WorldWideScience

Sample records for vibrational dephasing time

  1. Vibrational frequencies and dephasing times in excited electronic states by femtosecond time-resolved four-wave mixing

    Science.gov (United States)

    Joo, Taiha; Albrecht, A. C.

    1993-06-01

    Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.

  2. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Raman study of vibrational dephasing in liquid CH3CN and CD3CN

    International Nuclear Information System (INIS)

    Schroeder, J.; Schiemann, V.H.; Sharko, P.T.; Jonas, J.

    1977-01-01

    The Raman line shapes of the ν 1 (a 1 ) C--H and C--D fundamentals in liquid acetonitrile and acetonitrile-d 3 have been measured as a function of pressure up to 4 kbar within the temperature interval 30--120 degreeC. Densities have also been determined. From the isotropic component of the vibrational Raman band shape the vibrational relaxation times have been obtained as a function of temperature and pressure (density). The experimental results can be summarized as follows: (i) as T increases at constant density rho, the vibrational relaxation rate (tau/sub vib/) -1 increases; (ii) at constant T as density is raised tau/sub vib/ -1 increases; (iii) at constant pressure the T increase produces higher tau/sub vib/ -1 , however, the change is more pronounced for the CD 3 CN liquid. Isotopic dilution studies of the CH 3 CN/CD 3 CN mixtures shows no significant effect on (tau/sub vib/ -1 ). The experimental data are interpreted in terms of the Kubo stochastic line shape theory and the dephasing model of Fischer and Laubereau. The results based on Kubo formalism indicate that dephasing is the dominant relaxation mechanism and that the modulation is fast. The isolated binary collision model proposed by Fischer and Laubereau for vibrational dephasing reproduces the essential features of the density and temperature dependence of the (tau/sub vib/) -1 and suggests that pure dephasing is the dominant broadening mechanism for the isotropic line shapes studied. In the calculation the elastic collision times were approximated by the Enskog relaxation times

  4. Dephasing times in quantum dots due to elastic LO phonon-carrier collisions

    DEFF Research Database (Denmark)

    Uskov, A. V.; Jauho, Antti-Pekka; Tromborg, Bjarne

    2000-01-01

    Interpretation of experiments on quantum dot (QD) lasers presents a challenge: the phonon bottleneck, which should strongly suppress relaxation and dephasing of the discrete energy states, often seems to be inoperative. We suggest and develop a theory for an intrinsic mechanism for dephasing in Q......: second-order elastic interaction between quantum dot charge carriers and LO phonons. The calculated dephasing times are of the order of 200 fs at room temperature, consistent with experiments. The phonon bottleneck thus does not prevent significant room temperature dephasing....

  5. Role of energy exchange in vibrational dephasing processes in liquids and solids

    International Nuclear Information System (INIS)

    Marks, S.

    1981-08-01

    Three theories which claim relevance to the dephasing of molecular vibrations in condensed phase matter are presented. All of these theories predict (in certain limiting cases) that the widths and shifts of molecular vibrations will obey an Arrhenius temperature dependence. The basic tenets of the theories are detailed so that the differences between them may be used in an experiment to distinguish between them. One model, based on intermolecular energy exchange of low-frequency modes, results in dephasing the high-frequency modes when anharmonic coupling is present. A computer analysis of temperature dependent experimental lineshapes can result in the extraction of various parameters such as the anharmonic shifts and the exchange rates. It is shown that, in order to properly assess the relative validity of the three models, other evidence must be obtained such as the spectral parameters of the low-frequency modes, the combination bands, and the isotopic dilution behavior. This evidence is presented for d 14 -durene (perdeutero-1,2,4,5-tetramethylbenzene) and compared to previous data obtained on pure h 14 -durene. An extension of the (HSC) intermolecular energy exchange model which allows for the possibility of partial delocalization of the low-frequency modes gives an adequate description of the experimental evidence. Isotopic dilution experiments, in particular, have resulted in a detailed picture of the energy transfer dynamics of the low-frequency modes. A section in which some spontaneous Raman spectra support a model of inhomogeneous broadening in liquids based on results of picosecond stimulated Raman spectroscopy is presented. The model is that a distribution of environmental sites is created by a distribution in the local density and thus creates inhomogeneous broadening

  6. Critical test of vibrational dephasing theories in solids using spontaneous Raman scattering in isotopically mixed crystals

    International Nuclear Information System (INIS)

    Marks, S.; Cornelius, P.A.; Harris, C.B.

    1980-01-01

    A series of experiments have been conducted in order to evaluate the relative importance of several recent theories of vibrational dephasing in solids. The theories are discussed briefly, and are used to interpret the temperature dependence of the C--H and C--D stretch bands in the spontaneous Raman spectra of h 14 - and d 14 -1,2,4,5-tetramethyl benzene (durene). The infrared spectra of these same molecules are also reported in the region of the combination bands involving C--H (or C--D) stretches and low-frequency modes. The results support the applicability of the model of Harris et al., [C. B. Harris, R. M. Shelby and P. A. Cornelius, Phys. Rev. Lett. 38, 1415 (1977); Chem Phys. Lett. 57, 8 (1978); R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem. Phys. 70, 34 (1979)], based on energy exchange in anharmonically coupled low-frequency modes. This theory is then used, in connection with Raman spectra obtained in isotopically mixed samples of durene, to elucidate the vibrational dynamics underlying the dephasing. It is found that the results are consistent with the hypothesis that some low-frequency modes in this molecule are significantly delocalized or ''excitonic'' in character, and that this delocalization may be studied by means of Raman spectroscopy on the low-frequency modes themselves, as well as by exchange analysis of the coupled high-frequency modes. These conclusions represent a generalization and extension of the previously published exchange model [R. M. Shelby, C. B. Harris, and P. A. Cornelius, J. Chem Phys. 70, 34 (1979)

  7. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    Science.gov (United States)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  8. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  9. Dynamical decoupling sequences for multi-qubit dephasing suppression and long-time quantum memory

    International Nuclear Information System (INIS)

    Paz-Silva, Gerardo A; Lee, Seung-Woo; Green, Todd J; Viola, Lorenza

    2016-01-01

    We consider a class of multi-qubit dephasing models that combine classical noise sources and linear coupling to a bosonic environment, and are controlled by arbitrary sequences of dynamical decoupling pulses. Building on a general transfer filter-function framework for open-loop control, we provide an exact representation of the controlled dynamics for arbitrary stationary non-Gaussian classical and quantum noise statistics, with analytical expressions emerging when all dephasing sources are Gaussian. This exact characterization is used to establish two main results. First, we construct multi-qubit sequences that ensure maximum high-order error suppression in both the time and frequency domain and that can be exponentially more efficient than existing ones in terms of total pulse number. Next, we show how long-time multi-qubit storage may be achieved by meeting appropriate conditions for the emergence of a fidelity plateau under sequence repetition, thereby generalizing recent results for single-qubit memory under Gaussian dephasing. In both scenarios, the key step is to endow multi-qubit sequences with a suitable displacement anti-symmetry property, which is of independent interest for applications ranging from environment-assisted entanglement generation to multi-qubit noise spectroscopy protocols. (paper)

  10. Towards optimized suppression of dephasing in systems subject to pulse timing constraints

    International Nuclear Information System (INIS)

    Hodgson, Thomas E.; D'Amico, Irene; Viola, Lorenza

    2010-01-01

    We investigate the effectiveness of different dynamical decoupling protocols for storage of a single qubit in the presence of a purely dephasing bosonic bath, with emphasis on comparing quantum coherence preservation under uniform versus nonuniform delay times between pulses. In the limit of instantaneous bit-flip pulses, this is accomplished by establishing a different representation of the controlled qubit evolution, where the decoherence behavior after an arbitrary number of pulses is directly expressed in terms of the uncontrolled decoherence function. In particular, analytical expressions are obtained for approximation of the long- and short-term coherence behavior for both Ohmic and supra-Ohmic environments. By focusing on the realistic case of pure dephasing in an excitonic qubit, we quantitatively assess the impact of physical constraints on achievable pulse separations, and show that little advantage of high-level decoupling schemes based on concatenated or optimal design may be expected if pulses cannot be applied sufficiently fast. In such constrained scenarios, we demonstrate how simple modifications of repeated periodic-echo protocols can offer significantly improved coherence preservation in realistic parameter regimes. We expect similar conclusions to be relevant to other constrained qubit devices exposed to quantum or classical phase noise.

  11. Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model

    International Nuclear Information System (INIS)

    Goan, Hsi-Sheng; Jian, Chung-Chin; Chen, Po-Wen

    2010-01-01

    We evaluate the non-Markovian finite-temperature two-time correlation functions (CF's) of system operators of a pure-dephasing spin-boson model in two different ways, one by the direct exact operator technique and the other by the recently derived evolution equations, valid to second order in the system-environment interaction Hamiltonian. This pure-dephasing spin-boson model that is exactly solvable has been extensively studied as a simple decoherence model. However, its exact non-Markovian finite-temperature two-time system operator CF's, to our knowledge, have not been presented in the literature. This may be mainly due to the fact, illustrated in this article, that in contrast to the Markovian case, the time evolution of the reduced density matrix of the system (or the reduced quantum master equation) alone is not sufficient to calculate the two-time system operator CF's of non-Markovian open systems. The two-time CF's obtained using the recently derived evolution equations in the weak system-environment coupling case for this non-Markovian pure-dephasing model happen to be the same as those obtained from the exact evaluation. However, these results significantly differ from the non-Markovian two-time CF's obtained by wrongly directly applying the quantum regression theorem (QRT), a useful procedure to calculate the two-time CF's for weak-coupling Markovian open systems. This demonstrates clearly that the recently derived evolution equations generalize correctly the QRT to non-Markovian finite-temperature cases. It is believed that these evolution equations will have applications in many different branches of physics.

  12. Qubit dephasing due to quasiparticle tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Zanker, Sebastian; Marthaler, Michael; Schoen, Gerd [Institut fuer Theoretische Festkoerperphysik, Karlsruhe Institute of Technology, D-76128 Karlsruhe (Germany)

    2015-07-01

    We study dephasing of a superconducting qubit due to quasiparticle tunneling through a Josephson junction. While qubit decay due to tunneling processes is well understood within a golden rule approximation, pure dephasing due to BCS quasiparticles gives rise to a divergent golden rule rate. We calculate qubit dephasing due to quasiparticle tunneling beyond lowest order approximation in coupling between qubit and quasiparticles. Summing up a certain class of diagrams we show that qubit dephasing due to purely longitudinal coupling to quasiparticles leads to dephasing ∝ exp(-x(t)) where x(t) ∝ t{sup 3/2} for short time scales and x(t) ∝ tlog(t) for long time scales.

  13. Relation of exact Gaussian basis methods to the dephasing representation: Theory and application to time-resolved electronic spectra

    Science.gov (United States)

    Sulc, Miroslav; Hernandez, Henar; Martinez, Todd J.; Vanicek, Jiri

    2014-03-01

    We recently showed that the Dephasing Representation (DR) provides an efficient tool for computing ultrafast electronic spectra and that cellularization yields further acceleration [M. Šulc and J. Vaníček, Mol. Phys. 110, 945 (2012)]. Here we focus on increasing its accuracy by first implementing an exact Gaussian basis method (GBM) combining the accuracy of quantum dynamics and efficiency of classical dynamics. The DR is then derived together with ten other methods for computing time-resolved spectra with intermediate accuracy and efficiency. These include the Gaussian DR (GDR), an exact generalization of the DR, in which trajectories are replaced by communicating frozen Gaussians evolving classically with an average Hamiltonian. The methods are tested numerically on time correlation functions and time-resolved stimulated emission spectra in the harmonic potential, pyrazine S0 /S1 model, and quartic oscillator. Both the GBM and the GDR are shown to increase the accuracy of the DR. Surprisingly, in chaotic systems the GDR can outperform the presumably more accurate GBM, in which the two bases evolve separately. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  14. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  15. Time-Resolved Speckle Analysis: A New Approach to Coherence and Dephasing of Optical Excitations in Solids

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Zimmermann, R.

    1999-01-01

    ). This method determines the decays of intensity and coherence separately, thus distinguishing lifetime from pure dephasing. The secondary emission of excitons in semiconductor quantum wells is investigated. Here the combination of static disorder and inelastic scattering leads to a partially coherent emission....... The temperature dependence is well explained by phonon scattering....

  16. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  17. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    Science.gov (United States)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  18. Time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  19. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  20. Determining the nature of excitonic dephasing in high-quality GaN/AlGaN quantum wells through time-resolved and spectrally resolved four-wave mixing spectroscopy

    Science.gov (United States)

    Gallart, M.; Ziegler, M.; Crégut, O.; Feltin, E.; Carlin, J.-F.; Butté, R.; Grandjean, N.; Hönerlage, B.; Gilliot, P.

    2017-07-01

    Applying four-wave mixing spectroscopy to a high-quality GaN/AlGaN single quantum well, we report on the experimental determination of excitonic dephasing times at different temperatures and exciton densities in III-nitride heterostructures. By comparing the evolution with the temperature of the dephasing and the spin-relaxation rate, we conclude that both processes are related to the rate of excitonic collisions. When spin relaxation occurs in the motional-narrowing regime, it remains constant over a large temperature range as the spin-precession frequency increases linearly with temperature, hence compensating for the observed decrease in the dephasing time. From those measurements, a value of the electron-hole exchange interaction strength of 0.45 meV at T =10 K is inferred.

  1. Dephasing in InAs/GaAs quantum dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Mørk, Jesper

    1999-01-01

    The room-temperature dephasing in InAs/GaAs self-assembled quantum dots is measured using two independent methods: spectal-hole burning and four-wave mixing. Dephasing times weakly dependent on the excitation density are found, with a low density value of 290+/-80 fs from spectal-hole burning...

  2. Dephasing of optically generated electron spins in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2010-01-01

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  3. Dephasing of optically generated electron spins in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong, Chittagong - 4331 (Bangladesh)

    2010-09-13

    Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-{mu}s and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.

  4. Resonance Raman and optical dephasing study of tricarbocyanine dyes

    NARCIS (Netherlands)

    Ashworth, SH; Kummrow, A; Lenz, K

    Fluorescence lineshape analysis based on resonance Raman spectra of the dye HITCI was used to determine the details and magnitude of the vibrational part of the line broadening function, Forced light scattering (FLS) was applied to measure optical dephasing of HITCI in ethylene glycol, pumping at

  5. Room-Temperature Dephasing in InAs Quantum Dots

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    2000-01-01

    The room temperature dephasing in InAs/InGaAs/GaAs self-assembled quantum dots, embedded in a waveguide for laser applications, is measured using two independent methods: spectral hole burning and four-wave mixing. Without the application of bias current for electrical carrier injection......, a dephasing time of ~260 fs, weakly dependent on the optical excitation density, is found and attributed to phonon interaction. The application of bias current, leading to population inversion in the dot ground state and optical gain, strongly decreases the dephasing time to less than 50 fs, likely due...

  6. Nonradiative electron and energy transfer. Explicit estimation of the influence of coherent and dephasing processes in a vibrational bath on electronic dynamics

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2009-01-01

    Roč. 27, č. 3 (2009), s. 671-684 ISSN 0137-1339. [International Conference on Electrical and Related Properties of Organic Solids /11./. Piechowice, 13.07.2008-17.07.2008] R&D Projects: GA AV ČR KAN401770651; GA ČR GA202/07/0643 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10100520 Keywords : electron-vibrational interaction * non-adiabatic coupling * resonant energy transfer Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.384, year: 2009

  7. Dephasing and hyperfine interaction in carbon nanotubes double quantum dots

    DEFF Research Database (Denmark)

    Reynoso, Andres Alejandro; Flensberg, Karsten

    2012-01-01

    We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....

  8. Dephasing in self-organized InAlGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, K.; Birkedal, Dan; Hvam, Jørn Märcher

    2002-01-01

    We report the first direct measurements of dephasing in III-V semiconductor quantum dots at low temperature using degenerate four-wave mixing. At OK, the coherence time is limited by the population lifetime whereas pure dephasing due to exciton-phonon interactions appears only at finite temperatu......We report the first direct measurements of dephasing in III-V semiconductor quantum dots at low temperature using degenerate four-wave mixing. At OK, the coherence time is limited by the population lifetime whereas pure dephasing due to exciton-phonon interactions appears only at finite...

  9. Magneto-exciton dephasing in a single quantum dot

    Science.gov (United States)

    Rodriguez, F. J.; Reyes, A.; Olaya-Castro, A.; Quiroga, L.

    2001-03-01

    Ultrafast spectroscopy experiments on single quantum dot (SQD) in magnetic fields provide a variety of unexpected results, one of them being the recently reported entanglement of exciton states. In order to explore the entanglement robustness, dephasing mechanisms must be considered. By calculating the non-linear time resolved optical spectrum of a SQD, we present a theoretical study on the exciton-exciton scattering contribution to the magneto-exciton dephasing time. Our results show that the time evolution of \\chi^(3) presents, under non-steady-state condition, a beating between the bound biexciton and the first unbound biexciton state in the strong confinement regime. The contribution coming from both left and right polarized emitted photons allows us to predict the creation of exciton entanglement, in agreement with recent experimental results. Previous theoretical works have only addressed the stationary optical response. By contrast, our results based on a full time dependent calculation show new features specially for the fast dephasing case.

  10. Prisoners' dilemma in the presence of collective dephasing

    International Nuclear Information System (INIS)

    Nawaz, Ahmad

    2012-01-01

    We quantize prisoners' dilemma in the presence of collective dephasing with a dephasing rate γ. It is shown that for a two-parameter set of strategies, Q⊗Q is Nash equilibrium below a cut-off value of time. Beyond this cut-off it bifurcates into two new Nash equilibria Q⊗D and D⊗Q. Furthermore, for the maximum value of decoherence C⊗D and D⊗C also become Nash equilibria. At this stage the game has four Nash equilibria. On the other hand, for a three-parameter set of strategies, there is no pure strategy Nash equilibrium; however, there is a mixed strategy (non-unique) Nash equilibrium that is not affected by collective dephasing. (paper)

  11. Exciton dephasing and biexciton binding in CdSe/ZnSe islands

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Tranitz, H.-P.; Preis, H

    1999-01-01

    The dephasing of excitons and the formation of biexcitons in self-organized CdSe/ZnSe islands grown by molecular-beam epitaxy is investigated using spectrally resolved four-wave mixing. A distribution of exciton-exciton scattering efficiencies and dephasing times in the range of 0.5-10 ps...

  12. Universal dephasing control during quantum computation

    International Nuclear Information System (INIS)

    Gordon, Goren; Kurizki, Gershon

    2007-01-01

    Dephasing is a ubiquitous phenomenon that leads to the loss of coherence in quantum systems and the corruption of quantum information. We present a universal dynamical control approach to combat dephasing during all stages of quantum computation, namely, storage and single- and two-qubit operators. We show that (a) tailoring multifrequency gate pulses to the dephasing dynamics can increase fidelity; (b) cross-dephasing, introduced by entanglement, can be eliminated by appropriate control fields; (c) counterintuitively and contrary to previous schemes, one can increase the gate duration, while simultaneously increasing the total gate fidelity

  13. Heat transport in the XXZ spin chain: from ballistic to diffusive regimes and dephasing enhancement

    International Nuclear Information System (INIS)

    Mendoza-Arenas, J J; Al-Assam, S; Clark, S R; Jaksch, D

    2013-01-01

    In this work we study the heat transport in an XXZ spin-1/2 Heisenberg chain with homogeneous magnetic field, incoherently driven out of equilibrium by reservoirs at the boundaries. We focus on the effect of bulk dephasing (energy-dissipative) processes in different parameter regimes of the system. The non-equilibrium steady state of the chain is obtained by simulating its evolution under the corresponding Lindblad master equation, using the time evolving block decimation method. In the absence of dephasing, the heat transport is ballistic for weak interactions, while being diffusive in the strongly interacting regime, as evidenced by the heat current scaling with the system size. When bulk dephasing takes place in the system, diffusive transport is induced in the weakly interacting regime, with the heat current monotonically decreasing with the dephasing rate. In contrast, in the strongly interacting regime, the heat current can be significantly enhanced by dephasing for systems of small size. (paper)

  14. Exciton dephasing in ZnSe quantum wires

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1998-01-01

    The homogeneous linewidths of excitons in wet-etched ZnSe quantum wires of lateral sizes down to 23 nm are studied by transient four-wave mixing. The low-density dephasing time is found to increase with decreasing wire width. This is attributed mainly to a reduction of electron-exciton scattering...

  15. Many-Particle Dephasing after a Quench

    Science.gov (United States)

    Kiendl, Thomas; Marquardt, Florian

    2017-03-01

    After a quench in a quantum many-body system, expectation values tend to relax towards long-time averages. However, temporal fluctuations remain in the long-time limit, and it is crucial to study the suppression of these fluctuations with increasing system size. The particularly important case of nonintegrable models has been addressed so far only by numerics and conjectures based on analytical bounds. In this work, we are able to derive analytical predictions for the temporal fluctuations in a nonintegrable model (the transverse Ising chain with extra terms). Our results are based on identifying a dynamical regime of "many-particle dephasing," where quasiparticles do not yet relax but fluctuations are nonetheless suppressed exponentially by weak integrability breaking.

  16. Vibration amplitude rule study for rotor under large time scale

    International Nuclear Information System (INIS)

    Yang Xuan; Zuo Jianli; Duan Changcheng

    2014-01-01

    The rotor is an important part of the rotating machinery; its vibration performance is one of the important factors affecting the service life. This paper presents both theoretical analyses and experimental demonstrations of the vibration rule of the rotor under large time scales. The rule can be used for the service life estimation of the rotor. (authors)

  17. Robust time-shifted spoke pulse design in the presence of large B0 variations with simultaneous reduction of through-plane dephasing, B1+ effects, and the specific absorption rate using parallel transmission.

    Science.gov (United States)

    Guérin, Bastien; Stockmann, Jason P; Baboli, Mehran; Torrado-Carvajal, Angel; Stenger, Andrew V; Wald, Lawrence L

    2016-08-01

    To design parallel transmission spokes pulses with time-shifted profiles for joint mitigation of intensity variations due to B1+ effects, signal loss due to through-plane dephasing, and the specific absorption rate (SAR) at 7T. We derived a slice-averaged small tip angle (SA-STA) approximation of the magnetization signal at echo time that depends on the B1+ transmit profiles, the through-slice B0 gradient and the amplitude and time-shifts of the spoke waveforms. We minimize a magnitude least-squares objective based on this signal equation using a fast interior-point approach with analytical expressions of the Jacobian and Hessian. Our algorithm runs in less than three minutes for the design of two-spoke pulses subject to hundreds of local SAR constraints. On a B0/B1+ head phantom, joint optimization of the channel-dependent time-shifts and spoke amplitudes allowed signal recovery in high-B0 regions at no increase of SAR. Although the method creates uniform magnetization profiles (ie, uniform intensity), the flip angle varies across the image, which makes it ill-suited to T1-weighted applications. The SA-STA approach presented in this study is best suited to T2*-weighted applications with long echo times that require signal recovery around high B0 regions. Magn Reson Med 76:540-554, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Seventh international conference on time-resolved vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.; Woodruff, W.H. [comps.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities for time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.

  19. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  20. Failure modes and natural control time for distributed vibrating systems

    International Nuclear Information System (INIS)

    Reid, R.M.

    1994-01-01

    The eigenstructure of the Gram matrix of frequency exponentials is used to study linear vibrating systems of hyperbolic type with distributed control. Using control norm as a practical measure of controllability and the vibrating string as a prototype, it is demonstrated that hyperbolic systems have a natural control time, even when only finitely many modes are excited. For shorter control times there are identifiable control failure modes which can be steered to zero only with very high cost in control norm. Both natural control time and the associated failure modes are constructed for linear fluids, strings, and beams, making note of the essential algorithms and Mathematica code, and displaying results graphically

  1. Time average vibration fringe analysis using Hilbert transformation

    International Nuclear Information System (INIS)

    Kumar, Upputuri Paul; Mohan, Nandigana Krishna; Kothiyal, Mahendra Prasad

    2010-01-01

    Quantitative phase information from a single interferogram can be obtained using the Hilbert transform (HT). We have applied the HT method for quantitative evaluation of Bessel fringes obtained in time average TV holography. The method requires only one fringe pattern for the extraction of vibration amplitude and reduces the complexity in quantifying the data experienced in the time average reference bias modulation method, which uses multiple fringe frames. The technique is demonstrated for the measurement of out-of-plane vibration amplitude on a small scale specimen using a time average microscopic TV holography system.

  2. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  3. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  4. Time-domain vibrational study on defects in ion-irradiated crystal

    International Nuclear Information System (INIS)

    Kitajima, M.

    2003-01-01

    We have studied the effects of point defects on coherent phonons in ion-implanted bismuth and graphite. Ultrafast dynamics of coherent phonons and photo-generated carriers in the femtosecond time-domain have been investigated by means of pump-probe reflectivity measurements. Point defects are introduced by irradiating graphite with 5 keV He + ions. For Bi the dephasing rate of the A 1g phonon increases linearly with increasing ion dose, which is explained by the additional dephasing process of the coherent phonon originated from scattering of phonons by the defects. For graphite, introduction of the defects enhances the carrier relaxation by opening a decay channel via vacancy-states, which competes efficiently with carrier-phonon scattering. The coherent acoustic phonon relaxation is also accelerated due to an additional scattering by defects. The linear fluence-dependence of the decay rate is understood as scattering of propagating acoustic phonon by single vacancies. (author)

  5. Real-time vibration compensation for large telescopes

    Science.gov (United States)

    Böhm, M.; Pott, J.-U.; Sawodny, O.; Herbst, T.; Kürster, M.

    2014-08-01

    We compare different strategies for minimizing the effects of telescope vibrations to the differential piston (optical pathway difference) for the Near-InfraRed/Visible Adaptive Camera and INterferometer for Astronomy (LINC-NIRVANA) at the Large Binocular Telescope (LBT) using an accelerometer feedforward compensation approach. We summarize, why this technology is important for LINC-NIRVANA, and also for future telescopes and already existing instruments. The main objective is outlining a solution for the estimation problem in general and its specifics at the LBT. Emphasis is put on realistic evaluation of the used algorithms in the laboratory, such that predictions for the expected performance at the LBT can be made. Model-based estimation and broad-band filtering techniques can be used to solve the estimation task, and the differences are discussed. Simulation results and measurements are shown to motivate our choice of the estimation algorithm for LINC-NIRVANA. The laboratory setup is aimed at imitating the vibration behaviour at the LBT in general, and the M2 as main contributor in particular. For our measurements, we introduce a disturbance time series which has a frequency spectrum comparable to what can be measured at the LBT on a typical night. The controllers' ability to suppress vibrations in the critical frequency range of 8-60 Hz is demonstrated. The experimental results are promising, indicating the ability to suppress differential piston induced by telescope vibrations by a factor of about 5 (rms), which is significantly better than any currently commissioned system.

  6. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    Science.gov (United States)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  7. Dephasing in coherent communication with weak signal states

    International Nuclear Information System (INIS)

    Jarzyna, Marcin; Banaszek, Konrad; Demkowicz-Dobrzański, Rafał

    2014-01-01

    We analyse the ultimate quantum limit on the accessible information for an optical communication scheme when time bins carry coherent light pulses prepared in one of several orthogonal modes and the phase undergoes diffusion after each channel use. This scheme, an example of a quantum memory channel, can be viewed as noisy pulse position modulation (PPM) keying with phase fluctuations occurring between consecutive PPM symbols. We derive a general expression for the output states in the Fock basis and implement a numerical procedure to calculate the Holevo quantity. Using asymptotic properties of Toeplitz matrices, we also present an analytic expression for the Holevo quantity valid for very weak signals and sufficiently strong dephasing when the dominant contribution comes from the single-photon sector in the Hilbert space of signal states. Based on numerical results we conjecture an inequality for contributions to the Holevo quantity from multiphoton sectors which implies that in the asymptotic limit of weak signals, for arbitrarily small dephasing the accessible information scales linearly with the average number of photons contained in the pulse. Such behaviour presents a qualitative departure from the fully coherent case. (paper)

  8. Relaxation of the vibrational distribution function in N2 time varying discharges

    International Nuclear Information System (INIS)

    Capitelli, M.; Gorse, C.; Ricard, A.

    1981-01-01

    Relaxation of the electron and vibrational distribution functions have been calculated in function of residence time in nitrogen electrical discharges and post-discharges. In the discharge the vibrational temperature get bigger with the residence time for t -2 s. In the post-discharge the vibrational distribution is evolving in such a manner that the high levels are overpopulated as the low vibrational level population is dropping

  9. Quantum capacity of dephasing channels with memory

    International Nuclear Information System (INIS)

    D'Arrigo, A; Benenti, G; Falci, G

    2007-01-01

    We show that the amount of coherent quantum information that can be reliably transmitted down a dephasing channel with memory is maximized by separable input states. In particular, we model the channel as a Markov chain or a multimode environment of oscillators. While in the first model, the maximization is achieved for the maximally mixed input state, in the latter it is convenient to exploit the presence of a decoherence-protected subspace generated by memory effects. We explicitly compute the quantum channel capacity for the first model while numerical simulations suggest a lower bound for the latter. In both cases memory effects enhance the coherent information. We present results valid for arbitrary input size

  10. Temporal fluctuations after a quantum quench: Many-particle dephasing

    Science.gov (United States)

    Marquardt, Florian; Kiendl, Thomas

    After a quantum quench, the expectation values of observables continue to fluctuate in time. In the thermodynamic limit, one expects such fluctuations to decrease to zero, in order for standard statistical physics to hold. However, it is a challenge to determine analytically how the fluctuations decay as a function of system size. So far, there have been analytical predictions for integrable models (which are, naturally, somewhat special), analytical bounds for arbitrary systems, and numerical results for moderate-size systems. We have discovered a dynamical regime where the decrease of fluctuations is driven by many-particle dephasing, instead of a redistribution of occupation numbers. On the basis of this insight, we are able to provide exact analytical expressions for a model with weak integrability breaking (transverse Ising chain with additional terms). These predictions explicitly show how fluctuations are exponentially suppressed with system size.

  11. Quantum correlation of high dimensional system in a dephasing environment

    Science.gov (United States)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  12. General solution to inhomogeneous dephasing and smooth pulse dynamical decoupling

    Science.gov (United States)

    Zeng, Junkai; Deng, Xiu-Hao; Russo, Antonio; Barnes, Edwin

    2018-03-01

    In order to achieve the high-fidelity quantum control needed for a broad range of quantum information technologies, reducing the effects of noise and system inhomogeneities is an essential task. It is well known that a system can be decoupled from noise or made insensitive to inhomogeneous dephasing dynamically by using carefully designed pulse sequences based on square or delta-function waveforms such as Hahn spin echo or CPMG. However, such ideal pulses are often challenging to implement experimentally with high fidelity. Here, we uncover a new geometrical framework for visualizing all possible driving fields, which enables one to generate an unlimited number of smooth, experimentally feasible pulses that perform dynamical decoupling or dynamically corrected gates to arbitrarily high order. We demonstrate that this scheme can significantly enhance the fidelity of single-qubit operations in the presence of noise and when realistic limitations on pulse rise times and amplitudes are taken into account.

  13. Vibrational Dynamics of Interfacial Water by Free Induction Decay Sum Frequency Generation (FID-SFG) at the Al2O3(1120)/H2O Interface.

    Science.gov (United States)

    Boulesbaa, Abdelaziz; Borguet, Eric

    2014-02-06

    The dephasing dynamics of a vibrational coherence may reveal the interactions of chemical functional groups with their environment. To investigate this process at a surface, we employ free induction decay sum frequency generation (FID-SFG) to measure the time that it takes for free OH stretch oscillators at the charged (pH ≈ 13, KOH) interface of alumina/water (Al2O3/H2O) to lose their collective coherence. By employing noncollinear optical parametric amplification (NOPA) technology and nonlinear vibrational spectroscopy, we showed that the single free OH peak actually corresponds to two distinct oscillators oriented opposite to each other and measured the total dephasing time, T2, of the free OH stretch modes at the Al2O3/H2O interface with a sub-40 fs temporal resolution. Our results suggested that the free OH oscillators associated with interfacial water dephase on the time scale of 89.4 ± 6.9 fs, whereas the homogeneous dephasing of interfacial alumina hydroxyls is an order of magnitude slower.

  14. Copper plasmonics and catalysis: role of electron-phonon interactions in dephasing localized surface plasmons

    Science.gov (United States)

    Sun, Qi-C.; Ding, Yuchen; Goodman, Samuel M.; H. Funke, Hans; Nagpal, Prashant

    2014-10-01

    Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain boundary scattering on the decay of localized surface plasmon waves. Using our quantitative analysis and different temperature dependent measurements, we show that electron-phonon interactions dominate over other scattering mechanisms in dephasing plasmon waves. While interband transitions in copper metal contributes substantially to plasmon losses, tuning surface plasmon modes to infrared frequencies leads to a five-fold enhancement in the quality factor. These findings demonstrate that conformal ALD coatings can improve the chemical stability for copper nanoparticles, even at high temperatures (>300 °C) in ambient atmosphere, and nanoscaled copper is a good alternative material for many potential applications in nanophotonics, plasmonics, catalysis and nanoscale electronics.Copper metal can provide an important alternative for the development of efficient, low-cost and low-loss plasmonic nanoparticles, and selective nanocatalysts. However, poor chemical stability and lack of insight into photophysics and plasmon decay mechanisms has impeded study. Here, we use smooth conformal ALD coating on copper nanoparticles to prevent surface oxidation, and study dephasing time for localized surface plasmons on different sized copper nanoparticles. Using dephasing time as a figure of merit, we elucidate the role of electron-electron, electron-phonon, impurity, surface and grain

  15. Charge transport and magnetoresistance of G4-DNA molecular device modulated by counter ions and dephasing effect

    International Nuclear Information System (INIS)

    Kang, Da-wei; Sun, Meng-le; Zuo, Zheng-wei; Wang, Hui-xian; Lv, Shi-jie; Li, Xin-zhong; Li, Li-ben

    2016-01-01

    The charge transport properties of the G4-DNA molecular device in the presence of counter ions and dephasing effect are investigated based on the Green function method and Landauer–Büttiker theory. The currents through the G4-DNA molecular device depend on the interference patterns at different coupling configurations. There is an effective electrostatic interaction between the counter ions and the G4-DNA molecule which introduces disorder into the on-site energies of G bases. The current through the device can be enhanced by the small disorder which avoids the strong interference of electrons at the same energy in some coupling configurations, however the diagonal disorder can suppress the overall current due to the Anderson localization of charge carriers when the disorder is large. In the presence of dephasing effect the current through the device at all coupling configurations can be enhanced as a result of the phase coherence losing of electron. As for the magnetic field response, the magnetoresistance of the device is always suppressed by the counter ions and dephasing effect. - Highlights: • The counter ions can some times enhance the current through G4-DNA molecule. • The dephasing effect can enhance the current of the device at all four coupling configurations. • The magnetoresistance is always suppressed by the counter ions and dephasing effect.

  16. Quantum Metrology beyond the Classical Limit under the Effect of Dephasing

    Science.gov (United States)

    Matsuzaki, Yuichiro; Benjamin, Simon; Nakayama, Shojun; Saito, Shiro; Munro, William J.

    2018-04-01

    Quantum sensors have the potential to outperform their classical counterparts. For classical sensing, the uncertainty of the estimation of the target fields scales inversely with the square root of the measurement time T . On the other hand, by using quantum resources, we can reduce this scaling of the uncertainty with time to 1 /T . However, as quantum states are susceptible to dephasing, it has not been clear whether we can achieve sensitivities with a scaling of 1 /T for a measurement time longer than the coherence time. Here, we propose a scheme that estimates the amplitude of globally applied fields with the uncertainty of 1 /T for an arbitrary time scale under the effect of dephasing. We use one-way quantum-computing-based teleportation between qubits to prevent any increase in the correlation between the quantum state and its local environment from building up and have shown that such a teleportation protocol can suppress the local dephasing while the information from the target fields keeps growing. Our method has the potential to realize a quantum sensor with a sensitivity far beyond that of any classical sensor.

  17. Incorporating excitation-induced dephasing into the Maxwell-Bloch numerical modeling of photon echoes

    International Nuclear Information System (INIS)

    Burr, G.W.; Harris, Todd L.; Babbitt, Wm. Randall; Jefferson, C. Michael

    2004-01-01

    We describe the incorporation of excitation-induced dephasing (EID) into the Maxwell-Bloch numerical simulation of photon echoes. At each time step of the usual numerical integration, stochastic frequency jumps of ions--caused by excitation of neighboring ions--is modeled by convolving each Bloch vector with the Bloch vectors of nearby frequency detunings. The width of this convolution kernel follows the instantaneous change in overall population, integrated over the simulated bandwidth. This approach is validated by extensive comparison against published and original experimental results. The enhanced numerical model is then used to investigate the accuracy of experiments designed to extrapolate to the intrinsic dephasing time T 2 from data taken in the presence of EID. Such a modeling capability offers improved understanding of experimental results, and should allow quantitative analysis of engineering tradeoffs in realistic optical coherent transient applications

  18. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  19. Relaxometry and Dephasing Imaging of Superparamagnetic Magnetite Nanoparticles Using a Single Qubit

    Science.gov (United States)

    Schmid-Lorch, Dominik; Häberle, Thomas; Reinhard, Friedemann; Zappe, Andrea; Slota, Michael; Bogani, Lapo; Finkler, Amit; Wrachtrup, Jörg

    2015-08-01

    To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivity's dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticle's diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticle's fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.

  20. Long Range Dependence Prognostics for Bearing Vibration Intensity Chaotic Time Series

    Directory of Open Access Journals (Sweden)

    Qing Li

    2016-01-01

    Full Text Available According to the chaotic features and typical fractional order characteristics of the bearing vibration intensity time series, a forecasting approach based on long range dependence (LRD is proposed. In order to reveal the internal chaotic properties, vibration intensity time series are reconstructed based on chaos theory in phase-space, the delay time is computed with C-C method and the optimal embedding dimension and saturated correlation dimension are calculated via the Grassberger–Procaccia (G-P method, respectively, so that the chaotic characteristics of vibration intensity time series can be jointly determined by the largest Lyapunov exponent and phase plane trajectory of vibration intensity time series, meanwhile, the largest Lyapunov exponent is calculated by the Wolf method and phase plane trajectory is illustrated using Duffing-Holmes Oscillator (DHO. The Hurst exponent and long range dependence prediction method are proposed to verify the typical fractional order features and improve the prediction accuracy of bearing vibration intensity time series, respectively. Experience shows that the vibration intensity time series have chaotic properties and the LRD prediction method is better than the other prediction methods (largest Lyapunov, auto regressive moving average (ARMA and BP neural network (BPNN model in prediction accuracy and prediction performance, which provides a new approach for running tendency predictions for rotating machinery and provide some guidance value to the engineering practice.

  1. Building Modern Vibration Diagnostics Systems Based on the Frequency-Time Transformations of A Measured Signal

    Directory of Open Access Journals (Sweden)

    Yasoveev Vasikh

    2016-01-01

    Full Text Available Basic methods of analysis of vibration transducers signals were reviewed. Continuous wavelet transform, being a time-frequency transform, was found to be an advanced mathematical tool for analysis of vibration signals. Experimental studies revealed obvious changes in the continuous wavelet transform spectrum depending on the existing defects. A method for detection and identification of technological violations based on the analysis of CWT spectrum components and normalized correlation coefficient was suggested. In accordance with the suggested method software for vibration diagnostics was developed.

  2. A comparative study of two phenomenological models of dephasing in series and parallel resistors

    International Nuclear Information System (INIS)

    Bandopadhyay, Swarnali; Chaudhuri, Debasish; Jayannavar, Arun M.

    2010-01-01

    We compare two recent phenomenological models of dephasing using a double barrier and a quantum ring geometry. While the stochastic absorption model generates controlled dephasing leading to Ohm's law for large dephasing strengths, a Gaussian random phase based statistical model shows many inconsistencies.

  3. Wave attenuation model for dephasing and measurement of ...

    Indian Academy of Sciences (India)

    There are different ways to model dephasing in mesoscopic systems. An interesting method is to attach a voltage probe [3] to the sample as in the inset of figure 1 (Buttiker's model). In this model, an electron captured by a voltage probe is injected back with an uncorrelated phase leading to irreversible loss of phase memory ...

  4. Binding-energy distribution and dephasing of localized biexcitons

    DEFF Research Database (Denmark)

    Langbein, Wolfgang Werner; Hvam, Jørn Märcher; Umlauff, M.

    1997-01-01

    We report on the binding energy and dephasing of localized biexciton states in narrow ZnSe multiple quantum wells. The measured binding-energy distribution of the localized biexcitons shows a width of 2.2 meV centered at 8.5 meV, and is fairly independent of the exciton localization energy. In fo...

  5. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    Science.gov (United States)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  6. Isotopic and chemical dilution effects on the vibrational relaxation rate of some totally symmetric motions of liquid acetonitrile

    International Nuclear Information System (INIS)

    Marri, E.; Morresi, A.; Paliani, G.; Cataliotti, R.S.; Giorgini, M.G.

    1999-01-01

    The vibrational dephasing of the ν 1 (C-H, C-D stretching) and ν 3 (C-H, C-D bending) symmetric motions of liquid acetonitrile in its light and fully deuterated forms has been studied in the frame of the vibrational time correlation functions obtained as Fourier transforms of the isotropic Raman spectral distributions and interpreted within the Kubo theory. In addition, the experimental isotropic profiles have been analysed within the bandshape approach formulated by analytical Fourier transformation of the Kubo vibrational time correlation functions in order to derive the relaxation parameters in the frequency domain. The effects of the isotopic (CH 3 CN/CD 3 CN and vice versa) and chemical (CCl 4 ) dilution on the bandshapes and on the vibrational relaxation parameters have been studied. It was observed that the decay rate of ν 1 mode is insensitive to the isotopic dilution but varies appreciably with chemical (CCl 4 ) dilution. The vibrational dephasing of ν 3 mode is qualitatively, but not quantitatively, affected in the same way by chemical dilution and shows a slower modulation regime than that exhibited by the stretching mode. Unlikely from the latter, the ν 3 mode results are slightly affected by the isotopic dilution. Phase relaxation mechanisms of these two motions of acetonitrile in the liquid state are proposed on the basis of these data, and a comparison is made with the results earlier published. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  8. Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram.

    Science.gov (United States)

    Nakadate, S; Isshiki, M

    1997-01-01

    Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled at every one-third of the fringe spacing of the tilted fringes are used to calculate the modulation term of the fringe that is a function of a vibration amplitude. A three-dimensional lookup table performs the calculation in a TV repetition rate to give a new fringe profile that contours the vibration amplitude. Vibration modes at the resonant frequencies of a flat speaker were displayed on a monitor as changing the exciting frequency of vibration.

  9. Damping of monopole vibrations in time dependent Hartree-Fock theory

    International Nuclear Information System (INIS)

    Vautherin, D.; Stringari, S.

    1979-01-01

    Monopole vibrations in oxygen-16 and calcium-40 have been investigated in time-dependent Hartree-Fock theory. The characteristic damping time obtained is tau approximately 1.5x10 -22 sec. This value is in good agreement with the width of the monopole mode calculated in the random phase approximation

  10. Exceptionally slow rise in differential reflectivity spectra of excitons in GaN: effect of excitation-induced dephasing

    International Nuclear Information System (INIS)

    Stanton, C.J.; Kenrow, J.; El Sayed, K.; Jho, Y.D.; Kim, D.S.; Song, J.J.; Fischer, Arthur Joseph

    2004-01-01

    Femtosecond differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found only for positive time delay in both DRS and FWM experiments. The rise time at negative time delay for the DRS was much slower than the FWM signal or differential transmission spectroscopy at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing, that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.

  11. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  12. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Xu, Lifei; He, Tao

    2015-01-01

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  13. Real-Time Order Tracking of Gear Mesh Vibration in High Speed Planetary Gearboxes

    Directory of Open Access Journals (Sweden)

    Plöger Daniel Fritz

    2018-01-01

    Full Text Available Possible approaches to real-time order tracking are discussed. Two methods for real-time order tracking are developed and validated experimentally for the entire audible spectrum. An adaptive heterodyne filter bank is compared to a direct integral transform. The performance of both methods is adequate for usage in an active vibration control (AVC algorithm. Vold-Kalman filters are not suitable for AVC. The vibration data of three different planetary gearboxes is analyzed using order tracking. While some of the existing research could be reproduced, the data contradicts statements made by several authors. Lastly, the architecture of a novel AVC algorithm is sketched out.

  14. Application of Time Delay Consideration on Bridge Vibration Control Method with Active Tendons

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2010-12-01

    Full Text Available For many years bridge structures have been designed or constructed as passive structures that rely on their mass and solidity to resist external forces, while being incapable of adapting to the dynamics of an ever-changing environment. When the rigidity assumption is not met in particular for high-rise structures like bridge towers, a proper dynamic model should be established and conclusions made on the differential vibration of the tower when it is investigated out of the bridge system. The present work outlines a vibration control method by tendons on the tower of cable supported structures considering time delay effects, based on the discrete-time Linearization of the Feedback Gain Matrix. The efficiency of this vibration control method first proposed on the design process of a local bridge in Cameroon, is more compatible to the control of civil structures and is of great interest in accordance with simulation results.

  15. Improved time-dependent harmonic oscillator method for vibrationally inelastic collisions

    International Nuclear Information System (INIS)

    DePristo, A.E.

    1985-01-01

    A quantal solution to vibrationally inelastic collisions is presented based upon a linear expansion of the interaction potential around the time-dependent classical positions of all translational and vibrational degrees of freedom. The full time-dependent wave function is a product of a Gaussian translational wave packet and a multidimensional harmonic oscillator wave function, both centered around the appropriate classical position variables. The computational requirements are small since the initial vibrational coordinates are the equilibrium values in the classical trajectory (i.e., phase space sampling does not occur). Different choices of the initial width of the translational wave packet and the initial classical translational momenta are possible, and two combinations are investigated. The first involves setting the initial classical momenta equal to the quantal expectation value, and varying the width to satisfy normalization of the transition probability matrix. The second involves adjusting the initial classical momenta to ensure detailed balancing for each set of transitions, i→f and f→i, and varying the width to satisfy normalization. This choice illustrates the origin of the empirical correction of using the arithmetic average momenta as the initial classical momenta in the forced oscillator approximation. Both methods are tested for the collinear collision systems CO 2 --(He, Ne), and are found to be accurate except for near-resonant vibration--vibration exchange at low initial kinetic energies

  16. Time delay for resonant vibrational excitation in electron--molecule collisions

    International Nuclear Information System (INIS)

    Gauyacq, J.P.

    1990-01-01

    An analysis of the time delay associated with vibrational excitation in electron--molecule collision is presented. It consists of a direct study of the time dependence of the process for three model systems. An electron wave packet, that is narrow in time, is sent on the target and the amplitudes in the different inelastic channels are studied as functions of time. The time delay is found to correspond to very different time effects: broadenings, shifts in time of the wave packet, but also complex distortions that cannot be represented by a time delay. The direct analysis of the scattered wave also provides new insights into the vibrational excitation process. It should be a useful tool to analyze complex collision processes

  17. Real-Time Spatial Monitoring of Vehicle Vibration Data as a Model for TeleGeoMonitoring Systems

    OpenAIRE

    Robidoux, Jeff

    2005-01-01

    This research presents the development and proof of concept of a TeleGeoMonitoring (TGM) system for spatially monitoring and analyzing, in real-time, data derived from vehicle-mounted sensors. In response to the concern for vibration related injuries experienced by equipment operators in surface mining and construction operations, the prototype TGM system focuses on spatially monitoring vehicle vibration in real-time. The TGM vibration system consists of 3 components: (1) Data Acquisition ...

  18. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy

    International Nuclear Information System (INIS)

    Fischer, B M; Walther, M; Jepsen, P Uhd

    2002-01-01

    The far-infrared dielectric function of a wide range of organic molecules is dominated by vibrations involving a substantial fraction of the atoms forming the molecule and motion associated with intermolecular hydrogen bond vibrations. Due to their collective nature such modes are highly sensitive to the intra- and intermolecular structure and thus provide a unique fingerprint of the conformational state of the molecule and effects of its environment. We demonstrate the use of terahertz time-domain spectroscopy (THz-TDS) for recording the far-infrared (0.5-4.0 THz) dielectric function of the four nucleobases and corresponding nucleosides forming the building blocks of deoxyribose nucleic acid (DNA). We observe numerous distinct spectral features with large differences between the molecules in both frequency-dependent absorption coefficient and index of refraction. Assisted by results from density-functional calculations we interpret the origin of the observed resonances as vibrations of hydrogen bonds between the molecules

  19. Vibrationally resolved UV/Vis spectroscopy with time-dependent density functional based tight binding

    NARCIS (Netherlands)

    Ruger, R.; Niehaus, T.; van Lenthe, E.; Heine, T.; Visscher, L.

    2016-01-01

    We report a time-dependent density functional based tight-binding (TD-DFTB) scheme for the calculation of UV/Vis spectra, explicitly taking into account the excitation of nuclear vibrations via the adiabatic Hessian Franck-Condon method with a harmonic approximation for the nu- clear wavefunction.

  20. Biexciton dephasing in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.

    2001-01-01

    the heavy-hole (HH) vacuum Rabi splitting is 3.6 meV, more than three times larger than the biexciton binding energy in the bare QW (1.1 meV). Due to the narrow linewidth of the polariton resonances, a well-resolved pump-induced optical absorption associated with biexcitons was observed. In this work we...

  1. Observation of the in-plane spin-dephasing anisotropy in [111]-grown GaAs/AlGaAs quantum well

    International Nuclear Information System (INIS)

    Zhao, Chunbo; Li, Junbin; Yu, Ying; Ni, Haiqiao; Niu, Zhichuan; Zhang, Xinhui

    2014-01-01

    The electron density and temperature dependent in-plane spin-dephasing anisotropy in [111]-grown GaAs quantum well (QW) has been investigated by time-resolved magneto-Kerr rotation technique. Due to the specific symmetry of [111]-grown quantum well, the in-plane Rashba and linear Dresselhaus effective spin-orbit magnetic field is parallel to each other for electron wave vectors in all directions. However, an obvious in-plane spin-dephasing anisotropy comparing [2 ¯ 11] with [01 ¯ 1] crystalline orientations has been observed and discussed in this work. Our results demonstrate the innegligible spin dephasing channel through inhomogeneous broadening induced by the out-of-plane non-linear Dresselhaus field, which arises naturally from the C 3 symmetry of [111]-grown GaAs QW

  2. Acoustic phonon dephasing in shallow GaAs/Ga 1- xAl xAs single quantum wells

    Science.gov (United States)

    Cassabois, G.; Meccherini, S.; Roussignol, Ph.; Bogani, F.; Gurioli, M.; Colocci, M.; Planel, R.; Thierry-Mieg, V.

    1998-07-01

    The intermediate dimensionality regime is studied on a set of shallow GaAs/Ga 1- xAl xAs single quantum wells. Such heterostructures exhibit 2D strong excitonic electroabsorption together with near 3D fast transport properties. We report dephasing time measurements ( T2) of the heavy-hole exciton and we show that the acoustic phonon contribution decreases with x to a value in good agreement with theoretical predictions for GaAs bulk.

  3. The LBT real-time based control software to mitigate and compensate vibrations

    Science.gov (United States)

    Borelli, J.; Trowitzsch, J.; Brix, M.; Kürster, M.; Gässler, W.; Bertram, T.; Briegel, F.

    2010-07-01

    The Large Binocular Telescope (LBT) uses two 8.4 meters active primary mirrors and two adaptive secondary mirrors on the same mounting to take advantage of its interferometric capabilities. Both applications, interferometry and AO, are sensitive to vibrations. Several measurement campaigns have been carried out at the LBT and their results strongly indicate that a vibration monitoring system is required to improve the performance of LINC-NIRVANA, LBTI, and ARGOS, the laser guided ground layer adaptive optic system. Currently, a control software for mitigation and compensation of the vibrations is being designed. A complex set of algorithms collects real-time vibration data, archiving it for further analysis, and in parallel, generating the tip-tilt and optical path difference (OPD) data for the control loop of the instruments. A real-time data acquisition device equipped with embedded real-time Linux is used in our systems. A set of quick-look tools is currently under development in order to verify if the conditions at the telescope are suitable for interferometric/adaptive observations.

  4. A new reference tip-timing test bench and simulator for blade synchronous and asynchronous vibrations

    Science.gov (United States)

    Hajnayeb, Ali; Nikpour, Masood; Moradi, Shapour; Rossi, Gianluca

    2018-02-01

    The blade tip-timing (BTT) measurement technique is at present the most promising technique for monitoring the blades of axial turbines and aircraft engines in operating conditions. It is generally used as an alternative to strain gauges in turbine testing. By conducting a comparison with the standard methods such as those based on strain gauges, one determines that the technique is not intrusive and does not require a complicated installation process. Despite its superiority to other methods, the experimental performance analysis of a new BTT method needs a test stand that includes a reference measurement system (e.g. strain gauges equipped with telemetry or other complex optical measurement systems, like rotating laser Doppler vibrometers). In this article, a new reliable, low-cost BTT test setup is proposed for simulating and analyzing blade vibrations based on kinematic inversion. In the proposed test bench, instead of the blades vibrating, it is the BTT sensor that vibrates. The vibration of the sensor is generated by a shaker and can therefore be easily controlled in terms of frequency, amplitude and waveform shape. The amplitude of vibration excitation is measured by a simple accelerometer. After introducing the components of the simulator, the proposed test bench is used in practice to simulate both synchronous and asynchronous vibration scenarios. Then two BTT methods are used to evaluate the quality of the acquired data. The results demonstrate that the proposed setup is able to generate simulated pulse sequences which are almost the same as those generated by the conventional BTT systems installed around a bladed disk. Moreover, the test setup enables its users to evaluate BTT methods by using a limited number of sensors. This significantly reduces the total costs of the experiments.

  5. Nonlinear Optical Spectroscopy in the Time Domain: Studies of Ultrafast Molecular Processes in the Condensed Phase.

    Science.gov (United States)

    Joo, Taiha

    Ultrafast molecular processes in the condensed phase at room temperature are studied in the time domain by four wave mixing spectroscopy. The structure/dynamics of various quantum states can be studied by varying the time ordering of the incident fields, their polarization, their colors, etc. In one, time-resolved coherent Stokes Raman spectroscopy of benzene is investigated at room temperature. The reorientational correlation time of benzene as well as the T_2 time of the nu _1 ring-breathing mode have been measured by using two different polarization geometries. Bohr frequency difference beats have also been resolved between the nu_1 modes of ^ {12}C_6H_6 and ^{12}C_5^{13 }CH_6.. The dephasing dynamics of the nu _1 ring-breathing mode of neat benzene is studied by time-resolved coherent anti-Stokes Raman scattering. Ultrafast time resolution reveals deviation from the conventional exponential decay. The correlation time, tau _{rm c}, and the rms magnitude, Delta, of the Bohr frequency modulation are determined for the process responsible for the vibrational dephasing by Kubo dephasing function analysis. The electronic dephasing of two oxazine dyes in ethylene glycol at room temperature is investigated by photon echo experiments. It was found that at least two stochastic processes are responsible for the observed electronic dephasing. Both fast (homogeneous) and slow (inhomogeneous) dynamics are recovered using Kubo line shape analysis. Moreover, the slow dynamics is found to spectrally diffuse over the inhomogeneous distribution on the time scale around a picosecond. Time-resolved degenerate four wave mixing signal of dyes in a population measurement geometry is reported. The vibrational coherences both in the ground and excited electronic states produced strong oscillations in the signal together with the usual population decay from the excited electronic state. Absolute frequencies and their dephasing times of the vibrational modes at ~590 cm^{-1} are obtained

  6. Control quantum evolution speed of a single dephasing qubit for arbitrary initial states via periodic dynamical decoupling pulses.

    Science.gov (United States)

    Song, Ya-Ju; Tan, Qing-Shou; Kuang, Le-Man

    2017-03-08

    We investigate the possibility to control quantum evolution speed of a single dephasing qubit for arbitrary initial states by the use of periodic dynamical decoupling (PDD) pulses. It is indicated that the quantum speed limit time (QSLT) is determined by initial and final quantum coherence of the qubit, as well as the non-Markovianity of the system under consideration during the evolution when the qubit is subjected to a zero-temperature Ohmic-like dephasing reservoir. It is shown that final quantum coherence of the qubit and the non-Markovianity of the system can be modulated by PDD pulses. Our results show that for arbitrary initial states of the dephasing qubit with non-vanishing quantum coherence, PDD pulses can be used to induce potential acceleration of the quantum evolution in the short-time regime, while PDD pulses can lead to potential speedup and slow down in the long-time regime. We demonstrate that the effect of PDD on the QSLT for the Ohmic or sub-Ohmic spectrum (Markovian reservoir) is much different from that for the super-Ohmic spectrum (non-Markovian reservoir).

  7. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    Science.gov (United States)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  8. Influence of pure dephasing on emission spectra from single photon sources

    DEFF Research Database (Denmark)

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char......We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate...

  9. Simulation of Vibrations in Real Time Plane Milling with Spindle Speed Correction

    Directory of Open Access Journals (Sweden)

    I. I. Ivanov

    2017-01-01

    Full Text Available In milling the hard-to-machine materials vibrations (chatter often arise from the high cutting forces if a technological system is insufficiently rigid.The main way to suppress these vibrations is to increase a stiffness of the mounting system of the tool and the work-piece to be machined. However, sometimes this method doesn’t lead to desirable result because of high values of intrinsic pliability of the tool and the work-piece. Currently, there are more complicated methods to ensure milling process quality. Among them there are three main groups:mathematical simulation of milling process dynamics and computation of processing parameters which provide high quality of machined surface, low level of vibrations and static deflections of a tool and a work-piece;introduction of the active vibration suppression devices into machine tool design; such devices include a vibration sensor, a feedback circuit, and an actuator which induces kinematic or force action on the oscillatory system;control of processing parameters, mainly of rotation frequency for minimizing the amplitudes of vibrations.The paper studies one of the 3rd group methods. There is a suggestion to process a signal of vibrational accelerations in real time and detect a chatter onset. If the chatter has been detected its frequency is to be identified, and the new value of rotation speed is set:where Ω – rotation frequency, rot/s; p – the tool eigenfrequency value identified during processing, Hz; z – mill tooth number; i – positive integer number; ε<1 – small positive parameter. In the current research it is assumed that ε = 0,2.The formula has been chosen because at the rotation frequency axis where tooth pass frequency is slightly less than the eigenfrequency divided by the integer value there are stable zones of dynamics in the milling process.The study shows a developed model of the plane milling dynamics. It includes a dynamic model of the tool, a model of cutting

  10. Development of real-time on-line vibration testing system for seismic experiments

    International Nuclear Information System (INIS)

    Horiuchi, T.; Nakagawa, M.; Kametani, M.

    1993-01-01

    An on-line vibration testing method is being developed for seismic experiments. This method combines computer simulation and an actuator for vibration testing of structures. A real-time, on-line testing system was developed to improve the method. In the system, the timing of the vibration testing and the computer simulation are the same. This allows time-dependent reaction forces, such as damping force, to be immediately considered in the computer simulation. The real-time system has many requirements, such as complicated matrix calculations within a small time step, and communication with outer devices like sensors and actuators through A/D and D/A converters. These functions arc accomplished by using a newly-developed, real-time controller that employs a parallel processing technique. A small structural model is used to demonstrate the system. The reliability and applicability of the system for seismic experiments can be demonstrated by comparing the results of the system and a shaking table, which are in almost agreement. (author)

  11. Modelling and tuning for a time-delayed vibration absorber with friction

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  12. Femtosecond time-resolved studies of coherent vibrational Raman scattering in large gas-phase molecules

    International Nuclear Information System (INIS)

    Hayden, C.C.; Chandler, D.W.

    1995-01-01

    Results are presented from femtosecond time-resolved coherent Raman experiments in which we excite and monitor vibrational coherence in gas-phase samples of benzene and 1,3,5-hexatriene. Different physical mechanisms for coherence decay are seen in these two molecules. In benzene, where the Raman polarizability is largely isotropic, the Q branch of the vibrational Raman spectrum is the primary feature excited. Molecules in different rotational states have different Q-branch transition frequencies due to vibration--rotation interaction. Thus, the macroscopic polarization that is observed in these experiments decays because it has many frequency components from molecules in different rotational states, and these frequency components go out of phase with each other. In 1,3,5-hexatriene, the Raman excitation produces molecules in a coherent superposition of rotational states, through (O, P, R, and S branch) transitions that are strong due to the large anisotropy of the Raman polarizability. The coherent superposition of rotational states corresponds to initially spatially oriented, vibrationally excited, molecules that are freely rotating. The rotation of molecules away from the initial orientation is primarily responsible for the coherence decay in this case. These experiments produce large (∼10% efficiency) Raman shifted signals with modest excitation pulse energies (10 μJ) demonstrating the feasibility of this approach for a variety of gas phase studies. copyright 1995 American Institute of Physics

  13. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and Fourier-transform sum-frequency vibrational spectroscopy

    International Nuclear Information System (INIS)

    McGuire, John Andrew

    2004-01-01

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of ∼ 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm -1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach

  14. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  15. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    Science.gov (United States)

    Roy, Chiranjeeb; John, Sajeev

    2010-02-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  16. Microscopic theory of multiple-phonon-mediated dephasing and relaxation of quantum dots near a photonic band gap

    International Nuclear Information System (INIS)

    Roy, Chiranjeeb; John, Sajeev

    2010-01-01

    We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the ''colored'' electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.

  17. Pattern recognition based on time-frequency analysis and convolutional neural networks for vibrational events in φ-OTDR

    Science.gov (United States)

    Xu, Chengjin; Guan, Junjun; Bao, Ming; Lu, Jiangang; Ye, Wei

    2018-01-01

    Based on vibration signals detected by a phase-sensitive optical time-domain reflectometer distributed optical fiber sensing system, this paper presents an implement of time-frequency analysis and convolutional neural network (CNN), used to classify different types of vibrational events. First, spectral subtraction and the short-time Fourier transform are used to enhance time-frequency features of vibration signals and transform different types of vibration signals into spectrograms, which are input to the CNN for automatic feature extraction and classification. Finally, by replacing the soft-max layer in the CNN with a multiclass support vector machine, the performance of the classifier is enhanced. Experiments show that after using this method to process 4000 vibration signal samples generated by four different vibration events, namely, digging, walking, vehicles passing, and damaging, the recognition rates of vibration events are over 90%. The experimental results prove that this method can automatically make an effective feature selection and greatly improve the classification accuracy of vibrational events in distributed optical fiber sensing systems.

  18. Suppressed spin dephasing for two-dimensional and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    NARCIS (Netherlands)

    Denega, S.Z.; Last, Thorsten; Liu, J.; Slachter, A.; Rizo, P.J.; Loosdrecht, P.H.M. van; Wees, B.J. van; Reuter, D.; Wieck, A.D.; Wal, C.H. van der

    2010-01-01

    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the

  19. Impact of undamped and damped intramolecular vibrations on the efficiency of photosynthetic exciton energy transfer

    Science.gov (United States)

    Juhász, Imre Benedek; Csurgay, Árpád I.

    2018-04-01

    In recent years, the role of molecular vibrations in exciton energy transfer taking place during the first stage of photosynthesis attracted increasing interest. Here, we present a model formulated as a Lindblad-type master equation that enables us to investigate the impact of undamped and especially damped intramolecular vibrational modes on the exciton energy transfer, particularly its efficiency. Our simulations confirm the already reported effects that the presence of an intramolecular vibrational mode can compensate the energy detuning of electronic states, thus promoting the energy transfer; and, moreover, that the damping of such a vibrational mode (in other words, vibrational relaxation) can further enhance the efficiency of the process by generating directionality in the energy flow. As a novel result, we show that this enhancement surpasses the one caused by pure dephasing, and we present its dependence on various system parameters (time constants of the environment-induced relaxation and excitation processes, detuning of the electronic energy levels, frequency of the intramolecular vibrational modes, Huang-Rhys factors, temperature) in dimer model systems. We demonstrate that vibrational-relaxation-enhanced exciton energy transfer (VREEET) is robust against the change of these characteristics of the system and occurs in wide ranges of the investigated parameters. With simulations performed on a heptamer model inspired by the Fenna-Matthews-Olson (FMO) complex, we show that this mechanism can be even more significant in larger systems at T = 300 K. Our results suggests that VREEET might be prevalent in light-harvesting complexes.

  20. Time and space domain separation of pulsed X-ray beams diffracted from vibrating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nosik, V. L., E-mail: v-nosik@yandex.ru, E-mail: nosik@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” (Russian Federation)

    2016-11-15

    It is known that a set of additional reflections (satellites) may arise on rocking curves in the case of X-ray diffraction in the Bragg geometry from crystals where high-frequency ultrasonic vibrations are excited. It is shown that, under certain conditions, the pulse wave fields of the satellites and main reflection may be intersected in space (playing the role of pump and probe beams) and in time (forming interference superlattices).

  1. Dephasing of LO-phonon-plasmon hybrid modes in n-type GaAs

    Science.gov (United States)

    Vallée, F.; Ganikhanov, F.; Bogani, F.

    1997-11-01

    The relaxation dynamics of coherent phononlike LO-phonon-plasmon hybrid modes is investigated in n-doped GaAs using an infrared time-resolved coherent anti-Stokes Raman scattering technique. Measurements performed for different crystal temperatures in the range 10-300 K as a function of the electron density injected by doping show a large reduction of the hybrid mode dephasing time compared to the bare LO-phonon one for densities larger than 1016 cm-3. The results are interpreted in terms of coherent decay of the LO-phonon-plasmon mixed mode in the weak-coupling regime and yield information on the plasmon and electron relaxation. The estimated average electron momentum relaxation times are smaller than those deduced from Hall mobility measurements, as expected from our theoretical model.

  2. Spin-Dephasing Anisotropy for Electrons in a Diffusive Quasi-1D GaAs Wire

    NARCIS (Netherlands)

    Liu, J.; Last, T.; Koop, E. J.; Denega, S.; van Wees, B. J.; van der Wal, C. H.

    We present a numerical study of dephasing of electron spin ensembles in a diffusive quasi-one-dimensional GaAs wire due to the D'yakonov-Perel' spin-dephasing mechanism. For widths of the wire below the spin precession length and for equal strength of Rashba and linear Dresselhaus spin-orbit fields

  3. Dephasing in semiconductor-superconductor structures by coupling to a voltage probe

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    2000-01-01

    We study dephasing in semiconductor-superconductor structures caused by coupling to a voltage probe. We consider structures where the semiconductor consists of two scattering regions between which partial dephasing is possible. As a particular example we consider a situation with a double barrier...

  4. Time-resolved measurements with intense ultrashort laser pulses: a 'molecular movie' in real time

    International Nuclear Information System (INIS)

    Rudenko, A; Ergler, Th; Feuerstein, B; Zrost, K; Schroeter, C D; Moshammer, R; Ullrich, J

    2007-01-01

    We report on the high-resolution multidimensional real-time mapping of H 2 + and D 2 + nuclear wave packets performed employing time-resolved three-dimensional Coulomb explosion imaging with intense laser pulses. Exploiting a combination of a 'reaction microscope' spectrometer and a pump-probe setup with two intense 6-7 fs laser pulses, we simultaneously visualize both vibrational and rotational motion of the molecule, and obtain a sequence of snapshots of the squared ro-vibrational wave function with time-step resolution of ∼ 0.3 fs, allowing us to reconstruct a real-time movie of the ultrafast molecular motion. We observe fast dephasing, or 'collapse' of the vibrational wave packet and its subsequent revival, as well as signatures of rotational excitation. For D 2 + we resolve also the fractional revivals resulting from the interference between the counter-propagating parts of the wave packet

  5. Dependence of inhomogeneous vibrational linewidth broadening on attractive forces from local liquid number densities

    International Nuclear Information System (INIS)

    George, S.M.; Harris, C.B.

    1982-01-01

    The dependence of inhomogeneous vibrational linewidth broadening on attractive forces form slowly varying local liquid number densities is examined. The recently developed Schweizer--Chandler theory of vibrational dephasing is used to compute absolute inhomogeneous broadening linewidths. The computed linewidths are compared to measured inhomogeneous broadening linewidths determined using picosecond vibrational dephasing experiments. There is a similarity between correlations of the Schweizer--Chandler and George--Auweter--Harris predicted inhomogeneous broadening linewidths and the measured inhomogeneous broadening linewidths. For the methyl stretches under investigation, this correspondence suggests that the width of the number density distribution in the liquid determines the relative inhomogeneous broadening magnitudes

  6. Atomic motion of resonantly vibrating quartz crystal visualized by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Aoyagi, Shinobu; Osawa, Hitoshi; Sugimoto, Kunihisa; Fujiwara, Akihiko; Takeda, Shoichi; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2015-01-01

    Transient atomic displacements during a resonant thickness-shear vibration of AT-cut α-quartz are revealed by time-resolved X-ray diffraction under an alternating electric field. The lattice strain resonantly amplified by the alternating electric field is ∼10 4 times larger than that induced by a static electric field. The resonantly amplified lattice strain is achieved by fast displacements of oxygen anions and collateral resilient deformation of Si−O−Si angles bridging rigid SiO 4 tetrahedra, which efficiently transduce electric energy into elastic energy

  7. Study on Vibration of Heavy-Precision Robot Cantilever Based on Time-varying Glowworm Swarm Optimization Algorithm

    Science.gov (United States)

    Luo, T. H.; Liang, S.; Miao, C. B.

    2017-12-01

    A method of terminal vibration analysis based on Time-varying Glowworm Swarm Optimization algorithm is proposed in order to solve the problem that terminal vibration of the large flexible robot cantilever under heavy load precision.The robot cantilever of the ballastless track is used as the research target and the natural parameters of the flexible cantilever such as the natural frequency, the load impact and the axial deformation is considered. Taking into account the change of the minimum distance between the glowworm individuals, the terminal vibration response and adaptability could meet. According to the Boltzmann selection mechanism, the dynamic parameters in the motion simulation process are determined, while the influence of the natural frequency and the load impact as well as the axial deformation on the terminal vibration is studied. The method is effective and stable, which is of great theoretical basis for the study of vibration control of flexible cantilever terminal.

  8. Self-excited vibration control for axially fast excited beam by a time delay state feedback

    International Nuclear Information System (INIS)

    Hamdi, Mustapha; Belhaq, Mohamed

    2009-01-01

    This work examines the control of self-excited vibration of a simply-supported beam subjected to an axially high-frequency excitation. The investigation of the resonant cases are not considered in this paper. The control is implemented via a corrective position feedback with time delay. The objective of this control is to eliminate the undesirable self-excited vibrations with an appropriate choice of parameters. The issue of stability is also addressed in this paper. Using the technique of direct partition of motion, the dynamic of discretized equations is separated into slow and fast components. The multiple scales method is then performed on the slow dynamic to obtain a slow flow for the amplitude and phase. Analysis of this slow flow provides analytical approximations locating regions in parameters space where undesirable self-excited vibration can be eliminated. A numerical study of these regions is performed on the original discretized system and compared to the analytical prediction showing a good agreement.

  9. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  10. Vibrationally resolved photoelectron spectra of lower diamondoids: A time-dependent approach

    Science.gov (United States)

    Xiong, Tao; Włodarczyk, Radosław; Gallandi, Lukas; Körzdörfer, Thomas; Saalfrank, Peter

    2018-01-01

    Vibrationally resolved lowest-energy bands of the photoelectron spectra (PES) of adamantane, diamantane, and urotropine were simulated by a time-dependent correlation function approach within the harmonic approximation. Geometries and normal modes for neutral and cationic molecules were obtained from B3LYP hybrid density functional theory (DFT). It is shown that the simulated spectra reproduce the experimentally observed vibrational finestructure (or its absence) quite well. Origins of the finestructure are discussed and related to recurrences of autocorrelation functions and dominant vibrations. Remaining quantitative and qualitative errors of the DFT-derived PES spectra refer to (i) an overall redshift by ˜0.5 eV and (ii) the absence of satellites in the high-energy region of the spectra. The former error is shown to be due to the neglect of many-body corrections to ordinary Kohn-Sham methods, while the latter has been argued to be due to electron-nuclear couplings beyond the Born-Oppenheimer approximation [Gali et al., Nat. Commun. 7, 11327 (2016)].

  11. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis

    2000-01-01

    The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states....... The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  12. Quantification of acute vocal fold epithelial surface damage with increasing time and magnitude doses of vibration exposure.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Kojima

    Full Text Available Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes and magnitude-doses (control, modal intensity phonation, or raised intensity phonation of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure.

  13. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  14. Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis.

    Science.gov (United States)

    He, Qingbo; Wang, Xiangxiang; Zhou, Qiang

    2013-12-27

    Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.

  15. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    International Nuclear Information System (INIS)

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-01-01

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ 1 ,T ~ 2 ,λ 3 )) along the population time (T ~ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ 1 ,ν ~ 2 ,λ 3 )). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν ~ 2 ) in the rephasing beating map and at negative frequency (−ν ~ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems

  16. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    KAUST Repository

    Song, Yin

    2015-06-07

    © 2015 AIP Publishing LLC. Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S (λ 1, T∼ 2, λ 3)) along the population time (T∼ 2) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S (λ 1, ν∼ 2, λ 3)). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ ν∼ 2) in the rephasing beating map and at negative frequency (- ν∼ 2) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  17. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  18. The Fourteenth International Meeting on Time-Resolved Vibrational Spectroscopy (TRVS XIV)

    Science.gov (United States)

    2010-02-03

    conferences covering the use of advanced vibrational spectroscopy for the use of studying time-dependent molecular processes in chemistry, physics ...Netherlands a.huertaviga@uva.nl Neil Hunt Dept of  Physics , University of Strathclyde United Kingdom nhunt@phys.strath.ac Koichi Iwata Gakushuin University...Dasgupta Mark Creelman Sangdeok Shim Biochemical Reaction Dynamics, , , UC B k ler e ey 11:50 AM C W. Zinth, W. J. Schreier, J. Kubon, N. Regner, K

  19. Constraints on dephasing widths and shifts in three-level quantum systems

    International Nuclear Information System (INIS)

    Berman, P.R.; O'Connell, Ross C.

    2005-01-01

    It is shown that the density matrix equations for a three-level quantum system interacting with external radiation fields can lead to negative populations if arbitrary dephasing rates and shifts are included in these equations. To guarantee non-negative populations, the equations themselves impose certain restrictions on the dephasing widths and shifts. The constraints on the widths are shown to be identical to those that can be derived from a model of Markovian dephasing events, independent of any atom-field interaction

  20. Time-domain prefilter design for enhanced tracking and vibration suppression in machine motion control

    Science.gov (United States)

    Cole, Matthew O. T.; Shinonawanik, Praween; Wongratanaphisan, Theeraphong

    2018-05-01

    Structural flexibility can impact negatively on machine motion control systems by causing unmeasured positioning errors and vibration at locations where accurate motion is important for task execution. To compensate for these effects, command signal prefiltering may be applied. In this paper, a new FIR prefilter design method is described that combines finite-time vibration cancellation with dynamic compensation properties. The time-domain formulation exploits the relation between tracking error and the moment values of the prefilter impulse response function. Optimal design solutions for filters having minimum H2 norm are derived and evaluated. The control approach does not require additional actuation or sensing and can be effective even without complete and accurate models of the machine dynamics. Results from implementation and testing on an experimental high-speed manipulator having a Delta robot architecture with directionally compliant end-effector are presented. The results show the importance of prefilter moment values for tracking performance and confirm that the proposed method can achieve significant reductions in both peak and RMS tracking error, as well as settling time, for complex motion patterns.

  1. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  2. Comparative Study of Time-Frequency Decomposition Techniques for Fault Detection in Induction Motors Using Vibration Analysis during Startup Transient

    Directory of Open Access Journals (Sweden)

    Paulo Antonio Delgado-Arredondo

    2015-01-01

    Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.

  3. Application of Time-Delay Absorber to Suppress Vibration of a Dynamical System to Tuned Excitation.

    Science.gov (United States)

    El-Ganaini, W A A; El-Gohary, H A

    2014-08-01

    In this work, we present a comprehensive investigation of the time delay absorber effects on the control of a dynamical system represented by a cantilever beam subjected to tuned excitation forces. Cantilever beam is one of the most widely used system in too many engineering applications, such as mechanical and civil engineering. The main aim of this work is to control the vibration of the beam at simultaneous internal and combined resonance condition, as it is the worst resonance case. Control is conducted via time delay absorber to suppress chaotic vibrations. Time delays often appear in many control systems in the state, in the control input, or in the measurements. Time delay commonly exists in various engineering, biological, and economical systems because of the finite speed of the information processing. It is a source of performance degradation and instability. Multiple time scale perturbation method is applied to obtain a first order approximation for the nonlinear differential equations describing the system behavior. The different resonance cases are reported and studied numerically. The stability of the steady-state solution at the selected worst resonance case is investigated applying Runge-Kutta fourth order method and frequency response equations via Matlab 7.0 and Maple11. Time delay absorber is effective, but within a specified range of time delay. It is the critical factor in selecting such absorber. Time delay absorber is better than the ordinary one as from the effectiveness point of view. The effects of the different absorber parameters on the system behavior and stability are studied numerically. A comparison with the available published work showed a close agreement with some previously published work.

  4. Modified multiple time scale method for solving strongly nonlinear damped forced vibration systems

    Science.gov (United States)

    Razzak, M. A.; Alam, M. Z.; Sharif, M. N.

    2018-03-01

    In this paper, modified multiple time scale (MTS) method is employed to solve strongly nonlinear forced vibration systems. The first-order approximation is only considered in order to avoid complexicity. The formulations and the determination of the solution procedure are very easy and straightforward. The classical multiple time scale (MS) and multiple scales Lindstedt-Poincare method (MSLP) do not give desire result for the strongly damped forced vibration systems with strong damping effects. The main aim of this paper is to remove these limitations. Two examples are considered to illustrate the effectiveness and convenience of the present procedure. The approximate external frequencies and the corresponding approximate solutions are determined by the present method. The results give good coincidence with corresponding numerical solution (considered to be exact) and also provide better result than other existing results. For weak nonlinearities with weak damping effect, the absolute relative error measures (first-order approximate external frequency) in this paper is only 0.07% when amplitude A = 1.5 , while the relative error gives MSLP method is surprisingly 28.81%. Furthermore, for strong nonlinearities with strong damping effect, the absolute relative error found in this article is only 0.02%, whereas the relative error obtained by MSLP method is 24.18%. Therefore, the present method is not only valid for weakly nonlinear damped forced systems, but also gives better result for strongly nonlinear systems with both small and strong damping effect.

  5. An Attempt to Shorten Loading Time of Epirubicin into DC Beads® Using Vibration and a Sieve

    International Nuclear Information System (INIS)

    Sonoda, Akinaga; Nitta, Norihisa; Yamamoto, Takefumi; Tomozawa, Yuki; Ohta, Shinichi; Watanabe, Shobu; Murata, Kiyoshi

    2017-01-01

    PurposeWe investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads ® ) to be used for transarterial chemoembolization.MethodAfter separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loaded samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope.ResultsSpectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar.DiscussionThe use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.

  6. An Attempt to Shorten Loading Time of Epirubicin into DC Beads{sup ®} Using Vibration and a Sieve

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, Akinaga, E-mail: akinagasonoda@yahoo.co.jp; Nitta, Norihisa [Shiga University of Medical Science, Department of Radiology (Japan); Yamamoto, Takefumi [Shiga University of Medical Science, Central Research Laboratory (Japan); Tomozawa, Yuki; Ohta, Shinichi; Watanabe, Shobu; Murata, Kiyoshi [Shiga University of Medical Science, Department of Radiology (Japan)

    2017-04-15

    PurposeWe investigated the possibility of shortening the time required for loading epirubicin into calibrated polyvinyl alcohol-based hydrogel beads (DC Beads{sup ®}) to be used for transarterial chemoembolization.MethodAfter separating the beads suspended in phosphate-buffered saline (PBS) solution by the use of a sieve (clearance 75 µm), epirubicin hydrochloride (EH) was loaded for 20, 30, or 60 s under vibration into DC beads. The EH loading rate into conventionally prepared (control) beads, i.e., beads loaded for 30 min without vibration, and vibration-loaded beads were calculated from the residual EH concentration in the bead-depleted EH solution. The amount of EH eluted from conventionally and vibration-loaded samples into a PBS solution (pH 7.0) was measured at 15 and 30 min and 1, 2, 6, 12, and 24 h. We also recorded the inhibitory effect of the PBS solution on the loading time. Using frozen sections, the EH load in the beads was evaluated visually under a fluorescence microscope.ResultsSpectrophotometry (495 nm) showed that the loading rate was 98.98 ± 0.34, 99.02 ± 0.32, and 99.50 ± 0.11 % with 20-, 30-, and 60-s vibration, respectively. The eluted rate was statistically similar between vibration- and statically loaded (control) beads. The PBS solution hampered EH loading into the beads. Visually, the distribution of EH in conventionally and vibration-loaded DC beads was similar.DiscussionThe use of vibration and the removal of PBS solution when epirubicin hydrochloride was loaded into DC beads dramatically shortened the loading time of epirubicin hydrochloride into DC beads.

  7. Feedback controlled dephasing and population relaxation in a two-level system

    International Nuclear Information System (INIS)

    Wang Jin

    2009-01-01

    This Letter presents the maximum achievable stability and purity that can be obtained in a two-level system with both dephasing and population relaxation processes by using homodyne-mediated feedback control. An analytic formula giving the optimal amplitudes of the driving and feedback for the steady-state is also presented. Experimental examples are used to show the importance of controlling the dephasing process.

  8. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    Science.gov (United States)

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-03-12

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  9. Effects of adding whole body vibration to squat training on isometric force/time characteristics.

    Science.gov (United States)

    Lamont, Hugh S; Cramer, Joel T; Bemben, Debra A; Shehab, Randa L; Anderson, Mark A; Bemben, Michael G

    2010-01-01

    Resistance training interventions aimed at increasing lower-body power and rates of force development have produced varying results. Recent studies have suggested that whole-body low-frequency vibration (WBLFV) may elicit an acute postactivation potentiation response, leading to acute improvements in power and force development. Potentially, the use of WBLFV between sets of resistance training rather than during training itself may lead to increased recruitment and synchronization of high-threshold motor units, minimize fatigue potential, and facilitate the chronic adaptation to resistance exercise. The purpose of this study was to determine the effects of applying TriPlaner, WBLFV, prior to and then intermittently between sets of Smith machine squats on short-term adaptations in explosive isometric force expression. Thirty recreationally resistance trained men aged 18-30 were randomly assigned to 1 of 3 groups: resistance training only (SQT, n = 11), resistance plus whole-body vibration (SQTV, n = 13), or active control (CON, n = 6). An isometric squat test was performed prior to and following a 6-week periodized Smith machine squat program. Whole-body low-frequency vibration was applied 180 seconds prior to the first work set (50 Hz, 2-4 mm, 30 seconds) and intermittently (50 Hz, 4-6 mm, 3 x 10 seconds, 60 seconds between exposures) within a 240-second interset rest period. Subjects were instructed to assume a quarter squat posture while positioning their feet directly under their center of mass, which was modified using a handheld goniometer to a knee angle of 135 +/- 5 degrees . Instructions were given to subjects to apply force as fast and as hard as possible for 3.5 seconds. Isometric force (N) and rates of force development (N.s(-1)) were recorded from the onset of contraction (F(0)) to time points corresponding to 30, 50, 80, 100, 150, and 250 milliseconds, as well as the peak isometric rate of force development (PISORFD), and rate of force development to

  10. Real-time moving horizon estimation for a vibrating active cantilever

    Science.gov (United States)

    Abdollahpouri, Mohammad; Takács, Gergely; Rohaľ-Ilkiv, Boris

    2017-03-01

    Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.

  11. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control

    International Nuclear Information System (INIS)

    Zhang Jing; Xu Daolin; Zhou Jiaxi; Li Yingli

    2012-01-01

    Highlights: ► A chaotification method based on nonlinear time-delay feedback control is present. ► An analytical function of nonlinear time-delay feedback control is derived. ► A large range of parametric domain for chaotification is obtained. ► The approach allows using small control gain. ► Design of chaotification becomes a standard process without uncertainty. - Abstract: This paper presents a chaotification method based on nonlinear time-delay feedback control for a two-dimensional vibration isolation floating raft system (VIFRS). An analytical function of nonlinear time-delay feedback control is derived. This approach can theoretically provide a systematic design of chaotification for nonlinear VIFRS and completely avoid blind and inefficient numerical search on the basis of trials and errors. Numerical simulations show that with a proper setting of control parameters the method holds the favorable aspects including the capability of chaotifying across a large range of parametric domain, the advantage of using small control and the flexibility of designing control feedback forms. The effects on chaotification performance are discussed in association with the configuration of the control parameters.

  12. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  13. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  14. Vibration analysis diagnostics by continuous-time models: A case study

    International Nuclear Information System (INIS)

    Pedregal, Diego J.; Carmen Carnero, Ma.

    2009-01-01

    In this paper a forecasting system in condition monitoring is developed based on vibration signals in order to improve the diagnosis of a certain critical equipment at an industrial plant. The system is based on statistical models capable of forecasting the state of the equipment combined with a cost model consisting of defining the time of preventive replacement when the minimum of the expected cost per unit of time is reached in the future. The most relevant features of the system are that (i) it is developed for bivariate signals; (ii) the statistical models are set up in a continuous-time framework, due to the specific nature of the data; and (iii) it has been developed from scratch for a real case study and may be generalised to other pieces of equipment. The system is thoroughly tested on the equipment available, showing its correctness with the data in a statistical sense and its capability of producing sensible results for the condition monitoring programme

  15. Vibration analysis diagnostics by continuous-time models: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Pedregal, Diego J. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Diego.Pedregal@uclm.es; Carmen Carnero, Ma. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Carmen.Carnero@uclm.es

    2009-02-15

    In this paper a forecasting system in condition monitoring is developed based on vibration signals in order to improve the diagnosis of a certain critical equipment at an industrial plant. The system is based on statistical models capable of forecasting the state of the equipment combined with a cost model consisting of defining the time of preventive replacement when the minimum of the expected cost per unit of time is reached in the future. The most relevant features of the system are that (i) it is developed for bivariate signals; (ii) the statistical models are set up in a continuous-time framework, due to the specific nature of the data; and (iii) it has been developed from scratch for a real case study and may be generalised to other pieces of equipment. The system is thoroughly tested on the equipment available, showing its correctness with the data in a statistical sense and its capability of producing sensible results for the condition monitoring programme.

  16. On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity

    NARCIS (Netherlands)

    Suweken, G.; van Horssen, W.T.

    2002-01-01

    In this paper the weakly nonlinear, transversal vibrations of a conveyor belt will be considered. The belt is assumed to move with a low and time-varying speed. Using Kirchhoff's approach a single equation of motion will be derived from a coupled system of partial differential equations describing

  17. Active control of time-varying broadband noise and vibrations using a sliding-window Kalman filter

    NARCIS (Netherlands)

    van Ophem, S.; Berkhoff, Arthur P.; Sas, P.; Moens, D.; Denayer, H.

    2014-01-01

    Recently, a multiple-input/multiple-output Kalman filter technique was presented to control time-varying broadband noise and vibrations. By describing the feed-forward broadband active noise control problem in terms of a state estimation problem it was possible to achieve a faster rate of

  18. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  19. Dynamics of electronic dephasing in the Fenna-Matthews-Olson complex

    International Nuclear Information System (INIS)

    Hayes, Dugan; Panitchayangkoon, Gitt; Fransted, Kelly A; Caram, Justin R; Freed, Karl F; Engel, Gregory S; Wen Jianzhong

    2010-01-01

    Electronic coherence has been shown to persist in the Fenna-Matthews-Olson (FMO) antenna complex from green sulfur bacteria at 77 K for at least 660 fs, several times longer than the typical lifetime of a coherence in a dynamic environment at this temperature. Such long-lived coherence was proposed to improve energy transfer efficiency in photosynthetic systems by allowing an excitation to follow a quantum random walk as it approaches the reaction centre. Here we present a model for bath-induced electronic transitions, demonstrating that the protein matrix protects coherences by globally correlating fluctuations in transition energies. We also quantify the dephasing rates for two particular electronic coherences in the FMO complex at 77 K using two-dimensional Fourier transform electronic spectroscopy and find that the lifetimes of individual coherences are distinct. Within the framework of noise-assisted transport, this result suggests that the FMO complex has been locally tuned by natural selection to optimize transfer efficiency by exploiting quantum coherence.

  20. Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots

    Science.gov (United States)

    Palyi, Andras; Csiszar, Gabor

    2015-03-01

    Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.

  1. Factors affecting the effectiveness of a projection dephaser in 2D gradient-echo imaging

    International Nuclear Information System (INIS)

    Bakker, Chris J G; Peters, Nicky H G M; Vincken, Koen L; Bom, Martijn van der; Seppenwoolde, Jan-Henry

    2007-01-01

    Projection dephasers are often used for background suppression and dynamic range improvement in thick-slab 2D imaging in order to promote the visibility of subslice structures, e.g., blood vessels and interventional devices. In this study, we explored the factors that govern the effectiveness of a projection dephaser by simulations and phantom experiments. This was done for the ideal case of a single subslice hyper- or hypointensity against a uniform background in the absence of susceptibility effects. Simulations and experiments revealed a pronounced influence of the slice profile, the nominal flip angle and the TE and TR of the acquisition, the size, intraslice position and MR properties of the subslice structure, and T 1 of the background. The complexity of the ideal case points to the necessity of additional explorations when considering the use of projection dephasers under less ideal conditions, e.g., in the presence of tissue heterogeneities and susceptibility gradients

  2. Real-time, vibration-compensated CO2 interferometer operation on the DIII-D tokamak

    International Nuclear Information System (INIS)

    Carlstrom, T.N.; Ahlgren, D.R.; Crosbie, J.

    1988-01-01

    A multichannel, two-color, quadrature heterodyne interferometer is used to measure the line density in the DIII-D tokamak. The unique feature of this real-time vibration-compensated interferometer is the combination of high speed (1 MHz), high resolution (2π/256), and wide range ( +- 8193 fringes). Quadrature phase information from a CO 2 laser (10.6 μm) and a He--Ne laser (0.63 μm) are digitized with high-speed (6 MHz) flash digitizers. Zero crossings of the signals are counted with digital circuitry yielding quarter fringe resolution with a 4-MHz bandwidth. Further fringe resolution of 1/256 is provided at 350 kHz by a PROM which uses the digital signals as input to a look-up table. Analog line density is presently available at 80 kHz with a system noise equivalent phase shift of +- 2/256. Error monitoring is provided for low signal amplitude and exceeding the maximum fringe rate. In addition, a method to prevent coating of in-vessel mirrors due to plasma and vessel wall cleaning discharges has been developed

  3. Time-Varying Uncertainty in Shock and Vibration Applications Using the Impulse Response

    Directory of Open Access Journals (Sweden)

    J.B. Weathers

    2012-01-01

    Full Text Available Design of mechanical systems often necessitates the use of dynamic simulations to calculate the displacements (and their derivatives of the bodies in a system as a function of time in response to dynamic inputs. These types of simulations are especially prevalent in the shock and vibration community where simulations associated with models having complex inputs are routine. If the forcing functions as well as the parameters used in these simulations are subject to uncertainties, then these uncertainties will propagate through the models resulting in uncertainties in the outputs of interest. The uncertainty analysis procedure for these kinds of time-varying problems can be challenging, and in many instances, explicit data reduction equations (DRE's, i.e., analytical formulas, are not available because the outputs of interest are obtained from complex simulation software, e.g. FEA programs. Moreover, uncertainty propagation in systems modeled using nonlinear differential equations can prove to be difficult to analyze. However, if (1 the uncertainties propagate through the models in a linear manner, obeying the principle of superposition, then the complexity of the problem can be significantly simplified. If in addition, (2 the uncertainty in the model parameters do not change during the simulation and the manner in which the outputs of interest respond to small perturbations in the external input forces is not dependent on when the perturbations are applied, then the number of calculations required can be greatly reduced. Conditions (1 and (2 characterize a Linear Time Invariant (LTI uncertainty model. This paper seeks to explain one possible approach to obtain the uncertainty results based on these assumptions.

  4. Non-collocated fuzzy logic and input shaping control strategy for elastic joint manipulator: vibration suppression and time response analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rashidifar, Mohammed Amin [Faculty of Mechanical Engineering, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of); Rashidifar, Ali Amin, E-mail: rashidifar_58@yahoo.com [Computer Science, Islamic Azad University, SHADEGAN (Iran, Islamic Republic of)

    2014-07-01

    Conventional model-based control strategies are very complex and difficult to synthesize due to high complexity of the dynamics of robots manipulator considering joint elasticity. This paper presents investigations into the development of hybrid control schemes for trajectory tracking and vibration control of a flexible joint manipulator. To study the effectiveness of the controllers, initially a collocated proportional-derivative (P D)-type Fuzzy Logic Controller (FLC) is developed for tip angular position control of a flexible joint manipulator. This is then extended to incorporate a non-collocated Fuzzy Logic Controller and input shaping scheme for vibration reduction of the flexible joint system. The positive zero-vibration-derivative-derivative (ZVDD) shaper is designed based on the properties of the system. Simulation results of the response of the flexible joint manipulator with the controllers are presented in time and frequency domains. The performances of the hybrid control schemes are examined in terms of input tracking capability, level of vibration reduction and time response specifications. Finally, a comparative assessment of the control techniques is presented and discussed. (Author)

  5. The effect of electron-electron interaction induced dephasing on electronic transport in graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Kahnoj, Sina Soleimani; Touski, Shoeib Babaee [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at [School of Electrical and Computer Engineering, University of Tehran, P.O. Box 14395-515, Tehran (Iran, Islamic Republic of); Institute for Microelectronics, TU Wien, Gusshausstrasse 27–29/E360, 1040 Vienna (Austria)

    2014-09-08

    The effect of dephasing induced by electron-electron interaction on electronic transport in graphene nanoribbons is theoretically investigated. In the presence of disorder in graphene nanoribbons, wavefunction of electrons can set up standing waves along the channel and the conductance exponentially decreases with the ribbon's length. Employing the non-equilibrium Green's function formalism along with an accurate model for describing the dephasing induced by electron-electron interaction, we show that this kind of interaction prevents localization and transport of electrons remains in the diffusive regime where the conductance is inversely proportional to the ribbon's length.

  6. Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions

    Science.gov (United States)

    Balaneskovic, Nenad; Mendler, Marc

    2016-09-01

    We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.

  7. Reducing dephasing in coupled quantum dot-cavity systems by engineering the carrier wavefunctions

    DEFF Research Database (Denmark)

    Nysteen, Anders; Nielsen, Per Kær; Mørk, Jesper

    2012-01-01

    We demonstrate theoretically how photon-assisted dephasing by the electron-phonon interaction in a coupled cavity-quantum dot system can be significantly reduced for specific QD-cavity detunings. Our starting point is a recently published theory,1 which considers longitudinal acoustic phonons......, described by a non-Markovian model, interacting with a coupled quantum dot-cavity system. The reduction of phonon-induced dephasing is obtained by placing the cavity-quantum dot system inside an infinite slab, assuming spherical electronic wavefunctions. Based on our calculations, we expect this to have...

  8. Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry.

    Science.gov (United States)

    Demoli, Nazif; Vukicevic, Dalibor

    2004-10-15

    A method of detecting displacements of a surface from its steady-state position to its equilibrium position while it is vibrating has been developed by use of time-average digital holographic interferometry. This method permits extraction of such a hidden deformation by creating two separated systems of interferogram fringes: one corresponding to a time-varying resonantly oscillating optical phase, the other to the stationary phase modification. A mathematical description of the method and illustrative results of experimental verification are presented.

  9. Rapid adiabatic passage in quantum dots: Influence of scattering and dephasing

    DEFF Research Database (Denmark)

    Schuh, K.; Jahnke, F.; Lorke, Michael

    2011-01-01

    Theoretical investigations for the realization of population inversion of semiconductor quantum dot ground-state transitions by means of adiabatic passage with chirped optical pulses are presented. While the inversion due to Rabi oscillations depends sensitively on the resonance condition...... to describe carrier scattering and dephasing in the corresponding simulations and allow to quantify the conditions to simultaneously invert an ensamble of quantum dots....

  10. Threshold for strong thermal dephasing in periodically poled KTP in external cavity frequency doubling

    DEFF Research Database (Denmark)

    Lundeman, Jesper Holm; Jensen, Ole Bjarlin; Andersen, Peter E.

    2009-01-01

    We present a measurement series of the efficiency of periodically poled KTP used for second-harmonic generation in an external phase-locked cavity. Due to the high absorption (0.01 cm^−1) in the PPKTP crystal at the pump wavelength a strong thermal dephasing of the periodically poled grating...

  11. Investigation of Effectiveness of Some Vibration-Based Techniques in Early Detection of Real-Time Fatigue Failure in Gears

    Directory of Open Access Journals (Sweden)

    Hasan Ozturk

    2010-01-01

    Full Text Available Bending fatigue crack is a dangerous and insidious mode of failure in gears. As it produces no debris in its early stages, it gives little warning during its progression, and usually results in either immediate loss of serviceability or greatly reduced power transmitting capacity. This paper presents the applications of vibration-based techniques (i.e. conventional time and frequency domain analysis, cepstrum, and continuous wavelet transform to real gear vibrations in the early detection, diagnosis and advancement monitoring of a real tooth fatigue crack and compares their detection and diagnostic capabilities on the basis of experimental results. Gear fatigue damage is achieved under heavy-loading conditions and the gearbox is allowed to run until the gears suffer badly from complete tooth breakage. It has been found that the initiation and progression of fatigue crack cannot be easily detected by conventional time and frequency domain approaches until the fault is significantly developed. On the contrary, the wavelet transform is quite sensitive to any change in gear vibration and reveals fault features earlier than other methods considered.

  12. Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles

    Science.gov (United States)

    Anastopoulos, C.; Hu, B. L.

    2018-02-01

    We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.

  13. Mitigation of near-band balanced steady-state free precession through-plane flow artifacts using partial dephasing.

    Science.gov (United States)

    Datta, Anjali; Cheng, Joseph Y; Hargreaves, Brian A; Baron, Corey A; Nishimura, Dwight G

    2018-06-01

    To mitigate artifacts from through-plane flow at the locations of steady-state stopbands in balanced steady-state free precession (SSFP) using partial dephasing. A 60° range in the phase accrual during a TR was created over the voxel by slightly unbalancing the slice-select dephaser. The spectral profiles of SSFP with partial dephasing for various constant flow rates and during pulsatile flow were simulated to determine if partial dephasing decreases through-plane flow artifacts originating near SSFP dark bands while maintaining on-resonant signal. Simulations were then validated in a flow phantom. Lastly, phase-cycled SSFP cardiac cine images were acquired with and without partial dephasing in six subjects. Partial dephasing decreased the strength and non-linearity of the dependence of the signal at the stopbands on the through-plane flow rate. It thus mitigated hyper-enhancement from out-of-slice signal contributions and transient-related artifacts caused by variable flow both in the phantom and in vivo. In six volunteers, partial dephasing noticeably decreased artifacts in all of the phase-cycled cardiac cine datasets. Partial dephasing can mitigate the flow artifacts seen at the stopbands in balanced SSFP while maintaining the sequence's desired signal. By mitigating hyper-enhancement and transient-related artifacts originating from the stopbands, partial dephasing facilitates robust multiple-acquisition phase-cycled SSFP in the heart. Magn Reson Med 79:2944-2953, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Vibration Analysis and Time Series Prediction for Wind Turbine Gearbox Prognostics

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2013-01-01

    Full Text Available Premature failure of a gearbox in a wind turbine poses a high risk of increasing the operational and maintenance costs and decreasing the profit margins. Prognostics and health management (PHM techniques are widely used to access the current health condition of the gearbox and project it in future to predict premature failures. This paper proposes such techniques for predicting gearbox health condition index extracted from the vibration signals emanating from the gearbox. The progression of the monitoring index is predicted using two different prediction techniques, adaptive neuro-fuzzy inference system (ANFIS and nonlinear autoregressive model with exogenous inputs (NARX. The proposed prediction techniques are evaluated through sun-spot data-set and applied on vibration based health related monitoring index calculated through psychoacoustic phenomenon. A comparison is given for their prediction accuracy. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating features, the level of damage/degradation, and their progression.

  15. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111)

    Science.gov (United States)

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-01

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.

  16. Multi-layer multi-configuration time-dependent Hartree (ML-MCTDH) approach to the correlated exciton-vibrational dynamics in the FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Jan; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de [Institut für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock (Germany); Shibl, Mohamed F., E-mail: mfshibl@qu.edu.qa; Al-Marri, Mohammed J. [Gas Processing Center, College of Engineering, Qatar University, P.O. Box 2713, Doha (Qatar)

    2016-05-14

    The coupled quantum dynamics of excitonic and vibrational degrees of freedom is investigated for high-dimensional models of the Fenna-Matthews-Olson complex. This includes a seven- and an eight-site model with 518 and 592 harmonic vibrational modes, respectively. The coupling between local electronic transitions and vibrations is described within the Huang-Rhys model using parameters that are obtained by discretization of an experimental spectral density. Different pathways of excitation energy flow are analyzed in terms of the reduced one-exciton density matrix, focussing on the role of vibrational and vibronic excitations. Distinct features due to both competing time scales of vibrational and exciton motion and vibronically assisted transfer are observed. The question of the effect of initial state preparation is addressed by comparing the case of an instantaneous Franck-Condon excitation at a single site with that of a laser field excitation.

  17. Effect of flask vibration time on casting integrity, Surface Penetration and Coating Inclusion in lost foam casting of Al-Si Alloy

    International Nuclear Information System (INIS)

    Karimian, Majid; Idris, M. H.; Ourdjini, A.; Muthu, Kali

    2011-01-01

    The paper presents the result of an experimental investigation conducted on medium aluminum silicon alloy casting- LM6, using no-vacuum assisted lost foam casting process. The study is directed for establishing the relationship between the flask vibrations times developed for molded sample on the casting integrity, surface penetration and coating inclusion defects of the casting. Four different flask vibration times namely 180, 120, 90 and 60 sec. were investigated. The casting integrity was investigated in terms of fulfilling in all portions and edges. The surface penetration was measured using optical microscope whilst image analyzer was used to quantify the percentage of coating inclusion in the casting. The results show that vibration time has significant influence on the fulfilling as well as the internal integrity of the lost foam casting. It was found that the lower vibration time produced comparatively sound casing.

  18. Electron energy distribution functions and thermalization times in methane and in argon--methane mixtures: An effect of vibrational excitation processes

    International Nuclear Information System (INIS)

    Krajcar-Bronic, I.; Kimura, M.

    1995-01-01

    Electron thermalization in methane and argon--methane mixtures is studied by using the Boltzmann equation. The presence of low-lying vibrational excited states in methane significantly changes electron energy distribution functions and relaxation times. We found that (i) the mean electron energy just below the first vibrational excited state is reached faster by 1000 times when the vibrational states are taken into account, and (ii) electron energy distribution functions have distinct peaks at energy intervals equal to the vibrational threshold energies. Both these effects are due to large vibrational stopping cross section. The thermalization time in mixtures of argon--methane (without vibrational states) smoothly changes as the mixture composition varies, and no significant difference in the electron energy distribution function is observed. When the vibrational excited states are taken into account, thermalization is almost completely defined by CH 4 , even at very low fractional concentrations of CH 4 . The sensitivity of the electron energy distribution functions on the momentum transfer cross sections used in calculation on the thermalization is discussed. copyright 1995 American Institute of Physics

  19. Binding energy and dephasing of biexcitons in In0.18Ga0.82As/GaAs single quantum wells

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Hvam, Jørn Märcher

    1999-01-01

    Biexciton binding energies and biexciton dephasing in In0.18Ga0.82As/GaAs single quantum wells have been measured by time-integrated and spectrally resolved four-wave mixing. The biexciton binding energy increases from 1.5 to 2.6 meV for well widths increasing from 1 to 4 nm. The ratio between...... exciton and biexciton binding energy changes from 0.23 to 0.3 with increasing inhomogeneous broadening, corresponding to increasing well width. From the temperature dependence of the exciton and biexciton four-wave mixing signal decay, we have deduced the acoustic-phonon scattering of the exciton...

  20. Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams

    Science.gov (United States)

    Georgiou, Georgios; Foutsitzi, Georgia A.; Stavroulakis, Georgios E.

    2018-06-01

    The nonlinear adaptive digital control of a smart piezoelectric beam is considered. It is shown that in the case of a sampled-data context, a multirate control strategy provides an appropriate framework in order to achieve vibration regulation, ensuring the stability of the whole control system. Under parametric uncertainties in the model parameters (damping ratios, frequencies, levels of non linearities and cross coupling, control input parameters), the scheme is completed with an adaptation law deduced from hyperstability concepts. This results in the asymptotic satisfaction of the control objectives at the sampling instants. Simulation results are presented.

  1. Vibronic dephasing model for coherent-to-incoherent crossover in DNA

    Science.gov (United States)

    Karasch, Patrick; Ryndyk, Dmitry A.; Frauenheim, Thomas

    2018-05-01

    In this paper, we investigate the interplay between coherent and incoherent charge transport in cytosine-guanine (GC-) rich DNA molecules. Our objective is to introduce a physically grounded approach to dephasing in large molecules and to understand the length-dependent charge transport characteristics, and especially the crossover from the coherent tunneling to incoherent hopping regime at different temperatures. Therefore, we apply the vibronic dephasing model and compare the results to the Büttiker probe model which is commonly used to describe decoherence effects in charge transport. Using the full ladder model and simplified one-dimensional model of DNA, we consider molecular junctions with alternating and stacked GC sequences and compare our results to recent experimental measurements.

  2. Chirp effects on impulsive vibrational spectroscopy: a multimode perspective.

    Science.gov (United States)

    Wand, Amir; Kallush, Shimshon; Shoshanim, Ofir; Bismuth, Oshrat; Kosloff, Ronnie; Ruhman, Sanford

    2010-03-07

    The well-documented propensity of negatively-chirped pulses to enhance resonant impulsive Raman scattering has been rationalized in terms of a one pulse pump-dump sequence which "follows" the evolution of the excited molecules and dumps them back at highly displaced configurations. The aim of this study was to extend the understanding of this effect to molecules with many displaced vibrational modes in the presence of condensed surroundings. In particular, to define an optimally chirped pulse, to investigate what exactly it "follows" and to discover how this depends on the molecule under study. To this end, linear chirp effects on vibrational coherences in poly-atomics are investigated experimentally and theoretically. Chirped pump-impulsive probe experiments are reported for Sulforhodamine-B ("Kiton Red"), Betaine-30 and Oxazine-1 in ethanol solutions with <10 fs resolution. Numerical simulations, including numerous displaced modes and electronic dephasing, are conducted to reproduce experimental results. Through semi-quantitative reproduction of experimental results in all three systems we show that the effect of group velocity dispersion (GVD) on the buildup of ground state wave-packets depends on the pulse spectrum, on the displacements of vibrational modes upon excitation, on the detuning of the excitation pulses from resonance, and on electronic dephasing rates. Akin to scenarios described for frequency-domain resonance Raman, within the small-displacement regime each mode responds to excitation chirp independently and the optimal GVD is mode-specific. Highly-displaced modes entangle the dynamics of excitation in different modes, requiring a multi-dimensional description of the response. Rapid photochemistry and ultrafast electronic dephasing narrow the window of opportunity for coherent manipulations, leading to a reduced and similar optimal chirp for different modes. Finally, non-intuitive coherent aspects of chirp "following" are predicted in the small

  3. Analysis of the phenomena associated with structural damage using real time vibration analysis

    International Nuclear Information System (INIS)

    Garcia Peyrano, O; Cismondi, L; Damiani, H; Torres, E

    2004-01-01

    It is of interest to have analytical methodologies available for the dynamic behavior of large mechanical structures like those in thermal cycle systems of nuclear power plants or in transport systems during the experimental stage prior to their construction, as happens in aeronautics, where prototypes are tested in experimental banks on a scale of 1 to 1. The same does not occur with systems for the generation of electrical energy such as a nuclear power plant or in ships, competition automobiles, railway systems, etc. Not because of the technical impossibility but because of the high costs involved. This work aims to implement a technology based on the analysis of the vibrations to obtain a profile of the modal dynamic response and its influence on the critical components of the mechanisms with the particularity of detecting the preventive location of the component that may suffer a potential damage. The Vibrations Analysis Laboratory has resolved different cases in the Embalse Nuclear Plant, in the Atucha Nuclear Plant, in the Heavy Water Industrial Plant, in the automobile industry and in other industrial areas (CW)

  4. Damage localization of marine risers using time series of vibration signals

    Science.gov (United States)

    Liu, Hao; Yang, Hezhen; Liu, Fushun

    2014-10-01

    Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.

  5. Parametric control of structural vibrations and sound radiation by fast time-space variation of distributed stiffness parameters

    International Nuclear Information System (INIS)

    Krylov, V.I.; Sorokin, S.V.

    1998-01-01

    The dynamics of a Euler-Bernoulli beam with a time-and-space dependent bending stiffness is studied. The , problem is considered in connection with the application of noise control using smart structures. It is shown that a control for the vibrations of the beam can be achieved by varying the bending stiffness. The technique of direct separation of fast and slow motion coupled with a Green's function method is used to analyze the dynamics of the beam with high-frequency modulation of the stiffness

  6. Zeno and anti-Zeno effects for photon polarization dephasing

    OpenAIRE

    Kofman, A. G.; Kurizki, G.; Opatrny, T.

    2000-01-01

    We discuss a simple, experimentally feasible scheme, which elucidates the principles of controlling ("engineering") the reservoir spectrum and the spectral broadening incurred by repeated measurements. This control can yield either the inhibition (Zeno effect) or the acceleration (anti-Zeno effect) of the quasi-exponential decay of the observed state by means of frequent measurements. In the discussed scheme, a photon is bouncing back and forth between two perfect mirrors, each time passing a...

  7. Nonequilibrium dephasing in two-dimensional indium oxide films

    International Nuclear Information System (INIS)

    Ovadyahu, Z.

    2001-01-01

    We report on results of resistance R and magnetoresistance in diffusive indium oxide films measured down to T=0.28K. Analyzing the data using weak-localization theory shows that the phase-coherent time τ v ar-phi increases without bound as T->0. However, this result is obtained only when the voltage applied to the sample V is sufficiently small. When V is not small, τ v ar-phi may appear to 'saturate' while R continues to increase as T->0. Possible reasons for this intriguing behavior are discussed. It is argued that in out-of-equilibrium situations R(T) and τ v ar-phi(T) need not behave similarly. We suggest a heuristic picture, involving two-level systems, which might be consistent with our observations

  8. Nonlocal non-Markovian effects in dephasing environments

    International Nuclear Information System (INIS)

    Xie Dong; Wang An-Min

    2014-01-01

    We study the nonlocal non-Markovian effects through local interactions between two subsystems and the corresponding two environments. It has been found that the initial correlations between two environments can turn a Markovian to a non-Markovian regime with extra control on the local interaction time. We further research the nonlocal non-Markovian effects from two situations: without extra control, the nonlocal non-Markovian effects only appear under the condition that two local dynamics are non-Markovian–non-Markovian (both of the two local dynamics are non-Markovian) or Markovian–non-Markovian, but not under the condition of Markovian–Markovian; with extra control, the nonlocal non-Markovian effects can occur under the condition of Markovian–Markovian. It shows that the function of correlations between two environments has an upper bound, which makes a flow of information from the environment back to the global system beginning finitely earlier than that back to one of the two local systems, not infinitely. Then, we proposed two special ways to distribute classical correlations between two environments without initial correlations. Finally, from numerical solutions in the spin star configuration, we found that the self-correlation (internal correlation) of each environment promotes the nonlocal non-Markovian effects. (general)

  9. Reducing pure dephasing of quantum bits by collective encoding in quantum dot arrays

    International Nuclear Information System (INIS)

    Grodecka, A; Machnikowski, P; Jacak, L

    2006-01-01

    We show that phonon-induced pure dephasing of an excitonic (charge) quantum bit in a quantum dot (QD) may be reduced by collective encoding of logical qubits in QD arrays. We define the logical qubit on an array of 2, 4 and 8 QDs, connecting the logical 0) state with the presence of excitons in the appropriately chosen half of dots and the logical 1) state with the other half of the dots occupied. We give quantitative estimates of the resulting total error of a single qubit operation for an InAs/GaAs system

  10. Hole dephasing caused by hole-hole interaction in a multilayered black phosphorus.

    Science.gov (United States)

    Li, Lijun; Khan, Muhammad Atif; Lee, Yoontae; Lee, Inyeal; Yun, Sun Jin; Youn, Doo-Hyeb; Kim, Gil-Ho

    2017-11-01

    We study the magnetotransport of holes in a multilayered black phosphorus in a temperature range of 1.9 to 21.5 K. We observed a negative magnetoresistance at magnetic fields up to 1.5 T. This negative magetoresistance was analyzed by weak localization theory in diffusive regime. At the lowest temperature and the highest carrier density we found a phase coherence length of 48 nm. The linear temperature dependence of the dephasing rate shows that the hole-hole scattering processes with small energy transfer are the dominant contribution in breaking the carrier phase coherence.

  11. Ultrafast Dephasing and Incoherent Light Photon Echoes in Organic Amorphous Systems

    Science.gov (United States)

    Yano, Ryuzi; Matsumoto, Yoshinori; Tani, Toshiro; Nakatsuka, Hiroki

    1989-10-01

    Incoherent light photon echoes were observed in organic amorphous systems (cresyl violet in polyvinyl alcohol and 1,4-dihydroxyanthraquinone in polymethacrylic acid) by using temporally-incoherent nanosecond laser pulses. It was found that an echo decay curve of an organic amorphous system is composed of a sharp peak which decays very rapidly and a slowly decaying wing at the tail. We show that the persistent hole burning (PHB) spectra were reproduced by the Fourier-cosine transforms of the echo decay curves. We claim that in general, we must take into account the multi-level feature of the system in order to explain ultrafast dephasing at very low temperatures.

  12. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp [Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585 (Japan); Fleming, Graham R. [Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  13. Semiclassical Monte Carlo simulation studies of spin dephasing in InP and InSb nanowires

    Directory of Open Access Journals (Sweden)

    Ashish Kumar

    2012-03-01

    Full Text Available We use semiclassical Monte Carlo approach to investigate spin polarized transport in InP and InSb nanowires. D’yakonov-Perel (DP relaxation and Elliott-Yafet (EY relaxation are the two main relaxation mechanisms for spin dephasing in III-V channels. The DP relaxation occurs because of bulk inversion asymmetry (Dresselhaus spin-orbit interaction and structural inversion asymmetry (Rashba spin-orbit interaction. The injection polarization direction studied is that along the length of the channel. The dephasing rate is found to be very strong for InSb as compared to InP which has larger spin dephasing lengths. The ensemble averaged spin components vary differently for both InP and InSb nanowires. The steady state spin distribution also shows a difference between the two III-V nanowires.

  14. Sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage.

    Science.gov (United States)

    Weng, Falu; Liu, Mingxin; Mao, Weijie; Ding, Yuanchun; Liu, Feifei

    2018-05-10

    The problem of sampled-data-based vibration control for structural systems with finite-time state constraint and sensor outage is investigated in this paper. The objective of designing controllers is to guarantee the stability and anti-disturbance performance of the closed-loop systems while some sensor outages happen. Firstly, based on matrix transformation, the state-space model of structural systems with sensor outages and uncertainties appearing in the mass, damping and stiffness matrices is established. Secondly, by considering most of those earthquakes or strong winds happen in a very short time, and it is often the peak values make the structures damaged, the finite-time stability analysis method is introduced to constrain the state responses in a given time interval, and the H-infinity stability is adopted in the controller design to make sure that the closed-loop system has a prescribed level of disturbance attenuation performance during the whole control process. Furthermore, all stabilization conditions are expressed in the forms of linear matrix inequalities (LMIs), whose feasibility can be easily checked by using the LMI Toolbox. Finally, numerical examples are given to demonstrate the effectiveness of the proposed theorems. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  15. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

    Science.gov (United States)

    Golibrzuch, Kai; Shirhatti, Pranav R; Altschäffel, Jan; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof

    2013-09-12

    Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.

  16. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Alexander, E-mail: schubert@irsamc.ups-tlse.fr; Meier, Christoph [Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse (France); Falvo, Cyril [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-08-07

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the “surfaces” for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.

  17. Quantum processes: probability fluxes, transition probabilities in unit time and vacuum vibrations

    International Nuclear Information System (INIS)

    Oleinik, V.P.; Arepjev, Ju D.

    1989-01-01

    Transition probabilities in unit time and probability fluxes are compared in studying the elementary quantum processes -the decay of a bound state under the action of time-varying and constant electric fields. It is shown that the difference between these quantities may be considerable, and so the use of transition probabilities W instead of probability fluxes Π, in calculating the particle fluxes, may lead to serious errors. The quantity W represents the rate of change with time of the population of the energy levels relating partly to the real states and partly to the virtual ones, and it cannot be directly measured in experiment. The vacuum background is shown to be continuously distorted when a perturbation acts on a system. Because of this the viewpoint of an observer on the physical properties of real particles continuously varies with time. This fact is not taken into consideration in the conventional theory of quantum transitions based on using the notion of probability amplitude. As a result, the probability amplitudes lose their physical meaning. All the physical information on quantum dynamics of a system is contained in the mean values of physical quantities. The existence of considerable differences between the quantities W and Π permits one in principle to make a choice of the correct theory of quantum transitions on the basis of experimental data. (author)

  18. Real-time Kalman filter implementation for active feedforward control of time-varying broadband noise and vibrations

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2012-01-01

    Tracking behavior and the rate of convergence are critical properties in active noise control applications with time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS) algorithm, improved convergence can be obtained with schemes based on

  19. Real-Time Detection of Important Sounds with a Wearable Vibration Based Device for Hearing-Impaired People

    Directory of Open Access Journals (Sweden)

    Mete Yağanoğlu

    2018-04-01

    Full Text Available Hearing-impaired people do not hear indoor and outdoor environment sounds, which are important for them both at home and outside. By means of a wearable device that we have developed, a hearing-impaired person will be informed of important sounds through vibrations, thereby understanding what kind of sound it is. Our system, which operates in real time, can achieve a success rate of 98% when estimating a door bell ringing sound, 99% success identifying an alarm sound, 99% success identifying a phone ringing, 91% success identifying honking, 93% success identifying brake sounds, 96% success identifying dog sounds, 97% success identifying human voice, and 96% success identifying other sounds using the audio fingerprint method. Audio fingerprint is a brief summary of an audio file, perceptively summarizing a piece of audio content. In this study, our wearable device is tested 100 times a day for 100 days on five deaf persons and 50 persons with normal hearing whose ears were covered by earphones that provided wind sounds. This study aims to improve the quality of life of deaf persons, and provide them a more prosperous life. In the questionnaire performed, deaf people rate the clarity of the system at 90%, usefulness at 97%, and the likelihood of using this device again at 100%.

  20. Time-frequency analysis of railway bridge response in forced vibration

    Science.gov (United States)

    Cantero, Daniel; Ülker-Kaustell, Mahir; Karoumi, Raid

    2016-08-01

    This paper suggests the use of the Continuous Wavelet Transform in combination with the Modified Littlewood-Paley basis to analyse bridge responses exited by traversing trains. The analysis provides an energy distribution map in the time-frequency domain that offers a better resolution compared to previous published studies. This is demonstrated with recorded responses of the Skidträsk Bridge, a 36 m long composite bridge located in Sweden. It is shown to be particularly useful to understand the evolution of the energy content during a vehicle crossing event. With this information it is possible to distinguish the effect of several of the governing factors involved in the dynamic response including vehicle's speed and axle configuration as well as non-linear behaviour of the structure.

  1. Diagnosis of industrial gearboxes condition by vibration and time-frequency, scale-frequency, frequency-frequency analysis

    Directory of Open Access Journals (Sweden)

    P. Czech

    2012-10-01

    Full Text Available In the article methods of vibroacoustic diagnostics of high-power toothed gears are described. It is shown below, that properly registered and processed acoustic signal or vibration signal may serve as an explicitly interpreted source of diagnostic symptoms. The presented analysis were based on vibration signals registered during the work of the gear of a rolling stand working in Katowice Steel Plant (presently one of the branches of Mittal Steel Poland JSC.

  2. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  3. Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods

    Science.gov (United States)

    Di Maio, D.; Ewins, D. J.

    2012-04-01

    The study of dynamic properties of rotating structures, such as bladed discs, can be conveniently done using simple bladed discs where the blades do not have staggering angles. Simplified design, although not truly representative of real structures, can be easy and economic to manufacture and, still, very helpful for studying specific dynamic properties. An example of this can be called as mass mistune blisk study. Experimental measurements of vibrations of bladed discs under rotating conditions can be performed using Scanning Laser Doppler Vibrometer (SLDV) systems. However, in the aerospace industry, the vibrations of complex bladed discs must be measured under operating conditions which are more hostile than laboratory simulations. The Blade Tip Timing (BTT) measurement method is a measurement technique, which can be used to measure vibrations of bladed discs of an engine aircraft under operating conditions. However, the BTT technique is ineffective when used with a flat bladed disc whose blade vibrations cannot be measured. This can be detrimental when the use of controlled dynamic parameters, such as those obtained from a simple bladed disc design, can improve the confidence for the validation of post-processing software. This paper presents a work about experimental measurements of a simple bladed disc design whose vibrations were measured synchronously by Scanning LDV and BTT measurement systems. A rotating test rig and its mechanical modifications for the installation of the BTT probes are introduced. Implications of rotating a specimen inconsistently are presented so as solutions to obtained constant revolving speed. The experimental comparisons of forced response vibrations measured synchronously at one blade are presented and explained.

  4. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  5. Interactions, Disorder and Dephasing in Superconducting Films and Quantum Hall Systems

    International Nuclear Information System (INIS)

    Auerbach, A.

    1999-01-01

    It is shown that a large class of two dimensional Superconductor to Insulator (SC-I), and (Quantum Hall to Insulator (QH-I) transitions can be understood by assuming that the thermodynamic transition in the clean system is first order. The finite correlation lengths at that transition yield a natural separation of the disorder into short and long wavelengths which are then straightforward to incorporate perturbatively and semi classically respectively. This approach reduces problems of disorder+interactions to puddle network models, whose studies have already yielded insight into experiments of QH-I and SC-I. For the CQH-I, the difference between Landauer-Buttiker and Boltzman theories highlights effects of dephasing

  6. Dephasing due to Nuclear Spins in Large-Amplitude Electric Dipole Spin Resonance.

    Science.gov (United States)

    Chesi, Stefano; Yang, Li-Ping; Loss, Daniel

    2016-02-12

    We analyze effects of the hyperfine interaction on electric dipole spin resonance when the amplitude of the quantum-dot motion becomes comparable or larger than the quantum dot's size. Away from the well-known small-drive regime, the important role played by transverse nuclear fluctuations leads to a Gaussian decay with characteristic dependence on drive strength and detuning. A characterization of spin-flip gate fidelity, in the presence of such additional drive-dependent dephasing, shows that vanishingly small errors can still be achieved at sufficiently large amplitudes. Based on our theory, we analyze recent electric dipole spin resonance experiments relying on spin-orbit interactions or the slanting field of a micromagnet. We find that such experiments are already in a regime with significant effects of transverse nuclear fluctuations and the form of decay of the Rabi oscillations can be reproduced well by our theory.

  7. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  8. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  9. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  10. System Detects Vibrational Instabilities

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1990-01-01

    Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.

  11. Coherent vibrational dynamics

    CERN Document Server

    Lanzani, Guglielmo; De Silvestri, Sandro

    2007-01-01

    Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.

  12. Vibrational Spectra of β″-Type BEDT-TTF Salts: Relationship between Conducting Property, Time-Averaged Site Charge and Inter-Molecular Distance

    Directory of Open Access Journals (Sweden)

    Takashi Yamamoto

    2012-07-01

    Full Text Available The relationship between the conducting behavior and the degree of charge fluctuation in the β″-type BEDT-TTF salts is reviewed from the standpoints of vibrational spectroscopy and crystal structure. A group of β″-type ET salts demonstrates the best model compounds for achieving the above relationship because the two-dimensional structure is simple and great diversity in conducting behavior is realized under ambient pressure. After describing the requirement for the model compound, the methodology for analyzing the results of the vibrational spectra is presented. Vibrational spectroscopy provides the time-averaged molecular charge, the charge distribution in the two-dimensional layer, and the inter-molecular interactions, etc. The experimental results applied to 2/3-filled and 3/4-filled β″-type ET salts are reported. These experimental results suggest that the conducting property, the difference in the time-averaged molecular charges between the ionic and neutral-like sites, the alternation in the inter-molecular distances and the energy levels in the charge distributions are relevant to one another. The difference in the time-averaged molecular charges, ∆ρ, is a useful criterion for indicating conducting behavior. All superconductors presented in this review are characterized as small but finite ∆ρ.

  13. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  14. Oscillation and decay of particle current due to a quench and dephasing in an interacting fermionic system

    OpenAIRE

    Choo, Kenny; Bissbort, Ulf; Poletti, Dario

    2017-01-01

    We study the response of a particle current to dissipative dephasing in an interacting, few-body fermionic lattice system. The particles are prepared in the ground state in presence of an artificial magnetic gauge field, which is subsequently quenched to zero. The initial current decays non-trivially in the dissipative environment and we explore the emerging dynamics and its dependence on various system parameters.

  15. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2005-01-01

    High-quality electron beams, with a few 10 9 electrons within a few percent of the same energy above 80 MeV, were produced in a laser wakefield accelerator by matching the acceleration length to the length over which electrons were accelerated and outran (dephased from) the wake. A plasma channel guided the drive laser over long distances, resulting in production of the high-energy, high-quality beams. Unchanneled experiments varying the length of the target plasma indicated that the high-quality bunches are produced near the dephasing length and demonstrated that channel guiding was more stable and efficient than relativistic self-guiding. Consistent with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping of an initial bunch of electrons suppresses further injection by loading the wake. The injected electron bunch is then compressed in energy by dephasing, when the front of the bunch begins to decelerate while the tail is still accelerated

  16. Comparison of methods for separating vibration sources in rotating machinery

    Science.gov (United States)

    Klein, Renata

    2017-12-01

    Vibro-acoustic signatures are widely used for diagnostics of rotating machinery. Vibration based automatic diagnostics systems need to achieve a good separation between signals generated by different sources. The separation task may be challenging, since the effects of the different vibration sources often overlap. In particular, there is a need to separate between signals related to the natural frequencies of the structure and signals resulting from the rotating components (signal whitening), as well as a need to separate between signals generated by asynchronous components like bearings and signals generated by cyclo-stationary components like gears. Several methods were proposed to achieve the above separation tasks. The present study compares between some of these methods. The paper also presents a new method for whitening, Adaptive Clutter Separation, as well as a new efficient algorithm for dephase, which separates between asynchronous and cyclo-stationary signals. For whitening the study compares between liftering of the high quefrencies and adaptive clutter separation. For separating between the asynchronous and the cyclo-stationary signals the study compares between liftering in the quefrency domain and dephase. The methods are compared using both simulated signals and real data.

  17. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  18. Chaos and dynamics on 0.5--300 ps time scales in vibrationally excited acetylene: Fourier transform of stimulated-emission pumping spectrum

    International Nuclear Information System (INIS)

    Pique, J.P.; Chen, Y.; Field, R.W.; Kinsey, J.L.

    1987-01-01

    A recently proposed technique based on the Fourier transform of the spectrum is applied to the stimulated-emission pumping spectrum of acetylene at --26 500 cm/sup -1/ above the vibrational ground state. Correlations on two different time scales (--3 and --45 ps) were found from analysis of low-resolution (0.3 cm/sup -1/) and high-resolution (0.05 cm/sup -1/) spectra, respectively. Additional structure produced dynamic information on a wider (0.5--300 ps) time scale. The results show that acetylene at 26 500 cm/sup -1/ is in the transition from the regular to the chaotic regime

  19. Ribonuclease S dynamics measured using a nitrile label with 2D IR vibrational echo spectroscopy.

    Science.gov (United States)

    Bagchi, Sayan; Boxer, Steven G; Fayer, Michael D

    2012-04-05

    A nitrile-labeled amino acid, p-cyanophenylalanine, is introduced near the active site of the semisynthetic enzyme ribonuclease S to serve as a probe of protein dynamics and fluctuations. Ribonuclease S is the limited proteolysis product of subtilisin acting on ribonuclease A, and consists of a small fragment including amino acids 1-20, the S-peptide, and a larger fragment including residues 21-124, the S-protein. A series of two-dimensional vibrational echo experiments performed on the nitrile-labeled S-peptide and the RNase S are described. The time-dependent changes in the two-dimensional infrared vibrational echo line shapes are analyzed using the center line slope method to obtain the frequency-frequency correlation function (FFCF). The observations show that the nitrile probe in the S-peptide has dynamics that are similar to, but faster than, those of the single amino acid p-cyanophenylalanine in water. In contrast, the dynamics of the nitrile label when the peptide is bound to form ribonuclease S are dominated by homogeneous dephasing (motionally narrowed) contributions with only a small contribution from very fast inhomogeneous structural dynamics. The results provide insights into the nature of the structural dynamics of the ribonuclease S complex. The equilibrium dynamics of the nitrile labeled S-peptide and the ribonuclease S complex are also investigated by molecular dynamics simulations. The experimentally determined FFCFs are compared to the FFCFs obtained from the molecular dynamics simulations, thereby testing the capacity of simulations to determine the amplitudes and time scales of protein structural fluctuations on fast time scales under thermal equilibrium conditions.

  20. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

    In   this   paper   we   describe   a   field   study   conducted   with   a   wearable   vibration   belt   where   we   test   to   determine   the   vibration   intensity   sensitivity   ranges   on   a   large   diverse   group   of   participants   with   evenly   distributed  ages  and...

  1. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach.

    Science.gov (United States)

    Chiariello, Maria Gabriella; Rega, Nadia

    2018-03-22

    Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.

  2. Adaptive learning algorithms for vibration energy harvesting

    International Nuclear Information System (INIS)

    Ward, John K; Behrens, Sam

    2008-01-01

    By scavenging energy from their local environment, portable electronic devices such as MEMS devices, mobile phones, radios and wireless sensors can achieve greater run times with potentially lower weight. Vibration energy harvesting is one such approach where energy from parasitic vibrations can be converted into electrical energy through the use of piezoelectric and electromagnetic transducers. Parasitic vibrations come from a range of sources such as human movement, wind, seismic forces and traffic. Existing approaches to vibration energy harvesting typically utilize a rectifier circuit, which is tuned to the resonant frequency of the harvesting structure and the dominant frequency of vibration. We have developed a novel approach to vibration energy harvesting, including adaptation to non-periodic vibrations so as to extract the maximum amount of vibration energy available. Experimental results of an experimental apparatus using an off-the-shelf transducer (i.e. speaker coil) show mechanical vibration to electrical energy conversion efficiencies of 27–34%

  3. Vibrating minds

    CERN Multimedia

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  4. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  5. Contrast-enhanced three-dimensional MR angiography of neck vessels: does dephasing effect alter diagnostic accuracy?

    International Nuclear Information System (INIS)

    Cosottini, M.; Calabrese, R.; Murri, L.; Puglioli, M.; Zampa, V.; Michelassi, M.C.; Ortori, S.; Bartolozzi, C.

    2003-01-01

    The aim of this study was to evaluate diagnostic accuracy of contrast-enhanced MRA (CEMRA) compared with digital subtraction angiography (DSA) in studying neck vessels of 48 patients. In three groups of patients, we used three MRA protocols differing for voxel size to assess if intravoxel dephasing effects could modify accuracy of CEMRA. Accuracy and correlation with DSA results were calculated in all patients and separately in the three groups. A qualitative analysis of the likeness between morphology of the stenosis in CEMRA and DSA images was also assessed. In all patients accuracy and agreement with DSA were 96% and k=0.85 in subclavian arteries, 96% and k=0.84 in vertebral artery, 97% and k=0.88 in common carotid arteries, and 94% and k=0.86 in internal carotid arteries. In the three groups accuracy and agreement with DSA did not show any significant difference. Qualitative analysis of CEMRA and DSA images revealed a better agreement in depicting the morphology of stenosis using a smaller voxel size. The CEMRA represents a powerful tool for the non-invasive evaluation of neck vessels. Overestimation trend of CEMRA is confirmed and the reduction of voxel size, decreasing the dephasing intravoxel effect, allows to have a better overlapping of stenosis morphology on CEMRA compared with DSA, but it does not yield diagnostic gain in the stenosis grading. (orig.)

  6. Interaction and dephasing of center-of-mass quantized excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Maier, R.

    1998-01-01

    We investigate the interaction and dephasing of the excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells by spectrally resolved, femtosecond four-wave mixing (FWM). Polarization-dependent measurements indicate that excitation-induced dephasing is the dominant FWM process. The biexcitons of the center...... repulsion for coherent excitons. The exciton interaction rates with acoustic and optical phonons are deduced by their temperature dependencies. The acoustic-phonon scattering is found to be strongly reduced in the investigated wide wells due to the reduced accessible phonon wave vector....

  7. The effect of dephasing on edge state transport through p-n junctions in HgTe/CdTe quantum wells.

    Science.gov (United States)

    Zhang, Ying-Tao; Song, Juntao; Sun, Qing-Feng

    2014-02-26

    Using the Landauer-Büttiker formula, we study the effect of dephasing on the transport properties of the HgTe/CdTe p-n junction. It is found that in the HgTe/CdTe p-n junction the topologically protected gapless helical edge states manifest a quantized 2e²/h plateau robust against dephasing, in sharp contrast to the case for the normal HgTe/CdTe quantum well. This robustness of the transport properties of the edge states against dephasing should be attributed to the special construction of the HgTe/CdTe p-n junction, which limits the gapless helical edge states to a very narrow region and thus weakens the influence of the dephasing on the gapless edge states to a large extent. Our results demonstrate that the p-n junction could be a substitute device for use in experimentally observing the robust edge states and quantized plateau. Finally, we present a feasible scheme based on current experimental methods.

  8. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  9. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  10. A Comparison of State Space LQG, Wiener IMC and Polynomial LQG Discrete Time Feedback Control for Active Vibration Control Purposes

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.; Sors, T.C.

    1997-01-01

    with a piezoceramic patch control actuator and a point velocity sensor and excited by a point force driven by white noise acting as the primary source. The design objective has been to suppress the effect of the primary disturbance on the output by minimising the mean square value of the output. Apart from comparing......A comparison of three ways of designing optimal discrete time feedback controllers has been carried out via computer simulations. The three design methods are similar in that they are all based on the minimisation of a quadratic cost function under certain assumptions about the disturbance noise...... and sensor noise in the system to be controlled. They are also based on (different) models of the plant under control and the disturbance to be suppressed by the controllers. Controllers based on the three methods have been designed from a model of a lightly damped, rectangular plate fitted...

  11. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea

    Directory of Open Access Journals (Sweden)

    K. Laß

    2013-08-01

    Full Text Available The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE, southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  12. Seasonal signatures in SFG vibrational spectra of the sea surface nanolayer at Boknis Eck Time Series Station (SW Baltic Sea)

    Science.gov (United States)

    Laß, K.; Bange, H. W.; Friedrichs, G.

    2013-08-01

    The very thin sea surface nanolayer on top of the sea surface microlayer, sometimes just one monomolecular layer thick, forms the interface between ocean and atmosphere. Due to the small dimension and tiny amount of substance, knowledge about the development of the layer in the course of the year is scarce. In this work, the sea surface nanolayer at Boknis Eck Time Series Station (BE), southwestern Baltic Sea, has been investigated over a period of three and a half years. Surface water samples were taken monthly by screen sampling and were analyzed in terms of organic content and composition by sum frequency generation spectroscopy, which is specifically sensitive to interfacial layers. A yearly periodicity has been observed with a pronounced abundance of sea surface nanolayer material (such as carbohydrate-rich material) during the summer months. On the basis of our results we conclude that the abundance of organic material in the nanolayer at Boknis Eck is not directly related to phytoplankton abundance alone. We speculate that indeed sloppy feeding of zooplankton together with photochemical and/or microbial processing of organic precursor compounds is responsible for the pronounced seasonality.

  13. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, Maxim F.; Domcke, Wolfgang [Department of Chemistry, Technische Universität München, D-85747 Garching (Germany); Rao, B. Jayachander [Departamento de Química and Centro de Química, Universidade de Coimbra, 3004-535 Coimbra (Portugal)

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  14. Unjamming a granular hopper by vibration

    Science.gov (United States)

    Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.

    2009-07-01

    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.

  15. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  16. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  17. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...

  18. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.

    We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...

  19. Impulsive IR-multiphoton dissociation of acrolein: observation of non-statistical product vibrational excitation in CO ( v=1-12) by time resolved IR fluorescence spectroscopy

    Science.gov (United States)

    Chowdhury, P. K.

    2000-10-01

    On IR-multiphoton excitation, vibrationally highly excited acrolein molecules undergo concerted dissociation generating CO and ethylene. The vibrationally excited products, CO and ethylene, are detected immediately following the CO 2 laser pulse by observing IR fluorescence at 4.7 and 3.2 μm, respectively. The nascent CO is formed with significant vibrational excitation, with a Boltzmann population distribution for v=1-12 levels corresponding to T v=12 950±50 K. The average vibrational energy in the product CO is found to be 26 kcal mol -1, in contrast to its statistical share of 5 kcal mol -1, available from the product energy distribution. The nascent vibrationally excited ethylene either dissociates by absorbing further infrared laser photons from the tail of the CO 2 laser pulse or relaxes by collisional deactivation. Ethylene IR-fluorescence excitation spectrum showed a structure in the quasi-continuum, with a facile resonance at 10.53 μm corresponding to the 10P(14) CO 2 laser line, which explains the higher acetylene yield observed at a higher pressure. A hydrogen atom transfer mechanism followed by C-C impulsive break in the acrolein transition state may be responsible for such non-statistical product energy distribution.

  20. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  1. Amide I SFG Spectral Line Width Probes the Lipid-Peptide and Peptide-Peptide Interactions at Cell Membrane In Situ and in Real Time.

    Science.gov (United States)

    Zhang, Baixiong; Tan, Junjun; Li, Chuanzhao; Zhang, Jiahui; Ye, Shuji

    2018-06-13

    The balance of lipid-peptide and peptide-peptide interactions at cell membrane is essential to a large variety of cellular processes. In this study, we have experimentally demonstrated for the first time that sum frequency generation vibrational spectroscopy can be used to probe the peptide-peptide and lipid-peptide interactions in cell membrane in situ and in real time by determination of the line width of amide I band of protein backbone. Using a "benchmark" model of α-helical WALP23, it is found that the dominated lipid-peptide interaction causes a narrow line width of the amide I band, whereas the peptide-peptide interaction can markedly broaden the line width. When WALP23 molecules insert into the lipid bilayer, a quite narrow line width of the amide I band is observed because of the lipid-peptide interaction. In contrast, when the peptide lies down on the bilayer surface, the line width of amide I band becomes very broad owing to the peptide-peptide interaction. In terms of the real-time change in the line width, the transition from peptide-peptide interaction to lipid-peptide interaction is monitored during the insertion of WALP23 into 1,2-dipalmitoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DPPG) lipid bilayer. The dephasing time of a pure α-helical WALP23 in 1-palmitoyl-2-oleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) and DPPG bilayer is determined to be 2.2 and 0.64 ps, respectively. The peptide-peptide interaction can largely accelerate the dephasing time.

  2. Equivalence of qubit-environment entanglement and discord generation via pure dephasing interactions and the resulting consequences

    Science.gov (United States)

    Roszak, Katarzyna; Cywiński, Łukasz

    2018-01-01

    We find that when a qubit initialized in a pure state experiences pure dephasing due to interaction with an environment, separable qubit-environment states generated during the evolution also have zero quantum discord with respect to the environment. What follows is that the set of separable states which can be reached during the evolution has zero volume, and hence, such effects as sudden death of qubit-environment entanglement are very unlikely. In the case of the discord with respect to the qubit, a vast majority of qubit-environment separable states is discordant, but in specific situations zero-discord states are possible. This is conceptually important since there is a connection between the discordance with respect to a given subsystem and the possibility of describing the evolution of this subsystem using completely positive maps. Finally, we use the formalism to find an exemplary evolution of an entangled state of two qubits that is completely positive, and occurs solely due to interaction of only one of the qubits with its environment (so one could guess that it corresponds to a local operation, since it is local in a physical sense), but which nevertheless causes the enhancement of entanglement between the qubits. While this simply means that the considered evolution is completely positive, but does not belong to local operations and classical communication, it shows how much caution has to be exercised when identifying evolution channels that belong to that class.

  3. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    International Nuclear Information System (INIS)

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-01-01

    Resonance Raman and electronic absorption spectra are reported for the S 0 and T 1 states of the carotenoids β-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C 50 )-β-carotene, β-apo-8'-carotenal, and ethyl β-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S 0 and T 1 , regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S 0 and T 1 reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T 1 states of carotenoids and in the S 1 states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S 1 lifetime (of the 1 B/sub u/ and/or the 1 A/sub g/* states) of β-carotene in benzene is less than 1 ps

  4. [Occupational standing vibration rate and vibrational diseases].

    Science.gov (United States)

    Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

    2003-12-01

    Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

  5. Digital analysis of vibrations

    International Nuclear Information System (INIS)

    Bohnstedt, H.J.; Walter, G.

    1982-01-01

    Vibrational measurements, e.g. on turbomachinery, can be evaluated rapidly and economically with the aid of a combination of the following instruments: a desk-top computer, a two-channel vector filter and a FFT spectral analyzer. This equipment combination is available within the Allianz Centre for Technology and has also been used for mobile, on-site investigations during the last year. It enables calculation and display of time functions, kinetic shaft orbits, displacement diagrams. Bode plots, polar-coordinate plots, cascade diagrams and histograms. (orig.) [de

  6. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  7. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  8. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.

    2004-01-01

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  9. On the transversal vibrations of a conveyor belt with a low and time-varying velocity : Part I: the string-like case

    NARCIS (Netherlands)

    Suweken, G.; Van Horssen, W.T.

    2001-01-01

    In this paper initial-boundary value problems for a linear wave (string) equation are considered. These problems can be used as simple models to describe the vertical vibrations of a conveyor belt, for which the velocity is small with respect to the wave speed. In this paper the belt is assumed to

  10. Portable vibration exciter

    Science.gov (United States)

    Beecher, L. C.; Williams, F. T.

    1970-01-01

    Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.

  11. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  12. Combating dephasing decoherence by periodically performing tracking control and projective measurement

    International Nuclear Information System (INIS)

    Zhang Ming; Dai Hongyi; Xi Zairong; Xie Hongwei; Hu Dewen

    2007-01-01

    We propose a scheme to overcome phase damping decoherence by periodically performing open loop tracking control and projective measurement. Although it is impossible to stabilize a qubit subject to Markovian dynamics only by open loop coherent control, one can attain a 'softened' control goal with the help of periodical projective measurement. The 'softened' control objective in our scheme is to keep the state of the controlled qubit to stay near a reference pure state with a high probability for a sufficiently long time. Two suboptimal control problems are given in the sense of trace distance and fidelity, respectively, and they are eventually reduced to the design of a period T. In our scheme, one can choose the period T as long as possible if the 'softened' control goal is attained. This is in contrast to the observation that quantum Zeno effect takes place only if measurements are performed in a very frequent manner, i.e., the period T must be extremely small

  13. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  14. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  15. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  16. Interaction of an electron with coherent dipole radiation: Role of convergence and anti-dephasing

    Science.gov (United States)

    Robinson, A. P. L.; Arefiev, A. V.

    2018-05-01

    The impact of longitudinal electric fields that are present in intense focusing and defocusing electromagnetic pulses on electron acceleration is investigated. These fields are typically much weaker than the transverse fields, but it is shown that they can have a profound effect on electron energy gain. It is shown that the longitudinal electric field of a defocusing pulse is directed backward along the trajectory of an accelerated electron, which leads to a continuous net energy gain. At the same time, the effect of the transverse oscillating electric field in a defocusing pulse is to reduce the electron energy over multiple oscillations. In contrast to a well-known interaction with a plane wave, the electron is able to retain a substantial amount of energy following its interaction with a defocusing pulse. The roles of the transverse and longitudinal electric fields are reversed in a focusing pulse, which leads to a reduction in the energy retention. The present analysis underscores the importance of relatively weak oscillating electric fields in focusing and defocusing pulses.

  17. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  18. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  19. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  20. Dephasing rates for weak localization and universal conductance fluctuations in two dimensional Si:P and Ge:P δ-layers.

    Science.gov (United States)

    Shamim, Saquib; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, Arindam

    2017-05-04

    We report quantum transport measurements on two dimensional (2D) Si:P and Ge:P δ-layers and compare the inelastic scattering rates relevant for weak localization (WL) and universal conductance fluctuations (UCF) for devices of various doping densities (0.3-2.5 × 10 18 m -2 ) at low temperatures (0.3-4.2 K). The phase breaking rate extracted experimentally from measurements of WL correction to conductivity and UCF agree well with each other within the entire temperature range. This establishes that WL and UCF, being the outcome of quantum interference phenomena, are governed by the same dephasing rate.

  1. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  2. Transfer vibration through spine

    OpenAIRE

    Benyovszky, Adam

    2012-01-01

    Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...

  3. Short-time asymptotics of the two-dimensional wave equation for an annular vibrating membrane with applications in the mathematical physics

    International Nuclear Information System (INIS)

    Zayed, E.M.E.

    2004-01-01

    We study the influence of a finite container on an ideal gas using the wave equation approach. The asymptotic expansion of the trace of the wave kernel μ-circumflex(t)=Σ υ=1 ∞ exp(-itμ υ 1/2 ) for small vertical bar t vertical bar and i=√-1, where {μ ν } ν=1 ∞ are the eigenvalues of the negative Laplacian -Δ=-Σ k=1 2 (((∂)/(∂x k ))) 2 in the (x 1 ,x 2 )-plane, is studied for an annular vibrating membrane Ω in R 2 together with its smooth inner boundary ∂Ω 1 and its smooth outer boundary ∂Ω 2 , where a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components Γ j (j=1,...,m) of ∂Ω 1 and on the piecewise smooth components Γ j (j=m+1,...,n) of ∂Ω 2 such that ∂Ω 1 =union j=1 m Γ j and ∂Ω 2 =union j=m+1 n Γ j is considered. The basic problem is to extract information on the geometry of the annular vibrating membrane Ω from complete knowledge of its eigenvalues using the wave equation approach by analyzing the asymptotic expansions of the spectral function μ-circumflex(t) for small vertical bar t vertical bar. Some applications of μ-circumflex(t) for an ideal gas enclosed in the general annular bounded domain Ω are given.

  4. EVALUATION AND MEASUREMENT OF HAND-TRANSMITTED VIBRATIONS

    Directory of Open Access Journals (Sweden)

    Iveta MARKOVÁ

    2017-12-01

    Full Text Available The goal of this work is the effect of vibrations on selected professionals through questionnaire survey and implementation of experimental vibration measurements on a hand of employee. The observation of vibration effects was chosen in a company, where products are being shaped with pneumatic instruments and there is a risk of an exposure of vibrations on the employees. In experimental part are described and evaluated questionnaire surveys conducted on selected risk factors. The reason is the realization of work with vibrating tools for a longer time, where some parts do wear-out and therefore there is a higher exposure to oscillation.

  5. Characterizing interstate vibrational coherent dynamics of surface adsorbed catalysts by fourth-order 3D SFG spectroscopy

    Science.gov (United States)

    Li, Yingmin; Wang, Jiaxi; Clark, Melissa L.; Kubiak, Clifford P.; Xiong, Wei

    2016-04-01

    We report the first fourth-order 3D SFG spectroscopy of a monolayer of the catalyst Re(diCN-bpy)(CO)3Cl on a gold surface. Besides measuring the vibrational coherences of single vibrational modes, the fourth-order 3D SFG spectrum also measures the dynamics of interstate coherences and vibrational coherences states between two vibrational modes. By comparing the 3D SFG to the corresponding 2D and third-order 3D IR spectroscopy of the same molecules in solution, we found that the interstate coherences exist in both liquid and surface systems, suggesting that the interstate coherence is not disrupted by surface interactions. However, by analyzing the 3D spectral lineshape, we found that the interstate coherences also experience non-negligible homogenous dephasing dynamics that originate from surface interactions. This unique ability of determining interstate vibrational coherence dynamics of the molecular monolayer can help in understanding of how energy flows within surface catalysts and other molecular monolayers.

  6. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  7. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  8. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  9. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  10. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  11. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  12. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  13. Smart Sensor for Analyzing Train Vibration in WCR Zone

    Directory of Open Access Journals (Sweden)

    Alka DUBEY

    2009-09-01

    Full Text Available In the present paper a smart vibration sensor is developed for railway electric engine WAP-7. Which is a self-sensation device equipped with recording and wireless communication interface. One programmed microcontroller 89C52 is used, which record vibration of trains with real time into memory. There is certain limit of vibrations, which is acceptable by track. Beyond this limit track can be damaged and may result major casualty. Smart sensor indicate the level of current vibration with its ideal value for prevention of excessive vibration it starts buzz ring. The work is highly applicable to the high speed trains. The high level vibration cause serious accidents due to the vibration.

  14. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  15. The Health Effects and Keep Down of Whole Body Vibration

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2014-04-01

    Full Text Available Vibration was defined that oscillation of the body according to the reference point. The tools that are used in industry and are the source of vibration cause diseases. For this reason, the vibration has been one of the factors that affect the health and of the most widely researched in the field of ergonomics. The perceived intensity and health effects of vibration depend on the vibration frequency, intensity, direction, acceleration, duration of exposure, vibration affects the region, age, gender, posture, distance from the source person, activity, time of day and the person\\s overall health condition. The one of the most common health effects of whole body vibration is impact on musculoskeletal system. In many studies, indicated that whole-body vibration effect waist, back, shoulder and neck especially. There were varied studies that hormone levels were not changed as well there were varied studies that hormone levels were increased or decreased. There were varied studies about the digestive and circulatory system. In these studies, digestive system complaints, peptic ulcer, gastritis, varicose veins and hemorrhoids were determined frequently. For protection the health effect of vibration, Directives of the European Commission, Turkish Standards, Assessment and Management of Environmental Noise and Vibration Regulations were published. For the control of vibration are need technical and medical measures and education [TAF Prev Med Bull 2014; 13(2.000: 177-186

  16. EFFECTOF ISOLATION WALL USING SCRAP TIRE ON GROUND VIBRATION REDUCTION

    Science.gov (United States)

    Kashimoto, Takahiko; Kashimoto, Yusuke; Hayakawa, Kiyoshi; Matsui, Tamotsu; Fujimoto, Hiroaki

    Some countermeasure methods against the environmental ground vibration caused by some traffic vibrations have been proposed so far. The authors have developed a new type ground vibration isolation wall using scrap tire, and evaluated its effectiveness on the ground vibration reduction by full scale field tests. In this paper, the authors discussed and examined the effectiveness of the developed countermeasure method by two field tests. The one concerns on the effect of scrap tire as soft material of vibration isolation wall, and the other on the effect of the developed countermeasure method practically applied in a residential area close to monorail traffic. As the results, it was elucidated that the ground vibration of 2-3 dB was reduced in case of two times volume of the soft material, the conversion ratio of the vibration energy of the soft material to the kinetic energy was higher than that of the core material of PHC pile, the vibration acceleration of 0.19 - 1.26 gal was reduced by the developed countermeasure method in case of the monorail traffic, and the vibration reduction measured behind the isolation wall agreed well with the proposed theoretical value, together with confirming the effectiveness of the ground vibration isolation wall using scrap tire as the countermeasure method against the environmental ground vibration.

  17. Escape time, relaxation, and sticky states of a softened Henon-Heiles model: Low-frequency vibrational mode effects and glass relaxation

    Science.gov (United States)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2018-04-01

    Here we study the relaxation of a chain consisting of three masses joined by nonlinear springs and periodic conditions when the stiffness is weakened. This system, when expressed in their normal coordinates, yields a softened Henon-Heiles system. By reducing the stiffness of one low-frequency vibrational mode, a faster relaxation is enabled. This is due to a reduction of the energy barrier heights along the softened normal mode as well as for a widening of the opening channels of the energy landscape in configurational space. The relaxation is for the most part exponential, and can be explained by a simple flux equation. Yet, for some initial conditions the relaxation follows as a power law, and in many cases there is a regime change from exponential to power-law decay. We pinpoint the initial conditions for the power-law decay, finding two regions of sticky states. For such states, quasiperiodic orbits are found since almost for all components of the initial momentum orientation, the system is trapped inside two pockets of configurational space. The softened Henon-Heiles model presented here is intended as the simplest model in order to understand the interplay of rigidity, nonlinear interactions and relaxation for nonequilibrium systems such as glass-forming melts or soft matter. Our softened system can be applied to model β relaxation in glasses and suggest that local reorientational jumps can have an exponential and a nonexponential contribution for relaxation, the latter due to asymmetric molecules sticking in cages for certain orientations.

  18. Silicon micromachined vibrating gyroscopes

    Science.gov (United States)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  19. Quantum Monte Carlo for vibrating molecules

    International Nuclear Information System (INIS)

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  20. Interfacial instabilities in vibrated fluids

    Science.gov (United States)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  1. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  2. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  3. Improved Laser Vibration Radar

    National Research Council Canada - National Science Library

    Hilaire, Pierre

    1998-01-01

    .... This thesis reconfigured an existing CO2 laboratory laser radar system that is capable of measuring the frequencies of vibration of a simulated target into a more compact and rugged form for field testing...

  4. A vibration sieve

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Denisenko, V.V.; Dzhalalov, M.G.; Kirichek, F.P.; Pitatel, Yu.A.; Prokopov, L.I.; Tikhonov, Yu.P.

    1982-01-01

    A vibration sieve is proposed which includes a vibration drive, a body and a screen installed on shock absorbers, a device for washing out the screen, and a subassembly for loading the material. To increase the operational reliability and effectiveness of the vibration sieve by improving the cleaning of the screen, the loading subassembly is equipped with a baffle with a lever which is hinged to it. The device for washing out the screen is made in the form of an electromagnet with a connecting rod, a switch and an eccentric, a friction ratchet mechanism and sprinkling systems. Here, the latter are interconnected, using a connecting rod, while the sprinkling system is installed on rollers under the screen. The electromagnetic switch is installed under the lever. The body is made with grooves for installing the sprinkling system. The vibration sieve is equipped with a switch which interacts with the connecting rod. The friction ratchet mechanism is equipped with a lug.

  5. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  6. 2008 Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  7. Vibrational polarizabilities of hydrogen-bonded water

    International Nuclear Information System (INIS)

    Torii, Hajime

    2013-01-01

    Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed

  8. Vibration monitoring with artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural network to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected from operating machinery. Two neural networks algorithms were used in our project: the Recirculation algorithm for data compression and the Backpropagation algorithm to perform the actual classification of the patterns. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results to date are very encouraging

  9. Vibrational spectroscopy of proteins

    International Nuclear Information System (INIS)

    Schwaighofer, A.

    2013-01-01

    Two important steps for the development of a biosensor are the immobilization of the biological component (e.g. protein) on a surface and the enhancement of the signal to improve the sensitivity of detection. To address these subjects, the present work describes Fourier transform infrared (FTIR) investigations of several proteins bound to the surface of an attenuated total reflection (ATR) crystal. Furthermore, new nanostructured surfaces for signal enhancement were developed for use in FTIR microscopy. The mitochondrial redox-protein cytochrome c oxidase (CcO) was incorporated into a protein-tethered bilayer lipid membrane (ptBLM) on an ATR crystal featuring a roughened two-layer gold surface for signal enhancement. Electrochemical excitation by periodic potential pulses at different modulation frequencies was followed by time-resolved FTIR spectroscopy. Phase sensitive detection was used for deconvolution of the IR spectra into vibrational components. A model based on protonation-dependent chemical reaction kinetics could be fitted to the time evolution of IR bands attributed to several different redox centers of the CcO. Further investigations involved the odorant binding protein 14 (OBP14) of the honey bee (Apis mellifera), which was studied using ATR-FTIR spectroscopy and circular dichroism. OBP14 was found to be thermally stable up to 45 °C, thus permitting the potential application of this protein for the fabrication of biosensors. Thermal denaturation measurements showed that odorant binding increases the thermal stability of the OBP-odorant complex. In another project, plasmonic nanostructures were fabricated that enhance the absorbance in FTIR microscopy measurements. The nanostructures are composed of an array of round-shaped insulator and gold discs on top of a continuous gold layer. Enhancement factors of up to ⁓125 could be observed with self-assembled monolayers of dodecanethiol molecules immobilized on the gold surface (author) [de

  10. Two-dimensional vibrational-electronic spectroscopy

    Science.gov (United States)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira

    2015-10-01

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (νCN) and either a ligand-to-metal charge transfer transition ([FeIII(CN)6]3- dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN)5FeIICNRuIII(NH3)5]- dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific νCN modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a wide range of complex molecular, material, and biological systems.

  11. Two-dimensional vibrational-electronic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Trevor L.; Fox, Zachary W.; Slenkamp, Karla M.; Khalil, Munira, E-mail: mkhalil@uw.edu [Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195 (United States)

    2015-10-21

    Two-dimensional vibrational-electronic (2D VE) spectroscopy is a femtosecond Fourier transform (FT) third-order nonlinear technique that creates a link between existing 2D FT spectroscopies in the vibrational and electronic regions of the spectrum. 2D VE spectroscopy enables a direct measurement of infrared (IR) and electronic dipole moment cross terms by utilizing mid-IR pump and optical probe fields that are resonant with vibrational and electronic transitions, respectively, in a sample of interest. We detail this newly developed 2D VE spectroscopy experiment and outline the information contained in a 2D VE spectrum. We then use this technique and its single-pump counterpart (1D VE) to probe the vibrational-electronic couplings between high frequency cyanide stretching vibrations (ν{sub CN}) and either a ligand-to-metal charge transfer transition ([Fe{sup III}(CN){sub 6}]{sup 3−} dissolved in formamide) or a metal-to-metal charge transfer (MMCT) transition ([(CN){sub 5}Fe{sup II}CNRu{sup III}(NH{sub 3}){sub 5}]{sup −} dissolved in formamide). The 2D VE spectra of both molecules reveal peaks resulting from coupled high- and low-frequency vibrational modes to the charge transfer transition. The time-evolving amplitudes and positions of the peaks in the 2D VE spectra report on coherent and incoherent vibrational energy transfer dynamics among the coupled vibrational modes and the charge transfer transition. The selectivity of 2D VE spectroscopy to vibronic processes is evidenced from the selective coupling of specific ν{sub CN} modes to the MMCT transition in the mixed valence complex. The lineshapes in 2D VE spectra report on the correlation of the frequency fluctuations between the coupled vibrational and electronic frequencies in the mixed valence complex which has a time scale of 1 ps. The details and results of this study confirm the versatility of 2D VE spectroscopy and its applicability to probe how vibrations modulate charge and energy transfer in a

  12. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  13. System for Monitoring and Analysis of Vibrations at Electric Motors

    Directory of Open Access Journals (Sweden)

    Gabriela Rață

    2014-09-01

    Full Text Available The monitoring of vibration occurring at the electric motors is of paramount importance to ensure their optimal functioning. This paper presents a monitoring system of vibrations occurring at two different types of electric motors, using a piezoelectric accelerometer (ICP 603C11 and a data acquisition board from National Instruments (NI 6009. Vibration signals taken from different parts of electric motors are transferred to computer through the acquisition board. A virtual instrument that allows real-time monitoring and Fourier analysis of signals from the vibration sensor was implemented in LabVIEW.

  14. Analysis of Vibration Diagnostics Methods for Induction Motors

    Directory of Open Access Journals (Sweden)

    A. P. Kalinov

    2012-01-01

    Full Text Available The paper presents an analysis of existing vibration diagnostics methods. In order to evaluate an efficiency of method application the following criteria have been proposed: volume of input data required for establishing diagnosis, data content, software and hardware level, execution time for vibration diagnostics. According to the mentioned criteria a classification of vibration diagnostics methods for determination of their advantages and disadvantages, search for their development and improvement has been presented in paper. The paper contains a comparative estimation of methods in accordance with the proposed  criteria. According to this estimation the most efficient methods are a spectral analysis and spectral analysis of the vibration signal envelope.

  15. Control of chaotic vibration in automotive wiper systems

    International Nuclear Information System (INIS)

    Wang Zheng; Chau, K.T.

    2009-01-01

    Chaotic vibration has been identified in the automotive wiper system at certain wiping speeds. This irregular vibration not only decreases the wiping efficiency, but also degrades the driving comfort. The purpose of this paper is to propose a new approach to stabilize the chaotic vibration in the wiper system. The key is to employ the extended time-delay feedback control in such a way that the applied voltage of the wiper motor is online adjusted according to its armature current feedback. Based on a practical wiper system, it is verified that the proposed approach can successfully stabilize the chaotic vibration, and provide a wide range of wiping speeds

  16. Effect of low-frequency vibrations on speckle interferometry fringes

    International Nuclear Information System (INIS)

    Vikram, C.S.; Pechersky, M.J.

    1998-01-01

    The effects of low-frequency vibrations on speckle correlation fringes have been investigated. The relatively short capture time of the camera in the low-frequency case may yield usable fringe contrast in spite of vibration. It has been shown that the fringes also shift due to the vibration. The study is in agreement with experimental observations of good-contrast correlation fringes even if the object is not on a vibration-isolated table. Some such experimental observations are also presented. copyright 1998 Society of Photo-Optical Instrumentation Engineers

  17. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  18. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  19. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  20. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  1. Vibrations in orthopedics.

    Science.gov (United States)

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.

  2. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  3. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  4. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration th...... theory is basically unchanged in comparison to the 1st edition. Only section 4.2 on single input - single output systems and chapter 6 on offshore structures have been modified in order to enhance the clearness....

  5. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  6. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    at the University of Southern Denmark, it reports on fundamental formulas and makes uses of graphical representation to promote understanding. Thanks to the emphasis put on analytical methods and numerical results, the book is meant to make students and engineers familiar with all fundamental equations...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  7. Vibrational Spectroscopy and Astrobiology

    Science.gov (United States)

    Chaban, Galina M.; Kwak, D. (Technical Monitor)

    2001-01-01

    Role of vibrational spectroscopy in solving problems related to astrobiology will be discussed. Vibrational (infrared) spectroscopy is a very sensitive tool for identifying molecules. Theoretical approach used in this work is based on direct computation of anharmonic vibrational frequencies and intensities from electronic structure codes. One of the applications of this computational technique is possible identification of biological building blocks (amino acids, small peptides, DNA bases) in the interstellar medium (ISM). Identifying small biological molecules in the ISM is very important from the point of view of origin of life. Hybrid (quantum mechanics/molecular mechanics) theoretical techniques will be discussed that may allow to obtain accurate vibrational spectra of biomolecular building blocks and to create a database of spectroscopic signatures that can assist observations of these molecules in space. Another application of the direct computational spectroscopy technique is to help to design and analyze experimental observations of ice surfaces of one of the Jupiter's moons, Europa, that possibly contains hydrated salts. The presence of hydrated salts on the surface can be an indication of a subsurface ocean and the possible existence of life forms inhabiting such an ocean.

  8. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathe- matics and physics. ... ing this science [mechanics],and the art of solving the problems pertaining to it, to .... used tools for finding maxima and minima of functions of several variables.

  9. Heat exchanger vibration

    International Nuclear Information System (INIS)

    Richards, D.J.W.

    1977-01-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration

  10. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  11. Heat exchanger vibration

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D J.W. [CERL, CEGB, Leatherhead, Surrey (United Kingdom)

    1977-12-01

    The heat exchangers of various types are common items of plant in the generation and transmission of electricity. The amount of attention given to the flow-induced vibrations of heat exchangers by designers is usually related to the operational history of similar items of plant. Consequently, if a particular design procedure yields items of plant which behave in a satisfactory manner during their operational life, there is little incentive to improve or refine the design procedure. On the other hand, failures of heat exchangers clearly indicate deficiencies in the design procedures or in the data available to the designer. When such failures are attributable to flow-induced vibrations, the identification of the mechanisms involved is a prime importance. Ideally, basic research work provides the background understanding and the techniques necessary to be able to identify the important mechanisms. In practice, the investigation of a flow-induced vibration problem may identify the presence of mechanisms but may not be able to quantify their effects adequately. In these circumstances the need for additional work is established and the objectives of the research programme emerge. The purpose of this paper is to outline the background to the current research programme at C.E.R.L. on heat exchanger vibration.

  12. General principles of vibrational spectroscopies

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Schoonheydt, R.A.

    2000-01-01

    Atoms in molecules and solids do not remain in fixed relative positions, but vibrate about some mean position. This vibrational motion is quantized and at room temperature, most of the molecules in a given sample are in their lowest vibrational state. Absorption of electromagnetic radiation with

  13. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  14. Effects of Vibration Therapy in Pediatric Immunizations.

    Science.gov (United States)

    Benjamin, Arika L; Hendrix, Thomas J; Woody, Jacque L

    2016-01-01

    A randomized clinical trial of 100 children (52 boys, 48 girls) ages 2 months to 7 years was conducted to evaluate the effect of vibration therapy without cold analgesia on pain. A convenience sample was recruited at two sites: a publicly funded, free immunization clinic and a private group pediatric practice. Participants were randomly assigned to receive vibration therapy via a specialized vibrating device or standard care. All children regardless of intervention group were allowed to be distracted and soothed by the parent. Pain was evaluated using the FLACC score, which two nurses assessed at three points in time: prior to, during, and after the injection(s). Data were analyzed using a two-independent samples-paired t-test. Results show that vibration therapy had no effect on pain scores in the younger age groups studied (2 months ≤ 1 year, > 1 year ≤ 4 years). In the oldest age group (> 4 to 7 years of age), a heightened pain reading was found in the period from preinjection to post-injection periods (p = 0.045). These results indicate that the addition of vibration therapy (without cold analgesia) to standard soothing techniques is no more effective in reducing immunization pain than standard soothing techniques alone, and thus, is not indicated for use with immunization pain. Recommendations include further evaluation of interventions.

  15. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  16. Diffusion of solid fuelon a vibrating grate

    DEFF Research Database (Denmark)

    Sabelström, Hanna Katarina

    of vibrations can be incorporated into a numerical model. The chosen model approach has been to separate the gas and solid phases into two independent models related to each other through the bed porosity. By treating the bed as a porous media and using Ergun's equation for the gas flow, the numerical work...... is simplified and the computational time shortened. The vibrations are affecting the transport and mixing of the fuel and incorporated into the model through the diffusion coefficient in the conservation equation of the solid phase. Experimental work has been carried out with the aim to study the behaviour...

  17. Vibrational spectroscopic study of terbutaline hemisulphate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  18. Fractional order absolute vibration suppression (AVS) controllers

    Science.gov (United States)

    Halevi, Yoram

    2017-04-01

    Absolute vibration suppression (AVS) is a control method for flexible structures. The first step is an accurate, infinite dimension, transfer function (TF), from actuation to measurement. This leads to the collocated, rate feedback AVS controller that in some cases completely eliminates the vibration. In case of the 1D wave equation, the TF consists of pure time delays and low order rational terms, and the AVS controller is rational. In all other cases, the TF and consequently the controller are fractional order in both the delays and the "rational parts". The paper considers stability, performance and actual implementation in such cases.

  19. Status of the Vibrational Theory of Olfaction

    Science.gov (United States)

    Hoehn, Ross D.; Nichols, David E.; Neven, Hartmut; Kais, Sabre

    2018-03-01

    The vibrational theory of olfaction is an attempt to describe a possible mechanism for olfaction which is explanatory and provides researchers with a set of principles which permit predictions allowing for structure-odor relations. Similar theories have occurred several times throughout olfactory science; this theory has again recently come to prominence by Luca Turin who suggested that inelastic electron tunneling is the method by which vibrations are detected by the olfactory receptors within the hose. This work is intended to convey to the reader the an up-to-date account of the vibrational theory of olfaction, both the historical iterations as well as the present iteration. This text is designed to give a chronological account of both theoretical and experimental studies on the topic, while providing context, comments and background where they were found to be needed.

  20. Control aid for xenon vibration in reactor

    International Nuclear Information System (INIS)

    Kanekawa, Takashi.

    1990-01-01

    In the present invention, the control operation for suppressing xenon vibrations in a reactor is aided for saving forecasting analysis and operator's skills. That is, parameters to be controlled for the suppression of xenon vibrations are power distribution, iodine distribution and xenon distribution. But what can be observed by operaters by the conventional fast overtone method is only the output distribution. In the present invention, the output level of the reactor core is always observed. Then, mathematical processings are conducted for the iodine distribution, the xenon distribution and the power distribution in the reactor core based on the histeresis of the parameters obtained by the measurement using physical constants and reactor design data. The xenon vibration control is aided by displaying the change with time of the distortion in axial direction. Accordingly, operators can always recognize the axial distortion of the power distribution, the iodine distribution and the xenon distribution. (I.S.)

  1. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  2. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  3. Visualization investigation of acoustic and flow-induced vibration in main stream lines using a high-time-resolved PIV technique

    International Nuclear Information System (INIS)

    Li, Yanrong; Someya, Satoshi; Okamoto, Koji

    2009-01-01

    Systems with closed side-branches are liable to an excitation of sound, as called cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been known by phase-averaged measurement in previous researches, while the relation between sound propagation and flow field is still unclear due to the difficulty of detecting instantaneous velocity field. High-time-resolved PIV has a possibility to analyze the velocity field and the relation mentioned above. In this study, flow-induced acoustic resonance of piping system containing closed side-branches was investigated experimentally. A high-time-resolved PIV technique was applied to measure a gas-flow in a cavity. Air flow containing oil mist as tracer particles was measured using a high frequency pulse laser and a high speed camera. The present investigation on the coaxial closed side-branches is the first rudimentary study to visualize the fluid flow two-dimensionally in the cross-section by using PIV and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact with some phase differences and the relation was clarified. (author)

  4. The effect of thermal de-phasing on the beam quality of a high-power single-pass second harmonic generation

    Science.gov (United States)

    Sadat Hashemi, Somayeh; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2018-04-01

    We present a theoretical model in order to study the effect of a thermally loaded crystal on the quality of a second-harmonic (SH) beam generated in a high-power pumping regime. The model is provided based on using a particular structure of oven considered for MgO:PPsLT nonlinear crystal to compensate for the thermal de-phasing effect that as the pumping power reaches up to 50 W degrades the conversion efficiency and beam quality of the interacting beams. Hereupon, the quality of fundamental beam is involved in the modeling to investigate the final effect on the beam quality of generated SH beam. Beam quality evaluation is subsequently simulated using Hermite-Gaussian modal decomposition approach for a range of fundamental beam qualities varied from 1 to 3 and for different levels of input powers. To provide a meaningful comparison numerical simulation is correlated with real data deduced from a high-power SH generation (SHG) experimental device. It is found that when using the open-top oven scheme and fixing the fundamental M 2-factor at nearly 1, for a range of input powers changing from 15 to 30 W, the M 2-factor of SHG beam is degraded from 9% to 24%, respectively, confirming very good consistency with the reported experimental results.

  5. Hubungan Phantom Vibration Syndrome Terhadap Sleep Disorder dan Kondisi Stress

    Directory of Open Access Journals (Sweden)

    Ajeng Yeni Setianingrum

    2017-10-01

    Full Text Available Phantom vibration syndrome is a condition where a person would feel the sensation of vibration of a cell phone as if there were incoming notification but the fact is not. This research investigated the relationship between phantom vibration syndromes, sleep disorder and stress condition. Questionnaires were distributed to 120 participants with age range 18 to 23 years old. Data of participants showed that all of participants using a smart mobile phone and 24% of them have more than one cell phone. Time usage of cell phone is at least 1 hour. 23% of participants using a cell phone for social media activity, followed by 21% related to entertainment (music, video and games. The results showed a positive relationship between phantom vibration syndrome, sleep disorder and stress condition. Insomnia contributed a greater influence on stress condition. However, the phantom vibration syndrome is more directly affecting the sleep apnea compared to insomnia and stress condition. Therefore, the phantom vibration syndrome more affects stress condition indirectly, through sleep disorder (sleep apnea and insomnia. Consequently, phantom vibration syndrome has a strong relationship with stress condition at the time of the phantom vibration syndrome can cause sleep disorder.

  6. Vibration of fuel bundles

    International Nuclear Information System (INIS)

    Chen, S.S.

    1975-06-01

    Several mathematical models have been proposed for calculating fuel rod responses in axial flows based on a single rod consideration. The spacing between fuel rods in liquid metal fast breeder reactors is small; hence fuel rods will interact with one another due to fluid coupling. The objective of this paper is to study the coupled vibration of fuel bundles. To account for the fluid coupling, a computer code, AMASS, is developed to calculate added mass coefficients for a group of circular cylinders based on the potential flow theory. The equations of motion for rod bundles are then derived including hydrodynamic forces, drag forces, fluid pressure, gravity effect, axial tension, and damping. Based on the equations, a method of analysis is presented to study the free and forced vibrations of rod bundles. Finally, the method is applied to a typical LMFBR fuel bundle consisting of seven rods

  7. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  8. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  9. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  10. Parametric analysis of protective grid flow induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jooyoung; Eom, Kyongbo; Jeon, Sangyoun; Suh, Jungmin [KEPCO NF Co., Daejeon (Korea, Republic of)

    2012-10-15

    Protective grid (P-grid) flow-induced vibration in a nuclear power reactor is one of the critical factors for the mechanical integrity of a nuclear fuel. The P-grid is located at the lower most position above the bottom nozzle of the nuclear fuel as shown in Fig. 1, and it is required for not only filtering debris, but also supporting fuel rods. On the other hand, P-grid working conditions installed in a nuclear fuel in a reactor are severe in terms of flow speed, temperature and pressure. Considering such a severe condition of P-grid's functional performance in working environment, excessive vibration could be developed. Furthermore, if the P-grid is exposed to high levels of excessive vibration over a long period of time, fatigue failure could be unavoidable. Therefore, it is important to reduce excessive vibration while maintaining P-grid's own functional performance. KEPCO Nuclear Fuel has developed a test facility - Investigation Flow-induced Vibration (INFINIT) - to study flow-induced vibration caused by flowing coolant at various flow rates. To investigate specific relationships between configuration of P-grid and flow-induced vibration characteristics, several types of the P-grids were tested in INFINIT facility. And, based on the test results through parametric studies, the flow-induced vibration characteristics could be analyzed, and critical design parameters were found.

  11. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  12. Investigation of Concrete Floor Vibration Using Heel-Drop Test

    Science.gov (United States)

    Azaman, N. A. Mohd; Ghafar, N. H. Abd; Azhar, A. F.; Fauzi, A. A.; Ismail, H. A.; Syed Idrus, S. S.; Mokhjar, S. S.; Hamid, F. F. Abd

    2018-04-01

    In recent years, there is an increased in floor vibration problems of structures like residential and commercial building. Vibration is defined as a serviceability issue related to the comfort of the occupant or damage equipment. Human activities are the main source of vibration in the building and it could affect the human comfort and annoyance of residents in the building when the vibration exceed the recommend level. A new building, Madrasah Tahfiz located at Yong Peng have vibration problem when load subjected on the first floor of the building. However, the limitation of vibration occurs on building is unknown. Therefore, testing is needed to determine the vibration behaviour (frequency, damping ratio and mode shape) of the building. Heel-drop with pace 2Hz was used in field measurement to obtain the vibration response. Since, the heel-drop test results would vary in light of person performance, test are carried out three time to reduce uncertainty. Natural frequency from Frequency Response Function analysis (FRF) is 17.4Hz, 16.8, 17.4Hz respectively for each test.

  13. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  14. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  15. Corticospinal excitability changes following prolonged muscle tendon vibration

    NARCIS (Netherlands)

    Steyvers, M.; Levin, O.; Baelen, M.G.M. van; Swinnen, S.P.

    2003-01-01

    The present experiment addressed the time course of corticospinal excitability changes following interventional muscle tendon vibration. Using transcranial magnetic stimulation, motor evoked potentials of the flexor carpi radialis and extensor carpi radialis brevis muscle were recorded for a period

  16. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  18. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  19. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  20. Noncontrast magnetic resonance angiography of the hand: improved arterial conspicuity by multidirectional flow-sensitive dephasing magnetization preparation in 3D balanced steady-state free precession imaging.

    Science.gov (United States)

    Fan, Zhaoyang; Hodnett, Philip A; Davarpanah, Amir H; Scanlon, Timothy G; Sheehan, John J; Varga, John; Carr, James C; Li, Debiao

    2011-08-01

    : To develop a flow-sensitive dephasing (FSD) preparative scheme to facilitate multidirectional flow-signal suppression in 3-dimensional balanced steady-state free precession imaging and to validate the feasibility of the refined sequence for noncontrast magnetic resonance angiography (NC-MRA) of the hand. : A new FSD preparative scheme was developed that combines 2 conventional FSD modules. Studies using a flow phantom (gadolinium-doped water 15 cm/s) and the hands of 11 healthy volunteers (6 males and 5 females) were performed to compare the proposed FSD scheme with its conventional counterpart with respect to the signal suppression of multidirectional flow. In 9 of the 11 healthy subjects and 2 patients with suspected vasculitis and documented Raynaud phenomenon, respectively, 3-dimensional balanced steady-state free precession imaging coupled with the new FSD scheme was compared with spatial-resolution-matched (0.94 × 0.94 × 0.94 mm) contrast-enhanced magnetic resonance angiography (0.15 mmol/kg gadopentetate dimeglumine) in terms of overall image quality, venous contamination, motion degradation, and arterial conspicuity. : The proposed FSD scheme was able to suppress 2-dimensional flow signal in the flow phantom and hands and yielded significantly higher arterial conspicuity scores than the conventional scheme did on NC-MRA at the regions of common digitals and proper digitals. Compared with contrast-enhanced magnetic resonance angiography, the refined NC-MRA technique yielded comparable overall image quality and motion degradation, significantly less venous contamination, and significantly higher arterial conspicuity score at digital arteries. : The FSD-based NC-MRA technique is improved in the depiction of multidirectional flow by applying a 2-module FSD preparation, which enhances its potential to serve as an alternative magnetic resonance angiography technique for the assessment of hand vascular abnormalities.

  1. A study of arteries of foot by flow sensitive dephasing prepared balanced steady-state free precession MR angiography in diabetes

    International Nuclear Information System (INIS)

    Zou Liqiu; Liu Xiaoyi; Liu Xin; Feng Fei; Qi Yulong; Liu Pengcheng

    2011-01-01

    Objective: To investigate balanced steady-state free precession with flow-sensitive dephasing magnetization preparation (FSD-bSSFP) in the assessment of arteries of foot in diabetic patients. Methods: The lower-extremity peripheral arteries of 43 diabetic patients were evaluated by FSD-bSSFP no contrast MRA and contrast-enhanced MRA (CE-MRA) in. Two experienced observers assessed the image quality, degree of venous contaminated and visibility of pedal artery branches by FSD-bSSFP and CE-MRA respectively in consensus. The signal intensity (SI), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the source images of both groups were measured and Wilcoxon and t tests were performed. Results: The image score of FSD-bSSFP group was 2.7±1.1 and CE-MRA was 2.6±0.8, there was no statistical difference (Z= 0.134, P>0.05). The image score of demonstration of the pedal artery branches and degree of venous contamination on FSD-bSSFP were 3.2±0.9 and 1.8±0.4 respectively which were superior to that of CE-MRA (2.5±0.9 and 2.1±0.8 respectively). Significant statistical difference existed between the two groups in demonstration of pedal artery branches (Z=5.246, P 0.05). But CNR of CE-MRA was superior to that of FSD-bSSFP and significant statistical difference existed between these two methods (t=5.113, P<0.01). Conclusion: FSD-bSSFP without contrast could be used in the evaluation of foot arteries in patients of renal dysfunction and diabetes. (authors)

  2. Vibration damping method and apparatus

    Science.gov (United States)

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  3. Atomic beams probe surface vibrations

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1982-01-01

    In the last two years, surface scientist have begun trying to obtain the vibrational frequencies of surface atoms in both insulating and metallic crystals from beams of helium atoms. It is the inelastic scattering that researchers use to probe surface vibrations. Inelastic atomic beam scattering has only been used to obtain vibrational frequency spectra from clean surfaces. Several experiments using helium beams are cited. (SC)

  4. Spectroscopy and reactions of vibrationally excited transient molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H.L. [Univ. of Pennsylvania, Philadelphia (United States)

    1993-12-01

    Spectroscopy, energy transfer and reactions of vibrationally excited transient molecules are studied through a combination of laser-based excitation techniques and efficient detection of emission from the energized molecules with frequency and time resolution. Specifically, a Time-resolved Fourier Transform Emission Spectroscopy technique has been developed for detecting dispersed laser-induced fluorescence in the IR, visible and UV regions. The structure and spectroscopy of the excited vibrational levels in the electronic ground state, as well as energy relaxation and reactions induced by specific vibronic excitations of a transient molecule can be characterized from time-resolved dispersed fluorescence in the visible and UV region. IR emissions from highly vibrational excited levels, on the other hand, reveal the pathways and rates of collision induced vibrational energy transfer.

  5. Turbine blade vibration dampening

    Science.gov (United States)

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  6. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  7. Vibration control, machine diagnostics

    International Nuclear Information System (INIS)

    1990-01-01

    Changing vibrations announce damage in the form of wear or cracks on components of, e.g., engine rotors, pumps, power plant turbo sets, rounding-up tools, or marine diesel engines. Therefore, machine diagnostics use frequency analyses, system tests, trend analyses as well as expert systems to localize or estimate the causes of these damages and malfunctions. Data acquisistion, including not only sensors, but also reliable and redundant data processing systems and analyzing systems, play an important role. The lectures pertaining to the data base are covered in detail. (DG) [de

  8. Smart paint sensor for monitoring structural vibrations

    International Nuclear Information System (INIS)

    Al-Saffar, Y; Baz, A; Aldraihem, O

    2012-01-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures. (paper)

  9. Report of workshop on vibration related to fluid in atomic energy field. 4

    International Nuclear Information System (INIS)

    1993-01-01

    This is the fourth workshop on the vibration related to fluid in atomic energy field of Yayoi research group. This time, two topics were taken up. One is edgetone phenomena and the liquid surface vibration phenomena due to flow. Another is the introduction of the experience in light water reactors. The workshop was held on August 30 and 31, 1993 at Nuclear Engineering Research Laboratory, University of Tokyo. At the workshop, lectures were given on the mechanism of occurrence of edgetone, the theoretical analysis of edgetone and edgenoise, the self-excited vibration of free liquid surface due to vertical plane jet and vertical cylindrical jet, the research on flow instability phenomena in parallel loop system, the irregular vibration behavior of U-shaped tubes excited by flow, the research on the vibration of cyclindrical weir due to fluid discharge, the examples of the vibration related to fluid in LWRs, the estimation of fatigue phenomena in bearing rings, the vibration of rotary vanes and verifying test, the analysis of flow in isolated phase bus plate vane and the measurement of velocity distribution, flow in piping and the behavior of valve vibration, the condition for the occurrence of flow vibration in the main steam separation valve of BWR, the vibration of piping due to orifice, the analysis of flow in two-dimensional vibrating cascade, and the subjects of fluid vibration assessment in atomic energy. (K.I.)

  10. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  11. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  12. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  13. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  14. Measurement of food texture by an acoustic vibration method

    Science.gov (United States)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  15. Influence of Drive Level on the Fundamental Vibrator Signal

    OpenAIRE

    Noorlandt, R.P.; Drijkoningen, G.G.; Faber, C.A.M.

    2013-01-01

    In this abstract we show the influence of vibrator drive level on the signal it produces. For that purpose a field survey was carried out using an INOVA's AHV-IV vehicle with a modified 266kN (60.000 lbf) vibrator. A single linear sweep was repeated at 10 different drive levels ranging from 5 to 90% at two locations. Each drive level was repeated 10 times and each run was repeated twice per location. In total 400 sweeps were carried out. From this data set we conclude that; the vibrator signa...

  16. Evaluation of protective gloves and working techniques for reducing hand-arm vibration exposure in the workplace.

    Science.gov (United States)

    Milosevic, Matija; McConville, Kristiina M Valter

    2012-01-01

    Operation of handheld power tools results in exposure to hand-arm vibrations, which over time lead to numerous health complications. The objective of this study was to evaluate protective equipment and working techniques for the reduction of vibration exposure. Vibration transmissions were recorded during different work techniques: with one- and two-handed grip, while wearing protective gloves (standard, air and anti-vibration gloves) and while holding a foam-covered tool handle. The effect was examined by analyzing the reduction of transmitted vibrations at the wrist. The vibration transmission was recorded with a portable device using a triaxial accelerometer. The results suggest large and significant reductions of vibration with appropriate safety equipment. Reductions of 85.6% were achieved when anti-vibration gloves were used. Our results indicated that transmitted vibrations were affected by several factors and could be measured and significantly reduced.

  17. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    The ability to visualize directly a large number of distinct molecular species inside cells is increasingly essential for understanding complex systems and processes. Even though existing methods have successfully been used to explore structure-function relationships in nervous systems, to profile RNA in situ, to reveal the heterogeneity of tumour microenvironments and to study dynamic macromolecular assembly, it remains challenging to image many species with high selectivity and sensitivity under biological conditions. For instance, fluorescence microscopy faces a ‘colour barrier’, owing to the intrinsically broad (about 1,500 inverse centimetres) and featureless nature of fluorescence spectra that limits the number of resolvable colours to two to five (or seven to nine if using complicated instrumentation and analysis). Spontaneous Raman microscopy probes vibrational transitions with much narrower resonances (peak width of about 10 inverse centimetres) and so does not suffer from this problem, but weak signals make many bio-imaging applications impossible. Although surface-enhanced Raman scattering offers high sensitivity and multiplicity, it cannot be readily used to image specific molecular targets quantitatively inside live cells. Here we use stimulated Raman scattering under electronic pre-resonance conditions to image target molecules inside living cells with very high vibrational selectivity and sensitivity (down to 250 nanomolar with a time constant of 1 millisecond). We create a palette of triple-bond-conjugated near-infrared dyes that each displays a single peak in the cell-silent Raman spectral window; when combined with available fluorescent probes, this palette provides 24 resolvable colours, with the potential for further expansion. Proof-of-principle experiments on neuronal co-cultures and brain tissues reveal cell-type-dependent heterogeneities in DNA and protein metabolism under physiological and pathological conditions, underscoring the

  18. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  19. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  20. The Influence of Various Vibration Frequency on Barium Sulfate Scale Formation Of Vibrated Piping System In The Presence Citric Acid

    Science.gov (United States)

    Karaman, N.; Mangestiyono, W.; Muryanto, S.; Jamari, J.; Bayuseno, A. P.

    2018-01-01

    In this paper, the influence of vibrated piping system for BaSO4 scale formation was investigated. The vibration frequency and presence of citric acid were independent variables determining the kinetics, mass deposit and polymorph of the crystals. Correspondingly, induction time and mass of scale were obtained during the experiments. The crystalline scale was observed by scanning electron microscopy (SEM) and X-Ray Diffraction (XRD) to investigate the morphology and the phase mineral deposits, respectively. This effect indicated that the increase in vibration frequency promoted the increased deposition rate, while the pure barite with a plate-like morphology was produced in the experiments.

  1. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  2. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  3. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  4. Vibration for Pain Reduction in a Plastic Surgery Clinic.

    Science.gov (United States)

    Eichhorn, Mitchell George; Karadsheh, Murad Jehad; Krebiehl, Johanna Ruth; Ford, Dawn Marie; Ford, Ronald D

    2016-01-01

    Patients can experience significant pain during routine procedures in the plastic surgery clinic. Methods for clinical pain reduction are often impractical, time-consuming, or ineffective. Vibration is a safe, inexpensive, and highly applicable modality for pain reduction that can be readily utilized for a wide variety of procedures. This study evaluated the use of vibration as a viable pain-reduction strategy in the clinical plastic surgery setting. Patients requiring at least 2 consecutive procedures that are considered painful were enrolled in the study. These included injections, staple removal, and suture removal. In the same patient, one half of the procedures were performed without vibration and the other half with vibration. After completing the procedures, the patients rated their pain with vibration and without vibration. The patient and the researcher also described the experience with a short questionnaire. Twenty-eight patients were enrolled in the study. Patients reported significantly less pain on the Numeric Rating Scale pain scale when vibration was used compared with the control group (p reduction. It significantly reduces the pain experienced by patients during minor office procedures. Given its practicality and ease of use, it is a welcome tool in the plastic surgery clinic.

  5. Hydraulic elements in reduction of vibrations in mechanical systems

    Science.gov (United States)

    Białas, K.; Buchacz, A.

    2017-08-01

    This work presents non-classical method of design of mechanic systems with subsystem reducing vibrations. The purpose of this paper is also introduces synthesis of mechanic system with reducing vibrations understand as design of this type of systems. The synthesis may be applied to modify the already existing systems in order to achieve a desired result. Elements which reduce vibrations can be constructed with passive, semi-active or active components. These considerations systems have selected active items. A hallmark of active elements it is possible to change the parameters on time of these elements and their power from an external source. The implementation of active elements is very broad. These elements can be implemented through the use of components of electrical, pneumatic, hydraulic, etc. The system was consisted from mechanical and hydraulic elements. Hydraulic elements were used as subsystem reducing unwanted vibration of mechanical system. Hydraulic elements can be realized in the form of hydraulic cylinder. In the case of an active vibration reduction in the form of hydraulic cylinder it is very important to find the corresponding values of hydraulic components. The values of these elements affect the frequency of vibrations of this sub-system which is related to the effective vibration reduction [7,11].

  6. Structural-Vibration-Response Data Analysis

    Science.gov (United States)

    Smith, W. R.; Hechenlaible, R. N.; Perez, R. C.

    1983-01-01

    Computer program developed as structural-vibration-response data analysis tool for use in dynamic testing of Space Shuttle. Program provides fast and efficient time-domain least-squares curve-fitting procedure for reducing transient response data to obtain structural model frequencies and dampings from free-decay records. Procedure simultaneously identifies frequencies, damping values, and participation factors for noisy multiple-response records.

  7. Vortex induced vibrations in gapped restrainted pipes

    International Nuclear Information System (INIS)

    Veloso, P. de A.A.; Loula, A.F.D.

    1984-01-01

    The vortex induced vibration problem of gapped restrained piping is solved numerically. The model proposed by Skop-Griffin is used to describe the pipe-fluid interaction. The variational formulation is obtained modeling the gapped restraints as non-linear elastic springs. The regularized problem is solved using a finite element discretization for the spatial domain. In the time domain a finite difference discretization is used for the lift coefficient equatin and a Newmark discretization for the equation of motion. (Author) [pt

  8. A study of vibrational relaxation of electronically-excited molecules

    International Nuclear Information System (INIS)

    Datsyuk, V.V.; Izmailov, I.A.; Kochelap, V.A.

    1992-09-01

    The time kinetics of the vibrational relaxation of excimers is studied in the diffusional approximation. Simple formulae for functions of nonstationary vibrational distribution are found for the electronically excited molecules. Some spectral-kinetic dependencies of the excimer luminescence are explained in a new way. The possibilities of the determination of excimer parameters are discussed. The dependence of energetical characteristics of excimer lasers on these parameters is particularly emphasized. (author). 22 refs, 5 figs

  9. Vibrations of a delivery car excited by railway track crossing

    International Nuclear Information System (INIS)

    Litak, Grzegorz; Borowiec, Marek; Hunicz, Jacek; Koszalka, Grzegorz; Niewczas, Andrzej

    2009-01-01

    Vertical vibrations of a delivery car passing through railway tracks have been investigated in this paper. The application of recurrence plots allows to examine short time series of acceleration non-stationary courses. Recurrence quantification analysis and square deviations estimated in small windows have been used to monitor car vibrations and transient behaviour. Measuring acceleration on the 'sprung' and 'unsprung' masses of a vehicle has enabled also to test the quality of a car suspension.

  10. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  11. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  12. Lattice vibration spectra. 16

    International Nuclear Information System (INIS)

    Lutz, H.D.; Willich, P.

    1977-01-01

    The FIR absorption spectra of pyrite type compounds RuS 2 , RuSsub(2-x)Sesub(x), RuSe 2 , RuTe 2 , OsS 2 , OsSe 2 , and PtP 2 as well as loellingite type phosphides FeP 2 , RuP 2 , and OsP 2 are reported. For RuS 2 , RuSe 2 , RuTe 2 , OsS 2 , and PtP 2 all of the five infrared allowed modes (k = 0) are observed. As a first result of a numerical normal coordinate treatment vibration forms of pyrite structure are communicated. The spectra show that lattice forces of corresponding sulfides, tellurides, and phosphides are about the same strength, but increase strongly by substitution of iron by ruthenium and especially of ruthenium by osmium. The lattice constants of the RuSsub(2-x)Sesub(x) solid solution obey Vegard's rule. (author)

  13. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  14. Some developments in core-barrel vibration diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.; Karlsson, J.; Garis, N.S.

    1998-01-01

    Diagnostics of core-barrel motion, and notably that of beam mode vibrations, has been usually performed by two distinct concepts. One strategy is to perform a qualitative analysis in the time domain, using descriptors such as vibration trajectory, probability distributions etc. This approach is rather realistic in the sense that it allows for general anisotropic pendular vibrations. The other strategy is to use frequency analysis with the goal of quantifying certain vibration properties. However, this second approach could so far handle only isotropic and unidirectional vibrations. In this paper we propose a unification of these two approaches by introducing a model by which general anisotropic vibrations can be quantified in the frequency domain. However, when separating the noise components prior to the frequency analysis, we suggest the use of symmetry properties of the noise in the time domain, based on reactor physics assumptions, as opposed to the earlier methods that use statistical independence of the components. Due to the unified approach, a combination of time and frequency domain analysis methods can be used for presentation and maximum information extraction

  15. METHOD FOR DETERMINATION OF ROTATION CENTER IN VIBRATING OBJECT

    Directory of Open Access Journals (Sweden)

    I. P. Kauryha

    2016-01-01

    Full Text Available Linear piezoelectric gauges, eddy current transducers and other control and measuring devices have been widely applied for vibration diagnostics of objects in industry. Methods based on such gauges and used for measuring angular and linear vibrations do not provide the possibility to assess a rotation center or point angle of an object. Parasitic oscillations may occur during rotor rotation and in some cases the oscillations are caused by dis-balance. The known methods for measuring angular and linear vibrations make it possible to detect the phenomenon and they do not provide information for balancing of the given object. For this very reason the paper describes a method for obtaining instantaneous rotation center in the vibrating object. It allows to improve informational content of the measurements owing to obtaining additional data on position of object rotation center. The obtained data can be used for balancing of a control object. Essence of the given method is shown by an example of piezoelectric gauges of linear vibrations. Two three-axial gauges are fixed to the investigated object. Then gauge output signals are recalculated in angular vibrations of the object (for this purpose it is necessary to know a distance between gauges. Further projection positions of the object rotation center are determined on three orthogonal planes. Instantaneous rotation center is calculated according to the position of one of the gauges. The proposed method permits to obtain data on linear and angular vibrations and rotation center position of the vibrating object using one system of linear gauge. Possibilities of object diagnostics are expanded due to increase in number of determined parameters pertaining to object moving. The method also makes it possible to reduce material and time expenses for measurement of an angular vibration component. 

  16. Prototype observation and influencing factors of environmental vibration induced by flood discharge

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Due to a wide range of field vibration problems caused by flood discharge at the Xiangjiaba Hydropower Station, vibration characteristics and influencing factors were investigated based on prototype observation. The results indicate that field vibrations caused by flood discharge have distinctive characteristics of constancy, low frequency, small amplitude, and randomness with impact, which significantly differ from the common high-frequency vibration characteristics. Field vibrations have a main frequency of about 0.5–3.0 Hz and the characteristics of long propagation distance and large-scale impact. The vibration of a stilling basin slab runs mainly in the vertical direction. The vibration response of the guide wall perpendicular to the flow is significantly stronger than it is in other directions and decreases linearly downstream along the guide wall. The vibration response of the underground turbine floor is mainly caused by the load of unit operation. Urban environmental vibration has particular distribution characteristics and change patterns, and is greatly affected by discharge, scheduling modes, and geological conditions. Along with the increase of the height of residential buildings, vibration responses show a significant amplification effect. The horizontal and vertical vibrations of the 7th floor are, respectively, about 6 times and 1.5 times stronger than the corresponding vibrations of the 1st floor. The vibration of a large-scale chemical plant presents the combined action of flood discharge and working machines. Meanwhile, it is very difficult to reduce the low-frequency environmental vibrations. Optimization of the discharge scheduling mode is one of the effective measures of reducing the flow impact loads at present. Choosing reasonable dam sites is crucial.

  17. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  18. An Examination of a Music Appreciation Method Incorporating Tactile Sensations from Artificial Vibrations

    Science.gov (United States)

    Ideguchi, Tsuyoshi; Yoshida, Ryujyu; Ooshima, Keita

    We examined how test subject impressions of music changed when artificial vibrations were incorporated as constituent elements of a musical composition. In this study, test subjects listened to several music samples in which different types of artificial vibration had been incorporated and then subjectively evaluated any resulting changes to their impressions of the music. The following results were obtained: i) Even if rhythm vibration is added to a silent component of a musical composition, it can effectively enhance musical fitness. This could be readily accomplished when actual sounds that had been synchronized with the vibration components were provided beforehand. ii) The music could be listened to more comfortably by adding not only a natural vibration extracted from percussion instruments but also artificial vibration as tactile stimulation according to intentional timing. Furthermore, it was found that the test subjects' impression of the music was affected by a characteristic of the artificial vibration. iii) Adding vibration to high-frequency areas can offer an effective and practical way of enhancing the appeal of a musical composition. iv) The movement sensations of sound and vibration could be experienced when the strength of the sound and vibration are modified in turn. These results suggest that the intentional application of artificial vibration could result in a sensitivity amplification factor on the part of a listener.

  19. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  20. Probability of Failure in Random Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard

    1988-01-01

    Close approximations to the first-passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first-passage probability density function and the distribution function for the time interval spent below a barrier before out......-crossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval and thus for the first-passage probability...

  1. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  2. Vibration Reduction System Using Magnetic Suspension Technology

    Directory of Open Access Journals (Sweden)

    Spychała Jarosław

    2015-01-01

    Full Text Available The article presents considerations concerning the construction of vibration reduction system using magnetic suspension technology. Presents the results of simulation, numerical and experimental the bearingless electric motor, for which successfully used this type of solution. Positive results of research and testing have become the basis for the development of the concept of building this type of active vibration reduction system , at the same time acting as a support for a technical object, which is a jet engine. Bearing failures are manifested by loss or distortion of their mass, which leads to a total destruction of the roller bearing, and thus reflected in the security. The article presents the concept of building active magnetic suspension to eliminate the bearing system of classical rolling bearing and replace it with magnetic bearing.

  3. Universality in the dynamical properties of seismic vibrations

    Science.gov (United States)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  4. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  5. Novel 2D representation of vibration for local damage detection

    Directory of Open Access Journals (Sweden)

    Grzegorz Żak

    2014-07-01

    Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.

  6. Interrogating the vibrational relaxation of highly excited polyatomics with time-resolved diode laser spectroscopy: C6H6, C6D6, and C6F6+CO2

    International Nuclear Information System (INIS)

    Sedlacek, A.J.; Weston, R.E. Jr.; Flynn, G.W.

    1991-01-01

    The vibrational relaxation of highly excited ground state benzene, benzene d 6 , and hexafluorobenzene by CO 2 has been investigated with high resolution diode laser spectroscopy. The vibrationally hot polyatomics are formed by single photon 248 nm excitation to the S 1 state followed by rapid radiationless transitions. It has been found that in all cases less than 1% of the energy initially present in the polyatomics is deposited into the high frequency mode of CO 2 (ν 3 ). An investigation of the CO 2 (00 0 1) nascent rotational distribution under single collision conditions reveals that very little rotational excitation accompanies vibrational energy transfer to the ν 3 mode. The CO 2 (ν 3 ) rotational states can be described by temperatures, T rot , as follows: C 6 H 6 , T rot =360±30 K; C 6 D 6 , T rot =350±35 K and C 6 F 6 , T rot =340±23 K. An estimate of left-angle ΔE right-angle ν3 , the mean energy transferred to the CO 2 ν 3 mode per collision, suggests that as the availability of low frequency modes in the excited molecule increases, less energy is deposited into the high frequency mode of CO 2 . Finally, evidence is presented suggesting that even at moderate laser fluences, the two-photon ionization of benzene can lead to substantial CO 2 ν 3 excitation via electron+CO 2 inelastic collisions

  7. Putting a damper on drilling's bad vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)

    1994-01-01

    Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.

  8. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  9. The Study of Vibration Processes in Oil Flooded Screw Compressors

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2014-01-01

    Full Text Available Vibration processes that accompany most of machines and mechanisms are of interest to the researcher, as a source of information about the technical condition and the nature of the business processes flow. Vibration-based diagnostics of oil flooded screw compressors allows us to estimate the deviation of their operation from the main mode in accordance with changing the settings of vibration processes.The oil flooded screw compressor transition from the main mode of operation to the abnormal one is accompanied by complex gas-dynamic phenomena i.e. the initial gaps and their decays. This leads to changes in the nature of vibration processes, prompting suggestions that there is a relationship to a change of vibration parameters and mode of compressor operation.Studies were conducted by combined method using an analytical calculation of the decay parameters of the initial discontinuity and an experimental one based on the measurement of acceleration on the body of the real oil flooded screw compressor. A virtually adequate reaction of the decay parameters of the initial gap and the peak values of vibration acceleration to the change of operation mode of oil flooded screw compressor has been received. The peak value of the vibration acceleration was selected by the method of Gating being time-coinciding with the beginning discharge phase of the oil flooded screw compressor, and therefore, with the decay time of the initial discontinuity.This indicates a large degree of hypothesis likelihood on an existing initial break in oil flooded screw compressor when operating in abnormal conditions. This work contains the study results of vibration processes and their relationship to the operating mode of the oil flooded screw compressor, which distinguish it from the other works studied vibration processes in reciprocating compressors. The vibration parameters control of operating oil flooded screw compressor allows us to create an automatic capacity control

  10. Ultrafast time-resolved electron diffraction on adsorbate systems on silicon surfaces. Vibrational excitation in monllayers and dynamics of phase transitions; Ultraschnelle zeitaufgeloeste Elektronenbeugung an Adsorbatsystemen auf Siliziumoberflaechen. Vibrationsanregung in Monolagen und Dynamik von Phasenuebergaengen

    Energy Technology Data Exchange (ETDEWEB)

    Moellenbeck, Simone

    2011-04-11

    In the present work ultra fast time resolved electron diffraction (TR-RHEED) at various adsorbate systems on silicon (Si) substrates was performed. Using the Debye-Waller-effect, the vibrational amplitude of the excited adsorbate atoms can be directly observed in the experiments as a function of time. For a coverage of 4/3 monolayers Lead (Pb) on Si(1 1 1) forms a ({radical}(3) x {radical}(3))-reconstruction. The transient intensity evolution of the diffraction spots is recorded in a TR-RHEED-experiment. After excitation with a fs-laser pulse the intensity decreases due to the Debye-Waller-effect. The temporal behavior of the de-excitation process can be described with two exponential functions: a short time constant of 100 ps and a long one of 2800 ps. The two time constants can be assigned to two different phonon modes of the Pb-adsorbate. The huge difference between the two time constants and thus difference in the coupling to the substrate is explained by the bonding geometry in the structural model. To confirm this possible explanation, further TR-RHEED-experiments for the ({radical}(7) x {radical}(3))-reconstruction of Pb on Si(1 1 1) were performed. The ({radical}(7) x {radical}(3))-reconstruction with a coverage of 1.2 monolayers shows comparable structural elements. The transient intensity evolution can be described with the identical two time constants. In addition, first experiments on the {beta} ({radical}(3) x {radical}(3))-phase of Pb/Si(1 1 1) are presented. This {beta} ({radical}(3) x {radical}(3))-reconstruction, with a coverage of 1/3 monolayers of Pb, shows a phase transition to a (3 x 3)-reconstruction, which was observed in the experiments. Further investigated adsorbate systems are: ({radical}(3) x {radical}(3))Ag/Si(1 1 1), ({radical}(3) x {radical}(3))In/Si(1 1 1), ({radical}(31) x {radical}(31))In/Si(1 1 1), and ({radical}(3) x {radical}(3))Bi/Si(1 1 1). In the second part of the present work the structural dynamics of strongly driven

  11. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  12. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  13. Vibrational excitation from heterogeneous catalysis

    International Nuclear Information System (INIS)

    Purvis, G.D. III; Redmon, M.J.; Woken, G. Jr.

    1979-01-01

    Classical trajectories have been used by numerous researchers to investigate the dynamics of exothermic chemical reactions (atom + diatom) with a view toward understanding what leads to vibrational excitation of the product molecule. Unlike these studies, the case where the reaction is catalyzed by a solid surface is considered. The trajectory studies indicate that there should be conditions under which considerable vibrational energy appears in the product molecules without being lost to the solid during the course of the reaction. 2 figures, 3 tables

  14. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  15. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  16. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  17. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  18. Limerick Nuclear Generating Station vibration monitoring system

    International Nuclear Information System (INIS)

    Mikulski, R.

    1988-01-01

    Philadelphia Electric Company utilizes a vibration monitoring computer system at its Limerick Nuclear Generating Station to evaluate machine performance. Performance can be evaluated through instantaneous sampling, online static and transient data. The system functions as an alarm monitor, displaying timely alarm data to the control area. The passage of time since the system's inception has been a learning period. Evaluation through continuous use has led to many enhancements in alarm handling and in the acquisition and display of machine data. Due to the system's sophistication, a routine maintenance program is a necessity. This paper describes the system's diagnostic tools and current utilization. System development and maintenance techniques will also be discussed

  19. Induced vibrations facilitate traversal of cluttered obstacles

    Science.gov (United States)

    Thoms, George; Yu, Siyuan; Kang, Yucheng; Li, Chen

    When negotiating cluttered terrains such as grass-like beams, cockroaches and legged robots with rounded body shapes most often rolled their bodies to traverse narrow gaps between beams. Recent locomotion energy landscape modeling suggests that this locomotor pathway overcomes the lowest potential energy barriers. Here, we tested the hypothesis that body vibrations induced by intermittent leg-ground contact facilitate obstacle traversal by allowing exploration of locomotion energy landscape to find this lowest barrier pathway. To mimic a cockroach / legged robot pushing against two adjacent blades of grass, we developed an automated robotic system to move an ellipsoidal body into two adjacent beams, and varied body vibrations by controlling an oscillation actuator. A novel gyroscope mechanism allowed the body to freely rotate in response to interaction with the beams, and an IMU and cameras recorded the motion of the body and beams. We discovered that body vibrations facilitated body rolling, significantly increasing traversal probability and reducing traversal time (P locomotor pathways in complex 3-D terrains.

  20. Intracellular recording from a spider vibration receptor.

    Science.gov (United States)

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  1. Occupant traffic estimation through structural vibration sensing

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.

  2. Distributed Fiber-Optic Sensor for Detection and Localization of Acoustic Vibrations

    Directory of Open Access Journals (Sweden)

    Sifta Radim

    2015-03-01

    Full Text Available A sensing system utilizing a standard optical fiber as a distributed sensor for the detection and localization of mechanical vibrations is presented. Vibrations can be caused by various external factors, like moving people, cars, trains, and other objects producing mechanical vibrations that are sensed by a fiber. In our laboratory we have designed a sensing system based on the Φ-OTDR (phase sensitive Optical Time Domain Reflectometry using an extremely narrow laser and EDFAs.

  3. The vibrational spectrum of the atoms in the grain boundaries of nanocrystalline Pd

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Wipf, H.; Hahn, H. [Technische Hochschule Darmstadt (Germany); Natter, H.; Hemperlmann, R. [Universitaet des Saarlandes, Saarbruecken (Germany); Andersen, K. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-09-01

    The vibrational excitations of the atoms in nanocrystalline Pd was investigated by neutron-time-of-flight spectroscopy. Hydrogen was used as a probe for the vibrations in the grain boundaries. The separation between the H and Pd vibrations was done by spin analysis. The results show that in the grain boundary the density of states of low energy excitations ({<=}5 meV) is drastically increased. (author) 3 figs., 3 refs.

  4. Monitoring of core barrel vibrations in WWER type reactor using out-of-reactor ionization chambers

    International Nuclear Information System (INIS)

    Dach, K.

    1982-01-01

    Vibration of the core barrel is least desirable for safe operation of the PWR reactor. These mechanical vibrations are in correlation with the fluctuations of neutron flux density whose time and frequency analysis serves failure diagnosis. The mathematical model is described of the transfer of mechanical vibrations of the core barrel to neutron noise. Other steps are indicated indispensable for the application of the method of neutron noise analysis for in-service diagnostics of nuclear power plants. (Z.M.)

  5. The high level vibration test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the US and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. A modified earthquake excitation was applied and the excitation level was increased carefully to minimize the cumulative fatigue damage due to the intermediate level excitations. Since the piping was pressurized, and the high level earthquake excitation was repeated several times, it was possible to investigate the effects of ratchetting and fatigue as well. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. Crack growth was carefully monitored during the next two additional maximum excitation runs. The final test resulted in a maximum crack depth of approximately 94% of the wall thickness. The HLVT (high level vibration test) program has enhanced understanding of the behavior of piping systems under severe earthquake loading. As in other tests to failure of piping components, it has demonstrated significant seismic margin in nuclear power plant piping

  6. Vibrational relaxation induced population inversions in laser pumped polyatomic molecules

    International Nuclear Information System (INIS)

    Shamah, I.; Flynn, G.; Columbia Univ., New York

    1981-01-01

    Conditions for population inversion in laser pumped polyatomic molecules are described. For systems which exhibit metastable vibrational population distributions, large, long lived inversions are possible even when the vibrational modes are strongly coupled by rapid collisional vibration-vibration (V-V) energy transfer. Overtone states of a hot mode are found to invert with respect to fundamental levels of a cold mode even at V-V steady state. Inversion persists for a V-T/R relaxation time. A gain of 4 m -1 for the 2ν 3 → ν 2 transition in CH 3 F (lambda approx. 15.9 μ) was found assuming a spontaneous emission lifetime of 10 s for this transition. General equations are derived which can be used to determine the magnitude of population inversion in any laser pumped, vibrationally metastable, polyatomic molecule. A discussion of factors controlling the population maxima of different vibrational states in optically pumped, V-V equilibrated metastable polyatomics is also given. (orig./WL)

  7. Flow-induced vibration -- 1994. PVP-Volume 273

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Fujita, K.

    1994-01-01

    Flow-induced vibration is a subject of practical interest to many engineering disciplines, including the power generation, process, and petrochemical industries. In the nuclear industry, flow-induced vibration reaches a higher level of concern because of safety issues and the huge cost associated with down time and site repair. Not surprisingly, during the last 25 years a tremendous amount of effort has been spent in the study of flow-induced vibration phenomena related to nuclear plant components, notably nuclear steam generator tube banks and nuclear fuel bundles. Yet, in spite of this concentrated effort, the industry is still not free from flow-induced vibration-related problems. This explains why in this volume almost half of the papers address the issue of cross-flow induced vibration in tube bundles, with applications to the nuclear steam generator and nuclear fuel bundles in mind. Unlike 10 or 15 years ago, when flow-induced vibration studies almost always involved experimentation and empirical studies, the advent of high-speed computers has enabled numerical calculation and simulation of this complex phenomenon to take place. Separate abstracts were prepared for 27 papers in this volume

  8. Whole-body vibration exercise in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    Magdalena Weber-Rajek

    2015-01-01

    Full Text Available The report of the World Health Organization (WHO of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’.

  9. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  10. Hand-arm vibration in tropical rain forestry workers.

    Science.gov (United States)

    Futatsuka, M; Inaoka, T; Ohtsuka, R; Sakurai, T; Moji, K; Igarashi, T

    1995-01-01

    Working conditions and health hazards including vibration syndrome related to forestry work using chain-saws were studied in Papua New Guinea and Indonesia. The subjects comprised 291 workers including 97 chain-saw operators. The health examination consisted of peripheral circulatory and sensory tests in the upper extremities. The vibration spectrum measured at the handle of the chain-saw indicated that these acceleration levels would lead to a moderately high risk of hand-arm vibration syndrome (HAVS). The peripheral circulatory function tests revealed dysfunction after more than five years vibration exposure. However, in general, the results of the function tests and subjective complaints showed fewer health problems compared to those of Japanese forestry workers. The reason of such differences of vibration effects seem to be the following: (1) warmer climate (more than 25 degrees C throughout the year), (2) young workers and short work experience. (3) short time vibration exposures on working days in the natural forests, (4) seasonal changes in logging work (5) healthy workers effects. Thus, we found no clear evidence that the workers of our study suffered from HAVS. A principal component analysis was applied. The factor score of the components of the reactive dynamics of peripheral circulation differed significantly after more than five years' exposure. On the other hand, we cannot deny the possibility that subclinical dysfunction of peripheral circulation may be caused by chain-saw operation in the tropics in future. Further investigations on the HAVS among forestry workers in the tropic environment are needed.

  11. Vibration monitoring of EDF rotating machinery using artificial neural networks

    International Nuclear Information System (INIS)

    Alguindigue, I.E.; Loskiewicz-Buczak, A.; Uhrig, R.E.; Hamon, L.; Lefevre, F.

    1991-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. Earlydetection is important because it can decrease the probability of catastrophic failures, reduce forced outgage, maximize utilization of available assets, increase the life of the plant, and reduce maintenance costs. This paper documents our work on the design of a vibration monitoring methodology based on neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to operate in real-time mode and to handle data which may be distorted or noisy. Our efforts have been concentrated on the analysis and classification of vibration signatures collected by Electricite de France (EDF). Two neural networks algorithms were used in our project: the Recirculation algorithm and the Backpropagation algorithm. Although this project is in the early stages of development it indicates that neural networks may provide a viable methodology for monitoring and diagnostics of vibrating components. Our results are very encouraging

  12. Spectroscopy of vibrationally hot molecules: Hydrogen cyanide and acetylene

    International Nuclear Information System (INIS)

    Jonas, D.M.

    1992-01-01

    An efficient formula for calculating nuclear spin statistical weights is presented. New experimental methods to distinguish electric and magnetic multipole transitions are proposed and used to prove that the formaldehyde A - X 0-0 transition is a magnetic dipole transition. HIgh resolution vacuum ultraviolet studies of the A → X fluorescence excitation spectrum of hydrogen cyanide (HCN) have: (i) determined that only the (0,1,0) vibrational level of the HCN A-state has a sufficiently long fluorescence lifetime to be suitable for Stimulated Emission Pumping (SEP) studies; and (ii) measured the electric dipole moment of the A-state. Several transitions in the hydrogen cyanide A → X SEP spectrum are shown to be due to the axis-switching mechanism. From a Franck-Condon plot of the intensities and a comparison between sums of predicted rotational constants and sums of observed rotational constants, all of the remaining transitions in the SEP spectrum can be securly assigned. Two weak resonances; a 2:3 CH:CN stretch Fermi resonance and a 6:2 bend:CN stretch resonance appear in the SEP spectrum. Excitation of the CH stretching vibration is predicted and shown to be entirely absent, apart from resonances, in the HCN SEP spectrum. A → X SEP spectra of acetylene (HCCH) near E VIB = 7,000 cm -1 display a wealth of strong and fully assignable anharmonic resonances and forbidden rotational transitions. It is proved that Darling-Dennison resonance between the cis and trans bending vibrations is the crucial first step in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the initial CC stretch/trans-bend excitation at high vibrational energy. Secondary steps in the vibrational energy flow are vibrational-l-resonance and the '2345' Fermi resonance. For short times, the vibrational energy redistribution obeys very restrictive rules

  13. Control of photon storage time using phase locking.

    Science.gov (United States)

    Ham, Byoung S

    2010-01-18

    A photon echo storage-time extension protocol is presented by using a phase locking method in a three-level backward propagation scheme, where phase locking serves as a conditional stopper of the rephasing process in conventional two-pulse photon echoes. The backward propagation scheme solves the critical problems of extremely low retrieval efficiency and pi rephasing pulse-caused spontaneous emission noise in photon echo based quantum memories. The physics of the storage time extension lies in the imminent population transfer from the excited state to an auxiliary spin state by a phase locking control pulse. We numerically demonstrate that the storage time is lengthened by spin dephasing time.

  14. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors.

    Science.gov (United States)

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien

    2016-03-23

    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (Pskull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician's dominant hand.

  15. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  16. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    Directory of Open Access Journals (Sweden)

    Tsukahara Y

    2016-01-01

    Full Text Available Yuka Tsukahara, Jun Iwamoto, Kosui Iwashita, Takuma Shinjo, Koichiro Azuma, Hideo MatsumotoInstitute for Integrated Sports Medicine, Keio University School of Medicine, Tokyo, Japan Background: Whole-body vibration (WBV exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives: The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods: Twelve healthy volunteers (age: 22–34 years were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900 with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results: Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion: This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. Keywords: whole-body vibration exercise, upper

  17. Linear response of vibrated granular systems to sudden changes in the vibration intensity

    International Nuclear Information System (INIS)

    Brey, J. Javier; Prados, A.

    2001-01-01

    The short-term memory effects recently observed in vibration-induced compaction of granular materials are studied. It is shown that they can be explained by means of quite plausible hypothesis about the mesoscopic description of the evolution of the system. The existence of a critical time separating regimes of 'anomalous' and 'normal' responses is predicted. A simple model fitting into the general framework is analyzed in the detail. The relationship between this paper and previous studies is discussed

  18. The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis

    Science.gov (United States)

    1973-06-01

    SPECTRA D, 0. Smallwood , Sandia Laboratories, Albuquerque, New Mexico and A. F. Witte, Kaman Sciences, Colorado Springs, Colorado A TRANSIENT VIBRATION TEST...TECHNIQUE USING LEAST FAVORABLE RESPONSES D. 0. Smallwood , Sandia Laboratories, Albuquerque, New Mexico PAPERS APPEARING IN PART 2 Structural...form of the time history pdf is REFERENCES determined to be independent of changes in flight condition and sensor location, the 1. Norman Johnson and

  19. Instantaneous Purified Orbit: A New Tool for Analysis of Nonstationary Vibration of Rotor System

    Directory of Open Access Journals (Sweden)

    Shi Dongfeng

    2001-01-01

    Full Text Available In some circumstances, vibration signals of large rotating machinery possess time-varying characteristics to some extent. Traditional diagnosis methods, such as FFT spectrum and orbit diagram, are confronted with a huge challenge to deal with this problem. This work aims at studying the four intrinsic drawbacks of conventional vibration signal processing method and instantaneous purified orbit (IPO on the basis of improved Fourier spectrum (IFS to analyze nonstationary vibration. On account of integration, the benefits of short period Fourier transform (SPFT and regular holospectrum, this method can intuitively reflect vibration characteristics of’a rotor system by means of parameter analysis for corresponding frequency ellipses. Practical examples, such as transient vibration in run-up stages and bistable condition of rotor show that IPO is a powerful tool for diagnosis and analysis of the vibration behavior of rotor systems.

  20. Vibration characteristics of a long flexible rod supported with multiple gaps

    International Nuclear Information System (INIS)

    Umeda, Kenji; Ban, Minoru; Ito, Tomohiro; Nakamura, Tomoichi; Fujita, Katuhisa.

    1991-01-01

    Control rods are long flexible rods supported with multiple gaps and forced to vibrate by hydraulic forces of reactor coolant flow. In order to find methods, to extend control rod life time, flow-induced vibration and wear mechanism of control rod should be identified. As a basic approach for this objective a vibration test in air using a single control rod and nonlinear vibration analyses were conducted to study characteristic of vibration and wear at support points of the control rod. Several test and analytical cases were performed with several initial support conditions, exciting points and exciting force level. With these test results, some information on the vibration and wear mechanism of control rods that explain wear features in actual plants was obtained. (author)

  1. Nonlinear Vibration of Ladle Crane due to a Moving Trolley

    Directory of Open Access Journals (Sweden)

    Yunsheng Xin

    2018-01-01

    Full Text Available The structural vibration of the main beam of a crane causes fatigue damage and discomfort to the driver. The swing of the payload has an effect on positioning precision, especially for a ladle crane, and this directly affects production safety. To study the influence of system parameters on the vibration of a crane’s main beam and the angle of the payload, a system consisting of the main beam, trolley, payload, and cabin was constructed. A rigid-flexible coupling dynamic model of a moving trolley with a hanging payload that moves on the flexible main beam with a concentrated cabin mass is established, and the direct integration method is used to solve the nonlinear differential equations of system vibration, which are obtained through Lagrange’s equation. Then, the time domain responses of the flexible main beam, payload angle, and cabin vibration are obtained. The influences of the trolley running speed, quality of the payload, and quality and position of the cabin on the vibration of the main beam and payload angle are analyzed. The results indicate that the amplitude of the main beam is directly proportional to the quality of the trolley, payload, and cab; the position of the cabin is closer to the mid-span; the amplitude of the main beam is larger; the structural damping has some influence on the vibration of the main beam; and the swing angle of the payload is related to the maximum running speed of the trolley, acceleration time, and length of the wire rope. In order to reduce the vibration of the main beam and cabin, the connection stiffness of the cabin should be ensured during installation.

  2. An electromagnetic inerter-based vibration suppression device

    International Nuclear Information System (INIS)

    Gonzalez-Buelga, A; Clare, L R; Neild, S A; Jiang, J Z; Inman, D J

    2015-01-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  3. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  4. Tomographic elastography of contracting skeletal muscles from their natural vibrations

    Science.gov (United States)

    Sabra, Karim G.; Archer, Akibi

    2009-11-01

    Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.

  5. Isotope separation process by transfer of vibrational energy

    International Nuclear Information System (INIS)

    Angelie, C.; Cauchetier, M.; Paris, J.

    1983-01-01

    This process consists in exciting A molecules by absorption of a pulsed light beam, then in exciting until their dissociation X molecules, present in several isotopic forms, by a vibrational transfer between the A molecules and the X molecules, the A molecules having a dissociation energy greater than that of the X molecules, the duration and energy of the light pulses being such that the absorption time by the A molecules is less than the excitation time of the X molecules and the temperature conditions such that the thermal width of the vibration rays is at the most near the isotopic difference between the resonance rays of the two isotopic varieties [fr

  6. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  7. Vibration condition monitoring of planetary gearbox under varying external load

    Energy Technology Data Exchange (ETDEWEB)

    Bartelmus, W.; Zimroz, R. [Wroclaw University of Technology, Wroclaw (Poland)

    2009-01-15

    The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time-frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered.

  8. Vibration Analysis Of Automotive Structures Using Holographic Interferometry

    Science.gov (United States)

    Brown, G. M.; Wales, R. R.

    1983-10-01

    Since 1979, Ford Motor Company has been developing holographic interferometry to supplement more conventional test methods to measure vehicle component vibrations. An Apollo PHK-1 Double Pulse Holographic Laser System was employed to visualize a variety of complex vibration modes, primarily on current production and prototype powertrain components. Design improvements to reduce powertrain response to problem excitations have been deter-mined through pulsed laser holography, and have, in several cases, been put into production in Ford vehicles. Whole-field definition of vibration related deflections provide continuity of information missed by accelerometer/modal analysis techniaues. Certain opera-tional problems, common among pulsed ruby holographic lasers, have reauired ongoing hardware and electronics improvements to minimize system downtime. Real-time, time-averaged and stroboscopic C. W. laser holographic techniques are being developed at Ford to complement the double pulse capabilities and provide rapid identification of modal frequencies and nodal lines for analysis of powertrain structures. Methods for mounting and exciting powertrains to minimize rigid body motions are discussed. Work at Ford will continue toward development of C. W. holographic techniques to provide refined test methodology dedicated to noise and vibration diagnostics with particular emphasis on semi-automated methods for quantifying displacement and relative phase using high resolution digitized video and computers. Continued use of refined pulsed and CW laser holographic interferometry for the analysis of complex structure vibrations seems assured.

  9. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  10. Force illusions and drifts observed during muscle vibration.

    Science.gov (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L

    2018-01-01

    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  11. 16 x 16 Vantage+ Fuel Assembly Flow Vibrational Testing

    International Nuclear Information System (INIS)

    Chambers, Martin; Kurincic, Bojan

    2014-01-01

    Nuklearna Elektrarna Krsko (NEK) has experienced leaking fuel after increasing the cycle duration to 18 months. The leaking fuel mechanism has predominantly been consistent over multiple cycles and is typically observed in highly irradiated Fuel Assemblies (FA) after around 4 years of continuous operation that were located at the core periphery (baffle). The cause of the leaking fuel is due to Grid-To-Rod-Fretting (GRTF) and occasional debris fretting. NEK utilises a 16x16 Vantage+ FA design with all Inconel structural mixing vane grids (8 in total), Zirlo thimbles, Integral Fuel Burnable Absorber (IFBA) rods with enriched ZrB2, enriched Annular Blanket, Debris Filter Bottom Nozzle (DFBN), Removable Top Nozzle (RTN) and Zirlo fuel cladding material with a high burnup capability of 60 GWD/MTU. Numerous design and operational changes are thought to have reduced the original 16x16 FA design margin to fretting resistance of either vibration or its wear work rate, such as significant power uprate (spring force loss, rod creep down...), operational cycle duration increase from 12 to 18 months (increasing residence time as well as lead FA and fuel rod burnup values), Reactor Coolant System flow increase (increased vibration), removal of Thimble Plugs (increased bypass flow, increased vibration) and Zirc-4 to Zirlo cladding change (decreasing wear work rate). The fuel rod to grid spring as well as dimple contact areas are relatively smaller than other FA designs that exhibit good in-reactor fretting performance. A FA design change project to address the small rod to dimple / spring contact area and utilise fuel cladding oxide coating is currently being pursued with the fuel supplier. The FA vibrational properties are very important to the in-reactor FA performance and reliability. The 16x16 Vantage+ vibrational testing was performed with a full size FA in the Fuel Assembly Compatibility Testing (FACTS) loop that is able to provide full flow rates at elevated temperature

  12. Fundamental Vibration of Molecular Hydrogen

    Science.gov (United States)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  13. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  14. Wireless Sensor Network for Helicopter Rotor Blade Vibration Monitoring: Requirements Definition and Technological Aspects

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Das, Kallol; Loendersloot, Richard; Tinga, Tiedo; Havinga, Paul J.M.; Basu, Biswajit

    The main rotor accounts for the largest vibration source for a helicopter fuselage and its components. However, accurate blade monitoring has been limited due to the practical restrictions on instrumenting rotating blades. The use of Wireless Sensor Networks (WSNs) for real time vibration monitoring

  15. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  16. The Shock and Vibration Bulletin. Part 2. Vibration Analysis.

    Science.gov (United States)

    1977-09-01

    J.N. Tait, Naval Air Development Center, Warminster, PA EVALUATION OF AN ADAPTIVE FILTER AS A DIGITAL TRACKING FILTER D.O. Smallwood and D.L. Gregory...Oklahoma Norman , Oklahoma In contrast to the considerable information abailable on free vibration of isotropic plates, there is only a very limited

  17. Exposure to vibrations in wine growing

    Directory of Open Access Journals (Sweden)

    Domenico Pessina

    2013-09-01

    Full Text Available Apart the winter period, the activity in specialized agricultural cultivations (i.e. wine- and fruit-growing is distributed for a long period of the year. Some tasks, such as pesticide distribution, are repeated several times during the growing season. On the other hand, mechanization is one of the pillars on which is based the modern agriculture management. As a consequence, in wine growing the tractor driver has to be considered a worker potentially subjected to high level of vibrations, due to the poor machinery conditions often encountered, and sometimes to the rough soil surface of the vineyard combined with the high travelling speed adopted in carrying out many operations. About vibrations, the Italian Decree 81/08 basically refers to the European Directive 2002/44/CE, that provides some very strict limits of exposure, both for whole body and hand-arm districts. In Oltrepo pavese, a large hilly area located the south part of the Pavia province (Lombardy - Italy wine growing is the main agricultural activity; for this reason, a detailed survey on the vibration levels recorded at the tractor driver’s seat was carried out, in order to ascertain the real risk to which the operators are exposed. The activity in wine growing has been classified into 6 groups of similar tasks, as follows: 1. canopy management: pruning, trimming, binding, stripping, etc.; 2. soil management: harrowing, hoeing, subsoiling etc.; 3. inter-row management: chopping of pruning , pinching, grass mowing, etc.; 4. crop protection: pesticides and fungicides distribution, sulfidation, foliar fertilization, etc.; 5. grape harvesting: manual or mechanical; 6. transport: from the vineyard to the cellar. For each group of tasks, the vibration levels on 3 the traditional axes (x, y and z were recorded, and then an exposure time was calculated for each of them, in order to ascertain the risk level in comparison to what provided by the dedicated standard. Finally, a detailed

  18. Shock and Vibration. Volume 1, Issue 1

    National Research Council Canada - National Science Library

    Pilkey, Walter D

    1994-01-01

    ..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...

  19. Novel active vibration absorber with magnetorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T; Ehrlich, J; Boese, H [Fraunhofer-Institut fuer Silicatforschung ISC, Neunerplatz 2, D-97082 Wuerzburg (Germany)], E-mail: thomas.gerlach@isc.fraunhofer.de

    2009-02-01

    Disturbing vibrations diminish the performance of technical high precision devices significantly. In search of a suitable solution for reducing these vibrations, a novel concept of active vibration reduction was developed which exploits the special properties of magnetorheological fluids. In order to evaluate the concept of such an active vibration absorber (AVA) a demonstrator was designed and manufactured. This demonstrator generates a force which counteracts the motion of the vibrating body. Since the counterforce is generated by a centrifugal exciter, the AVA provides the capability to compensate vibrations even in two dimensions. To control the strength of the force transmitted to the vibrating body, the exciter is based on a tunable MR coupling. The AVA was integrated in an appropriate testing device to investigate its performance. The recorded results show a significant reduction of the vibration amplitudes by an order of magnitude.

  20. Isotope separation using vibrationally excited molecules

    International Nuclear Information System (INIS)

    1979-01-01

    This invention relates to isotope separation employing isotopically selective vibrational excitation and vibration-translation reactions of the excited particles. Uranium enrichment, using uranium hexafluoride, is a particular embodiment. (U.K.)

  1. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2009-01-01

    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  2. Application of eigenfunction orthogonalities to vibration problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2009-07-01

    Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...

  3. Collisional flow of vibrational energy into surrounding vibrational fields within S1 benzene

    International Nuclear Information System (INIS)

    Tang, K.Y.; Parmenter, C.S.

    1983-01-01

    Vapor phase fluorescence spectra are used to determine the absolute rate constants for the collisional transfer of vibrational energy from initial single vibronic levels of S 1 benzene into the surrounding S 1 vibronic field. 11 initial levels are probed with vibrational energies ranging to 2368 cm -1 where the level density is about 10 per cm -1 . CO, isopentane, and S 0 benzene are the collision partners. Benzene rate constants are three to four times gas kinetic for all levels, and electronic energy switching between the initial S 1 molecule and the S 0 collision partner probably makes important contributions. Isopentane efficiencies range from one to two times gas kinetic. Most of the transfer from low S 1 levels occurs with excitation of vibrational energy within isopentane. These V--V contributions decline to only about 10% for the high transfer. CO-induced transfer is by V-T,R processes for all levels. The CO efficiency rises from about 0.1 for low regions to about unity for levels above 1500 cm -1 . The CO efficiencies retain significant sensitivity to initial level identity even in the higher regions. Propensity rules derived from collisional mode-to-mode transfer among lower levels of S 1 benzene are used to calculate the relative CO efficiencies. The calculated efficiencies agree well enough with the data to suggest that it may be meaningful to model vibrational equilibration with the use of propensity rules. The rules suggest that only a small number of levels among the thousands surrounding a high initial level contribute significantly to the total relaxation cross section and that this number is rather independent of the level density

  4. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    susceptible to flow induced vibrations. Since control plug is partially immersed in hot sodium, the reactor transients are felt by the components, hence it is very much essential to understand the vibration response of the control plug components. The main vibration excitation mechanisms are vortex shedding, turbulence buffeting, fluid-elastic instability, etc. In order to assess the susceptibility of CP internals against flow induced vibrations (FIVs), to measure structural response and to validate the analytical codes developed for FIV analysis of CP along with the assumptions of supports for various CP internals therein, a flow induced vibration testing program was formulated in 1:4 scale model of PFBR CP. As the first phase of this program, experimental modal analysis of CP internals was carried out in air to estimate the modal parameters. Subsequently, flow induced vibration studies were conducted in the 1:4 scale model of CP in water. In this model, size of the tubes, shell and plates are reduced to Vulgar-Fraction-One-Quarter size of the PFBR CP. The stiffness of CP parts is reduced by 4 times and mass decreased by 64 times which results in scaling up of modal frequencies by 4 times. The CP internals in the model were instrumented with accelerometers and strain gages. The studies were conducted in water with flows derived on the basis of velocity similitude. The output signals from the sensors were acquired and analyzed to obtain frequency spectra, overall vibration amplitude and strain values at various locations inside CP. The study carried out confirms the absence of resonance due to flow induced vibration mechanisms for the entire operating range. This paper elucidates the modeling details, similitude criteria, instrumentation employed and experimental results obtained with discussion on results.

  5. Evaluation of the Perceptual Characteristics of a Force Induced by Asymmetric Vibrations.

    Science.gov (United States)

    Tanabe, Takeshi; Yano, Hiroaki; Iwata, Hiroo

    2017-08-29

    This paper describes the properties of proprioceptive sensations induced by asymmetric vibration using a vibration speaker-type non-grounded haptic interface. We confirm that the vibration speaker generates a perceived force that pulls or pushes a user's hand in a particular direction when an asymmetric amplitude signal that is generated by inverting a part of a sine wave is input. In this paper, to verify the system with respect to various factors of force perception caused by asymmetric vibration, we conducted six experiments and the following results were obtained. (1) The force vector can be controlled by reversing the asymmetric waves. (2) By investigating the physical characteristics of the vibration, asymmetric vibration was confirmed. (3) The presentation of vibration in the shear direction on the finger pad is effective. (4) The point of subjective equality of the perceived force can be controlled by up to 0.43 N by changing the amplitude voltage of the input signals. (5) The minimum stimulation time required for force perception is 66.7 ms. (6) When the vibration is continuously presented for 40 to 50 s, the perceived force decreases because of adaptation. Hence, we confirmed that we can control both the direction and magnitude of the reaction force by changing the input signal of the vibration speaker.

  6. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  7. The Wireless Data Acquisition System for the Vibration Table

    Science.gov (United States)

    Teng, Y. T.; Hu, X.

    2014-12-01

    The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides

  8. Vibrational properties of amorphous semiconductors

    International Nuclear Information System (INIS)

    Schulz, P.A.B.

    1985-01-01

    A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt

  9. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We...

  10. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    vibrational spectra were compared with theoretical transitions obtained with B3LYP/cc-pVTZ density functional theory (DFT). The results leave no doubt that the stable ground state configuration of TDBM corresponds to the intramolecularly hydrogen bonded enol form (e-CCC), and that the photoproduct corresponds...

  11. Low-Vibration Oscillating Compressor

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    Oscillating compressor momentum compensated: produces little vibration in its supporting structure. Compressure requires no lubrication and virtually free of wear. Compresses working fluids such as helium, nitrogen or chlorfluorocarbons for Stirling-cycle refrigeration or other purposes. Compressor includes two mutually opposed ferromagnetic pistons of same shape and mass. Electromagnetic flux links both pistons, causing magnetic attraction between them.

  12. Vibrational entropies in metallic alloys

    Science.gov (United States)

    Ozolins, Vidvuds; Asta, Mark; Wolverton, Christopher

    2000-03-01

    Recently, it has been recognized that vibrational entropy can have significant effects on the phase stability of metallic alloys. Using density functional linear response calculations and molecular dynamics simulations we study three representative cases: (i) phase diagram of Al-rich Al-Sc alloys, (ii) stability of precipitate phases in CuAl_2, and (iii) phonon dynamics in bcc Zr. We find large vibrational entropy effects in all cases. In the Al-Sc system, vibrations increase the solid solubility of Sc in Al by decreasing the stability of the L12 (Al_3Sc) phase. This leads to a nearly ten-fold increase in the solid solubility of Sc in Al at T=800 K. In the Cu-Al system, our calculations predict that the tetragonal Laves phase of CuAl2 has 0.35 kB/atom higher vibrational entropy than the cubic CaF_2-type phase (the latter is predicted to be the T=0 K ground state of CuAl_2). This entropy difference causes a structural transformation in CuAl2 precipitates from the fluorite to the tetragonal Laves phase around T=500 K. Finally, we analyze the highly unusual dynamics of anharmonically stabilized bcc Zr, finding large diffuse-scattering intensity streaks between the bcc Bragg peaks.

  13. Ultrafast vibrations of gold nanorings

    DEFF Research Database (Denmark)

    Kelf, T; Tanaka, Y; Matsuda, O

    2011-01-01

    We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucid...

  14. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  15. Protection of historic buildings against environmental pollution of vibrations

    Directory of Open Access Journals (Sweden)

    Kowalska-Koczwara Alicja

    2016-01-01

    Full Text Available Historic buildings in Poland are largely neglected objects that small percentage is preserved in its original form. Unrelenting in the case of historic buildings is a time that brings with it the natural processes of aging of buildings, but also the history of the object which is often marked by military conflicts, fires or even incompetently carried out reconstruction. Nowadays historic buildings are also destroyed by the rapid development of infrastructure and residential construction. This development could lead to changes of water in the soil, make changes in the geologic al structure or cause exposure of the historic building to the new influences (eg. traffic vibrations, to which building has not been subjected so far. Vibrations are often omitted in environmental issues, although the protection against noise and vibration has its place in the Law on Environmental Protection. This article presents the methodology for the measurement and interpretation of vibration influence on historic buildings and the assessment methods of technical condition of historic building on the example of dynamic measurements made on St. Nicholas Church in Krakow. The importance of well-done crack-by-crack documentation and characterization of damages based on damage index is shown. Difficulties that can be encountered when determining the causes of technical condition of historic buildings are also shown. Based on the example of the Church in the article are also given the possible protection solutions of historic structures from vibrations.

  16. Simulations of vibrational relaxation in dense molecular fluids

    International Nuclear Information System (INIS)

    Holian, B.L.

    1985-07-01

    In the understanding of high-temperatre and -pressure chemistry in explosives, first step is the study of the transfer of energy from translational degrees of freedom into internal vibrations of the molecules. We present new methods using nonequilibrium molecular dynamics (NEMD) for measuring vibrational relaxation in a diatomic fluid, where we expect a classical treatment of many-body collisions to be relevant because of the high densities (2 to 3 times compressed compared to the normal fluid) and high temperatures (2000 to 4000 K) involved behind detonation waves. NEMD techniques are discussed, including their limitations, and qualitative results presented

  17. Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation

    Directory of Open Access Journals (Sweden)

    A. Fereidoon

    2012-01-01

    Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.

  18. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  19. Emergency Gate Vibration of the Pipe-Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrej Predin

    2000-01-01

    Full Text Available The vibration behavior of an emergency gate situated on a horizontal-shaft Kaplan turbine is studied. The analysis and transfer of the dynamic movements of the gate are quite complex. In particular the behavior is examined of the emergency gate for the case when the power unit is disconnected from the system or there is a breakdown of the guide vane system at the moment when the maximal head and capacity are achieved. Experimental-numerical methods both in the time domain and in the frequency domain are employed. Natural vibrations characterize a first zone, corresponding to relatively small gate openings. As the gate opening increases, the vibration behavior of the gate becomes increasingly dependent on the swirl pulsations in the draft tube of the turbine. Finally, the data transfer from the model to the prototype by use of the dynamic similitude law is discussed.

  20. A low frequency vibration energy harvester using magnetoelectric laminate composite

    International Nuclear Information System (INIS)

    Ju, Suna; Chae, Song Hee; Choi, Yunhee; Lee, Seungjun; Ji, Chang-Hyeon; Lee, Hyang Woon

    2013-01-01

    In this paper, we present a vibration energy harvester using magnetoelectric laminate composite and a springless spherical permanent magnet as a proof mass. The harvester utilizes a freely movable spherical permanent magnet to transform external vibration into a time varying magnetic field applied to the magnetoelectric transducer. The laminate composite consists of a Ni–Mn–Ga-based MSMA (magnetic shape memory alloy) element and a PZT (lead zirconate titanate) plate. A proof-of-concept harvester has been fabricated and characterized at various input accelerations and frequencies. A maximum open circuit voltage of 1.18 V has been obtained in response to a 3g vibration at 17 Hz with the fabricated device. Moreover, a maximum output voltage of 10.24 V and output power of 4.1 μW have been achieved on a 950 Ω load, when the fabricated energy harvester was mounted on a smartphone and shaken by hand. (paper)

  1. Narrow bandwidth detection of vibration signature using fiber lasers

    Science.gov (United States)

    Moore, Sean; Soh, Daniel B.S.

    2018-05-08

    The various technologies presented herein relate to extracting a portion of each pulse in a series of pulses reflected from a target to facilitate determination of a Doppler-shifted frequency for each pulse and, subsequently, a vibration frequency for the series of pulses. Each pulse can have a square-wave configuration, whereby each pulse can be time-gated to facilitate discarding the leading edge and the trailing edge (and associated non-linear effects) of each pulse and accordingly, capture of the central portion of the pulse from which the Doppler-shifted frequency, and ultimately, the vibration frequency of the target can be determined. Determination of the vibration velocity facilitates identification of the target being in a state of motion. The plurality of pulses can be formed from a laser beam (e.g., a continuous wave), the laser beam having a narrow bandwidth.

  2. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  3. Intelligent vibration control of ELTs and large AO hardware

    Science.gov (United States)

    Pott, J.-U.; Kürster, M.; Trowitzsch, J.; Borelli, J.; Rohloff, R.-R.; Herbst, T.; Böhm, M.; Keck, A.; Ruppel, T.; Sawodny, O.

    2012-07-01

    MPIA leads the construction of the LINC-NIRVANA instrument, the MCAO-supported Fizeau imager for the LBT, serves as pathfinder for future ELT-AO imagers in terms of size and technology. In this contribution, we review recent results and significant progress made on the development of key items of our stratgey to achieve a piston stability of up to 100nm during a science exposure. We present an overview of our vibration control strategies for optical path and tip-tilt stabilization, involving accelerometer based real-time vibration measurements, vibration sensitive active control of actuators, and the development of a dynamical model of the LBT. MPIA also co-develops the E-ELT first-light NIR imager MICADO (both SCAO and MCAO assisted). Our experiences, made with LINC-NIRVANA, will be fed into the MICADO structural AO design to reach highest on-sky sensitivity.

  4. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Science.gov (United States)

    Marks, Janis; Vitolina, Sandra

    2017-12-01

    Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  5. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  6. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... and result in different representations of the controllers. The Internal Model Control structure combined with optimal filtering is suggested as an alternative to state space optimal control techniques for designing robust optimal controllers for audio frequency vibration control of resonant structures....

  7. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage

    Science.gov (United States)

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-06-01

    The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.

  8. Characterization and synthesis of random acceleration vibration specifications

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries; Papadrakakis, M.; Lagaros, N.D.; Plevris, V.

    2013-01-01

    Random acceleration vibration specifications for subsystems, i.e. instruments, equipment, are most times based on measurement during acoustic noise tests on system level, i.e. a spacecraft and measured by accelerometers, placed in the neighborhood of the interface between spacecraft and subsystem.

  9. Alternative measures to observe and record vocal fold vibrations

    NARCIS (Netherlands)

    Schutte, HK; McCafferty, G; Coman, W; Carroll, R

    1996-01-01

    Vocal fold vibration patterns form the basis for the production of vocal sound. Over the years much effort has been spend to optimize the ways to visualize and give a description of these patterns. Before video possibilities became available the description of the patterns was Very time-consuming.

  10. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  11. Vibration monitoring of pressure vessel in Atucha-1 power plant

    International Nuclear Information System (INIS)

    Belinco, C.; Pastorini, A.; Martin Ghiselli, A.; Sacchi, M.

    1994-01-01

    The Vibration Monitoring Systems are described to obtain information about the mechanical state of different components in the main coolant system of nuclear power plants to ensure that changes in the mechanical integrity of this components are detected at an early point in time, even during operation. 9 figs

  12. Manipulation of molecular vibrational motions via pure rotational excitations

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels Engholm

    2015-01-01

    The coupling between different molecular degrees of freedom plays a decisive role in many quantum phenomena, including electron transfer and energy redistribution. Here, we demonstrate a quantum-mechanical time-dependent simulation to explore how a vibrational motion in a molecule can be affected...

  13. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats.

    Science.gov (United States)

    Nishimura, Makoto; Chiba, Mirei; Ohashi, Toshiro; Sato, Masaaki; Shimizu, Yoshiyuki; Igarashi, Kaoru; Mitani, Hideo

    2008-04-01

    Accelerating the speed of orthodontic tooth movement should contribute to the shortening of the treatment period. This would be beneficial because long treatment times are a negative aspect of orthodontic treatment. In this study, we evaluated the effects of mechanical stimulation by resonance vibration on tooth movement, and we showed the cellular and molecular mechanisms of periodontal ligament responses. The maxillary first molars of 6-week-old male Wistar rats were moved to the buccal side by using an expansive spring for 21 days (n = 6, control group), and the amount of tooth movement was measured. Additional vibrational stimulation (60 Hz, 1.0 m/s(2)) was applied to the first molars by using a loading vibration system for 8 minutes on days 0, 7, and 14 during orthodontic tooth movement (n = 6, experimental group). The animals were killed under anesthesia, and each maxilla was dissected. The specimens were fixed, decalcified, and embedded in paraffin. Sections were used for immunohistochemical analysis of receptor activator of NF kappa B ligand (RANKL) expression. The number of osteoclasts in the alveolar bone was counted by using TRAP staining, and the amount of root resorption was measured in sections stained with hematoxylin and eosin. The average resonance frequency of the maxillary first molar was 61.02 +/- 8.38 Hz. Tooth movement in the experimental group was significantly greater than in the control group (P vibration might accelerate orthodontic tooth movement via enhanced RANKL expression in the periodontal ligament without additional damage to periodontal tissues such as root resorption.

  14. Experience in WWER fuel assemblies vibration analysis

    International Nuclear Information System (INIS)

    Ovtcharov, O.; Pavelko, V.; Usanov, A.; Arkadov, G.; Dolgov, A.; Molchanov, V.

    2003-01-01

    It is stated that the vibration studies of internals and the fuel assemblies should be conducted during the reactor designing, commissioning and commercial operation stages and the analysis methods being used should complement each other. The present paper describes the methods and main results of the vibration noise studies of internals and the fuel assemblies of the operating NPPs with WWER reactors, as an example of the implementation of the comprehensive approach to the analysis on equipment flow-induced vibration. At that, the characteristics of internals and fuel assemblies vibration loading were dealt jointly as they are elements of the same compound oscillating system and their vibrations have the interrelated nature

  15. Vibration isolation of a ship's seat

    Science.gov (United States)

    Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi

    2005-05-01

    Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.

  16. Vibration test report for in-chimney bracket and instrumented fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket.

  17. Vibration test report for in-chimney bracket and instrumented fuel assembly

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H.

    2000-10-01

    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket

  18. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  19. Control of pipe vibrations; Schwingungsminderung bei Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Sinambari, G.R. [FH Bingen, Fachrichtung Umweltschutz, und IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany); Thorn, U. [IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany)

    2005-06-01

    Following commissioning of a new vacuum system for the refinery of MiRO Mineraloelraffinerie Oberrhein GmbH and Co. KG, vibrations occurred in the furnace exhaust pipes. As these had to be regarded as critical for the fatigue strength of the pipes, the pipes' vibration response in the critical frequency range was investigated immediately by means of a vibration analysis, and appropriate measures for vibration control were elaborated. All investigations, and the installation of the hydraulic vibration dampers, took place with the system operating. The effectiveness of the measures taken was checked by means of measurements following installation. The measures succeeded in attenuating the vibrations to a level at which, empirically, damage need no longer be expected. This paper illustrates the procedure for developing the vibration control measures and the essential results of the investigations. (orig.)

  20. Vibrations on board and health effects

    DEFF Research Database (Denmark)

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships’ crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places...... of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships’ passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence...... for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships’ construction, but has limited value...

  1. Attitudes Toward, and Use of, Vibrators in China.

    Science.gov (United States)

    Jing, Shen; Lay, Alixe; Weis, Laura; Furnham, Adrian

    2018-01-02

    The current study examined the relationship between traditional masculine traits and attitudes toward vibrator use, actual vibrator use, and frequency of vibrator use in China. In all, 235 Chinese females aged between 16 and 58 years completed a questionnaire regarding attitudes toward, and personal use of, vibrators. The results showed a positive association between masculine traits and attitudes toward women's vibrator use, attitudes toward vibrator use and actual vibrator use, as well as frequency of vibrator use. The findings revealed an indirect path in which masculinity influences actual and frequency of vibrator use through attitudes toward women's vibrator use. Limitations and implications of the study are discussed.

  2. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    Science.gov (United States)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  3. Vibrations used to talk to quantum circuits

    Science.gov (United States)

    Cho, Adrian

    2018-03-01

    The budding discipline of quantum acoustics could shake up embryonic quantum computers. Such machines run by flipping quantum bits, or qubits, that can be set not only to zero or one, but, bizarrely, to zero and one at the same time. The most advanced qubits are circuits made of superconducting metal, and to control or read out a qubit, researchers make it interact with a microwave resonator—typically a strip of metal on the qubit chip or a finger-size cavity surrounding it—which rings with microwave photons like an organ pipe rings with sound. But some physicists see advantages to replacing the microwave resonator with a mechanical one that rings with quantized vibrations, or phonons. A well-designed acoustic resonator could ring longer than a microwave one does and could be far smaller, enabling researchers to produce more compact technologies. But first scientists must gain quantum control over vibrations. And several groups are on the cusp of doing that, as they reported at a recent meeting.

  4. Gas Bubble Dynamics under Mechanical Vibrations

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  5. Effect of slow, small movement on the vibration-evoked kinesthetic illusion.

    Science.gov (United States)

    Cordo, P J; Gurfinkel, V S; Brumagne, S; Flores-Vieira, C

    2005-12-01

    The study reported in this paper investigated how vibration-evoked illusions of joint rotation are influenced by slow (0.3 degrees /s), small (2-4 degrees ) passive rotation of the joint. Normal human adults (n=15) matched the perceived position of the left ("reference") arm with the right ("matching") arm while vibration (50 pps, 0.5 mm) was applied for 30 s to the relaxed triceps brachii of the reference arm. Both arms were constrained to rotate horizontally at the elbow. Three experimental conditions were investigated: (1) vibration of the stationary reference arm, (2) slow, small passive extension or flexion of the reference arm during vibration, and (3) slow, small passive extension or flexion of the reference arm without vibration. Triceps brachii vibration at 50 pps induced an illusion of elbow flexion. The movement illusion began after several seconds, relatively fast to begin with and gradually slowing down to a stop. On average, triceps vibration produced illusory motion at an average latency of 6.3 s, amplitude of 9.7 degrees , velocity of 0.6 degrees /s, and duration of 16.4 s. During vibration, slow, small ( approximately 0.3 degrees /s, 1.3 degrees ) passive rotations of the joint dramatically enhanced, stopped, or reversed the direction of illusory movement, depending on the direction of the passive joint rotation. However, the subjects' perceptions of these passive elbow rotations were exaggerated: 2-3 times the size of the actual movement. In the absence of vibration, the subjects accurately reproduced these passive joint rotations. We discuss whether the exaggerated perception of slow, small movement during vibration is better explained by contributions of non muscle spindle Ia afferents or by changes in the mechanical transmission of vibration to the receptor.

  6. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    Science.gov (United States)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  7. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  8. A night with good vibrations

    CERN Multimedia

    2002-01-01

    Next week-end, the Geneva Science History Museum invites you to a Science Night under the banner of waves and vibrations. Scientists, artists and storytellers from more than forty institutes and local or regional associations will show that waves and vibrations form an integral part of our environment. You will be able to get in contact with the nature of waves through interactive exhibitions on sound and light and through hands-on demonstrations arranged in the Park of the Perle du Lac. On the CERN stand, you will be able to measure the speed of light with a bar of chocolate, and understand the scattering of waves with plastic ducks. Amazing, no? In addition to the stands, the Night will offer many other activities: reconstructions of experiments, a play, a concert of crystal glasses, an illuminated fountain, a house of spirits. More information Science Night, 6 and 7 July, Park of the Perle du Lac, Geneva

  9. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  10. Vibrational communication of subterranean rodents

    OpenAIRE

    HROUZKOVÁ, Ema

    2012-01-01

    This PhD. thesis focuses on the vibrational communication of subterranean mammals, in particular, vocal communication of bathyergids (Heliophobius argenteocinereus, Fukomys mechowii, Fukomys darlingi) and seismic communication of Tachyoryctes. We recorded and analyzed the vocalization of three species and discussed the physical parameters of their vocalization in relationship to the special underground acoustic environment. Moreover, social systems of African mole-rats range from solitary to ...

  11. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  12. Surveillance of vibrations in PWR

    International Nuclear Information System (INIS)

    Espefaelt, R.; Lorenzen, J.; Aakerhielm, F.

    1980-07-01

    The core of a PWR - including fuel elements, internal structure, control rods and core support structure inside the pressure vessel - is subjected to forces which can cause vibrations. One sensitive means to detect and analyse such vibrations is by means of the noise from incore and excore neutron detector signals. In this project noise recordings have been made on two occasions in the Ringhals 2 plant and the obtained data been analysed using the Studsvik Noise Analysis Program System (SNAPS). The results have been intepreted and a detailed description of the vibrational status of the core and pressure vessel internals has been produced. On the basis of the obtained results it is proposed that neutron signal noise analysis should be performed at each PWR plant in the beginning, middle and end of each fuel cycle and an analysis be made using the methods developed in the project. It would also provide a contribution to a higher degree of preparedness for diagnostic tasks in case of unexpected and abnormal events. (author)

  13. Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection.

    Science.gov (United States)

    Ozana, Nisan; Bauer, Reuven; Ashkenazy, Koby; Sasson, Nissim; Schwarz, Ariel; Shemer, Amir; Zalevsky, Zeev

    2018-05-03

    In previous works, an optical technique for extraction and separation of remote static vibrations has been demonstrated. In this paper, we will describe an approach in which RF speckle movement is used to extract remote vibrations of a static target. The use of conventional radar Doppler methods is not suitable for detecting vibrations of static targets. In addition, the speckle method has an important advantage, in that it is able to detect vibrations at far greater distances than what is normally detected in classical optical methods. The experiment described in this paper was done using a motorized vehicle, which engine was turned on and off. The results showed that the system was able to distinguish between the different engine states, and in addition, was able to determine the vibration frequency of the engine. The first step towards real time detection of human vital signs using RF speckle patterns is presented.

  14. Demonstration of a Speckle Based Sensing with Pulse-Doppler Radar for Vibration Detection

    Directory of Open Access Journals (Sweden)

    Nisan Ozana

    2018-05-01

    Full Text Available In previous works, an optical technique for extraction and separation of remote static vibrations has been demonstrated. In this paper, we will describe an approach in which RF speckle movement is used to extract remote vibrations of a static target. The use of conventional radar Doppler methods is not suitable for detecting vibrations of static targets. In addition, the speckle method has an important advantage, in that it is able to detect vibrations at far greater distances than what is normally detected in classical optical methods. The experiment described in this paper was done using a motorized vehicle, which engine was turned on and off. The results showed that the system was able to distinguish between the different engine states, and in addition, was able to determine the vibration frequency of the engine. The first step towards real time detection of human vital signs using RF speckle patterns is presented.

  15. Vibration-accelerated activation of flow units in a Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ning, E-mail: hslining@mail.hust.edu.cn [School of Materials Science and Engineering, and State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Ze [Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072 (China); Wang, Xinyun [School of Materials Science and Engineering, and State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Meng [Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632 (China)

    2017-04-24

    Controlled activation of flow units and in-situ characterization of mechanical properties in metallic glasses are facing challenges thus far. Here, vibrational loading is introduced through nanoscale dynamic mechanical analysis technique to probe vibration-accelerated atomic level flow that plays a crucial role in the mechanical behavior of metallic glasses. The intriguing finding is that high vibrational frequency induces deep indentation depth, prominent pop-in events on load–depth curves and low storage modulus, exhibiting a vibration-facilitated activation of flow units in Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} metallic glass. Theoretical analysis revealed that vibration-moderated activation time-scale accelerate the activation of flow units and responsible for the above scenario.

  16. Evaluation of a vibration diagnostic system for the detection of spur gear pitting failures

    Science.gov (United States)

    Townsend, Dennis P.; Zakrajsek, James J.

    1993-01-01

    A vibration diagnostic system was used to detect spur gear surface pitting fatigue in a closed-loop spur gear fatigue test rig. The diagnostic system, comprising a personal computer with an analog-to-digital conversion board, a diagnostic system unit, and software, uses time-synchronous averaging of the vibration signal to produce a vibration image of each tooth on any gear in a transmission. Several parameters were analyzed including gear pair stress wave and raw baseband vibration, kurtosis, peak ratios, and others. The system provides limits for the various parameters and gives a warning when the limits are exceeded. Several spur gear tests were conducted with this system and vibration data analyzed at 5-min. intervals. The results presented herein show that the system is fairly effective at detecting spur gear tooth surface fatigue pitting failures.

  17. Attitudes Toward, and Use of, Vibrators in China

    OpenAIRE

    Jing, S.; Lay, A.; Weis, L.; Furnham, A.

    2018-01-01

    The current study examined the relationship between traditional masculine traits and attitudes toward vibrator use, actual vibrator use, and frequency of vibrator use in China. In all, 235 Chinese females aged between 16 and 58 years completed a questionnaire regarding attitudes toward, and personal use of, vibrators. The results showed a positive association between masculine traits and attitudes toward women's vibrator use, attitudes toward vibrator use and actual vibrator use, as well as f...

  18. Heat exchanger vibrations - a case study (Paper No. 5.12)

    International Nuclear Information System (INIS)

    Khilnaney, V.K.

    1992-01-01

    The satisfactory performance of heat exchangers is crucial to the reliability of the plant. Thorough vibration analysis is essential at design stage to avoid failures at the time of operation. Detailed vibration analysis techniques were not available at the time of designing these exchangers and the exchangers were designed as per general guidelines and prevalent good engineering practices. The designs were not checked especially from the point of view of their proneness to excessive flow induced vibration. The present paper gives a study of revamping of cooling water heat exchanger at Heavy Water Plant, Kota. (author)

  19. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  20. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    Science.gov (United States)

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  1. Quantitative Diagnosis of Rotor Vibration Fault Using Process Power Spectrum Entropy and Support Vector Machine Method

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Fei

    2014-01-01

    Full Text Available To improve the diagnosis capacity of rotor vibration fault in stochastic process, an effective fault diagnosis method (named Process Power Spectrum Entropy (PPSE and Support Vector Machine (SVM (PPSE-SVM, for short method was proposed. The fault diagnosis model of PPSE-SVM was established by fusing PPSE method and SVM theory. Based on the simulation experiment of rotor vibration fault, process data for four typical vibration faults (rotor imbalance, shaft misalignment, rotor-stator rubbing, and pedestal looseness were collected under multipoint (multiple channels and multispeed. By using PPSE method, the PPSE values of these data were extracted as fault feature vectors to establish the SVM model of rotor vibration fault diagnosis. From rotor vibration fault diagnosis, the results demonstrate that the proposed method possesses high precision, good learning ability, good generalization ability, and strong fault-tolerant ability (robustness in four aspects of distinguishing fault types, fault severity, fault location, and noise immunity of rotor stochastic vibration. This paper presents a novel method (PPSE-SVM for rotor vibration fault diagnosis and real-time vibration monitoring. The presented effort is promising to improve the fault diagnosis precision of rotating machinery like gas turbine.

  2. An observational study of the effect of vibration on the caking of suspensions in oily vehicles.

    Science.gov (United States)

    Jain, Rohit; Bork, Olaf; Alawi, Fadil; Nanjan, Karthigeyan; Tucker, Ian G

    2016-11-30

    An oily suspension of penethamate (PNT) that was physically stable on storage, caked solidly during road/air transport. This paper reports on the caking behaviour of PNT oily suspension formulations exposed to vibrations in a lab-based test designed to simulate road/air transport. The lab-test was used to study the effects of container type (glass v PET) and formulation (oil, surfactant type and concentration) on the physical stability of suspension under vibration. Redispersibility of the sediment was lower at longer vibrations times and at higher intensity of vibration. Caking on vibration was strongly influenced by the type of container (caking in glass but not in PET) possibly due to tribo-charging of particles. Caking on vibration was dependent on the formulation: type and concentration of surfactant; type of oil. The physical stability of oily suspensions, and the effect of vibration are two areas which have been largely neglected in the pharmaceutical literature. This paper discusses some potential mechanisms for the observations but studies using fully characterised materials are required. Finally we conclude that static testing of physical stability of oily suspensions is not sufficient and that a vibrational stress test is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Vibration test report on the instrumented capsule for fuel irradiation test

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Wu, J. S.; Oh, J. M.; Park, S. J.; Cho, M. S.; Kim, B. G.; Kang, Y. W

    2003-01-01

    The fluid-induced vibration level of instrumented capsule, which was manufactured for fuel irradiation test at the reactor core of HANARO, was investigated. For this purpose, the instrumented capsule was loaded at the OR site of the HANARO design verification test facility that could simulate identical flow condition as the HANARO core. Then, vibration signals of the instrumented capsule subjected to various flow conditions were measured by using vibration sensors. In time domain analysis, maximum amplitudes and RMS values of the measured acceleration and displacement signals were obtained. By using frequency domain analysis, frequency components of the fluid-induced vibration were analyzed. In addition, natural frequencies of the instrumented capsule were obtained by performing modal test. The frequency analysis results showed that the natural frequency components near 7.5Hz and 17.5Hz were dominant in the fluid-induced vibration signal. The maximum amplitude of the accelerations was measured as 12.04m/s{sup 2} that is within the allowable vibrational limit(18.99m/s{sup 2})of the reactor structure. Also, the maximum displacement amplitude was calculated as 0.191mm. Since these vibration levels are remarkably low, excessive vibration is not expected when the irradiation test of the instrumented capsule is performed at the HANARO core.

  4. Application of Whole-body Vibration: Technical and clinical studies in healthy persons and people with a neurological disorder

    OpenAIRE

    Bagheri, Javad

    2013-01-01

    textabstract__Abstract__ The first use of vibration therapy to improve human fimction and muscle performance dates back to ancient Greece, a time when physicians used saws covered in cotton to transfer vibrations to specific parts of the body to improve muscle performance and relieve pain. However, these manual devices could only offer vibration locally and in one direction. It was not until the middle of the 19th century that physicians developed machines which produced both vertical and cir...

  5. Diagnostic aspects of vibration-induced white finger.

    Science.gov (United States)

    Olsen, Niels

    2002-01-01

    Vibration-induced white finger (VWF) is a secondary type of Raynaud's phenomenon (RP) caused by exposure to hand-arm vibration. The present review concerns the cold-provoked attack of RP in vasospastic VWF. It concentrates on the most common clinical and laboratory methods used to diagnose RP in vibration-exposed subjects. Some physiological aspects of the attack of RP are mentioned to elucidate the diagnostic principles of the tests. Anamnestic diagnostics by medical interviews and questionnaires as well as cold-provocation tests with detection of finger colour, finger systolic blood pressure (FSP), recovery time of finger skin temperature and recovery time of normal nail colour after nail compression are mentioned. The discriminative capacity and the reproducibility of the tests are discussed. Cold-provocation tests with detection of finger colour or zero FSP during cooling are recommended to be used if an attack of RP has to be registered for diagnostic or medico-legal purposes in individual cases. An abnormal reduction in FSP during cooling makes a history of RP very probable and is a suitable laboratory test for groups of subjects. Both recovery tests may be useful screening tests in field studies of vibration-exposed subject groups.

  6. Data interpolation for vibration diagnostics using two-variable correlations

    International Nuclear Information System (INIS)

    Branagan, L.

    1991-01-01

    This paper reports that effective machinery vibration diagnostics require a clear differentiation between normal vibration changes caused by plant process conditions and those caused by degradation. The normal relationship between vibration and a process parameter can be quantified by developing the appropriate correlation. The differences in data acquisition requirements between dynamic signals (vibration spectra) and static signals (pressure, temperature, etc.) result in asynchronous data acquisition; the development of any correlation must then be based on some form of interpolated data. This interpolation can reproduce or distort the original measured quantity depending on the characteristics of the data and the interpolation technique. Relevant data characteristics, such as acquisition times, collection cycle times, compression method, storage rate, and the slew rate of the measured variable, are dependent both on the data handling and on the measured variable. Linear and staircase interpolation, along with the use of clustering and filtering, provide the necessary options to develop accurate correlations. The examples illustrate the appropriate application of these options

  7. Neurocognitive responses to a single session of static squats with whole body vibration.

    Science.gov (United States)

    Amonette, William E; Boyle, Mandy; Psarakis, Maria B; Barker, Jennifer; Dupler, Terry L; Ott, Summer D

    2015-01-01

    The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.

  8. Vibration features of an 180 kW maglev circulator test rig

    International Nuclear Information System (INIS)

    Su Jiageng; Li Hongwei; Shi Qian; Sha Honglei; Yu Suyuan

    2015-01-01

    The helium circulator is the key equipment to drive the helium gas flowing in the primary loop for energy exchange in HTGR. Active magnetic bearings (AMB) have been considered as an alternative to replace traditional mechanical bearings in the helium circulator. Such contactless bearings do not have frictional wear and can be used to suppress vibration in rotor-dynamic applications. It is necessary to study the vibration characteristics of the maglev helium circulator to guarantee the reactor safety. Therefore, a maglev circulator test rig was built. The power of the circulator is 180 kW and the maximum speed is 17000 rpm. For the time being, the test atmosphere is air. In this paper the test rig was introduced. Vibration test work of the maglev circulator was also carried out. The measuring points were arranged at the seat because the seat vibration level is important to evaluate the machine noise. The measuring points were also arranged at the base of the circulator housing to better study the vibration characteristics. The vibrations were measured by the LC-8024 multichannel machinery diagnoses system. At each measuring point the vibrations were detected in three directions (X, Y and Z) with the vibration acceleration sensors. The test speeds varied from 1000 rpm to 17000 rpm with an increase of 1000 rpm each time. The vibration values of the seat are from 89.5 dB at 1000 rpm to 113.3 dB at 17000 rpm. The test results showed that the maglev circulator exhibits good vibration properties. This work will offer important theoretical base and engineering experience to explore the high-speed helium circulator in HTGR. (author)

  9. Regarding "A new method for predicting nonlinear structural vibrations induced by ground impact loading" [Journal of Sound and Vibration, 331/9 (2012) 2129-2140

    Science.gov (United States)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  10. DYNAMICS OF VIBRATION FEEDERS WITH A NONLINEAR ELASTIC CHARACTERISTIC

    Directory of Open Access Journals (Sweden)

    V. I. Dyrda

    2017-04-01

    Full Text Available Purpose. Subject to the smooth and efficient operation of each production line, is the use of vehicles transporting high specification. It worked well in practice for transporting construction machines, which are used during the vibration. The use of vibration machines requires optimization of their operation modes. In the form of elastic link in them are increasingly using rubber-metallic elements, which are characterized by nonlinear damping properties. So it is necessary to search for new, more modern, methods of calculation of dynamic characteristics of the vibration machines on the properties of rubber as a cushioning material. Methodology. The dynamics of vibration machine that is as elastic rubber block units and buffer shock absorbers limiting the amplitude of the vibrations of the working body. The method of determining amplitude-frequency characteristics of the vibrating feeder is based on the principle of Voltaire, who in the calculations of the damping properties of the dampers will allow for elastic-hereditary properties of rubber. When adjusting the basic dynamic stiffness of the elastic ties and vibratory buffers, using the principle of heredity rubber properties, determine the dependence of the amplitude of the working body of the machine vibrations. This method is called integro-operator using the fractional-exponential kernels of relaxation. Findings. Using the derived formula for determining the amplitude of the resonance curve is constructed one-mass nonlinear system. It is established that the use of the proposed method of calculation will provide a sufficiently complete description of the damping parameters of rubber-metallic elements and at the same time be an effective means of calculating the amplitude-frequency characteristics of nonlinear vibration systems. Originality. The authors improved method of determining damping characteristics of rubber-metallic elements and the amplitude-frequency characteristics of nonlinear

  11. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  12. Vibration-type particle separation device with piezoceramic vibrator

    Science.gov (United States)

    Ooe, Katsutoshi; Doi, Akihiro

    2008-12-01

    During hemanalysis, it is necessary to separate blood cells from whole blood. Many blood separation methods, for example, centrifugation and filtering, are in practical use. However, the use of these methods involves problems from the perspectives of processing speed and processing volume. We develop new types of blood separation devices that use piezo-ceramic vibrators. The first device uses a capillary. One end of the capillary is fixed to the device frame, and the other is fixed to a piezo-ceramic vibrator. The vibrator transmits bending waves to the capillary. This device can process only a small amount of solution; therefore, it is not suitable for hemanalysis. In order to solve this problem, we developed a second device; this device has a pair of thin glass plates with a small gap as a substitute for the capillary used in the first device. These devices are based on the fact that particles heavier than water move toward transverse velocity antinodes while those lighter than water move toward velocity nodes. In this report, we demonstrate the highspeed separation of silica microbeads and 50-vol% glycerol water by using these devices. The first device can separate the abovementioned solution within 3 min while the second can separate it within 1 min. Both devices are driven by a rectangular wave of 15 to 20 Vpp. Furthermore, it has been confirmed that red blood cells are separated from diluted whole blood using the first device within approximately 1 min. These devices have transparency, so they can compose as the analysis system with the chemical analyzer easily.

  13. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Christian, Robby; Song, Seon Ho; Kang, Hyun Gook

    2015-01-01

    The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  14. Ergonomic Evaluation of Vibrations of a Rototiller with New Blade

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-10-01

    Full Text Available Introduction One of the most important problems arising with operation of the conventional rototillers is severe vibration of the machine handle which is transmitted to the user’s hands, arms and shoulders. Long period exposure of the hand-transmitted vibration may cause various diseases such as white finger syndrome. Therefore in this study, vibrations of a new type of rototiller with ridged blades were investigated at the position of handle/hand interface in different working conditions. Finally, the maximum allowable exposure time to the rototiller users in continuous tillage operation was obtained according to ISO 5349-1. Materials and Methods Experiments were carried out in one of the farms with silty clay soil texture, located in Sari city, Mazandaran province, Iran. Vibration measurements were performed according to ISO 5349-1 and ISO 5349-2 standards in two different modes, including in situ mode and tillage mode. Vibrational parameters were obtained in three blade rotational speeds, i.e., low speed (140-170 rpm, medium speed (170-200, and high speed (200-230. Blade rotational speed varied by changing engine speed using the throttle control lever. In each experiment, different vibrational values were individually recorded in three directions (x, y, and z. Experimental design and data analysis were performed in a Randomized Complete Block Design with three replications using the SPSS16 software. Results and Discussion Based on the obtained results in this study, the RMS of acceleration increased by increasing in rotational speed for all of the conducted experiments. The reason is that number of cutting per unit of time and consequently the frequency of changing in the dynamic forces exerting on the blades dramatically increases with increasing the rotational speed of the blades. Noteworthy is that in most cases the variation of acceleration in the tillage mode showed similar trend with vibrational values in the idling mode. This

  15. Identification of Bearing Failure Using Signal Vibrations

    Science.gov (United States)

    Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah

    2018-04-01

    Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.

  16. Cleaning device for vibrational hose filter

    Energy Technology Data Exchange (ETDEWEB)

    Engels, R

    1978-01-05

    Filter hoses out of web in dust separators can be cleaned by enforced vibrations. The efficiency of the cleaning is a maximum if the vibrations are at about the individual frequency of the whole arrangement. In the interior of the hose a cage from bars parallel to the wall of the hose is placed on its total length. The bars are fixed at one end and connected with a vibration exciter at the other end. The unilaterally fixed vibration bars can be adjusted to the individual frequency of the vibration exciter. If the hose filter is flown through from the outer to the inner side the vibration bars serve as a supporting body. In the reverse case the bars are placed on the outer side of the hose filter.

  17. Research In Diagnosing Bearing Defects From Vibrations

    Science.gov (United States)

    Zoladz, T.; Earhart, E.; Fiorucci, T.

    1995-01-01

    Report describes research in bearing-defect signature analysis - use of vibration-signal analysis to diagnose defects in roller and ball bearings. Experiments performed on bearings in good condition and other bearings in which various parts scratched to provide known defects correlated with vibration signals. Experiments performed on highly instrumented motor-driven rotor assembly at speeds up to 10,050 r/min, using accelerometers, velocity probes, and proximity sensors mounted at various locations on assembly to measure vibrations.

  18. Theory And Working Of Noise And Vibration

    International Nuclear Information System (INIS)

    Jeong, Il Rok

    1988-09-01

    This book deals with theory of noise including physical property of noise like term and characteristic of sound, occurrence of sound, characteristic of noise pollution and main cause of occurrence of noise, technique of prevention of noise with noise reduction, construction guide for prevention of noise, and measure of interior noise. It also has the theory of vibration such as an introduction of vibration, and technology of prevention of vibration, official test method of environmental pollution, and summary of protection of the environment.

  19. Vibration characterization procedure of piezoelectric ceramic parameters

    Directory of Open Access Journals (Sweden)

    Meyer Yann

    2015-01-01

    Full Text Available To integrate new functionalities inside the mechanical structures for active vibration control, mechatronic, energy harvesting or fatigue management, it is necessary to developp a real fully distributed set of transducers and to include them at the heart of composite materials. To reach this goal, it is absolutely necessary to limit the cost of the numerous transducing elements with respect to the global system cost and, in the same time, to well-know the electromechanical behavior of theses transducers in order to well-design the system controller. In this paper, an experimental non-destructive procedure based on the analysis of anti-resonance and resonance frequencies of the transducers is proposed for determining the material coefficients of interest. This measurement process is applied to low-cost thin disks made of piezoceramics.

  20. Utility machinery vibration monitoring guide: Final report

    International Nuclear Information System (INIS)

    Moore, T.T.; Thomas, C.C.

    1987-08-01

    Section I of this guide presents a methodology for developing machinery vibration monitoring programs specifically designed for application within the utility industry. The methodology is designed to enhance a monitoring program and can be used at the outset of program development or as a reference after programs have been started. Section I evaluates all aspects of the monitoring program, including Objectives and Goals, Information Type, Timing and Format, Data Analysis, Data Acquisition, Measurement and Transducer Selection, Personnel and Organization, Program Instrumentation, Program Costs, Program Justification, and Implementation of a Monitoring Program. The methodology is then applied to two host utility plants in Section II, which contains the monitoring programs developed by Gulf States Utilities and Philadelphia Electric Company using this guide. Section III contains the histories of several different types of existing utility monitoring programs. Some of the lessons learned, including the recommendations of these ''mature'' programs for persons starting new programs, are included