribution of nonzero gradients from the Hessian matrix. Our projection scheme is tested in the context of a two-dimensional quantum scattering calculation for the reaction H + CH(4) --> H(2) + CH(3) and its reverse H(2) + CH(3) --> H + CH(4). Using zero-point energies calculated via rectilinear and curvilinear projections we construct two two-dimensional, adiabatically corrected, ab initio reaction surfaces for this system. It is shown that the use of curvilinear coordinates removes unphysical imaginary frequencies observed with rectilinear projection and leads to significantly improved thermal rate constants for both the forward and reverse reactions.

  6. Salt Effects on Surface Structures of Polyelectrolyte Multilayers (PEMs) Investigated by Vibrational Sum Frequency Generation (SFG) Spectroscopy.

    Science.gov (United States)

    Ge, Aimin; Matsusaki, Michiya; Qiao, Lin; Akashi, Mitsuru; Ye, Shen

    2016-04-26

    Sum frequency generation (SFG) vibrational spectroscopy was employed to investigate the surface structures of polyelectrolyte multilayers (PEMs) constructed by sequentially alternating adsorption of poly(diallyldimethylammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS). It was found that the surface structures and surface charge density of the as-deposited PEMs of PDDA/PSS significantly depend on the concentration of sodium chloride (NaCl) present in the polyelectrolyte solutions. Furthermore, it was found that the surface structure of the as-deposited PEMs is in a metastable state and will reach the equilibrium state by diffusion of the polyelectrolyte chain after an aging process, resulting in a polyelectrolyte mixture on the PEM surfaces.

  7. Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods.

    Science.gov (United States)

    Barnette, Anna L; Lee, Christopher; Bradley, Laura C; Schreiner, Edward P; Park, Yong Bum; Shin, Heenae; Cosgrove, Daniel J; Park, Sunkyu; Kim, Seong H

    2012-07-01

    The non-centrosymmetry requirement of sum frequency generation (SFG) vibration spectroscopy allows the detection and quantification of crystalline cellulose in lignocellulose biomass without spectral interferences from hemicelluloses and lignin. This paper shows a correlation between the amount of crystalline cellulose in biomass and the SFG signal intensity. Model biomass samples were prepared by mixing commercially available cellulose, xylan, and lignin to defined concentrations. The SFG signal intensity was found sensitive to a wide range of crystallinity, but varied non-linearly with the mass fraction of cellulose in the samples. This might be due to the matrix effects such as light scattering and absorption by xylan and lignin, as well as the non-linear density dependence of the SFG process itself. Comparison with other techniques such as XRD, FT-Raman, FT-IR and NMR demonstrate that SFG can be a complementary and sensitive tool to assess crystalline cellulose in biomass. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2016-01-01

    Full Text Available This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH. It consists of a piezoelectric energy harvester (PEH and an electromagnetic energy harvester (EMEH, which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios on the output power were investigated. A prototype was fabricated and characterized by experiments. The measured first peak power increases by 16.7% and 833.3% compared with that of the multi-frequency EMEH and the multi-frequency PEH, respectively. It is 2.36 times more than the combined output power of the linear PEH and linear EMEH at 22.6 Hz. The half-power bandwidth for the first peak power is also broadened. Numerical results agree well with the experimental data. It is indicated that magnetic interaction can tune the resonant frequencies. Both magnetic coupling configuration and hybrid conversion mechanism contribute to enhancing the output power and widening the operation bandwidth. The magnitude and direction of magnetic force have significant effects on the performance of the HEH. This proposed HEH is an effective approach to improve the generating performance of the micro-scale energy harvesting devices in low-frequency range.

  9. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    Science.gov (United States)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  10. Origin of the low frequency radiation emitted by radiative polaritons excited by infrared radiation in planar La2O3 films.

    Science.gov (United States)

    Vincent-Johnson, Anita J; Schwab, Yosyp; Mann, Harkirat S; Francoeur, Mathieu; Hammonds, James S; Scarel, Giovanna

    2013-01-23

    Upon excitation in thin oxide films by infrared radiation, radiative polaritons are formed with complex angular frequency ω, according to the theory of Kliewer and Fuchs (1966 Phys. Rev. 150 573). We show that radiative polaritons leak radiation with frequency ω(i) to the space surrounding the oxide film. The frequency ω(i) is the imaginary part of ω. The effects of the presence of the radiation leaked out at frequency ω(i) are observed experimentally and numerically in the infrared spectra of La(2)O(3) films on silicon upon excitation by infrared radiation of the 0TH type radiative polariton. The frequency ω(i) is found in the microwave to far infrared region, and depends on the oxide film chemistry and thickness. The presented results might aid in the interpretation of fine structures in infrared and, possibly, optical spectra, and suggest the study of other similar potential sources of electromagnetic radiation in different physical scenarios.

  11. Using strong nonlinearity and high-frequency vibrations to control effective mechanical stiffness

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    the method of direct separation of motions with results of a modified multiple scales ap-proach, valid also for strong nonlinearity, the stiffening ef-fect is predicted for a generic 1-dof system, and results are tested against numerical simulation and ((it is planned)) laboratory experiments.......High-frequency excitation (HFE) can be used to change the effective stiffness of an elastic structure, and related quanti-ties such as resonance frequencies, wave speed, buckling loads, and equilibrium states. There are basically two ways to do this: By using parametrical HFE (with or without non...

  12. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    Science.gov (United States)

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  14. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...

  15. Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM

    Science.gov (United States)

    Téllez Soto, C. A.; Ramos, J. M.; Rianelli, R. S.; de Souza, M. C. B. V.; Ferreira, V. F.

    2007-07-01

    The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione ( 3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -C dbnd N dbnd N oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm -1 in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled ν(N dbnd N) + ν(C dbnd N) vibrational mode with higher participation of the N dbnd N stretching. A 2188 cm -1 (IR) and at 2186 cm -1 (R) can be assigned as a overtone of one of ν(CC) normal mode or to a combination band of the fundamentals δ(CCH) found at 1169 cm -1 and the δ (CC dbnd N) found at 1017 cm -1 enhanced by Fermi resonance.

  16. Inverted cones grating for flexible metafilter at optical and infrared frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Brückner, Jean-Baptiste; Le Rouzo, Judikaël; Escoubas, Ludovic [Aix-Marseille Université, IM2NP, CNRS-UMR 7334, Domaine Universitaire de Saint-Jérôme, Service 231, 13397 Marseille Cedex 20 (France); Brissonneau, Vincent; Dubarry, Christophe [CEA-LITEN DTNM, 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France); Ferchichi, Abdelkerim; Gourgon, Cécile [LTM CNRS, Laboratoire des Technologies de la Microélectronique 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France); Berginc, Gérard [Thales Optronique S.A., 2 Avenue Gay Lussac, 78990 Elancourt (France)

    2014-02-24

    By combining the antireflective properties from gradual changes in the effective refractive index and cavity coupling from cone gratings and the efficient optical behavior of a tungsten film, a flexible filter showing very broad antireflective properties from the visible to short wavelength infrared region and, simultaneously, a mirror-like behavior in the mid-infrared wavelength region and long-infrared wavelength region has been conceived. Nanoimprint technology has permitted the replication of inverted cone patterns on a large scale on a flexible polymer, afterwards coated with a thin tungsten film. This optical metafilter is of great interest in the stealth domain where optical signature reduction from the optical to short wavelength infrared region is an important matter. As it also acts as selective thermal emitter offering a good solar-absorption/infrared-emissivity ratio, interests are found as well for solar heating applications.

  17. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  18. The viscoelastic standard nonlinear solid model: predicting the response of the lumbar intervertebral disk to low-frequency vibrations.

    Science.gov (United States)

    Groth, Kevin M; Granata, Kevin P

    2008-06-01

    Due to the mathematical complexity of current musculoskeletal spine models, there is a need for computationally efficient models of the intervertebral disk (IVD). The aim of this study is to develop a mathematical model that will adequately describe the motion of the IVD under axial cyclic loading as well as maintain computational efficiency for use in future musculoskeletal spine models. Several studies have successfully modeled the creep characteristics of the IVD using the three-parameter viscoelastic standard linear solid (SLS) model. However, when the SLS model is subjected to cyclic loading, it underestimates the load relaxation, the cyclic modulus, and the hysteresis of the human lumbar IVD. A viscoelastic standard nonlinear solid (SNS) model was used to predict the response of the human lumbar IVD subjected to low-frequency vibration. Nonlinear behavior of the SNS model was simulated by a strain-dependent elastic modulus on the SLS model. Parameters of the SNS model were estimated from experimental load deformation and stress-relaxation curves obtained from the literature. The SNS model was able to predict the cyclic modulus of the IVD at frequencies of 0.01 Hz, 0.1 Hz, and 1 Hz. Furthermore, the SNS model was able to quantitatively predict the load relaxation at a frequency of 0.01 Hz. However, model performance was unsatisfactory when predicting load relaxation and hysteresis at higher frequencies (0.1 Hz and 1 Hz). The SLS model of the lumbar IVD may require strain-dependent elastic and viscous behavior to represent the dynamic response to compressive strain.

  19. Vibrational sum frequency generation (SFG) spectroscopic study of crystalline cellulose in biomass

    Science.gov (United States)

    Kim, Seong H.; Lee, Christopher M.; Kafle, Kabindra; Park, Yong Bum; Xi, Xiaoning

    2013-09-01

    The noncentrosymmetry requirement of sum frequency generation (SFG) spectroscopy allows selective detection of crystalline cellulose in plant cell walls and lignocellulose biomass without spectral interferences from hemicelluloses and lignin. In addition, the phase synchronization requirement of the SFG process allows noninvasive investigation of spatial arrangement of crystalline cellulose microfibrils in the sample. This paper reviews how these principles are applied to reveal structural information of crystalline cellulose in plant cell walls and biomass.

  20. The experimental vibrational infrared spectrum of lemon peel and simulation of spectral properties of the plant cell wall

    Science.gov (United States)

    Berezin, K. V.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.; Dvoretskii, K. N.; Likhter, A. M.

    2017-09-01

    The experimental vibrational IR spectra of the outer part of lemon peel are recorded in the range of 3800-650 cm-1. The effect of artificial and natural dehydration of the peel on its vibrational spectrum is studied. It is shown that the colored outer layer of lemon peel does not have a noticeable effect on the vibrational spectrum. Upon 28-day storage of a lemon under natural laboratory conditions, only sequential dehydration processes are reflected in the vibrational spectrum of the peel. Within the framework of the theoretical DFT/B3LYP/6-31G(d) method, a model of a plant cell wall is developed consisting of a number of polymeric molecules of dietary fibers like cellulose, hemicellulose, pectin, lignin, some polyphenolic compounds (hesperetin glycoside-flavonoid), and a free water cluster. Using a supermolecular approach, the spectral properties of the wall of a lemon peel cell was simulated, and a detailed theoretical interpretation of the recorded vibrational spectrum is given.

  1. Vibrational modes and frequencies of borophene in comparison with graphene nanosheets

    Science.gov (United States)

    Sadeghzadeh, S.; Khatibi, M. M.

    2018-05-01

    In this paper, for the first time, by applying molecular dynamics simulation in conjugation with frequency domain decomposition, it was demonstrated that borophene resonators are at least 100% more efficient than graphene ones. It was also shown that this significant superiority does not arise solely from the difference between the molecular weights of borophene and graphene, but rather from the amazing intrinsic mechanical properties of borophene. Interest in detecting lower masses and lower pressures has led to a scientific race to find resonators with higher resonant frequencies. As a powerful rival of graphene, and used to fabricate sensors with lower-than-zeptogram resolutions, borophene promises enhanced future capabilities. Studies of the effects of geometrical parameters have verified that resonance is fully dependent on resonator size and chirality. The fundamental natural frequency of a rectangular borophene sheet is much higher when its zigzag edge is longer than the armchair edge, but not the other way around. Generally, it can be concluded that a rectangular borophene resonator with a longer zigzag edge achieves a higher resonance than a graphene resonator of equivalent weight. As a final fascinating conclusion: Borophene seems to be superior to graphene in resonance applications.

  2. Characteristic vibrational frequencies of toxic polychlorinated dibenzo-dioxins and -furans

    International Nuclear Information System (INIS)

    Patrizi, Barbara; Cumis, Mario Siciliani de; Viciani, Silvia; D’Amato, Francesco; Foggi, Paolo

    2014-01-01

    Highlights: • Database reporting FT-IR spectra for 13 of the 17 toxic PCDDs and PCDFs congeners. • Use of FT-IR database for quantification of toxic PCDD/Fs in complex matrix. • Monitoring of dioxin emissions from waste incinerators. - Abstract: The possibility to monitor in real-time the emission of dioxins produced by incineration of waste or by industrial processes is nowadays a necessity considering the high toxicity of these compounds, their persistence in the environment and their ability to bio-accumulate in the food chain. Recently it has been demonstrated the potentiality of detecting dioxins in carbon tetrachloride via MIR Quantum Cascade Lasers. A fundamental step in real time monitoring of dioxins emission is the possibility to recognize the most toxic congeners within complex mixtures and at low concentrations. Taking into account the lack of spectroscopic data about these very toxic environmental pollutants and the necessity to monitor their emissions we have recorded infrared spectra of 13 of the 17 most toxic congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) dissolved in carbon tetrachloride. In this way we have obtained a small database that we have used to test the ability of a linear regression algorithm to recognize each congener and its relative concentration in complex mixtures of these compounds

  3. Characteristic vibrational frequencies of toxic polychlorinated dibenzo-dioxins and -furans

    Energy Technology Data Exchange (ETDEWEB)

    Patrizi, Barbara, E-mail: patrizi@lens.unifi.it [LENS, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze (Italy); Cumis, Mario Siciliani de; Viciani, Silvia; D’Amato, Francesco [CNR, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze (Italy); Foggi, Paolo [LENS, University of Florence, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); CNR, Istituto Nazionale di Ottica, Largo Enrico Fermi 6, 50125 Firenze (Italy); Università degli Studi di Perugia, Dipartimento di Chimica, Via Elce di Sotto 8, 06123 Perugia (Italy)

    2014-06-01

    Highlights: • Database reporting FT-IR spectra for 13 of the 17 toxic PCDDs and PCDFs congeners. • Use of FT-IR database for quantification of toxic PCDD/Fs in complex matrix. • Monitoring of dioxin emissions from waste incinerators. - Abstract: The possibility to monitor in real-time the emission of dioxins produced by incineration of waste or by industrial processes is nowadays a necessity considering the high toxicity of these compounds, their persistence in the environment and their ability to bio-accumulate in the food chain. Recently it has been demonstrated the potentiality of detecting dioxins in carbon tetrachloride via MIR Quantum Cascade Lasers. A fundamental step in real time monitoring of dioxins emission is the possibility to recognize the most toxic congeners within complex mixtures and at low concentrations. Taking into account the lack of spectroscopic data about these very toxic environmental pollutants and the necessity to monitor their emissions we have recorded infrared spectra of 13 of the 17 most toxic congeners of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) dissolved in carbon tetrachloride. In this way we have obtained a small database that we have used to test the ability of a linear regression algorithm to recognize each congener and its relative concentration in complex mixtures of these compounds.

  4. On the origin of bonding and vibrational frequency shifts for CO adsorbed on neutral, cationic and anionic gold clusters

    International Nuclear Information System (INIS)

    Bagus, P S; Pacchioni, G

    2008-01-01

    We report a detailed analysis of the electronic mechanisms which determine the bond strength and the vibrational frequency of CO molecules adsorbed on neutral or charged gold nanoparticles. To this end we have considered a simple cluster model, Au 5 CO q (q = +1, 0, -1), and decomposed the Au-CO interaction energy into the sum of various contributions according to a Constrained Space Orbital Variation approach. While the adsorption energy is relatively insensitive to the value of q, the C-O stretch frequency, ω e (CO), changes substantially, and allows the use of this molecule as a direct probe of the gold oxidation state. The results show that two major terms contribute to the red or blue shift of ω e (CO) as a function of q: the interaction with the electric field associated to the charged nanoparticle (Stark effect) and the Au → CO Φ back donation. The CO → Au σ donation is about half as important as the Φ back-donation and all other terms are much less important

  5. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen-2yl)carbamate

    Science.gov (United States)

    Sert, Yusuf; Singer, L. M.; Findlater, M.; Doğan, Hatice; Çırak, Ç.

    2014-07-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized tert-Butyl N-(thiophen-2yl)carbamate have been investigated. The experimental FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and DFT/M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with the 6-311++G(d,p) basis set by Gaussian 09W software, for the first time. The vibrational frequencies have been assigned using potential energy distribution (PED) analysis by using VEDA 4 software. The computational optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with related literature results. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and are depicted.

  6. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  7. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  8. The boundary integral equations method for analysis of high-frequency vibrations of an elastic layer

    Czech Academy of Sciences Publication Activity Database

    Sorokin, S.; Kolman, Radek; Kopačka, Ján

    2017-01-01

    Roč. 87, č. 4 (2017), s. 737-750 ISSN 0939-1533 R&D Projects: GA ČR(CZ) GA16-03823S; GA MŠk(CZ) EF15_003/0000493 Institutional support: RVO:61388998 Keywords : an elastic layer * symmetric and skew-symmetric waves * the Green’s matrix * boundary integral equations * eigen frequencies Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 1.490, year: 2016 https://link.springer.com/article/10.1007/s00419-016-1220-y

  9. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  10. Simulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution

    NARCIS (Netherlands)

    Bloem, Robbert; Dijkstra, Arend G.; Jansen, Thomas La Cour; Knoester, Jasper

    2008-01-01

    Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to

  11. Time-frequency analysis of railway bridge response in forced vibration

    Science.gov (United States)

    Cantero, Daniel; Ülker-Kaustell, Mahir; Karoumi, Raid

    2016-08-01

    This paper suggests the use of the Continuous Wavelet Transform in combination with the Modified Littlewood-Paley basis to analyse bridge responses exited by traversing trains. The analysis provides an energy distribution map in the time-frequency domain that offers a better resolution compared to previous published studies. This is demonstrated with recorded responses of the Skidträsk Bridge, a 36 m long composite bridge located in Sweden. It is shown to be particularly useful to understand the evolution of the energy content during a vehicle crossing event. With this information it is possible to distinguish the effect of several of the governing factors involved in the dynamic response including vehicle's speed and axle configuration as well as non-linear behaviour of the structure.

  12. Acupuncture or low frequency infrared treatment for low back pain in Chinese patients: a discrete choice experiment.

    Directory of Open Access Journals (Sweden)

    Li-Chia Chen

    Full Text Available Acupuncture is a popular but controversial treatment option for low back pain. In China, it is practised as traditional Chinese medicine; other treatment strategies for low back pain are commonly practised as Western medicine. Research on patient preference for low back-pain treatment options has been mainly conducted in Western countries and is limited to a willingness-to-pay approach. A stated-preference, discrete choice experiment was conducted to determine Chinese patient preferences and trade-offs for acupuncture and low frequency infrared treatment in low back pain from September 2011 to August 2012 after approval from the Department of Scientific Research in the study settings. Eight-six adult outpatients who visited the 'traditional medicine department' at a traditional Chinese medicine hospital and the 'rehabilitation department' at a Western medicine hospital in Guangdong Province of China for chronic low back pain during study period participated in an interview survey. A questionnaire containing 10 scenarios (5 attributes in each scenario was used to ask participants' preference for acupuncture, low frequency infrared treatment or neither option. Validated responses were analysed using a nested-logit model. The decision on whether to receive a therapy was not associated with the expected utility of receiving therapy, female gender and higher out-of-pocket payment significantly decreased chance to receive treatments. Of the utility of receiving either acupuncture or low frequency infrared treatment, the treatment sensation was the most important attribute as an indicator of treatment efficacy, followed by the maximum efficacy, maintenance duration and onset of efficacy, and the out-of-pocket payment. The willingness-to-pay for acupuncture and low frequency infrared treatment were about $618.6 and $592.4 USD per course respectively, demonstrated patients' demand of pain management. The treatment sensation was regarded as an indicator

  13. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  14. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  15. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    Science.gov (United States)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  16. Perspective: Watching low-frequency vibrations of water in biomolecular recognition by THz spectroscopy

    Science.gov (United States)

    Xu, Yao; Havenith, Martina

    2015-11-01

    Terahertz (THz) spectroscopy has turned out to be a powerful tool which is able to shed new light on the role of water in biomolecular processes. The low frequency spectrum of the solvated biomolecule in combination with MD simulations provides deep insights into the collective hydrogen bond dynamics on the sub-ps time scale. The absorption spectrum between 1 THz and 10 THz of solvated biomolecules is sensitive to changes in the fast fluctuations of the water network. Systematic studies on mutants of antifreeze proteins indicate a direct correlation between biological activity and a retardation of the (sub)-ps hydration dynamics at the protein binding site, i.e., a "hydration funnel." Kinetic THz absorption studies probe the temporal changes of THz absorption during a biological process, and give access to the kinetics of the coupled protein-hydration dynamics. When combined with simulations, the observed results can be explained in terms of a two-tier model involving a local binding and a long range influence on the hydration bond dynamics of the water around the binding site that highlights the significance of the changes in the hydration dynamics at recognition site for biomolecular recognition. Water is shown to assist molecular recognition processes.

  17. Sum frequency generation (SFG) vibrational spectroscopy of planar phosphatidylethanolamine hybrid bilayer membranes under water.

    Science.gov (United States)

    Kett, Peter J N; Casford, Michael T L; Davies, Paul B

    2010-06-15

    Sum frequency generation (SFG) spectroscopy has been used to study the structure of phosphatidylethanolamine hybrid bilayer membranes (HBMs) under water at ambient temperatures. The HBMs were formed using a modified Langmuir-Schaefer technique and consisted of a layer of dipalmitoyl phosphatidylethanolamine (DPPE) physisorbed onto an octadecanethiol (ODT) self-assembled monolayer (SAM) at a series of surface pressures from 1 to 40 mN m(-1). The DPPE and ODT were selectively deuterated so that the contributions to the SFG spectra from the two layers could be determined separately. SFG spectra in both the C-H and C-D stretching regions confirmed that a monolayer of DPPE had been adsorbed to the ODT SAM and that there were gauche defects within the alkyl chains of the phospholipid. On adsorption of a layer of DPPE, methylene modes from the ODT SAM were detected, indicating that the phospholipid had partially disordered the alkanethiol monolayer. SFG spectra recorded in air indicated that removal of water from the surface of the HBM resulted in disruption of the DPPE layer and the formation of phospholipid bilayers.

  18. Frequency stabilization of an optically pumped far-infrared laser to the harmonic of a microwave synthesizer.

    Science.gov (United States)

    Danylov, A A; Light, A R; Waldman, J; Erickson, N

    2015-12-10

    Measurements of the frequency stability of a far-infrared molecular laser have been made by mixing the harmonic of an ultrastable microwave source with a portion of the laser output signal in a terahertz (THz) Schottky diode balanced mixer. A 3 GHz difference-frequency signal was used in a frequency discriminator circuit to lock the laser to the microwave source. Comparisons of the short- and long-term laser frequency stability under free-running and locked conditions show a significant improvement with locking. Short-term frequency jitter was reduced by an order of magnitude, from approximately 40 to 4 kHz, and long-term drift was reduced by more than three orders of magnitude, from approximately 250 kHz to 80 Hz. The results, enabled by the efficient Schottky diode balanced mixer downconverter, demonstrate that ultrastable microwave-based frequency stabilization of THz optically pumped lasers (OPLs) will now be possible at frequencies extending well above 4.0 THz.

  19. Planck intermediate results: XVII. Emission of dust in the diffuse interstellar medium from the far-infrared to microwave frequencies

    DEFF Research Database (Denmark)

    Bartlett, J.G.; Cardoso, J.-F.; Delabrouille, J.

    2014-01-01

    H-atom. The dust temperature is observed to be anti-correlated with the dust emissivity and opacity. We interpret this result as evidence of dust evolution within the diffuse ISM. The mean dust opacity is measured to be (7.1 ± 0.6) × 10-27 cm2 H-1 × (v/353 GHz) 1.53 ± 0.03for 100 ≤ v ≤ 353 GHz......The dust-Hi correlation is used to characterize the emission properties of dust in the diffuse interstellar medium (ISM) from far infrared wavelengths to microwave frequencies. The field of this investigation encompasses the part of the southern sky best suited to study the cosmic infrared...... and microwave backgrounds. We cross-correlate sky maps from Planck, the Wilkinson Microwave Anisotropy Probe (WMAP), and the diffuse infrared background experiment (DIRBE), at 17 frequencies from 23 to 3000 GHz, with the Parkes survey of the 21 cm line emission of neutral atomic hydrogen, over a contiguous area...

  20. Infrared-emission spectroscopy of CO on Ni

    International Nuclear Information System (INIS)

    Chiang, S.; Tobin, R.G.; Richards, P.L.

    1982-09-01

    We report the first observation of thermally emitted infrared radiation from vibrational modes of molecules adsorbed on clean, single-crystal metal surfaces. The observation of emission from CO adsorbed on Ni demonstrates the surface sensitivity of a novel apparatus for infrared vibrational spectroscopy, with a resolution of 1 to 15 cm -1 over the frequency range from 330 to 3000 cm -1 . A liquid-helium-cooled grating spectrometer measures the thermal radiation from a room-temperature, single-crystal sample, which is mounted in an ultrahigh-vacuum system. Measurements of frequencies and linewidths of CO on a single-crystal Ni sample, as a function of coverage, are discussed

  1. Low-magnitude high-frequency vibration inhibits RANKL-induced osteoclast differentiation of RAW264.7 cells.

    Science.gov (United States)

    Wu, Song-Hui; Zhong, Zhao-Ming; Chen, Jian-Ting

    2012-01-01

    Osteoclasts are the key participants in regulation of bone mass. Low-magnitude high-frequency vibration (LMHFV) has been found to be anabolic to bone in vivo. This study aimed to investigate the effect of LMHFV on osteoclast differentiation in vitro. Murine monocyte cell line RAW264.7 cells in the presence of receptor activator of nuclear factor-kappaB ligand (RANKL) were treated with or without LMHFV at 45 Hz (0.3 g) for 15 min day(-1). Tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) and actin ring formation were evaluated. Expression of the osteoclast-specific genes, such as cathepsin K, matrix metallopeptidase-9 (MMP-9) and TRAP, were analyzed using real time-PCR. c-Fos, an osteoclast-specific transcription factor, was determined using Western blot. We found that LMHFV significantly decreased the number of RANKL-induced TRAP-positive MNCs (P<0.01), and inhibited the actin ring formation. The mRNA expression of the cathepsin K, MMP-9 and TRAP were down-regulated by LMHFV intervention (all P<0.001). Furthermore, LMHFV also inhibited the expression of c-Fos protein in the RANKL-treated RAW264.7 cells (P<0.05). Our results suggest that LMHFV can inhibit the RANKL-induced osteoclast differentiation of RAW264.7 cells, which give some new insight into the anabolic effects of LMHFV on bone.

  2. Cooperative Effects of Zwitterionic-Ionic Surfactant Mixtures on the Interfacial Water Structure Revealed by Sum Frequency Generation Vibrational Spectroscopy.

    Science.gov (United States)

    Pan, Xuecong; Yang, Fangyuan; Chen, Shunli; Zhu, Xuefeng; Wang, Chuanyi

    2018-05-08

    Cooperative effects of a series of equimolar binary zwitterionic-ionic surfactant mixtures on the interfacial water structure at the air-water interfaces have been studied by sum frequency generation vibrational spectroscopy (SFG-VS). For zwitterionic surfactant palmityl sulfobetaine (SNC 16 ), anionic surfactant sodium hexadecyl sulfate (SHS), and cationic surfactant cetyltrimethylammonium bromide (CTAB) with the same length of alkyl chain, significantly enhanced ordering of interfacial water molecules was observed for the zwitterionic-anionic surfactant mixtures SNC 16 -SHS, indicating that SNC 16 interacts more strongly with SHS than with CTAB because of the strong headgroup-headgroup electrostatic attraction for SNC 16 -SHS. Meanwhile, the SFG amplitude ratio of methyl and methylene symmetric stretching modes was used to verify the stronger interaction between SNC 16 and SHS. The conformational order indicator increased from 0.64 for SNC 16 to 7.17 for SNC 16 -SHS but only 0.94 for SNC 16 -CTAB. In addition, another anionic surfactant sodium dodecyl sulfate (SDS) was introduced to study the influence of chain-chain interaction. Decreased SFG amplitude of interfacial water molecules for SNC 16 -SDS was observed. Therefore, both the headgroup-headgroup electrostatic interaction and chain-chain van der Waals attractive interaction of the surfactants play an important role in enhancing the ordering of interfacial water molecules. The results provided experimental and theoretical bases for practical applications of the surfactants.

  3. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  4. Facet-specific interaction between methanol and TiO2 probed by sum-frequency vibrational spectroscopy.

    Science.gov (United States)

    Yang, Deheng; Li, Yadong; Liu, Xinyi; Cao, Yue; Gao, Yi; Shen, Y Ron; Liu, Wei-Tao

    2018-04-24

    The facet-specific interaction between molecules and crystalline catalysts, such as titanium dioxides (TiO 2 ), has attracted much attention due to possible facet-dependent reactivity. Using surface-sensitive sum-frequency vibrational spectroscopy, we have studied how methanol interacts with different common facets of crystalline TiO 2 , including rutile(110), (001), (100), and anatase(101), under ambient temperature and pressure. We found that methanol adsorbs predominantly in the molecular form on all of the four surfaces, while spontaneous dissociation into methoxy occurs preferentially when these surfaces become defective. Extraction of Fermi resonance coupling between stretch and bending modes of the methyl group in analyzing adsorbed methanol spectra allows determination of the methanol adsorption isotherm. The isotherms obtained for the four surfaces are nearly the same, yielding two adsorbed Gibbs free energies associated with two different adsorption configurations singled out by ab initio calculations. They are ( i ) ∼-20 kJ/mol for methanol with its oxygen attached to a low-coordinated surface titanium, and ( ii ) ∼-5 kJ/mol for methanol hydrogen-bonded to a surface oxygen and a neighboring methanol molecule. Despite similar adsorption energetics, the Fermi resonance coupling strength for adsorbed methanol appears to depend sensitively on the surface facet and coverage.

  5. Analysis of algorithms for detection of resonance frequencies in vibration measurements on super heater tubes; Analys av algoritmer foer detektering av resonansfrekvenser i vibrationsmaetningar paa oeverhettartuber

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Daniel

    2010-07-01

    Combustion of fuel in thermal power plants emits particles which creates coatings on the super heater tubes. The coatings isolate the tubes and impairs the efficiency of the heat transfer. Cleaning the tubes occurs while the power plant is running but without any knowledge of the actual coating. A change in frequency corresponds to a change in mass of the coatings. This thesis has been focusing in estimating resonance frequencies in vibration measurements made by strain gauges on the tubes. To improve the estimations a target tracking algorithm had been added. The results indicates that it is possible to estimate the resonance frequencies but the algorithms need to be verified on more signals.

  6. Interpenetrating polymer network membranes for fuel cells: infrared vibrational spectroscopy; Membranes baseadas dm redes polimericas interpenetrantes para celulas a combustivel: estudo por espectroscopia vibracional no infravermelho

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro, RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, proton conductive membranes based on IPN matrices doped with H{sub 3}PO{sub 4} were developed. The characterization by infrared vibrational spectroscopy evidenced the polymerization of DGEBA and the immobilization of PEI chains, originating a structure containing basic sites suitable for proton coordination and conduction. The FTIR characterization evidenced the polymerization of DGEBA in the presence of PEI thus forming Semi-IPN membranes which, after doped with H{sub 3}PO{sub 4}, exhibited conductivity values of 10{sup -4} W{sup -1}cm{sup -1} at room temperature and 10{sup -3} {omega}{sup -1}cm{sup -1} at 80 degree C, as well as a dependency of conductivity with temperature following the Arrhenius model. The activation energy values (14,33 and 12,96 kJ.mol{sup -1}) indicated a proton conduction mechanism predominantly vehicular in the matrices studied under 100% relative humidity. (author)

  7. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    Science.gov (United States)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  8. Vibrational spectroscopic study of terbutaline hemisulphate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  9. Theoretical studies for the N2–N2O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies

    International Nuclear Information System (INIS)

    Zheng, Rui; Zheng, Limin; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N 2 –N 2 O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N 2 O monomer is near the N 2 monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm −1 , which is in good agreement with the available experimental data of 22.334 cm −1 . A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers 14 N 2 –N 2 O and 15 N 2 –N 2 O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters

  10. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

    DEFF Research Database (Denmark)

    Vendrell, Oriol; Gatti, Fabien; Meyer, Hans-Dieter

    2007-01-01

    The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 0-4000 cm(-1). The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All...

  11. A low frequency infrared study of ruthenium(II) complexes with 1,8-naphthyridines and 2,2'-bipyridine

    International Nuclear Information System (INIS)

    Staniewicz, R.J.; Hendricker, D.G.; Griffiths, P.R.

    1977-01-01

    A report is presented on the synthesis and characterization of [Ru(napy) 4 ](PF 6 ) 2 , [Ru(2-mnapy) 4 ] (PF 6 ) 2 , [Ru(2,7-dmnapy) 3 ] (PF 6 ) 2 and [Ru(bipy) 3 ] (PF 6 ) 2 ; where (napy) = 1,8-naphthyridine; (2,7-dmnapy) = 2,7-dimethyl-1, 8-naphthyridine; (2-mnapy) = 2-methyl-1, 8-naphthyridine, and (bipy) = bipyridine. The complexes were prepared as previously reported (Staniewicz et al., (J.Am.Chem.Soc., in the press)). Low frequency infrared spectra were measured using a Digilab FTS-14 Fourier transform spectrophotometer. The results are discussed. Molecular structures are proposed. (U.K.)

  12. Infrared and Raman Vibrational Spectroscopies Reveal the Palette of Frescos Found in the Medieval Monastery of Karaach Teke

    International Nuclear Information System (INIS)

    Zorba, T.; Paraskevopoulos, K.M.; Pavlidou, E.; Andrikopoulos, K.S.; Daniilia, S.; Popkonstantinov, K.; Kostova, R.; Platnyov, V.

    2007-01-01

    Vibrational spectroscopy is applied on samples obtained from the excavation area of the medieval Monastery (10 th century) of Karaach-Teke in Bulgaria. The results of the corresponding study, reveal the type of materials used for the creation of the wall-paintings and give evidence of Byzantine influence, a fact that further supports the well known impact of Byzantium on the technology and thematic-aesthetic features of iconography in Bulgaria during this era. In addition, the complementarity of FTIR and -Raman spectroscopies in the identification of pigments is indicated

  13. Far-infrared high resolution synchrotron FTIR spectroscopy of the ν11 bending vibrational fundamental transition of dimethylsulfoxyde

    Science.gov (United States)

    Cuisset, Arnaud; Nanobashvili, Lia; Smirnova, Irina; Bocquet, Robin; Hindle, Francis; Mouret, Gaël; Pirali, Olivier; Roy, Pascale; Sadovskií, Dmitrií A.

    2010-05-01

    We report the first successful high resolution gas phase study of the 'parallel' band of DMSO at 380 cm -1 associated with the ν11 bending vibrational mode. The spectrum was recorded with a resolution of 0.0015 cm -1 using the AILES beamline of the SOLEIL synchrotron source, the IFS 125 FTIR spectrometer and a multipass cell providing an optical path of 150 m. The rotational constants and centrifugal corrections obtained from the analysis of the resolved rotational transitions reproduce the spectrum to the experimental accuracy.

  14. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model.

    Science.gov (United States)

    Hill, Katalin; Pénzes, Csanád Botond; Schnöller, Donát; Horváti, Kata; Bosze, Szilvia; Hudecz, Ferenc; Keszthelyi, Tamás; Kiss, Eva

    2010-10-07

    Tensiometry, sum-frequency vibrational spectroscopy, and atomic force microscopy were employed to assess the cell penetration ability of a peptide conjugate of the antituberculotic agent isoniazide. Isoniazide was conjugated to peptide (91)SEFAYGSFVRTVSLPV(106), a functional T-cell epitope of the immunodominant 16 kDa protein of Mycobacterium tuberculosis. As a simple but versatile model of the cell membrane a phospholipid Langmuir monolayer at the liquid/air interface was used. Changes induced in the structure of the phospholipid monolayer by injection of the peptide conjugate into the subphase were followed by tensiometry and sum-frequency vibrational spectroscopy. The drug penetrated lipid films were transferred to a solid support by the Langmuir-Blodgett technique, and their structures were characterized by atomic force microscopy. Peptide conjugation was found to strongly enhance the cell penetration ability of isoniazide.

  15. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Directory of Open Access Journals (Sweden)

    A. Gambetta

    2018-04-01

    Full Text Available We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL. The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ∼7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  16. Versatile mid-infrared frequency-comb referenced sub-Doppler spectrometer

    Science.gov (United States)

    Gambetta, A.; Vicentini, E.; Coluccelli, N.; Wang, Y.; Fernandez, T. T.; Maddaloni, P.; De Natale, P.; Castrillo, A.; Gianfrani, L.; Laporta, P.; Galzerano, G.

    2018-04-01

    We present a mid-IR high-precision spectrometer capable of performing accurate Doppler-free measurements with absolute calibration of the optical axis and high signal-to-noise ratio. The system is based on a widely tunable mid-IR offset-free frequency comb and a Quantum-Cascade-Laser (QCL). The QCL emission frequency is offset locked to one of the comb teeth to provide absolute-frequency calibration, spectral-narrowing, and accurate fine frequency tuning. Both the comb repetition frequency and QCL-comb offset frequency can be modulated to provide, respectively, slow- and fast-frequency-calibrated scanning capabilities. The characterisation of the spectrometer is demonstrated by recording sub-Doppler saturated absorption features of the CHF3 molecule at around 8.6 μm with a maximum signal-to-noise ratio of ˜7 × 103 in 10 s integration time, frequency-resolution of 160 kHz, and accuracy of less than 10 kHz.

  17. Development of on-line heavy water analysis by vibrating probe density meter and multiple internal reflectance infrared spectrometry

    International Nuclear Information System (INIS)

    Jones, V.D.; Nora, B.

    1984-01-01

    Achieving high productivity in the Savannah River Plant nuclear reactors requires that the heavy water (D 2 O) moderator be maintained at a high purity level. Since the D 2 O purity will degrade with time, a fraction of the moderator must be continually reprocessed to remove H 2 O. This rework process uses a series of fractional distillation columns. The process control is based on laboratory analyses of process samples every four hours. The sample streams, which can range from 0.10 to 99.80 mol % D 2 O, are analyzed using infrared spectrophotometry. An automatic on-line analysis would provide tighter process control and reduce personnel exposure to the tritiated moderator. Two instruments are being evaluated for on-line control; an Anton/Parr DPR 2000 density measuring system and a General Analysis Corporation LAN-I infrared liquid stream monitor

  18. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  19. Nanoscale chemical and mechanical characterization of thin films:sum frequency generation (SFG) vibrational spectroscopy at buriedinterfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kweskin, Sasha Joseph [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Sum frequency generation (SFG) surface vibrational spectroscopy was used to characterize interfaces pertinent to current surface engineering applications, such as thin film polymers and novel catalysts. An array of advanced surface science techniques like scanning probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), gas chromatography (GC) and electron microscopy were used to obtain experimental measurements complementary to SFG data elucidating polymer and catalyst surface composition, surface structure, and surface mechanical behavior. Experiments reported in this dissertation concentrate on three fundamental questions: (1) How does the interfacial molecular structure differ from that of the bulk in real world applications? (2) How do differences in chemical environment affect interface composition or conformation? (3) How do these changes correlate to properties such as mechanical or catalytic performance? The density, surface energy and bonding at a solid interface dramatically alter the polymer configuration, physics and mechanical properties such as surface glass transition, adhesion and hardness. The enhanced sensitivity of SFG at the buried interface is applied to three systems: a series of acrylates under compression, the compositions and segregation behavior of binary polymer polyolefin blends, and the changes in surface structure of a hydrogel as a function of hydration. In addition, a catalytically active thin film of polymer coated nanoparticles is investigated to evaluate the efficacy of SFG to provide in situ information for catalytic reactions involving small mass adsorption and/or product development. Through the use of SFG, in situ total internal reflection (TIR) was used to increase the sensitivity of SFG and provide the necessary specificity to investigate interfaces of thin polymer films and nanostructures previously considered unfeasible. The dynamic nature of thin film surfaces is examined and it is found that the non

  20. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  1. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  2. Infrared Spectra of the 10-μm Bands of 1,2-Difluoroethane and 1,1,2-Trifluoroethane: Vibrationally Mediated Torsional Tunneling in 1,1,2-Trifluoroethane

    Science.gov (United States)

    Stone, Stephen C.; Miller, C. Cameron; Philips, Laura A.; Andrews, A. M.; Fraser, G. T.; Pate, B. H.; Xu, Li-Hong

    1995-12-01

    The 3-MHz-resolution infrared spectra of the 10-μm bands of thegaucheconformer of 1,2-difluoroethane (HFC152) and theC1-symmetry conformer of 1,1,2-trifluoroethane (HFC143) have been measured using a molecular-beam electric-resonance optothermal spectrometer with a tunable microwave-sideband CO2laser source. For 1,2-difluoroethane, two bands have been studied, the ν17B-symmetry C-F stretch at 1077.3 cm-1and the ν13B-symmetry CH2rock at 896.6 cm-1. Both bands are well fit to a asymmetric-rotor Hamiltonian to better than 0.5 MHz. The ν13band is effectively unperturbed, while the ν17band is weakly perturbed, as shown by the large change in centrifugal distortion constants from the ground state values. Two bands have also been studied for 1,1,2-trifluoroethane, the ν11symmetric CF2stretch at 1077.2 cm-1and the ν13C-C stretch at 905.1 cm-1. One of the two bands, ν11, is unperturbed and fit to near the experimental precision. The ν13vibration, on the other hand, is weakly perturbed by an interaction with a nearby state. This perturbation leads to a doubling or splitting of the lines, due to a perturbation-induced lifting of the degeneracy of the symmetric and antisymmetric tunneling states associated with tunneling between the two equivalentC1forms. For theJ,Kastates studied, the splittings are as large as 37 MHz. Combining this observation with published low-resolution far-infrared measurements of torsional sequence-band and hot-band frequencies and calculations from an empirical torsional potential allows us to identify the perturbing state as ν17+ 6ν18. Here, ν17is the CF2twist and ν18is the torsion. The matrix element responsible for this interaction exchanges eight vibrational quanta!

  3. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice

    Directory of Open Access Journals (Sweden)

    Esther Wehrle

    2015-01-01

    Full Text Available Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV. We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96 were either ovariectomised (OVX or sham operated (non-OVX at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day with 0.3 g peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine were evaluated using bending-testing, micro-computed tomography (μCT, histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (−81% and bone formation (−80% in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2 and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398% and bone formation (+637%, which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet. On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and

  4. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    International Nuclear Information System (INIS)

    Granovsky, A.B.; Inoue, Mitsuteru

    2004-01-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling

  5. Spin-dependent tunnelling at infrared frequencies: magnetorefractive effect in magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, A.B. E-mail: granov@magn.ru; Inoue, Mitsuteru

    2004-05-01

    We present a brief review of recent experimental and theoretical results on magnetorefractive effect in magnetic metal-insulator nanogranular alloys with tunnel-type magnetoresistance focusing on its relation with high-frequency spin-dependent tunnelling.

  6. Novel dental dynamic depth profilometric imaging using simultaneous frequency-domain infrared photothermal radiometry and laser luminescence

    Science.gov (United States)

    Nicolaides, Lena; Mandelis, Andreas

    2000-01-01

    A high-spatial-resolution dynamic experimental imaging setup, which can provide simultaneous measurements of laser- induced frequency-domain infrared photothermal radiometric and luminescence signals from defects in teeth, has been developed for the first time. The major findings of this work are: (1) radiometric images are complementary to (anticorrelated with) luminescence images, as a result of the nature of the two physical signal generation processes; (2) the radiometric amplitude exhibits much superior dynamic (signal resolution) range to luminescence in distinguishing between intact and cracked sub-surface structures in the enamel; (3) the radiometric signal (amplitude and phase) produces dental images with much better defect localization, delineation, and resolution; (4) radiometric images (amplitude and phase) at a fixed modulation frequency are depth profilometric, whereas luminescence images are not; and (5) luminescence frequency responses from enamel and hydroxyapatite exhibit two relaxation lifetimes, the longer of which (approximately ms) is common to all and is not sensitive to the defect state and overall quality of the enamel. Simultaneous radiometric and luminescence frequency scans for the purpose of depth profiling were performed and a quantitative theoretical two-lifetime rate model of dental luminescence was advanced.

  7. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    International Nuclear Information System (INIS)

    Carlomagno, Giovanni Maria; Meola, Carosena; Di Maio, Rosa; Fedi, Maurizio

    2011-01-01

    This work is focused on the integration of infrared thermography and ground penetrating radar for the inspection of architectonic structures. First, laboratory tests were carried out with both techniques by considering an ad hoc specimen made of concrete and with the insertion of anomalies of a different nature and at different depths. Such tests provided helpful information for ongoing inspections in situ, which were later performed in two important Italian archaeological sites, namely Pompeii (Naples) and Nora (Cagliari). In the first site, the exploration was devoted to the analysis of the wall paintings of Villa Imperiale with the aim of evaluating the state of conservation of frescoes as well of the underneath masonry structure. As main findings, the applied techniques allowed outlining some areas, which were damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials, and also for recognition of previous restoration. In the archaeological area of Nora, instead, the attention was driven towards the evaluation of the state of degradation of the theatre remnants. Our prospections show that the front side of the theatre, being more strongly affected by degradation, needs a massive restoration work. As a general result, we demonstrated that a joint interpretation of infrared thermography and ground penetrating radar data supplies detailed 3D information from near-surface to deep layers, which may assist in restoration planning

  8. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  9. Sum Frequency Generation Vibrational Spectroscopy of 1,3-Butadiene Hydrogenation on 4 nm Pt@SiO 2 , Pd@SiO 2 , and Rh@SiO 2 Core–Shell Catalysts

    KAUST Repository

    Krier, James M.; Michalak, William D.; Cai, Xiaojun; Carl, Lindsay; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2015-01-01

    NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective

  10. Low Frequency Hydrogen Vibrations in Potassium Dihydrogen Phosphate; Vibrations de l'hydrogene a basse frequence dans le phosphate monopotassique; Nizkochastotnye kolebaniya atomov vodoroda v pervichnom kislom fosfate kaliya.; Vibraciones de baja frecuencia del hidrogeno en el fosfato diacido de potasio

    Energy Technology Data Exchange (ETDEWEB)

    Palevsky, H.; Otnes, K.; Wakuta, Y. [Brookhaven National Laboratory, Upton, NY (United States)

    1963-01-15

    The BNL cold neutron facility was used to investigate the low energy states in KH{sub 2}PO{sub 4} and KD{sub 2} PO{sub 4} at room temperature and below the transition temperature. The energy interval covered (8-170 x 10{sup -3} eV) corresponds to wave numbers of 25-1300 cm{sup -1} a region which is difficult to investigate by infrared absorption techniques. At ) very low energies broad peaks corresponding to the acoustic modes of the crystal are observed; at the high energy end the vibrations characteristic of the PO{sub 4} molecule are found. The excitation modes associated with hydrogen are identified by the change in scattering intensity with deuteration. By this means, it is shown that a band of frequencies centered around 180 cm{sup -1} is associated with hydrogen vibrations. The spectra for both KH{sub 2}PO{sub 4} and KD{sub 2}PO{sub 4} below their ferro-electric transition temperatures was found to have the same general shape as their corresponding room temperature data, the major changes in shape being accounted for by the Boltzman population factor. A comparison of these inelastic neutron scattering results with those obtained from neutron diffraction and infrared measurements will be discussed. (author) [French] Les auteurs ont utilise le dispositif a neutrons lents du BNL pour etudier les etats de basse energie dans KH{sub 2} PO{sub 4} et KD{sub 2}PO{sub 4} a la temperature ambiante et a des temperatures inferieures a celles de transition. L'intervalled'energie considere (8-170 - 10{sup -3} eV) correspond au nombre d'ondes de 25 a 1300 cm{sup -1} ; c'est une region qu'il est difficile d'etudier par la methode d'absorption des rayons infrarouges. Aux energies tres basses, les auteurs ont observe des pics larges correspondant aux modes acoustiques du cristal; A l'extremite correspondant aux energies elevees, ils ont trouve les vibrations caracteristiques de la molecule de PO{sub 4} . Les modes d'excitation associes a l'hydrogene sont identifies grace a la

  11. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  12. Frequency-resolved pump-probe characterization of femtosecond infrared pulses

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuška, A.; Haan, F. de; Pshenichnikov, M.S.; Wiersma, D.A.

    2002-01-01

    A novel method for ultrashort IR pulse characterization is presented. The technique utilizes a frequency-resolved pump-probe geometry that is common in applications of ultrafast spectroscopy, without any modifications of the setup. The experimental demonstration of the method was carried out to

  13. Evaluating performance of multivariable vibration isolators : a frequency domain identification approach applied to an industrial AVIS : A frequency domain identification approach applied to an industrial AVIS

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.A.; Voorhoeve, R.J.; Oomen, T.A.E.

    2017-01-01

    Vibration isolation is essential for industrial high-precision systems in suppressing the influence of external disturbances. The aim of this paper is to develop an identification method to estimate the transmissibility matrix for such systems. The transmissibility matrix is a key performance

  14. Effect of high-frequency near-infrared diode laser irradiation on periodontal tissues during experimental tooth movement in rats.

    Science.gov (United States)

    Gunji, Hidemi; Kunimatsu, Ryo; Tsuka, Yuji; Yoshimi, Yuki; Sumi, Keisuke; Awada, Tetsuya; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Hirose, Naoto; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-02-05

    Tooth movement during orthodontic treatment is associated with bone neoplasticity and bone resorption on the tension and pressure sides. Previous clinical studies have suggested that low-power laser irradiation can accelerate tooth movement during orthodontic treatment, although the underlying mechanism remains unclear. In this study, we used a high-frequency near-infrared diode laser that generates less heat and examined the histologic changes in periodontal tissue during experimental tooth movement with laser irradiation. A nickel-titanium closed coil was mounted between the maxillary left side first molar and incisor of rats to model experimental tooth movement. The laser-irradiation and the control groups were set, and the amount of movement of the first molar on 7th and 14th days after the start of pulling of the first molar tooth on the maxillary left was measured by three-dimensional analysis of µCT. After tooth movement, tissue samples from the mesial and tension sides were collected, and successive horizontal sections were prepared and examined using hematoxylin-eosin and TRAP staining and immunohistochemical staining for RANKL, OPG, ALP, and proliferating cell nuclear antigen (PCNA). Changes in tissue temperature following laser irradiation were also examined. Laser irradiation significantly increased tooth movement compared with non-irradiated controls. Histologic staining of the pressure-side mesial root in laser-irradiated rats revealed enhanced RANKL expression and increased numbers of TRAP-positive cells compared with controls. By contrast, on the tension side, laser irradiation led to increased expression of ALP and PCNA. These data indicate that high-frequency near-infrared diode laser irradiation on the pressure side upregulates RANKL expression and accelerates osteoclast differentiation, facilitating bone resorption, whereas bone formation is induced on the tension side. This study demonstrates that high-frequency near-infrared diode laser

  15. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Good, Craig A; Zernicke, Ronald F; Boyd, Steven K

    2012-01-01

    High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16-18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.

  16. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following botulinum toxin injection.

    Directory of Open Access Journals (Sweden)

    Sarah L Manske

    Full Text Available High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB would maintain bone in a muscle disuse model with botulinum toxin type A (BTX. Female 16-18 wk old BALB/c mice (N = 36 were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 µL; 1 U/100 g body mass into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA and tibial bone properties (epiphysis, metaphysis and diaphysis were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.

  17. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya

    2010-11-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging to interrogate atherosclerotic plaques in vivo in large arteries. The goal of this investigation is twofold: (i) introduce a modeling framework for residual stress that unlike traditional Fung type classical opening angle models may be used for a diseased artery, and (ii) investigate the sensitivity of the spectra of small amplitude high frequency time harmonic vibrations superimposed on a large deformation to the details of the residual stress stored in arteries through a numerical simulation using physiologic parameter values under both low and high blood pressure loadings. The modeling framework also points the way towards an inverse problem using IVUS techniques to estimate residual stress in healthy and diseased arteries. © 2010 Elsevier Ltd. All rights reserved.

  18. Uncooled tunneling infrared sensor

    Science.gov (United States)

    Kenny, Thomas W. (Inventor); Kaiser, William J. (Inventor); Podosek, Judith A. (Inventor); Vote, Erika C. (Inventor); Muller, Richard E. (Inventor); Maker, Paul D. (Inventor)

    1995-01-01

    An uncooled infrared tunneling sensor in which the only moving part is a diaphragm which is deflected into contact with a micromachined silicon tip electrode prepared by a novel lithographic process. Similarly prepared deflection electrodes employ electrostatic force to control the deflection of a silicon nitride, flat diaphragm membrane. The diaphragm exhibits a high resonant frequency which reduces the sensor's sensitivity to vibration. A high bandwidth feedback circuit controls the tunneling current by adjusting the deflection voltage to maintain a constant deflection of the membrane. The resulting infrared sensor can be miniaturized to pixel dimensions smaller than 100 .mu.m. An alternative embodiment is implemented using a corrugated membrane to permit large deflection without complicated clamping and high deflection voltages. The alternative embodiment also employs a pinhole aperture in a membrane to accommodate environmental temperature variation and a sealed chamber to eliminate environmental contamination of the tunneling electrodes and undesireable accoustic coupling to the sensor.

  19. Modulation infrared thermometry of caloric effects at up to kHz frequencies

    Science.gov (United States)

    Döntgen, Jago; Rudolph, Jörg; Waske, Anja; Hägele, Daniel

    2018-03-01

    We present a novel non-contact method for the direct measurement of caloric effects in low volume samples. The adiabatic temperature change ΔT of a magnetocaloric sample is very sensitively determined from thermal radiation. Rapid modulation of ΔT is induced by an oscillating external magnetic field. Detection of thermal radiation with a mercury-cadmium-telluride detector allows for measurements at field frequencies exceeding 1 kHz. In contrast to thermoacoustic methods, our method can be employed in vacuum which enhances adiabatic conditions especially in the case of small volume samples. Systematic measurements of the magnetocaloric effect as a function of temperature, magnetic field amplitude, and modulation frequency give a detailed picture of the thermal behavior of the sample. Highly sensitive measurements of the magnetocaloric effect are demonstrated on a 2 mm thick sample of gadolinium and a 60 μm thick Fe80B12Nb8 ribbon.

  20. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    Science.gov (United States)

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  1. Near-Infrared and Optical Beam Steering and Frequency Splitting in Air-Holes-in-Silicon Inverse Photonic Crystals

    Science.gov (United States)

    2017-01-01

    We present the design of a dielectric inverse photonic crystal structure that couples line-defect waveguide propagating modes into highly directional beams of controllable directionality. The structure utilizes a triangular lattice made of air holes drilled in an infinitely thick Si slab, and it is designed for operation in the near-infrared and optical regime. The structure operation is based on the excitation and manipulation of dark dielectric surface states, in particular on the tailoring of the dark states’ coupling to outgoing radiation. This coupling is achieved with the use of properly designed external corrugations. The structure adapts and matches modes that travel through the photonic crystal and the free space. Moreover it facilitates the steering of the outgoing waves, is found to generate well-defined, spatially and spectrally isolated beams, and may serve as a frequency splitting component designed for operation in the near-infrared regime and in particular the telecom optical wavelength band. The design complies with the state-of-the-art Si nanofabrication technology and can be directly scaled for operation in the optical regime. PMID:29541653

  2. Effects of improper source coupling in frequency-domain near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noponen, T E J [Turku PET Centre, Turku University Hospital, PO BOX 52, 20521 Turku (Finland); Kotilahti, K; Nissilae, I; Merilaeinen, P T [Department of Biomedical Engineering and Computational Science, Aalto University, PO BOX 12200, 00076 Aalto (Finland); Kajava, T, E-mail: tommi.noponen@tyks.f [Department of Applied Physics, Aalto University, PO Box 15100, 00076 Aalto (Finland)

    2010-05-21

    Currently, there is no widely used method to assess the reliability of contact between optodes and tissue in near-infrared spectroscopy (NIRS). In this study we observe a high linear dependence (R{sup 2} {approx} 0.99) of the logarithmic modulation amplitude (ln(I{sub AC})), average intensity (ln(I{sub DC})) and phase ({phi}) on the source-detector distance (SDD) ranging from {approx}20 to 50 mm on human forehead measurements. The regression of {phi} is clearly reduced in measurements where light leakage occurs, mainly due to insufficient contact between the source optode and tissue. Utilizing this observation, a novel criterion to detect light leakage is developed. The criterion is applied to study the reliability of hemodynamic responses measured on the human forehead when breathing carbon dioxide-enriched air and during hyperventilation. The contrast of the signals is significantly lower in measurements which were adversely affected by light leakage. Furthermore, such unreliable signals at SDDs {>=} 50 mm correlate significantly (for [HbO{sub 2}] p < 0.01 and for [HbR] p < 0.001) better with the signals measured at SDDs < 20 mm. Using this method, poor contact between the source optode and tissue can be detected and corrected before the actual measurement, which enables us to avoid the acquisition of low contrast cortical signals.

  3. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    Energy Technology Data Exchange (ETDEWEB)

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in [SUNAG Laboratory, Institute of Physics, Bhubaneswar, Odisha 751 005 (India); Kanjilal, A. [Department of Physics, Shiv Nadar University, Uttar Pradesh 201 314 (India); Satpati, B. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Dhara, S. [Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Das, T. D. [Department of Electronic Science, University of Calcutta, APC Road, Kolkata 700 009 (India); Kanjilal, D. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used in our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.

  4. Infrared spectra of jennite and tobermorite from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Vidmer, Alexandre, E-mail: alexandre@vidmer.com; Sclauzero, Gabriele; Pasquarello, Alfredo

    2014-06-01

    The infrared absorption spectra of jennite, tobermorite 14 Å, anomalous tobermorite 11 Å, and normal tobermorite 11 Å are simulated within a density-functional-theory scheme. The atomic coordinates and the cell parameters are optimized resulting in structures which agree with previous studies. The vibrational frequencies and modes are obtained for each mineral. The vibrational density of states is analyzed through extensive projections on silicon tetrahedra, oxygen atoms, OH groups, and water molecules. The coupling with the electric field is achieved through the use of density functional perturbation theory, which yields Born effective charges and dielectric constants. The simulated absorption spectra reproduce well the experimental spectra, thereby allowing for a detailed interpretation of the spectral features in terms of the underlying vibrational modes. In the far-infrared part of the absorption spectra, the interplay between Ca and Si related vibrations leads to differences which are sensitive to the calcium/silicon ratio of the mineral.

  5. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  6. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichi; Singh, Prashant C. [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nihonyanagi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, Shoichi [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Chemistry, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan)

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  7. Generation of broadly tunable picosecond mid-infrared laser and sensitive detection of a mid-infrared signal by parametric frequency up-conversion in MgO:LiNbO3 optical parametric amplifiers

    International Nuclear Information System (INIS)

    Zhang Qiu-Lin; Zhang Jing; Qiu Kang-Sheng; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    Picosecond optical parametric generation and amplification in the near-infrared region within 1.361–1.656 μm and the mid-infrared region within 2.976–4.875 μm is constructed on the basis of bulk MgO:LiNbO 3 crystals pumped at 1.064 μm. The maximum pulse energy reaches 1.3 mJ at 1.464 μm and 0.47 mJ at 3.894 μm, corresponding to a pump-to-idler photon conversion efficiency of 25%. By seeding the hard-to-measure mid-infrared radiation as the idler in the optical parametric amplification and measuring the amplified and frequency up-converted signal in the near-infrared or even visible region, one can measure very week mid-infrared radiation with ordinary detectors, which are insensitive to mid-infrared radiation, with a very high gain. A maximum gain factor of about 7 × 10 7 is achieved at the mid-infrared wavelength of 3.374 μm and the corresponding energy detection limit is as low as about 390 aJ per pulse. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Dynamical interactions between solute and solvent studied by nonlinear infrared spectroscopy

    International Nuclear Information System (INIS)

    Ohta, K.; Tominaga, K.

    2006-01-01

    Interactions between solute and solvent play an important role in chemical reaction dynamics and in many relaxation processes in condensed phases. Recently third-order nonlinear infrared (IR) spectroscopy has shown to be useful to investigate solute-solvent interaction and dynamics of the vibrational transition. These studies provide detailed information on the energy relaxation of the vibrationally excited state, and the time scale and the magnitude of the time correlation functions of the vibrational frequency fluctuations. In this work we have studied vibrational energy relaxation (VER) of solutions and molecular complexes by nonlinear IR spectroscopy, especially IR pump-probe method, to understand the microscopic interactions in liquids. (authors)

  9. The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice.

    Science.gov (United States)

    Wehrle, Esther; Liedert, Astrid; Heilmann, Aline; Wehner, Tim; Bindl, Ronny; Fischer, Lena; Haffner-Luntzer, Melanie; Jakob, Franz; Schinke, Thorsten; Amling, Michael; Ignatius, Anita

    2015-01-01

    Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in

  10. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  12. Influence of Low-Frequency Vibration and Modification on Solidification and Mechanical Properties of Al-Si Casting Alloy.

    Science.gov (United States)

    Selivorstov, Vadim; Dotsenko, Yuri; Borodianskiy, Konstantin

    2017-05-20

    One of the major aims of the modern materials foundry industry is the achievement of advanced mechanical properties of metals, especially of light non-ferrous alloys such as aluminum. Usually an alloying process is applied to obtain the required properties of aluminum alloys. However, the presented work describes an alternative approach through the application of vibration treatment, modification by ultrafine powder and a combination of these two methods. Microstructural studies followed by image analysis revealed the refinement of α-Al grains with an increase in the Si network area around them. As evidence, the improvement of the mechanical properties of Al casting alloy was detected. It was found that the alloys subjected to the vibration treatment displayed an increase in tensile and yield strengths by 20% and 10%, respectively.

  13. Infrared spectroscopy of some organocobalt (III) compounds

    International Nuclear Information System (INIS)

    Benedetti, A.V.; Mauro, A.E.

    1982-01-01

    The compounds [MeCo(DH) 2 py], [MeCo(DH) 2 H 2 O] (M = methyl; DH = dimethyl-glyoxymate; py = pyridine) and others of general formulae [Co(L)(H 2 O) 2 ] ClO 4 , where L = SALOPHEN = bis (salicylaldehyde)-o-phenylenediimine; SALCN = 1,2-bis (salicylaldehyde) cyclohexylenediimine; SALEN = bis (salicylaldehyde) ethylenediimine; BAE = bis (acetylacetone)-ethylenediimine were synthesized and studied by infrared spectroscopy. The frequencies observed have been assigned to specific group vibrations. (Author) [pt

  14. Numerical Determination of Natural Frequencies and Modes of the Vibrations of a Thick-Walled Cylindrical Shell

    Science.gov (United States)

    Grigorenko, A. Ya.; Borisenko, M. Yu.; Boichuk, E. V.; Prigoda, A. P.

    2018-01-01

    The dynamic characteristics of a thick-walled cylindrical shell are determined numerically using the finite-element method implemented with licensed FEMAR software. The natural frequencies and modes are compared with those obtained earlier experimentally by the method of stroboscopic holographic interferometry. Frequency coefficients demonstrating how the natural frequency depends on the physical and mechanical parameters of the material are determined.

  15. Intrinsic chirality and prochirality at Air/R-(+)- and S-(-)-limonene interfaces: spectral signatures with interference chiral sum-frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Fu, Li; Zhang, Yun; Wei, Zhe-Hao; Wang, Hong-Fei

    2014-09-01

    We report in this work detailed measurements of the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050 cm(-1)) of the air/liquid interfaces of R-(+)-limonene and S-(-)-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the RS racemic mixture (50/50 equal amount mixture), show that the corresponding molecular groups of the R and S enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit a spectral signature from the chiral response of the Cα-H stretching mode, and a spectral signature from the prochiral response of the CH(2) asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-(+)-limonene to S-(-)-limonene surfaces, and disappears for the RS racemic mixture surface. While the prochiral spectral feature of the CH(2) asymmetric stretching mode is the same for R-(+)-limonene and S-(-)-limonene surfaces, and also surprisingly remains the same for the RS racemic mixture surface. Therefore, the structures of the R-(+)-limonene and the S-(-)-limonene at the liquid interfaces are nevertheless not mirror images to each other, even though the corresponding groups have the same tilt angle from the interfacial normal, i.e., the R-(+)-limonene and the S-(-)-limonene at the surface are diastereomeric instead of enantiomeric. These results provide detailed information in understanding the structure and chirality of molecular interfaces and demonstrate the sensitivity and potential of SFG-VS as a unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface. © 2014 Wiley Periodicals, Inc.

  16. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  17. Thermal diffusivity of electrical insulators at high temperatures: Evidence for diffusion of bulk phonon-polaritons at infrared frequencies augmenting phonon heat conduction

    Science.gov (United States)

    Hofmeister, Anne M.; Dong, Jianjun; Branlund, Joy M.

    2014-04-01

    We show that laser-flash analysis measurements of the temperature (T) dependence of thermal diffusivity (D) for diverse non-metallic (e.g., silicates) single-crystals is consistently represented by D(T) = FT-G + HT above 298 K, with G ranging from 0.3 to 2, depending on structure, and H being ˜10-4 K-1 for 51 single-crystals, 3 polycrystals, and two glasses unaffected by disorder or reconstructive phase transitions. Materials exhibiting this behavior include complex silicates with variable amounts of cation disorder, perovskite structured materials, and graphite. The high-temperature term HT becomes important by ˜1300 K, above which temperature its contribution to D(T) exceeds that of the FT-G term. The combination of the FT-G and HT terms produces the nearly temperature independent high-temperature region of D previously interpreted as the minimal phonon mean free path being limited by the finite interatomic spacing. Based on the simplicity of the fit and large number of materials it represents, this finding has repercussions for high-temperature models of heat transport. One explanation is that the two terms describing D(T) are associated with two distinct microscopic mechanisms; here, we explore the possibility that the thermal diffusivity of an electrical insulator could include both a contribution of lattice phonons (the FT-G term) and a contribution of diffusive bulk phonon-polaritons (BPP) at infrared (IR) frequencies (the HT term). The proposed BPP diffusion exists over length scales smaller than the laboratory sample sizes, and transfers mixed light and vibrational energy at a speed significantly smaller than the speed of light. Our diffusive IR-BPP hypothesis is consistent with other experimental observations such as polarization behavior, dependence of D on the number of IR peaks, and H = 0 for Ge and Si, which lack IR fundamentals. A simple quasi-particle thermal diffusion model is presented to begin understanding the contribution from bulk phonon

  18. Effects of high-frequency near-infrared diode laser irradiation on the proliferation and migration of mouse calvarial osteoblasts.

    Science.gov (United States)

    Kunimatsu, Ryo; Gunji, Hidemi; Tsuka, Yuji; Yoshimi, Yuki; Awada, Tetsuya; Sumi, Keisuke; Nakajima, Kengo; Kimura, Aya; Hiraki, Tomoka; Abe, Takaharu; Naoto, Hirose; Yanoshita, Makoto; Tanimoto, Kotaro

    2018-01-04

    Laser irradiation activates a range of cellular processes and can promote tissue repair. Here, we examined the effects of high-frequency near-infrared (NIR) diode laser irradiation on the proliferation and migration of mouse calvarial osteoblastic cells (MC3T3-E1). MC3T3-E1 cells were cultured and exposed to high-frequency (30 kHz) 910-nm diode laser irradiation at a dose of 0, 1.42, 2.85, 5.7, or 17.1 J/cm 2 . Cell proliferation was evaluated with BrdU and ATP concentration assays. Cell migration was analyzed by quantitative assessment of wound healing using the Incucyt ® ZOOM system. In addition, phosphorylation of mitogen-activated protein kinase (MAPK) family members including p38 mitogen-activated protein kinase (p38), stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK), and extracellular signal-regulated protein kinase (ERK)1/2) after laser irradiation was examined with western blotting. Compared to the control, cell proliferation was significantly increased by laser irradiation at a dose of 2.85, 5.7, or 17.1 J/cm 2 . Laser irradiation at a dose of 2.85 J/cm 2 induced MC3T3-E1 cells to migrate more rapidly than non-irradiated control cells. Irradiation with the high-frequency 910-nm diode laser at a dose of 2.85 J/cm 2 induced phosphorylation of MAPK/ERK1/2 15 and 30 min later. However, phosphorylation of p38 MAPK and SAPK/JNK was not changed by NIR diode laser irradiation at a dose of 2.85 J/cm 2 . Irradiation with a high-frequency NIR diode laser increased cell division and migration of MT3T3-E1 cells, possibly via MAPK/ERK signaling. These observations may be important for enhancing proliferation and migration of osteoblasts to improve regeneration of bone tissues.

  19. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2–6, and several hexamer local minima at the CCSD(T) level of theory

    Energy Technology Data Exchange (ETDEWEB)

    Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

    2013-01-01

    (T) harmonic frequencies, when corrected using the MP2 anharmonicities obtained from second order vibrational perturbation theory (VPT2), produce anharmonicCCSD(T) estimates that are within < 60 cm-1 from the measured infrared (IR) active bands of the n=2-6 clusters and furthermore trace the observed red shifts with respect to the monomer (Δν) quite accurately. The energetic order between the various hexamer isomers on the PES (prism has the lowest energy) previously reported at MP2 was found to be preserved at the CCSD(T) level, whereas the inclusion of anharmonic corrections further stabilizes the cage among the hexamer isomers.

  20. Do radio frequencies of medical instruments common in the operating room interfere with near-infrared spectroscopy signals?

    Science.gov (United States)

    Shadgan, Babak; Molavi, Behnam; Reid, W. D.; Dumont, Guy; Macnab, Andrew J.

    2010-02-01

    Background: Medical and diagnostic applications of near infrared spectroscopy (NIRS) are increasing, especially in operating rooms (OR). Since NIRS is an optical technique, radio frequency (RF) interference from other instruments is unlikely to affect the raw optical data, however, NIRS data processing and signal output could be affected. Methods: We investigated the potential for three common OR instruments: an electrical cautery, an orthopaedic drill and an imaging system, to generate electromagnetic interference (EMI) that could potentially influence NIRS signals. The time of onset and duration of every operation of each device was recorded during surgery. To remove the effects of slow changing physiological variables, we first used a lowpass filter and then selected 2 windows with variable lengths around the moment of device onset. For each instant, variances (energy) and means of the signals in the 2 windows were compared. Results: Twenty patients were studied during ankle surgery. Analysis shows no statistically significant difference in the means and variance of the NIRS signals (p < 0.01) during operation of any of the three devices for all surgeries. Conclusion: This method confirms the instruments evaluated caused no significant interference. NIRS can potentially be used without EMI in clinical environments such as the OR.

  1. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  2. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  3. Relationship of the vibrational frequency of the nuclear pair Mo-Cl with it electronegativity, force constant and bond length in the structural conformation of molybden dichloride

    International Nuclear Information System (INIS)

    Rodriguez S, A.; Martinez Q, E.

    1990-08-01

    The structural elucidation of the cluster hexamerico (MO 6 C1 8 ) 4+ , it has been characterized for but of twenty-five years like a conformation octahedrica of simple metallic connections. However, the determination has not been attempted of some physical characteristics of this conformation by means of measures espectroscopicas. We present the electronegatividad measures now, constant of force and it distances of connection of the nuclear couple Mo-Cl, using only their frequency vibracional taken directly of the infrared spectra. (Author)

  4. Orbital-optimized coupled-electron pair theory and its analytic gradients: Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions

    Science.gov (United States)

    Bozkaya, Uǧur; Sherrill, C. David

    2013-08-01

    Orbital-optimized coupled-electron pair theory [or simply "optimized CEPA(0)," OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%-43% and 38%-53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%-79% and 53%-79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm-1) is fortuitously even better than that of CCSD(T) (50 cm-1), while the MAEs of CEPA(0) (184 cm-1) and CCSD (84 cm-1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol-1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol-1), and comparing to MP2 (7.7 kcal mol-1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal

  5. Attitudes Toward, and Use of, Vibrators in China.

    Science.gov (United States)

    Jing, Shen; Lay, Alixe; Weis, Laura; Furnham, Adrian

    2018-01-02

    The current study examined the relationship between traditional masculine traits and attitudes toward vibrator use, actual vibrator use, and frequency of vibrator use in China. In all, 235 Chinese females aged between 16 and 58 years completed a questionnaire regarding attitudes toward, and personal use of, vibrators. The results showed a positive association between masculine traits and attitudes toward women's vibrator use, attitudes toward vibrator use and actual vibrator use, as well as frequency of vibrator use. The findings revealed an indirect path in which masculinity influences actual and frequency of vibrator use through attitudes toward women's vibrator use. Limitations and implications of the study are discussed.

  6. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    Science.gov (United States)

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  7. Low-Magnitude High-Frequency Vibration Accelerated the Foot Wound Healing of n5-streptozotocin-induced Diabetic Rats by Enhancing Glucose Transporter 4 and Blood Microcirculation.

    Science.gov (United States)

    Yu, Caroline Oi-Ling; Leung, Kwok-Sui; Jiang, Jonney Lei; Wang, Tina Bai-Yan; Chow, Simon Kwoon-Ho; Cheung, Wing-Hoi

    2017-09-14

    Delayed wound healing is a Type 2 diabetes mellitus (DM) complication caused by hyperglycemia, systemic inflammation, and decreased blood microcirculation. Skeletal muscles are also affected by hyperglycemia, resulting in reduced blood flow and glucose uptake. Low Magnitude High Frequency Vibration (LMHFV) has been proven to be beneficial to muscle contractility and blood microcirculation. We hypothesized that LMHFV could accelerate the wound healing of n5-streptozotocin (n5-STZ)-induced DM rats by enhancing muscle activity and blood microcirculation. This study investigated the effects of LMHFV in an open foot wound created on the footpad of n5-STZ-induced DM rats (DM_V), compared with no-treatment DM (DM), non-DM vibration (Ctrl_V) and non-DM control rats (Ctrl) on Days 1, 4, 8 and 13. Results showed that the foot wounds of DM_V and Ctrl_V rats were significantly reduced in size compared to DM and Ctrl rats, respectively, at Day 13. The blood glucose level of DM_V rats was significantly reduced, while the glucose transporter 4 (GLUT4) expression and blood microcirculation of DM_V rats were significantly enhanced in comparison to those of DM rats. In conclusion, LMHFV can accelerate the foot wound healing process of n5-STZ rats.

  8. Multiscale investigation on the effects of additional weight bearing in combination with low-magnitude high-frequency vibration on bone quality of growing female rats.

    Science.gov (United States)

    Zhang, Tianlong; Gao, Jiazi; Fang, Juan; Gong, He

    2018-03-01

    This study aimed to explore the effects of additional weight bearing in combination with low-magnitude high-frequency vibration (LMHFV; 45 Hz, 0.3 g) on bone quality. One hundred twenty rats were randomly divided into ten groups; namely, sedentary (SED), additional weight bearing in which the rat wears a backpack whose weight is x% of the body weight (WBx; x = 5, 12, 19, 26), basic vibration (V), and additional weight bearing in combination with LMHFV in which the rat wears a backpack whose weight is x% of the body weight (Vx; x = 5, 12, 19, 26). The experiment was conducted for 12 weeks, 7 days per week, and 15 min per day. A three-point bending mechanical test, micro computed tomography, and a nanoindentation test were used. Serum samples were analyzed chemically. Failure load in V19 rats was significantly lower than that in SED rats (P bearing in combination with LMHFV negatively affected the macromechanical properties and microarchitecture of bone. Heavy additional weight bearing, such as 26% of body weight, in combination with LMHFV was able to improve the nanomechanical properties of growing bone material compared with LMHFV. A combined mechanical stimulation was used, which may provide useful information to understand the mechanism of this mechanical stimulation on bone.

  9. Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues

    Science.gov (United States)

    Wang, Hong-Fei

    2016-12-01

    Sum-frequency generation vibrational spectroscopy (SFG-VS) was first developed in the 1980s and it has been proven a uniquely sensitive and surface/interface selective spectroscopic probe for characterization of the structure, conformation and dynamics of molecular surfaces and interfaces. In recent years, there have been many progresses in the development of methodology and instrumentation in the SFG-VS toolbox that have significantly broadened the application to complex molecular surfaces and interfaces. In this review, after presenting a unified view on the theory and methodology focusing on the SFG-VS spectral lineshape, as well as the new opportunities in SFG-VS applications with such developments, some of the controversial issues that have been puzzling the community are discussed. The aim of this review is to present to the researchers and students interested in molecular surfaces and interfacial sciences up-to-date perspectives complementary to the existing textbooks and reviews on SFG-VS.

  10. IR visible sum-frequency vibrational spectroscopy of Biphenyl-3 methylene thiol monolayer on gold and silver: effect of the visible wavelength on the SFG spectrum

    Science.gov (United States)

    Humbert, C.; Dreesen, L.; Mani, A. A.; Caudano, Y.; Lemaire, J.-J.; Thiry, P. A.; Peremans, A.

    2002-04-01

    We measured IR-visible sum-frequency generation spectra of CH 3-(C 6H 4) 2-(CH 2) 3-S-H (Biphenyl-3) self-assembled monolayers on a silver and a gold substrate. For the latter substrate, we observed different interference patterns between the resonant signal of the CH vibration and the non-resonant contribution of the substrate as a function of the visible beam wavelength. The non-linear response of the gold substrate is enhanced around 480 nm corresponding to the s-d interband transition. Such effect is not observed for the silver substrate the interband transition of which is located out of the investigated visible spectral range of 450-700 nm.

  11. Amine Chemistry at Aqueous Interfaces: The Study of Organic Amines in Neutralizing Acidic Gases at an Air/Water Surface Using Vibrational Sum Frequency Spectroscopy

    Science.gov (United States)

    McWilliams, L.; Wren, S. N.; Valley, N. A.; Richmond, G.

    2014-12-01

    Small organic bases have been measured in atmospheric samples, with their sources ranging from industrial processing to animal husbandry. These small organic amines are often highly soluble, being found in atmospheric condensed phases such as fogwater and rainwater. Additionally, they display acid-neutralization ability often greater than ammonia, yet little is known regarding their kinetic and thermodynamic properties. This presentation will describe the molecular level details of a model amine system at the vapor/liquid interface in the presence of acidic gas. We find that this amine system shows very unique properties in terms of its bonding, structure, and orientation at aqueous surfaces. The results of our studies using a combination of computation, vibrational sum frequency spectroscopy, and surface tension will report the properties inherent to these atmospherically relevant species at aqueous surfaces.

  12. Sum Frequency Generation Vibrational Spectroscopy and Kinetic Study of 2-Methylfuran and 2,5-Dimethylfuran Hydrogenation over 7 nm Platinum Cubic Nanoparticles

    KAUST Repository

    Aliaga, Cesar

    2011-04-28

    Sum frequency generation vibrational spectroscopy and kinetic measurements obtained from gas chromatography were used to study the adsorption and hydrogenation of 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) over cubic Pt nanoparticles of 7 nm average size, synthesized by colloidal methods and cleaned by ultraviolet light and ozone treatment. Reactions carried out at atmospheric pressure in the temperature range of 20-120 °C produced dihydro and tetrahydro species, as well as ring-opening products (alcohols) and ring-cracking products, showing high selectivity toward ring opening throughout the entire temperature range. The aromatic rings (MF and DMF) adsorbed parallel to the nanoparticle surface. Results yield insight into various surface reaction intermediates and the reason for the significantly lower selectivity for ring cracking in DMF hydrogenation compared to MF hydrogenation. © 2011 American Chemical Society.

  13. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided?

    Science.gov (United States)

    Kesharwani, Manoj K; Brauer, Brina; Martin, Jan M L

    2015-03-05

    We have obtained uniform frequency scaling factors λ(harm) (for harmonic frequencies), λ(fund) (for fundamentals), and λ(ZPVE) (for zero-point vibrational energies (ZPVEs)) for the Weigend-Ahlrichs and other selected basis sets for MP2, SCS-MP2, and a variety of DFT functionals including double hybrids. For selected levels of theory, we have also obtained scaling factors for true anharmonic fundamentals and ZPVEs obtained from quartic force fields. For harmonic frequencies, the double hybrids B2PLYP, B2GP-PLYP, and DSD-PBEP86 clearly yield the best performance at RMSD = 10-12 cm(-1) for def2-TZVP and larger basis sets, compared to 5 cm(-1) at the CCSD(T) basis set limit. For ZPVEs, again, the double hybrids are the best performers, reaching root-mean-square deviations (RMSDs) as low as 0.05 kcal/mol, but even mainstream functionals like B3LYP can get down to 0.10 kcal/mol. Explicitly anharmonic ZPVEs only are marginally more accurate. For fundamentals, however, simple uniform scaling is clearly inadequate.

  14. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  15. Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC-H(+)-CO and N(2)-H(+)-N(2).

    Science.gov (United States)

    Terrill, Kasia; Nesbitt, David J

    2010-08-01

    Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.

  16. Prospective observational study on assessing the hemodynamic relevance of patent ductus arteriosus with frequency domain near-infrared spectroscopy.

    Science.gov (United States)

    Schwarz, Christoph E; Preusche, Antonio; Wolf, Martin; Poets, Christian F; Franz, Axel R

    2018-02-16

    What constitutes a hemodynamically relevant patent ductus arteriosus (hrPDA) in preterm infants is unclear. Different clinical and echocardiographic parameters are used, but a gold standard definition is lacking. Our objective was to evaluate associations between regional cerebral tissue oxygen saturation (rcStO 2 ), fraction of tissue oxygen extraction (rcFtO 2 E) measured by frequency domain near-infrared spectroscopy (fd-NIRS) and their correlation to echocardiographic, Doppler-ultrasound, and clinical parameters in preterm infants with and without a hrPDA. In this prospective observational study, 22 infants standard deviation (normalised to a median Hb of 13.8 mg/dl) was 57 ±5% for rcStO 2 and 0.39 ±0.05 for rcFtO 2 E. Comparing no-hrPDA with hrPDA infants, there were no significant differences in mean rcStO 2 (58 ±5% vs. 54 ±5%; p = .102), but in mean rcFtO 2 E (0.38 ±0.05 vs. 0.43 ±0.05; p = .038). Echocardiographic parameter and Doppler indices did not correlate with cerebral oxygenation. Oxygen transport capacity of the blood may confound NIRS data interpretation. Cerebral oxygenation determined by fd-NIRS provided additional information for PDA treatment decisions not offered by routine investigations. Whether indicating PDA therapy based on echocardiography complemented by data on cerebral oxygenation results in better outcomes should be investigated in future studies.

  17. Infrared spectroscopy of flavones and flavonols. Reexamination of the hydroxyl and carbonyl vibrations in relation to the interactions of flavonoids with membrane lipids

    Science.gov (United States)

    Baranović, Goran; Šegota, Suzana

    2018-03-01

    Detailed vibrational assignments for twelve flavonoids (seven flavones (flavone, 3- and 5-hydroxyflavone, chrysin, apigenin, fisetin and luteolin) and five flavonols (galangin, kaempferol, quercetin, morin and myricetin)) have been made based on own and reported experimental data and calculations at the B3LYP/6-31 + G(d,p) level of theory. All the molecules are treated in a uniform way by using the same set of redundancy-free set of internal coordinates. A generalized harmonic mode mixing is used to corroborate the vibrational characteristics of this important class of molecules. Each flavonoid molecule can be treated from the vibrational point of view as made of relatively weakly coupled chromone and phenyl part. It has been shown that the strongest band around 1600 cm- 1 need not be attributable to the Cdbnd O stretching. The way the vibrations of any of the hydroxyl groups are mixed with ring vibrations and vibrations of other neighboring hydroxyl groups is rather involved. This imposes severe limitations on any attempt to describe normal modes of a flavonol in terms of hydroxyl or carbonyl group vibrations. The role of water molecules in the appearance of flavonoid IR spectra is emphasized. Knowing for the great affinity of phosphate groups in lipids towards water, the immediate consequence is a reasonable assumption that flavonoid lipid interactions is mediated by water.

  18. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  19. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  20. Application of a modified complementary filtering technique for increased aircraft control system frequency bandwidth in high vibration environment

    Science.gov (United States)

    Garren, J. F., Jr.; Niessen, F. R.; Abbott, T. S.; Yenni, K. R.

    1977-01-01

    A modified complementary filtering technique for estimating aircraft roll rate was developed and flown in a research helicopter to determine whether higher gains could be achieved. Use of this technique did, in fact, permit a substantial increase in system frequency bandwidth because, in comparison with first-order filtering, it reduced both noise amplification and control limit-cycle tendencies.

  1. Molecular and vibrational structure of diphenylether and its 4,4' -dibromo derivative. Infrared linear dichroism spectroscopy and density functional theory calculations

    DEFF Research Database (Denmark)

    Eriksen, Troels K; Karlsen, Eva; Spanget-Larsen, Jens

    2015-01-01

    The title compounds were investigated by means of Linear Dichroism (LD) IR spectroscopy on samples partially aligned in uniaxially stretched low-density polyethylene and by density functional theory calculations. Satisfactory overall agreement between observed and calculated vibrational wavenumbers...

  2. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  3. Study of the solvent effects on the molecular structure and Cdbnd O stretching vibrations of flurbiprofen

    Science.gov (United States)

    Tekin, Nalan; Pir, Hacer; Sagdinc, Seda

    2012-12-01

    The effects of 15 solvents on the C=O stretching vibrational frequency of flurbiprofen (FBF) were determined to investigate solvent-solute interactions. Solvent effects on the geometry and C=O stretching vibrational frequency, ν(C=O), of FBF were studied theoretically at the DFT/B3LYP and HF level in combination with the polarizable continuum model and experimentally using attenuated total reflection infrared spectroscopy (ATR-IR). The calculated C=O stretching frequencies in the liquid phase are in agreement with experimental values. Moreover, the wavenumbers of ν(C=O) of FBF in different solvents have been obtained and correlated with the Kirkwood-Bauer-Magat equation (KBM), the solvent acceptor numbers (ANs), and the linear solvation energy relationships (LSERs). The solvent-induced stretching vibrational frequency shifts displayed a better correlation with the LSERs than with the ANs and KBM.

  4. Frequency analysis of heart rate variability: a useful assessment tool of linearly polarized near-infrared irradiation to stellate ganglion area for burning mouth syndrome.

    Science.gov (United States)

    Momota, Yukihiro; Takano, Hideyuki; Kani, Koichi; Matsumoto, Fumihiro; Motegi, Katsumi; Aota, Keiko; Yamamura, Yoshiko; Omori, Mayuko; Tomioka, Shigemasa; Azuma, Masayuki

    2013-03-01

    Burning mouth syndrome (BMS) is characterized by the following subjective complaints without distinct organic changes: burning sensation in mouth or chronic pain of tongue. BMS is also known as glossodynia; both terms are used equivalently in Japan. Although the real cause of BMS is still unknown, it has been pointed out that BMS is related to some autonomic abnormality, and that stellate ganglion near-infrared irradiation (SGR) corrects the autonomic abnormality. Frequency analysis of heart rate variability (HRV) is expected to be useful for assessing autonomic abnormality. This study investigated whether frequency analysis of HRV could reveal autonomic abnormality associated with BMS, and whether autonomic changes were corrected after SGR. Eight subjects received SGR; the response to SGR was assessed by frequency analysis of HRV. No significant difference of autonomic activity concerning low-frequency (LF) norm, high-frequency (HF) norm, and low-frequency/high-frequency (LF/HF) was found between SGR effective and ineffective groups. Therefore, we proposed new parameters: differential normalized low frequency (D LF norm), differential normalized high frequency (D HF norm), and differential low-frequency/high-frequency (D LF/HF), which were defined as differentials between original parameters just before and after SGR. These parameters as indexes of responsiveness of autonomic nervous system (ANS) revealed autonomic changes in BMS, and BMS seems to be related to autonomic instability rather than autonomic imbalance. Frequency analysis of HRV revealed the autonomic instability associated with BMS and enabled tracing of autonomic changes corrected with SGR. It is suggested that frequency analysis of HRV is very useful in follow up of BMS and for determination of the therapeutic efficacy of SGR. Wiley Periodicals, Inc.

  5. System Detects Vibrational Instabilities

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  6. Direct comparison of phase-sensitive vibrational sum frequency generation with maximum entropy method: case study of water.

    Science.gov (United States)

    de Beer, Alex G F; Samson, Jean-Sebastièn; Hua, Wei; Huang, Zishuai; Chen, Xiangke; Allen, Heather C; Roke, Sylvie

    2011-12-14

    We present a direct comparison of phase sensitive sum-frequency generation experiments with phase reconstruction obtained by the maximum entropy method. We show that both methods lead to the same complex spectrum. Furthermore, we discuss the strengths and weaknesses of each of these methods, analyzing possible sources of experimental and analytical errors. A simulation program for maximum entropy phase reconstruction is available at: http://lbp.epfl.ch/. © 2011 American Institute of Physics

  7. Effect of Elevated Intracranial Pressure on Amplitudes and Frequency Tuning of Ocular Vestibular Evoked Myogenic Potentials Elicited by Bone-Conducted Vibration.

    Science.gov (United States)

    Gürkov, Robert; Speierer, Guillaume; Wittwer, Luis; Kalla, Roger

    Recently, it could be demonstrated that an increased intracranial pressure causes a modulation of the air conducted sound evoked ocular vestibular evoked myogenic potential (oVEMP). The mechanism for this modulation is not resolved and may depend on a change of either receptor excitability or sound energy transmission. oVEMPs were elicited in 18 healthy subjects with a minishaker delivering 500 and 1000 Hz tone bursts, in supine and tilted positions. The study could confirm the frequency tuning of oVEMP. However, at neither stimulus frequency could a modulating effect of increased intracranial pressure be observed. These data suggest that the observed modulation of the oVEMP response by an increased intracranial pressure is primarily due to the effect of an increased intralabyrinthine pressure onto the stiffness of the inner ear contents and the middle ear-inner ear junction. Future studies on the effect of intracranial pressure on oVEMP should use air-conducted sound and not bone-conducted vibration.

  8. Hydration of Sulphobetaine (SB) and Tetra(ethylene glycol) (EG4)-Terminated Self-Assembled Monolayers Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy

    Science.gov (United States)

    Stein, M. Jeanette; Weidner, Tobias; McCrea, Keith; Castner, David G.; Ratner, Buddy D.

    2010-01-01

    Sum frequency generation (SFG) vibrational spectroscopy is used to study the surface and the underlying substrate of both homogeneous and mixed self-assembled monolayers (SAMs) of 11-mercaptoundecyl-1-sulphobetainethiol (HS(CH2)11N+(CH3)2(CH2)3SO3−, SB) and 1-mercapto-11-undecyl tetra(ethylene glycol) (HS(CH2)11O(CH2CH2O)4OH, EG4) with an 11-mercapto-1-undecanol (HS(CH2)11OH, MCU) diluent. SFG results on the C–H region of the dry and hydrated SAMs gave an in situ look into the molecular orientation and suggested an approach to maximize signal-to-noise ratio on these difficult to analyze hydrophilic SAMs. Vibrational fingerprint studies in the 3000–3600 cm−1 spectral range for the SAMs exposed serially to air, water, and deuterated water revealed that a layer of tightly-bound structured water was associated with the surface of a non-fouling monolayer but was not present on a hydrophobic N-undecylmercaptan (HS(CH2)10CH3, UnD) control. The percentage of water retained upon submersion in D2O correlated well with the relative amount of protein that was previously shown to absorb onto the monolayers. These results provide evidence supporting the current theory regarding the role of a tightly-bound vicinal water layer in the protein resistance of a non-fouling group. PMID:19639981

  9. High-frequency, low-intensity vibrations increase bone mass and muscle strength in upper limbs, improving autonomy in disabled children.

    Science.gov (United States)

    Reyes, M Loreto; Hernández, Marta; Holmgren, Luz J; Sanhueza, Enrique; Escobar, Raúl G

    2011-08-01

    Disuse osteoporosis in children is a progressive disease that can affect quality of life. High-frequency, low-magnitude vibration (HFLMV) acts as an anabolic signal for bone and muscle. We undertook a prospective, randomized, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of regional HFLMV in disabled children. Sixty-five children 6 to 9 year of age were randomized into three groups: placebo, 60 Hz, and 90 Hz. In the two active groups, a 0.3-g mechanical vibration was delivered to the radii and femurs for 5 minutes each day. After 6 months, the main endpoint was bone mineral density (BMD) at the ultradistal radius (UDR), 33% radii (33%R), and femoral necks (FN). Secondary endpoints were area and bone mineral content (BMC) at the UDR, 33%R, and FN; grip force of the upper and lower limbs; motor function; and PedsQL evaluation. An intention-to-treat analysis was used. Fifty-seven children (88%) completed the protocol. A significant increase was observed in the 60-Hz group relative to the other groups in BMD at the UDR (p = .011), in grip force of the upper limbs (p = .035), and in the "daily activities item" (p = .035). A mixed model to evaluate the response to intervention showed a stronger effect of 60 Hz on patients with cerebral palsy on the UDR and that between-subject variability significantly affected the response. There were no reported side effects of the intervention. This work provides evidence that regional HFLMV is an effective and safe strategy to improve bone mass, muscle strength, and possibly independence in children with motor disabilities. Copyright © 2011 American Society for Bone and Mineral Research.

  10. High-Pressure Catalytic Reactions of C6 Hydrocarbons on PlatinumSingle-Crystals and nanoparticles: A Sum Frequency Generation VibrationalSpectroscopic and Kinetic Study

    Energy Technology Data Exchange (ETDEWEB)

    Bratlie, Kaitlin [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Catalytic reactions of cyclohexene, benzene, n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene on platinum catalysts were monitored in situ via sum frequency generation (SFG) vibrational spectroscopy and gas chromatography (GC). SFG is a surface specific vibrational spectroscopic tool capable of monitoring submonolayer coverages under reaction conditions without gas-phase interference. SFG was used to identify the surface intermediates present during catalytic processes on Pt(111) and Pt(100) single-crystals and on cubic and cuboctahedra Pt nanoparticles in the Torr pressure regime and at high temperatures (300K-450K). At low pressures (<10-6 Torr), cyclohexene hydrogenated and dehydrogenates to form cyclohexyl (C6H11) and π-allyl C6H9, respectively, on Pt(100). Increasing pressures to 1.5 Torr form cyclohexyl, π-allyl C6H9, and 1,4-cyclohexadiene, illustrating the necessity to investigate catalytic reactions at high-pressures. Simultaneously, GC was used to acquire turnover rates that were correlated to reactive intermediates observed spectroscopically. Benzene hydrogenation on Pt(111) and Pt(100) illustrated structure sensitivity via both vibrational spectroscopy and kinetics. Both cyclohexane and cyclohexene were produced on Pt(111), while only cyclohexane was formed on Pt(100). Additionally, π-allyl c-C6H9 was found only on Pt(100), indicating that cyclohexene rapidly dehydrogenates on the (100) surface. The structure insensitive production of cyclohexane was found to exhibit a compensation effect and was analyzed using the selective energy transfer (SET) model. The SET model suggests that the Pt-H system donates energy to the E2u mode of free benzene, which leads to catalysis. Linear C6 (n-hexane, 2-methylpentane, 3-methylpentane, and 1-hexene) hydrocarbons were also investigated in the presence and absence of excess hydrogen on Pt

  11. Sum Frequency Generation Vibrational Spectroscopy Studies on ModelPeptide Adsorption at the Hydrophobic Solid-Water and HydrophilicSolid-Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    York, Roger L. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Sum frequency generation (SFG) vibrational spectroscopy has been used to study the interfacial structure of several polypeptides and amino acids adsorbed to hydrophobic and hydrophilic surfaces under a variety of experimental conditions. Peptide sequence, peptide chain length, peptide hydrophobicity, peptide side-chain type, surface hydrophobicity, and solution ionic strength all affect an adsorbed peptide's interfacial structure. Herein, it is demonstrated that with the choice of simple, model peptides and amino acids, surface specific SFG vibrational spectroscopy can be a powerful tool to elucidate the interfacial structure of these adsorbates. Herein, four experiments are described. In one, a series of isosequential amphiphilic peptides are synthesized and studied when adsorbed to both hydrophobic and hydrophilic surfaces. On hydrophobic surfaces of deuterated polystyrene, it was determined that the hydrophobic part of the peptide is ordered at the solid-liquid interface, while the hydrophilic part of the peptide appears to have a random orientation at this interface. On a hydrophilic surface of silica, it was determined that an ordered peptide was only observed if a peptide had stable secondary structure in solution. In another experiment, the interfacial structure of a model amphiphilic peptide was studied as a function of the ionic strength of the solution, a parameter that could change the peptide's secondary structure in solution. It was determined that on a hydrophobic surface, the peptide's interfacial structure was independent of its structure in solution. This was in contrast to the adsorbed structure on a hydrophilic surface, where the peptide's interfacial structure showed a strong dependence on its solution secondary structure. In a third experiment, the SFG spectra of lysine and proline amino acids on both hydrophobic and hydrophilic surfaces were obtained by using a different experimental geometry that increases the SFG signal

  12. Communication: The highest frequency hydrogen bond vibration and an experimental value for the dissociation energy of formic acid dimer

    DEFF Research Database (Denmark)

    Kollipost, F.; Larsen, René Wugt; Domanskaya, A.V.

    2012-01-01

    The highest frequency hydrogen bond fundamental of formic acid dimer, ν24 (Bu), is experimentally located at 264 cm−1. FTIR spectra of this in-plane bending mode of (HCOOH)2 and band centers of its symmetric D isotopologues (isotopomers) recorded in a supersonic slit jet expansion are presented...... thermodynamics treatment of the dimerization process up to room temperature. We obtain D0 = 59.5(5) kJ/mol as the best experimental estimate for the dimer dissociation energy at 0 K. Further improvements have to wait for a more consistent determination of the room temperature equilibrium constant....

  13. Path integral Liouville dynamics: Applications to infrared spectra of OH, water, ammonia, and methane

    International Nuclear Information System (INIS)

    Liu, Jian; Zhang, Zhijun

    2016-01-01

    Path integral Liouville dynamics (PILD) is applied to vibrational dynamics of several simple but representative realistic molecular systems (OH, water, ammonia, and methane). The dipole-derivative autocorrelation function is employed to obtain the infrared spectrum as a function of temperature and isotopic substitution. Comparison to the exact vibrational frequency shows that PILD produces a reasonably accurate peak position with a relatively small full width at half maximum. PILD offers a potentially useful trajectory-based quantum dynamics approach to compute vibrational spectra of molecular systems

  14. Comparative study by infrared spectrometry of the behaviour of Y-H and Y-D groups. Valencies frequency and molecular association constants

    International Nuclear Information System (INIS)

    Leicknam, J.P.

    1966-02-01

    In the first part of the report a comparison is made of the relative lowering of the frequencies determined using homologous hydrogenated and deuterated vibrators dissolved in various solvents, with the gaseous state as reference. It is confirmed that one always has (Δν/ν g ) YH ≥ (Δν/ν g ) YD . Certain results suggest the existence of interactions between vibrational and electronic states, but the different behaviours of OH and OD molecules and of NH and deuterated-N compounds show that the phenomenon is complex. In the second part of the report a quantitative examination is made of about a hundred molecular associations which are formed in solution in an inert solvent by means of hydrogen or deuterium bridges. The proton and deuton donor auto-associations are studied first of all, the association constants K H are then determined for the proton donors with various acceptors, as are the K D /K H ratios obtained after partial substitution in these donors of the hydrogen by deuterium. The results show that it is necessary to distinguish thermo-dynamic effects (which can be calculated when all frequencies of the free dynamic and complexed molecules, are known) and chemical effects connected with the nature of the donors and acceptors; among these latter, the possible formation of 'ionic pairs' has without doubt a great influence on the direction of the isotopic effect. (author) [fr

  15. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  16. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.

    Science.gov (United States)

    Vendrell, Oriol; Brill, Michael; Gatti, Fabien; Lauvergnat, David; Meyer, Hans-Dieter

    2009-06-21

    Quantum dynamical calculations are reported for the zero point energy, several low-lying vibrational states, and the infrared spectrum of the H(5)O(2)(+) cation. The calculations are performed by the multiconfiguration time-dependent Hartree (MCTDH) method. A new vector parametrization based on a mixed Jacobi-valence description of the system is presented. With this parametrization the potential energy surface coupling is reduced with respect to a full Jacobi description, providing a better convergence of the n-mode representation of the potential. However, new coupling terms appear in the kinetic energy operator. These terms are derived and discussed. A mode-combination scheme based on six combined coordinates is used, and the representation of the 15-dimensional potential in terms of a six-combined mode cluster expansion including up to some 7-dimensional grids is discussed. A statistical analysis of the accuracy of the n-mode representation of the potential at all orders is performed. Benchmark, fully converged results are reported for the zero point energy, which lie within the statistical uncertainty of the reference diffusion Monte Carlo result for this system. Some low-lying vibrationally excited eigenstates are computed by block improved relaxation, illustrating the applicability of the approach to large systems. Benchmark calculations of the linear infrared spectrum are provided, and convergence with increasing size of the time-dependent basis and as a function of the order of the n-mode representation is studied. The calculations presented here make use of recent developments in the parallel version of the MCTDH code, which are briefly discussed. We also show that the infrared spectrum can be computed, to a very good approximation, within D(2d) symmetry, instead of the G(16) symmetry used before, in which the complete rotation of one water molecule with respect to the other is allowed, thus simplifying the dynamical problem.

  17. Infrared, diode laser spectroscopy of the Ar--N2O complex: Observation of the intermolecular bending mode in combination with the highest frequency intramolecular stretching mode

    International Nuclear Information System (INIS)

    Hu, T.A.; Chappell, E.L.; Sharpe, S.W.

    1993-01-01

    Rotationally resolved vibrational spectra consisting of a-type transitions have been observed for the low-frequency, intermolecular bending mode in combination with the highest frequency, intramolecular stretching mode of Ar--N 2 O. Analysis of the spectral data places the origin of the combination band at 2256.1 cm -1 while the origin of the intramolecular stretching fundamental is at 2223.9 cm -1 . The difference between these two origins is approximately 32.2 cm -1 and agrees well with our calculated frequency of 31.5 cm -1 for the intermolecular bending mode, which was obtained by analysis of the centrifugal distortion constants. In addition, argon--nitrous oxide exhibits an anomalously large inertial defect of 10.96 amu A 2 in the combination state. This indicates a breakdown in the assumption of separation between vibration and rotation. While much of the inertial defect in the ground state can be accounted for by including Coriolis interactions, that occurring in the combination state is only partially accounted for by a similar analysis. Small, but significant changes, are observed in both the radial and angular parameters for Ar--N 2 O when going from the ground to the combination state, indicating large amplitude motion. The combination band is approximately 200 times less intense than the high-frequency, stretching fundamental of Ar--N 2 O. In addition, over 400 new rovibrational transitions are assigned to the previously observed 1 0 1 intramolecular stretching fundamental of the complex, and the subsequent rotational analysis is found to be in close agreement with earlier studies. Data were taken on a newly built, rapid-scan, diode laser spectrometer that incorporates a 12 cmx200 μm pulsed slit-expansion nozzle

  18. Vibrational spectra of cholorophylls a and b labeled with 26Mg and 15N

    International Nuclear Information System (INIS)

    Lutz, M.; Kleo, J.; Gilet, R.; Henry, M.; Plus, R.; Leicknam, J.P.

    1975-01-01

    Chlorophyll molecules having their central natural magnesium replaced by 26 Mg and their natural nitrogens by 15 N were obtained by biosynthesis and examined by infrared and resonance Raman spectrometry. These observations provide unequivocal assignments of the molecular vibrational frequencies which involve the magnesium and nitrogen atoms. In particular, in both infrared and resonance Raman spectra, the absence of displacements in bands of frequency higher than 1550 cm -1 indicated the insignificant contributions of C=N stretching modes, which have maximum activity in the 1050 to 1180 cm -1 region. These results also indicate a configuration of chlorophyll in which the magnesium atom is not at a center of symmetry

  19. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  20. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  1. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  2. Low energy electron diffraction (LEED) and sum frequency generation (SFG) vibrational spectroscopy studies of solid-vacuum, solid-air and solid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, Saskia [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Electron based surface probing techniques can provide detailed information about surface structure or chemical composition in vacuum environments. The development of new surface techniques has made possible in situ molecular level studies of solid-gas interfaces and more recently, solid-liquid interfaces. The aim of this dissertation is two-fold. First, by using novel sample preparation, Low Energy Electron Diffraction (LEED) and other traditional ultra high vacuum (UHV) techniques are shown to provide new information on the insulator/vacuum interface. The surface structure of the classic insulator NaCl has been determined using these methods. Second, using sum frequency generation (SFG) surface specific vibrational spectroscopy studies were performed on both the biopolymer/air and electrode/electrolyte interfaces. The surface structure and composition of polyetherurethane-silicone copolymers were determined in air using SFG, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). SFG studies of the electrode (platinum, gold and copper)/electrolyte interface were performed as a function of applied potential in an electrochemical cell.

  3. Water Orientation at Ceramide/Water Interfaces Studied by Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy and Molecular Dynamics Simulation

    KAUST Repository

    Adhikari, Aniruddha

    2016-10-10

    Lipid/water interaction is essential for many biological processes. The water structure at the nonionic lipid interface remains little known, and there is no scope of a priori prediction of water orientation at nonionic interfaces, either. Here, we report our study combining advanced nonlinear spectroscopy and molecular dynamics simulation on the water orientation at the ceramide/water interface. We measured χ spectrum in the OH stretch region of ceramide/isotopically diluted water interface using heterodyne-detected vibrational sum-frequency generation spectroscopy and found that the interfacial water prefers an overall hydrogen-up orientation. Molecular dynamics simulation indicates that this preferred hydrogen-up orientation of water is determined by a delicate balance between hydrogen-up and hydrogen-down orientation induced by lipid-water and intralipid hydrogen bonds. This mechanism also suggests that water orientation at neutral lipid interfaces depends highly on the chemical structure of the lipid headgroup, in contrast to the charged lipid interfaces where the net water orientation is determined solely by the charge of the lipid headgroup.

  4. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  5. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  6. Hydrogenation of the alpha,beta-Unsaturated Aldehydes Acrolein, Crotonaldehyde, and Prenal over Pt Single Crystals: A Kinetic and Sum-Frequency Generation Vibrational Spectroscopy Study

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, C.J.; Somorjai, G.A.

    2008-11-26

    Sum-frequency generation vibrational spectroscopy (SFG-VS) and kinetic measurements using gas chromatography have been used to study the surface reaction intermediates during the hydrogenation of three {alpha},{beta}-unsaturated aldehydes, acrolein, crotonaldehyde, and prenal, over Pt(111) at Torr pressures (1 Torr aldehyde, 100 Torr hydrogen) in the temperature range of 295K to 415K. SFG-VS data showed that acrolein has mixed adsorption species of {eta}{sub 2}-di-{sigma}(CC)-trans, {eta}{sub 2}-di-{sigma}(CC)-cis as well as highly coordinated {eta}{sub 3} or {eta}{sub 4} species. Crotonaldehyde adsorbed to Pt(111) as {eta}{sub 2} surface intermediates. SFG-VS during prenal hydrogenation also suggested the presence of the {eta}{sub 2} adsorption species, and became more highly coordinated as the temperature was raised to 415K, in agreement with its enhanced C=O hydrogenation. The effect of catalyst surface structure was clarified by carrying out the hydrogenation of crotonaldehyde over both Pt(111) and Pt(100) single crystals while acquiring the SFG-VS spectra in situ. Both the kinetics and SFG-VS showed little structure sensitivity. Pt(100) generated more decarbonylation 'cracking' product while Pt(111) had a higher selectivity for the formation of the desired unsaturated alcohol, crotylalcohol.

  7. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    International Nuclear Information System (INIS)

    O’Brien, Daniel B.; Massari, Aaron M.

    2015-01-01

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report

  8. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation.

    Science.gov (United States)

    O'Brien, Daniel B; Massari, Aaron M

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N'-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  9. Experimental evidence for an optical interference model for vibrational sum frequency generation on multilayer organic thin film systems. I. Electric dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    O’Brien, Daniel B.; Massari, Aaron M., E-mail: massari@umn.edu [Department of Chemistry, University of Minnesota—Twin Cities, 207 Pleasant Street SE, Minneapolis, Minnesota 55455 (United States)

    2015-01-14

    In the field of vibrational sum frequency generation spectroscopy (VSFG) applied to organic thin film systems, a significant challenge to data analysis is in the accurate description of optical interference effects. Herein, we provide experimental evidence that a model recently developed in our lab provides an accurate description of this phenomenon. We studied the organic small molecule N,N′-dioctyl-3,4,9,10-perylenedicarboximide vapor deposited as a thickness gradient on silicon wafer substrates with two oxide thicknesses and two surface preps. VSFG data were obtained using the ssp and the sps polarization combinations in the imide carbonyl stretching region as a function of organic thickness. In this first of two reports, the data are modeled and interpreted within the ubiquitous electric dipole approximation for VSFG. The intrinsic sample responses are parameterized during the fitting routines while optical interference effects are simply calculated from the model using known refractive indices, thin film thicknesses, and beam angles. The results indicate that the thin film model provides a good description of optical interferences, indicating that interfacial terms are significant. Inconsistencies between the fitting results within the bounds of the electric dipole response motivate deliberation for additional effects to be considered in the second report.

  10. Phase transition behaviors of the supported DPPC bilayer investigated by sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM).

    Science.gov (United States)

    Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen

    2016-01-21

    The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.

  11. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    Science.gov (United States)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  12. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  13. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2009-01-01

    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  14. Infrared beam-steering using acoustically modulated surface plasmons over a graphene monolayer

    KAUST Repository

    Chen, Paiyen

    2014-09-01

    We model and design a graphene-based infrared beamformer based on the concept of leaky-wave (fast traveling wave) antennas. The excitation of infrared surface plasmon polaritons (SPPs) over a \\'one-atom-thick\\' graphene monolayer is typically associated with intrinsically \\'slow light\\'. By modulating the graphene with elastic vibrations based on flexural waves, a dynamic diffraction grating can be formed on the graphene surface, converting propagating SPPs into fast surface waves, able to radiate directive infrared beams into the background medium. This scheme allows fast on-off switching of infrared emission and dynamic tuning of its radiation pattern, beam angle and frequency of operation, by simply varying the acoustic frequency that controls the effective grating period. We envision that this graphene beamformer may be integrated into reconfigurable transmitter/receiver modules, switches and detectors for THz and infrared wireless communication, sensing, imaging and actuation systems.

  15. Attitudes Toward, and Use of, Vibrators in China

    OpenAIRE

    Jing, S.; Lay, A.; Weis, L.; Furnham, A.

    2018-01-01

    The current study examined the relationship between traditional masculine traits and attitudes toward vibrator use, actual vibrator use, and frequency of vibrator use in China. In all, 235 Chinese females aged between 16 and 58 years completed a questionnaire regarding attitudes toward, and personal use of, vibrators. The results showed a positive association between masculine traits and attitudes toward women's vibrator use, attitudes toward vibrator use and actual vibrator use, as well as f...

  16. High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Zhou, W. J.; Chen, M.; Heydari, D.; Haddadi, A.; McClintock, R. [Center for Quantum Devices, Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208 (United States); Amanti, M.; Sirtori, C. [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot and CNRS, UMR7162, 75205 Paris (France)

    2015-02-02

    We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.

  17. High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm

    International Nuclear Information System (INIS)

    Lu, Q. Y.; Razeghi, M.; Slivken, S.; Bandyopadhyay, N.; Bai, Y.; Zhou, W. J.; Chen, M.; Heydari, D.; Haddadi, A.; McClintock, R.; Amanti, M.; Sirtori, C.

    2015-01-01

    We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm −1 and a high power output of 180 mW for ∼176 comb modes

  18. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy

    Science.gov (United States)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-01

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500 cm- 1 region were measured for methanol, methanol-d3, and t-butanol-d9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V = 1-4) for 0.5 M methanol, 0.5 M methanol‑d3, and 0.5 M t-butanol-d9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity.

  19. Low-magnitude high-frequency vibration enhances gene expression related to callus formation, mineralization and remodeling during osteoporotic fracture healing in rats.

    Science.gov (United States)

    Chung, Shu-Lu; Leung, Kwok-Sui; Cheung, Wing-Hoi

    2014-12-01

    Low magnitude high frequency vibration (LMHFV) has been shown to improve anabolic and osteogenic responses in osteoporotic intact bones and during osteoporotic fracture healing; however, the molecular response of LMHFV during osteoporotic fracture healing has not been investigated. It was hypothesized that LMHFV could enhance osteoporotic fracture healing by regulating the expression of genes related to chondrogenesis (Col-2), osteogenesis (Col-1) and remodeling (receptor activator for nuclear factor- κ B ligand (RANKL) and osteoproteger (OPG)). In this study, the effects of LMHFV on both osteoporotic and normal bone fracture healing were assessed by endpoint gene expressions, weekly radiographs, and histomorphometry at weeks 2, 4 and 8 post-treatment. LMHFV enhanced osteoporotic fracture healing by up-regulating the expression of chondrogenesis-, osteogenesis- and remodeling-related genes (Col-2 at week 4 (p=0.008), Col-1 at week 2 and 8 (p<0.001 and p=0.008) and RANKL/OPG at week 8 (p=0.045)). Osteoporotic bone had a higher response to LMHFV than normal bone and showed significantly better results as reflected by increased expression of Col-2 and Col-1 at week 2 (p<0.001 for all), larger callus width at week 2 (p=0.001), callus area at week 1 and 5(p<0.05 for all) and greater relative area of osseous tissue (p=0.002) at week 8. This study helps to understand how LMHFV regulates gene expression of callus formation, mineralization and remodeling during osteoporotic fracture healing. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. Dependence of the frequency spectrum of small amplitude vibrations superimposed on finite deformations of a nonlinear, cylindrical elastic body on residual stress

    KAUST Repository

    Gorb, Yuliya; Walton, Jay R.

    2010-01-01

    We model and analyze the response of nonlinear, residually stressed elastic bodies subjected to small amplitude vibrations superimposed upon large deformations. The problem derives from modeling the use of intravascular ultrasound (IVUS) imaging