WorldWideScience

Sample records for vibrational assignments 1h

  1. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    Science.gov (United States)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  2. A Review on Eigenstructure Assignment Methods and Orthogonal Eigenstructure Control of Structural Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Rastgaar

    2009-01-01

    Full Text Available This paper provides a state-of-the-art review of eigenstructure assignment methods for vibration cancellation. Eigenstructure assignment techniques have been widely used during the past three decades for vibration suppression in structures, especially in large space structures. These methods work similar to mode localization in which global vibrations are managed such that they remain localized within the structure. Such localization would help reducing vibrations more effectively than other methods of vibration cancellation, by virtue of confining the vibrations close to the source of disturbance. The common objective of different methods of eigenstructure assignment is to provide controller design freedom beyond pole placement, and define appropriate shapes for the eigenvectors of the systems. These methods; however, offer a large and complex design space of options that can often overwhelm the control designer. Recent developments in orthogonal eigenstructure control offers a significant simplification of the design task while allowing some experience-based design freedom. The majority of the papers from the past three decades in structural vibration cancellation using eigenstructure assignment methods are reviewed, along with recent studies that introduce new developments in eigenstructure assignment techniques.

  3. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of bromobenzene and its perdeuterated isotopologue: Assignment of the vibrations of the S{sub 0}, S{sub 1}, and D{sub 0}{sup +} states of bromobenzene and the S{sub 0} and D{sub 0}{sup +} states of iodobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Andrejeva, Anna; Tuttle, William D.; Harris, Joe P.; Wright, Timothy G., E-mail: Tim.Wright@nottingham.ac.uk [School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-12-28

    We report vibrationally resolved spectra of the S{sub 1}←S{sub 0} transition of bromobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study bromobenzene-h{sub 5} as well as its perdeuterated isotopologue, bromobenzene-d{sub 5}. The form of the vibrational modes between the isotopologues and also between the S{sub 0} and S{sub 1} electronic states is discussed for each species, allowing assignment of the bands to be achieved and the activity between states and isotopologues to be established. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts. Previous work and assignments of the S{sub 1} spectra are discussed. Additionally, the vibrations in the ground state cation, D{sub 0}{sup +}, are considered, since these have also been used by previous workers in assigning the excited neutral state spectra. We also examine the vibrations of iodobenzene in the S{sub 0} and D{sub 0}{sup +} states and comment on the previous assignments of these. In summary, we have been able to assign the corresponding vibrations across the whole monohalobenzene series of molecules, in the S{sub 0}, S{sub 1}, and D{sub 0}{sup +} states, gaining insight into vibrational activity and vibrational couplings.

  4. The molecular structure of the borate mineral inderite Mg(H4B3O7)(OH) · 5H2O--a vibrational spectroscopic study.

    Science.gov (United States)

    Frost, Ray L; López, Andrés; Xi, Yunfei; Lima, Rosa Malena Fernandes; Scholz, Ricardo; Granja, Amanda

    2013-12-01

    We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH) · 5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [Formula: see text] soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm(-1) are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm(-1) are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm(-1) with sharper bands at 3459, 3530 and 3562 cm(-1) assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise

    2014-01-01

    have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed...... and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm−1 for the dissociation energy D0...

  6. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  7. Nuclear resonance vibrational spectroscopy applied to [Fe(OEP)(NO)]: the vibrational assignments of five-coordinate ferrous heme-nitrosyls and implications for electronic structure.

    Science.gov (United States)

    Lehnert, Nicolai; Galinato, Mary Grace I; Paulat, Florian; Richter-Addo, George B; Sturhahn, Wolfgang; Xu, Nan; Zhao, Jiyong

    2010-05-03

    This study presents Nuclear Resonance Vibrational Spectroscopy (NRVS) data on the five-coordinate (5C) ferrous heme-nitrosyl complex [Fe(OEP)(NO)] (1, OEP(2-) = octaethylporphyrinato dianion) and the corresponding (15)N(18)O labeled complex. The obtained spectra identify two isotope sensitive features at 522 and 388 cm(-1), which shift to 508 and 381 cm(-1), respectively, upon isotope labeling. These features are assigned to the Fe-NO stretch nu(Fe-NO) and the in-plane Fe-N-O bending mode delta(ip)(Fe-N-O), the latter has been unambiguously assigned for the first time for 1. The obtained NRVS data were simulated using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Since complex 1 can potentially exist in 12 different conformations involving the FeNO and peripheral ethyl orientations, extended density functional theory (DFT) calculations and QCC-NCA simulations were performed to determine how these conformations affect the NRVS properties of [Fe(OEP)NO]. These results show that the properties and force constants of the FeNO unit are hardly affected by the conformational changes involving the ethyl substituents. On the other hand, the NRVS-active porphyrin-based vibrations around 340-360, 300-320, and 250-270 cm(-1) are sensitive to the conformational changes. The spectroscopic changes observed in these regions are due to selective mechanical couplings of one component of E(u)-type (in ideal D(4h) symmetry) porphyrin-based vibrations with the in-plane Fe-N-O bending mode. This leads to the observed variations in Fe(OEP) core mode energies and NRVS intensities without affecting the properties of the FeNO unit. The QCC-NCA simulated NRVS spectra of 1 show excellent agreement with experiment, and indicate that conformer F is likely present in the samples of this complex investigated here. The observed porphyrin-based vibrations in the NRVS spectra of 1 are also assigned based on the QCC-NCA results. The obtained force constants of the Fe-NO and N

  8. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    Science.gov (United States)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  9. Complete sequence-specific 1H NMR assignments for human insulin

    International Nuclear Information System (INIS)

    Kline, A.D.; Justice, R.M. Jr.

    1990-01-01

    Solvent conditions where human insulin could be studied by high-resolution NMR were determined. Both low pH and addition of acetonitrile were required to overcome the protein's self-association and to obtain useful spectra. Two hundred eighty-six 1 H resonances were located and assigned to specific sites on the protein by using two-dimensional NMR methods. The presence and position of numerous d NN sequential NOE's indicate that the insulin conformation seen in crystallographic studies is largely retained under these solution conditions. Slowly exchanging protons were observed for seven backbone amide protons and were assigned to positions A15 and A16 and to positions B15-B19. These amides all occur within helical regions of the protein

  10. Vibration test of 1/5 scale H-II launch vehicle

    Science.gov (United States)

    Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.

    In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.

  11. Vibrational spectrum, ab initio calculations, conformational stabilities and assignment of fundamentals of 1,2-dibromopropane

    Science.gov (United States)

    LaPlante, Arthur J.; Stidham, Howard D.

    2009-10-01

    The mid and far infrared and the Raman spectrum of 1,2-dibromopropane is reported in solid, liquid and gas. Several bands reported by earlier workers are not present in the spectrum of the purified material. Ab initio calculations of optimized geometry, energy, dipole moment, molar volume, vibrational spectrum and normal coordinate calculation were performed using the density functional B3LYP/6-311++g(3df,2pd), and the results used to assist a complete assignment of the 81 fundamental modes of vibrations of the three conformers of 1,2-dibromopropane. Relative energies found conformer A the lowest with G and G' at 815.6 and 871.4 cm -1 higher. The temperature dependence of the Raman spectrum of the liquid was investigated in the CCC bending region and the relative energies determined. It was found that the G' and G conformers lie 236 ± 11 and 327 ±11 cm -1, respectively above the A conformer, leading to the room temperature composition of the liquid as A, 65 ± 1; G', 21 ± 1; G, 14 ± 1%. It is apparent that the calculated highest energy conformer G' is stabilized more than the G conformer in the liquid. The G' conformer has the lowest molar volume effectively changing the interaction distance between conformers in the liquid, and enhancing the effect of its dipole moment.

  12. Conformational Stability, Structural Parameters And Vibrational Assignments of Allantoin

    International Nuclear Information System (INIS)

    Haman, S.

    2008-01-01

    Allantoin 2,5-Dioxo-4-imidazolinyl) urea , the diureide of glyoxylic acid, is a crystallisable oxidation product of uric acid found in allantoic and amniotic fluids, in fetal urine and in many plants. It is a healing, moisturizing, soothing and anti-irritating, keratolytic and non-toxic agent useful in dermatological, cosmetic and veterinary preparation. The optimized geometries and energies of the low-energy conformers of allantoin have been calculated using density functional theory (Daft) method. The calculations were performed with Beck's nonlocal three-parameter hybrid functional in combination with the Lee, Yang, and Parr correlation functional (By-play) using the 6-311++G(d,p) basis set. We calculated the infrared frequencies and intensities of the most stable conformers in order to assist in the assignment of the vibrational bands in the experimental spectrum. The B3LYP/6-311+G(d,p) harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported

  13. Don't let the flu catch you: agency assignment in printed educational materials about the H1N1 influenza virus.

    Science.gov (United States)

    McGlone, Matthew S; Bell, Robert A; Zaitchik, Sarah T; McGlynn, Joseph

    2013-01-01

    In English and in other languages, the agency for viral transmission can be grammatically assigned to people (e.g., Thousands may contract H1N1) or to the virus itself (e.g., H1N1 may infect thousands). These assignment options shape different conceptions of transmission as attributable either to social contact within one's control or to pursuit of an active predator. The authors tested the effect of agency assignment and agentic images on young adults' (N = 246) reactions to educational materials about H1N1 influenza. The authors hypothesized that assigning agency to the virus would heighten perceived severity and personal susceptibility relative to human agency assignment. Results were consistent with this hypothesis, indicating that virus agency increased perceptions of severity, personal susceptibility, and reported intentions to seek vaccination relative to human agency. The image manipulation did not directly affect these factors. The findings suggest that strategic agency assignment can improve the effectiveness of educational materials about influenza and other health threats.

  14. Synthesis, characterization and theoretical studies of 5-(benzylthio)-1-cylopentyl-1H-tetrazole

    Science.gov (United States)

    Saglam, S.; Disli, A.; Erdogdu, Y.; Marchewka, M. K.; Kanagathara, N.; Bay, B.; Güllüoğlu, M. T.

    2015-01-01

    In this study, 5-(benzylthio)-1-cylopentyl-1H-tetrazole (5B1C1HT) have been synthesized. Boiling points of the obtained compound have been determined and it has been characterized by FT-IR, 1H NMR, 13C-APT and LC-MS spectroscopy techniques. The FT-IR, 1H NMR and 13C-APT spectral measurements of the 5B1C1HT compound and complete assignment of the vibrational bands observed in spectra has been discussed. The spectra were interpreted with the aid of normal coordinate analysis following full structure optimization and force field calculations based on Density Functional Theory (DFT) at 6-311++G**, cc-pVDZ and cc-pVTZ basis sets. The optimized geometry with 6-311++G** basis sets were used to determine the total energy distribution, harmonic vibrational frequencies, IR intensities.

  15. Vibrational spectrum of solid picene (C22H14)

    International Nuclear Information System (INIS)

    Joseph, B; Capitani, F; Boeri, L; Malavasi, L; Artioli, G A; Protti, S; Fagnoni, M; Albini, A; Marini, C; Baldassarre, L; Perucchi, A; Lupi, S; Postorino, P; Dore, P

    2012-01-01

    Recently, Mitsuhashi et al observed superconductivity with a transition temperature up to 18 K in potassium doped picene (C 22 H 14 ), a polycyclic aromatic hydrocarbon compound (Mitsuhashi et al 2010 Nature 464 76). Theoretical analysis indicates the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unambiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples. (fast track communication)

  16. DFT simulations and vibrational spectra of 2-amino-2-methyl-1,3-propanediol

    Science.gov (United States)

    Renuga Devi, T. S.; Sharmi kumar, J.; Ramkumaar, G. R.

    2014-12-01

    The FTIR and FT-Raman spectra of 2-amino-2-methyl-1,3-propanediol were recorded in the regions 4000-400 cm-1 and 4000-50 cm-1 respectively. The structural and spectroscopic data of the molecule in the ground state were calculated using Hartee-Fock and density functional method (B3LYP) with the augmented-correlation consistent-polarized valence double zeta (aug-cc-pVDZ) basis set. The most stable conformer was optimized and the structural and vibrational parameters were determined based on this. The complete assignments were performed on the basis of the Potential Energy Distribution (PED) of the vibrational modes, calculated using Vibrational Energy Distribution Analysis (VEDA) 4 program. With the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compound were carried out. Thermodynamic properties and Mulliken charges were calculated using both Hartee-Fock and density functional method using the aug-cc-pVDZ basis set and compared. The calculated HOMO-LUMO energy gap revealed that charge transfer occurs within the molecule. 1H and 13C NMR chemical shifts of the molecule were calculated using Gauge-Independent Atomic Orbital (GIAO) method and were compared with experimental results.

  17. Conformational and vibrational reassessment of solid paracetamol

    Science.gov (United States)

    Amado, Ana M.; Azevedo, Celeste; Ribeiro-Claro, Paulo J. A.

    2017-08-01

    This work provides an answer to the urge for a more detailed and accurate knowledge of the vibrational spectrum of the widely used analgesic/antipyretic drug commonly known as paracetamol. A comprehensive spectroscopic analysis - including infrared, Raman, and inelastic neutron scattering (INS) - is combined with a computational approach which takes account for the effects of intermolecular interactions in the solid state. This allows a full reassessment of the vibrational assignments for Paracetamol, thus preventing the propagation of incorrect data analysis and misassignments already found in the literature. In particular, the vibrational modes involving the hydrogen-bonded Nsbnd H and Osbnd H groups are correctly reallocated to bands shifted by up to 300 cm- 1 relatively to previous assignments.

  18. Linking structure and vibrational mode coupling using high-resolution infrared spectroscopy: A comparison of gauche and trans 1-chloro-2-fluoroethane

    Science.gov (United States)

    Miller, C. Cameron; Stone, Stephen C.; Philips, Laura A.

    1995-01-01

    The high-resolution infrared spectrum of 1-chloro-2-fluoroethane in a molecular beam was collected over the 2975-2994 cm-1 spectral region. The spectral region of 2975-2981 cm-1 contains a symmetric C-H stretching vibrational band of the gauche conformer containing the 35Cl isotope. The spectral region of 2985-2994 cm-1 contains three vibrational bands of the trans conformer. Two of the three bands are assigned as an antisymmetric C-H stretch of each of the two different chlorine isotopes. The third band is assigned as a symmetric C-H stretch of the 35Cl isotope. The gauche conformer of 1-chloro-2-fluoroethane showed doublet patterns similar to those previously observed in 1,2-difluoroethane. The model for 1,2-difluoroethane is further refined in the present work. These refinements suggest that the coupling dark state in 1,2-difluoroethane is composed of 1 quantum C-H bend, 1 quantum C-C stretch, and 12 quanta of torsion. For 1-chloro-2-fluoroethane the dark state could not be identified due to a small data set. The trans conformer of 1-chloro-2-fluoroethane showed no evidence of mode coupling in the three vibrational bands. Including 2-fluoroethanol in this series of molecules, the extent of vibrational mode coupling did not correlate with the density of states available for coupling. Therefore, density of states alone is insufficient to explain the observed trend. A correlation was observed between the degree of intramolecular interaction and vibrational mode coupling.

  19. Inelastic neutron scattering studies of TbNiAlH1.4 and UNiAlH2.0 hydrides

    International Nuclear Information System (INIS)

    Bordallo, H N; Kolesnikov, A I; Kolomiets, A V; Kalceff, W; Nakotte, H; Eckert, J

    2003-01-01

    The optical vibrations of hydrogen in TbNiAlH 1.4 and UNiAlH 2.0 were investigated by means of inelastic neutron scattering. The experimental data were analysed, including multiphonon neutron scattering contributions, calculated in an isotropic harmonic approximation. At least two fundamental H optical peaks were observed in TbNiAlH 1.4 , and were assigned to the vibrational modes of hydrogen atoms occupying different interstitial sites in the metal sublattice. The high-energy part of the UNiAlH 2.0 spectra is characterized by strong anharmonicity, and a broad fundamental band. The latter can be accounted for by a large dispersion of phonon modes due to the strong H-H interactions, and/or different metal-hydrogen force constants, which may originate from different metal atoms surrounding the H atoms in the unit cell

  20. Synthesis, characterization and vibrational spectra analysis of ethyl (2Z)-2-(2-amino-4-oxo-1,3-oxazol-5(4H)-ylidene)-3-oxo-3-phenylpropanoate

    Science.gov (United States)

    Kıbrız, İbrahim Evren; Sert, Yusuf; Saçmacı, Mustafa; Şahin, Ertan; Yıldırım, İsmail; Ucun, Fatih

    2013-10-01

    In the present study, the experimental and theoretical vibrational spectra of ethyl (2Z)-2-(2-amino-4-oxo-1,3-oxazol-5(4H)-ylidene)-3-oxo-3-phenylpropanoate (AOX) were investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths, bond angles and torsion angles) were calculated using ab initio Hartree Fock (HF), Density Functional Theory (B3LYP and B3PW91) methods with 6-311++G(d,p) basis set by Gaussian 03 program, for the first time. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental X-ray diffraction data, and they were seen to be in a good agreement with each other. The hydrogen bonding geometry of the molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  1. Infrared laser spectroscopy of H2 and D2 Rydberg states. II. Diode laser spectra and assignment of 5g--4f, 6h--5g, and 8i--6h systems

    International Nuclear Information System (INIS)

    Davies, P.B.; Guest, M.A.; Stickland, R.J.

    1990-01-01

    Infrared diode laser absorption spectra of portions of the 5g--4f, 6h--5g, and 8i--6h Rydberg bands of H 2 and D 2 have been measured at Doppler limited resolution in low pressure A. C. discharges. The spectra, arising from L uncoupled states of H 2 and D 2 , are assigned using an ab initio polarization model supported by intensity calculations. Details of the different implementations of this polarization model are given in the preceding paper. The most useful was the single channel vibrationally extended (1)/(2) V 6 model which became progressively better at higher n (and L). Results of multichannel calculations for a selected set of transitions are also reported

  2. 1H and 15N resonance assignments of oxidized flavodoxin from Anacystis nidulans with 3D NMR

    International Nuclear Information System (INIS)

    Clubb, R.T.; Thanabal, V.; Wagner, G.; Osborne, C.

    1991-01-01

    Proton and nitrogen-15 sequence-specific nuclear magnetic resonance assignments have been determined for recombinant oxidized flavodoxin from Anacystis nidulans. Assignments were obtained by using 15 N- 1 H heteronuclear three-dimensional (3D) NMR spectroscopy on a uniformly nitrogen-15 enriched sample of the protein, pH 6.6, at 30C. For 165 residues, the backbone and a large fraction of the side-chain proton resonances have been assigned. Medium- and long-range NOE's have been used to characterize the secondary structure. In solution, flavodoxin consists of a five-stranded parallel β sheet involving residues 3-9, 31-37, 49-56, 81-89, 114-117, and 141-144. Medium-range NOE's indicate that presence of several helices. Several 15 N and 1 H resonances of the flavin mononucleotide (FMN) prosthetic group have been assigned. The FMN-binding site has been investigated by using polypeptide-FMN NOE's

  3. The threshold photoelectron spectrum of the geminal chloro-fluoro-ethene (1,1-C2H2FCl) isomer. Experiment and theory

    International Nuclear Information System (INIS)

    Locht, R; Leyh, B; Dehareng, D

    2014-01-01

    The threshold photoelectron spectrum (TPES) of 1,1-C 2 H 2 FCl has been measured for the first time using synchrotron radiation. It has been compared to the HeI PES obtained earlier (Tornow et al 1990 Chem. Phys. 146 115). Eight photoelectron bands have been observed at 10.22, 12.45, 13.28, 14.29, 14.99, 17.12, 17.67 and at 20.23 eV successively. Only the first three bands exhibit a rich and extensive vibrational structure. Their adiabatic ionization energies are measured and a detailed vibrational analysis is presented. The assignments of the electronic bands and of the vibrational wavenumbers were made by using ab initio quantum chemical calculations. These allowed us to provide the MO description of the eight electronic states in terms of ionization and double excitation. The good correlation between predicted vibrational wavenumbers and the experimental values provides a strong basis for the assignment of all the vibrational structures. (paper)

  4. Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.

    Science.gov (United States)

    Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S

    2013-06-01

    The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Torsional, Vibrational and Vibration-Torsional Levels in the S_{1} and Ground Cationic D_{0}^{+} States of Para-Fluorotoluene

    Science.gov (United States)

    Gardner, Adrian M.; Tuttle, William Duncan; Whalley, Laura E.; Claydon, Andrew; Carter, Joseph H.; Wright, Timothy G.

    2017-06-01

    The S_{1} electronic state and ground state of the cation of para-fluorotoluene (pFT) have been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy. Here we focus on the low wavenumber region where a number of "pure" torsional, fundamental vibrational and vibration-torsional levels are expected; assignments of observed transitions are discussed, which are compared to results of published work on toluene (methylbenzene) from the Lawrance group. The similarity in the activity observed in the excitation spectrum of the two molecules is striking. A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). J. R. Gascooke, E. A. Virgo, and W. D. Lawrance J. Chem. Phys., 143, 044313 (2015).

  6. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  7. Detailed 1H and 13C NMR spectral data assignment for two dihydrobenzofuran neolignans

    International Nuclear Information System (INIS)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M.

    2016-01-01

    In this work we present a complete proton ( 1 H) and carbon 13 ( 13 C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled 13 C ( 13 C{ 1 H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the 1 H and 13 C chemical shifts and showed good agreement with the trans configuration of the substituents at C 7 and C 8 . (author)

  8. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint

    Science.gov (United States)

    Liu, Chuang; Ye, Dong; Shi, Keke; Sun, Zhaowei

    2017-07-01

    A novel improved mixed H2/H∞ control technique combined with poles assignment theory is presented to achieve attitude stabilization and vibration suppression simultaneously for flexible spacecraft in this paper. The flexible spacecraft dynamics system is described and transformed into corresponding state space form. Based on linear matrix inequalities (LMIs) scheme and poles assignment theory, the improved mixed H2/H∞ controller does not restrict the equivalence of the two Lyapunov variables involved in H2 and H∞ performance, which can reduce conservatives compared with traditional mixed H2/H∞ controller. Moreover, it can eliminate the coupling of Lyapunov matrix variables and system matrices by introducing slack variable that provides additional degree of freedom. Several simulations are performed to demonstrate the effectiveness and feasibility of the proposed method in this paper.

  9. [Study on crystal growth and vibrational spectra of Yb(x) : KY(1-x) (WO4)2].

    Science.gov (United States)

    Liu, Jing-He; Zhang, Ying; Zhang, Li-Jie; Zeng, Fan-Ming; Wang, Cheng-Wei; Zhang, Xue-Jian

    2008-02-01

    Yb(x) : KY(1-x)W (x = 0.05)and KYbW crystals were grown by TSSG method. Both of the structure and spectral properties were compared. The condition for the crystal growth is: the rotation rate 10-15 r x min(-1), the pulling speed 1-2 d(-1), the growing period 10-15 d, cooling growing speed 0.05-0.1 degrees C x h(-1), and the cooling speed 20 degrees C x h(-1). X-ray powder diffraction analysis was performed for the crystal powder. They belong to beta-KYW structure with low thermal phase. The cell parameters of the two crystals were calculated, and they are respectively a1 = 1.063 nm, b1 = 1.034 nm, c1 = 0.755 nm, beta1 = 130.75 degrees, Z1 = 4 and a2 = 1.061 nm, b2 = 1.029 nm, c2 = 0.749 nm, beta2 = 130.65 degrees and Z2 = 4. The infrared spectrum and Raman spectrum of crystal were measured. The sample of Yb(x) : KY(1-x) W (x = 0.05) had stronger infrared absorption peaks at 925, 891, 840, 777 and 749 cm(-1), which were caused by stretching vibration. The sample of KYW had stronger infrared absorption peaks at 484 and 437 cm(-1) caused by bending vibration. The vibration modes were analysed and vibrational frequencies of vibratory activity was assigned. The two crystals had strong Raman activity. The vibration of WOOW and WOW exists from 200 to 1000 cm(-1).

  10. Vibrational spectra and structure of icosahedral anion of monocarba-closo-dodecaborane [CB11H12]- and its nido-derivative: [CB10H13]-

    International Nuclear Information System (INIS)

    Kononova, E.G.; Bukalov, S.S.; Lejtes, L.A.; Lysenko, K.A.; Ol'shevskaya, V.A.

    2003-01-01

    Raman and IR spectra of cesium salts of monocarborane anions [closo-CB 11 H 12 ] - and [nido-CB 10 H 13 ] - were recorded, assignment of frequencies being provided. Quantum-chemical calculation of geometry of the closo-polyhedrons [B 12 H 12 ] 2- and [CB 11 H 12 ] - along with that of frequencies and forms of normal vibrations of the latter was made. Comparison of structural and spectral characteristics in the series of isoelectronic closo-polyhedrons [B 12 H 12 ] 2- , [CB 11 H 12 ] - and p-C 2 B 10 H 12 , as well as those of the closo- and nido structures, was made [ru

  11. Inelastic neutron scattering studies of TbNiAlH sub 1 sub . sub 4 and UNiAlH sub 2 sub . sub 0 hydrides

    CERN Document Server

    Bordallo, H N; Kolomiets, A V; Kalceff, W; Nakotte, H; Eckert, J

    2003-01-01

    The optical vibrations of hydrogen in TbNiAlH sub 1 sub . sub 4 and UNiAlH sub 2 sub . sub 0 were investigated by means of inelastic neutron scattering. The experimental data were analysed, including multiphonon neutron scattering contributions, calculated in an isotropic harmonic approximation. At least two fundamental H optical peaks were observed in TbNiAlH sub 1 sub . sub 4 , and were assigned to the vibrational modes of hydrogen atoms occupying different interstitial sites in the metal sublattice. The high-energy part of the UNiAlH sub 2 sub . sub 0 spectra is characterized by strong anharmonicity, and a broad fundamental band. The latter can be accounted for by a large dispersion of phonon modes due to the strong H-H interactions, and/or different metal-hydrogen force constants, which may originate from different metal atoms surrounding the H atoms in the unit cell.

  12. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    Science.gov (United States)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  13. Comparative analysis of the vibrational structure of the absorption spectra of acrolein in the excited ( S 1) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2012-04-01

    The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.

  14. A new vibrational level of the H2+ molecular ion

    International Nuclear Information System (INIS)

    Carbonell, J.; Lazauskas, R.; Delande, D.; Hilico, L.; Kilic, S.; Hilico, L.; Kilic, S.

    2003-01-01

    A new vibrational level of the molecular ion H 2 + with binding energy of 1.09 x 10 -9 a.u. ∼ 30 neV below the first dissociation limit is predicted, using highly accurate numerical non-relativistic quantum calculations, which go beyond the Born-Oppenheimer approximation. It is the first-excited vibrational level v=1 of the 2pσ u electronic state, antisymmetric with respect to the exchange of the two protons, with orbital angular momentum L=0. It manifests itself as a huge p - H scattering length of a = 750 ± 5 Bohr radii. (authors)

  15. Microwave, infrared and Raman spectra, adjusted r{sub 0} structural parameters, conformational stability, and vibrational assignment of cyclopropylfluorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Panikar, Savitha S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Guirgis, Gamil A.; Eddens, Matthew T.; Dukes, Horace W. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Conrad, Andrew R.; Tubergen, Michael J. [Department of Chemistry, Kent State University, Kent, OH 44242 (United States); Gounev, Todor K. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Durig, James R., E-mail: durigj@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2013-03-29

    Highlights: ► The most stable gauche conformer has been identified from microwave spectra. ► Enthalpy difference has been determined between the two forms. ► Adjusted r{sub 0} structures were obtained for the gauche form. ► Ab initio calculations were performed for the two conformers. - Abstract: FT-microwave, infrared spectra of gas and Raman spectra of liquid for cyclopropylfluorosilane, c-C{sub 3}H{sub 5}SiH{sub 2}F have been recorded. 51 transitions for the {sup 28}Si, {sup 29}Si, and {sup 30}Si isotopomers have been assigned for the gauche conformer. Enthalpy differences in xenon solution by variable temperature infrared spectra between the more stable gauche and lesser stable cis form gave 109 ± 9 cm{sup −1}. From the microwave rotational constants for the three isotopomers ({sup 28}Si, {sup 29}Si, {sup 30}Si) combined with structural parameters predicted from MP2(full)/6-311+G(d, p) calculations, adjusted r{sub 0} structural parameters were obtained for the gauche conformer. The heavy atom distances (Å): Si–C{sub 2} = 1.836(3); C{sub 2}–C{sub 4} = 1.525(3); C{sub 2}–C{sub 5} = 1.519(3); C{sub 4}–C{sub 5} = 1.494(3); Si–F = 1.594(3) and angles (°): ∠CSiF = 111.2(5); ∠SiC{sub 2}C{sub 4} = 117.5(5); ∠SiC{sub 2}C{sub 5} = 119.2(5). To support the vibrational assignments, MP2(full)/6-31G(d) calculations were carried out. Results are discussed and compared to the corresponding properties of some similar molecules.

  16. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete "1H and "1"3C chemical shift assignments

    International Nuclear Information System (INIS)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G.; Oliveira, Debora R. de; Braz-Filho, Raimundo

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the "1H and "1"3C NMR spectra. (author)

  17. Refinements in the vibration frequencies of H3+ and D3+

    International Nuclear Information System (INIS)

    Carney, G.D.

    1980-01-01

    Refinements in vibration intervals of the order of 1 per cent are reported for H 3 + and D 3 + . These improved intervals result from the addition of polarization terms to the electronic wavefunction previously obtained with a complete configuration-interaction treatment of electron correlation using a 21 floating gaussian lobe basis. Twelve additional floating gaussian lobe orbitals were used to construct 78 additional configuration-interaction functions. Positions and exponents of these additional floating gaussian lobe orbitals were carefully chosen to allow for polarization of the correlated wavefunctions. Calculated vibrational state-averaged and observed geometries for H 3 + agree to within 0.01 A; refined fundamental frequencies are νsub(A) = 3220.48 and νsub(E) = 2545.99 cm -1 for H 3 + , and νsub(A) = 2332.94 and νsub(E) = 1848.12 cm -1 for D 3 + . Einstein coefficients for spontaneous emission of radiation from infrared active states of H 3 + and D 3 + are reported, and an alternative to the Carney-Porter method of vibration analysis is used to confirm the accuracy of their method for axial molecules such as H 3 + . (author)

  18. NH (X 3 summation -, v=1--3) formation and vibrational relaxation in electron-irradiated Ar/N2/H2 mixtures

    International Nuclear Information System (INIS)

    Dodd, J.A.; Lipson, S.J.; Flanagan, D.J.; Blumberg, W.A.M.; Person, J.C.; Green, B.D.

    1991-01-01

    Measurements of the dynamics of NH(X 3 summation - , v =1--3), created in electron-irradiated N 2 /H 2 and Ar/N 2 /H 2 mixtures, have been performed. Time-resolved Fourier spectroscopy was used to observe NH(v→v--1) vibrational fundamental band emission. Time-dependent populations were then determined by spectral fitting. Subsequent kinetic fitting of these populations using a single-quantum relaxation model and a power-law dependence of k v on v yielded the following NH(v =1--3) relaxation rate constants (units of 10 -14 cm 3 s -1 ): k v=1 (N 2 )=1.2±0.5, k v=2 (N 2 )=3.8±1.5, k v=3 (N 2 )=7.5±2.5; k v=1 (Ar)=0.2±0.1, k v=2 (Ar)=0.5±0.2, k v=3 (Ar)=0.8±0.3; k v=1 (H 2 )≤50, k v=2 (H 2 )≤100, k v=3 (H 2 )≤150. In addition, the N 2 /H 2 data provided a measurement of the nascent excited vibrational state distribution resulting from the reaction N( 2 D)+H 2 →NH(X,v)+H. The ratio NH(1):NH(2):NH(3) was found to be 1.0:0.97:0.81 (±0.28 in each value). Comparison of the observed nascent distribution with that of a statistical model suggests that the ratio NH(0):NH(1)=0.47. Using this derived distribution, we find the average product level left-angle v right-angle =1.6, and the fraction of the available product energy in vibration left-angle f v right-angle =0.44

  19. Sequence-specific assignments in the 1H NMR spectrum of the human inflammatory protein C5a

    International Nuclear Information System (INIS)

    Zuiderweg, E.R.P.; Mollison, K.W.; Henkin, J.; Carter, G.W.

    1988-01-01

    Full sequence-specific assignments for the 1 H NMR lines of the backbone protons of the human complement factor C5a are described and documented. The results were obtained by largely following the methodology developed by Wuethrich et al. Assignments for the majority of the amino acid side chain protons were obtained by using a comparison of double- and triple-quantum-filtered two-dimensional correlated experiments together with the analysis of relayed coherence transfer spectra. The assignments provide the basis for the determination of the thus far unknown three-dimensional structure of C5a from nuclear Overhauser enhancement distance constraints

  20. Vibrational zero point energy for H-doped silicon

    Science.gov (United States)

    Karazhanov, S. Zh.; Ganchenkova, M.; Marstein, E. S.

    2014-05-01

    Most of the studies addressed to computations of hydrogen parameters in semiconductor systems, such as silicon, are performed at zero temperature T = 0 K and do not account for contribution of vibrational zero point energy (ZPE). For light weight atoms such as hydrogen (H), however, magnitude of this parameter might be not negligible. This Letter is devoted to clarify the importance of accounting the zero-point vibrations when analyzing hydrogen behavior in silicon and its effect on silicon electronic properties. For this, we estimate the ZPE for different locations and charge states of H in Si. We show that the main contribution to the ZPE is coming from vibrations along the Si-H bonds whereas contributions from other Si atoms apart from the direct Si-H bonds play no role. It is demonstrated that accounting the ZPE reduces the hydrogen formation energy by ˜0.17 eV meaning that neglecting ZPE at low temperatures one can underestimate hydrogen solubility by few orders of magnitude. In contrast, the effect of the ZPE on the ionization energy of H in Si is negligible. The results can have important implications for characterization of vibrational properties of Si by inelastic neutron scattering, as well as for theoretical estimations of H concentration in Si.

  1. 1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2

    Science.gov (United States)

    Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander

    2011-01-01

    A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904

  2. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure

    Science.gov (United States)

    Dimitrić Marković, Jasmina M.; Marković, Zoran S.; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm -1 wavenumber region. This region involves a combination of the C dbnd O, C2 dbnd C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm -1 range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm -1 is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy.

  3. Vibrational inelasticity in H2 collisions with He and Li+

    International Nuclear Information System (INIS)

    Raczkowski, A.W.

    1975-09-01

    The partially averaged version of classical S-matrix theory was applied to three-dimensional collisions of H 2 with He and Li + . For H 2 -Li + , cross-sections for the de-excitation of H 2 from (n 1 ,j 1 ) = (1,0) to the ground vibrational manifold were computed at a total energy of 1.2 eV and compared to previously done coupled channel calculations of Schaefer and Lester. The agreement is very good. For H 2 -He, the Kutzelnigg-Tsapline interaction potential was extended to small atom-diatom separations, the ab initio points were then fit to an analytic form, and cross sections for the de-excitation of H 2 from the states (n 1 ,j 1 ), n 1 = 1, j 1 = 0,2,4 to the ground vibrational manifold were computed at total energies of .9, 1.1, 1.3 and 1.5 eV. For comparison, coupled channel calculations were also performed on the system at the same energies. The agreement was poorer than in the H 2 -Li + case, for identifiable reasons. The cross sections were used to compute rate constants and relaxation times for the H 2 -He system. Comparison of these results with the results of experiment and of other calculations shows good agreement, certainly within the expected errors. (7 figs., 30 refs., 3 tables)

  4. 1H NMR studies of human lysozyme: Spectral assignment and comparison with hen lysozyme

    International Nuclear Information System (INIS)

    Redfield, C.; Dobson, C.M.

    1990-01-01

    Complete main-chain (NH and αCH) 1 H NMR assignments are reported for the 130 residues of human lysozyme, along with extensive assignments for side-chain protons. Analysis of 2-D NOESY experiments shows that the regions of secondary structure for human lysozyme in solution are essentially identical with those found previously in a similar study of hen lysozyme and are in close accord with the structure of the protein reported previously from x-ray diffraction studies in the crystalline state. Comparison of the chemical shifts, spin-spin coupling constants, and hydrogen exchange behavior are also consistent with closely similar structures for the two proteins in solution. In a number of cases specific differences in the NMR parameters between hen and human lysozymes can be correlated with specific differences observed in the crystal structures

  5. Detailed {sup 1}H and {sup 13}C NMR spectral data assignment for two dihydrobenzofuran neolignans

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Talita C.T.; Dias, Herbert J.; Crotti, Antônio E.M., E-mail: millercrotti@ffclrp.usp.br [Universidade de São Paulo (USP), Ribeirão Preto, SP (Brazil). Faculdade de Filosofia, Ciências e Letras. Departamento de Química

    2016-07-01

    In this work we present a complete proton ({sup 1}H) and carbon 13 ({sup 13}C) nuclear magnetic resonance (NMR) spectral analysis of two synthetic dihydrofuran neolignans (±)-trans-dehydrodicoumarate dimethyl ester and (±)-trans-dehydrodiferulate dimethyl ester. Unequivocal assignments were achieved by 1 H NMR, proton decoupled {sup 13}C ({sup 13}C{"1H}) NMR spectra, gradient-selected correlation spectroscopy (gCOSY), J-resolved, gradient-selected heteronuclear multiple quantum coherence (gHMQC), gradient-selected heteronuclear multiple bond coherence (gHMBC) and nuclear Overhauser effect spectroscopy (NOESY) experiments. All hydrogen coupling constants were measured, clarifying all the hydrogen signals multiplicities. Computational methods were also used to simulate the {sup 1}H and {sup 13}C chemical shifts and showed good agreement with the trans configuration of the substituents at C{sub 7} and C{sub 8}. (author)

  6. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I-Energy levels and transition wavenumbers for H217O and H218O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Carleer, Michel R.; Csaszar, Attila G.; Gamache, Robert R.; Hodges, Joseph T.; Jenouvrier, Alain; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Daumont, Ludovic; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Mikhailenko, Semen N.

    2009-01-01

    This is the first part of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependence and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. The present article contains energy levels and data for line positions of the singly substituted isotopologues H 2 17 O and H 2 18 O. The procedure and code MARVEL, standing for measured active rotational-vibrational energy levels, is used extensively in all stages of determining the validated levels and lines and their self-consistent uncertainties. The spectral regions covered for both isotopologues H 2 17 O and H 2 18 O are 0-17125cm -1 . The energy levels are checked against ones determined from accurate variational calculations. The number of critically evaluated and recommended levels and lines are, respectively, 2687 and 8614 for H 2 17 O, and 4839 and 29 364 for H 2 18 O. The extensive lists of MARVEL lines and levels obtained are deposited in the Supplementary Material, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. A distinguishing feature of the present evaluation of water spectroscopic data is the systematic use of all available experimental data and validation by first-principles theoretical calculations.

  7. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    International Nuclear Information System (INIS)

    Fry-Petit, A. M.; Sheckelton, J. P.; McQueen, T. M.; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-01-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn 2 Mo 3 O 8 , this approach allows direct assignment of the constrained rotational mode of Mo 3 O 13 clusters and internal modes of MoO 6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems

  8. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Xiao, Yiling; Nishiyama, Yusuke; Long, Fei; Matsuda, Isamu; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  9. H3+: Ab initio calculation of the vibration spectrum

    International Nuclear Information System (INIS)

    Carney, G.D.; Porter, R.N.

    1976-01-01

    The vibration spectrum of H 3 + is calculated from the representation of a previously reported [J. Chem Phys. 60, 4251 (1974)] ab initio potential-energy surface in a fifth degree Simons--Parr--Finlan (SPF) expansion. Morse- and harmonic-oscillator basis functions are used to describe the motions of the three oscillators and the Harris--Engerholm--Gwinn quadrature technique is used to obtain matrix elements of the Hamiltonian in the basis of vibrational configurations. Our variational method is thus analogous to configuration--interaction calculations for electronic states. The ground state is found to have a zero-point energy of 4345 cm -1 and a vibrationally averaged geometry of R 1 =R 2 =0.91396 A, theta=60.0012degree, where theta is the angle between the two equivalent bonds. The transition frequencies for the E and A 1 fundamentals are nu-bar/sub E/=2516 cm -1 and nu-bar/sub A/=3185 cm -1 and those for the corresponding first overtones of the bending mode are 2nu-bar/sub E/=5004 +- 4 cm -1 and 2nu-bar/sub A/=4799 cm -1 . The first overtone of the breathing mode is 6264 cm -1 . The first-excited A 1 vibration state is metastable with a dipole--radiation lifetime of 3 sec. Transition frequencies, Einstein coefficients, and lifetimes are reported for a total of 21 transitions. Analysis of results for Dunham number and normal-coordinate expansions in comparison with those for SPF expansion show the latter to be superior for ab initio vibrational calculations. A scheme for possible direct measurement of the fundamental A 1 and E vibrational bands is suggested

  10. Sequence-specific 1H-NMR assignments for the aromatic region of several biologically active, monomeric insulins including native human insulin.

    Science.gov (United States)

    Roy, M; Lee, R W; Kaarsholm, N C; Thøgersen, H; Brange, J; Dunn, M F

    1990-06-12

    The aromatic region of the 1H-FT-NMR spectrum of the biologically fully-potent, monomeric human insulin mutant, B9 Ser----Asp, B27 Thr----Glu has been investigated in D2O. At 1 to 5 mM concentrations, this mutant insulin is monomeric above pH 7.5. Coupling and amino acid classification of all aromatic signals is established via a combination of homonuclear one- and two-dimensional methods, including COSY, multiple quantum filters, selective spin decoupling and pH titrations. By comparisons with other insulin mutants and with chemically modified native insulins, all resonances in the aromatic region are given sequence-specific assignments without any reliance on the various crystal structures reported for insulin. These comparisons also give the sequence-specific assignments of most of the aromatic resonances of the mutant insulins B16 Tyr----Glu, B27 Thr----Glu and B25 Phe----Asp and the chemically modified species des-(B23-B30) insulin and monoiodo-Tyr A14 insulin. Chemical dispersion of the assigned resonances, ring current perturbations and comparisons at high pH have made possible the assignment of the aromatic resonances of human insulin, and these studies indicate that the major structural features of the human insulin monomer (including those critical to biological function) are also present in the monomeric mutant.

  11. Vibrational spectra of 1-hydroxy- and 1,4-dihydroxyanthraquinones and their magnesium chelate complexes. I. Isotopic effects of OH/OD and 24Mg/26Mg substitutions

    International Nuclear Information System (INIS)

    Kirszenbaum, Marek

    1977-01-01

    The vibrational spectra of 1-hydroxy- and 1,4-dihydroxyanthraquinones, their deuterated derivatives and their 24 Mg/ 26 Mg chelate complexes are examined in the spectral region 1700-250cm -1 . The study of deuteroxyanthraquinones allow an assignment of the OH/OD group vibrations and show the multiple coupling of the delta OH vibrations with the vCC and delta CH quinonic vibrations. These results lead to a modification of some spectral assignments of magnesium chelate complexe of 1-OH-AQ. The isotopic 24 Mg/ 26 Mg substitution enables the chelate ring vibrations which depend on the motions of the magnesium atom to be observed. The vC=O and vC-O vibrations frequencies of magnesium chelate complexe [Mg(1,4-O 2 -AQ)]sub(n) show an important difference of the chelate ring electronic state in comparison of those of 1,4-(OH) 2 -AQ. The discussion of the infrared and Raman spectra in the Mg-O vibrations region lead to the conclusion that the configuration of oxygens arround the magnesium is tetrahedral [fr

  12. Spectroscopic investigation (FT-IR and FT-Raman), vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-hydroxy-4,5,8-tris(4-methoxyphenyl) anthraquinone

    Science.gov (United States)

    Renjith, R.; Sheena Mary, Y.; Tresa Varghese, Hema; Yohannan Panicker, C.; Thiemann, Thies; Shereef, Anas; Al-Saadi, Abdulaziz A.

    2015-12-01

    FT-IR and FT-Raman spectra of 1-hydroxy-4,5,8-tris(4-methoxyphenyl)anthraquinone were recorded and analyzed. The vibrational wavenumbers were computed using DFT quantum chemical calculations. The data obtained from wavenumber calculations were used to assign the vibrational bands obtained experimentally. A detailed molecular picture of the title compound and its interactions were obtained from NBO analysis. From the MEP plot it is clear that the negative electrostatic potential regions are mainly localized over carbonyl group. There is some evidence of a region of negative electrostatic potential due to π-electron density of the benzo groups. Molecular docking study shows that methoxy groups attached to the phenyl rings and hydroxyl group are crucial for binding and the title compound might exhibit inhibitory activity against PI3K and may act as an anti-neoplastic agent.

  13. Comparison of force fields and calculation methods for vibration intervals of isotopic H+3 molecules

    International Nuclear Information System (INIS)

    Carney, G.D.; Adler-Golden, S.M.; Lesseski, D.C.

    1986-01-01

    This paper reports (a) improved values for low-lying vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 calculated using the variational method and Simons--Parr--Finlan representations of the Carney--Porter and Dykstra--Swope ab initio H + 3 potential energy surfaces, (b) quartic normal coordinate force fields for isotopic H + 3 molecules, (c) comparisons of variational and second-order perturbation theory, and (d) convergence properties of the Lai--Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H + 3 , H 2 D + , D 2 H + , and D + 3 for these potential surfaces are 6.9 (Carney--Porter) and 1.2 cm -1 (Dykstra--Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10 cm -1 for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed ''t'' coordinate Hamiltonian for these molecules, except in the case of H 2 D +

  14. Electric field dependent structural and vibrational properties of the Si(100)-H(2 x 1) surface and its implications for STM induced hydrogen desorption

    DEFF Research Database (Denmark)

    Stokbro, Kurt

    1999-01-01

    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 x 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic scanning...

  15. Unimolecular HCl and HF elimination reactions of 1,2-dichloroethane, 1,2-difluoroethane, and 1,2-chlorofluoroethane: assignment of threshold energies.

    Science.gov (United States)

    Duncan, Juliana R; Solaka, Sarah A; Setser, D W; Holmes, Bert E

    2010-01-21

    The recombination of CH(2)Cl and CH(2)F radicals generates vibrationally excited CH(2)ClCH(2)Cl, CH(2)FCH(2)F, and CH(2)ClCH(2)F molecules with about 90 kcal mol(-1) of energy in a room temperature bath gas. New experimental data for CH(2)ClCH(2)F have been obtained that are combined with previously published studies for C(2)H(4)Cl(2) and C(2)H(4)F(2) to define reliable rate constants of 3.0 x 10(8) (C(2)H(4)F(2)), 2.4 x 10(8) (C(2)H(4)Cl(2)), and 1.9 x 10(8) (CH(2)ClCH(2)F) s(-1) for HCl and HF elimination. The product branching ratio for CH(2)ClCH(2)F is approximately 1. These experimental rate constants are compared to calculated statistical rate constants (RRKM) to assign threshold energies for HF and HCl elimination. The calculated rate constants are based on transition-state models obtained from calculations of electronic structures; the energy levels of the asymmetric, hindered, internal rotation were directly included in the state counting to obtain a more realistic measure for the density of internal states for the molecules. The assigned threshold energies for C(2)H(4)F(2) and C(2)H(4)Cl(2) are both 63 +/- 2 kcal mol(-1). The threshold energies for CH(2)ClCH(2)F are 65 +/- 2 (HCl) and 63 +/- 2 (HF) kcal mol(-1). These threshold energies are 5-7 kcal mol(-1) higher than the corresponding values for C(2)H(5)Cl or C(2)H(5)F, and beta-substitution of F or Cl atoms raises threshold energies for HF or HCl elimination reactions. The treatment presented here for obtaining the densities of states and the entropy of activation from models with asymmetric internal rotations with high barriers can be used to judge the validity of using a symmetric internal-rotor approximation for other cases. Finally, threshold energies for the 1,2-fluorochloroethanes are compared to those of the 1,1-fluorochloroethanes to illustrate substituent effects on the relative energies of the isomeric transition states.

  16. Hyperfine-resolved transition frequency list of fundamental vibration bands of H35Cl and H37Cl

    Science.gov (United States)

    Iwakuni, Kana; Sera, Hideyuki; Abe, Masashi; Sasada, Hiroyuki

    2014-12-01

    Sub-Doppler resolution spectroscopy of the fundamental vibration bands of H35Cl and H37Cl has been carried out from 87.1 to 89.9 THz. We have determined the absolute transition frequencies of the hyperfine-resolved R(0) to R(4) transitions with a typical uncertainty of 10 kHz. We have also yielded six molecular constants for each isotopomer in the vibrational excited state, which reproduce the determined frequencies with a standard deviation of about 10 kHz.

  17. Application of comparative vibrational spectroscopic and mechanistic studies in analysis of fisetin structure.

    Science.gov (United States)

    Dimitrić Marković, Jasmina M; Marković, Zoran S; Milenković, Dejan; Jeremić, Svetlana

    2011-12-01

    This paper addresses experimental and theoretical research in fisetin (2-(3,4-dihydroxyphenyl)-3,7-dihydroxychromen-4-one) structure by means of experimental IR and Raman spectroscopies and mechanistic calculations. Density Functional Theory calculations, with M05-2X functional and the 6-311+G (2df, p) basis set implemented in the Gaussian 09 package, are performed with the aim to support molecular structure, vibrational bands' positions and their intensities. Potential energy distribution (PED) values and the description of the largest vibrational contributions to the normal modes are calculated. The most intense bands appear in the 1650-1500 cm(-1) wavenumber region. This region involves a combination of the CO, C2C3 and C-C stretching vibrational modes. Most of the bands in the 1500-1000 cm(-1) range involve C-C stretching, O-C stretching and in-plane C-C-H, C-O-H, C-C-O and C-C-C bending vibrations of the rings. The region below 1000 cm(-1) is characteristic to the combination of in plane C-C-C-H, H-C-C-H, C-C-C-C, C-C-O-C and out of plane O-C-C-C, C-C-O-C, C-C-C-C torsional modes. The Raman spectra of baicalein and quercetin were used for qualitative comparison with fisetin spectrum and verification of band assignments. The applied detailed vibrational spectral analysis and the assignments of the bands, proposed on the basis of fundamentals, reproduced the experimental results with high degree of accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Structure, vibrations and quantum chemical investigations of hydrogen bonded complex of bis(1-hydroxy-2-methylpropan-2-aminium)selenate

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.

    2017-04-01

    The hydrogen bonded molecular complex bis(1-hydroxy-2-methylpropan-2-aminium)selenate (C8H24N2O6Se) has been prepared by the reaction of 2-amino-2-methyl propanol and selenic acid. The X-ray diffraction analysis revealed that the intermolecular proton transfer from selenic acid (SeO4H2) to 2-amino-2-methylpropanol results in the formation of bis(1-hydroxy-2-methylpropan-2-aminium)selenate (HMPAS) salt and the fragments are connected through H-bonding and ion pairing. The N-H⋯O and O-H⋯O interactions between 2-amino-2-methylpropanol and selenic acid determine the supramolecular arrangement in three-dimensional space. The salt crystallises in the space group P121/n1 of monoclinic system. The complete vibrational assignments of HMPAS have been performed by FTIR and FT-Raman spectroscopy. The experimental data are correlated with the structural properties namely the energy, thermodynamic parameters, atomic charges, hybridization concepts and vibrational frequencies determined by quantum chemical studies performed with B3LYP method using 6-311++G*, 6-31+G* and 6-31G** basis sets.

  19. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    International Nuclear Information System (INIS)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  20. N-(4-Nitrobenzoyl)-N'-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: Synthesis, spectroscopic characterization, X-ray structure and DFT studies

    Science.gov (United States)

    Arslan, N. Burcu; Kazak, Canan; Aydın, Fatma

    2012-04-01

    The title molecule (C19H17N5O4S·H2O) was synthesized and characterized by IR-NMR spectroscopy, MS and single-crystal X-ray diffraction. The molecular geometry, vibrational frequencies and gauge-independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method with 6-31G(d) basis set, and compared with the experimental data. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results show that the optimized geometries can well reproduce the crystal structural parameters, and the theoretical vibrational frequencies and 1H and 13C NMR chemical shift values show good agreement with experimental data. To determine conformational flexibility, the molecular energy profile of the title compound was obtained with respect to the selected torsion angle, which was varied from -180° to +180° in steps of 10°. Besides, molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and thermodynamic properties of the compound were investigated by theoretical calculations.

  1. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    Directory of Open Access Journals (Sweden)

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  2. Evaluation of the structural properties of powerful pesticide dieldrin in different media and their complete vibrational assignment

    Science.gov (United States)

    Castillo, María V.; Iramain, Maximiliano A.; Davies, Lilian; Manzur, María E.; Brandán, Silvia Antonia

    2018-02-01

    Dieldrin was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet-Visible (UV-Visible) spectroscopies. The structural and vibrational properties for dieldrin in gas phase and in aqueous solution were computed combining those experimental spectra with hybrids B3LYP and WB97XD calculations by using the 6-31G* and 6-311++G** basis sets. Here, the experimental available Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) for dieldrin were also used and compared with those predicted by calculations. The B3LYP/6-311++G** method generates the most stable structures while the results have demonstrated certain dependence of the volume and dipole moment values with the method, size of the basis set and, with the studied media. The lower solvation energy for dieldrin (-32.94 kJ/mol) is observed for the higher contraction volume (-2.4 Å3) by using the B3LYP/6-31G* method. The NBO studies suggest a high stability of dieldrin in gas phase by using the WB97XD/6-31G* method due to the n→π* and n*→π* interactions while the AIM analyses support this high stability by the C18⋯H26 and C14⋯O7 contacts. The different topological properties observed in the R5 ring suggest that probably this ring plays a very important role in the toxics properties of dieldrin. The frontier orbitals show that when dieldrin is compared with other toxics substances the reactivity increases in the following order: CO < STX < dieldrin < C6Cl6 assigned to the 75 vibration normal modes and their harmonic force fields and force constants for first time are reported for dieldrin. The

  3. Other compounds isolated from Simira glaziovii and the 1H and 13C NMR chemical shift assignments of new 1-epi-castanopsol

    International Nuclear Information System (INIS)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino; Braz-Filho, Raimundo; Carvalho, Mario G. de

    2012-01-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D 1 H, 13 C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of 1 H and 13 C NMR chemical shift assignments. (author)

  4. Complete 1H and 13C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    International Nuclear Information System (INIS)

    Johann, Susana; Smania Junior, Artur; Branco, Alexsandro

    2007-01-01

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ( 1 H NMR, { 1 H} -13 C NMR, and APT -13 C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete 1 H and 13 C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  5. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  6. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    International Nuclear Information System (INIS)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-01-01

    On the basis of an analysis of two-dimensional 1 H NMR spectra, the complete sequence-specific 1 H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four β-strands that form a single antiparallel β-sheet and two well-defined α-helices. There are two stretches of extended backbone structure, one of which contains the active site His 15 . The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies

  7. Monothiodibenzoylmethane: Structural and vibrational assignments

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Gorski, Alexander; Posokhov, Yevgen

    2007-01-01

    vibrational spectra were compared with theoretical transitions obtained with B3LYP/cc-pVTZ density functional theory (DFT). The results leave no doubt that the stable ground state configuration of TDBM corresponds to the intramolecularly hydrogen bonded enol form (e-CCC), and that the photoproduct corresponds...

  8. Total assignment of 1 H and 13 C NMR of Cordiachrome C, a terpenoid benzoquinone from Cordia trichotoma

    International Nuclear Information System (INIS)

    Alencar, Jane Eire; Pessoa, Otilia Deusdenia Loiola; Lemos, Tlema Leda Gomes de; Silveira, Edilberto Rocha; Braz Filho, Raimundo

    1999-01-01

    1 D and 2 D NMR techniques were applied for establishing of the complete assignment of hydrogen and carbon-13 NMR of cordiachrome C. Th results were also used to confirm 1 H NMR data already published, as well as to define the relative stereochemistry, which has not been completely established for cordiachrome C, previously isolated from C. millenii

  9. Complete {sup 1}H and {sup 13}C NMR structural assignments for a group of four goyazensolide-type furanoheliangolides

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Carolina Ferreira; Silva, Aline Nazare; Matos, Priscilla Mendonca; Silva, Eder Henrique da; Heleno, Vladimir Constantino Gomes [Universidade de Franca, Franca, SP (Brazil). Nucleo de Pesquisas em Ciencias Exatas e Tecnologicas; Lopes, Norberto Peporine; Lopes, Joao Luis Callegari [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas de Ribeirao Preto. Dept. de Quimica e Fisica; Sass, Daiane Cristina, E-mail: vheleno_05@yahoo.com.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Quimica

    2012-07-01

    Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. {sup 1}H NMR, {sup 13}C NMR {l_brace}{sup 1}H{r_brace}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables (author)

  10. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Nishiyama, Yusuke; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  11. Nano-Mole Scale Side-Chain Signal Assignment by 1H-Detected Protein Solid-State NMR by Ultra-Fast Magic-Angle Spinning and Stereo-Array Isotope Labeling

    KAUST Repository

    Wang, Songlin

    2015-04-09

    We present a general approach in 1H-detected 13C solid-state NMR (SSNMR) for side-chain signal assignments of 10-50 nmol quantities of proteins using a combination of a high magnetic field, ultra-fast magic-angle spinning (MAS) at ~80 kHz, and stereo-array-isotope-labeled (SAIL) proteins [Kainosho M. et al., Nature 440, 52–57, 2006]. First, we demonstrate that 1H indirect detection improves the sensitivity and resolution of 13C SSNMR of SAIL proteins for side-chain assignments in the ultra-fast MAS condition. 1H-detected SSNMR was performed for micro-crystalline ubiquitin (~55 nmol or ~0.5mg) that was SAIL-labeled at seven isoleucine (Ile) residues. Sensitivity was dramatically improved by 1H-detected 2D 1H/13C SSNMR by factors of 5.4-9.7 and 2.1-5.0, respectively, over 13C-detected 2D 1H/13C SSNMR and 1D 13C CPMAS, demonstrating that 2D 1H-detected SSNMR offers not only additional resolution but also sensitivity advantage over 1D 13C detection for the first time. High 1H resolution for the SAIL-labeled side-chain residues offered reasonable resolution even in the 2D data. A 1H-detected 3D 13C/13C/1H experiment on SAIL-ubiquitin provided nearly complete 1H and 13C assignments for seven Ile residues only within ~2.5 h. The results demonstrate the feasibility of side-chain signal assignment in this approach for as little as 10 nmol of a protein sample within ~3 days. The approach is likely applicable to a variety of proteins of biological interest without any requirements of highly efficient protein expression systems.

  12. The localized vibrations of H-H-, D-D- and H-D- pairs in KCl, KBr, KI, RbCl and NaCl

    International Nuclear Information System (INIS)

    Robert, R.

    1974-01-01

    The localized vibrational modes of H - H - , D - D - and H - D - pairs in KCl, KBr, KI, RbCl and NaCl were studied for different pair configurations. The measured frequencies of the infrared active modes were found to be in good agreement with a model of two coupled harmonic oscillators. The line width for different modes in the salts studied is discussed. The temperature dependence for the transversal modes T 1 and T 2 of the line width for the H - H - pairs in KCl indicates that the broadening of these lines is due to the 'decomposition mechanism', that generates two phonons. The generated phonons due to the decay of the localized in phase mode are: -one acustic phonon of the lattice, -one localized phonon that corresponds to the out of phase vibration of the H - H - pair. The general properties, as the Ivey law and several particulars of the properties in the alkali-halides studied are presented [pt

  13. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete 1H and 13C chemical shift assignments.

    Science.gov (United States)

    Almeida, Macia C S DE; Souza, Luciana G S; Ferreira, Daniele A; Pinto, Francisco C L; Oliveira, Débora R DE; Santiago, Gilvandete M P; Monte, Francisco J Q; Braz-Filho, Raimundo; Lemos, Telma L G DE

    2017-01-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the 1H and 13C NMR spectra.

  14. The new 3-(tert-butyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine: Experimental and computational studies

    Science.gov (United States)

    Cuenú, Fernando; Muñoz-Patiño, Natalia; Torres, John Eduard; Abonia, Rodrigo; Toscano, Rubén A.; Cobo, J.

    2017-11-01

    The molecular and supramolecular structure of the title compound, 3-(tertbutyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine (2NPz) from the single crystal X-ray diffraction (SC-XRD) and spectroscopic data analysis is reported. The computational analysis of the structure, geometry optimization, vibrational frequencies, nuclear magnetic resonance and UV-Vis is also described and compared with experimental data. Satisfactory theoretical aspects were made for the molecule using density functional theory (DFT), with B3LYP and B3PW91 functionals, and Hartree-Fock (HF), with 6-311++G(d,p) basis set, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA 4 software, vibrational frequencies were assigned in terms of the potential energy distribution while, with the GaussSum software, the percentage contribution of the frontier orbitals at each transition of the electronic absorption spectrum was established. The obtained results indicated that optimized geometry could well reflect the molecular structural parameters from SC-XRD. Theoretical data obtained for the vibrational analysis and NMR spectra are consistent with experimental data.

  15. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  17. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    Science.gov (United States)

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  18. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  19. Complete 1H NMR assignments of pyrrolizidine alkaloids and a new eudesmanoid from Senecio polypodioides.

    Science.gov (United States)

    Villanueva-Cañongo, Claudia; Pérez-Hernández, Nury; Hernández-Carlos, Beatriz; Cedillo-Portugal, Ernestina; Joseph-Nathan, Pedro; Burgueño-Tapia, Eleuterio

    2014-05-01

    Chemical investigation of the aerial parts of Senecio polypodioides lead to the isolation of the new eudesmanoid 1β-angeloyloxyeudesm-7-ene-4β,9α-diol (1) and the known dirhamnosyl flavonoid lespidin (3), while from roots, the known 7β-angeloyloxy-1-methylene-8α-pyrrolizidine (5) and sarracine N-oxide (6), as well as the new neosarracine N-oxide (8), were obtained. The structure of 1 and 8 was elucidated by spectral means. Complete assignments of the (1)H NMR data for 5, 6, sarracine (7), and 8 were made using one-dimensional and two-dimensional NMR experiments and by application of the iterative full spin analysis of the PERCH NMR software. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Principal component analysis for verifying 1H NMR spectral assignments. The case of 3-aryl (1,2,4)-oxadiazole-5-carbohydrazide benzylidene

    International Nuclear Information System (INIS)

    Silva, Joao Bosco P. da; Malvestiti, Ivani; Hallwass, Fernando; Ramos, Mozart N.; Leite, Lucia F.C. da Costa; Barreiro, Eliezer J.

    2005-01-01

    The 1 H NMR data set of a series of 3-aryl (1,2,4)-oxadiazole-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA). Using the original 1H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazole group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted. (author)

  1. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.; Williams, S. D.

    2018-02-01

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.

  2. 1H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    International Nuclear Information System (INIS)

    Oliveira, Aline L. de; Martinelli, Bruno César B.; Lião, Luciano M.; Pereira, Flávia C.; Silveira-Lacerda, Elisangela P.; Alcantara, Glaucia B.

    2014-01-01

    High resolution magic angle spinning 1 H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies. (author)

  3. Molecular Origin of the Vibrational Structure of Ice Ih.

    Science.gov (United States)

    Moberg, Daniel R; Straight, Shelby C; Knight, Christopher; Paesani, Francesco

    2017-06-15

    An unambiguous assignment of the vibrational spectra of ice I h remains a matter of debate. This study demonstrates that an accurate representation of many-body interactions between water molecules, combined with an explicit treatment of nuclear quantum effects through many-body molecular dynamics (MB-MD), leads to a unified interpretation of the vibrational spectra of ice I h in terms of the structure and dynamics of the underlying hydrogen-bond network. All features of the infrared and Raman spectra in the OH stretching region can be unambiguously assigned by taking into account both the symmetry and the delocalized nature of the lattice vibrations as well as the local electrostatic environment experienced by each water molecule within the crystal. The high level of agreement with experiment raises prospects for predictive MB-MD simulations that, complementing analogous measurements, will provide molecular-level insights into fundamental processes taking place in bulk ice and on ice surfaces under different thermodynamic conditions.

  4. Vibrational spectroscopy of H{sub 3}{sup +} - advancing into the visible spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Max; Bing, Dennis; Petrignani, Annemieke; Wolf, Andreas [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    2010-07-01

    The triatomic hydrogen ion H{sub 3}{sup +} is a highly reactive key component in many astrophysical and technological plasmas. Being the simplest polyatomic molecule, it is also an important benchmark system against which various quantum mechanical calculations are tested. While the rovibrational levels near the triangular equilibrium structure are well understood, the rovibrational spectrum of this elementary system at strongly deformed geometry, above the barrier to linearity near 10000 cm{sup -1}, represents a formidable task for theory. Its experimental exploration so far ended slightly above 13900 cm{sup -1} from the ground state E{sub 0}({lambda}{proportional_to}720 nm). We report new measurements in a cryogenic 22 pole trap in the range of very high vibrational overtones, reaching levels up to {proportional_to}16500 cm{sup -1} ({lambda}{proportional_to}600 nm) from E{sub 0}. Chemical probing spectroscopy revealed its use for ultra-sensitive detection of transitions six to seven orders of magnitude weaker than the fundamental. Aside from the transition frequencies ({+-}0.005 cm{sup -1}), we present results from a new method to derive precise transition intensities, helping theoretical assignment of the lines.

  5. Crystal structure, vibrational spectra, optical and DFT studies of bis (3-azaniumylpropyl) azanium pentachloroantimonate (III) chloride monohydrate (C6H20N3)SbCl5·Cl·H2O

    Science.gov (United States)

    Ahmed, Houssem Eddine; Kamoun, Slaheddine

    2017-09-01

    The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.

  6. Studies on structural, optical, thermal and vibrational properties of thienyl chalcone derivative: 1-(4-Nitrophenyl)-3-(2-thienyl)prop-2-en-1-one

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.

    2018-03-01

    The structural, optical, thermal and vibrational properties of thienyl chalcone derivative 1-(4-Nitrophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9NO3S were investigated combining nuclear magnetic resonance (1H and 13C NMR), X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis spectroscopy at room temperature assisted by density functional theory (DFT) calculations and Raman scattering at the temperature range 303-463 K. The electronic properties, including excitation energies, oscillator strengths, HOMO and LUMO energies were calculated by time-dependent DFT (TD-DFT) to complement the experimental findings. The B3LYP/6-311G (d,p) (B3LYP/cc-pVTZ) calculations led to the identification of 'two minima on the molecules' potential energy surfaces. From these calculations, it was predicted that the most stable conformer for C13H9NO3S in the gas phase is founded at 0 K relationship to dihedral angle C8sbnd C9sbnd C10sbnd S1, in agreement with XRD results. The molecular plot showed that the electrical charge mobility in the molecule occurs from thiophene to benzene ring. The optical band gap energy calculated from the difference between HOMO and LUMO orbitals was founded to be ∼3.87 (3.82) eV, in close agreement with the experimental value of 2.94 eV. The comparison between experimental and theoretical vibrational spectra gives a precise knowledge of the fundamental vibrational modes and leads to a better interpretation of the experimental Raman and infrared spectra. As temperature increases from room temperature to 443 K, it was observed the current phonon anharmonicity effects associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external modes region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9NO3S goes to phase transition in the temperature range 453-463 K. This thermal phenomenon was attributed to the disappearance of the lattice (∼10-200 cm-1

  7. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Englander, S.W.; Wand, A.J.

    1987-01-01

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub α/H-C/sub β/H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step

  8. Precision spectroscopy of high rotational states in H2 investigated by Doppler-free two-photon laser spectroscopy in the EF 1Σg+-X 1Σg+ system

    Science.gov (United States)

    Dickenson, G. D.; Salumbides, E. J.; Niu, M.; Jungen, Ch.; Ross, S. C.; Ubachs, W.

    2012-09-01

    Recently a high precision spectroscopic investigation of the EF1Σg+-X1Σg+ system of molecular hydrogen was reported yielding information on QED and relativistic effects in a sequence of rotational quantum states in the X1Σg+ ground state of the H2 molecule [Salumbides , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.043005 107, 043005 (2011)]. The present paper presents a more detailed description of the methods and results. Furthermore, the paper serves as a stepping stone towards a continuation of the previous study by extending the known level structure of the EF1Σg+ state to highly excited rovibrational levels through Doppler-free two-photon spectroscopy. Based on combination differences between vibrational levels in the ground state, and between three rotational branches (O, Q, and S branches) assignments of excited EF1Σg+ levels, involving high vibrational and rotational quantum numbers, can be unambiguously made. For the higher EF1Σg+ levels, where no combination differences are available, calculations were performed using the multichannel quantum defect method, for a broad class of vibrational and rotational levels up to J=19. These predictions were used for assigning high-J EF levels and are found to be accurate within 5 cm-1.

  9. FT-IR and Raman vibrational analysis, B3LYP and M06-2X simulations of 4-bromomethyl-6-tert-butyl-2H-chromen-2-one

    Science.gov (United States)

    Sert, Yusuf; Puttaraju, K. B.; Keskinoğlu, Sema; Shivashankar, K.; Ucun, Fatih

    2015-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized bacteriostatic and anti-tumor molecule namely, 4-bromomethyl-6-tert-butyl-2H-chromen-2-one have been investigated. The experimental FT-IR (4000-400 cm-1) and Raman spectra (4000-100 cm-1) of the compound in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters have been calculated using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr and DFT/M06-2X: highly parametrized, empirical exchange correlation function) with 6-311++G(d, p) basis set by Gaussian 03 software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data and results in the literature. In addition, the highest occupied molecular orbital (HOMO) energy, the lowest unoccupied molecular orbital (LUMO) energy and the other related molecular energy values of the compound have been investigated using the same theoretical calculations.

  10. Vibrational analysis of HOCl up to 98% of the dissociation energy with a Fermi resonance Hamiltonian

    International Nuclear Information System (INIS)

    Jost, R.; Joyeux, M.; Skokov, S.; Bowman, J.

    1999-01-01

    We have analyzed the vibrational energies and wave functions of HOCl obtained from previous ab initio calculations [J. Chem. Phys. 109, 2662 (1998); 109, 10273 (1998)]. Up to approximately 13 and h;000 cm -1 , the normal modes are nearly decoupled, so that the analysis is straightforward with a Dunham model. In contrast, above 13 and h;000 cm -1 the Dunham model is no longer valid for the levels with no quanta in the OH stretch (v 1 =0). In addition to v 1 , these levels can only be assigned a so-called polyad quantum number P=2v 2 +v 3 , where 2 and 3 denote, respectively, the bending and OCl stretching normal modes. In contrast, the levels with v 1 ≥2 remain assignable with three v i quantum numbers up to the dissociation (D 0 =19 and h;290 and h;cm -1 ). The interaction between the bending and the OCl stretch (ω 2 congruent 2ω 3 ) is well described with a simple, fitted Fermi resonance Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those obtained from ab initio calculations, which in turn enables the assignment of many additional ab initio vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790 have been assigned, the lowest unassigned level, No. 736, being located at 18 and h;885 cm -1 above the (0,0,0) ground level, that is, at about 98% of D 0 . In addition, 84 resonances located above D 0 have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725 ab initio levels, the rms deviation being of 5.3 cm -1 . This set of 725 fitted levels includes the full set of levels up to No. 702 at 18 and h;650 cm -1 . The ab initio levels, which are assigned but not included in the fit, are reasonably predicted by the model Hamiltonian, but with a typical error of the order of 20 cm -1 . The classical analysis of the periodic orbits of this Hamiltonian shows that two bifurcations occur at 13 and h;135 and 14 and h;059 cm -1 for levels with v 1 =0. Above each

  11. Thermal analysis and vibrational spectroscopic characterization of the boro silicate mineral datolite - CaBSiO4(OH)

    Science.gov (United States)

    Frost, Ray L.; Xi, Yunfei; Scholz, Ricardo; Lima, Rosa Malena Fernandes; Horta, Laura Frota Campos; Lopez, Andres

    2013-11-01

    The objective of this work is to determine the thermal stability and vibrational spectra of datolite CaBSiO4(OH) and relate these properties to the structure of the mineral. The thermal analysis of datolite shows a mass loss of 5.83% over a 700-775 °C temperature range. This mass loss corresponds to 1 water (H2O) molecules pfu. A quantitative chemical analysis using electron probe was undertaken. The Raman spectrum of datolite is characterized by bands at 917 and 1077 cm-1 assigned to the symmetric stretching modes of BO and SiO tetrahedra. A very intense Raman band is observed at 3498 cm-1 assigned to the stretching vibration of the OH units in the structure of datolite. BOH out-of-plane vibrations are characterized by the infrared band at 782 cm-1. The vibrational spectra are based upon the structure of datolite based on sheets of four- and eight-membered rings of alternating SiO4 and BO3(OH) tetrahedra with the sheets bonded together by calcium atoms.

  12. The Unimolecular Reactions of CF3CHF2 Studied by Chemical Activation: Assignment of Rate Constants and Threshold Energies to the 1,2-H Atom Transfer, 1,1-HF and 1,2-HF Elimination Reactions, and the Dependence of Threshold Energies on the Number of F-Atom Substituents in the Fluoroethane Molecules.

    Science.gov (United States)

    Smith, Caleb A; Gillespie, Blanton R; Heard, George L; Setser, D W; Holmes, Bert E

    2017-11-22

    The recombination of CF 3 and CHF 2 radicals in a room-temperature bath gas was used to prepare vibrationally excited CF 3 CHF 2 * molecules with 101 kcal mol -1 of vibrational energy. The subsequent 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions were observed as a function of bath gas pressure by following the CHF 3 , CF 3 (F)C: and C 2 F 4 product concentrations by gas chromatography using a mass spectrometer as the detector. The singlet CF 3 (F)C: concentration was measured by trapping the carbene with trans-2-butene. The experimental rate constants are 3.6 × 10 4 , 4.7 × 10 4 , and 1.1 × 10 4 s -1 for the 1,2-H atom transfer and 1,1-HF and 1,2-HF elimination reactions, respectively. These experimental rate constants were matched to statistical RRKM calculated rate constants to assign threshold energies (E 0 ) of 88 ± 2, 88 ± 2, and 87 ± 2 kcal mol -1 to the three reactions. Pentafluoroethane is the only fluoroethane that has a competitive H atom transfer decomposition reaction, and it is the only example with 1,1-HF elimination being more important than 1,2-HF elimination. The trend of increasing threshold energies for both 1,1-HF and 1,2-HF processes with the number of F atoms in the fluoroethane molecule is summarized and investigated with electronic-structure calculations. Examination of the intrinsic reaction coordinate associated with the 1,1-HF elimination reaction found an adduct between CF 3 (F)C: and HF in the exit channel with a dissociation energy of ∼5 kcal mol -1 . Hydrogen-bonded complexes between HF and the H atom migration transition state of CH 3 (F)C: and the F atom migration transition state of CF 3 (F)C: also were found by the calculations. The role that these carbene-HF complexes could play in 1,1-HF elimination reactions is discussed.

  13. Other compounds isolated from Simira glaziovii and the {sup 1}H and {sup 13}C NMR chemical shift assignments of new 1-epi-castanopsol

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcelo F. de; Vieira, Ivo J. Curcino [Universidade Federal Rural do Rio de Janeiro, Seropedica, RJ (Brazil). Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil). Centro de Ciencias Tecnologicas. Lab. de Ciencias Quimicas; Carvalho, Mario G. de, E-mail: mgeraldo@ufrrj.br [Universidade Federal do Rio de Janeiro (NPPN/UFRJ), RJ (Brazil). Centro de Ciencias da Saude. Nucleo de Pesquisa em Produtos Naturais

    2012-07-01

    A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D {sup 1}H, {sup 13}C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of {sup 1}H and {sup 13}C NMR chemical shift assignments. (author)

  14. Franck-Condon fingerprinting of vibration-tunneling spectra.

    Science.gov (United States)

    Berrios, Eduardo; Sundaradevan, Praveen; Gruebele, Martin

    2013-08-15

    We introduce Franck-Condon fingerprinting as a method for assigning complex vibration-tunneling spectra. The B̃ state of thiophosgene (SCCl2) serves as our prototype. Despite several attempts, assignment of its excitation spectrum has proved difficult because of near-degenerate vibrational frequencies, Fermi resonance between the C-Cl stretching mode and the Cl-C-Cl bending mode, and large tunneling splittings due to the out-of-plane umbrella mode. Hence, the spectrum has never been fitted to an effective Hamiltonian. Our assignment approach replaces precise frequency information with intensity information, eliminating the need for double resonance spectroscopy or combination differences, neither of which have yielded a full assignment thus far. The dispersed fluorescence spectrum of each unknown vibration-tunneling state images its character onto known vibrational progressions in the ground state. By using this Franck-Condon fingerprint, we were able to determine the predominant character of several vibration-tunneling states and assign them; in other cases, the fingerprinting revealed that the states are strongly mixed and cannot be characterized with a simple normal mode assignment. The assigned transitions from vibration-tunneling wave functions that were not too strongly mixed could be fitted within measurement uncertainty by an effective vibration-tunneling Hamiltonian. A fit of all observed vibration-tunneling states will require a full resonance-tunneling Hamiltonian.

  15. Calculation of vibrational spectra of complex hydrides, LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, L P; Boldyrev, A I [AN SSSR, Chernogolovka. Inst. Novykh Khimicheskikh Problem

    1984-03-01

    The non-empirical Hartree-Fock-Ruthan method with a two-exponent Ros-Zigban basis has been used to calculate the coefficients of harmonic force field, frequency and intensity of normal vibrations of the LiBeH/sub 3/, NaBeH/sub 3/ and LiMgH/sub 3/ complex hydrides. Attribution of vibrational types is conducted. Isotope shifts for different isotope substitutions in the L(MH/sub 3/) are calculated. The effect of the nature of both the outer-spherical cation L/sup +/ and central atom M on the vibrational spectrum is discussed.

  16. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    Science.gov (United States)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  17. Behavior of ro-vibrationally excited H2 molecules and H atoms in a plasma expansion

    International Nuclear Information System (INIS)

    Vankan, P.; Schram, D.C.; Engeln, R.

    2005-01-01

    The behavior in a supersonic plasma expansion of H atom and H2 molecules, both ground-state and ro-vibrationally excited, is studied using various laser spectroscopic techniques. The ground-state H2 molecules expand like a normal gas. The behavior of H atoms and H 2 rv molecules, on the other hand, is considerably influenced, and to some extend even determined, by their reactivity. The H atoms diffuse out of the expansion due to surface association at the walls of the vacuum vessel. Moreover, by reducing the surface area of the nozzle by a factor of two, the amount of H atoms leaving the source is increased by one order of magnitude, due to a decreased surface association of H atoms in the nozzle. The evolution of the ro-vibrational distributions along the expansion axis shows the relaxation of the molecular hydrogen from the high temperature in the up-stream region to the low ambient temperature in the down-stream region. Whereas the vibrational distribution resembles a Boltzmann distribution, the rotational distribution is a non-equilibrium one, in which the high rotational levels (J > 7) are much more populated than what is expected from the low rotational levels (J <5). We observed overpopulations of up to seven orders of magnitude. The production of the high rotational levels is very probably connected to the surface association in the nozzle

  18. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    Science.gov (United States)

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. {sup 1}H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Aline L. de; Martinelli, Bruno César B.; Lião, Luciano M. [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Química. Lab. de RMN; Pereira, Flávia C.; Silveira-Lacerda, Elisangela P. [Universidade Federal de Goiás (UFG), Goiânia, GO (Brazil). Instituto de Ciências Biológicas. Laboratório Genética Molecular e Citogenética; Alcantara, Glaucia B., E-mail: glaucia.alcantara@ufms.br [Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Inst. de Química

    2014-07-01

    High resolution magic angle spinning {sup 1}H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies. (author)

  20. 7-epi-griffonilide, a new lactone from Bauhinia pentandra: complete {sup 1}H and {sup 13}C chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Macia C.S. de; Souza, Luciana G.S.; Ferreira, Daniele A.; Pinto, Francisco C.L.; Santiago, Gilvandete M.P.; Monte, Francisco J.Q.; Lemos, Telma L.G., E-mail: fmonte@dqoi.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Oliveira, Debora R. de; Braz-Filho, Raimundo [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Departamento de Quimica

    2017-09-01

    A new lactone, 7-epi-griffonilide (1), and six known compounds, 2, 3a - 3c, 4a and 4b, were isolated from the leaves of Bauhinia pentandra (Fabaceae). The structures elucidation of 1 and 2 were based on detailed 2D NMR techniques and spectral comparison with related compounds, leading to complete assignment of the {sup 1}H and {sup 13}C NMR spectra. (author)

  1. Total assignment of {sup 1} H and {sup 13} C NMR of Cordiachrome C, a terpenoid benzoquinone from Cordia trichotoma

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Jane Eire; Pessoa, Otilia Deusdenia Loiola; Lemos, Tlema Leda Gomes de; Silveira, Edilberto Rocha [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Braz Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais

    1999-05-01

    1 D and 2 D NMR techniques were applied for establishing of the complete assignment of hydrogen and carbon-13 NMR of cordiachrome C. Th results were also used to confirm {sup 1} H NMR data already published, as well as to define the relative stereochemistry, which has not been completely established for cordiachrome C, previously isolated from C. millenii.

  2. Charge transfer in H2+-H(1s) collisions

    International Nuclear Information System (INIS)

    Errea, L.F.; Macias, A.; Mendez, L.; Rabadan, I.; Riera, A.

    2005-01-01

    We present an ab initio study of H 2 + +H(1s) collisions at H 2 + impact energies between 0.4 and 50keV. Cross sections are obtained within the sudden approximation for rotation and vibration of the diatomic molecule. We have found that anisotropy effects are crucial to correctly describe this system in this energy range

  3. Infrared spectrum of the simplest Criegee intermediate CH2OO at resolution 0.25 cm−1 and new assignments of bands 2ν9 and ν5

    International Nuclear Information System (INIS)

    Huang, Yu-Hsuan; Li, Jun; Guo, Hua; Lee, Yuan-Pern

    2015-01-01

    The simplest Criegee intermediate CH 2 OO is important in atmospheric chemistry. It has been detected in the reaction of CH 2 I + O 2 with various spectral methods, including infrared spectroscopy; infrared absorption of CH 2 OO was recorded at resolution 1.0 cm −1 in our laboratory. We have improved our system and recorded the infrared spectrum of CH 2 OO at resolution 0.25 cm −1 with rotational structures partially resolved. Observed vibrational wavenumbers and relative intensities are improved from those of the previous report and agree well with those predicted with quantum-mechanical calculations using the MULTIMODE method on an accurate potential energy surface. Observed rotational structures also agree with the simulated spectra according to theoretical predictions. In addition to derivation of critical vibrational and rotational parameters of the vibrationally excited states to confirm the assignments, the spectrum with improved resolution provides new assignments for bands 2ν 9 at 1234.2 cm −1 and ν 5 at 1213.3 cm −1 ; some hot bands and combination bands are also tentatively assigned

  4. Preparation, crystal structure, vibrational spectral and density functional studies of bis (4-nitrophenol)-2,4,6-triamino-1,3,5-triazine monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-10-01

    An organic-organic salt, bis (4-nitrophenol) 2,4,6-triamino 1,3,5-triazine monohydrate (BNPM) has been prepared by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallizes in triclinic system with centrosymmetric space group P-1. IR and Raman spectra of BNPM have been recorded and analyzed. The study has been extended to confocal Raman spectral analysis. Band assignments have been made for the melamine and p-nitrophenol molecules. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory calculations using Firefly (PC GAMESS) Version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with the experimental one. The Mulliken charges, HOMO-LUMO orbital energies are calculated and analyzed. The chemical structure of the compound was established by 1H NMR and 13C NMR spectra.

  5. The vibrational Jahn–Teller effect in E⊗e systems

    Energy Technology Data Exchange (ETDEWEB)

    Thapaliya, Bishnu P.; Dawadi, Mahesh B.; Ziegler, Christopher; Perry, David S., E-mail: dperry@uakron.edu

    2015-10-16

    Highlights: • The vibrational Jahn–Teller effect is documented for three E⊗e molecular systems. • The spontaneous vibrational Jahn–Teller distortion is very small. • Vibrational Jahn–Teller splittings are substantial (1–60 cm{sup −1}). • Vibrational conical intersections in CH{sub 3}OH are accessible at low energies. - Abstract: The Jahn–Teller theorem is applied in the vibrational context where degenerate high-frequency vibrational states (E) are considered as adiabatic functions of low-frequency vibrational coordinates (e). For CH{sub 3}CN and Cr(C{sub 6}H{sub 6})(CO){sub 3}, the global minimum of the non-degenerate electronic potential energy surface occurs at the C{sub 3v} geometry, but in CH{sub 3}OH, the equilibrium geometry is far from the C{sub 3v} reference geometry. In the former cases, the computed spontaneous Jahn–Teller distortion is exceptionally small. In methanol, the vibrational Jahn–Teller interaction results in the splitting of the degenerate E-type CH stretch into what have been traditionally assigned as the distinct ν{sub 2} and ν{sub 9} vibrational bands. The ab initio vibrational frequencies are fit precisely by a two-state high-order Jahn–Teller Hamiltonian (Viel and Eisfeld, 2004). The presence of vibrational conical intersections, including 7 for CH{sub 3}OH, has implications for spectroscopy, for geometric phase, and for ultrafast localized non-adiabatic energy transfer.

  6. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    Science.gov (United States)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show

  7. Complete {sup 1}H and {sup 13}C NMR assignments and anti fungal activity of two 8-hydroxy flavonoids in mixture

    Energy Technology Data Exchange (ETDEWEB)

    Johann, Susana; Smania Junior, Artur [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Microbiologia e Parasitologia. Lab. de Antibioticos; Pizzolatti, Moacir G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica; Schripsema, Jan; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais. Lab. de Quimica e Funcao de Proteinas e Peptideos (LQFPP); Branco, Alexsandro [Universidade Estadual de Feira de Santana, BA (Brazil). Dept. de Saude. Lab. de Fitoquimica]. E-mail: branco@uefs.br

    2007-06-15

    A mixture of the two new flavonols 8-hydroxy-3, 4', 5, 6, 7-pentamethoxyflavone (1) and 8-hydroxy-3, 3', 4', 5, 6, 7-hexamethoxyflavone (2) was isolated from a commercial sample of Citrus aurantifolia. An array of one- ({sup 1}H NMR, {l_brace}{sup 1}H{r_brace} {sup -13}C NMR, and APT{sup -13}C NMR) and two-dimensional NMR techniques (COSY, NOESY, HMQC and HMBC) was used to achieve the structural elucidation and the complete {sup 1}H and {sup 13}C chemical shift assignments of these natural compounds. In addition, the antifungal activity of these compounds against phytopathogenic and human pathogenic fungi was investigated. (author)

  8. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Vicinal 1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules.

    Science.gov (United States)

    López-Vallejo, Fabian; Fragoso-Serrano, Mabel; Suárez-Ortiz, Gloria Alejandra; Hernández-Rojas, Adriana C; Cerda-García-Rojas, Carlos M; Pereda-Miranda, Rogelio

    2011-08-05

    A protocol for stereochemical analysis, based on the systematic comparison between theoretical and experimental vicinal (1)H-(1)H NMR coupling constants, was developed and applied to a series of flexible compounds (1-8) derived from the 6-heptenyl-5,6-dihydro-2H-pyran-2-one framework. The method included a broad conformational search, followed by geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, and the total NMR spin-spin coupling constants. Three scaling factors, depending on the carbon atom hybridizations, were found for the (1)H-C-C-(1)H vicinal coupling constants: f((sp3)-(sp3)) = 0.910, f((sp3)-(sp2)) = 0.929, and f((sp2)-(sp2))= 0.977. A remarkable correlation between the theoretical (J(pre)) and experimental (1)H-(1)H NMR (J(exp)) coupling constants for spicigerolide (1), a cytotoxic natural product, and some of its synthetic stereoisomers (2-4) demonstrated the predictive value of this approach for the stereochemical assignment of highly flexible compounds containing multiple chiral centers. The stereochemistry of two natural 6-heptenyl-5,6-dihydro-2H-pyran-2-ones (14 and 15) containing diverse functional groups in the heptenyl side chain was also analyzed by application of this combined theoretical and experimental approach, confirming its reliability. Additionally, a geometrical analysis for the conformations of 1-8 revealed that weak hydrogen bonds substantially guide the conformational behavior of the tetraacyloxy-6-heptenyl-2H-pyran-2-ones.

  10. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% alpha-TeO2/5% Sm2O3) glass.

    Science.gov (United States)

    Shaltout, I; Mohamed, Tarek A

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).

  11. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  12. Double resonance spectroscopy of the D1Πu+ and B′′ B-bar 1Σu+ states near the third dissociation threshold of H2

    International Nuclear Information System (INIS)

    Ekey, R C; Cordova, A E; Duan, W; Chartrand, A M; McCormack, E F

    2013-01-01

    Double-resonance laser spectroscopy via the E,F 1 Σ g + ,v ′ =6,J ′ state was used to probe the energy region below the third dissociation limit of molecular hydrogen. Resonantly enhanced multi-photon ionization spectra were recorded by detecting ion production as a function of energy using a time-of-flight mass spectrometer. Energies and line widths for the v = 14–17 levels of the D 1 Π u + state of H 2 are reported and compared to experimental data obtained by using VUV synchrotron light excitation (Dickenson et al 2010 J. Chem. Phys. 133 144317) and fully ab initio non-adiabatic calculations of D 1 Π u + state energies and line widths (Glass-Maujean et al 2012 Phys. Rev. A 86 052507). Several high vibrational levels of the B ′′ B-bar 1 Σ u + state were also observed in this region. Term energies and rotational constants for the v = 67–69 vibrational levels are reported and compared to highly accurate ro-vibrational energy level predictions from fully ab initio non-adiabatic calculations of the first six 1 Σ u + levels of H 2 (Wolniewicz et al 2006 J. Mol. Spectrosc. 238 118). While additional observed transitions can be assigned to other states, several unassigned features in the spectra highlight the need for a fully integrated theoretical treatment of dissociation and ionization to understand the complex pattern of highly vibrationally excited states expected in this region. (paper)

  13. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  14. Spectroscopic diagnostics of the vibrational population in the ground state of H2 and D2 molecules

    International Nuclear Information System (INIS)

    Fantz, U.; Heger, B.

    1998-01-01

    A diagnostic method has been evaluated for measuring the relative vibrational ground-state population of molecular hydrogen and deuterium. It is based on the analysis of the diagonal Fulcher bands · 3 Π u →a 3 Σ g + ) and the Franck-Condon principle of excitation. The validity of the underlying assumptions was verified by experiments in microwave discharges and the method is recommended for application in divertor plasmas in controlled fusion experiments. By attributing a vibrational temperature T vib to the ground-state electronic level (X 1 Σ g + ) and assuming population via the Franck-Condon principle, the upper Fulcher state vibrational distribution can be derived theoretically with T vib as parameter. Comparison with experimentally derived upper-state population gives the corresponding T vib of the ground state. The Franck-Condon factors for the · 3 Π 1 Σ g + and · 3 Π u →a 3 Σ g + transitions have been calculated for both hydrogen and deuterium from molecular constants using the FCFRKR code. The method has been applied to low pressure H 2 /He and D 2 /He microwave plasmas, showing good agreement of experimentally and theoretically derived upper Fulcher state vibrational distributions. The vibrational temperatures range from 3200 K to 6800 K for H 2 and 2600 K to 4000 K for D 2 · depending on molecular density, pressure and electron temperature, but indicating nearly the same vibrational population for H 2 and D 2 for comparable plasma conditions. (author)

  15. Calculated rotational and vibrational g factors of LiH X 1S+ and evaluation of parameters in radial functions from rotational and vibration-rotational spectra

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Paidarová, Ivana; Oddershede, Jens

    2011-01-01

    The vibrational g factor, that is, the nonadiabatic correction to the vibrational reduced mass, of LiH has been calculated for internuclear distances over a wide range. Based on multiconfigurational wave functions with a large complete active space and an extended set of gaussian type basis...

  16. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of 4-chlorobenzothioamide

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2013-09-01

    In the present work, the experimental and theoretical vibrational spectra of 4-chlorobenzothioamide were investigated. The FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of 4-chlorobenzothioamide in the solid phase were recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared and Raman intensities of the title molecule in the ground state were calculated using ab initio Hartree-Fock and density functional theory (B3LYP) methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 4-chlorobenzothioamide was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯S hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  18. Chemical constituents of Ottonia corcovadensis Miq. from Amazon forest: 1H and 13C chemical shift assignments

    International Nuclear Information System (INIS)

    Facundo, Valdir A.; Morais, Selene M.; Braz Filho, Raimundo

    2004-01-01

    In an ethanolic extract of leaves of Ottonia corcovadensis (Piperaceae) were identified sixteen terpenoids of essential oil and the three flavonoids 3',4',5,5',7-penta methoxyflavone (1), 3',4',5,7-tetra methoxyflavone (2) and 5-hydroxy-3',4',5',7-tetra methoxyflavone (3) and cafeic acid (4). Two amides (5 and 6) were isolated from an ethanolic extract of the roots. The structures were established by spectral analysis, meanly NMR (1D and 2D) and mass spectra. Extensive NMR analysis was also used to complete 1 H and 13 C chemical shift assignments of the flavonoids and amides. The components of the essential oil were identified by computer library search, retention indices and visual interpretation of mass spectra. (author)

  19. 1H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    International Nuclear Information System (INIS)

    Moore, J.M.; Chazin, W.J.; Wright, P.E.; Powls, R.

    1988-01-01

    Two-dimensional 1 H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight β-strands, one short segment of helix, five reverse turns, and five loops. The β-strands may be arranged into two βsheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key β-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified

  20. Assignment of histidine resonances in the 1H NMR (500 MHz) spectrum of subtilisin BPN' using site-directed mutagenesis

    International Nuclear Information System (INIS)

    Bycroft, M.; Fersht, A.R.

    1988-01-01

    A spin-echo pulse sequence has been used to resolve the six histidine C-2H protons in the 500-MHz NMR spectrum of subtilisin BPN'. Five of these residues have been substituted by site-directed mutagenesis, and this has enabled a complete assignment of these protons to be obtained. Analysis of the pH titration curves of these signals has provided microscopic pK a 's for the six histidines in this enzyme. The pK a 's of the histidine residues in subtilisin BPN' have been compared with the values obtained for the histidines in the homologous enzyme from Bacillus licheniformis (subtilisin Carlsberg). Four of the five conserved histidines titrate with essentially identical pK a 's in the two enzymes. It therefore appears that the assignments made for these residues in subtilisin BPN' can be transferred to subtilisin Carlsberg. On the basis of these assignments, the one histidine that titrates with a substantially different pK a in the two enzymes can be assigned to histidine-238. This difference in pK a has been attributed to a Trp to Lys substitution at position 241 in subtilisin Carlsberg

  1. Vibrational and orientational dynamics of water in aqueous hydroxide solutions.

    Science.gov (United States)

    Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib

    2011-09-28

    We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics

  2. Coadsorption and reaction of H2 and CO on Raney nickel: Neutron vibrational spectroscopy

    International Nuclear Information System (INIS)

    Kelley, R.D.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    Neutron vibration spectroscopy is used to study the adsorption and reaction of H 2 and Co on a catalytic nickel surface. The sample was first exposed to H 2 and than to CO. At low temperatures there is no change of vibrational modes of H in the three-fold site; at a higher temperature changes occur. Some conclusions are drawn on the reaction product. (G.Q.)

  3. Competitive roles of reagent vibration and translation in the exothermic proton transfer reaction H+2+Ar→HAr++H

    International Nuclear Information System (INIS)

    Bilotta, R.M.; Farrar, J.M.

    1981-01-01

    We present a crossed beam study of the title reaction at fixed collision energies of 1.2 and 2.3 eV with reagent H + 2 average vibrational energies of 0.44 and 0.89 eV; we also present data at fixed total energies with variable proportions of reagent vibrational and translational energy. At fixed collision energy, reagent vibrational excitation is found to have negligible effect on the total cross section for proton transfer. At fixed total energy, a decrease in reagent vibrational excitation with a corresponding increase in reagent translation leads to partial disposal of the incremental translation in product translation: At a total energy of 3.5 eV, 50% of this incremental reagent translation appears as product translation. At a total energy of 4.6 eV, 78% of the incremental translation appears in product translation. The experimental data are discussed in terms of induced attractive and repulsive energy release on an attractive potential surface. The role of noncollinear geometries and compressed reactant configurations is judged to be of substantial importance in assessing product rotational excitation and dissociation

  4. 1H, 15N and 13C backbone and side-chain resonance assignments of a family 32 carbohydrate-binding module from the Clostridium perfringens NagH.

    Science.gov (United States)

    Grondin, Julie M; Chitayat, Seth; Ficko-Blean, Elizabeth; Boraston, Alisdair B; Smith, Steven P

    2012-10-01

    The Gram-positive anaerobe Clostridium perfringens is an opportunistic bacterial pathogen that secretes a battery of enzymes involved in glycan degradation. These glycoside hydrolases are thought to be involved in turnover of mucosal layer glycans, and in the spread of major toxins commonly associated with the development of gastrointestinal diseases and gas gangrene in humans. These enzymes employ multi-modularity and carbohydrate-binding function to degrade extracellular eukaryotic host sugars. Here, we report the full (1)H, (15)N and (13)C chemical shift resonance assignments of the first family 32 carbohydrate-binding module from NagH, a secreted family 84 glycoside hydrolase.

  5. Complete resonance assignment for the polypeptide backbone of interleukin 1β using three-dimensional heteronuclear NMR spectroscopy

    International Nuclear Information System (INIS)

    Driscoll, P.C.; Clore, G.M.; Marion, D.; Gronenborn, A.M.; Wingfield, P.T.

    1990-01-01

    The complete sequence-specific assignment of the 15 N and 1 H backbone resonances of the NMR spectrum of recombinant human interleukin 1β has been obtained by using primarily 15 N- 1 H heteronuclear three-dimensional (3D) NMR techniques in combination with 15 N- 1 H heteronuclear and 1 H homonuclear two-dimensional NMR. The fingerprint region of the spectrum was analyzed by using a combination of 3D heteronuclear 1 H Hartmann-Hahn 15 N- 1 H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1 H nuclear Overhauser 15 N- 1 H multiple quantum coherence (3D NOESY-HMQC) spectroscopies. The authors show that the problems of amide NH and C α H chemical shift degeneracy that are prevalent for proteins of the size are readily overcome by using the 3D heteronuclear NMR technique. A doubling of some peaks in the spectrum was found to be due to N-terminal heterogeneity of the 15 N-labeled protein, corresponding to a mixture of wild-type and des-Ala-1-interleukin 1β. The complete list of 15 N and 1 H assignments is given for all the amide NH and C α H resonances of all non-proline residues, as well as the 1 H assignments for some of the amino acid side chains. This first example of the sequence-specific assignment of a protein using heteronuclear 3D NMR provides a basis for further conformational and dynamic studies of interleukin 1β

  6. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of 1 H and 13 C of monoterpenes using computational methods

    International Nuclear Information System (INIS)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L.

    2000-01-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and α-pinene. The 1 H and 13 C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of 1 H nuclei and qualitatively in the case of 13 C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  7. Spectroscopic investigations and molecular docking study of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one, a potential precursor to bioactive agents

    Science.gov (United States)

    Al-Alshaikh, Monirah A.; Mary Y, Sheena; Panicker, C. Yohannan; Attia, Mohamed I.; El-Emam, Ali A.; Alsenoy, C. Van

    2016-04-01

    The optimized molecular structure, vibrational wavenumbers, corresponding vibrational assignments of 3-(1H-imidazol-1-yl)-1-phenylpropan-1-one have been investigated theoretically and experimentally. The calculated geometrical parameters of the title compound are in agreement with the reported XRD data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular electrostatic potential was performed by the DFT method and from the MEP plot, it is evident that the negative charge covers the carbonyl group and the nitrogen atom N3 of the imidazole ring and the positive region is over the remaining portions of the molecule. The first and second hyperpolarizabilities are calculated and the first hyperpolarizability of the title compound is 16.99 times that of standard NLO material urea and the title compound and its derivatives are good object for further studies in nonlinear optics. The docked ligand title compound forms a stable complex with plasmodium falciparum and gives a binding affinity value of -5.5 kcal/mol and the preliminary results suggest that the compound might exhibit antimalarial activity against plasmodium falciparum.

  8. Dissociation energy of the ground state of NaH

    International Nuclear Information System (INIS)

    Huang, Hsien-Yu; Lu, Tsai-Lien; Whang, Thou-Jen; Chang, Yung-Yung; Tsai, Chin-Chun

    2010-01-01

    The dissociation energy of the ground state of NaH was determined by analyzing the observed near dissociation rovibrational levels. These levels were reached by stimulated emission pumping and fluorescence depletion spectroscopy. A total of 114 rovibrational levels in the ranges 9≤v '' ≤21 and 1≤J '' ≤14 were assigned to the X 1 Σ + state of NaH. The highest vibrational level observed was only about 40 cm -1 from the dissociation limit in the ground state. One quasibound state, above the dissociation limit and confined by the centrifugal barrier, was observed. Determining the vibrational quantum number at dissociation v D from the highest four vibrational levels yielded the dissociation energy D e =15 815±5 cm -1 . Based on new observations and available data, a set of Dunham coefficients and the rotationless Rydberg-Klein-Rees curve were constructed. The effective potential curve and the quasibound states were discussed.

  9. (1)H, (13)C, (15)N backbone and side-chain resonance assignment of Nostoc sp. C139A variant of the heme-nitric oxide/oxygen binding (H-NOX) domain.

    Science.gov (United States)

    Alexandropoulos, Ioannis I; Argyriou, Aikaterini I; Marousis, Kostas D; Topouzis, Stavros; Papapetropoulos, Andreas; Spyroulias, Georgios A

    2016-10-01

    The H-NOX (Heme-nitric oxide/oxygen binding) domain is conserved across eukaryotes and bacteria. In human soluble guanylyl cyclase (sGC) the H-NOX domain functions as a sensor for the gaseous signaling agent nitric oxide (NO). sGC contains the heme-binding H-NOX domain at its N-terminus, which regulates the catalytic site contained within the C-terminal end of the enzyme catalyzing the conversion of GTP (guanosine 5'-triphosphate) to GMP (guanylyl monophosphate). Here, we present the backbone and side-chain assignments of the (1)H, (13)C and (15)N resonances of the 183-residue H-NOX domain from Nostoc sp. through solution NMR.

  10. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    Science.gov (United States)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  11. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  12. Spectroscopic studies (FTIR, FT-Raman and UV-Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods.

    Science.gov (United States)

    Muthu, S; Ramachandran, G

    2014-01-01

    The Fourier transform infrared (FT-IR) and FT-Raman of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine (1RNPDA) were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1) respectively. A complete assignment and analysis of the fundamental vibrational modes of the molecule were carried out. The observed fundamental modes have been compared with the harmonic vibrational frequencies computed using HF method by employing 6-31G(d,p) basis set and DFT(B3LYP) method by employing 6-31G(d,p) basis set. The vibrational studies were interpreted in terms of Potential Energy Distribution (PED). The complete vibrational frequency assignments were made by Normal Co-ordinate Analysis (NCA) following the scaled quantum mechanical force field methodology (SQMFF). The first order hyper polarizability (β0) of this molecular system and related properties (α, μ, and Δα) are calculated using B3LYP/6-31G(d,p) method based on the finite-field approach. The thermodynamic functions of the title compound were also performed at the above methods and basis set. A detailed interpretation of the infrared and Raman spectra of 1RNPDA is reported. The (1)H and (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated using the GIAO method confirms with the experimental values. Stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis. UV-vis spectrum of the compound was recorded and electronic properties such as excitation energies, oscillator strength and wavelength were performed by TD-DFT/B3LYP using 6-31G(d,p) basis set. The HOMO and LUMO energy gap reveals that the energy gap reflects the chemical activity of the molecule. The observed and calculated wave numbers are formed to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A complete assignment of the vibrational spectra of 2-furoic acid based on the structures of the more stable monomer and dimer

    Science.gov (United States)

    Ghalla, Houcine; Issaoui, Noureddine; Castillo, María Victoria; Brandán, Silvia Antonia; Flakus, Henryk T.

    2014-03-01

    The structural and vibrational properties of cyclic dimer of 2-furoic acid (2FA) were predicted by combining the available experimental infrared and Raman spectra in the solid phase and ab initio calculations based on density functional theory (DFT) with Pople's basis sets. The calculations show that there are two cyclic dimers for the title molecule that have been theoretically determined in the gas phase, and that only one of them, cis conformer, is present in the solid phase. The complete assignment of the 66 normal vibrational modes for the cis cyclic dimer was performed using the Pulay's Scaled Quantum Mechanics Force Field (SQMFF) methodology. Four strong bands in the infrared spectrum at 1583, 1427, 1126 and 887 cm-1 and the group of bands in the Raman spectrum at 1464, 1452, 1147, 1030, 885, 873, 848, 715 and 590 cm-1 are characteristic of the dimeric form of 2FA in the solid phase. In this work, the calculated structural and vibrational properties of both dimeric species were analyzed and compared between them. In addition, three types of atomic charges, bond orders, possible charge transfer, topological properties of the furan rings, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theory calculations were employed to study the stabilities and intermolecular interactions of the both dimers of 2FA.

  14. Theoretical rotation-vibration spectrum of thioformaldehyde

    International Nuclear Information System (INIS)

    Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter

    2013-01-01

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H 2 CS. It covers 41 809 rovibrational levels for states up to J max = 30 with vibrational band origins up to 5000 cm −1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments

  15. Theoretical rotation-vibration spectrum of thioformaldehyde

    Science.gov (United States)

    Yachmenev, Andrey; Polyak, Iakov; Thiel, Walter

    2013-11-01

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H2CS. It covers 41 809 rovibrational levels for states up to Jmax = 30 with vibrational band origins up to 5000 cm-1 and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.

  16. Theoretical rotation-vibration spectrum of thioformaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Yachmenev, Andrey [Department of Physics and Astronomy, University College London, London, WC1E 6BT (United Kingdom); Polyak, Iakov; Thiel, Walter [Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D–45470 Mülheim an der Ruhr (Germany)

    2013-11-28

    We present a variational calculation of the first comprehensive T = 300 K rovibrational line list for thioformaldehyde, H{sub 2}CS. It covers 41 809 rovibrational levels for states up to J{sub max} = 30 with vibrational band origins up to 5000 cm{sup −1} and provides the energies and line intensities for 547 926 transitions from the ground vibrational state to these levels. It is based on our previously reported accurate ab initio potential energy surface and a newly calculated ab initio dipole moment surface. Minor empirical adjustments are made to the ab initio equilibrium geometry to reduce systematic errors in the predicted intra-band rotational energy levels. The rovibrational energy levels and transition intensities are computed variationally by using the methods implemented in the computer program TROVE. Transition wavelengths and intensities are found to be in excellent agreement with the available experimental data. The present calculations correctly reproduce the observed resonance effects, such as intensity borrowing, thus reflecting the high accuracy of the underlying ab initio surfaces. We report a detailed analysis of several vibrational bands, especially those complicated by strong Coriolis coupling, to facilitate future laboratory assignments.

  17. Competition between weak OH···π and CH··O hydrogen bonds: THz spectroscopy of the C2H2H2O and C2H4H2O complexes

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, Jimmy; Nelander, B.

    2017-01-01

    -bonded configuration with the H2O subunit acting as the hydrogen bond donor to the π-cloud of C2H4. A (semi)-empirical value for the change of vibrational zero-point energy of 4.0–4.1 kJ mol−1 is proposed and the combination with quantum chemical calculations at the CCSD(T)-F12b/aug-cc-pVQZ level provides a reliable....... The present findings demonstrate that the relative stability of the weak hydrogen bond motifs is not entirely rooted in differences of electronic energy but also to a large extent by differences in the vibrational zero-point energy contributions arising from the class of large-amplitude intermolecular modes....... estimate of 7.1 ± 0.3 kJ mol−1 for the dissociation energy D0 of the C2H4—H2O complex. In addition, tentative assignments for the two strongly infrared active OH librational modes of the ternary C2H4—HOH—C2H4 complex having H2O as a doubly OH⋯π hydrogen bond donor are proposed at 213.6 and 222.3 cm−1...

  18. Vibrational spectroscopy of the phosphate mineral lazulite--(Mg, Fe)Al2(PO4)2·(OH)2 found in the Minas Gerais, Brazil.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei; Beganovic, Martina; Belotti, Fernanda Maria; Scholz, Ricardo

    2013-04-15

    This research was done on lazulite samples from the Gentil mine, a lithium bearing pegmatite located in the municipality of Mendes Pimentel, Minas Gerais, Brazil. Chemical analysis was carried out by electron microprobe analysis and indicated a magnesium rich phase with partial substitution of iron. Traces of Ca and Mn, (which partially replaced Mg) were found. The calculated chemical formula of the studied sample is: (Mg0.88, Fe0.11)Al1.87(PO4)2.08(OH)2.02. The Raman spectrum of lazulite is dominated by an intense sharp band at 1060 cm(-1) assigned to PO stretching vibrations of of tetrahedral [PO4] clusters presents into the HPO4(2-) units. Two Raman bands at 1102 and 1137 cm(-1) are attributed to both the HOP and PO antisymmetric stretching vibrations. The two infrared bands at 997 and 1007 cm(-1) are attributed to the ν1PO4(3-) symmetric stretching modes. The intense bands at 1035, 1054, 1081, 1118 and 1154 cm(-1) are assigned to the ν3PO4(3-) antisymmetric stretching modes from both the HOP and tetrahedral [PO4] clusters. A set of Raman bands at 605, 613, 633 and 648 cm(-1) are assigned to the ν4 out of plane bending modes of the PO4, HPO4 and H2PO4 units. Raman bands observed at 414, 425, 460, and 479 cm(-1) are attributed to the ν2 tetrahedral PO4 clusters, HPO4 and H2PO4 bending modes. The intense Raman band at 3402 and the infrared band at 3403 cm(-1) are assigned to the stretching vibration of the OH units. A combination of Raman and infrared spectroscopy enabled aspects of the molecular structure of the mineral lazulite to be understood. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  20. Vibrational deactivation on chemically reactive potential surfaces: An exact quantum study of a low barrier collinear model of H + FH, D + FD, H + FD and D + FH

    International Nuclear Information System (INIS)

    Schatz, G.C.; Kuppermann, A.

    1980-01-01

    We study vibrational deactivation processes on chemically reactive potential energy surfaces by examining accurate quantum mechanical transition probabilities and rate constants for the collinear H + FH(v), D + FD(v), H + FD(v), and D + FH(v) reactions. A low barrier (1.7 kcal/mole) potential surface is used in these calculations, and we find that for all four reactions, the reactive inelastic rate constants are larger than the nonreactive ones for the same initial and final vibrational states. However, the ratios of these reactive and nonreactive rate constants depend strongly on the vibrational quantum number v and the isotopic composition of the reagents. Nonreactive and reactive transition probabilities for multiquantum jump transitions are generally comparable to those for single quantum transitions. This vibrationally nonadiabatic behavior is a direct consequence of the severe distortion of the diatomic that occurs in a collision on a low barrier reactive surface, and can make chemically reactive atoms like H or D more efficient deactivators of HF or DF than nonreactive collision partners. Many conclusions are in at least qualitative agreement with those of Wilkin's three dimensional quasiclassical trajectory study on the same systems using a similar surface. We also present results for H + HF(v) collisions which show that for a higher barrier potential surface (33 rather than 1.7 kcal/mole), the deactivation process becomes similar in character to that for nonreactive partners, with v→v-1 processes dominating

  1. Ab initio Hartree-Fock and density functional theory investigations on the conformational stability, molecular structure and vibrational spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one drug molecule.

    Science.gov (United States)

    Taşal, Erol; Kumalar, Mustafa

    2012-09-01

    In this work, the experimental and theoretical spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule (abbreviated as 5CMOT) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and Density Function Theory (DFT) methods with 6-311++G(d,p), 6-31G++(d,p), 6-31G(d,p), 6-31G(d) and 6-31G basis sets. Three staggered stable conformers were observed on the torsional potential energy surfaces. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated. The comparison of the theoretical and experimental geometries of the title compound indicated that the X-ray parameters fairly well agree with the theoretically obtained values for the most stable conformer. The theoretical results showed an excellent agreement with the experimental values. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Zero-point energy, tunnelling, and vibrational adiabaticity in the Mu + H2 reaction

    Science.gov (United States)

    Mielke, Steven L.; Garrett, Bruce C.; Fleming, Donald G.; Truhlar, Donald G.

    2015-01-01

    Isotopic substitution of muonium for hydrogen provides an unparalleled opportunity to deepen our understanding of quantum mass effects on chemical reactions. A recent topical review in this journal of the thermal and vibrationally state-selected reaction of Mu with H2 raises a number of issues that are addressed here. We show that some earlier quantum mechanical calculations of the Mu + H2 reaction, which are highlighted in this review, and which have been used to benchmark approximate methods, are in error by as much as 19% in the low-temperature limit. We demonstrate that an approximate treatment of the Born-Oppenheimer diagonal correction that was used in some recent studies is not valid for treating the vibrationally state-selected reaction. We also discuss why vibrationally adiabatic potentials that neglect bend zero-point energy are not a useful analytical tool for understanding reaction rates, and why vibrationally non-adiabatic transitions cannot be understood by considering tunnelling through vibrationally adiabatic potentials. Finally, we present calculations on a hierarchical family of potential energy surfaces to assess the sensitivity of rate constants to the quality of the potential surface.

  3. Vibration-rotation spectrum of BH X1Σ+ by Fourier transform emission spectroscopy

    Science.gov (United States)

    Pianalto, F. S.; O'Brien, L. C.; Keller, P. C.; Bernath, P. F.

    1988-06-01

    The vibration-rotation emission spectrum of the BH X1Σ+ state was observed with the McMath Fourier transform spectrometer at Kitt Peak. The 1-0, 2-1, and 3-2 bands were observed in a microwave discharge of B2H6 in He. Spectroscopic constants of the individual vibrational levels and equilibrium molecular constants were determined. An RKR potential curve was calculated from the equilibrium constants. Alfred P. Sloan Fellow; Camille and Henry Dreyfus Teacher-Scholar.

  4. THE CHEMISTRY OF VIBRATIONALLY EXCITED H2 IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Agundez, M.; Roueff, E.; Goicoechea, J. R.; Cernicharo, J.; Faure, A.

    2010-01-01

    The internal energy available in vibrationally excited H 2 molecules can be used to overcome or diminish the activation barrier of various chemical reactions of interest for molecular astrophysics. In this paper, we investigate in detail the impact on the chemical composition of interstellar clouds of the reactions of vibrationally excited H 2 with C + , He + , O, OH, and CN, based on the available chemical kinetics data. It is found that the reaction of H 2 (v>0) and C + has a profound impact on the abundances of some molecules, especially CH + , which is a direct product and is readily formed in astronomical regions with fractional abundances of vibrationally excited H 2 , relative to the ground state H 2 , in excess of ∼10 -6 , independently of whether the gas is hot or not. The effects of these reactions on the chemical composition of the diffuse clouds ζOph and HD 34078, the dense photon-dominated region (PDR) Orion Bar, the planetary nebula NGC 7027, and the circumstellar disk around the B9 star HD 176386 are investigated through PDR models. We find that formation of CH + is especially favored in dense and highly FUV illuminated regions such as the Orion Bar and the planetary nebula NGC 7027, where column densities in excess of 10 13 cm -2 are predicted. In diffuse clouds, however, this mechanism is found to be not efficient enough to form CH + with a column density close to the values derived from astronomical observations.

  5. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    Energy Technology Data Exchange (ETDEWEB)

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P. [Washington Univ. School of Medicine, St. Louis, MO (United States)

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  6. An experimental and theoretical study of molecular structure and vibrational spectra of 2-methylphenyl boronic acid by density functional theory calculations

    Science.gov (United States)

    Hiremath, Sudhir M.; Hiremath, C. S.; Khemalapure, S. S.; Patil, N. R.

    2018-05-01

    This paper reports the experimental and theoretical study on the structure and vibrations of 2-Methylphenyl boronic acid (2MPBA). The different spectroscopic techniques such as FT-IR (4000-400 cm-1) and FT-Raman (4000-50 cm-1) of the title molecule in the solid phase were recorded. The geometry of the molecule was fully optimized using density functional theory (DFT) (B3LYP) with 6-311++G(d, p) basis set calculations. The vibrational wavenumbers were also corrected with scale factor to take better results for the calculated data. Vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. The calculated wavenumbers showed the best agreement with the experimental results. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  7. The effect of classical and quantum dynamics on vibrational frequency shifts of H2 in clathrate hydrates

    International Nuclear Information System (INIS)

    Plattner, Nuria; Meuwly, Markus

    2014-01-01

    Vibrational frequency shifts of H 2 in clathrate hydrates are important to understand the properties and elucidate details of the clathrate structure. Experimental spectra of H 2 in clathrate hydrates have been measured for different clathrate compositions, temperatures, and pressures. In order to establish reliable relationships between the clathrate structure, dynamics, and observed frequencies, calculations of vibrational frequency shifts in different clathrate environments are required. In this study, a combination of classical molecular dynamics simulations, electronic structure calculations, and quantum dynamical simulation is used to calculate relative vibrational frequencies of H 2 in clathrate hydrates. This approach allows us to assess dynamical effects and simulate the change of vibrational frequencies with temperature and pressure. The frequency distributions of the H 2 vibrations in the different clathrate cage types agree favorably with experiment. Also, the simulations demonstrate that H 2 in the 5 12 cage is more sensitive to the details of the environment and to quantum dynamical effects, in particular when the cage is doubly occupied. We show that for the 5 12 cage quantum effects lead to frequency increases and double occupation is unlikely. This is different for the 5 12 6 4 cages for which higher occupation numbers than one H 2 per cage are likely

  8. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by density functional theory

    Science.gov (United States)

    Suhasini, M.; Sailatha, E.; Gunasekaran, S.; Ramkumaar, G. R.

    2015-11-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of Lornoxicam were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p) and 6-31++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the Vibrational modes calculated using Vibrational Energy Distribution Analysis (VEDA 4) program. The oscillator's strength calculated by TD-DFT and Lornoxicam is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis and the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like Entropy, Enthalpy, Specific heat capacity and zero vibrational energy have been calculated. Besides, molecular electrostatic potential (MEP) was investigated using theoretical calculations.

  9. Electronic transitions of C{sub 5}H{sup +} and C{sub 5}H: neon matrix and CASPT2 studies

    Energy Technology Data Exchange (ETDEWEB)

    Fulara, Jan, E-mail: fulara@ifpan.edu.pl [Department of Chemistry, University of Basel, Klingelbergstarasse 80, CH-4056 Basel (Switzerland); Institute of Physics, Polish Academy of Sciences, Al. Lotników, 32/46, PL-02-668 Warsaw (Poland); Nagy, Adam; Chakraborty, Arghya; Maier, John P., E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstarasse 80, CH-4056 Basel (Switzerland)

    2016-06-28

    Two electronic transitions at 512.3 and 250 nm of linear-C{sub 5}H{sup +} are detected following mass-selective deposition of m/z = 61 cations into a 6 K neon matrix and assigned to the 1 {sup 1}Π←X {sup 1}Σ{sup +} and 1 {sup 1}Σ{sup +}←X {sup 1}Σ{sup +} systems. Five absorption systems of l-C{sub 5}H with origin bands at 528,7, 482.6, 429.0, 368.5, and 326.8 nm are observed after neutralization of the cations in the matrix and identified as transitions from the X {sup 2}Π to 1 {sup 2}Δ, 1 {sup 2}Σ {sup −}, 1 {sup 2}Σ{sup +}, 2 {sup 2}Π, and 3 {sup 2}Π electronic states. The assignment to specific structures is based on calculated excitation energies, vibrational frequencies in the electronic states, along with simulated Franck–Condon profiles.

  10. Vibrational spectra and crystal lattice dynamics of hexahydrates of zinc potassium and ammonium sulfates

    Science.gov (United States)

    Barashkov, M. V.; Komyak, A. I.; Shashkov, S. N.

    2000-03-01

    The IR spectra and polarized Raman spectra of crystals of hexahydrates of zinc potassium and ammonium sulfates have been obtained experimentally at 93 K and at room temperature. The frequencies and modes of normal vibrations of the octahedral complex [Zn(H2O)6]2+ have been calculated. The assignment of the observed lines of the internal and external vibrations of the crystal cell has been made by calculations and by factor-group analysis.

  11. 1H, 13C and 15N chemical shift assignments of the thioredoxin from the obligate anaerobe Desulfovibrio vulgaris Hildenborough.

    Science.gov (United States)

    Garcin, Edwige B; Bornet, Olivier; Pieulle, Laetitia; Guerlesquin, Françoise; Sebban-Kreuzer, Corinne

    2011-10-01

    Thioredoxins are ubiquitous key antioxidant enzymes which play an essential role in cell defense against oxidative stress. They maintain the redox homeostasis owing to the regulation of thiol-disulfide exchange. In the present paper, we report the full resonance assignments of (1)H, (13)C and (15)N atoms for the reduced and oxidized forms of Desulfovibrio vulgaris Hildenborough thioredoxin 1 (Trx1). 2D and 3D heteronuclear NMR experiments were performed using uniformly (15)N-, (13)C-labelled Trx1. Chemical shifts of 97% of the backbone and 90% of the side chain atoms were obtained for the oxidized and reduced form (BMRB deposits with accession number 17299 and 17300, respectively).

  12. Nonplanar tertiary amides in rigid chiral tricyclic dilactams. Peptide group distortions and vibrational optical activity.

    Science.gov (United States)

    Pazderková, Markéta; Profant, Václav; Hodačová, Jana; Sebestík, Jaroslav; Pazderka, Tomáš; Novotná, Pavlína; Urbanová, Marie; Safařík, Martin; Buděšínský, Miloš; Tichý, Miloš; Bednárová, Lucie; Baumruk, Vladimír; Maloň, Petr

    2013-08-22

    We investigate amide nonplanarity in vibrational optical activity (VOA) spectra of tricyclic spirodilactams 5,8-diazatricyclo[6,3,0,0(1,5)]undecan-4,9-dione (I) and its 6,6',7,7'-tetradeuterio derivative (II). These rigid molecules constrain amide groups to nonplanar geometries with twisted pyramidal arrangements of bonds to amide nitrogen atoms. We have collected a full range vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra including signals of C-H and C-D stretching vibrations. We report normal-mode analysis and a comparison of calculated to experimental VCD and ROA. The data provide band-to-band assignment and offer a possibility to evaluate roles of constrained nonplanar tertiary amide groups and rigid chiral skeletons. Nonplanarity shows as single-signed VCD and ROA amide I signals, prevailing the couplets expected to arise from the amide-amide interaction. Amide-amide coupling dominates amide II (mainly C'-N stretching, modified in tertiary amides by the absence of a N-H bond) transitions (strong couplet in VCD, no significant ROA) probably due to the close proximity of amide nitrogen atoms. At lower wavenumbers, ROA spectra exhibit another likely manifestation of amide nonplanarity, showing signals of amide V (δ(oop)(N-C) at ~570 cm(-1)) and amide VI (δ(oop)(C'═O) at ~700 cm(-1) and ~650 cm(-1)) vibrations.

  13. 1H-1H correlations across N-H···N hydrogen bonds in nucleic acids

    International Nuclear Information System (INIS)

    Majumdar, Ananya; Gosser, Yuying; Patel, Dinshaw J.

    2001-01-01

    In 2H J NN -COSY experiments, which correlate protons with donor/acceptor nitrogens across N d ···HN a bonds, the receptor nitrogen needs to be assigned in order to unambiguously identify the hydrogen bond. For many situations this is a non-trivial task which is further complicated by poor dispersion of (N a ,N d ) resonances. To address these problems, we present pulse sequences to obtain direct, internucleotide correlations between protons in uniformly 13 C/ 15 N labeled nucleic acids containing N d ···HN a hydrogen bonds. Specifically, the pulse sequence H2(N1N3)H3 correlates H2(A,ω 1 ):H3(U,ω 2 ) protons across Watson-Crick A-U and mismatched G·A base pairs, the sequences H5(N3N1)H1/H6(N3N1)H1 correlate H5(C,ω 1 )/H6(C,ω 1 ):H1(G,ω 2 ) protons across Watson-Crick G-C base pairs, and the H 2 (N2N7)H8 sequence correlates NH 2 (G,A,C;ω 1 ):H8(G,A;ω 2 ) protons across G·G, A·A, sheared G·A and other mismatch pairs. These 1 H- 1 H connectivities circumvent the need for independent assignment of the donor/acceptor nitrogen and related degeneracy issues associated with poorly dispersed nitrogen resonances. The methodology is demonstrated on uniformly 13 C/ 15 N labeled samples of (a) an RNA regulatory element involving the HIV-1 TAR RNA fragment, (b) a multi-stranded DNA architecture involving a G·(C-A) triad-containing G-quadruplex and (c) a peptide-RNA complex involving an evolved peptide bound to the HIV-1 Rev response element (RRE) RNA fragment

  14. Effect of intermolecular hydrogen bonding, vibrational analysis and molecular structure of a biomolecule: 5-Hydroxymethyluracil

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    2014-06-01

    In the present work, the experimental and theoretical vibrational spectra of 5-hydroxymethyluracil were investigated. The FT-IR (4000-400 cm-1) spectrum of the molecule in the solid phase was recorded. The geometric parameters (bond lengths and bond angles), vibrational frequencies, Infrared intensities of the title molecule in the ground state were calculated using density functional B3LYP and M06-2X methods with the 6-311++G(d,p) basis set for the first time. The optimized geometric parameters and theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data, and with the results found in the literature. The vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of 5-hydroxymethyluracil molecule was also simulated to evaluate the effect of intermolecular hydrogen bonding on its vibrational frequencies. It was observed that the Nsbnd H stretching modes shifted to lower frequencies, while its in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular Nsbnd H⋯O hydrogen bond. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies and diagrams were presented.

  15. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  16. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1 H-1,2,4-Triazole-5(4 H)-Thione

    Science.gov (United States)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  17. Spectral Analysis of 3-(Adamantan-1-yl)-4-Ethyl-1-[(4-Phenylpiperazin-1-yl) Methyl]-1H-1,2,4-Triazole-5(4H)-Thione

    Science.gov (United States)

    Mindarava, Y. L.; Shundalau, M. B.; Al-Wahaibi, L. H.; El-Emam, A. A.; Matsukovich, A. S.; Gaponenko, S. V.

    2018-05-01

    Vibrational IR (3200-650 cm-1) and Raman spectra (3200-150 cm-1) of adamantane-containing 3-(adamantan-1-yl)-4-ethyl-1-[(4-phenylpiperazin-1-yl)methyl]-1H-1,2,4-triazole-5(4H)-thione, which is promising for drug design, were examined. The UV/Vis spectrum (450-200 nm) of the compound in EtOH was measured. Full geometry optimization using density functional theory (DFT) in the B3LYP/cc-pVDZ approximation allowed the equilibrium configuration of the molecule to be determined and IR and Raman spectra to be calculated. Based on these, the experimental vibrational IR and Raman spectra were interpreted and the biological activity indices were predicted. The UV/Vis spectrum of the title compound was simulated at the time-dependent DFT/CAM-B3LYP/cc-pVDZ level with and without solvent effects and at the ab initio multi-reference perturbation theory XMCQDPT2 level. The UV/Vis spectrum that was simulated using the multi-reference XMCQDPT2 approximation agreed very successfully with the experimental data, in contrast to the single-reference DFT method. This was probably a consequence of intramolecular charge transfer.

  18. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    Energy Technology Data Exchange (ETDEWEB)

    Neves, R. F. C. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Instituto Federal do Sul de Minas Gerais, Campus Poços de Caldas, Minas Gerais (Brazil); Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Lopes, M. C. A.; Nixon, K. L. [Departamento de Física, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, Minas Gerais (Brazil); Oliveira, E. M. de; Lima, M. A. P. [Instituto de Física ‘Gleb Wataghin,’ Universidade Estadual de Campinas, 13083-859 Campinas, São Paulo (Brazil); Costa, R. F. da [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo (Brazil); Varella, M. T. do N. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo (Brazil); Bettega, M. H. F. [Departamento de Física, Universidade Federal do Paraná, C.P. 19044, 81531-990 Curitiba, Paraná (Brazil); Silva, G. B. da [Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Brunger, M. J., E-mail: Michael.Brunger@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, G.P.O. Box 2100, Adelaide, SA 5001 (Australia); Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  19. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    International Nuclear Information System (INIS)

    Scalise, E.; Cinquanta, E.; Houssa, M.; Broek, B. van den; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.

    2014-01-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  20. Vibrational properties of epitaxial silicene layers on (1 1 1) Ag

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, E., E-mail: emilio.scalise@fys.kuleuven.be [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Cinquanta, E. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Houssa, M.; Broek, B. van den [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Chiappe, D. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Grazianetti, C. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Pourtois, G. [IMEC, 75 Kapeldreef, B-3001 Leuven (Belgium); Department of Chemistry, Plasmant Research Group, University of Antwerp, B-2610 Wilrijk-Antwerp (Belgium); Ealet, B. [Aix-Marseille University, CNRS-CINaM, Campus de Luminy, Case 913, 13288 Marseille Cedex 09 (France); Molle, A. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, via C. Olivetti 2, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via R. Cozzi 53, I-20126 Milano (MI) (Italy); Afanas’ev, V.V.; Stesmans, A. [Semiconductor Physics Laboratory, Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium)

    2014-02-01

    The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 × 4), (√13 × √13) and (2√3 × 2√3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag(1 1 1).

  1. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  2. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  3. Comparison of experimental and theoretical integral cross sections for D+H2(v=1, j=1)→HD(v'=1, j')+H

    International Nuclear Information System (INIS)

    Kliner, D.A.V.; Adelman, D.E.; Zare, R.N.

    1991-01-01

    We have measured the nascent HD(v'=1, j') product rotational distribution from the reaction D+H 2 (v, j) in which the H 2 reagent was either thermal (v=0, j) or prepared in the level (v=1, j=1) by stimulated Raman pumping. Translationally hot D atoms were obtained by uv laser photolysis of DBr or DI. Photolysis of DBr generated D atoms with center-of-mass collision energies (E rel ) of 1.04 and 0.82 eV, which corresponded to the production of ground state Br and spin--orbit-excited Br*, respectively. The E rel values for DI photolysis were 1.38 and 0.92 eV. Quantum-state-specific detection of HD was accomplished via (2+1) resonance-enhanced multiphoton ionization and time-of-flight mass spectrometry. Vibrational excitation of the H 2 reagent results in substantial rotational excitation of the HD(v'=1) product and increases the reaction rate into v'=1 by about a factor of 4. Although the quantum-mechanical calculation of Blais et al. [Chem. Phys. Lett. 166, 11 (1990)] for the D+H 2 (v=1, j=1)→HD(v'=1, j')+H product rotational distribution at E rel =1.02 eV is in qualitative agreement with experiment, it does not quantitatively agree with the measured distribution. Specifically, the calculated distribution is too hot by 2--3 rotational quanta, and the predicted enhancement in the v'=1 rate with reagent vibrational excitation is too large by 67%±9

  4. Resonances in photoionization. Cross section for vibrationally excited H2

    International Nuclear Information System (INIS)

    Mezei, J.Zs.; Jungen, Ch.

    2011-01-01

    Complete text of publication follows. Diatomic molecular Hydrogen is the most abundant molecule in interstellar molecular clouds. The modeling of these environments relies on accurate cross sections for the various relevant processes. Among them, the photoionization plays a major role in the kinetics and in the energy exchanges involving H 2 . The recent discovery of vibrationally excited molecular hydrogen in extragalactic environments revealed the need for accurate evaluation of the corresponding photoionization cross sections. In the present work we report theoretical photoionization cross sections for excitation from excited vibrational levels of the ground state, dealing with the Q(N = 1) (ΔN = 0, where N is the total angular momentum of the molecule) transitions which account for roughly one third of the total photoabsorption cross section. We will focus on the v' = 1 excited level of the ground electronic state. Our calculations are based on Multichannel Quantum Defect Theory (MQDT), which allows us to take into account of the full manifold of Rydberg states and their interactions with the electronic continuum. We have carried out two types of MQDT calculations. First, we omitted all open channels and calculated energy levels, wave functions and spontaneous emission Einstein coefficients, making use of the theoretical method presented in [2]. In a second set of calculations we included the open ionization channels in the computations getting the continuum phase shifts, channel mixing coefficients and channel dipole moments and finally the photoabsorption/ photoionization cross section. The cross section is dominated by the presence of resonance structures corresponding to excitation of various vibrational levels of bound electronic states which lie above the ionization threshold. In order to assess the importance of the resonances we have calculated for each vibrational interval (the energy interval between two consecutive ionization thresholds) the

  5. 1H and 31P resonance assignments and secondary structure of hairpin conformer of IA mismatched oligonucleotide d-GGTACIAGTACC

    International Nuclear Information System (INIS)

    Chary, K.V.R.; Rastogi, V.K.; Govil, Girjesh

    1994-01-01

    Almost complete 1 H and 31 P resonance assignments of two coexisting conformers, duplex and an hairpin, of d-GGTACIAGTACC at 1.25mM concentration and 305 K have been achieved. The results demonstrate that the hairpin conformer has a structure with two purines I6 and A7 forming a two-base loop on a B-DNA stem. Stacking is continued on the 5'-side of the loop, with the I6 stacked upon C5. The base A7, on the 3'-side of the loop stacks partially with I6. The glycosidic angle for G8 is in the anti domain and it maintains normal Watson-Crick base-pairing with the opposite C5. (author). 28 refs., 7 figs., 2 tabs

  6. Synthesis and characterization of organically modified silica gel with 4-amino-5-(4-pyridyl)-4h-1 ,2,4-triazole-3-thiol (APTT); Sintese e caracterizacao da silica gel organofuncionalizada com 4-amino-5-(4-piridil)-4h-1,2,4-triazol-3-tiol (APTT)

    Energy Technology Data Exchange (ETDEWEB)

    Magossi, M.S.; Carmo, D.R. do, E-mail: maiaramagossi@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia

    2014-07-01

    This work object the preparation and characterization of a silica gel (SG) organically with a triazole compound, 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3- thiol (APTT). The prepared organofunctionalized material (SGAPTT) was preliminarily characterized by spectroscopic techniques such as: Spectroscopy in the Region of Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy X-ray (EDX). The vibrational spectrum (FTIR) showed characteristic bands of the starting materials, such as bands at ∼ 1120cm{sup -1} related to the asymmetric stretching Si-O-Si (νSi-O-Si) as well as the bands between 1350 and 1650 cm{sup -1} assigned vibrations and deformations of the ring APTT. The SGAPTT material was tested as support for adsorption of cupric ions in aqueous solution, ethanol and 42% ethanol. The maximum amount of copper (II) adsorbed (Nf {sup max.}) was 22.0 × 10{sup -5} mol g{sup -1}, 31.4 × 10-5 mol g-1 and 47.17 × 10{sup -5} mol g{sup -1} to aqueous media, 42% ethanol and 99% ethanol respectively. (author)

  7. Assigning spectra of chaotic molecules with diabatic correlation diagrams

    International Nuclear Information System (INIS)

    Rose, J.P.; Kellman, M.E.

    1996-01-01

    An approach for classifying and organizing spectra of highly excited vibrational states of molecules is investigated. As a specific example, we analyze the spectrum of an effective spectroscopic fitting Hamiltonian for H 2 O. In highly excited spectra, multiple resonance couplings and anharmonicity interact to give branching of the N original normal modes into new anharmonic modes, accompanied by the onset of widespread chaos. The anharmonic modes are identified by means of a bifurcation analysis of the spectroscopic Hamiltonian. A diabatic correlation diagram technique is developed to assign the levels with approximate open-quote open-quote dynamical close-quote close-quote quantum numbers corresponding to the dynamics determined from the bifurcation analysis. The resulting assignment shows significant disturbance from the conventional spectral pattern organization into sequences and progressions. The open-quote open-quote dynamical close-quote close-quote assignment is then converted into an assignment in terms of open-quote open-quote nominal close-quote close-quote quantum numbers that function like the N normal mode quantum numbers at low energy. The nominal assignments are used to reconstruct, as much as possible, an organization of the spectrum resembling the usual separation into sequences and progressions. copyright 1996 American Institute of Physics

  8. Low-frequency, low-magnitude vibrations (LFLM enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs

    Directory of Open Access Journals (Sweden)

    Krzysztof Marycz

    2016-02-01

    Full Text Available The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS, to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2, and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.

  9. Vibrational, DFT, thermal and dielectric studies on 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1)

    Science.gov (United States)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    2014-01-01

    A new organic-organic salt, 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1) (3-NPM) has been synthesized by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that 3-NPM crystallizes in orthorhombic system with centrosymmetric space group Pbca and the lattice parameters are a = 15.5150(6) Å, b = 12.9137(6) Å, c = 17.8323(6) Å, α = β = γ = 90° and V = 3572.8(2) (Å)3. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimization and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311G(d,p) method. IR and Raman spectra of 3-NPM have been recorded and analyzed. The complete vibrational assignments are made on the basis of potential energy distribution (PED). The electric dipole moment, polarizability and the first order hyperpolarizability values of the 3-NPM have been calculated. 1H and 13C NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP method with 6-311G (d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties are performed. Mulliken and Natural charges of the title molecule are also calculated and interpreted. Thermal decomposition behavior of 3-NPM has been studied by means of thermogravimetric analysis. The dielectric measurements on the powdered sample have been carried out and the variation of dielectric constant and dielectric loss at different frequencies of the applied field has been studied and the results are discussed in detail.

  10. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H216O

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Császár, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Vandaele, Ann Carine; Zobov, Nikolai F.; Al Derzi, Afaf R.; Fábri, Csaba; Fazliev, Alexander Z.; Furtenbacher, Tibor

    2013-01-01

    This is the third of a series of articles reporting critically evaluated rotational–vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational–vibrational transitions of the most abundant isotopologue of water, H 2 16 O. The latest version of the MARVEL (Measured Active Rotational–Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H 2 16 O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H 2 16 O containstwo components, an ortho (o) and a para (p) one. For o-H 2 16 O and p-H 2 16 O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000 K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184 667 of which 182 156 are validated: 68 027 between para states and 114 129 ortho ones. These transitions give rise to 18 486 validated energy levels, of which 10 446 and 8040 belong to o-H 2 16 O and p-H 2 16 O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a

  11. Fuchs-Kliewer phonons of H-covered and clean GaN(1 1 bar 00)

    Science.gov (United States)

    Rink, M.; Himmerlich, M.; Krischok, S.; Kröger, J.

    2018-01-01

    Inelastic electron scattering is used to study surface phonon polaritons on H-covered and clean GaN(1 1 bar 00) surfaces. The Fuchs-Kliewer phonon of GaN(1 1 bar 00) -H gives rise to characteristic signatures of its single and multiple excitation in specular electron energy loss spectra. The loss intensities for multi-phonon scattering processes decrease according to a Poisson distribution. Vibrational spectra of this surface are invariant on the time scale of days reflecting its chemical passivation by the H layer. In contrast, vibrational spectra of pristine GaN(1 1 bar 00) are subject to a pronounced temporal evolution where spectroscopic weight is gradually shifted towards the multiple excitation of the Fuchs-Kliewer phonon. As a consequence, the monotonous decrease of the cross section for multiple quantum excitation as observed for the H-covered surface is not applicable. This remarkable effect is particularly strong in spectra acquired at low primary energies of incident electrons, which hints at processes occurring in the very surface region. Scenarios that may contribute to these observations are discussed.

  12. Conformational, structural, vibrational, electronic and quantum chemical investigations of cis-2-methoxycinnamic acid

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng

    2015-01-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of cis-2-methoxycinnamic acid have been measured in the range 4000-400 and 4000-100 cm-1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compound were carried out using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constrains using the DFT/B3LYP method utilising 6-311++G∗∗ and cc-pVTZ basis sets. The thermodynamic stability and chemical reactivity descriptors of the molecule have been determined. The exact environment of C and H of the molecule has been analysed by NMR spectroscopies through 1H and 13C NMR chemical shifts of the molecule. The energies of the frontier molecular orbitals have also been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. The vibrational frequencies which were determined experimentally are compared with those obtained theoretically from density functional theory (DFT) gradient calculations employing the B3LYP/6-311++G∗∗ and cc-pVTZ methods.

  13. Primidone--an antiepileptic drug--characterisation by quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR and UV-Visible) investigations.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Subramanian, S; Mohan, S

    2013-05-15

    The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods. The Raman intensities were also determined with B3LYP/6-31G(d,p) method. The total electron density and molecular electrostatic potential surface of the molecule were constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The HOMO and LUMO energies were measured. Natural bond orbital analysis of primidone has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR spectra were recorded and the chemical shifts of the molecule were calculated. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of nuclear vibration on the ionization process of H2+ in ultrashort intense laser field

    International Nuclear Information System (INIS)

    Phan, Ngoc-Loan; Nguyen, Ngoc-Ty; Truong, Tran-Chau

    2015-01-01

    By numerically solving the time-dependent Schrödinger equation, we calculate the ionization probability of a vibrating H 2 + exposed to ultrashort intense laser fields. The results show that the ionization probability increases by time and gets a saturation value. We also find that with some first vibration levels, the ionization probability from a higher vibration level is larger than that from a lower one. However, with higher vibration levels, at a certain level the ionization probability will take maximum and decrease with next levels. (paper)

  15. Vibrational spectra of ordered perovskites

    NARCIS (Netherlands)

    Corsmit, A.F.; Hoefdraad, H.E.; Blasse, G.

    1972-01-01

    The vibrational spectra of the molecular M6+O6 (M = Mo, Te, W) group in ordered perovskites of the type Ba2M2+M6+O6 are reported. These groups have symmetry Oh, whereas their site symmetry is also Oh. An assignment of the internal vibrations is presented.

  16. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate

    Science.gov (United States)

    Arjunan, V.; Kalaivani, M.; Marchewka, M. K.; Mohan, S.

    2013-08-01

    The crystal structure investigations of melamine with phosphorous acid, namely melaminium dihydrogenphosphite monohydrate (C3N6HH2PO3·H2O) have been investigated by means of single crystal X-ray diffraction method. The title compound crystallizes in monoclinic crystal system, and the space group is P21/c with a = 10.069 Å, b = 21.592 Å, c = 12.409 Å and Z = 12. The vibrational assignments and analysis of melaminium dihydrogen phosphite monohydrate have also been performed by FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical simulations were performed with DFT (B3LYP) method using 6-31G**, cc-pVTZ, and 6-311++G** basis sets to determine the energy, structural, thermodynamic parameters and vibrational frequencies of melaminium dihydrogen phosphite monohydrate. The hydrogen atom from phosphorous acid was transferred to the melamine molecule giving the singly protonated melaminium cation. The ability of ions to form spontaneous three-dimensional structure through weak Osbnd H···O and Nsbnd H···O hydrogen bonds shows notable vibrational effects.

  17. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  18. Observation of stimulated Raman scattering in polar tetragonal crystals of barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Kaminskii, Alexander A. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Rhee, Hanjo; Eichler, Hans J.; Lux, Oliver [Institute of Optics and Atomic Physics, Technical University of Berlin (Germany); Nemec, Ivan [Department of Inorganic Chemistry, Faculty of Science, Charles University, Prague (Czech Republic); Yoneda, Hitoki; Shirakawa, Akira [Institute for Laser Science, University of Electro-Communications, Tokyo (Japan); Becker, Petra; Bohaty, Ladislav [Section Crystallography, Institute of Geology and Mineralogy, University of Cologne (Germany)

    2017-04-15

    The non-centrosymmetric polar tetragonal (P4{sub 1}) barium antimony tartrate trihydrate, Ba[Sb{sub 2}((+)C{sub 4}H{sub 2}O{sub 6}){sub 2}].3H{sub 2}O, was found to be an attractive novel semi-organic crystal manifesting numerous χ{sup (2)}- and χ{sup (3)}-nonlinear optical interactions. In particular, with picosecond single- and dual-wavelength pumping SHG and THG via cascaded parametric four-wave processes were observed. High-order Stokes and anti-Stokes lasing related to two SRS-promoting vibration modes of the crystal, with ω{sub SRS1} ∼ 575 cm{sup -1} and ω{sub SRS2} ∼ 2940 cm{sup -1}, takes place. Basing on a spontaneous Raman investigation an assignment of the two SRS-active vibration modes is discussed. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  20. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations.

    Science.gov (United States)

    Ramalingam, S; Jayaprakash, A; Mohan, S; Karabacak, M

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm(-1)) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H). Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  1. Spectroscopy of vibrationally hot molecules: Hydrogen cyanide and acetylene

    International Nuclear Information System (INIS)

    Jonas, D.M.

    1992-01-01

    An efficient formula for calculating nuclear spin statistical weights is presented. New experimental methods to distinguish electric and magnetic multipole transitions are proposed and used to prove that the formaldehyde A - X 0-0 transition is a magnetic dipole transition. HIgh resolution vacuum ultraviolet studies of the A → X fluorescence excitation spectrum of hydrogen cyanide (HCN) have: (i) determined that only the (0,1,0) vibrational level of the HCN A-state has a sufficiently long fluorescence lifetime to be suitable for Stimulated Emission Pumping (SEP) studies; and (ii) measured the electric dipole moment of the A-state. Several transitions in the hydrogen cyanide A → X SEP spectrum are shown to be due to the axis-switching mechanism. From a Franck-Condon plot of the intensities and a comparison between sums of predicted rotational constants and sums of observed rotational constants, all of the remaining transitions in the SEP spectrum can be securly assigned. Two weak resonances; a 2:3 CH:CN stretch Fermi resonance and a 6:2 bend:CN stretch resonance appear in the SEP spectrum. Excitation of the CH stretching vibration is predicted and shown to be entirely absent, apart from resonances, in the HCN SEP spectrum. A → X SEP spectra of acetylene (HCCH) near E VIB = 7,000 cm -1 display a wealth of strong and fully assignable anharmonic resonances and forbidden rotational transitions. It is proved that Darling-Dennison resonance between the cis and trans bending vibrations is the crucial first step in a series of anharmonic resonances which can transfer nearly all the vibrational energy out of the initial CC stretch/trans-bend excitation at high vibrational energy. Secondary steps in the vibrational energy flow are vibrational-l-resonance and the '2345' Fermi resonance. For short times, the vibrational energy redistribution obeys very restrictive rules

  2. Crystal structure, vibrational and theoretical studies of bis(4-amino-1,2,4-triazolium) hexachloridostannate(IV)

    Science.gov (United States)

    Daszkiewicz, Marek; Marchewka, Mariusz K.

    2012-06-01

    X-ray structure of new hybrid organic-inorganic compound, bis(4-amino-1,2,4-triazolium) hexachloridostannate(IV), [1t(4at)]2SnCl6 (P1¯ space group) was determined. Crystal structure of 4-amino-1,2,4-triazole (Pbca space group) was reinvestigated. Non-planar orientation of NH2 group was found. The geometry of the amino group does not significantly change upon protonation. The route of protonation of 4-aminotriazole and tautomer equilibrium constants for the cationic forms were theoretically studied by means of B3LYP/6-31G* method. The most stable monoprotonated species is 1H-trans-4-amino-1,2,4-triazole, 1t(4at)+, whereas the final product of the protonation route is 12(4at)2+. Potential Energy Distribution (PED) analysis was carried out for two conformers, 1c(4at)+ and 1t(4at)+. Very good agreement between theoretical and experimental frequencies was achieved due to very weak interactions existing in [1t(4at)]2SnCl6. Infrared and Raman bands were assigned on the basis of PED analysis. Comparison of vibrational spectra of [1t(4at)]2SnCl6 and [1t(4at)]Cl indicates significantly weaker intermolecular interactions in the former compound.

  3. Proton conducting system (ImH2)2SeO4·2H2O investigated with vibrational spectroscopy

    Science.gov (United States)

    Zięba, Sylwia; Mizera, Adam; Pogorzelec-Glaser, Katarzyna; Łapiński, Andrzej

    2017-06-01

    Imidazolium selenate dihydrate (ImH2)2SeO4·2H2O crystals have been investigated using Raman and IR spectroscopy. Experimental data were supported by the quantum-chemical calculations (DFT), Hirshfield surfaces and fingerprint plots analysis, and Bader theory calculations. The imidazolium selenate dihydrate crystal exhibits high proton conductivity of the order of 10- 1 S/m at T = 333 K. The spectra of this compound are dominated by bands related to the lattice modes, the internal vibrations of the protonated imidazole cation, selenate anion, water molecules, and hydrogen bonds network. For the imidazolium selenate dihydrate crystal, the formal classification of the fundamental modes has been carried out.

  4. Vibrational normal modes of diazo-dimedone: A comparative study by Fourier infrared/Raman spectroscopies and conformational analysis by MM/QM

    Science.gov (United States)

    Téllez Soto, C. A.; Ramos, J. M.; Rianelli, R. S.; de Souza, M. C. B. V.; Ferreira, V. F.

    2007-07-01

    The 2-diazo-5,5-dimethyl-cyclohexane-1,3-dione ( 3) was synthesized and the FT-IR/Raman spectra were measured with the purpose of obtain a full assignment of the vibrational modes. Singular aspects concerning the -C dbnd N dbnd N oscillator are discussed in view of two strong bands observed in the region of 2300-2100 cm -1 in both, Infrared and Raman spectra. The density functional theory (DFT) was used to obtain the geometrical structure and for assisting in the vibrational assignment joint to the traditional normal coordinate analysis (NCA). The observed wavenumbers at 2145 (IR), 2144(R) are assigned as the coupled ν(N dbnd N) + ν(C dbnd N) vibrational mode with higher participation of the N dbnd N stretching. A 2188 cm -1 (IR) and at 2186 cm -1 (R) can be assigned as a overtone of one of ν(CC) normal mode or to a combination band of the fundamentals δ(CCH) found at 1169 cm -1 and the δ (CC dbnd N) found at 1017 cm -1 enhanced by Fermi resonance.

  5. The 1943 K emission spectrum of H216O between 6600 and 7050 cm-1

    Science.gov (United States)

    Czinki, Eszter; Furtenbacher, Tibor; Császár, Attila G.; Eckhardt, André K.; Mellau, Georg Ch.

    2018-02-01

    An emission spectrum of H216O has been recorded, with Doppler-limited resolution, at 1943 K using Hot Gas Molecular Emission (HOTGAME) spectroscopy. The wavenumber range covered is 6600 to 7050 cm-1. This work reports the analysis and subsequent assignment of close to 3700 H216O transitions out of a total of more than 6700 measured peaks. The analysis is based on the Measured Active Rotational-Vibrational Energy Levels (MARVEL) energy levels of H216O determined in 2013 and emission line intensities obtained from accurate variational nuclear-motion computations. The analysis of the spectrum yields about 1300 transitions not measured previously and 23 experimentally previously unidentified rovibrational energy levels. The accuracy of the line positions and intensities used in the analysis was improved with the spectrum deconvolution software SyMath via creating a peak list corresponding to the dense emission spectrum. The extensive list of labeled transitions and the new experimental energy levels obtained are deposited in the Supplementary Material of this article as well as in the ReSpecTh (http://www.respecth.hu) information system.

  6. Molecular structure, vibrational analysis (IR and Raman) and quantum chemical investigations of 1-aminoisoquinoline

    Science.gov (United States)

    Sivaprakash, S.; Prakash, S.; Mohan, S.; Jose, Sujin P.

    2017-12-01

    Quantum chemical calculations of energy and geometrical parameters of 1-aminoisoquinoline [1-AIQ] were carried out by using DFT/B3LYP method using 6-311G (d,p), 6-311G++(d,p) and cc-pVTZ basis sets. The vibrational wavenumbers were computed for the energetically most stable, optimized geometry. The vibrational assignments were performed on the basis of potential energy distribution (PED) using VEDA program. The NBO analysis was done to investigate the intra molecular charge transfer of the molecule. The frontier molecular orbital (FMO) analysis was carried out and the chemical reactivity descriptors of the molecule were studied. The Mulliken charge analysis, molecular electrostatic potential (MEP), HOMO-LUMO energy gap and the related properties were also investigated at B3LYP level. The absorption spectrum of the molecule was studied from UV-Visible analysis by using time-dependent density functional theory (TD-DFT). Fourier Transform Infrared spectrum (FT-IR) and Raman spectrum of 1-AIQ compound were analyzed and recorded in the range 4000-400 cm-1 and 3500-100 cm-1 respectively. The experimentally determined wavenumbers were compared with those calculated theoretically and they complement each other.

  7. Experimental and DFT studies of (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline: Electronic and vibrational properties

    Science.gov (United States)

    Sun, Wenqi; Yuan, Guozan; Liu, Jingxin; Ma, Li; Liu, Chengbu

    2013-04-01

    The title molecule (E)-2-[2-(2,6-dichlorophenyl)ethenyl]-8-hydroxyquinoline (DPEQ) was synthesized and characterized by FT-IR, UV-vis, NMR spectroscopy. The molecular geometry, vibrational frequencies and gauge independent atomic orbital (GIAO) 1H and 13C NMR chemical shift values of the compound in the ground state have been calculated by using the density functional theory (DFT) method. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. The calculated results indicate that the theoretical vibrational frequencies, 1H and 13C NMR chemical shift values show good agreement with experimental data. The electronic properties like UV-vis spectral analysis and HOMO-LUMO analysis of DPEQ have been reported and compared with experimental data. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP).

  8. Vibrational spectroscopic study of poldervaartite CaCa[SiO3(OH)(OH)

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Lima, Rosa Malena Fernandes

    2015-02-01

    We have studied the mineral poldervaartite CaCa[SiO3(OH)(OH)] which forms a series with its manganese analogue olmiite CaMn[SiO3(OH)](OH) using a range of techniques including scanning electron microscopy, thermogravimetric analysis, Raman and infrared spectroscopy. Chemical analysis shows the mineral is reasonably pure and contains only calcium and manganese with low amounts of Al and F. Thermogravimetric analysis proves the mineral decomposes at 485 °C with a mass loss of 7.6% compared with the theoretical mass loss of 7.7%. A strong Raman band at 852 cm-1 is assigned to the SiO stretching vibration of the SiO3(OH) units. Two Raman bands at 914 and 953 cm-1 are attributed to the antisymmetric vibrations. Intense prominent peaks observed at 3487, 3502, 3509, 3521 and 3547 cm-1 are assigned to the OH stretching vibration of the SiO3(OH) units. The observation of multiple OH bands supports the concept of the non-equivalence of the OH units. Vibrational spectroscopy enables a detailed assessment of the molecular structure of poldervaartite.

  9. Robust Control for Microgravity Vibration Isolation using Fixed Order, Mixed H2/Mu Design

    Science.gov (United States)

    Whorton, Mark

    2003-01-01

    Many space-science experiments need an active isolation system to provide a sufficiently quiescent microgravity environment. Modern control methods provide the potential for both high-performance and robust stability in the presence of parametric uncertainties that are characteristic of microgravity vibration isolation systems. While H2 and H(infinity) methods are well established, neither provides the levels of attenuation performance and robust stability in a compensator with low order. Mixed H2/H(infinity), controllers provide a means for maximizing robust stability for a given level of mean-square nominal performance while directly optimizing for controller order constraints. This paper demonstrates the benefit of mixed norm design from the perspective of robustness to parametric uncertainties and controller order for microgravity vibration isolation. A nominal performance metric analogous to the mu measure, for robust stability assessment is also introduced in order to define an acceptable trade space from which different control methodologies can be compared.

  10. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  11. Synthesis and characterization of organically modified silica gel with 4-amino-5-(4-pyridyl)-4h-1 ,2,4-triazole-3-thiol (APTT)

    International Nuclear Information System (INIS)

    Magossi, M.S.; Carmo, D.R. do

    2014-01-01

    This work object the preparation and characterization of a silica gel (SG) organically with a triazole compound, 4-amino-5-(4-pyridyl)-4H-1,2,4-triazole-3- thiol (APTT). The prepared organofunctionalized material (SGAPTT) was preliminarily characterized by spectroscopic techniques such as: Spectroscopy in the Region of Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy X-ray (EDX). The vibrational spectrum (FTIR) showed characteristic bands of the starting materials, such as bands at ∼ 1120cm"-"1 related to the asymmetric stretching Si-O-Si (νSi-O-Si) as well as the bands between 1350 and 1650 cm"-"1 assigned vibrations and deformations of the ring APTT. The SGAPTT material was tested as support for adsorption of cupric ions in aqueous solution, ethanol and 42% ethanol. The maximum amount of copper (II) adsorbed (Nf "m"a"x".) was 22.0 × 10"-"5 mol g"-"1, 31.4 × 10-5 mol g-1 and 47.17 × 10"-"5 mol g"-"1 to aqueous media, 42% ethanol and 99% ethanol respectively. (author)

  12. Oxygen vibrations in the series Bi2Sr2Ca{_{n-1}}Cu{n}O{_{4+2 n+y}}

    Science.gov (United States)

    Faulques, E.; Dupouy, P.; Lefrant, S.

    1991-06-01

    We present a discussion of the oxygen vibrations in the Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} high T_c superconductors with the aim of interpreting Raman spectra in the case of the non-symmorphic Amaa structure. Group theory shows that the oxygen atoms belonging to the central CuO{2} plane generate a Raman activity for the n=1,3 phases. Consequently, we propose a novel assignment for the lines of weak intensity at 297, 316 and 333 cm^{-1}. It is shown that the two components of the 460 cm^{-1} band may be consistent with the Amma structure. Spectra recorded in crossed polarization exhibit weak lines which could be assigned to B {1g} modes expected for the three phases. Nous présentons une discussion sur les vibrations des atomes d'oxygène dans la série des supraconducteurs Bi{2}Sr{2}Ca{n-1}Cu{n}O{4+2 n+y} dans le but d'interpréter les spectres Raman. L'analyse des modes normaux de vibration de la structure Amaa pour les phases n=1 ou 3 montre que les atomes d'oxygène du plan CuO{2} contenant les centres d'inversion donnent lieu à une activité Raman. En conséquence, nous proposons une nouvelle attribution pour les raies de faible intensité à 297, 316 et 333 cm^{-1}. Nous montrons que le dédoublement de la bande à 460 cm^{-1} pourrait être dû à la structure Amaa. Les spectres enregistrés en polarization croisée montrent de faibles bandes qui peuvent être attribuées aux modes B {1g} attendus pour les trois phases.

  13. The pH dependent Raman spectroscopic study of caffeine

    Science.gov (United States)

    Kang, Jian; Gu, Huaimin; Zhong, Liang; Hu, Yongjun; Liu, Fang

    2011-02-01

    First of all the surface enhanced Raman spectroscopy (SERS) and normal Raman spectra of caffeine aqueous solution were obtained at different pH values. In order to obtain the detailed vibrational assignments of the Raman spectroscopy, the geometry of caffeine molecule was optimized by density functional theory (DFT) calculation. By comparing the SERS of caffeine with its normal spectra at different pH values; it is concluded that pH value can dramatically affect the SERS of caffeine, but barely affect the normal Raman spectrum of caffeine aqueous solution. It can essentially affect the reorientation of caffeine molecule to the Ag colloid surface, but cannot impact the vibration of functional groups and chemical bonds in caffeine molecule.

  14. Sequence-specific 1H NMR assignments and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Breg, J.N.; Boelens, R.; George, A.V.E.; Kaptein, R.

    1989-01-01

    The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. The authors have undertaken a 1 H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here the authors present the 1 H nuclear magnetic resonance (NMR) assignments of all backbone protons an most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristics sequential and medium-range nuclear Overhauser enhancements (NOEs). Two α-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with β-sheet characteristics dominated by a close proximity of the α-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the β-sheet region can be interpreted. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (β-sheet between monomers). Since the N-terminal region of Arc is responsible for the sequence-specific recognition of its operator, the findings suggest the existence of a DNA binding motif in which a β-sheet region is present

  15. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate

    Science.gov (United States)

    Marchewka, M. K.; Drozd, M.

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  16. Cemal PARLAK 1, *, Özgür ALVER 2

    Directory of Open Access Journals (Sweden)

    Cemal Parlak

    2016-10-01

    Full Text Available The structure of 1-(2-nitrophenylpiperazine (NPP, C10H13N3O2 was characterized by nuclear magnetic resonance (NMR, Fourier Transform infrared (FTIR and Raman techniques. The conformational analysis, nuclear magnetic shielding tensors, normal mode frequencies and corresponding vibrational assignments of NPP were examined using the density functional theory (DFT, with the Becke-3-Lee-Yang-Parr (B3LYP functional and the 6-31G(d and 6-311++G(d,p basis sets. Reliable vibrational assignments were investigated by the total energy distributions (TED obtained with scaled quantum mechanical (SQM method. The hydrogen of NH group in piperazine and the phenyl fragment of NPP equatorially oriented relative to piperazine. There is a good agreement between the experimentally determined nuclear magnetic shielding tensors and vibrational frequencies of NPP and those predicted theoretically.

  17. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  18. Natural bond orbital analysis, electronic structure and vibrational spectral analysis of N-(4-hydroxyl phenyl) acetamide: A density functional theory

    Science.gov (United States)

    Govindasamy, P.; Gunasekaran, S.; Ramkumaar, G. R.

    2014-09-01

    The Fourier transform infrared (FT-IR) and FT-Raman spectra of N-(4-hydroxy phenyl) acetamide (N4HPA) of painkiller agent were recorded in the region 4000-450 cm-1 and 4000-50 cm-1 respectively. Density functional theory (DFT) has been used to calculate the optimized geometrical parameter, atomic charges, and vibrational wavenumbers and intensity of the vibrational bands. The computed vibrational wave numbers were compared with the FT-IR and FT-Raman experimental data. The computational calculations at DFT/B3LYP level with 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p) and 6-311++G(d,p) basis sets. The complete vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes calculated using Vibrational energy distribution analysis (VEDA 4) program. The oscillator’s strength calculated by TD-DFT and N4HPA is approach complement with the experimental findings. The NMR chemical shifts 13C and 1H were recorded and calculated using the gauge independent atomic orbital (GIAO) method. The molecular electrostatic potential (MESP) and electron density surfaces of the molecule were constructed. The Natural charges and intermolecular contacts have been interpreted using Natural Bond orbital (NBO) analysis the HOMO-LUMO energy gap has been calculated. The thermodynamic properties like entropy, heat capacity and zero vibrational energy have been calculated.

  19. Local-mode vibrations of water

    International Nuclear Information System (INIS)

    Lawton, R.T.; Child, M.S.

    1981-01-01

    Quantum-mechanical eigenvalues for the stretching vibrations of H 2 O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm - 1 at v=1 to 0.001 cm - 1 at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode. (author)

  20. Molecular structure and vibrational spectroscopy of isoproturon

    Science.gov (United States)

    Vrielynck, L.; Dupuy, N.; Kister, J.; Nowogrocki, G.

    2006-05-01

    The crystal structure of isoproturon [ N-(4-isopropylphenyl)- N', N'-dimethylurea] has been determined: the compound crystallizes in the space group Pbca with unit cell parameters a=10.186(2) Å, b=11.030(2) Å, c=20.981(4) Å. The structure was solved and refined down to R1=0.0508 and ωR2=0.12470 for 3056 reflections. The crystalline molecular network of this pesticide is stabilized, as for many molecules of the same family, by π-π interactions but especially by a medium-strong N-H⋯C dbnd6 O intermolecular hydrogen bond (2.14 Å). The X-ray parameters were then compared with the results of DFT quantum chemical calculation computed with the GAUSSIAN 94 package. A tentative assignment of the ATR-FT-IR and Raman spectra was proposed supported by vibrational mode calculation and spectroscopic data on benzenic and urea derivatives available in the literature. The presence of a tight band around 3300 cm -1, which can be assigned to the NH bond stretching mode as well as the low frequency position of the amide I band at 1640 cm -1, sensitive to solvent polarity, confirms the existence of a quite strong intermolecular hydrogen bond between neighboring molecules in the crystal of isoproturon.

  1. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    Science.gov (United States)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  2. H2+ embedded in a Debye plasma: Electronic and vibrational properties

    International Nuclear Information System (INIS)

    Angel, M.L.; Montgomery, H.E.

    2011-01-01

    The effect of plasma screening on the electronic and vibrational properties of the H 2 + molecular ion was analyzed within the Born-Oppenheimer approximation. When a molecule is embedded in a plasma, the plasma screens the electrostatic interactions. This screening is accounted in the Schroedinger equation by replacing the Coulomb potentials with Yukawa potentials that incorporate the Debye length as a screening parameter. Variational expansions in confocal elliptical coordinates were used to calculate energies of the 1sσ g and 2pσ u states over a range of Debye lengths and bond distances. When the Debye length is comparable to the equilibrium bond distance, the dissociation energy is reduced while the equilibrium internuclear separation is increased. Expectation values, static dipole polarizabilities and spectroscopic constants were calculated for the 1sσ g state. - Highlights: → Effect of plasma screening on the properties of the H 2 + molecular ion. → Used a variational wavefunction in confocal elliptical coordinates. → Potential energy curves for the ground and first excited state are presented. → Decreasing Debye length increases polarizability of the electron distribution.

  3. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    Science.gov (United States)

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  4. 1H, 15N and 13C resonance assignments of the J-domain of co-chaperone Sis1 from Saccharomyces cerevisiae.

    Science.gov (United States)

    Pinheiro, Glaucia M S; Amorim, Gisele C; Iqbal, Anwar; Ramos, C H I; Almeida, Fabio C L

    2018-04-30

    Protein folding in the cell is usually aided by molecular chaperones, from which the Hsp70 (Hsp = heat shock protein) family has many important roles, such as aiding nascent folding and participating in translocation. Hsp70 has ATPase activity which is stimulated by binding to the J-domain present in co-chaperones from the Hsp40 family. Hsp40s have many functions, as for instance the binding to partially folded proteins to be delivered to Hsp70. However, the presence of the J-domain characterizes Hsp40s or, by this reason, as J-proteins. The J-domain alone can stimulate Hsp70 ATPase activity. Apparently, it also maintains the same conformation as in the whole protein although structural information on full J-proteins is still missing. This work reports the 1 H, 15 N and 13 C resonance assignments of the J-domain of a Hsp40 from Saccharomyces cerevisiae, named Sis1. Secondary structure and order parameter prediction from chemical shifts are also reported. Altogether, the data show that Sis1 J-domain is highly structured and predominantly formed by α-helices, results that are in very good agreement with those previously reported for the crystallographic structure.

  5. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C4H9NH3)4Pb3I4Br6

    International Nuclear Information System (INIS)

    Dammak, T.; Elleuch, S.; Bougzhala, H.; Mlayah, A.; Chtourou, R.; Abid, Y.

    2009-01-01

    An organic-inorganic hybrid perovskite (C 4 H 9 NH 3 ) 4 Pb 3 I 4 Br 6 was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C 4 ) 4 Pb 3 I 4 Br 6 , crystallises in a periodic two-dimensional multilayer structure with P2 1 /a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX 6 (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm -1 frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C 4 ) 4 Pb 3 I 4 Br 6 , revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  6. Principal component analysis for verifying {sup 1}H NMR spectral assignments. The case of 3-aryl (1,2,4)-oxadiazole-5-carbohydrazide benzylidene; Aplicacao de analise de componentes principais para verificacao de atribuicoes de sinais nos espetros de RMN 1H. O caso dos 3-aril (1,2,4)-oxadiazol-5-carboidrazida benzilidenos

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Bosco P. da; Malvestiti, Ivani; Hallwass, Fernando; Ramos, Mozart N. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Quimica Fundamental]. E-mail: paraiso@ufpe.br; Leite, Lucia F.C. da Costa [Universidade Catolica de Pernambuco, Recife, PE (Brazil). Dept. de Quimica; Barreiro, Eliezer J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Faculdade de Farmacia

    2005-06-01

    The {sup 1}H NMR data set of a series of 3-aryl (1,2,4)-oxadiazole-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA). Using the original 1H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazole group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted. (author)

  7. High-Accuracy Quartic Force Field Calculations for the Spectroscopic Constants and Vibrational Frequencies of 1(exp 1)A' l-C3H(-): A Possible Link to Lines Observed in the Horsehead Nebula PDR

    Science.gov (United States)

    Fortenberry, Ryan C.; Huang, Xinchuan; Crawford, T. Daniel; Lee, Timothy J.

    2013-01-01

    It has been shown that rotational lines observed in the Horsehead nebula photon-dominated-region (PDR) are probably not caused by l-C3H+, as was originally suggested. In the search for viable alternative candidate carriers, quartic force fields are employed here to provide highly accurate rotational constants, as well as fundamental vibrational frequencies, for another candidate carrier: 1 (sup 1)A' C3H(-). The ab initio computed spectroscopic constants provided in this work are, compared to those necessary to define the observed lines, as accurate as the computed spectroscopic constants for many of the known interstellar anions. Additionally, the computed D-eff for C3H(-) is three times closer to the D deduced from the observed Horsehead nebula lines relative to l-C3H(+). As a result, 1 (sup 1)A' C3H(-). is a more viable candidate for these observed rotational transitions and would be the seventh confirmed interstellar anion detected within the past decade and the first C(sub n)H(-) molecular anion with an odd n.

  8. Simple Analytic Collisional Rates for non-LTE Vibrational Populations in Astrophysical Environments: the Cases of Circumstellar SiO Masers and Shocked H2

    Science.gov (United States)

    Bieniek, Ronald

    2008-05-01

    Rates for collisionally induced transitions between molecular vibrational levels are important in modeling a variety of non-LTE processes in astrophysical environments. Two examples are SiO masering in circumstellar envelopes in certain late-type stars [1] and the vibrational populations of molecular hydrogen in shocked interstellar medium [cf 2]. A simple exponential-potential model of molecular collisions leads to a two-parameter analytic expression for state-to-state and thermally averaged rates for collisionally induced vibrational-translational (VT) transitions in diatomic molecules [3,4]. The thermally averaged rates predicted by this formula have been shown to be in excellent numerical agreement with absolute experimental and quantum mechanical rates over large temperature ranges and initial vibrational excitation levels in a variety of species, e.g., OH, O2, N2 [3] and even for the rate of H2(v=1)+H2, which changes by five orders of magnitude in the temperature range 50-2000 K [4]. Analogous analytic rates will be reported for vibrational transitions in SiO due to collisions with H2 and compared to the numerical fit of quantum-mechanical rates calculated by Bieniek and Green [5]. [1] Palov, A.P., Gray, M.D., Field, D., & Balint-Kurti, G.G. 2006, ApJ, 639, 204. [2] Flower, D. 2007, Molecular Collisions in the Interstellar Medium (Cambridge: Cambridge Univ. Press) [3] Bieniek, R.J. & Lipson, S.J. 1996, Chem. Phys. Lett. 263, 276. [4] Bieniek, R.J. 2006, Proc. NASA LAW (Lab. Astrophys. Workshop) 2006, 299; http://www.physics.unlv.edu/labastro/nasalaw2006proceedings.pdf. [5] Bieniek, R.J., & Green, S. 1983, ApJ, 265, L29 and 1983, ApJ, 270, L101.

  9. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at v=1 to 0.001 cm/sup -1/ at v=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  10. Local-mode vibrations of water

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, R.T.; Child, M.S. (Oxford Univ. (UK). Dept. of Theoretical Chemistry)

    1981-05-11

    Quantum-mechanical eigenvalues for the stretching vibrations of H/sub 2/O on the Sorbie-Murrell potential surface are shown to contain a series of local-mode doublets, with splittings which vary as the energy increases from 100 cm/sup -1/ at theta=1 to 0.001 cm/sup -1/ at theta=8. Preliminary calculations indicate that this pattern is largely unaffected by inclusion of the bending vibrational mode.

  11. Vibrational spectroscopic (FT-IR, FT-Raman) and quantum mechanical study of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f] [1,2,4]triazolo[4,3-a][1,4] diazepine

    Science.gov (United States)

    Kuruvilla, Tintu K.; Prasana, Johanan Christian; Muthu, S.; George, Jacob

    2018-04-01

    The spectroscopic properties of 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine were investigated in the present study using FT-IR and FT-Raman techniques. The results obtained were compared with quantum mechanical methods, as it serves as an important tool in interpreting and predicting vibrational spectra. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and Raman scattering were calculated using density functional theory B3LYP method with 6-311++g (d,p) basis set. All the experimental results were in line with the theoretical data. The molecular electrostatic potential (MEP) and HOMO LUMO energies of the title compound were accounted. The results indicated that the title compound has a lower softness value (0.27) and high electrophilicity index (4.98) hence describing its biological activity. Further, natural bond orbital was also analyzed as part of the work. Fukui functions were calculated in order to explain the chemical selectivity or the reactivity site in 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno [3,2-f] [1,2,4] triazolo [4,3-a] [1,4] diazepine. The thermodynamic properties of the title compound were closely examined at different temperatures. It revealed the correlations between heat capacity (C), entropy (S) and enthalpy changes (H) with temperatures. The paper further explains that the title compound can act as good antidepressant through molecular docking studies.

  12. Spectroscopic Investigations and DFT Calculations on 3-(Diacetylamino-2-ethyl-3H-quinazolin-4-one

    Directory of Open Access Journals (Sweden)

    Yusuf Sert

    2016-01-01

    Full Text Available The theoretical and experimental vibrational frequencies of 3-(diacetylamino-2-ethyl-3H-quinazolin-4-one (2 were investigated. The experimental Laser-Raman spectrum (4000–100 cm−1 and FT-IR spectrum (4000–400 cm−1 of the newly synthesized compound were recorded in the solid phase. Both the theoretical vibrational frequencies and the optimized geometric parameters such as bond lengths and bond angles have for the first time been calculated using density functional theory (DFT/B3LYP and DFT/M06-2X quantum chemical methods with the 6-311++G(d,p basis set using Gaussian 03 software. The vibrational frequencies were assigned with the help of potential energy distribution (PED analysis using VEDA 4 software. The calculated vibrational frequencies and the optimized geometric parameters were found to be in good agreement with the corresponding reported experimental data. Also, the energies of the lowest unoccupied molecular orbital (LUMO, highest occupied molecular orbital (HOMO, and other related molecular energies for 3-(diacetylamino-2-ethyl-3H-quinazolin-4-one (2 have been investigated using the same computational methods.

  13. Spectroscopic investigations (FT-IR & FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine

    Science.gov (United States)

    Prasath, M.; Govindammal, M.; Sathya, B.

    2017-10-01

    The Azathioprine is used as anticancer agent. Azathioprine is chemically called 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine (6M4N5P). The vibrational analysis of the 6M4N5P compound was carried out by using FT-IR and FT-Raman spectroscopic techniques and compared with aspects. The optimized geometry, frequency and intensity of the vibrational bands of 6M4N5P were obtained from the HF and DFT methods with 6-31G (d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The calculated Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies show that charge transfer occur within the molecule. MEP (Molecular Electrostatic Potential) is very useful in the investigation of the charge distributions and molecular structure. The molecule orbital contributions were determined by using the total density of states (TDOS). A molecular docking analysis has been carried out to understand the conformational change and electrostatic properties of 6M4N5P in the active site of Rac1-Receptor.

  14. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  15. Anharmonic vibrational modes of chemisorbed H on the Rh(001) surface

    International Nuclear Information System (INIS)

    Hamann, D.R.; Feibelman, P.J.

    1988-01-01

    The potential for H atoms in the vicinity of the fourfold hollow chemisorption site on the Rh(001) surface at monolayer coverage is calculated using local-density-functional theory, and the linear-augmented-plane-wave method. The potential is found to contain important anharmonic components, one that couples parallel and perpendicular motion, and another producing azimuthal anisotropy. Variational solutions are found for the ground and low-lying excited states of H and D in this potential. The fundamental asymmetric- and symmetric-stretch H vibrational excitations are found to have energies of 67 and 92 meV. The latter agrees with recent experimental results, and higher-lying experimental modes are interpreted as mixed excitations. Comparisons are made with spring-constant models, calculated potentials for H on Ni and Pd(001), and theories of Bloch states for H on Ni

  16. Direct observation of vibrational energy dispersal via methyl torsions.

    Science.gov (United States)

    Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G

    2018-02-28

    Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.

  17. Collisional flow of vibrational energy into surrounding vibrational fields within S1 benzene

    International Nuclear Information System (INIS)

    Tang, K.Y.; Parmenter, C.S.

    1983-01-01

    Vapor phase fluorescence spectra are used to determine the absolute rate constants for the collisional transfer of vibrational energy from initial single vibronic levels of S 1 benzene into the surrounding S 1 vibronic field. 11 initial levels are probed with vibrational energies ranging to 2368 cm -1 where the level density is about 10 per cm -1 . CO, isopentane, and S 0 benzene are the collision partners. Benzene rate constants are three to four times gas kinetic for all levels, and electronic energy switching between the initial S 1 molecule and the S 0 collision partner probably makes important contributions. Isopentane efficiencies range from one to two times gas kinetic. Most of the transfer from low S 1 levels occurs with excitation of vibrational energy within isopentane. These V--V contributions decline to only about 10% for the high transfer. CO-induced transfer is by V-T,R processes for all levels. The CO efficiency rises from about 0.1 for low regions to about unity for levels above 1500 cm -1 . The CO efficiencies retain significant sensitivity to initial level identity even in the higher regions. Propensity rules derived from collisional mode-to-mode transfer among lower levels of S 1 benzene are used to calculate the relative CO efficiencies. The calculated efficiencies agree well enough with the data to suggest that it may be meaningful to model vibrational equilibration with the use of propensity rules. The rules suggest that only a small number of levels among the thousands surrounding a high initial level contribute significantly to the total relaxation cross section and that this number is rather independent of the level density

  18. Jet-parton assignment in t t-bar H events using deep learning

    International Nuclear Information System (INIS)

    Erdmann, M.; Fischer, B.; Rieger, M.

    2017-01-01

    The direct measurement of the top quark-Higgs coupling is one of the important questions in understanding the Higgs boson. The coupling can be obtained through measurement of the top quark pair-associated Higgs boson production cross-section. Of the multiple challenges arising in this cross-section measurement, we investigate the reconstruction of the partons originating from the hard scattering process using the measured jets in simulated t t-bar H events. The task corresponds to an assignment challenge of m objects (jets) to n other objects (partons), where m ≥ n . We compare several methods with emphasis on a concept based on deep learning techniques which yields the best results with more than 50% of correct jet-parton assignments.

  19. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    Science.gov (United States)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  20. Structure, conformations, vibrations, and ideal-gas properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic pairs and constituent ions.

    Science.gov (United States)

    Paulechka, Yauheni U; Kabo, Gennady J; Emel'yanenko, Vladimir N

    2008-12-11

    Energies, geometries, and frequencies of normal vibrations have been calculated by quantum-chemical methods for different conformers of a bis(trifluoromethylsulfonyl)imide anion (NTf2-), 1-alkyl-3-methylimidazolium cations ([C(n)mim]+, n = 2, 4, 6, 8), and [C(n)mim]NTf2 ionic pairs. The assignment of frequencies for NTf2-, [C2mim]+, and [C4mim]+ in the vibrational spectra of ionic liquids have been performed. Thermodynamic properties of [C(n)mim]NTf2, [C(n)mim]+, and NTf2- in the gas state have been calculated by the statistical thermodynamic methods. The resulting entropies are in satisfactory agreement with the values obtained from the experimental data previously reported in literature.

  1. Resonance Raman assignment and evidence for noncoupling of individual 2- and 4-vinyl vibrational modes in a monomeric cyanomethemoglobin

    International Nuclear Information System (INIS)

    Gersonde, K.; Yu, N.T.; Lin, S.H.; Smith, K.M.; Parish, D.W.

    1989-01-01

    We have investigated the resonance Raman spectra of monomeric insect cyanomethemoglobins (CTT III and CTT IV) reconstituted with (1) protohemes IX selectively deuterated at the 4-vinyl as well as the 2,4-divinyls, (2) monovinyl-truncated hemes such as pemptoheme (2-hydrogen, 4-vinyl) and isopemptoheme (2-vinyl, 4-hydrogen), (3) symmetric hemes such as protoheme III (with 2- and 3-vinyls) and protoheme XIII (with 1- and 4-vinyls), and (4) hemes without 2- and 4-vinyls such as mesoheme IX, deuteroheme IX, 2,4-dimethyldeuteroheme IX, and 2,4-dibromodeuteroheme IX. Evidence is presented that the highly localized vinyl C = C stretching vibrations at the 2- and 4-positions of the heme in these cyanomet CTT hemoglobins are noncoupled and inequivalent; i.e., the 1631- and 1624-cm-1 lines have been assigned to 2-vinyl and 4-vinyl, respectively. The elimination of the 2-vinyl (in pemptoheme) or the 4-vinyl (in isopemptoheme) does not affect the C = C stretching frequency of the remaining vinyl. Furthermore, two low-frequency vinyl bending modes at 412 and 591 cm-1 exhibit greatly different resonance Raman intensities between 2-vinyl and 4-vinyl. The observed intensity at 412 cm-1 is primarily derived from 4-vinyl, whereas the 591-cm-1 line results exclusively from the 2-vinyl. Again, there is no significant coupling between 2-vinyl and 4-vinyl for these two bending modes

  2. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    Science.gov (United States)

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  3. Reaction Coordinate Leading to H2 Production in [FeFe]-Hydrogenase Identified by Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory.

    Science.gov (United States)

    Pelmenschikov, Vladimir; Birrell, James A; Pham, Cindy C; Mishra, Nakul; Wang, Hongxin; Sommer, Constanze; Reijerse, Edward; Richers, Casseday P; Tamasaku, Kenji; Yoda, Yoshitaka; Rauchfuss, Thomas B; Lubitz, Wolfgang; Cramer, Stephen P

    2017-11-22

    [FeFe]-hydrogenases are metalloenzymes that reversibly reduce protons to molecular hydrogen at exceptionally high rates. We have characterized the catalytically competent hydride state (H hyd ) in the [FeFe]-hydrogenases from both Chlamydomonas reinhardtii and Desulfovibrio desulfuricans using 57 Fe nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT). H/D exchange identified two Fe-H bending modes originating from the binuclear iron cofactor. DFT calculations show that these spectral features result from an iron-bound terminal hydride, and the Fe-H vibrational frequencies being highly dependent on interactions between the amine base of the catalytic cofactor with both hydride and the conserved cysteine terminating the proton transfer chain to the active site. The results indicate that H hyd is the catalytic state one step prior to H 2 formation. The observed vibrational spectrum, therefore, provides mechanistic insight into the reaction coordinate for H 2 bond formation by [FeFe]-hydrogenases.

  4. Theoretical Investigation of Vibrational Frequencies for Tetrabromopalladate (II Ion

    Directory of Open Access Journals (Sweden)

    Metin Bilge

    2010-11-01

    Full Text Available The normal mode frequencies and corresponding vibrational assignments of tetrabromopalladate (II ion ([Pd(Br4]2- have been theoretically examined by means of standard quantum chemical technique. All normal modes have been successfully assigned utilizing the D4h symmetry of [Pd(Br4]2-. Calculation has been performed at the Becke-3-Lee-Yang-Parr (B3LYP density functional method using the Lanl2dz basis set. Infrared intensities and Raman activities have also been calculated and reported. Theoretical results have been successfully compared against available experimental data. Key words: [Pd(Br4]2-, DFT, vibrational assignment, normal mode frequency, Lanl2dz Tetrabromopaladyum (II İyonunun Titreşim Frekanslarının Teorik Olarak İncelenmesi Tetrabromopaladyum (II iyonunun ([Pd(Br4]2- normal mod frekansları ve bunlara karşılık gelen titreşim işaretlemeleri standart kuantum kimyasal teknik yardımıyla teorik olarak incelenmektedir. Tüm normal modlar [Pd(Br4]2- iyonunun D4h nokta grubu kullanılarak başarılı bir şekilde işaretlenmiştir. Hesaplama Lanl2dz baz seti kullanılarak B3LYP (Becke-3-Lee-Yang-Parr yoğunluk fonksiyonel metoduyla gerçekleştirilmiş ve infrared intensiteleri ile Raman aktiviteleri de hesaplanmıştır. Teorik sonuçlar mevcut deneysel değerler ile başarılı bir şekilde karşılaştırılmaktadır. Anahtar kelimeler: [Pd(Br4]2-, DFT, titreşim işaretlemesi, normal mod frekansı, Lanl2dz

  5. State-to-state dynamics of H+HX collisions. II. The H+HX→HX/sup dagger/+H (X = Cl,Br,I) reactive exchange and inelastic collisions at 1.6 eV collision energy

    International Nuclear Information System (INIS)

    Aker, P.M.; Germann, G.J.; Tabor, K.D.; Valentini, J.J.

    1989-01-01

    We report measurement of product state distributions for the rotationally and/or vibrationally excited HX formed in collisions of translationally hot H atoms with HX (X = Cl, Br, and I) at 1.6 eV collision energy. The product state distributions are probed after only one collision of the fast H atom, using coherent anti-Stokes Raman scattering spectroscopy. Whether proceeding by inelastic collisions or reactive exchange, the transfer of translational energy to vibrational and rotational energy is quite inefficient in H+HX collisions at 1.6 eV. For all three hydrogen halides only 2--3% of the initial translational energy appears as HX vibration. For H+HCl only 6% of the initial energy is converted to HCl rotational energy, while for H+HBr and H+HI, this percentage is twice as large, 11--12%, but still small. The indistinguishability of the two H atoms involved makes it impossible to distinguish reactive exchange from inelastic energy transfer in these H+HX collisions. However, the difference in rotational energy partitioning for H+HBr and H+HI as compared with H+HCl, suggests that reactive exchange is dominant in the former and inelastic energy transfer dominates in the latter. The total cross sections for the combined energy transfer/reactive exchange do not change much with the identity of X, being 13 +- 3, 11 +- 2, and 11 +- 2 A 2 , for H+HCl, H+HBr, and H+HI, respectively

  6. Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Vuister, G.W.; Boelens, R.; Padilla, A.; Kleywegt, G.J.; Kaptein, R.

    1990-01-01

    The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NMR spectroscopy. Here, the authors present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. They show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for α-helical and β-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III paravalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and α-helical conformations for the residues Ala 54-Leu 63 of paravalbumin. NOEs that were not previously identified in 2D spectra of paravalbumin due to overlap are found

  7. Cyanide bridged hetero-metallic polymeric complexes: Syntheses, vibrational spectra, thermal analyses and crystal structures of complexes [M(1,2-dmi)2Ni(μ-CN)4]n (M = Zn(II) and Cd(II))

    Science.gov (United States)

    Kürkçüoğlu, Güneş Süheyla; Sayın, Elvan; Şahin, Onur

    2015-12-01

    Two cyanide bridged hetero-metallic complexes of general formula, [M(1,2-dmi)2Ni(μ-CN)4]n (1,2-dmi = 1,2-dimethylimidazole and M = Zn(II) or Cd(II)) have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal analyses and elemental analyses. The crystallographic analyses reveal that the complexes, [Zn(1,2-dmi)2Ni(μ-CN)4] (1) and [Cd(1,2-dmi)2Ni(μ-CN)4] (2), have polymeric 2D networks. In the complexes, four cyanide groups of [Ni(CN)4]2- coordinated to the adjacent M(II) ions and distorted octahedral geometries of complexes are completed by two nitrogen atoms of trans 1,2-dmi ligands. The structures of 1 and 2 are similar and linked via intermolecular hydrogen bonding, C-H⋯Ni interactions to give rise to 3D networks. Vibration assignments are given for all the observed bands and the spectral features also supported to the crystal structures of heteronuclear complexes. The FT-IR and Raman spectra of the complexes are very much consistent with the structural data presented.

  8. Quantum-mechanical study of energies, structures, and vibrational spectra of the H(D)Cl complexed with dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Boda, Łukasz, E-mail: lboda@chemia.uj.edu.pl; Boczar, Marek; Gług, Maciej; Wójcik, Marek J. [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland)

    2015-11-28

    Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.

  9. (2E)-1-(5-Chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one: Synthesis, XRD, FT-IR, Raman and DFT studies.

    Science.gov (United States)

    Parlak, Cemal; Ramasami, Ponnadurai; Kumar, Chandraju Sadolalu Chidan; Tursun, Mahir; Quah, Ching Kheng; Rhyman, Lydia; Bilge, Metin; Fun, Hoong-Kun; Chandraju, Siddegowda

    2015-01-01

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-{4-[(E)-2-phenylethenyl]phenyl}prop-2-en-1-one [C21H15ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The conformational isomers, optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of HF, MP2, BP86, BLYP, BMK, B3LYP, B3PW91, B3P86 and M06-2X functionals. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the triclinic space group P-1 with the cis-trans-trans form. There is a good agreement between the experimentally determined structural parameters and vibrational frequencies of the compound and those predicted theoretically using the density functional theory with the BLYP and BP86 functionals. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Vibrational Raman optical activity of ketose monosaccharides

    Science.gov (United States)

    Bell, Alasdair F.; Hecht, Lutz; Barron, Laurence D.

    1995-07-01

    The vibrational Raman optical activity (ROA) spectra of the four ketose sugars D-fructose, L-sorbose, D-tagatose and D-psicose in aqueous solution, which have been measured in backscattering in the range ≈250-1500 cm -1, are reported. These results are combined with those from a previous ROA study of aldose and pentose sugars in an attempt to establish new vibrational assignments and to verify old ones. The high information content of these spectra provides a new perspective on all the central features of monosaccharide stereochemistry including dominant anomeric configuration, ring conformation, exocyclic CH 2OH group conformation and relative disposition of the hydroxyl groups around the ring.

  11. Molecular structure and spectroscopic properties of 4-nitrocatechol at different pH: UV-visible, Raman, DFT and TD-DFT calculations

    International Nuclear Information System (INIS)

    Cornard, Jean-Paul; Rasmiwetti; Merlin, Jean-Claude

    2005-01-01

    We investigated theoretically, by density functional theoretical calculations and by vibrational and electronic spectroscopies, the structure and the molecular spectroscopic properties of the 4-nitrocatechol molecule with varying pH. The lower energy stable structures of the neutral, monoanion and dianion forms were compared, and influence of water solvation was examined. The Raman and UV-visible spectra of 4-nitrocatechol and of its singly deprotonated form were recorded by varying the pH from 2 to 9. A calculation of the vibrational frequencies has allowed a complete assignment of the Raman spectra of the two forms of 4-nitrocatechol, and has permitted to investigate the evolution of vibrational normal modes upon deprotonation. Based on the molecular orbital analysis and the time dependent DFT (TD-DFT) calculations, we discussed the electronic structure and the assignment of the absorption bands in the electronic spectra of 4-nitrocatechol and mono-deprotonated 4-nitrocatechol

  12. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    Science.gov (United States)

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.

  13. Shock and Vibration. Volume 1, Issue 1

    National Research Council Canada - National Science Library

    Pilkey, Walter D

    1994-01-01

    ..., and earthquake engineering. Among the specific areas to be covered are vibration testing and control, vibration condition monitoring and diagnostics, shock hardenings, modal technology, shock testing, data acquisition, fluid...

  14. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    Science.gov (United States)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  15. Probing vibrational activities, electronic properties, molecular docking and Hirshfeld surfaces analysis of 4-chlorophenyl ({[(1E)-3-(1H-imidazol-1-yl)-1-phenylpropylidene]amino}oxy)methanone: A promising anti-Candida agent

    Science.gov (United States)

    Jayasheela, K.; Al-Wahaibi, Lamya H.; Periandy, S.; Hassan, Hanan M.; Sebastian, S.; Xavier, S.; Daniel, Joseph C.; El-Emam, Ali A.; Attia, Mohamed I.

    2018-05-01

    The promising anti-Candida agent, 4-chlorophenyl ({[1E-3(1H-imidazole-1-yl)-1-phenylpropylidene}oxy)methanone (4-CPIPM) was comprehensively characterized by FT-IR, FT-Raman, UV, as well as 1H and 13C spectroscopic techniques. The theoretical calculations in the current study utilized Gaussian 09 W software with DFT approach of the B3LYP/6-311++G(d,p) method. The experimental X-ray diffraction data of the 4-CPIPM molecule were compared with the optimized structure and showed well agreement. Intermolecular electronic interactions and their stabilization energies have been analyzed by natural bond orbital method. Potential energy distribution confirmed the normal fundamental mode of vibration with the aid of MOLVIB software. The chemical shift values of the 1H and 13C spectra of the title compound were computed using gauge independent atomic orbital and the results were compared with the experimental values. The time-dependent density function theory method was used to predict the electronic, absorption wavelength and frontier molecular orbital energies. The HOMO-LUMO plots proved the charge transfer in the molecular system of the title compound through conjugated paths. The molecular electrostatic potential analysis provided the electrophilic and nucleophilic reactive sites in the title molecule which have been analyzed using Hirshfeld surface and two dimensions fingerprint plots. Non covalent interactions were also studied using reduced density gradient analysis and color filled electron density diagram. Molecular docking studies of the ligand-protein interactions along with their binding energies were carried out aiming to explain the potent anti-Candida activity of the title molecule.

  16. Theoretical resonant electron-impact vibrational excitation, dissociative recombination and dissociative excitation cross sections of ro-vibrationally excited BeH"+ ion

    International Nuclear Information System (INIS)

    Laporta, V.; Chakrabarti, K.; Celiberto, R.; Janev, R. K.; Mezei, J. Zs.; Niyonzima, S.; Tennyson, J.; Schneider, I.F.

    2017-01-01

    A theoretical study of resonant vibrational excitation, dissociative recombination and dissociative excitation processes of the beryllium monohydride cation, BeH"+ , induced by electron impact, is reported. Full sets of ro-vibrationally-resolved cross sections and of the corresponding Maxwellian rate coefficients are presented for the three processes. Particular emphasis is given to the high-energy behaviour. Potential curves of "2σ"+, "2σ and "2δ symmetries and the corresponding resonance widths, obtained from R-matrix calculations, provide the input for calculations which use a local complex-potential model for resonant collisions in each of the three symmetries. Rotational motion of nuclei and isotopic effects are also discussed. The relevant results are compared with those obtained using a multichannel quantum defect theory method. Full results are available from the Phys4Entry database.

  17. H2+ embedded in a Debye plasma: Electronic and vibrational properties

    OpenAIRE

    Angel, M. L.; Montgomery Jr, H. E.

    2010-01-01

    The effect of plasma screening on the electronic and vibrational properties of the H2+ molecular ion was analyzed within the Born-Oppenheimer approximation. When a molecule is embedded in a plasma, the plasma screens the electrostatic interactions. This screening is accounted for in the Schr\\"odinger equation by replacing the Coulomb potentials with Yukawa potentials that incorporate the Debye length as a screening parameter. Variational expansions in confocal elliptical coordinates were used...

  18. Observation of double-well potential of NaH C 1Σ+ state: Deriving the dissociation energy of its ground state.

    Science.gov (United States)

    Chu, Chia-Ching; Huang, Hsien-Yu; Whang, Thou-Jen; Tsai, Chin-Chun

    2018-03-21

    Vibrational levels (v = 6-42) of the NaH C 1 Σ + state including the inner and outer wells and the near-dissociation region were observed by pulsed optical-optical double resonance fluorescence depletion spectroscopy. The absolute vibrational quantum number is identified by comparing the vibrational energy difference of this experiment with the ab initio calculations. The outer well with v up to 34 is analyzed using the Dunham expansion and a Rydberg-Klein-Rees (RKR) potential energy curve is constructed. A hybrid double-well potential combined with the RKR potential, the ab initio calculation, and a long-range potential is able to describe the whole NaH C 1 Σ + state including the higher vibrational levels (v = 35-42). The dissociation energy of the NaH C 1 Σ + state is determined to be D e (C) = 6595.10 ± 5 cm -1 and then the dissociation energy of the NaH ground state D e (X) = 15 807.87 ± 5 cm -1 can be derived.

  19. Vibrational spectra and normal co-ordinate analysis of 2-aminopyridine and 2-amino picoline.

    Science.gov (United States)

    Jose, Sujin P; Mohan, S

    2006-05-01

    The Fourier transform infrared (FT-IR) and Raman (FT-R) spectra of 2-aminopyridine and 2-amino picoline were recorded and the observed frequencies were assigned to various modes of vibration in terms of fundamentals by assuming Cs point group symmetry. A normal co-ordinate analysis was also carried out for the proper assignment of the vibrational frequencies using simple valence force field. A complete vibrational analysis is presented here for the molecules and the results are briefly discussed.

  20. Theoretical Investigation on the Molecular Structure, Vibrational and NMR Spectra of N, N, 4-Tri chlorobenzenesulfonamide

    International Nuclear Information System (INIS)

    Cinar, M.

    2008-01-01

    In the present study, the structural properties of N,N,4-Tri chlorobenzenesulfonamide have been studied extensively using Density Functional Theory (DFT) employing B3LYP exchange correlation. The geometry of the molecule was fully optimized, vibrational spectrum was calculated and fundamental vibrations were assigned based on the scaled theoretical wavenumbers. The 1 H and 13 C nuclear magnetic resonance (NMR) chemical shifts of the compound were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. To investigate the basis set effects, calculations were performed at the 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p) levels. Finally, geometric parameters, vibrational bands and isotropic chemical shifts were compared with available experimental data of compound. The fully optimized geometry of the molecule was found to be consistent with the X-ray crystal structure. The observed and calculated frequencies and chemical shifts were found to be in very good agreement. The computed results appear that the basis set has slight effect on the molecular geometry of N,N,4-Tri chlorobenzenesulfonamide

  1. Molecular structure, vibrational spectra, MEP, HOMO-LUMO and NBO analysis of Hf(SeO3)(SeO4)(H2O)4

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Halachev, Nenko; Dimitrova, Ginka

    2016-02-01

    Hf(SeO3)(SeO4)(H2O)4 was obtained with the hydrothermal synthesis. The geometry optimization of this molecule was done by Density Functional Theory (DFT/B3LYP) method with 6-31G(d) basis set and LANL2DZ for Hf. The experimental infrared spectrum was compared with calculated and complete vibrational assignment was provided. The bond orders and the electronic properties of the molecule were calculated. The natural bond orbital analysis (NBO) was performed in order to study the intramolecular bonding interactions among bonds and delocalization of unpaired electrons. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) with frontier orbital gap were presented. The electrostatic potential was calculated in order to investigate the reaction properties of the molecule. The thermodynamic properties of the studied compound at different temperatures were calculated.

  2. Identification of rotating and vibrating tetrahedrons in the heavy nucleus {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Heusler, A.

    2017-11-15

    Ten known states in the heavy nucleus {sup 208}Pb at 2.6 < E{sub x} < 7.9 MeV are described by rotating and vibrating tetrahedrons. The 3{sup -} and 4{sup +} yrast states are the first members of the rotational band. A 2{sup ±} doublet state with the 2{sup +} yrast state as one member and the newly recognized 2{sup -} yrast state as the other member, the 1{sup -} yrast state, and the third 0{sup +} state are the heads of the three elementary tetrahedral rotating and vibrating bands. The newly recognized state at E{sub x} = 4142 keV was assigned spin 2 in 1975 and is suggested to have negative parity by the absent {sup 208}Pb(α, α{sup '}) excitation. Four more states at 5.7 < E{sub x} < 7.9 MeV are identified as the next members of the three elementary tetrahedral rotating and vibrating bands. The ambiguous spin assignment to the state at E{sub x} = 7020 keV is settled with 3{sup -}, the state at E{sub x} = 7137 keV is assigned 4{sup -}. (orig.)

  3. Evaluation of the structural, electronic, topological and vibrational properties of N-(3,4-dimethoxybenzyl)-hexadecanamide isolated from Maca (Lepidium meyenii) using different spectroscopic techniques

    Science.gov (United States)

    Chain, Fernando; Iramain, Maximiliano Alberto; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2017-01-01

    N-(3,4-dimethoxybenzyl)-hexadecanamide (DMH) was characterized by using Fourier Transform infrared (FT-IR) and Raman (FT-Raman), Ultraviolet- Visible (UV-Visible) and Hydrogen and Carbon Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. The structural, electronic, topological and vibrational properties were evaluated in gas phase and in n-hexane employing ONIOM and self-consistent force field (SCRF) calculations. The atomic charges, molecular electrostatic potentials, stabilization energies and topological properties of DMH were analyzed and compared with those calculated for N-(3,4-dimethoxybenzyl)-acetamide (DMA) in order to evaluate the effect of the side chain on the properties of DMH. The reactivity and behavior of this alkamide were predicted by using the gap energies and some descriptors. Force fields and the corresponding force constants were reported for DMA only in gas phase and n-hexane due to the high number of vibration normal modes showed by DMH, while the complete vibrational assignments are presented for DMA and both forms of DMH. The comparisons between the experimental FTIR, FT-Raman, UV-Visible and 1H and 13C NMR spectra with the corresponding theoretical ones showed a reasonable concordance.

  4. Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate Nanoemulsion

    Directory of Open Access Journals (Sweden)

    Jiaxin Hou

    2017-06-01

    Full Text Available In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key problem, we introduced a novel fluorinated polyacrylate—poly(1H,1H,2H,2H-perfluoroctylmethacrylate (PFMA to construct micron/submicron-scale dielectric layer via facile spray coating of nanoemulsion for replacing the most common Teflon AF series. All the results illustrated that, continuous and dense PFMA film with surface relief less than 20 nm was one-step fabricated at 110 °C, and exhibited much higher static water contact angle of 124°, contact angle variation of 42°, dielectric constant of about 2.6, and breakdown voltage of 210 V than Teflon AF 1600. Particularly, soft and highly compatible polyacrylate mainchain assigned five times much better adhesiveness than common adhesive tape, to PFMA layer. As a promising option, PFMA dielectric layer may further facilitate tremendous development of electrowetting performances and applications.

  5. High resolution spectroscopy of 1,2-difluoroethane in a molecular beam: A case study of vibrational mode-coupling

    Science.gov (United States)

    Mork, Steven W.; Miller, C. Cameron; Philips, Laura A.

    1992-09-01

    The high resolution infrared spectrum of 1,2-difluoroethane (DFE) in a molecular beam has been obtained over the 2978-2996 cm-1 spectral region. This region corresponds to the symmetric combination of asymmetric C-H stretches in DFE. Observed rotational fine structure indicates that this C-H stretch is undergoing vibrational mode coupling to a single dark mode. The dark mode is split by approximately 19 cm-1 due to tunneling between the two identical gauche conformers. The mechanism of the coupling is largely anharmonic with a minor component of B/C plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. Analysis of the fine structure identifies the dark state as being composed of C-C torsion, CCF bend, and CH2 rock. Coupling between the C-H stretches and the C-C torsion is of particular interest because DFE has been observed to undergo vibrationally induced isomerization from the gauche to trans conformer upon excitation of the C-H stretch.

  6. On the nature of highly vibrationally excited states of thiophosgene

    Indian Academy of Sciences (India)

    Understanding the nature of the highly excited molecu- lar eigenstates is equivalent to deciphering the mecha- nism of intramolecular vibrational energy redistribution. (IVR) occurring in the molecule.1 However, the assign- ment of eigenstates is far from simple. The existence of and interplay of several strong anharmonic ...

  7. Vibrational and cascade dissociation of H{sub 2}{sup +} ions by collision with gas molecules; Dissociation vibrationnelle et dissociation en cascade d'ions H{sub 2}{sup +} par collisions avec les molecules d'un gaz

    Energy Technology Data Exchange (ETDEWEB)

    Verveer, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1966-07-01

    Protons produced by collisional dissociation of H{sub 2}{sup +} ions have an energy spectrum with a narrow central peak. For a part the protons in this peak are produced by vibrational dissociation and for another part by a cascade of two collisions. For H{sub 2}{sup +} ions of 50 to 150 keV the cross section for vibrational dissociation is about 4.1 10{sup -19} cm{sup 2}/molecule in hydrogen and 1.1 10{sup -18} cm{sup 2}/molecule in argon. (author) [French] Les protons resultant de la dissociation par collisions d'ions H{sub 2}{sup +} dans un gaz ont un spectre d'energie qui presente un pic central tres etroit. Les protons dans ce pic proviennent, pour une part de la dissociation vibrationnelle et pour l'autre part d'une suite de deux collisions. Dans le domaine d'energie des ions H{sub 2}{sup +} de 50 a 150 keV la section efficace de dissociation vibrationnel vaut 4.1 10{sup -19} cm{sup 2}/molecule pour l'hydrogene et 1,1 10{sup -18} cm{sup 2}/molecule pour l'argon.

  8. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    International Nuclear Information System (INIS)

    Simo, Elie

    2007-01-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN

  9. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    International Nuclear Information System (INIS)

    Simo, E.

    2005-10-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that acetanilide can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wave numbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wave numbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the acetanilide. (author)

  10. Modulational instabilities in acetanilide taking into account both the N-H and the C=O vibrational self-trappings

    Energy Technology Data Exchange (ETDEWEB)

    Simo, Elie [Departement de Physique, Faculte des Sciences, Universite de Yaoune I, B.P. 812 Yaounde (Cameroon)

    2007-02-15

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schroedinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  11. Modulational instabilities in acetanilide taking into account both the N H and the C=O vibrational self-trappings

    Science.gov (United States)

    Simo, Elie

    2007-02-01

    A model of crystalline acetanilide, ACN accounting for the C=O and N-H vibrational self-trappings is presented. We develop a fully discrete version of ACN. We show that ACN can be described by a set of two coupled discrete nonlinear Schrödinger (DNLS) equations. Modulational instabilities (MI) are studied both theoretically and numerically. Dispersion laws for the wavenumbers and frequencies of the linear modulation waves are determined. We also derived the criterion for the existence of MI. Numerical simulations are carried out for a variety of selected wave amplitudes in the unstable zone. It is shown that instabilities grow as the wavenumbers and amplitudes of the modulated waves increase. MI grow faster in the N-H mode than in the C=O mode. Temporal evolution of the density probabilities of the vibrational excitons are obtained by the numerical integration of the coupled DNLS equations governing the ACN molecule. These investigations confirm the generation of localized modes by the phenomenon of MI and the predominance of the N-H vibrational mode in the MI process of the ACN.

  12. Molecular Geometry And Vibrational Spectra of 2'-chloroacetanilide

    International Nuclear Information System (INIS)

    Gokce, H.

    2008-01-01

    The molecular structure, vibrational frequencies and the corresponding vibrational assingments of 2'-chloroacetanilide in the ground state have been calculated by using Hartree-Fock (HF) and Density Functional Theory (DFT/B3LYP) methods with 6-311++G(d,p) basis set. The obtained vibrational frequencies and optimized geometric parameters (bond lenghts and angles) are in very good agreement with the experimental data. The comparison of the observed and calculated vibrational frequencies assignments of 2'-chloroacetanilide exhibit that the scaled DFT/B3LYP method is superior to be scaled HF method. Furthermore the calculated Infrared and Raman intensities are also reported

  13. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, (1)H, (13)C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane.

    Science.gov (United States)

    Arjunan, V; Anitha, R; Devi, L; Mohan, S; Yang, Haifeng

    2015-01-25

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G(**) and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecules have been analysed. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  15. Effects of Vibration Therapy in Pediatric Immunizations.

    Science.gov (United States)

    Benjamin, Arika L; Hendrix, Thomas J; Woody, Jacque L

    2016-01-01

    A randomized clinical trial of 100 children (52 boys, 48 girls) ages 2 months to 7 years was conducted to evaluate the effect of vibration therapy without cold analgesia on pain. A convenience sample was recruited at two sites: a publicly funded, free immunization clinic and a private group pediatric practice. Participants were randomly assigned to receive vibration therapy via a specialized vibrating device or standard care. All children regardless of intervention group were allowed to be distracted and soothed by the parent. Pain was evaluated using the FLACC score, which two nurses assessed at three points in time: prior to, during, and after the injection(s). Data were analyzed using a two-independent samples-paired t-test. Results show that vibration therapy had no effect on pain scores in the younger age groups studied (2 months ≤ 1 year, > 1 year ≤ 4 years). In the oldest age group (> 4 to 7 years of age), a heightened pain reading was found in the period from preinjection to post-injection periods (p = 0.045). These results indicate that the addition of vibration therapy (without cold analgesia) to standard soothing techniques is no more effective in reducing immunization pain than standard soothing techniques alone, and thus, is not indicated for use with immunization pain. Recommendations include further evaluation of interventions.

  16. Fundamental Vibration of Molecular Hydrogen

    Science.gov (United States)

    Dickenson, G. D.; Niu, M. L.; Salumbides, E. J.; Komasa, J.; Eikema, K. S. E.; Pachucki, K.; Ubachs, W.

    2013-05-01

    The fundamental ground tone vibration of H2, HD, and D2 is determined to an accuracy of 2×10-4cm-1 from Doppler-free laser spectroscopy in the collisionless environment of a molecular beam. This rotationless vibrational splitting is derived from the combination difference between electronic excitation from the X1Σg+, v=0, and v=1 levels to a common EF1Σg+, v=0 level. Agreement within 1σ between the experimental result and a full ab initio calculation provides a stringent test of quantum electrodynamics in a chemically bound system.

  17. Unambiguous assigning of the signals of the nuclear magnetic resonance spectra of {sup 1} H and {sup 13} C of monoterpenes using computational methods; Asignacion inequivoca de las senales del espectro de resonancia magnetica nuclear de {sup 1} H y {sup 13} C de monoterpenos empleando metodos computacionales

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, F.; Cuevas, G.; Tenorio, J.; Rochin, A.L. [Universidad Nacional Autonoma de Mexico, Instituto de Quimica, A.P. 70213, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Ab initio calculations, within the frame of Density Functional Theory were carried out on camphene and {alpha}-pinene. The {sup 1} H and {sup 13} C shifts were estimated according to the recently developed Sum-Over-States Density Functional Perturbation Theory (SOS-DFPT) as implemented in a modified deMon-KS program. The calculations not only reproduced the observed NMR chemical shifts, quantitatively in the case of {sup 1} H nuclei and qualitatively in the case of {sup 13} C nuclei, but also allow assigning unambiguously the signal on these spectra. (Author)

  18. Local vibration inhibits H-reflex but does not compromise manual dexterity and does not increase tremor.

    Science.gov (United States)

    Budini, Francesco; Laudani, Luca; Bernardini, Sergio; Macaluso, Andrea

    2017-10-01

    The present work aimed at investigating the effects of local vibration on upper limb postural and kinetic tremor, on manual dexterity and on spinal reflex excitability. Previous studies have demonstrated a decrease in spinal reflex excitability and in force fluctuations in the lower limb but an increase in force fluctuation in the upper limbs. As hand steadiness is of vital importance in many daily-based tasks, and local vibration may also be applied in movement disorders, we decided to further explore this phenomenon. Ten healthy volunteers (26±3years) were tested for H reflex, postural and kinetic tremor and manual dexterity through a Purdue test. EMG was recorded from flexor carpi radialis (FCR) and extensor digitorum communis (EDC). Measurements were repeated at baseline, after a control period during which no vibration was delivered and after vibration. Intervention consisted in holding for two minutes a vibrating handle (frequency 75Hz, displacement∼7mm), control consisted in holding for two minutes the same handle powered off. Reflex excitability decreased after vibration whilst postural tremor and manual dexterity were not affected. Peak kinetic tremor frequency increased from baseline to control measurements (P=0.002). Co-activation EDC/FCR increased from control to vibration (P=0.021). These results show that two minutes local vibration lead to a decrease in spinal excitability, did not compromise manual dexterity and did not increase tremor; however, in contrast with expectations, tremor did not decrease. It is suggested that vibration activated several mechanisms with opposite effects, which resulted in a neutral outcome on postural and kinetic tremor. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. SEM, EDS and vibrational spectroscopic study of dawsonite NaAl(CO3)(OH)2

    Science.gov (United States)

    Frost, Ray L.; López, Andrés; Scholz, Ricardo; Sampaio, Ney Pinheiro; de Oliveira, Fernando A. N.

    2015-02-01

    In this work we have studied the mineral dawsonite by using a combination of scanning electron microscopy with EDS and vibrational spectroscopy. Single crystals show an acicular habitus forming aggregates with a rosette shape. The chemical analysis shows a phase composed of C, Al, and Na. Two distinct Raman bands at 1091 and 1068 cm-1 are assigned to the CO32- ν1 symmetric stretching mode. Multiple bands are observed in both the Raman and infrared spectra in the antisymmetric stretching and bending regions showing that the symmetry of the carbonate anion is reduced and in all probability the carbonate anions are not equivalent in the dawsonite structure. Multiple OH deformation vibrations centred upon 950 cm-1 in both the Raman and infrared spectra show that the OH units in the dawsonite structure are non-equivalent. Raman bands observed at 3250, 3283 and 3295 cm-1 are assigned to OH stretching vibrations. The position of these bands indicates strong hydrogen bonding of the OH units in the dawsonite structure. The formation of the mineral dawsonite has the potential to offer a mechanism for the geosequestration of greenhouse gases.

  20. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2012-08-01

    The complete and unambiguous (1)H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive (1)H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d(6) were obtained through the examination of 1D (1)H NMR and 2D (1)H,(1)H-COSY data, in combination with (1)H iterative full spin analysis (HiFSA). The computational analysis of discrete spin systems allowed a detailed characterization of all the (1)H NMR signals in terms of chemical shifts (δ(H)) and spin-spin coupling constants (J(HH)), regardless of signal overlap and higher order coupling effects. The capability of the HiFSA-generated (1)H fingerprints to reproduce experimental (1)H NMR spectra at different field strengths was also evaluated. As a result of this analysis, a revised set of (1)H NMR parameters for all ten phytoconstituents was assembled. Furthermore, precise (1)H NMR assignments of the sugar moieties of isoquercetin and rutin are reported for the first time. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  2. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  3. Novel acid mono azo dye compound: Synthesis, characterization, vibrational, optical and theoretical investigations of 2-[(E)-(8-hydroxyquinolin-5-yl)-diazenyl]-4,5-dimethoxybenzoic acid

    Science.gov (United States)

    Saçmacı, Mustafa; Çavuş, Hatice Kanbur; Arı, Hatice; Şahingöz, Recep; Özpozan, Talat

    2012-11-01

    Novel acid mono azo dye, 2-[(E)-(8-hydroxyquinolin-5yl)-diazenyl]-4,5-dimethoxybenzoic acid (HQD), was synthesized by coupling diazonium salt solution of 2-amino-4,5-dimethoxybenzoic acid (DMA) with 8-hydroxyquinoline (HQ). This dye was characterized by UV-vis, IR & Raman, 1H and 13C NMR spectroscopic techniques and elemental analysis. The normal coordinate analysis of HQD was also performed to assign each band in vibrational spectra. DFT (B3LYP and B3PW91) calculations were employed to optimize the geometry, to interpret NMR spectra, to calculate and to determine the stable tautomeric structure of the compound. Natural Bond Orbital (NBO) analysis was performed to investigate intramolecular interactions. The vibrational spectral data obtained from solid phase IR & Raman spectra were assigned based on the results of the theoretical calculations. UV-vis spectroscopic technique was employed to obtain the optical band gap of HQD. The analysis of the optical absorption data revealed the existence of direct and indirect transitions in the optical band gaps. The optical band gaps of HQD have been found 1.95 and 1.90 eV for direct and indirect transitions, respectively.

  4. HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 x 1) Surface

    International Nuclear Information System (INIS)

    Ree, J.; Yoon, S. H.; Park, K. G.; Kim, Y. H.

    2004-01-01

    We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 x 1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond (vHSi = 0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond

  5. Vibrational analysis of 4-chloro-3-nitrobenzonitrile by quantum chemical calculations

    Science.gov (United States)

    Sert, Yusuf; Çırak, Çağrı; Ucun, Fatih

    2013-04-01

    In the present study, the experimental and theoretical harmonic and anharmonic vibrational frequencies of 4-chloro-3-nitrobenzonitrile were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF), density functional B3LYP and M06-2X methods with 6-311++G(d,p) basis set by Gaussian 09 W program, for the first time. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  6. Vibrationally resolved charge transfer for proton collisions with CO and H collisions with CO+

    International Nuclear Information System (INIS)

    Lin, C. Y.; Stancil, P. C.; Li, Y.; Gu, J. P.; Liebermann, H. P.; Buenker, R. J.; Kimura, M.

    2007-01-01

    Electron capture by protons following collisions with carbon monoxide, and the reverse process, is studied with a quantal molecular-orbital coupled-channel method utilizing the infinite order sudden approximation for collision energies between 0.5 and 1000 eV/u. The potential surfaces and couplings, computed with the multireference single- and double-excitation method for a range of H + -CO orientation angles and C-O separations, are adopted in the scattering calculations. Results including vibrationally resolved and orientation-angle-dependent cross sections are presented for a range of CO and CO + vibrational levels. Comparison with experiment is made where possible and the relevance of the reaction in astrophysics and atmospheric physics is discussed

  7. Designing a hand rest tremor dynamic vibration absorber using H2 optimization method

    International Nuclear Information System (INIS)

    Rahnavard, Mostafa; Dizaji, Ahmad F.; Hashemi, Mojtaba; Faramand, Farzam

    2014-01-01

    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H 2 optimization criterion is probably more desirable than the popular H ∞ optimization method and was implemented in this research. The objective of H 2 optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ 2 , tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ 2 was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ 1 . The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ 1 and θ 2 revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  8. IR and visible luminescence studies in the infrared multiphoton dissociation of 1,2-dibromo-1,1-difluoroethane

    Science.gov (United States)

    Pushpa, K. K.; Kumar, Awadhesh; Vatsa, R. K.; Naik, P. D.; Annaji Rao, K.; Mittal, J. P.; Parthasarathy, V.; Sarkar, S. K.

    1995-07-01

    The infrared multiphoton dissociation of 1,2-dibromo-1,1-difluoroethane gives rise to IR and visible luminescence. Vibrationally excited parent molecules dissociate via two primary channels yielding bromine and vibrationally excited HBr. The strong visible emission observed between 350 to 750 nm has been assigned to electronically excited carbene CF 2Br CH.

  9. Spectroscopic measurement of H(1S) and H2(v double-prime,J double-prime) in an H- ion source plasma

    International Nuclear Information System (INIS)

    Stutzin, G.C.

    1990-08-01

    Low pressure H 2 discharges have been used for some time as sources of H - ions. These discharges contain many different species of particles which interact with each other and with the walls of the discharge chamber. Models exist that predict the populations of the various species for given macroscopic discharge parameters. However, many of the cross sections and wall catalyzation coefficients are unknown or somewhat uncertain. Therefore, it is of interest to measure the populations of as many of these species as possible, in order to determine the validity of the models. These models predict that H - is created predominantly by the two-step process of vibrational excitation of hydrogen molecules followed by dissociative attachment of slow electrons to these vibrationally-excited hydrogen molecules. Many different collisional processes must be included in the models to explain the dependence of the various populations upon macroscopic parameters. This work presents results of spectroscopic measurements of the density and translational temperature of hydrogen atoms and of specific rotationally- and vibrationally-excited states of electronic ground-state H 2 , in a discharge optimized for H - production, as well as conventional measurements of the various charged species within the plasma. The spectroscopic measurements are performed directly by narrowband, single-photon absorption in the vacuum ultraviolet

  10. The vibration-rotation-tunneling levels of N2-H2O and N2-D2O

    Science.gov (United States)

    Wang, Xiao-Gang; Carrington, Tucker

    2015-07-01

    In this paper, we report vibration-rotation-tunneling levels of the van der Waals clusters N2-H2O and N2-D2O computed from an ab initio potential energy surface. The only dynamical approximation is that the monomers are rigid. We use a symmetry adapted Lanczos algorithm and an uncoupled product basis set. The pattern of the cluster's levels is complicated by splittings caused by H-H exchange tunneling (larger splitting) and N-N exchange tunneling (smaller splitting). An interesting result that emerges from our calculation is that whereas in N2-H2O, the symmetric H-H tunnelling state is below the anti-symmetric H-H tunnelling state for both K = 0 and K = 1, the order is reversed in N2-D2O for K = 1. The only experimental splitting measurements are the D-D exchange tunneling splittings reported by Zhu et al. [J. Chem. Phys. 139, 214309 (2013)] for N2-D2O in the v2 = 1 region of D2O. Due to the inverted order of the split levels, they measure the sum of the K = 0 and K = 1 tunneling splittings, which is in excellent agreement with our calculated result. Other splittings we predict, in particular those of N2-H2O, may guide future experiments.

  11. 26 CFR 1.401(a)-13 - Assignment or alienation of benefits.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Assignment or alienation of benefits. 1.401(a...)-13 Assignment or alienation of benefits. (a) Scope of the regulations. This section applies only to..., provided for employer contributions. (b) No assignment or alienation—(1) General rule. Under section 401(a...

  12. Translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi

    2013-06-01

    We perform dispersion-corrected first-principles calculations, and far-infrared (terahertz) spectroscopic experiments at 4 K, to examine translational vibrations between chains of hydrogen-bonded molecules in solid-state aspirin form I. The calculated frequencies and relative intensities reproduce the observed spectrum to accuracy of 11 cm-1 or less. The stronger one of the two peaks assigned to the translational mode includes the stretching vibration of the weak hydrogen bond between the acetyl groups of a neighboring one-dimensional chain. The calculation of aspirin form II performed for comparison gives the stretching vibration of the weak hydrogen bond in one-dimensional chain.

  13. The electronic spectra of FeH and TeO2

    International Nuclear Information System (INIS)

    Hullah, D.F.

    1999-01-01

    A thesis submitted for the degree of Doctor of Philosophy at the University of Oxford. Daniel Fearnley Hullah, Jesus College, Trinity Term 1999. This thesis is presented in two parts. The subject of Part One is the recording and analysis of part of the electronic spectrum of the iron monohydride, FeH, at visible wavelengths with Doppler-limited resolution. The subject of Part Two is the recording and analysis of the electronic spectrum of tellurium dioxide, TeO 2 , at near ultra-violet wavelengths under free jet expansion conditions. PART ONE: The fourth sub-bands of the e 6 Π-c 6 Σ + and e 6 Π-a 6 Δ transitions of FeH were recorded using both direct laser induced fluorescence and dispersed laser induced fluorescence. A total of sixteen lines were assigned to the e 6 Π 1/2 -c 6 Σ + -1/2 transition and fourteen lines were assigned to the e 6 Π 1/2 -a 6 Δ 3/2 transition. This allowed the e 6 Π 1/2 spin-orbit component to be characterised for J levels from 1/2 to 7/2 and the a 6 Δ 3/2 spin-orbit component to be characterised for J levels from 3/2 to 9/2. The first sub-band of the e 6 Π-a 6 Δ transition was extended following analysis of the high temperature spectrum of McCormack and O'Connor (recorded in 1976). Dispersed fluorescence spectra of the first four sub-bands of the e 6 Π-a 6 Δ transition were recorded. Following analysis, transitions at ∼ 600 nm were recorded using direct laser induced fluorescence. These were assigned to transitions from the first three spin-orbit components of a new sextet electronic state, b 6 Π (e 6 Π-b 6 Π), one spin orbit component of a new quartet state, C 4 Φ 7/2 , (e 6 Π 5/2 -C 4 Φ 7/2 ), and the previously observed X 4 Δ 7/2 υ = 2 state (e 6 Π 7/2 -X 4 Δ 7/2 υ = 2). PART TWO: The electronic spectrum of TeO 2 was recorded between 345 and 406 nm using a pulsed dye laser. TeO 2 (g) was produced by heating TeO 2(s) to 850 deg. C and entraining the vapour in argon and expanding the gases in a continuous free

  14. Structural characteristics and harmonic vibrational analysis of the stable conformer of 2,3-epoxypropanol by quantum chemical methods.

    Science.gov (United States)

    Arjunan, V; Rani, T; Santhanam, R; Mohan, S

    2012-10-01

    The FT-IR and FT-Raman spectra of H bond inner conformer of 2,3-epoxypropanol have been recorded in the regions 3700-400 and 3700-100 cm(-1), respectively. The spectra were interpreted in terms of fundamentals modes, combination and overtone bands. The normal coordinate analysis was carried out to confirm the precision of the assignments. The structure of the conformers H bond inner and H bond outer1 were optimised and the structural characteristics were determined by density functional theory (DFT) using B3LYP and MP2 methods with 6-31G** and 6-311++G** basis sets. The vibrational frequencies were calculated in all these methods and were compared with the experimental frequencies which yield good agreement between observed and calculated frequencies. The electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    amplification of handle vibration at the fingers. The fingers' vibration transmission performance of gloves were further evaluated using a proposed finger frequency-weighting W f apart from the standardized W h -weighting. It is shown that the W h weighting generally overestimates the VR glove effectiveness in limiting the fingers vibration in the high (H: 200-1250 Hz) frequency range. Both the weightings, however, revealed comparable performance of gloves in the mid (M: 25-200 Hz) frequency range. The VR gloves, with the exception of the leather glove, showed considerable reductions in the grip strength (27-41%), while the grip strength reduction was not correlated with the glove material thickness. It is suggested that effectiveness of VR gloves should be assessed considering the vibration transmission to both the palm and fingers of the hand together with the hand grip strength reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Laser diagnostics of high vibrational and rotational H2-states

    International Nuclear Information System (INIS)

    Mosbach, Th.; Schulz-von der Gathen, V.; Doebele, H.F.

    2002-01-01

    We report on measurements of vibrational and rotational excited electronic-ground-state hydrogen molecules in a magnetic multipole plasma source by LIF with VUV radiation. The measurements are taken after rapid shut-off of the discharge current. Absolute level populations are obtained using Rayleigh scattering calibration with Krypton. The theoretically predicted suprathermal population of the vibrational distribution is clearly identified. We found also non-Boltzmann rotational distributions for the high vibrational states. The addition of noble gases (Argon and Xenon) to hydrogen leads to a decrease of the vibrational population. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  17. High resolution study of MSiH4 (M=28, 29, 30) in the Dyad Region: Analysis of line positions, intensities and half-widths

    Science.gov (United States)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Raspopova, N. I.; Kashirina, N. V.; Fomchenko, A. L.; Sydow, C.; Bauerecker, S.

    2017-12-01

    The infrared spectra of SiH4 in natural abundance (92.23% of 28SiH4, 4.68% of 29SiH4, and 3.09% of 30SiH4) were measured in the region of 600-1200 cm-1 with a Bruker IFS 120HR Fourier transform spectrometer, analyzed and compared with the results available in the literature. More than 3500 transitions with Jmax. = 27 were assigned to the dyad bands ν4 and ν2 of 28SiH4 (the band ν2 is allowed in Raman, but forbidden in absorption spectra for symmetry reasons, and its transitions appear in absorption spectra only because of strong Coriolis interaction with the ν4 band). Rotational, centrifugal distortion, tetrahedral splitting, and interaction parameters for the ground, (0100) and (0001) vibrational states were determined from the fit of experimental line positions. The obtained set of parameters reproduces the initial experimental data with accuracy close to experimental uncertainties. The results of the analogous analyses of the 29SiH4 and 30SiH4 isotopologues are also presented (the numbers of the assigned transitions are here more than 1360 and 1120). An further analysis of about 790 experimental ro-vibrational lines in the dyad region of 28SiH4 was performed using the Voigt profile to simulate the measured line shape and to determine experimental line intensities. A set of 4 effective dipole moment parameters for the dyad of 28SiH4 was obtained on that basis from the weighted fit, which reproduce the initial experimental intensities of about 790 lines with the drms = 5.6 % . Analogous analyses were made for the two other isotopic species, 29SiH4, and 30SiH4. A detailed line list of transitions in the region of 750-1150 cm-1 is generated. The half-widths of 40 ro-vibrational lines (Jup.max. = 16) are studied from the multi-spectrum analysis, and self-pressure broadening coefficients are determined.

  18. Vibrational relaxation in OCS mixtures

    International Nuclear Information System (INIS)

    Simpson, C.J.S.M.; Gait, P.D.; Simmie, J.M.

    1976-01-01

    Experimental measurements are reported of vibrational relaxation times which may be used to show whether there is near resonant vibration-rotation energy transfer between OCS and H 2 , D 2 or HD. Vibrational relaxation times have been measured in OCS and OCS mixtures over the temperature range 360 to 1000 K using a shock tube and a laser schlieren system. The effectiveness of the additives in reducing the relaxation time of OCS is in the order 4 He 3 He 2 2 and HD. Along this series the effect of an increase in temperature changes from the case of speeding up the rate with 4 He to retarding it with D 2 , HD and H 2 . There is no measurable difference in the effectiveness of n-D 2 and o-D 2 and little, or no, difference between n-H 2 and p-H 2 . Thus the experimental results do not give clear evidence for rotational-vibration energy transfer between hydrogen and OCS. This contrasts with the situation for CO 2 + H 2 mixtures. (author)

  19. Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge

    DEFF Research Database (Denmark)

    Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.

    2005-01-01

    isotope substitution is obtained. The stretching dependence for each of the modes allows uniquely classifying them as longitudinal or transversal modes. The interpretation of the experiment in terms of a Pt-H-2-Pt bridge is verified by density-functional theory calculations for the stability, vibrational...

  20. Infrared and Raman spectroscopic characterizations on new Fe sulphoarsenate hilarionite (Fe2(III)(SO4)(AsO4)(OH)·6H2O): Implications for arsenic mineralogy in supergene environment of mine area

    Science.gov (United States)

    Liu, Jing; He, LiLe; Dong, Faqin; Frost, Ray L.

    2017-01-01

    Hilarionite (Fe2 (SO4)(AsO4)(OH)·6H2O) is a new Fe sulphoarsenates mineral, which recently is found in the famous Lavrion ore district, Atliki Prefecture, Greece. The spectroscopic study of hilarionite enriches the data of arsenic mineralogy in supergene environment of a mine area. The infrared and Raman means are used to characterize the molecular structure of this mineral. The IR bands at 875 and 905 cm- 1 are assigned to the antisymmetric stretching vibrations of AsO43 -. The IR bands at 1021, 1086 and 1136 cm- 1 correspond to the possible antisymmetric and symmetric stretching vibrations of SO42 -. The Raman bands at 807, 843 and 875 cm- 1 clearly show that arsenate components in the mineral structure, which are assigned to the symmetric stretching vibrations1) of AsO43 - (807 and 843 cm- 1) and the antisymmetric vibration (ν3) (875 cm- 1). IR bands provide more sulfate information than Raman, which can be used as the basis to distinguish hilarionite from kaňkite. The powder XRD data shows that hilarionite has obvious differences with the mineral structure of kaňkite. The thermoanalysis and SEM-EDX results show that hilarionite has more sulfate than arsenate.

  1. 1H, 15N, and 13C resonance assignments of the third domain from the S. aureus innate immune evasion protein Eap.

    Science.gov (United States)

    Herrera, Alvaro I; Ploscariu, Nicoleta T; Geisbrecht, Brian V; Prakash, Om

    2018-04-01

    Staphylococcus aureus is a widespread and persistent pathogen of humans and livestock. The bacterium expresses a wide variety of virulence proteins, many of which serve to disrupt the host's innate immune system from recognizing and clearing bacteria with optimal efficiency. The extracellular adherence protein (Eap) is a multidomain protein that participates in various protein-protein interactions that inhibit the innate immune response, including both the complement system (Woehl et al in J Immunol 193:6161-6171, 2014) and Neutrophil Serine Proteases (NSPs) (Stapels et al in Proc Natl Acad Sci USA 111:13187-13192, 2014). The third domain of Eap, Eap3, is an ~ 11 kDa protein that was recently shown to bind complement component C4b (Woehl et al in Protein Sci 26:1595-1608, 2017) and therefore play an essential role in inhibiting the classical and lectin pathways of complement (Woehl et al in J Immunol 193:6161-6171, 2014). Since structural characterization of Eap3 is still incomplete, we acquired a series of 2D and 3D NMR spectra of Eap3 in solution. Here we report the backbone and side-chain 1 H, 15 N, and 13 C resonance assignments of Eap3 and its predicted secondary structure via the TALOS-N server. The assignment data have been deposited in the BMRB data bank under accession number 27087.

  2. Synthesis, structural characterization, and DFT calculations of 3-buthyl-4-(3-methyl-3-mesitylcyclobut-1-yl)-1,3-thiazole-2(3H)-thione

    Energy Technology Data Exchange (ETDEWEB)

    Şen, B. [Dokuz Eylül University, Department of Physics, Faculty of Science (Turkey); Barim, E.; Kirilmis, C. [Adıyaman University, Department of Chemistry, Faculty of Art and Science (Turkey); Aygün, M., E-mail: muhittin.aygun@deu.edu.tr [Dokuz Eylül University, Department of Physics, Faculty of Science (Turkey)

    2016-03-15

    The title compound, C{sub 21}H{sub 29}NS{sub 2}, has been synthesized and its crystal structure has been determined from single crystal X-ray diffraction data. Crystals are monoclinic, a = 11.4923(8), b = 13.1842(7), c = 14.6583(8) Å, β = 109.983(6)°, sp. gr. P2{sub 1}/c, Z = 4. Mesityl and thiazole groups are in cis positions with respect to the cyclobutane ring. The cyclobutane ring is puckered, with a dihedral angle of 26.6(2)° between the two three-atom planes. The crystal structure involves one weak intermolecular C–H···S hydrogen-bond. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311G(d, p) basis set in ground state. Geometric parameters (bond lengths, bond angles and torsion angles) and vibrational assignments have been calculated theoretically and compared with the experimental data.

  3. Experimental and theoretical investigation of vibrational spectra of coordination polymers based on TCE-TTF.

    Science.gov (United States)

    Olejniczak, Iwona; Lapiński, Andrzej; Swietlik, Roman; Olivier, Jean; Golhen, Stéphane; Ouahab, Lahcène

    2011-08-01

    The room-temperature infrared and Raman spectra of a series of four isostructural polymeric salts of 2,3,6,7-tetrakis(2-cyanoethylthio)-tetrathiafulvalene (TCE-TTF) with paramagnetic (Co(II), Mn(II)) and diamagnetic (Zn(II), Cd(II)) ions, together with BF(4)(-) or ClO(4)(-) anions are reported. Infrared and Raman-active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. It is confirmed that the TCE-TTF molecules in all the materials investigated are fully ionized and interact in the crystal structure through cyanoethylthio groups. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the occurrence of electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Theoretical study of manganese hydrides and halides, MnXn with X = H, F, Cl, Br and n = 1–4

    International Nuclear Information System (INIS)

    Nhat, Pham Vu; Cuong, Ngo Tuan; Duy, Pham Khac; Nguyen, Minh Tho

    2012-01-01

    Highlights: ► The B3P86 functional is found to be reliable in predictions of molecular structures and vibrational spectra. ► The hybrid B3LYP is more reliable for energetic parameters such as heats of formation. ► We also propose several new assignments for heats of formation and ionization energies of a number of species considered. - Abstract: Properties of a series of MnX n with X = H, F, Cl, Br and n = 1–4 are investigated using DFT, CCSD(T) and CASPT2 computations. The B3P86/6-311++G(3df,2d) method appears to be suitable for predicting their structures whose geometries and IR spectra are dependent on the charge state. While MnX 2 are linear, MnX 3 and MnX 4 are characterized by high symmetry shape. The π-bonding type is observed for MnH 3 0/+ and MnH 4 0/+ . In halides, a different type of bonds is formed as p-orbitals of halogens can overlap with empty metal d-orbitals allowing a more effective electron transfer and high spin ground electronic states. Vibrational frequencies and basic energetic quantities are computed and compared with available experiments. Several previous thermochemical quantities are re-evaluated, and the heats of formation of Mn-compounds can be determined with reasonable accuracy using the B3LYP functional. However, while calculated ionization energies are in agreement with experiment, electron affinities are obtained with large deviations.

  5. Condition monitoring of PARR-1 rotating machines by vibration analysis technique

    Directory of Open Access Journals (Sweden)

    Qadir Javed

    2014-01-01

    Full Text Available Vibration analysis is a key tool for preventive maintenance involving the trending and analysis of machinery performance parameters to detect and identify developing problems before failure and extensive damage can occur. A lab-based experimental setup has been established for obtaining fault-free and fault condition data. After this analysis, primary and secondary motor and pump vibration data of the Pakistan Research Reactor-1 were obtained and analyzed. Vibration signatures were acquired in horizontal, vertical, and axial directions. The 48 vibration signatures have been analyzed to assess the operational status of motors and pumps. The vibration spectrum has been recorded for a 2000 Hz frequency span with a 3200 lines resolution. The data collected should be helpful in future Pakistan Research Reactor-1 condition monitoring.

  6. Selective probe of the morphology and local vibrations at carbon nanoasperities

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshihiko; Endo, Morinobu; Kaneko, Katsumi [Research Center for Exotic Nanocarbons (JST), Shinshu University, 4-17-1, Wakasato, Nagano-city 380-8553 (Japan); Urita, Koki; Moriguchi, Isamu [Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521 (Japan); Tomanek, David [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824 (United States); Ohba, Tomonori [Department of Chemistry, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2012-02-14

    We introduce a way to selectively probe local vibration modes at nanostructured asperities such as tips of carbon nanohorns. Our observations benefit from signal amplification in surface-enhanced Raman scattering (SERS) at sites near a silver surface. We observe nanohorn tip vibration modes in the range 200-500 cm{sup -1}, which are obscured in regular Raman spectra. Ab initio density functional calculations assign modes in this frequency range to local vibrations at the nanohorn cap resembling the radial breathing mode of fullerenes. Careful interpretation of our SERS spectra indicates presence of caps with 5 or 6 pentagons, which are chemically the most active sites. Changes in the peak intensities and frequencies with time indicate that exposure to laser irradiation may cause structural rearrangements at the cap.

  7. Dissociative electron attachment to vibrationally excited H2 molecules involving the 2Σg+ resonant Rydberg electronic state

    International Nuclear Information System (INIS)

    Celiberto, R.; Janev, R.K.; Wadehra, J.M.; Tennyson, J.

    2012-01-01

    Graphical abstract: Dissociative electron attachment cross sections as a function of the incident electron energy and for the initial vibration levels v i = 0–5, 10 of the H 2 molecule. Highlights: ► We calculated electron–hydrogen dissociative attachment cross sections and rates coefficients. ► Collision processes occurring through a resonant Rydberg state are considered. ► Cross sections and rates were obtained for vibrationally excited hydrogen molecules. ► The cross sections exhibit pronounced oscillatory structures. ► A comparison with the process involving the electron–hydrogen resonant ground state is discussed. - Abstract: Dissociative electron attachment cross sections (DEA) on vibrationally excited H 2 molecule taking place via the 2 Σ g + Rydberg-excited resonant state are studied using the local complex potential (LCP) model for resonant collisions. The cross sections are calculated for all initial vibrational levels (v i = 0–14) of the neutral molecule. In contrast to the previously noted dramatic increase in the DEA cross sections with increasing v i , when the process proceeds via the X 2 Σ u + shape resonance of H 2 , for the 2 Σ g + Rydberg resonance the cross sections increase only gradually up to v i = 3 and then decrease. Moreover, the cross sections for v i ⩾ 6 exhibit pronounced oscillatory structures. A discussion of the origin of the observed behavior of calculated cross sections is given. The DEA rate coefficients for all v i levels are also calculated in the 0.5–1000 eV temperature range.

  8. Vibration Spectrum Analysis for Indicating Damage on Turbine and Steam Generator Amurang Unit 1

    Directory of Open Access Journals (Sweden)

    Beny Cahyono

    2017-12-01

    Full Text Available Maintenance on machines is a mandatory asset management activity to maintain asset reliability in order to reduce losses due to failure. 89% of defects have random failure mode, the proper maintenance method is predictive maintenance. Predictive maintenance object in this research is Steam Generator Amurang Unit 1, which is predictive maintenance is done through condition monitoring in the form of vibration analysis. The conducting vibration analysis on Amurang Unit 1 Steam Generator is because vibration analysis is very effective on rotating objects. Vibration analysis is predicting the damage based on the vibration spectrum, where the vibration spectrum is the result of separating time-based vibrations and simplifying them into vibrations based on their frequency domain. The transformation of time-domain-wave into frequency-domain-wave is using the application of FFT, namely AMS Machinery. The measurement of vibration value is done on turbine bearings and steam generator of Unit 1 Amurang using Turbine Supervisory Instrument and CSI 2600 instrument. The result of this research indicates that vibration spectrum from Unit 1 Amurang Power Plant indicating that there is rotating looseness, even though the vibration value does not require the Unit 1 Amurang Power Plant to stop operating (shut down. This rotating looseness, at some point, can produce some indications that similar with the unbalance. In order to avoid more severe vibrations, it is necessary to do inspection on the bearings in the Amurang Unit 1 Power Plant.

  9. Chemical reaction surface vibrational frequencies evaluated in curvilinear internal coordinates: Application to H + CH(4) H(2) + CH(3).

    Science.gov (United States)

    Banks, Simon T; Clary, David C

    2009-01-14

    We consider the general problem of vibrational analysis at nonglobally optimized points on a reduced dimensional reaction surface. We discuss the importance of the use of curvilinear internal coordinates to describe molecular motion and derive a curvilinear projection operator to remove the contribution of nonzero gradients from the Hessian matrix. Our projection scheme is tested in the context of a two-dimensional quantum scattering calculation for the reaction H + CH(4) --> H(2) + CH(3) and its reverse H(2) + CH(3) --> H + CH(4). Using zero-point energies calculated via rectilinear and curvilinear projections we construct two two-dimensional, adiabatically corrected, ab initio reaction surfaces for this system. It is shown that the use of curvilinear coordinates removes unphysical imaginary frequencies observed with rectilinear projection and leads to significantly improved thermal rate constants for both the forward and reverse reactions.

  10. Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan

    2018-05-01

    Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX3 (X = H, D and T) compounds

    International Nuclear Information System (INIS)

    Chattaraj, D.; Parida, S.C.; Dash, Smruti; Majumder, C.

    2015-01-01

    Highlights: • The physico-chemical properties of ZrCo and its hydrides were studied. • The isotope effect on vibrational and thermodynamic properties was investigated. • The changes in elastic properties due to hydrogenation of ZrCo were investigated. • Thermodynamics properties of ZrCo and its hydrides were calculated. - Abstract: The dynamical, thermodynamic and elastic properties of ZrCo and its hydrides ZrCoX 3 (X = H, D and T) are reported. While the electronic structure calculations are performed using plane wave pseudopotential approach, the effect of isotopes on the vibrational and thermodynamic properties has been demonstrated through frozen phonon approach. The results reveal significant difference between the ZrCoH 3 and its isotopic analogs in terms of phonon frequencies and zero point energies. For example, the energy gap between optical and acoustic modes reduces in the order of ZrCoT 3 > ZrCoD 3 > ZrCoH 3 . The vibrational properties shows that the intermetallic ZrCo is dynamically stable whereas ZrCoX 3 (X = H, D and T) are dynamically unstable. The calculated formation energies of ZrCoX 3 , including the ZPE, are −146.7, −158.3 and −164.1 kJ/(mole of ZrCoX 3 ) for X = H, D and T, respectively. In addition, the changes in elastic properties of ZrCo upon hydrogenation have also been investigated. The results show that both ZrCo and ZrCoH 3 are mechanically stable at ambient pressure. The Debye temperatures of both ZrCo and ZrCoH 3 are determined using the calculated elastic moduli

  12. Vibrational spectra of double oxides of calcium and indium

    International Nuclear Information System (INIS)

    Porotnikov, N.V.; Kondratov, O.I.; Petrov, K.I.; Olikov, I.I.

    1980-01-01

    Vibrational spectra of Ca 40 In 2 O 4 and Ca 44 In 2 O 4 dioxides have been studied. Calculations of a theoretical vibrational spectrum of isotope-substituted compounds have been carried out in the approximation of polymer chains of the valence-force field method. The assignment of experimental spectra is proposed. The force field of crystals is evaluated [ru

  13. Structural and theoretical study of 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione to be i-motif inhibitor

    Science.gov (United States)

    Vatsal, Manu; Devi, Vandna; Awasthi, Pamita

    2018-04-01

    The 1-[1-oxo-3-phenyl-(2-benzosulfonamide)-propyl amido] - anthracene-9,10-dione (BPAQ) an analogue of anthracenedione class of antibiotic has been synthesized. To characterize molecular functional groups FT-IR and FT-Raman spectrum were recorded and vibrational frequencies were assigned accordingly. The optimized geometrical parameters, vibrational assignments, chemical shifts and thermodynamic properties of title compound were computed by ab initio calculations at Density Functional Theory (DFT) method with 6-31G(d,p) as basis set. The calculated harmonic vibrational frequencies of molecule were then analysed in comparison to experimental FT-IR and Raman spectrum. Gauge independent atomic orbital (GIAO) method was used for determining, (1H) and carbon (13C) nuclear magnetic resonance (NMR) spectra of the molecule. Molecular parameters were calculated along with its periodic boundary conditions calculation (PBC) analysis supported by X-ray diffraction studies. The frontier molecular orbital (HOMO, LUMO) analysis describes charge distribution and stability of the molecule which concluded that nucleophilic substitution is more preferred and the mullikan charge analysis also confirmed the same. Further the title compound showed an inhibitory action at d(TCCCCC), an intermolecular i-motif sequence, hence molecular docking study suggested the inhibitory activity of the compound at these junction.

  14. Hydride transport vessel vibration and shock test report

    Energy Technology Data Exchange (ETDEWEB)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10{sup {minus}7} cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results.

  15. Hydride transport vessel vibration and shock test report

    International Nuclear Information System (INIS)

    Tipton, D.G.

    1998-06-01

    Sandia National Laboratories performed vibration and shock testing on a Savannah River Hydride Transport Vessel (HTV) which is used for bulk shipments of tritium. This testing is required to qualify the HTV for transport in the H1616 shipping container. The main requirement for shipment in the H1616 is that the contents (in this case the HTV) have a tritium leak rate of less than 1x10 -7 cc/sec after being subjected to shock and vibration normally incident to transport. Helium leak tests performed before and after the vibration and shock testing showed that the HTV remained leaktight under the specified conditions. This report documents the tests performed and the test results

  16. Selective vibrational excitation of the ethylene--fluorine reaction in a nitrogen matrix. II

    International Nuclear Information System (INIS)

    Frei, H.

    1983-01-01

    The product branching between 1,2-difluoroethane and vinyl fluoride (plus HF) of the selective vibrationally stimulated reaction of molecular fluorine with C 2 H 4 has been studied in a nitrogen matrix at 12 K and found to be the same for five different vibrational transitions of C 2 H 4 between 1896 and 4209 cm -1 . The HF/DF branching ratio of the reaction of F 2 with CH 2 CD 2 , trans-CHDCHD, and cis-CHDCHD was determined to be 1.1, independent of precursor C 2 H 2 D 2 isomer and particular mode which excited the reaction. These results, as well as the analysis of the mixtures of partially deuterated vinyl fluoride molecules produced by each C 2 H 2 D 2 isomer indicate that the product branching occurs by αβ elimination of HF(DF) from a vibrationally excited, electronic ground state 1,2-difluoroethane intermediate. Selective vibrational excitation of fluorine reactions in isotopically mixed matrices t-CHDCHD/C 2 H 4 /F 2 /N 2 and CH 2 CD 2 /C 2 H 4 /F 2 /N 2 , and in matrices C 2 H 2 /C 2 H 4 /F 2 /N 2 revealed a high degree of isotopic and molecular selectivity. The extent to which intermolecular energy transfer occurred is qualitatively explained in terms of dipole coupled vibrational energy transfer. A study of the loss of absorbance of the C 2 H 4 x F 2 pairs in case of ν 9 as a function of both the laser irradiation frequency within the absorption profile, and the ethylene concentration showed that the C 2 H 4 x F 2 absorption is inhomogeneously broadened. Substantial depletion of reactive pairs which did not absorb laser light is interpreted in terms of Forster transfer

  17. On the origin of red and blue shifts of X-H and C-H stretching vibrations in formic acid (formate ion) and proton donor complexes.

    Science.gov (United States)

    Tâme Parreira, Renato Luis; Galembeck, Sérgio Emanuel; Hobza, Pavel

    2007-01-08

    Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively.

  18. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  19. A Computer Assisted Procedure of Assignments of Vibration-Rotation Bands of Asymmetric and Symmetric Top Molecules

    Czech Academy of Sciences Publication Activity Database

    Urban, Štěpán; Behrend, J.; Pracna, Petr

    2004-01-01

    Roč. 690, - (2004), s. 105-114 ISSN 0022-2860 R&D Projects: GA MŠk ME 445; GA ČR GA203/01/1274 Institutional research plan: CEZ:AV0Z4040901 Keywords : assigments of vibration-rotation spectra * combination differences * Loomis-Wood algorithm Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.200, year: 2004

  20. Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations.

    Science.gov (United States)

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Isac, Jayakumary

    2014-03-25

    The conformational behavior and structural stability of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene (TDBE) were investigated by using density functional theory (DFT) method with the B3LYP/6-311++G(d,p) basis set combination. The vibrational wavenumbers of TDBE were computed at DFT level and complete vibrational assignments were made on the basis of normal coordinate analysis calculations (NCA). The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The infrared and Raman spectra were also predicted from the calculated intensities. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Vibrational spectroscopic study of fluticasone propionate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  2. Synthesis, molecular structure, FT-IR, Raman, XRD and theoretical investigations of (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one.

    Science.gov (United States)

    Chidan Kumar, Chandraju Sadolalu; Fun, Hoong Kun; Parlak, Cemal; Rhyman, Lydia; Ramasami, Ponnadurai; Tursun, Mahir; Chandraju, Siddegowda; Quah, Ching Kheng

    2014-11-11

    A novel (2E)-1-(5-chlorothiophen-2-yl)-3-(naphthalen-2-yl)prop-2-en-1-one [C17H11ClOS] compound has been synthesized and its structure has been characterized by FT-IR, Raman and single-crystal X-ray diffraction techniques. The isomers, optimized geometrical parameters, normal mode frequencies and corresponding vibrational assignments of the compound have been examined by means of the density functional theory method, employing, the Becke-3-Lee-Yang-Parr functional and the 6-311+G(3df,p) basis set. Reliable vibrational assignments and molecular orbitals have been investigated by the potential energy distribution and natural bonding orbital analyses, respectively. The compound crystallizes in the monoclinic space group P2₁/c with the unit cell parameters a=5.7827(8)Å, b=14.590(2)Å, c=16.138(2)Å and β=89.987 (°). The CC bond of the central enone group adopts an E configuration. There is a good agreement between the theoretically predicted structural parameters and vibrational frequencies and those obtained experimentally. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Quantum state-to-state dynamics for the quenching process of Br(2P1/2) + H2(v(i) = 0, 1, j(i) = 0).

    Science.gov (United States)

    Xie, Changjian; Jiang, Bin; Xie, Daiqian; Sun, Zhigang

    2012-03-21

    Quantum state-to-state dynamics for the quenching process Br((2)P(1/2)) + H(2)(v(i) = 0, 1, j(i) = 0) → Br((2)P(3/2)) + H(2)(v(f), j(f)) has been studied based on two-state model on the recent coupled potential energy surfaces. It was found that the quenching probabilities have some oscillatory structures due to the interference of reflected flux in the Br((2)P(1/2)) + H(2) and Br((2)P(3/2)) + H(2) channels by repulsive potential in the near-resonant electronic-to-vibrational energy transfer process. The final vibrational state resolved integral cross sections were found to be dominated by the quenching process Br((2)P(1/2)) + H(2)(v) → Br((2)P(3/2)) + H(2)(v+1) and the nonadiabatic reaction probabilities for Br((2)P(1/2)) + H(2)(v = 0, 1, j(i) = 0) are quite small, which are consistent with previous theoretical and experimental results. Our calculated total quenching rate constant for Br((2)P(1/2)) + H(2)(v(i) = 0, j(i) = 0) at room temperature is in good agreement with the available experimental data. © 2012 American Institute of Physics

  4. 1H, 13C, and 15N resonance assignment of the N-terminal domainof Mason-Pfizer monkey virus capsid protein, CA 1-140

    Czech Academy of Sciences Publication Activity Database

    Macek, Pavel; Žídek, L.; Rumlová, Michaela; Pichová, Iva; Sklenář, V.

    2008-01-01

    Roč. 2, č. 1 (2008), s. 43-45 ISSN 1874-2718 R&D Projects: GA MŠk LC545; GA MŠk(CZ) LC06030; GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z40550506 Keywords : nmr * assignment * capsid protein Subject RIV: EE - Microbiology, Virology Impact factor: 0.015, year: 2008

  5. Theoretical study of manganese hydrides and halides, MnX{sub n} with X = H, F, Cl, Br and n = 1-4

    Energy Technology Data Exchange (ETDEWEB)

    Nhat, Pham Vu [Department of Chemistry, University of Leuven, B-3001 Leuven (Belgium); Department of Chemistry, Can Tho University, Can Tho (Viet Nam); Cuong, Ngo Tuan [Department of Chemistry, University of Leuven, B-3001 Leuven (Belgium); Duy, Pham Khac [Institute of Chemistry, Academy of Science and Technology (VAST), Ha Noi (Viet Nam); Nguyen, Minh Tho, E-mail: minh.nguyen@chem.kuleuven.be [Department of Chemistry, University of Leuven, B-3001 Leuven (Belgium); Institute for Computational Science and Technology (ICST), HoChiMinh City (Viet Nam)

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer The B3P86 functional is found to be reliable in predictions of molecular structures and vibrational spectra. Black-Right-Pointing-Pointer The hybrid B3LYP is more reliable for energetic parameters such as heats of formation. Black-Right-Pointing-Pointer We also propose several new assignments for heats of formation and ionization energies of a number of species considered. - Abstract: Properties of a series of MnX{sub n} with X = H, F, Cl, Br and n = 1-4 are investigated using DFT, CCSD(T) and CASPT2 computations. The B3P86/6-311++G(3df,2d) method appears to be suitable for predicting their structures whose geometries and IR spectra are dependent on the charge state. While MnX{sub 2} are linear, MnX{sub 3} and MnX{sub 4} are characterized by high symmetry shape. The {pi}-bonding type is observed for MnH{sub 3}{sup 0/+} and MnH{sub 4}{sup 0/+}. In halides, a different type of bonds is formed as p-orbitals of halogens can overlap with empty metal d-orbitals allowing a more effective electron transfer and high spin ground electronic states. Vibrational frequencies and basic energetic quantities are computed and compared with available experiments. Several previous thermochemical quantities are re-evaluated, and the heats of formation of Mn-compounds can be determined with reasonable accuracy using the B3LYP functional. However, while calculated ionization energies are in agreement with experiment, electron affinities are obtained with large deviations.

  6. Vibrational excitation and dissociative recombination of the LiH+ ion

    Czech Academy of Sciences Publication Activity Database

    Čurík, Roman; Greene, C. H.

    2007-01-01

    Roč. 105, 11-12 (2007), s. 1565-1574 ISSN 0026-8976 R&D Projects: GA AV ČR IAA100400501; GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503 Keywords : dissociative recombination * vibrational excitation * lithium hydride * quantum defect the ory Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.568, year: 2007

  7. Synthesis of 24-methyl sterols sterospecifically labelled with 2H in the isopropyl methyl groups. 13C NMR spectral assignment of C-26 and C-27 resonances

    International Nuclear Information System (INIS)

    Colombo, D.; Ronchetti, F.; Toma, L.

    1990-01-01

    Through analysis of the 13 C NMR spectra of (25S)-[27- 2 H]campesterol (1) and (25R)-[26- 2 H]dihydrobrassicasterol (2), the C-26 and C-27 resonances have been unambiguously assigned; the biosynthetic applications are discussed. (author)

  8. (1)H, (13)C, and (15)N backbone resonance assignments of the full-length 40 kDa S. acidocaldarius Y-family DNA polymerase, dinB homolog.

    Science.gov (United States)

    Moro, Sean L; Cocco, Melanie J

    2015-10-01

    The dinB homolog (Dbh) is a member of the Y-family of translesion DNA polymerases, which are specialized to accurately replicate DNA across from a wide variety of lesions in living cells. Lesioned bases block the progression of high-fidelity polymerases and cause detrimental replication fork stalling; Y-family polymerases can bypass these lesions. The active site of the translesion synthesis polymerase is more open than that of a replicative polymerase; consequently Dbh polymerizes with low fidelity. Bypass polymerases also have low processivity. Short extension past the lesion allows the high-fidelity polymerase to switch back onto the site of replication. Dbh and the other Y-family polymerases have been used as structural models to investigate the mechanisms of DNA polymerization and lesion bypass. Many high-resolution crystal structures of Y-family polymerases have been reported. NMR dynamics studies can complement these structures by providing a measure of protein motions. Here we report the (15)N, (1)H, and (13)C backbone resonance assignments at two temperatures (35 and 50 °C) for Sulfolobus acidocaldarius Dbh polymerase. Backbone resonance assignments have been obtained for 86 % of the residues. The polymerase active site is assigned as well as the majority of residues in each of the four domains.

  9. Complete 1H NMR spectral analysis of ten chemical markers of Ginkgo biloba

    OpenAIRE

    Napolitano, José G.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2012-01-01

    The complete and unambiguous 1H NMR assignments of ten marker constituents of Ginkgo biloba are described. The comprehensive 1H NMR profiles (fingerprints) of ginkgolide A, ginkgolide B, ginkgolide C, ginkgolide J, bilobalide, quercetin, kaempferol, isorhamnetin, isoquercetin, and rutin in DMSO-d6 were obtained through the examination of 1D 1H NMR and 2D 1H,1H-COSY data, in combination with 1H iterative Full Spin Analysis (HiFSA). The computational analysis of discrete spin systems allowed a ...

  10. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    Science.gov (United States)

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  11. Raman study of vibrational dynamics of aminopropylsilanetriol in gas phase

    Science.gov (United States)

    Volovšek, V.; Dananić, V.; Bistričić, L.; Movre Šapić, I.; Furić, K.

    2014-01-01

    Raman spectrum of aminopropylsilanetriol (APST) in gas phase has been recorded at room temperature in macro chamber utilizing two-mirror technique over the sample tube. Unlike predominantly trans molecular conformation in condensed phase, the spectra of vapor show that the molecules are solely in gauche conformation with intramolecular hydrogen bond N⋯Hsbnd O which reduces the molecular energy in respect to trans conformation by 0.152 eV. The assignment of the molecular spectra based on the DFT calculation is presented. The strong vibrational bands at 354 cm-1, 588 cm-1 and 3022 cm-1 are proposed for verifying the existence of the ring like, hydrogen bonded structure. Special attention was devoted to the high frequency region, where hydrogen bond vibrations are coupled to stretchings of amino and silanol groups.

  12. Sub-Doppler slit jet infrared spectroscopy of astrochemically relevant cations: Symmetric (ν1) and antisymmetric (ν6) NH stretching modes in ND2H2+

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2018-01-01

    Sub-Doppler infrared rovibrational transitions in the symmetric (v1) and antisymmetric (v6) NH stretch modes of the isotopomerically substituted ND2H2+ ammonium cation are reported for the first time in a slit jet discharge supersonic expansion spectrometer. The partially H/D substituted cation is generated by selective isotopic exchange of ND3 with H2O to form NHD2, followed by protonation with H3+ formed in the NHD2/H2/Ne slit-jet discharge expansion environment. Rotational assignment for ND2H2+ is confirmed rigorously by four line ground state combination differences, which agree to be within the sub-Doppler precision in the slit jet (˜9 MHz). Observation of both b-type (ν1) and c-type (ν6) bands enables high precision determination of the ground and vibrationally excited state rotational constants. From an asymmetric top Watson Hamiltonian analysis, the ground state constants are found to be A″ = 4.856 75(4) cm-1, B″ = 3.968 29(4) cm-1, and C″ = 3.446 67(6) cm-1, with band origins at 3297.5440(1) and 3337.9050(1) cm-1 for the v1 and v6 modes, respectively. This work permits prediction of precision microwave/mm-wave transitions, which should be invaluable in facilitating ongoing spectroscopic searches for partially deuterated ammonium cations in interstellar clouds and star-forming regions of the interstellar medium.

  13. Comparing the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men.

    Science.gov (United States)

    Ferguson, Steven L; Kim, Eonho; Seo, Dong-Il; Bemben, Michael G

    2013-12-01

    This study compared the effects of 3 weeks of upper-body vibration training, vibration and stretching, and stretching alone on shoulder flexibility in college-aged men. Twenty-one men were randomly assigned to vibration-stretching (VS; n = 8), vibration only (VO; n = 6), or stretching only (SO; n = 7) groups that trained 3 times per week for 3 weeks. All 3 groups performed 9 total sets of 30-second stretches. The VS group performed four 30-second upper-body vibration exercises and five 30-second upper-body stretching exercises. The VO group performed nine 30-second upper-body vibration exercises. The SO group performed nine 30-second upper-body stretching exercises. Shoulder flexion (SF), shoulder extension (SE), and shoulder transverse extension (STE) were assessed by a Leighton Flexometer and back scratch tests bilaterally (BSR, BSL) were measured via tape measure. A 1-way analysis of variance (ANOVA) evaluated groups at baseline and a 2-way repeated-measures ANOVA evaluated the interventions over time. At baseline, there were no group differences in age, height, or weight. There was a significant (p alone or combined with stretching, is a viable alternative to a standard stretching routine when attempting to increase shoulder flexibility. Adding vibration training to a flexibility regimen may improve the likelihood of regularly performing flexibility sessions because of increased variety.

  14. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Ken-ichi; Singh, Prashant C. [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Nihonyanagi, Satoshi; Tahara, Tahei, E-mail: tahei@riken.jp [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, Shoichi [Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Chemistry, Saitama University, 255 Shimo-Okubo, Saitama 338-8570 (Japan)

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup −1} ≤ ω{sub pump} ≤ 3600 cm{sup −1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ∼0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup −1} and 3420 cm{sup −1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  15. MetaboID: a graphical user interface package for assignment of 1H NMR spectra of bodyfluids and tissues.

    Science.gov (United States)

    MacKinnon, Neil; Somashekar, Bagganahalli S; Tripathi, Pratima; Ge, Wencheng; Rajendiran, Thekkelnaycke M; Chinnaiyan, Arul M; Ramamoorthy, Ayyalusamy

    2013-01-01

    Nuclear magnetic resonance based measurements of small molecule mixtures continues to be confronted with the challenge of spectral assignment. While multi-dimensional experiments are capable of addressing this challenge, the imposed time constraint becomes prohibitive, particularly with the large sample sets commonly encountered in metabolomic studies. Thus, one-dimensional spectral assignment is routinely performed, guided by two-dimensional experiments on a selected sample subset; however, a publicly available graphical interface for aiding in this process is currently unavailable. We have collected spectral information for 360 unique compounds from publicly available databases including chemical shift lists and authentic full resolution spectra, supplemented with spectral information for 25 compounds collected in-house at a proton NMR frequency of 900 MHz. This library serves as the basis for MetaboID, a Matlab-based user interface designed to aid in the one-dimensional spectral assignment process. The tools of MetaboID were built to guide resonance assignment in order of increasing confidence, starting from cursory compound searches based on chemical shift positions to analysis of authentic spike experiments. Together, these tools streamline the often repetitive task of spectral assignment. The overarching goal of the integrated toolbox of MetaboID is to centralize the one dimensional spectral assignment process, from providing access to large chemical shift libraries to providing a straightforward, intuitive means of spectral comparison. Such a toolbox is expected to be attractive to both experienced and new metabolomic researchers as well as general complex mixture analysts. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    OpenAIRE

    Ciobanu, Carmen Steluta; Iconaru, Simona Liliana; Le Coustumer, Phillippe; Predoi, Daniela

    2013-01-01

    Silver-doped hydroxyapatite (Ag:HAp) was obtained by coprecipitation method. Transmission electron microscopy (TEM), infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The...

  17. Partially-deuterated samples of HET-s(218–289) fibrils: assignment and deuterium isotope effect

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Albert A.; Ravotti, Francesco; Testori, Emilie; Cadalbert, Riccardo; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2017-02-15

    Fast magic-angle spinning and partial sample deuteration allows direct detection of {sup 1}H in solid-state NMR, yielding significant gains in mass sensitivity. In order to further analyze the spectra, {sup 1}H detection requires assignment of the {sup 1}H resonances. In this work, resonance assignments of backbone H{sup N} and Hα are presented for HET-s(218–289) fibrils, based on the existing assignment of Cα, Cβ, C’, and N resonances. The samples used are partially deuterated for higher spectral resolution, and the shifts in resonance frequencies of Cα and Cβ due to the deuterium isotope effect are investigated. It is shown that the deuterium isotope effect can be estimated and used for assigning resonances of deuterated samples in solid-state NMR, based on known resonances of the protonated protein.

  18. Development of T. aestivum L.-H. californicum alien chromosome lines and assignment of homoeologous groups of Hordeum californicum chromosomes.

    Science.gov (United States)

    Fang, Yuhui; Yuan, Jingya; Wang, Zhangjun; Wang, Haiyan; Xiao, Jin; Yang, Zhixi; Zhang, Ruiqi; Qi, Zengjun; Xu, Weigang; Hu, Lin; Wang, Xiu-E

    2014-08-20

    Hordeum californicum (2n = 2x = 14, HH) is resistant to several wheat diseases and tolerant to lower nitrogen. In this study, a molecular karyotype of H. californicum chromosomes in the Triticum aestivum L. cv. Chinese Spring (CS)-H. californicum amphidiploid (2n = 6x = 56, AABBDDHH) was established. By genomic in situ hybridization (GISH) and multicolor fluorescent in situ hybridization (FISH) using repetitive DNA clones (pTa71, pTa794 and pSc119.2) as probes, the H. californicum chromosomes could be differentiated from each other and from the wheat chromosomes unequivocally. Based on molecular karyotype and marker analyses, 12 wheat-alien chromosome lines, including four disomic addition lines (DAH1, DAH3, DAH5 and DAH6), five telosomic addition lines (MtH7L, MtH1S, MtH1L, DtH6S and DtH6L), one multiple addition line involving H. californicum chromosome H2, one disomic substitution line (DSH4) and one translocation line (TH7S/1BL), were identified from the progenies derived from the crosses of CS-H. californicum amphidiploid with common wheat varieties. A total of 482 EST (expressed sequence tag) or SSR (simple sequence repeat) markers specific for individual H. californicum chromosomes were identified, and 47, 50, 45, 49, 21, 51 and 40 markers were assigned to chromosomes H1, H2, H3, H4, H5, H6 and H7, respectively. According to the chromosome allocation of these markers, chromosomes H2, H3, H4, H5, and H7 of H. californicum have relationship with wheat homoeologous groups 5, 2, 6, 3, and 1, and hence could be designated as 5H(c), 2H(c), 6H(c), 3H(c) and 1H(c), respectively. The chromosomes H1 and H6 were designated as 7H(c) and 4H(c), respectively, by referring to SSR markers located on rye chromosomes. Copyright © 2014 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  19. Vibrational excitation in a hydrogen volume source

    International Nuclear Information System (INIS)

    Eenshuistra, P.J.

    1989-01-01

    In this thesis the complex of processes which determines the D - or H - density in a volume source, a hydrogen discharge, is studied. D - beams are of interest for driving the current of a fusion plasma in a TOKAMAK. Densities of vibrationally excited molecules, of H atoms, and of metastable hydrogen molecules were determined using Resonance-Enhanced MultiPhoton Ionization (REMPI). An experiment in which vibrationally highly excited molecules are formed by recombination of atoms in a cold metal surface, is described. The production and destruction of vibrationally excited molecules and atoms in the discharge is discussed. The vibrational distribution for 3≤ν≤5 (ν = vibrational quantumnumber) is strongly super-thermal. This effect is more apparent at higher discharge current and lower gas pressure. The analysis with a model based on rate equations, which molecules are predominantly produced by primary electron excitation of hydrogen molecules and deexcited upon one wall collision. The atom production is compatible with dissociation of molecules by primary electrons, dissociation of molecules on the filaments, and collisions between positive ions and electrons. The electrons are predominantly destroyed by recombination on the walls. Finally the production and destruction of H - in the discharge are discussed. The density of H - in the plasma, the electron density and temperature were determined. H - extraction was measured. The ratio of the extracted H - current and the H - density in the plasma gives an indication of the drift velocity of H - in the plasma. This velocity determines the emittance of the extracted beam. It was found that the H - velocity scales with the square root of the electron temperature. The measured H - densities are compatible with a qualitative model in which dissociative attachment of plasma electrons to vibrationally excited molecules is the most important process. (author). 136 refs.; 39 figs.; 10 tabs

  20. Vibrational polarizabilities of hydrogen-bonded water

    International Nuclear Information System (INIS)

    Torii, Hajime

    2013-01-01

    Highlights: ► Vibrational polarizabilities of hydrogen-bonded water are analyzed theoretically. ► Total vibrational polarizability is (at least) comparable to the electronic one. ► Molecular translations contribute to the vibrational polarizability below 300 cm −1 . ► Intermolecular charge fluxes along H bonds are induced by molecular translations. ► The results are discussed in relation to the observed dielectric properties. - Abstract: The vibrational polarizabilities and the related molecular properties of hydrogen-bonded water are analyzed theoretically, taking the case of (water) 30 clusters as an example case. It is shown that some off-diagonal dipole derivatives are large for the translations of incompletely hydrogen-bonded molecules, and this is reasonably explained by the scheme of intermolecular charge fluxes induced along hydrogen bonds. In total, because of these intermolecular charge fluxes, molecular translations give rise to the vibrational polarizability of 2.8–3.3 a 0 3 per molecule, which is as large as about 40% of the electronic polarizability, mainly in the frequency region below 300 cm −1 . Adding the contributions of the molecular rotations (librations) and the translation–rotation cross term, the total polarizability (electronic + vibrational) at ∼100 cm −1 is slightly larger than the double of that at >4000 cm −1 . The relation of these results to some observed time- and frequency-dependent dielectric properties of liquid water is briefly discussed

  1. Vibrational spectra study of fluorescent dendrimers built from the cyclotriphosphazene core with terminal dansyl and carbamate groups

    Science.gov (United States)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-08-01

    The FTIR and FT Raman spectra of the "Janus"-type dendrimers, possessing five carbamate groups on one side and five fluorescent dansyl derivatives on the other side, with amide G1 and hydrazone G2 central linkages were studied. These surface-block dendrimers are obtained by the coupling of two different dendrons. The FTIR and FT-Raman spectra of the zero generation dendrons, built from the hexafunctional cyclotriphosphazene core, with five dansyl terminal groups and one carbamate G0 v and one oxybenzaldehyde function G0v have been recorded. The structural optimization and normal mode analysis were performed for dendron G0v on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with planar -O-C6H4-CHdbnd O fragments and slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of dendron G0v were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The strong band 1597 cm -1 show marked changes of the optical density in dependence of substituents in the aromatic ring. The frequencies of ν(N-H) bands in the IR spectra reveal the presence of the different types of H-bonds in the dendrimers.

  2. On the need for a partial revision in the orbital assignments of cyclopropane (C3H6)

    International Nuclear Information System (INIS)

    Brunger, M.J.; Weigold, E.

    1993-09-01

    An electron momentum spectroscopy investigation was carried out into the orbital assignment for the two bands in the 15-18 eV binding energy range of the photoelectron spectrum of the saturated, 3-member ring hydrocarbon, cyclopropane (C 3 H 6 ). The present experimental momentum distributions for these states provide compelling evidence that the earlier hypothesis of Schweig and Thiel is correct. That is, the orbital assignments of these two bands are in fact opposite to the sequence of the respective ab initio eigenvalues. 11 refs., 2 figs

  3. Mid-infrared signatures of hydroxyl containing water clusters: Infrared laser Stark spectroscopy of OH–H{sub 2}O and OH(D{sub 2}O){sub n} (n = 1-3)

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Federico J. [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina); Brice, Joseph T.; Leavitt, Christopher M.; Liang, Tao; Douberly, Gary E., E-mail: douberly@uga.edu [Department of Chemistry, University of Georgia, Athens, Georgia 30602 (United States); Raston, Paul L. [Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807 (United States); Pino, Gustavo A. [INFIQC, Dpto. de Fisicoquímica, Facultad de Ciencias Químicas, Centro Láser de Ciencias Moleculares, Universidad Nacional de Córdoba, Ciudad Universitaria, Pabellón, X5000HUA Córdoba (Argentina)

    2015-10-28

    Small water clusters containing a single hydroxyl radical are synthesized in liquid helium droplets. The OH–H{sub 2}O and OH(D{sub 2}O){sub n} clusters (n = 1-3) are probed with infrared laser spectroscopy in the vicinity of the hydroxyl radical OH stretch vibration. Experimental band origins are qualitatively consistent with ab initio calculations of the global minimum structures; however, frequency shifts from isolated OH are significantly over-predicted by both B3LYP and MP2 methods. An effective Hamiltonian that accounts for partial quenching of electronic angular momentum is used to analyze Stark spectra of the OH–H{sub 2}O and OH–D{sub 2}O binary complexes, revealing a 3.70(5) D permanent electric dipole moment. Computations of the dipole moment are in good agreement with experiment when large-amplitude vibrational averaging is taken into account. Polarization spectroscopy is employed to characterize two vibrational bands assigned to OH(D{sub 2}O){sub 2}, revealing two nearly isoenergetic cyclic isomers that differ in the orientation of the non-hydrogen-bonded deuterium atoms relative to the plane of the three oxygen atoms. The dipole moments for these clusters are determined to be approximately 2.5 and 1.8 D for “up-up” and “up-down” structures, respectively. Hydroxyl stretching bands of larger clusters containing three or more D{sub 2}O molecules are observed shifted approximately 300 cm{sup −1} to the red of the isolated OH radical. Pressure dependence studies and ab initio calculations imply the presence of multiple cyclic isomers of OH(D{sub 2}O){sub 3}.

  4. Vibrational spectroscopic study of terbutaline hemisulphate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-05-01

    The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.

  5. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    Science.gov (United States)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  6. The vibrational structure of (E,E’)-1,4-diphenyl-1,3-butadiene. Linear dichroism FTIR spectroscopy and quantum chemical calculations

    DEFF Research Database (Denmark)

    Hansen, Bjarke Knud Vilster; Møller, Søren; Spanget-Larsen, Jens

    2006-01-01

    than 40 vibrational transitions. The observed IR wavenumbers, relative intensities, and polarization directions were generally well reproduced by the results of a harmonic analysis based on B3LYP/cc-pVTZ density functional theory (DFT). The combined experimental and theoretical results led to proposal...... of a nearly complete assignment of the IR active fundamentals of DPB, involving reassignment of a number of transitions. In addition, previously published Raman spectra of DPB were well predicted by the B3LYP/cc-pVTZ calculations....

  7. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    Science.gov (United States)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  8. Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)

    2014-05-15

    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  9. Behavior of Cell on Vibrating Micro Ridges

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2015-06-01

    Full Text Available The effect of micro ridges on cells cultured at a vibrating scaffold has been studied in vitro. Several parallel lines of micro ridges have been made on a disk of transparent polydimethylsiloxane for a scaffold. To apply the vibration on the cultured cells, a piezoelectric element was attached on the outside surface of the bottom of the scaffold. The piezoelectric element was vibrated by the sinusoidal alternating voltage (Vp-p < 16 V at 1.0 MHz generated by a function generator. Four kinds of cells were used in the test: L929 (fibroblast connective tissue of C3H mouse, Hepa1-6 (mouse hepatoma, C2C12 (mouse myoblast, 3T3-L1 (mouse fat precursor cells. The cells were seeded on the micro pattern at the density of 2000 cells/cm2 in the medium containing 10% FBS (fetal bovine serum and 1% penicillin/ streptomycin. After the adhesion of cells in several hours, the cells are exposed to the ultrasonic vibration for several hours. The cells were observed with a phase contrast microscope. The experimental results show that the cells adhere, deform and migrate on the scaffold with micro patterns regardless of the ultrasonic vibration. The effects of the vibration and the micro pattern depend on the kind of cells.

  10. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    Science.gov (United States)

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  11. Absorption spectra of ammonia near 1 μm

    Science.gov (United States)

    Barton, Emma J.; Polyansky, Oleg L.; Yurchenko, Sergei. N.; Tennyson, Jonathan; Civiš, S.; Ferus, M.; Hargreaves, R.; Ovsyannikov, R. I.; Kyuberis, A. A.; Zobov, N. F.; Béguier, S.; Campargue, A.

    2017-12-01

    An ammonia absorption spectrum recorded at room temperature in the region 8800-10,400 cm-1 is analysed using a variational line list, BYTe, and ground state energies determined using the MARVEL procedure. BYTe is used as a starting point to initialise assignments by combination differences and the method of branches. Assignments are presented for the region 9400-9850 cm-1. 642 lines are assigned to 6 previously unobserved vibrational bands, (2v1 + 2 v42) ±, (2v1 + v31) ± and (v1 + v31 + 2 v42) ±, leading to 428 new energy levels with 208 confirmed by combination differences. A recently calculated purely ab initio NH3 PES is also used to calculate rovibrational energy levels. Comparison with assigned levels shows better agreement between observed and calculated levels than for BYTe for higher vibrational bands.

  12. Density functional study of vibrational, thermodynamic and elastic properties of ZrCo and ZrCoX{sub 3} (X = H, D and T) compounds

    Energy Technology Data Exchange (ETDEWEB)

    Chattaraj, D., E-mail: debchem@barc.gov.in [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Parida, S.C.; Dash, Smruti [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Majumder, C. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-04-25

    Highlights: • The physico-chemical properties of ZrCo and its hydrides were studied. • The isotope effect on vibrational and thermodynamic properties was investigated. • The changes in elastic properties due to hydrogenation of ZrCo were investigated. • Thermodynamics properties of ZrCo and its hydrides were calculated. - Abstract: The dynamical, thermodynamic and elastic properties of ZrCo and its hydrides ZrCoX{sub 3} (X = H, D and T) are reported. While the electronic structure calculations are performed using plane wave pseudopotential approach, the effect of isotopes on the vibrational and thermodynamic properties has been demonstrated through frozen phonon approach. The results reveal significant difference between the ZrCoH{sub 3} and its isotopic analogs in terms of phonon frequencies and zero point energies. For example, the energy gap between optical and acoustic modes reduces in the order of ZrCoT{sub 3} > ZrCoD{sub 3} > ZrCoH{sub 3}. The vibrational properties shows that the intermetallic ZrCo is dynamically stable whereas ZrCoX{sub 3} (X = H, D and T) are dynamically unstable. The calculated formation energies of ZrCoX{sub 3}, including the ZPE, are −146.7, −158.3 and −164.1 kJ/(mole of ZrCoX{sub 3}) for X = H, D and T, respectively. In addition, the changes in elastic properties of ZrCo upon hydrogenation have also been investigated. The results show that both ZrCo and ZrCoH{sub 3} are mechanically stable at ambient pressure. The Debye temperatures of both ZrCo and ZrCoH{sub 3} are determined using the calculated elastic moduli.

  13. Ab initio anharmonic vibrational frequency predictions for linear proton-bound complexes OC-H(+)-CO and N(2)-H(+)-N(2).

    Science.gov (United States)

    Terrill, Kasia; Nesbitt, David J

    2010-08-01

    Ab initio anharmonic transition frequencies are calculated for strongly coupled (i) asymmetric and (ii) symmetric proton stretching modes in the X-H(+)-X linear ionic hydrogen bonded complexes for OCHCO(+) and N(2)HN(2)(+). The optimized potential surface is calculated in these two coordinates for each molecular ion at CCSD(T)/aug-cc-pVnZ (n = 2-4) levels and extrapolated to the complete-basis-set limit (CBS). Slices through both 2D surfaces reveal a relatively soft potential in the asymmetric proton stretching coordinate at near equilibrium geometries, which rapidly becomes a double minimum potential with increasing symmetric proton acceptor center of mass separation. Eigenvalues are obtained by solution of the 2D Schrödinger equation with potential/kinetic energy coupling explicity taken into account, converged in a distributed Gaussian basis set as a function of grid density. The asymmetric proton stretch fundamental frequency for N(2)HN(2)(+) is predicted at 848 cm(-1), with strong negative anharmonicity in the progression characteristic of a shallow "particle in a box" potential. The corresponding proton stretch fundamental for OCHCO(+) is anomalously low at 386 cm(-1), but with a strong alternation in the vibrational spacing due to the presence of a shallow D(infinityh) transition state barrier (Delta = 398 cm(-1)) between the two equivalent minimum geometries. Calculation of a 2D dipole moment surface and transition matrix elements reveals surprisingly strong combination and difference bands with appreciable intensity throughout the 300-1500 cm(-1) region. Corrected for zero point (DeltaZPE) and thermal vibrational excitation (DeltaE(vib)) at 300 K, the single and double dissociation energies in these complexes are in excellent agreement with thermochemical gas phase ion data.

  14. Synthesis, microwave spectrum, and dipole moment of allenylisocyanide (H2C═C═CHNC), a compound of potential astrochemical interest.

    Science.gov (United States)

    Møllendal, Harald; Samdal, Svein; Matrane, Abdellatif; Guillemin, Jean-Claude

    2011-07-14

    An improved synthesis of a compound of potential astrochemical interest, allenylisocyanide (H(2)C═C═CHNC), is reported together with its microwave spectrum, which has been investigated in the 8-120 GHz spectral range to facilitate a potential identification in interstellar space. The spectra of the ground vibrational state and of five vibrationally excited states belonging to three different vibrational modes have been assigned for the parent species. A total of 658 transitions with a maximum value of J = 71 were assigned for the ground state and accurate values obtained for the rotational and quartic centrifugal distortion constants. The spectra of five heavy-atom ((13)C and (15)N) isotopologues were also assigned. The dipole moment was determined to be μ(a) = 11.93(16) × 10(-30) C m, μ(b) = 4.393(44) × 10(-30) C m, and μ(tot) = 12.71(16) × 10(-30) C m. The spectroscopic work has been augmented by theoretical calculations at the CCSD/cc-pVTZ and B3LYP/cc-pVTZ levels of theory. The theoretical calculations are generally in good agreement with the experimental results.

  15. A combined experimental and theoretical study on vibrational and electronic properties of (5-methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone

    Directory of Open Access Journals (Sweden)

    Al-Wabli Reem I.

    2017-11-01

    Full Text Available (5-Methoxy-1H-indol-1-yl(5-methoxy-1H-indol-2-ylmethanone (MIMIM is a bis-indolic derivative that can be used as a precursor to a variety of melatonin receptor ligands. In this work, the energetic and spectroscopic profiles of MIMIM were studied by a combined DFT and experimental approach. The IR, Raman, UV-Vis, 1H NMR and 13C NMR spectra were calculated by PBEPBE and B3LYP methods, and compared with experimental ones. Results showed good agreement between theoretical and experimental values. Mulliken population and natural bond orbital analysis were also performed by time-dependent DFT approach to evaluate the electronic properties of the title molecule.

  16. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  17. Theoretical study of [Li(H2O)n]+ and [K(H2O)n]+ (n = 1-4) complexes

    International Nuclear Information System (INIS)

    Wojcik, M.J.; Mains, G.J.; Devlin, J.P.

    1995-01-01

    The geometries, successive binding energies, vibrational frequencies, and infrared intensities are calculated for the [Li(H 2 O) n ] + and [K(H 2 O) n ] + (n = 1-4) complexes. The basis sets used are 6-31G * and LANL1DZ (Los Alamos ECP+DZ) at the SCF and MP2 levels. There is an agreement for calculated structures and frequencies between the MP2/6-31G * and MP2/LANL1DZ basis sets, which indicates that the latter can be used for calculations of water complexes with heavier ions. Our results are in a reasonable agreement with available experimental data and facilitate experimental study of these complexes. 19 refs., 4 figs., 6 tabs

  18. Spectroscopic measurement of H(1S) and H sub 2 (v double prime ,J double prime ) in an H sup minus ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stutzin, G.C.

    1990-08-01

    Low pressure H{sub 2} discharges have been used for some time as sources of H{sup {minus}} ions. These discharges contain many different species of particles which interact with each other and with the walls of the discharge chamber. Models exist that predict the populations of the various species for given macroscopic discharge parameters. However, many of the cross sections and wall catalyzation coefficients are unknown or somewhat uncertain. Therefore, it is of interest to measure the populations of as many of these species as possible, in order to determine the validity of the models. These models predict that H{sup {minus}} is created predominantly by the two-step process of vibrational excitation of hydrogen molecules followed by dissociative attachment of slow electrons to these vibrationally-excited hydrogen molecules. Many different collisional processes must be included in the models to explain the dependence of the various populations upon macroscopic parameters. This work presents results of spectroscopic measurements of the density and translational temperature of hydrogen atoms and of specific rotationally- and vibrationally-excited states of electronic ground-state H{sub 2}, in a discharge optimized for H{sup {minus}} production, as well as conventional measurements of the various charged species within the plasma. The spectroscopic measurements are performed directly by narrowband, single-photon absorption in the vacuum ultraviolet.

  19. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethyl cyclopropene V. 3,3-Dimethyl-1-(trimethylgermyl)cyclopropene

    Science.gov (United States)

    De Maré, G. R.; Panchenko, Yu. N.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2004-02-01

    3,3-Dimethyl-1-(trimethylgermyl)cyclopropene ( I) was synthesised using a standard procedure. The IR and Raman spectra of I in the liquid phase were measured. The molecular geometry of I was optimised completely at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* force field was calculated and scaled using the set of scale factors transferred from those determined previously for scaling the theoretical force fields of 3,3-dimethylbutene-1 and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene. The assignments of the observed vibrational bands were performed using the theoretical frequencies calculated from the scaled HF/6-31G*//HF/6-31G* force field and the ab initio values of the IR intensities, Raman cross-sections and depolarisation ratios. The theoretical spectra are given. The completely optimised structural parameters of I and its vibrational frequencies are compared with corresponding data of related molecules.

  20. System Ba/sub 2/Znsub(1-x)Cusub(x)UO/sub 6/ - a vibrational spectroscopic proof of the Jahn Teller effect

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S; Rother, H J [Tuebingen Univ. (Germany, F.R.). Inst. fuer Chemie

    1979-01-01

    The ordered perovskites Ba/sub 2/ZnUO/sub 6/ (cubic, space group Fm3m) and Ba/sub 2/CuUO/sub 6/ (tetragonal, space group I/sub 4//mmm) form solid solutions. For small Cu content the lattice symmetry is cubic, with x>=0.25 an increasing tetragonal distortion (c/a ..sqrt..2 > 1) is observed. From the vibrational spectra and in accordance with the factor group analysis the symmetry of the UO/sub 6/ octahedra is for small Cu content Osub(h) and on the Cu-rich side Dsub(4h). In the region of the lattice vibrations (T/sub 2/ field) the lifting of the degeneracy - due to the Jahn Teller effect of Cu/sup 2 +/ - leads to a band separation, which decreases with sinking copper content. Therefore the Jahn Teller effect is easily noticeable with vibrational spectroscopic methods. In the corresponding series with Wsup(VI) the vibrational spectroscopic investigations lead qualitatively to the same results as in the Usup(VI) system. As further examples the stacking polytypes Ba/sub 2/ZnTeO/sub 6/ and Ba/sub 2/CuTeO/sub 6/ are considered. The vibrational spectra show, that the Jahn Teller effect in this lattice, which is strengthened by partial face-sharing of octahedra, is less pronounced than in the perovskites in which only corner-sharing is present.

  1. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    Science.gov (United States)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  2. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    Science.gov (United States)

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  3. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  4. DFT, FT-IR, FT-Raman and NMR studies of 4-(substituted phenylazo)-3,5-diacetamido-1H-pyrazoles

    Science.gov (United States)

    Kınalı, Selin; Demirci, Serkan; Çalışır, Zühre; Kurt, Mustafa; Ataç, Ahmet

    2011-05-01

    We present a detailed analysis of the structural and vibrational spectra of some novel azo dyes. 2-(Substituted phenylazo)malononitriles were synthesized by the coupling reaction of the diazonium salts, which were prepared with the use of various aniline derivatives with malononitrile, and then 4-(substituted phenylazo)-3,5-diamino-1H-pyrazole azo dyes were obtained via the ring closure of the azo compounds with hydrazine monohydrate. The experimental and theoretical vibrational spectra of azo dyes were studied. The structural and spectroscopic analysis of the molecules were carried out by using Becke's three-parameters hybrid functional (B3LYP) and density functional harmonic calculations. The 1H nuclear magnetic resonance (NMR) chemical shifts of the azo dye molecules were calculated using the gauge-invariant-atomic orbital (GIAO) method. The calculated vibrational wavenumbers and chemical shifts were compared with the experimental data of the molecules.

  5. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Determination of vibrational parameters of methanol from matrix-isolation infrared spectroscopy and ab initio calculations. Part 1 - Spectral analysis in the domain 11 000-200 cm{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Perchard, J.P. [Universite Pierre et Marie Curie, CNRS, Laboratoire de Dynamique, Interactions et Reactivite, UMR 7075, Case 49, 4 Place Jussieu, 75252 Paris (France)], E-mail: jpp@spmol.jussieu.fr; Romain, F. [Universite Pierre et Marie Curie, CNRS, Laboratoire de Dynamique, Interactions et Reactivite, UMR 7075, Case 49, 4 Place Jussieu, 75252 Paris (France); Bouteiller, Y. [Universite Paris-Nord, CNRS, Laboratoire de Physique des Lasers, UMR 7538, 93430 Villetaneuse (France)

    2008-01-22

    Infrared spectra of three isotopic species of methanol ({sup 12}CH{sub 3}{sup 16}OH, {sup 13}CH{sub 3}{sup 16}OH, {sup 12}CH{sub 3}{sup 18}OH) trapped in neon and nitrogen matrices have been recorded between 11 000 and 200 cm{sup -1}. Their analysis is based on the isotopic effects which slightly modify the frequencies without significantly changing the nature of vibrations nor the band intensities. From the assignment of most of the two quanta transitions 45 out of the 78 anharmonicity coefficients have been deduced. The value of some of them has been confirmed by the identification of three quanta transitions mainly involving the OH stretching mode. The problem of vibrational resonances between methyl bending and stretching modes has been tackled by performing complementary experiments: use of other isotopic species (CH{sub 3}OD, CH{sub 2}DOH) and acquisition of Raman spectra in the gas phase.

  7. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    Science.gov (United States)

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Experimental and computational study on molecular structure and vibrational analysis of an antihyperglycemic biomolecule: Gliclazide

    Science.gov (United States)

    Karakaya, Mustafa; Kürekçi, Mehmet; Eskiyurt, Buse; Sert, Yusuf; Çırak, Çağrı

    2015-01-01

    In present study, the experimental and theoretical harmonic vibrational frequencies of gliclazide molecule have been investigated. The experimental FT-IR (400-4000 cm-1) and Laser-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) have been calculated using ab initio Hartree Fock (HF), density functional theory (B3LYP hybrid function) methods with 6-311++G(d,p) and 6-31G(d,p) basis sets by Gaussian 09W program. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. Theoretical optimized geometric parameters and vibrational frequencies have been compared with the corresponding experimental data, and they have been shown to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies have been found.

  9. Vibration and Fluorescence Spectra of Porphyrin- CoredBis(methylol-propionic Acid Dendrimers

    Directory of Open Access Journals (Sweden)

    Boris Minaev

    2009-03-01

    Full Text Available Bis-MPA dendron-coated free-base tetraphenylporphyrin and zinc-tetraphenyl-porphyrin (TPPH2 and TPPZn were studied in comparison with simple porphyrins (H2P, ZnP by theoretical simulation of their infrared, Raman and electronic absorption spectra, as well as fluorescense emission. Infrared and fluorescence spectra of the dendrimers were measured and interpreted along with time-resolved measurements of the fluorescence. The 0-1 emission band of the dendron substituted TPPZn was found to experience a "heavy substitution"-effect. The 0-1 vibronic emission signal is associated with a longer decay time (approx. 7 - 8 ns than the 0-0 emission (approx. 1 - 1.5 ns. The former contributed with more relative emission yield for larger dendron substituents, in agreement with the appearance of steady-state emission spectra showing increased contribution from the 0-1 vibronic fluorescence band at 650 nm. No such substitution effect was observed in the electronic or vibrational spectra of the substituted free-base variant, TPPH2. Vibration spectra of the parent porphyrins (H2P, ZnP, TPPH2 and TPPZn were calculated by density functional theory (DFT using the B3LYP/6-31G** approximation and a detailed analysis of the most active vibration modes was made based on both literature and our own experimental data. Based on the results of theoretical calculations the wide vibronic bands in the visible region were assigned. The vibronic structure also gave a qualitative interpretation of bands in the electronic absorption spectra as well as in fluorescence emission depending on the size of dendrimer substitution. From the results of time-dependent DFT calculations it is suggested that the TPPZn-cored dendrimers indicate strong vibronic interaction and increased Jahn-Teller distortion of the prophyrin core for larger dendrimer generations. Specifically, this leads to the entirely different behaviour of the emission spectra upon substitution of the TPPH2 and TPPZn

  10. Dynamics of H+ + CO at ELab = 30 eV

    Science.gov (United States)

    Stopera, Christopher; Maiti, Buddhadev; Grimes, Thomas V.; McLaurin, Patrick M.; Morales, Jorge A.

    2012-02-01

    The astrophysically relevant system H+ + CO (vi = 0) → H+ + CO (vf) at ELab = 30 eV is studied with the simplest-level electron nuclear dynamics (SLEND) method. This investigation follows previous successful SLEND studies of H+ + H2 and H+ + N2 at ELab = 30 eV [J. Morales, A. Diz, E. Deumens, and Y. Öhrn, J. Chem. Phys. 103(23), 9968 (1995), 10.1063/1.469886; C. Stopera, B. Maiti, T. V. Grimes, P. M. McLaurin, and J. A. Morales, J. Chem. Phys. 134(22), 224308 (2011), 10.1063/1.3598511]. SLEND is a direct, time-dependent, variational, and non-adiabatic method that adopts a classical-mechanics description for the nuclei and a single-determinantal wavefunction for the electrons. A canonical coherent-states (CS) procedure associated with SLEND reconstructs quantum vibrational properties from the SLEND classical dynamics. Present SLEND results include reactivity predictions, snapshots of the electron density evolution, average vibrational energy transfers, rainbow angle predictions, total and vibrationally resolved differential cross sections (DCS), and average vibrational excitation probabilities. SLEND results are compared with available data from experiments and vibrational close-coupling rotational infinite-order sudden (VCC-RIOS) approximation calculations. Present simulations employ four basis sets: STO-3G, 6-31G, 6-31G**, and cc-pVDZ to determine their effect on the results. SLEND simulations predict non-charge-transfer scattering and CO collision-induced dissociation as the main reactions. SLEND/6-31G, /6-31G**, and /cc-pVDZ predict rainbow angles and total DCS in excellent agreement with experiments and more accurate than their VCC-RIOS counterparts. SLEND/6-31G** and /cc-pVDZ predict vibrationally resolved DCS for vf = 0-2 in satisfactory experimental agreement, but less accurate than their comparable H+ + CO VCC-RIOS and H+ + H2 and H+ + N2 SLEND results. SLEND/6-31G** and /cc-pVDZ predict qualitatively correct average vibrational excitation probabilities

  11. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  12. Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method

    Science.gov (United States)

    Muthu, S.; Prabhakaran, A.

    2014-08-01

    In this work, we reported the vibrational spectra of tranexamic acid (TA) by experimental and quantum chemical calculation. The solid phase FT-Raman and FT-IR spectra of the title compound were recorded in the region 4000 cm-1 to 100 cm-1 and 4000 cm-1 to 400 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of TA in the ground state have been calculated by using density functional theory (DFT) B3LYP method with standard 6-31G(d,p) basis set. The scaled theoretical wavenumber showed very good agreement with the experimental values. The vibrational assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes. Stability of the molecule, arising from hyperconjugative interactions and charge delocalization, has been analyzed using Natural Bond Orbital (NBO) analysis. The results show that ED in the σ* and π* antibonding orbitals and second order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electrostatic potential mapped onto an isodensity surface has been obtained. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures were calculated in gas phase.

  13. Structure, vibrations, and hydrogen bond parameters of dibenzotetraaza[14]annulene

    Science.gov (United States)

    Gawinkowski, S.; Eilmes, J.; Waluk, J.

    2010-07-01

    Geometry and vibrational structure of dibenzo[ b, i][1,4,8,11]tetraaza[14]annulene (TAA) have been studied using infrared and Raman spectroscopy combined with quantum-chemical calculations. The assignments were proposed for 106 out of the total of 108 TAA vibrations, based on comparison of the theoretical predictions with the experimental data obtained for the parent molecule and its isotopomer in which the NH protons were replaced by deuterons. Reassignments were suggesteded for the NH stretching and out-of-plane vibrations. The values of the parameters of the intramolecular NH⋯N hydrogen bonds were analysed in comparison with the corresponding data for porphyrin and porphycene, molecules with the same structural motif, a cavity composed of four nitrogen atoms and two inner protons. Both experiment and calculations suggest that the molecule of TAA is not planar and is present in a trans tautomeric form, with the protons located on the opposite nitrogen atoms.

  14. Hand-arm vibration in orthopaedic surgery: a neglected risk.

    Science.gov (United States)

    Mahmood, F; Ferguson, K B; Clarke, J; Hill, K; Macdonald, E B; Macdonald, D J M

    2017-12-30

    Hand-arm vibration syndrome is an occupational disease caused by exposure to hand-arm transmitted vibration. The Health and Safety Executive has set limits for vibration exposure, including an exposure action value (EAV), where steps should be taken to reduce exposure, and an exposure limit value (ELV), beyond which vibrating equipment must not be used for the rest of the working day. To measure hand-arm transmitted vibration among orthopaedic surgeons, who routinely use hand-operated saws. We undertook a cadaveric study measuring vibration associated with a tibial cut using battery-operated saws. Three surgeons undertook three tibial cuts each on cadaveric tibiae. Measurements were taken using a frequency-weighted root mean square acceleration, with the vibration total value calculated as the root of the sums squared in each of the three axes. A mean (SD) vibration magnitude of 1 (0.2) m/s2 in the X-axis, 10.3 (1.9) m/s2 in the Y-axis and 4.2 (1.3) m/s2 in the Z-axis was observed. The weighted root mean squared magnitude of vibration was 11.3 (1.7) m/s2. These results suggest an EAV of 23 min and ELV of 1 h 33 min using this equipment. Our results demonstrate that use of a battery-operated sagittal saw can transmit levels of hand-arm vibration approaching the EAV or ELV through prolonged use. Further study is necessary to quantify this risk and establish whether surveillance is necessary for orthopaedic surgeons. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Synthesis, vibrational and optical properties of a new three-layered organic-inorganic perovskite (C{sub 4}H{sub 9}NH{sub 3}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Dammak, T., E-mail: thameurlpa@yahoo.f [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Elleuch, S. [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia); Bougzhala, H. [Laboratoire de cristallochimie et des materiaux, Faculte des Sciences de Tunis (Tunisia); Mlayah, A. [Centre d' Elaboration de Materiaux et d' Etudes Structurales, CNRS-Universite Paul Sabatier, 29 rue Jeanne Marvig, 31055 Toulouse, Cedex 4 (France); Chtourou, R. [Centre de Recherche et des Technologies de l' Energie CRTEn BP. 95, Hammam-Lif 2050, Laboratoire de Photovoltaique et de Semiconducteur (Tunisia); Abid, Y. [Laboratoire de Physique appliquee (LPA), Faculte des Sciences de Sfax, 3018, BP 802 (Tunisia)

    2009-09-15

    An organic-inorganic hybrid perovskite (C{sub 4}H{sub 9}NH{sub 3}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6} was synthesized and studied by X-ray diffraction, Raman and infrared spectroscopies, optical transmission and photoluminescence. The title compound, abbreviated (C{sub 4}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}, crystallises in a periodic two-dimensional multilayer structure with P2{sub 1}/a space group. The structure is built up from alternating inorganic and organic layers. Each inorganic layer consists of three sheets of PbX{sub 6} (X=I, Br) octahedra. Raman and infrared spectra of the title compound were recorded in the 100-3500 and 400-4000 cm{sup -1} frequency ranges, respectively. An assignment of the observed vibration modes is reported. Optical transmission measurements, performed on thin films of (C{sub 4}){sub 4}Pb{sub 3}I{sub 4}Br{sub 6}, revealed two absorption bands at 474 and 508 nm. Photoluminescence measurements have shown a green emission peak at 519 nm.

  16. 5-r-1h- benzimidazol-2-yl

    African Journals Online (AJOL)

    Preferred Customer

    HL1, the bands at 3330 and 3284 cm–1 are due to OH and NH stretching vibration frequencies, respectively. These bands ... complexes are due to stretching vibrations of the methyl group or groups. The ν(C=C) frequencies ..... potential to generate novel metabolites, by displaying high affinities towards various receptors.

  17. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction.

    Science.gov (United States)

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2017-08-02

    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  18. Vibrational Investigations of Silver-Doped Hydroxyapatite with Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Carmen Steluta Ciobanu

    2013-01-01

    Full Text Available Silver-doped hydroxyapatite (Ag:HAp was obtained by coprecipitation method. Transmission electron microscopy (TEM, infrared, and Raman analysis confirmed the development of Ag:HAp with good crystal structure. Transmission electron microscopy analysis showed an uniform ellipsoidal morphology with particles from 5 nm to 15 nm. The main vibrational bands characteristic to HAp were identified. The bands assigned to phosphate vibrational group were highlighted in infrared and Raman spectra. The most intense peak Raman spectrum is the narrow band observed at 960 cm−1. In this article Ag:HAp-NPs were also evaluated for their antimicrobial activities against gram-positive, gram-negative, and fungal strains. The specific antimicrobial activity revealed by the qualitative assay demonstrates that our compounds are interacting differently with the microbial targets.

  19. Active vibration control by robust control techniques

    International Nuclear Information System (INIS)

    Lohar, F.A.

    2001-01-01

    This paper studies active vibration control of multi-degree-of-freedom system. The control techniques considered are LTR, H/sup 2/ and H/sup infinite/. The results show that LTR controls the vibration but its respective settling time is higher than that of the other techniques. The control performance of H/sup infinite/ control is similar to that of H/sup 2/ control in the case of it weighting functions. However, H/sup infinite/ control is superior to H/sup 2/ control with respect to robustness, steady state error and settling time. (author)

  20. On the neutron noise diagnostics of pressurized water reactor control rod vibrations. 1. periodic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1983-01-01

    Based on the theory of neutron noise arising from the vibration of a localized absorber, the possibility of rod vibration diagnostics is investigated. It is found that noise source characteristics, namely rod position and vibration trajectory and spectra, can be unfolded from measured neutron noise signals. For the localization process, the first and more difficult part of the diagnostics, a procedure is suggested whose novelty is that it is applicable in case of arbitrary vibration trajectories. Applicability of the method is investigated in numerical experiments where effects of background noise are also accounted for

  1. A computational perspective of vibrational and electronic analysis of potential photosensitizer 2-chlorothioxanthone

    Science.gov (United States)

    Ali, Narmeen; Mansha, Asim; Asim, Sadia; Zahoor, Ameer Fawad; Ghafoor, Sidra; Akbar, Muhammad Usman

    2018-03-01

    This paper deals with combined theoretical and experimental study of geometric, electronic and vibrational properties of 2-chlorothioxanthone (CTX) molecule which is potential photosensitizer. The FT-IR spectrum of CTX in solid phase was recorded in 4000-400 cm-1 region. The UV-Vis. absorption spectrum was also recorded in the laboratory as well as computed at DFT/B3LYP level in five different phases viz. gas, water, DMSO, acetone and ethanol. The quantum mechanics based theoretical IR and Raman spectra were also calculated for the title compound employing HF and DFT functional with 3-21G+, 6-31G+ and 6-311G+, 6-311G++ basis sets, respectively, and assignment of each vibrational frequency has been done on the basis of potential energy distribution (PED). A comparison has been made between theoretical and experimental vibrational spectra as well as for the UV-Vis. absorption spectra. The computed infra red & Raman spectra by DFT compared with experimental spectra along with reliable vibrational assignment based on PED. The calculated electronic properties, results of natural bonding orbital (NBO) analysis, charge distribution, dipole moment and energies have been reported in the paper. Bimolecular quenching of triplet state of CTX in the presence of triethylamine, 2-propanol triethylamine and diazobicyclooctane (DABCO) reflect the interactions between them. The bimolecular quenching rate constant is fastest for interaction of 3CTX in the presence of DABCO reflecting their stronger interactions.

  2. Vibrational spectra and assignments for cis- and trans-1,2-difluorocyclopropane and three deuterium substituted modifications of each isomer

    International Nuclear Information System (INIS)

    Craig, N.C.; Hu Chao, T.N.; Cuellar, E.; Hendriksen, D.E.; Koepke, J.W.

    1975-01-01

    Infrared spectra under a variety of experimental conditions and Raman spectra for the liquid phase have been recorded for the cis and trans isomers of 1,2-difluorocyclopropane and the 1,2-d 2 , 3,3-d 2 , and d 4 deuterated modifications. Almost all of the 168 fundamentals of this set of eight molecules have been observed and assigned convincingly. For cis-1,2-difluorocyclopropane-d 0 the fundamentals are (a') 3105, 3063, 3023, 1450, 1365, 1224, 1135, 1047, 862, 784, 468, 209 cm -1 ; (a'') 3055, 1346, 1150, 1089, 1060, 993, 739, 621, 319 cm -1 . For trans-1,2-difluorocyclopropane-d 0 the fundamentals are (a) 3070, 3021, 1457, 1380, 1203, 1132, 1068, 961, 842, 415, 279 cm -1 ; (b) 3110, 3070, 1304, 1161, 1072, 1005, 937, 783, 452, 303 cm -1 . Only the 1089-cm -1 mode in the cis and the 937-cm -1 mode in the trans are in doubt. Group frequency descriptions are discussed qualitatively, and attention is drawn to the fundamentals near 1450 cm -1 which are characteristic of fluorocyclopropanes and appear to be largely due to ring stretching. From previously published equilibrium data for the cis-to-trans isomerization and the fundamental frequencies of the two isomers, an electronic energy difference of -2800 +- 200 cal/mol has been calculated. In contrast, the trans isomer of 1,2-difluoroethylene has an energy 1100 cal/mol greater than the cis, and the trans rotamer of 1,2-difluoroethane has an energy about 600 cal/mol greater than the gauche. (auth)

  3. Molecular structure, chemical reactivity, nonlinear optical activity and vibrational spectroscopic studies on 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one: A combined density functional theory and experimental approach

    Science.gov (United States)

    Pegu, David; Deb, Jyotirmoy; Saha, Sandip Kumar; Paul, Manoj Kumar; Sarkar, Utpal

    2018-05-01

    In this work, we have synthesized new coumarin Schiff base molecule, viz., 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one and characterized its structural, electronic and spectroscopic properties experimentally and theoretically. The theoretical analysis of UV-visible absorption spectra reflects a red shift in the absorption maximum in comparison to the experimental results. Most of the vibrational assignments of infrared and Raman spectra predicted using density functional theory approach match well with the experimental findings. Further, the chemical reactivity analysis confirms that solvent highly affects the reactivity of the studied compound. The large hyperpolarizability value of the compound concludes that the system exhibits significant nonlinear optical features and thus, points out their possibility in designing material with high nonlinear activity.

  4. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine

    Science.gov (United States)

    Srivastava, Santosh K.; Singh, Vipin B.

    2013-11-01

    Vibrational spectra and molecular structure of anhydrous caffeine have been systematically investigated by second order Moller-Plesset (MP2) perturbation theory and density functional theory (DFT) calculations. Vibrational assignments have been made and many previous ambiguous assignments in IR and Raman spectra are amended. The calculated DFT frequencies and intensities at B3LYP/6-311++G(2d,2p) level, were found to be in better agreement with the experimental values. It was found that DFT with B3LYP functional predicts harmonic vibrational wave numbers more close to experimentally observed value when it was performed on MP2 optimized geometry rather than DFT geometry. The calculated TD-DFT vertical excitation electronic energies of the valence excited states of anhydrous caffeine are found to be in consonance to the experimental absorption peaks.

  5. Synthesis and vibrational spectrum of antimony phosphate, SbPO4.

    Science.gov (United States)

    Brockner, Wolfgang; Hoyer, Lars P

    2002-07-01

    SbPO4 was synthesized via a new route by reacting antimony metal with meta-phosphoric acid, (HPO3)n at high temperatures. The Raman and IR spectra of the title compound were recorded and the vibrational modes assigned on the basis of a factor group analysis. The internal vibrations are derived from tetrahedral PO4 units (approaching Sb[PO4]) by the correlation method, although the structure is polymeric and not ionic.

  6. Complete assignment of the methionyl carbonyl carbon resonance in switch variant anti-dansyl antibodies labeled with [1-13C]methionine

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, C.; Igarashi, Takako; Kim, Hahyung; Odaka, Asano; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies developed by Dangl et al. who had used the fluorescence-activated cell sorter to select and clone these variants. These switch variant antibodies possess the identical V H , V L , and C L domains in conjunction with different heavy chain constant regions. In the present study, switch variant antibodies of IgG1, IgG2a, and IgG2b subclasses were used along with a short-chain IgG2a antibody, in which the entire C H 1 domain is deleted. The switch variant antibodies were specifically labeled with [1- 13 C]methionine by growing hybridoma cells in serum-free medium. Assignments of all the methionyl carbonyl carbon resonances have been completed by using the intact antibodies along with their fragments and recombined proteins in which either heavy or light chain is labeled. A double labeling method has played a crucial role in the process of the spectral assignments. The strategy used for the assignments has been described in detail. In incorporating 15 N-labeled amino acids into the antibodies for the double labeling, isotope dilution caused a serious problem except in the cases of [α- 15 N]lysine and [ 15 N]threonine, both of which cannot become the substrate of transaminases. It was found that β-chloro-L-alanine is most effective in suppressing the isotope scrambling. So far, spectral assignments by the double labeling method have been possible with 15 N-labeled Ala, His, Ile, Lys, Met, Ser, Thr, Tyr, and Val. On the basis of the results of the present 13 C study, possible use of the assigned carbonyl carbon resonances for the elucidation of the structure-function relationship in the antibody system has been briefly discussed

  7. Structural, electronic, topological and vibrational properties of a series of N-benzylamides derived from Maca (Lepidium meyenii) combining spectroscopic studies with ONION calculations

    Science.gov (United States)

    Chain, Fernando E.; Ladetto, María Florencia; Grau, Alfredo; Catalán, César A. N.; Brandán, Silvia Antonia

    2016-02-01

    In the present work, the structural, topological and vibrational properties of four members of the N-benzylamides series derived from Maca (Lepidium meyenii) whose names are, N-benzylpentadecanamide, N-benzylhexadecanamide, N-benzylheptadecanamide and N-benzyloctadecanamide, were studied combining the FTIR, FT-Raman and 1H and 13C-NMR spectroscopies with density functional theory (DFT) and ONION calculations. Furthermore, the N-benzylacetamide, N-benzylpropilamide and N-benzyl hexanamide derivatives were also studied in order to compare their properties with those computed for the four macamides. These seven N-benzylamides series have a common structure, C8H8NO-R, being R the side chain [-(CH2)n-CH3] with a variable n number of CH2 groups. Here, the atomic charges, molecular electrostatic potentials, stabilization energies, topological properties of those macamides were analyzed as a function of the number of C atoms of the side chain while the frontier orbitals were used to compute the gap energies and some descriptors in order to predict their reactivities and behaviors in function of the longitude of the side chain. Here, the force fields, the complete vibrational assignments and the corresponding force constants were only reported for N-benzylacetamide, N-benzyl hexanamide and N-benzylpentadecanamide due to the high number of vibration normal modes that present the remains macamides.

  8. Probing the Vibrational Spectroscopy of the Deprotonated Thymine Radical by Photodetachment and State-Selective Autodetachment Photoelectron Spectroscopy via Dipole-Bound States

    Science.gov (United States)

    Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng

    2016-06-01

    Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)

  9. Identification of the best DFT functionals for a reliable prediction of lignin vibrational properties

    DEFF Research Database (Denmark)

    Barsberg, Soren

    2015-01-01

    Lignin is the most abundant aromatic plant polymer on earth. Useful information on its structure and interactions is gained by vibrational spectroscopy and relies on the quality of band assignments. B3LYP predictions were recently shown to support band assignments. Further progress calls...

  10. Flux-line response in 2H-NbSe 2 investigated by means of the vibrating superconductor method

    Science.gov (United States)

    D'Anna, G.; André, M.-O.; Benoit, W.; Rodríguez, E.; Rodríguez, D. S.; Luzuriaga, J.; Wasczak, J. V.

    1993-12-01

    We measure transverse AC losses in the low- and high-amplitude regime of 2H-NbSe 2 single crystals using vibrating superconductor methods. The measurements are sensitive to small deviations of the critical state. The data constitute evidence for a peak effect of the critical current as a function of the temperature in this compound. We construct in the H- T phase diagram the “peak-effect” line which is supposed to mark an abrupt cross-over in the vortex-pinning regime.

  11. Vibrational spectroscopy and intramolecular energy transfer in isocyanic acid (HNCO)

    International Nuclear Information System (INIS)

    Coffey, M.J.; Berghout, H.L.; Woods, E. III; Crim, F.F.

    1999-01-01

    Room temperature photoacoustic spectra in the region of the first through the fourth overtones (2ν 1 to 5ν 1 ) and free-jet action spectra of the second through the fourth overtones (3ν 1 to 5ν 1 ) of the N - H stretching vibration permit analysis of the vibrational and rotational structure of HNCO. The analysis identifies the strong intramolecular couplings that control the early stages of intramolecular vibrational energy redistribution (IVR) and gives the interaction matrix elements between the zero-order N - H stretching states and the other zero-order states with which they interact. The experimentally determined couplings and zero-order state separations are consistent with ab initio calculations of East, Johnson, and Allen [J. Chem. Phys. 98, 1299 (1993)], and comparison with the calculation identifies the coupled states and likely interactions. The states most strongly coupled to the pure N - H stretching zero-order states are ones with a quantum of N - H stretching excitation (ν 1 ) replaced by different combinations of N - C - O asymmetric or symmetric stretching excitation (ν 2 or ν 3 ) and trans-bending excitation (ν 4 ). The two strongest couplings of the nν 1 state are to the states (n-11 +ν 2 +ν 4 and (n-11 +ν 3 +2ν 4 , and sequential couplings through a series of low order resonances potentially play a role. The analysis shows that if the pure N - H stretch zero-order state were excited, energy would initially flow out of that mode into the strongly coupled mode in 100 fs to 700 fs, depending on the level of initial excitation. copyright 1999 American Institute of Physics

  12. 1H NMR visibility of mammalian glycogen in solution

    International Nuclear Information System (INIS)

    Zang, L.H.; Rothman, D.L.; Shulman, R.G.

    1990-01-01

    High-resolution 1 H NMR spectra of rabbit liver glycogen in 2 H 2 O were obtained at 500 MHz, and several resonances were assigned by comparison with the chemical shifts of α-linked diglucose molecules. The NMR relaxation times T 1 and T 2 of glycogen in 2 H 2 O were determined to be 1.1 and 0.029 s, respectively. The measured natural linewidth of the carbon-1 proton is in excellent agreement with that calculated from T 2 . The visibility measurements made by digesting glycogen and comparing glucose and glycogen signal intensities demonstrate that in spite of the very high molecular weight, all of the proton nuclei in glycogen contribute to the NMR spectrum. The result is not unexpected, since 100% NMR visibility was previously observed from the carbon nuclei of glycogen, due to the rapid intramolecular motions

  13. Local vibrational modes of the water dimer - Comparison of theory and experiment

    Science.gov (United States)

    Kalescky, R.; Zou, W.; Kraka, E.; Cremer, D.

    2012-12-01

    Local and normal vibrational modes of the water dimer are calculated at the CCSD(T)/CBS level of theory. The local H-bond stretching frequency is 528 cm-1 compared to a normal mode stretching frequency of just 143 cm-1. The adiabatic connection scheme between local and normal vibrational modes reveals that the lowering is due to mass coupling, a change in the anharmonicity, and coupling with the local HOH bending modes. The local mode stretching force constant is related to the strength of the H-bond whereas the normal mode stretching force constant and frequency lead to an erroneous underestimation of the H-bond strength.

  14. Molecular structure, vibrational spectra and photochemistry of 5-mercapto-1-methyltetrazole

    Science.gov (United States)

    Gómez-Zavaglia, A.; Reva, I. D.; Frija, L.; Cristiano, M. L.; Fausto, R.

    2006-04-01

    In this work, 5-mercapto-1-methyltetrazole was studied by low temperature matrix-isolation and solid-state infrared spectroscopy, DFT(B3LYP)/6-311++G(d,p) calculations and photochemical methods. In the low temperature neat solid phase and isolated in an argon matrix, the compound was found to exist in the 1-methyl-1,4-dihydro-5 H-tetrazole-5-thione tautomeric form. The infrared spectra of the compound were fully assigned and correlated with structural properties. In situ UV-irradiation ( λ>235 nm) of the matrix-isolated monomer is shown to induce different photochemical processes, all of them involving cleavage of the tetrazole ring: e.g. (1) molecular nitrogen expulsion, with production of 1-methyl-1 H-diazirene-3-thiol, which is produced in two different conformers; (2) ring cleavage leading to production of methyl isothiocyanate and azide; (3) simultaneous elimination of nitrogen and sulphur with production of N-methylcarbodiimide. Following these photoprocesses, subsequent reactions occur, leading to production of methyl diazene, carbon monosulphide and nitrogen hydride. Spectroscopic evidence of the production of the above-mentioned chemical species is provided.

  15. Experimental and theoretical studies on the structure and spectroscopic properties of (E)-1-(2-aminophenyl)-3-(pyridine-4-yl) prop-2-en-1-one

    Science.gov (United States)

    Cruz Ortiz, Andrés Felipe; Sánchez López, Alberto; García Ríos, Alejandro; Cuenú Cabezas, Fernando; Rozo Correa, Ciro Eduardo

    2015-10-01

    (E)-1-(2-aminophenyl)-3-(pyridine-4-yl)prop-2-en-1-one (or simply 2-aminochalcone) was synthetized and characterized by elemental analysis, FT-IR, NMR, MS and XRD. Molecular geometry optimization, vibrational harmonic frequencies, 1H and 13C NMR chemical shifts were calculated by ab initio (HF and MP2) and density functional theory (DFT) methods, with B3LYP and B3PW91 functionals, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA software vibrational frequencies were assigned in terms of the potential energy distribution. A detailed interpretation of the FT-IR, NMR and XRD, experimental and calculated, is reported. The HOMO and LUMO energy gap that reflects the chemical activity of the molecule were also studied by DFT and above basis set. All theoretical results correspond to a great extent to experimental ones.

  16. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II

    International Nuclear Information System (INIS)

    Tennyson, Jonathan; Bernath, Peter F.; Brown, Linda R.; Campargue, Alain; Csaszar, Attila G.; Daumont, Ludovic; Gamache, Robert R.; Hodges, Joseph T.; Naumenko, Olga V.; Polyansky, Oleg L.; Rothman, Laurence S.; Toth, Robert A.; Vandaele, Ann Carine; Zobov, Nikolai F.; Fally, Sophie; Fazliev, Alexander Z.; Furtenbacher, Tibor; Gordon, Iouli E.; Hu, Shui-Ming

    2010-01-01

    This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: HD 16 O, HD 17 O, and HD 18 O. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22 708, 0-1674, and 0-12 105 cm -1 for HD 16 O, HD 17 O, and HD 18 O, respectively. For HD 16 O, 54 740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36 690 distinct assignments and 8818 energy levels. For HD 17 O, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For HD 18 O, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of HD 16 O at 296 K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W-DIS, where they can easily be retrieved. In addition, the transition and energy level information for H 2 17 O and H 2 18 O, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated.

  17. Isolation and stereochemical assignment of phthalides resulting from the Diels-Alder reaction between 5-isopropoxyfuran-2(5H)-one and cyclopentadiene

    Science.gov (United States)

    Resende, G. C.; Alvarenga, E. S.; Willoughby, P. H.

    2015-12-01

    Naturally occurring phthalides and their synthetic analogs, feature a wide range of bioactivities. In our work, the Diels-Alder reaction between 5-isopropoxyfuran-2(5H)-one and cyclopentadiene was chosen as the key step to obtain tetrahydroisobenzofuran-1(3H)-one derivatives. The anti-endo (major), anti-exo and syn-endo adducts were isolated and structurally elucidated by nmr experiments. In order to rationalize the experimental finding, chemical shifts were predicted by theoretical calculations using density functional theory at B3LYP/6-31G(d,p) and B3LYP/6-311 + G(2d,p) levels. The goodness-of-fit between calculated and experimental data was evaluated by comparing mean absolute errors and applying DP4 probability methodology. Results demonstrated that DP4 probability of combined data (13C and 1H) is the most efficient method for assignment of the correct diastereoisomers.

  18. The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB{sub 9}H{sub 10}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hui, E-mail: hui.wu@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Tang, Wan Si [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115 (United States); Zhou, Wei [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Tarver, Jacob D. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); National Renewable Energy Laboratory, Golden, CO 80401 (United States); Stavila, Vitalie [Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94551 (United States); Brown, Craig M. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States); Udovic, Terrence J., E-mail: udovic@nist.gov [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102 (United States)

    2016-11-15

    Two ordered phases of the novel solid superionic conductor sodium 1-carba-closo-decaborate (NaCB{sub 9}H{sub 10}) were identified via synchrotron x-ray powder diffraction in combination with first-principles calculations and neutron vibrational spectroscopy. A monoclinic packing of the large ellipsoidal CB{sub 9}H{sub 10}{sup −} anions prevails at the lowest temperatures, but a first-order transformation to a slightly modified orthorhombic packing is largely complete by 240 K. The CB{sub 9}H{sub 10}{sup −} anion orientational alignments and Na{sup +} cation interstitial sitings in both phases are arranged so as to minimize the cation proximities to the uniquely more positive C-bonded H atoms of the anions. These results provide valuable structural information pertinent to understanding the relatively low-temperature, entropy-driven, order-disorder phase transition for this compound. - Graphical abstract: Ordered monoclinic and orthorhombic NaCB{sub 9}H{sub 10} phases were determined by XRD and DFT computations and corroborated by neutron vibrational spectroscopy. - Highlights: • Two T-dependent ordered structures of Na(1-CB{sub 9}H{sub 10}) were determined by XRD. • The lower-T monoclinic to higher-T orthorhombic transition occurs from 210 to 240 K. • The main structural differences involve changes in the canting of the CB{sub 9}H{sub 10}{sup −} anions. • DFT and neutron vibrational spectroscopy corroborate the lower-T monoclinic structure. • The results are important for understanding the nature of this superionic conductor.

  19. Origin of the OH vibrational blue shift in the LiOH crystal.

    Science.gov (United States)

    Hermansson, Kersti; Gajewski, Grzegorz; Mitev, Pavlin D

    2008-12-25

    The O-H vibrational frequency in crystalline hydroxides is either upshifted or downshifted by its crystalline surroundings. In the LiOH crystal, the experimental gas-to-solid O-H frequency upshift ("blue shift") is approximately +115 cm(-1). Here plane-wave DFT calculations for the isotope-isolated LiOH crystal have been performed and we discuss the origin of the OH frequency upshift, and the nature of the OH group and the interlayer interactions. We find that (1) the vibrational frequency upshift originates from interactions within the LiOH layer; this OH upshift is slightly lessened by the interlayer interactions; (2) the interlayer O-H - - - H-O interaction is largely electrostatic in character (but there is no hydrogen bonding); (3) the gas-to-solid vibrational shift for OH in LiOH(s) and its subsystems qualitatively adheres to a parabola-like "frequency vs electric field strength" correlation curve, which has a maximum for a positive electric field, akin to the correlation curve earlier found in the literature for an isolated OH(-) ion in an electric field.

  20. 2D COSY sup 1 H NMR; A new tool for studying in sity brain metabolism in the living animal

    Energy Technology Data Exchange (ETDEWEB)

    Barrere, B.; Peres, M.; Seulaz, J. (Universite Paris 7 (France). Laboratoire de Physiologie et Physiopathologie Cerebrovasculaire INSERM U 182 CNRS UA 641, Paris (France)); Gillet, B.; Mergui, S.; Beloeil, J.-C. (Centre National de la Recherche Scientifique, 91 - Gif-sur-Yvette (France). Inst. de Chimie des Substances Naturelles)

    1990-05-21

    2D COSY {sup 1}H NMR with surface coil has been used to resolve and assign cerebral metabolites which had previously been detected but could not be resolved or assigned in situ in the living animal by conventional 1D {sup 1}H NMR. A wide range of cerebral metabolites, including alanine, N-acetyl asparate, asparate, choline derivatives, creatine/phosphocreatine pool, GABA, glucose, glutamate/glutamine pool, inositol, lactate and taurine were simultaneously resolved and assigned in situ in the whole animal using the 2D COSY correlation graphs. Global irreversible ischemia caused the appearance and the disappearance of cross-peaks in the 2D COSY {sup 1}H NMR map, corresponding to increases in alanine, GABA and lactate and glucose depletion. (author). 21 refs.; 3 figs.

  1. Vibrational and electronic spectra of 2-nitrobenzanthrone: An experimental and computational study

    Science.gov (United States)

    Onchoke, Kefa K.; Chaudhry, Saad N.; Ojeda, Jorge J.

    2016-01-01

    The environmental pollutant 2-nitrobenzanthrone (2-NBA) poses human health hazards, and is formed by atmospheric reactions of NOX gases with atmospheric particulates. Though its mutagenic effects have been studied in biological systems, its comprehensive spectroscopic experimental data are scarce. Thus, vibrational and optical spectroscopic analysis (UV-Vis, and fluorescence) of 2-NBA was studied using both experimental and density functional theory employing B3LYP method with 6-311 + G(d,p) basis set. The scaled theoretical vibrational frequencies show good agreement to experiment to within 5 cm- 1 and NBA, respectively. On the basis of normal coordinate analysis complete assignments of harmonic experimental infrared and Raman bands are made. The influence of the nitro group substitution upon the benzanthrone structure and symmetric CH vibrations, and electronic spectra is noted. This study is useful for the development of spectroscopy-mutagenicity relationships in nitrated polycyclic aromatic hydrocarbons.

  2. Synthesis, vibrational and quantum chemical investigations of hydrogen bonded complex betaine dihydrogen selenite

    Science.gov (United States)

    Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.

    2012-10-01

    The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).

  3. Vibrational spectroscopy of the borate mineral kotoite Mg₃(BO₃)₂.

    Science.gov (United States)

    Frost, Ray L; Xi, Yunfei

    2013-02-15

    Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm(-1), assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm(-1) are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm(-1) is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Temperature dependence of the Raman spectrum of 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Al-Maqtari, H. M.; Jamalis, J.; Pizani, P. S.

    2017-06-01

    The heterocyclic chalcone containing thiophene ring 1-(4-chlorophenyl)-3-(2-thienyl)prop-2-en-1-one, C13H9ClOS was synthesized and investigated using experimental techniques such as nuclear magnetic resonance (1H and 13C NMR), Fourier transform infrared spectroscopy (FTIR) at room temperature, differential scanning calorimeter (DSC) from room temperature to 500 K and Raman scattering at the temperature range 10-413 K in order to study its structure and vibrational properties as well as stability and possible phase transition. Density functional theory (DFT) calculations were performed to determine the vibrational spectrum viewing to improve the knowledge of the material properties. A reasonable agreement was observed between theoretical and experimental Raman spectrum taken at 10 K since anharmonic effects of the molecular motion is reduced at low temperatures, leading to a more comprehensive assignment of the vibrational modes. Increasing the temperature up to 393 K, was observed the typical phonon anharmonicity behavior associated to changes in the Raman line intensities, line-widths and red-shift, in special in the external mode region, whereas the internal modes region remains almost unchanged due its strong chemical bonds. Furthermore, C13H9ClOS goes to melting phase transition in the temperature range 393-403 K and then sublimates in the temperature range 403-413 K. This is denounced by the disappearance of the external modes and the absence of internal modes in the Raman spectra, in accordance with DSC curve. The enthalpy (ΔH) obtained from the integration of the endothermic peak in DSC curve centered at 397 K is founded to be 121.5 J/g.

  5. Si-H bond dynamics in hydrogenated amorphous silicon

    Science.gov (United States)

    Scharff, R. Jason; McGrane, Shawn D.

    2007-08-01

    The ultrafast structural dynamics of the Si-H bond in the rigid solvent environment of an amorphous silicon thin film is investigated using two-dimensional infrared four-wave mixing techniques. The two-dimensional infrared (2DIR) vibrational correlation spectrum resolves the homogeneous line shapes ( 4ps waiting times. The Si-H stretching mode anharmonic shift is determined to be 84cm-1 and decreases slightly with vibrational frequency. The 1→2 linewidth increases with vibrational frequency. Frequency dependent vibrational population times measured by transient grating spectroscopy are also reported. The narrow homogeneous line shape, large inhomogeneous broadening, and lack of spectral diffusion reported here present the ideal backdrop for using a 2DIR probe following electronic pumping to measure the transient structural dynamics implicated in the Staebler-Wronski degradation [Appl. Phys. Lett. 31, 292 (1977)] in a-Si:H based solar cells.

  6. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien; Liu, Jin; Moran, Samuel T.; Sharma, Ankit; Tan, Cheng; Chen, Changhsiao; Li, Lain-Jong; Chhowalla, Manish U.; Lin, Jungfu; Singh, Abhishek Kumar; Akinwande, Deji

    2015-01-01

    vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 e

  7. On the mechanism of high-temperature superconductivity in hydrogen sulfide at 200 GPa: Transition into superconducting anti-adiabatic state in coupling to H-vibrations

    Directory of Open Access Journals (Sweden)

    Pavol Baňacký

    Full Text Available It has been shown that the adiabatic electronic structure of the superconducting phase of sulfur hydride at 200 GPa is unstable toward the vibration motion of H-atoms. A theoretical study indicates that in coupling to H-vibrations, the system undergoes a transition from adiabatic into a stabilized anti-adiabatic multi-gap superconducting state at a temperature that can reach 203 K. Keywords: Superconductivity of sulfur hydride, Electron–phonon coupling in superconductors, Anti-adiabatic theory of superconductivity

  8. Supramolecular architecture of 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole.3H2O: Synthesis, spectroscopic investigations, DFT computation, MD simulations and docking studies

    Science.gov (United States)

    Murthy, P. Krishna; Smitha, M.; Sheena Mary, Y.; Armaković, Stevan; Armaković, Sanja J.; Rao, R. Sreenivasa; Suchetan, P. A.; Giri, L.; Pavithran, Rani; Van Alsenoy, C.

    2017-12-01

    Crystal and molecular structure of newly synthesized compound 5-bromo-7-methoxy-1-methyl-1H-benzoimidazole (BMMBI) has been authenticated by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and UV-Visible spectroscopic techniques; compile both experimental and theoretical results which are performed by DFT/B3LYP/6-311++G(d,p) method at ground state in gas phase. Visualize nature and type of intermolecular interactions and crucial role of these interactions in supra-molecular architecture has been investigated by use of a set of graphical tools 3D-Hirshfeld surfaces and 2D-fingerprint plots analysis. The title compound stabilized by strong intermolecular hydrogen bonds N⋯Hsbnd O and O⋯Hsbnd O, which are envisaged by dark red spots on dnorm mapped surfaces and weak Br⋯Br contacts envisaged by red spot on dnorm mapped surface. The detailed fundamental vibrational assignments of wavenumbers were aid by with help of Potential Energy distribution (PED) analysis by using GAR2PED program and shows good agreement with experimental values. Besides frontier orbitals analysis, global reactivity descriptors, natural bond orbitals and Mullikan charges analysis were performed by same basic set at ground state in gas phase. Potential reactive sites of the title compound have been identified by ALIE, Fukui functions and MEP, which are mapped to the electron density surfaces. Stability of BMMBI have been investigated from autoxidation process and pronounced interaction with water (hydrolysis) by using bond dissociation energies (BDE) and radial distribution functions (RDF), respectively after MD simulations. In order to identify molecule's most important reactive spots we have used a combination of DFT calculations and MD simulations. Reactivity study encompassed calculations of a set of quantities such as: HOMO-LUMO gap, MEP and ALIE surfaces, Fukui functions, bond dissociation energies and radial distribution functions. To confirm the potential

  9. Submillimeter vibrationally excited water emission from the peculiar red supergiant VY Canis Majoris

    Science.gov (United States)

    Menten, K. M.; Philipp, S. D.; Güsten, R.; Alcolea, J.; Polehampton, E. T.; Brünken, S.

    2006-08-01

    Context: .Vibrationally excited emission from the SiO and H2O molecules probes the innermost circumstellar envelopes of oxygen-rich red giant and supergiant stars. VY CMa is the most prolific known emission source in these molecules. Aims: .Observations were made to search for rotational lines in the lowest vibrationally excited state of H2O. Methods: .The APEX telescope was used for observations of H2O lines at frequencies around 300 GHz. Results: .Two vibrationally excited H2O lines were detected, a third one could not be found. In one of the lines we find evidence for weak maser action, similar to known (sub)millimeter ν2 = 1 lines. We find that the other line's intensity is consistent with thermal excitation by the circumstellar infrared radiation field. Several SiO lines were detected together with the H2O lines.

  10. Precision spectroscopy of the X1Σg+, v=0→1(J=0-2) rovibrational splittings in H2, HD and D2

    Science.gov (United States)

    Niu, M. L.; Salumbides, E. J.; Dickenson, G. D.; Eikema, K. S. E.; Ubachs, W.

    2014-06-01

    Accurate experimental values for the vibrational ground tone or fundamental vibrational energy splitting of H2, HD, and D2 are presented. Absolute accuracies of 2×10-4 cm-1 are obtained from Doppler-free laser spectroscopy applied in a collisionless environment. The vibrational splitting frequencies are derived from the combination difference between separate electronic excitations from the X1Σg+, v=0, J and v=1, J vibrational states to a common EF1Σg+, v=0, J state. The present work on rotational quantum states J=1,2 extends the results reported by Dickenson et al. on J=0 [Phys. Rev. Lett. 110 (2013) 193601]. The experimental procedures leading to this high accuracy are discussed in detail. A comparison is made with full ab initio calculations encompassing Born-Oppenheimer energies, adiabatic and non-adiabatic corrections, as well as relativistic corrections and QED-contributions. The present agreement between the experimental results and the calculations provides a stringent test on the application of quantum electrodynamics in molecules. Furthermore, the combined experimental-theoretical uncertainty can be interpreted to provide bounds to new interactions beyond the Standard Model of Physics or fifth forces between hadrons.

  11. Production of a Beam of Highly Vibrationally Excited CO Using Perturbations

    Science.gov (United States)

    Bartels, N.; Schäfer, T.; Hühnert, J.; Wodtke, A. M.; Field, R. W.

    2012-06-01

    For many experimentalists (especially those, who are not spectroscopists), molecular pertubations are a curse, as they make assignments and analysis of spectral data more difficult. Nevertheless, they can also be a boon! In this talk we will show how a molecular beam of CO in high vibrational states (v=17,18) can be prepared by an optical pumping scheme that we call PUMP-PUMP-PERTURB and DUMP (P^3D). P^3D exploits the loaning, via spin-orbit perturbations, of the large oscillator strength of the 4th positive system, A ^1 π ← X ^1 Σ ^+, to the triplet manifold. This allows some nominally spin-forbidden transitions to be exploited in multistep optical pumping schemes. The ability to {state-selectively} prepare CO in high vibrational states opens up new opportunities for molecular beam scattering experiments.

  12. Cross sections for the vibrational excitation of the H2 X 1Σ+g(v) levels generated by electron collisional excitation of the higher singlet states

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The excitation cross sections, σ(v,v double-prime), for an H 2 molecule initially in any one of the 15 vibrational levels, v belonging to the ground electronic state and excited to a final vibrational level, v double-prime are evaluated for direct excitations via all members of the excited electronic singlet spectrum. Account is taken of predissociation, autoionization, and radiative decay of the excited electronic spectrum that leads to a final population distribution for the ground electronic state, X 1 Σ + g (v double-prime). For v=0, account is taken explicitly of transitions via the B, C, B', and D electronic states in evaluating the cross sections. The additional contribution of excitations via all Rydberg states lying above the D state enhances these cross sections by approximately 10%. For v>0, cross sections are evaluated taking explicit account of transitions through the B and C states; higher singlet excitations enhance these values by 25%. The choice of the reference total cross sections remains a subjective one, causing the values calculated here to have a possible uncertainty of +20% -30% . For excitations occurring within a hydrogen discharge, collisional excitation-ionization events among the intermediate singlet states will effectively quench the v, v double-prime excitation process for discharge densities in excess of the range 10 15 --10 16 electrons/cm -3

  13. OD bands in the IR spectra of a deuterated soda-lime-silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Peuker, C.; Brzezinka, K.W.; Gaber, M.; Kohl, A.; Geissler, H. [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany)

    2001-07-01

    IR spectra of a deuterated glass of the composition (in mol%) 16 Na{sub 2}O . 10 CaO . 74 SiO{sub 2} complete earlier spectroscopic studies on water-poor soda-lime-silica glasses. The approved IR spectroscopic method of the deuterium exchange allows a reliable assignment of the hydroxyl bands also in the case of glasses. By spectra comparison the assignment of the IR bands at 3500 and 2800 cm{sup -1} to hydroxyl groups with different hydrogen bonding is verified. The IR band at about 4500 cm{sup -1} is interpreted as both a combination of the stretching vibrations {nu}O-H and {nu}Si-OH and a combination of the stretching vibration {nu}O-H and the deformation vibration {delta}SiOH. The bands at 1763 and 1602 cm{sup -1} are attributed to combination vibrations of the glass network. (orig.)

  14. Interference between vibration-to-translation and vibration-to-vibration energy transfer modes in diatomic molecules at high collision energies

    International Nuclear Information System (INIS)

    Shin, H.K.

    1983-01-01

    An explicit time dependent approach for simultaneous VT and VV energy transfer in diatom--diatom collisions is explored using the exponential form of ladder operators in the solution of the Schroedinger equation of motion. The collision of two hydrogen molecules is chosen to illustrate the extent of interference between VT and VV modes among various vibrational states. While vibrational energy transfer processes of nominally VT type can be treated with pure VT mode at low collision energies, the intermode coupling is found to be very important at collision energies of several hω. The occurrence of the coupling appears to be nearly universal in vibrational transitions at such energies. Exceptions to the coupling have been discussed

  15. Application of group theory to proper vibrations in an electric circuit

    OpenAIRE

    Hosoya, Masahiko; 細谷, 将彦

    2010-01-01

    Group-theoretical analysis is first presented to three-dimensional behavior of an electric circuit. All the modes of proper vibration are found and assigned to each irreducible representation of symmetrical group of the circuit without solving its circuit equations. In order that an electromagnetic radiation from the outside may induce each vibration, a selection rule which is similar to that in infrared absorption must be fulfilled. The circuit may be used as a directive antenna.

  16. Comparing the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men.

    Science.gov (United States)

    Rønnestad, Bent R

    2004-11-01

    The purpose of this investigation was to compare the performance-enhancing effects of squats on a vibration platform with conventional squats in recreationally resistance-trained men. The subjects were 14 recreationally resistance-trained men (age, 21-40 years) and the intervention period consisted of 5 weeks. After the initial testing, subjects were randomly assigned to either the "squat whole body vibration" (SWBV) group (n = 7), which performed squats on a vibration platform on a Smith Machine, or the "squat"(S) group (n = 7), which performed conventional squats with no vibrations on a Smith Machine. Testing was performed at the beginning and the end of the study and consisted of 1 repetition maximum (1RM) in squat and maximum jump height in countermovement jump (CMJ). A modified daily undulating periodization program was used during the intervention period in both groups. Both groups trained at the same percentage of 1RM in squats (6-10RM). After the intervention, CMJ performance increased significantly only in the SWBV (p squats (p squats performed on a vibration platform compared with squats without vibrations regarding maximal strength and explosive power as long as the external load is similar in recreationally resistance-trained men.

  17. Complete assignment of the methionyl carbonyl carbon resonance in switch variant anti-dansyl antibodies labeled with (1- sup 13 C)methionine

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, C.; Igarashi, Takako; Kim, Hahyung; Odaka, Asano; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo, Hongo (Japan))

    1991-01-01

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies developed by Dangl et al. who had used the fluorescence-activated cell sorter to select and clone these variants. These switch variant antibodies possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with different heavy chain constant regions. In the present study, switch variant antibodies of IgG1, IgG2a, and IgG2b subclasses were used along with a short-chain IgG2a antibody, in which the entire C{sub H}1 domain is deleted. The switch variant antibodies were specifically labeled with (1-{sup 13}C)methionine by growing hybridoma cells in serum-free medium. Assignments of all the methionyl carbonyl carbon resonances have been completed by using the intact antibodies along with their fragments and recombined proteins in which either heavy or light chain is labeled. A double labeling method has played a crucial role in the process of the spectral assignments. The strategy used for the assignments has been described in detail. In incorporating {sup 15}N-labeled amino acids into the antibodies for the double labeling, isotope dilution caused a serious problem except in the cases of ({alpha}-{sup 15}N)lysine and ({sup 15}N)threonine, both of which cannot become the substrate of transaminases. It was found that {beta}-chloro-L-alanine is most effective in suppressing the isotope scrambling. So far, spectral assignments by the double labeling method have been possible with {sup 15}N-labeled Ala, His, Ile, Lys, Met, Ser, Thr, Tyr, and Val. On the basis of the results of the present {sup 13}C study, possible use of the assigned carbonyl carbon resonances for the elucidation of the structure-function relationship in the antibody system has been briefly discussed.

  18. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol--an analgesic drug.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Marchewka, M K; Mohan, S

    2014-03-25

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G(**) and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecule have been anlysed. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  20. Assignment of the Raman lines in single crystal barium metaborate (beta-BaB sub 2 O sub 4)

    CERN Document Server

    Ney, P; Maillard, A; Polgar, K

    1998-01-01

    A Raman-scattering study performed on beta-BaB sub 2 O sub 4 (beta-BBO) at room temperature allows us to assign all the vibrational modes detected in the Raman spectra. The internal and external vibration modes are properly obtained by taking account of the light polarization, mode contamination and isotope effects. A correspondence between the lattice and the free-ring modes is also presented. (author)

  1. Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid

    Science.gov (United States)

    Arslan, Hakan; Algül, Öztekin; Önkol, Tijen

    2008-08-01

    The molecular structure, vibrational frequencies and infrared intensities of the 3-(6-benzoyl-2-oxobenzo[ d]oxazol-3(2 H)-yl)propanoic acid were calculated by the HF and DFT methods using 6-31G(d) basis set. The FT-infrared spectra have been measured for the title compound in the solid state. We obtained 11 stable conformers for the title compound, however the Conformer 1 is approximately 3.88 kcal/mol more stable than the Conformer 11. The comparison of the theoretical and experimental geometry of the title compound shows that the X-ray parameters fairly well reproduce the geometry of the Conformer 1. The harmonic vibrations computed of this compound by the B3LYP/6-31G(d) method are in a good agreement with the observed IR spectral data. Theoretical vibrational spectra of the title compound were interpreted by means of PEDs using VEDA 4 program.

  2. Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes.

    Science.gov (United States)

    Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H

    2004-01-22

    Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.

  3. Studies of interstellar vibrationally-excited molecules

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Snell, R.L.; Erickson, N.R.

    1986-01-01

    Several molecules thus far have been detected in the ISM in vibrationally-excited states, including H 2 , SiO, HC 3 N, and CH 3 CN. In order for vibrational-excitation to occur, these species must be present in unusually hot and dense gas and/or where strong infrared radiation is present. In order to do a more thorough investigation of vibrational excitation in the interstellar medium (ISM), studies were done of several mm-wave transitions originating in excited vibrational modes of HCN, an abundant interstellar molecule. Vibrationally-excited HCN was recently detected toward Orion-KL and IRC+10216, using a 12 meter antenna. The J=3-2 rotational transitions were detected in the molecule's lowest vibrational state, the bending mode, which is split into two separate levels, due to l-type doubling. This bending mode lies 1025K above ground state, with an Einstein A coefficient of 3.6/s. The J=3-2 line mode of HCN, which lies 2050K above ground state, was also observed toward IRC+10216, and subsequently in Orion-KL. Further measurements of vibrationally-excited HCN were done using a 14 meter telescope, which include the observations of the (0,1,0) and (0,2,0) modes towards Orion-KL, via their J=3-2 transitions at 265-267 GHz. The spectrum of the J=3-2 line in Orion taken with the 14 meter telescope, is shown, along with a map, which indicates that emission from vibrationally-excited HCN arises from a region probably smaller than the 14 meter telescope's 20 arcsec beam

  4. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Vibrational properties of water molecules adsorbed in different zeolitic frameworks

    International Nuclear Information System (INIS)

    Crupi, V; Longo, F; Majolino, D; Venuti, V

    2006-01-01

    The perturbation of water 'sorbed' in samples of zeolites of different structural type, genesis, and cation composition (K-, Na-, Mg- and Ca-rich zeolites), namely the CHA framework of a synthetic K-chabazite, the LTA framework of synthetic Na-A and Mg50-A zeolites, and the NAT framework of a natural scolecite, has been studied by FTIR-ATR spectroscopy, in the -10 to +80 o C temperature range. The aim was to show how differences in the chemical composition and/or in the topology of the zeolite framework and, in particular, the possibility for the guest water molecules to develop guest-guest and/or host-guest interactions, lead to substantial differences in their vibrational dynamical properties. The spectra, collected in the O-H stretching and H 2 O bending mode regions, are complex, with multiple bands being observed. As far as water in the CHA and LTA frameworks is concerned, whose behaviour is governed by the balance of water-water, water-framework and water-extra-framework cations interactions, the assignment of the resolved components of the O-H stretching band has been discussed by fitting the band shapes into individual components attributed to H 2 O molecules engaged in different degrees of hydrogen bonding. A detailed quantitative picture of the connectivity pattern of water, as a function of temperature and according to the chemical and topological properties of the environment, is furnished. The H 2 O bending vibrational bands give additional information that perfectly agrees with the results obtained from the analysis of the O-H stretching spectral region. In the case of scolecite, a small-pored zeolite where water-water interactions are eliminated, the increased complexity observed in the infrared spectra in the O-H stretching and H 2 O bending regions was explained as due to the hydrogen bonding between the water molecules and the network, and also with the extra-framework cation. Furthermore, these observations have been correlated with the different

  6. Grade Assignment by Ki-67 Proliferative Index, Mitotic Count, and Phosphohistone H3 Count in Surgically Resected Gastrointestinal and Pancreatic Neuroendocrine Tumors.

    Science.gov (United States)

    Murphy, Claire E; McCormick, Kinsey A; Shankaran, Veena; Reddi, Deepti M; Swanson, Paul E; Upton, Melissa P; Papanicolau-Sengos, Antonios; Khor, Sara; Westerhoff, Maria

    The aim of this study was to evaluate the concordance in grade assignment for gastroenteropancreatic neuroendocrine tumors using mitotic count (MC), Ki-67 proliferative index (KPI), and phosphohistone H3 count (PHH3C). Resected gastroenteropancreatic neuroendocrine tumors were graded based on MC, KPI, and PHH3C. Concordance was determined using a weighted κ statistic. Median survival across each grade category was determined using Kaplan-Meier methods. Of the 110 patients, the majority had gastrointestinal primaries and grade 1 or 2 tumors. Rates of discordance in grade assignment were 29% of cases for KPI versus MC (κW = 0.26), 32% for PHH3C versus MC (κW = 0.34), and 32% for PHH3C versus KPI (κW = 0.37). There was fair agreement between grading by KPI and MC. Relative to grade by KPI and MC, PHH3C tended to upgrade tumors. The proportion alive at 3 and 5 years was not significantly different for patients with grade 1 versus grade 2 tumors. The concordance between KPI and MC was fair. Phosphohistone H3 count tended to upgrade tumors using the cutoffs established by MC. Grade 1 and grade 2 tumors were associated with similar survival regardless of grading method. The overall relevance of the current cutoff values used in grading neuroendocrine tumors may need to be revisited.

  7. Charge transfer processes in collisions of H+ ions with H2, D2, CO, CO2 CH4, C2H2, C2H6 and C3H8 molecules below 10 keV

    International Nuclear Information System (INIS)

    Kusakabe, T.; Buenker, R.J.; Kimura, M.

    2002-01-01

    Charge transfer processes resulting from collisions of H + ions with H 2 , D 2 , CO, CO 2 CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 molecules have been investigated in the energy range of 0.2 to 4.0 keV experimentally and theoretically. The initial growth rate method was employed in the experiment for studying the dynamics and cross sections. Theoretical analysis based on a molecular-orbital expansion method for H 2 , D 2 , CO, CH 4 and C 2 H 2 targets was also carried out. The present results for the H 2 , CO and CO 2 molecules by H + impact are found to be in excellent accord with most of previous measurements above 1 keV, but they show some differences below this energy where our result displays a stronger energy-dependence. For CH 4 , C 2 H 2 , C 2 H 6 and C 3 H 8 targets, both experimental and theoretical results indicate that if one assumes vibrationally excited molecular ions (CH 4 + , C 2 H 2 + , C 2 H 6 + and C 3 H 8 + ) formed in the exit channel, then charge transfer processes sometimes become more favorable since these vibrationally excited fragments meet an accidental resonant condition. This is a clear indication of the role of vibrational excited states for charge transfer, and is an important realization for general understanding. (author)

  8. High orbital angular momentum states in H2 and D2. II. The 6h--5g and 6g--5f transitions

    International Nuclear Information System (INIS)

    Jungen, C.; Dabrowski, I.; Herzberg, G.; Kendall, D.J.W.

    1989-01-01

    A group of lines accompanying the first line of the Pfund series of the H atom has been observed by Fourier transform infrared spectrometry. The lines are due to transitions in molecular hydrogen of a nonpenetrating Rydberg electron possessing a high-orbital angular momentum, which is coupled only loosely to the vibrations and rotations of the H + 2 core. Lines belonging to the 6h--5g and 6g--5f (v=0--3) transitions of H 2 have been identified. The identifications are based on a calculation of the spectrum from first principles by multichannel quantum defect theory. The interaction between the nonpenetrating electron and the core was evaluated in terms of the permanent and induced molecular moments of H + 2 as calculated by Bishop and collaborators. The analogous transitions in D 2 have also been observed and assigned

  9. Further exploration of the conformational space of α-synuclein fibrils: solid-state NMR assignment of a high-pH polymorph.

    Science.gov (United States)

    Verasdonck, Joeri; Bousset, Luc; Gath, Julia; Melki, Ronald; Böckmann, Anja; Meier, Beat H

    2016-04-01

    Polymorphism is a common and important phenomenon for protein fibrils which has been linked to the appearance of strains in prion and other neurodegenerative diseases. Parkinson disease is a frequently occurring neurodegenerative pathology, tightly associated with the formation of Lewy bodies. These deposits mainly consist of α-synuclein in fibrillar, β-sheet-rich form. α-synuclein is known to form numerous different polymorphs, which show distinct structural features. Here, we describe the chemical shift assignments, and derive the secondary structure, of a polymorph that was fibrillized at higher-than-physiological pH conditions. The fibrillar core contains residues 40-95, with both the C- and N-terminus not showing any ordered, rigid parts. The chemical shifts are similar to those recorded previously for an assigned polymorph that was fibrillized at neutral pH.

  10. Vibrational spectroscopic analysis of 2-chloro-5-(2,5-dimethoxy-benzylidene)-1,3-diethyl-dihydro-pyrimidine-4,6(1H,5H)-dione

    Science.gov (United States)

    Soliman, H. S.; Eid, Kh. M.; Ali, H. A. M.; Atef, S. M.; El-Mansy, M. A. M.

    2012-11-01

    In the present work, a combined experimental and computational study for the optimized molecular structural parameters, FT-IR spectra, thermo-chemical parameters, total dipole moment and HOMO-LUMO energy gap for 2-chloro-5-(2,5-dimethoxy-benzylidene)-1,3-diethyl-dihydro-pyrimidine-4,6(1H,5H)-dione have been investigated using B3LYP/6-311G basis set. Our calculated results have showed that the investigated compound possesses a dipole moment of 4.9 Debye and HOMO-LUMO energy gap of 3 eV which indicate high recommendations for photovoltaic devices fabrication.

  11. The vibrational structure of dibenzo-p-dioxin

    DEFF Research Database (Denmark)

    Eriksen, Troels Kongsgaard; Hansen, Bjarke Knud Vilster; Spanget-Larsen, Jens

    2008-01-01

    by the results of a harmonic analysis based on B3LYP/cc-pVTZ density functional theory (DFT). The combined experimental and theoretical results led to proposal of a nearly complete assignment of the fundamental vibrational transitions of DD, involving reassignment of several transitions. The results...

  12. Computational and spectral studies of 6-phenylazo-3-(p-tolyl)-2H-chromen-2-one

    Science.gov (United States)

    Manimekalai, A.; Vijayalakshmi, N.

    2015-02-01

    6-Phenylazo-3-(p-tolyl)-2H-chromen-2-one 4 was prepared and characterized by IR, 1H, and 13C NMR spectral studies. The optimized structure of the chromen-2-one 4 was investigated by the Gaussian 03 B3LYP density functional method calculations at 6-31G(d,p) basis set. The gauge-independent atomic orbital (GIAO) 13C and 1H chemical shift calculations for the synthesized chromen-2-one in CDCl3 were also made by the same method. The computed IR frequencies of the chromen-2-one and the corresponding vibrational assignments were analyzed by means of potential energy distribution (PED%) calculation using vibrational energy distribution analysis (VEDA) program. The first order hyperpolarizability (βtot), polarizability (α) and dipole moment (μ) were calculated using 6-311G(d,p) basis set and the nonlinear optical (NLO) properties are also addressed theoretically. Stability of the chromen-2-one 4 molecule has been analyzed by calculating the intramolecular charge transfer using natural bond order (NBO) analysis. The molecular electrostatic potentials, HOMO-LUMO energy gap and geometrical parameters were also computed. Topological properties of the electronic charge density in chromen-2-one 4 were analyzed employing the Bader's Atoms in Molecule (AIM) theory which indicated the presence of intramolecular hydrogen bond in the molecule.

  13. Experimental and computational study on molecular structure and vibrational analysis of a modified biomolecule: 5-Bromo-2'-deoxyuridine

    Science.gov (United States)

    Çırak, Çağrı; Sert, Yusuf; Ucun, Fatih

    In the present study, the experimental and theoretical vibrational spectra of 5-bromo-2'-deoxyuridine were investigated. The experimental FT-IR (400-4000 cm-1) and μ-Raman spectra (100-4000 cm-1) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths and bond angles) were calculated using ab initio Hartree Fock (HF) and density functional B3LYP method with 6-31G(d), 6-31G(d,p), 6-311++G(d) and 6-311++G(d,p) basis sets by Gaussian program, for the first time. The assignments of vibrational frequencies were performed by potential energy distribution by using VEDA 4 program. The optimized geometric parameters and theoretical vibrational frequencies are compared with the corresponding experimental data and they were seen to be in a good agreement with the each other. Also, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies were found.

  14. Bis[1,3-bis(2,4,6-trimethylphenyl-2,3-dihydro-1H-imidazol-2-ylidene]dinitrosyl(tetrahydroborato-κ2H,H′tungsten(0

    Directory of Open Access Journals (Sweden)

    Heinz Berke

    2011-01-01

    Full Text Available In the title paramagnetic 19-electron neutral complex, [W(BH4(C21H24N22(NO2], the W(0 atom is coordinated by two 1,3-bis(2,4,6-trimethylphenylimidazol-2-ylidene (IMes carbene ligands, two NO groups and two H atoms of an η2-tetrahydroborate ligand. Depending on the number of coordination sites (n assigned to the BH4− ligand, the coordination geometry of the W atom may either be described as approximately trigonal–bipyramidal (n = 1 or as very distorted octahedral with the bridging H atoms filling two coordination positions (n = 2. In the latter case, the coplanar NO groups and bridging H atoms (r.m.s. deviation = 0.032 Å form one octahedral plane, with mutually trans-oriented carbene ligands. In the crystal, molecules are connected via C—H...O interactions.

  15. Isotopically decoupled vibrational spectra and proton exchange rates for crystalline NH3 and ammonia hydrate

    Science.gov (United States)

    Thornton, Cynthia; Khatkale, M. S.; Devlin, J. Paul

    1981-12-01

    Codeposits of NH3 with ND3 or D2O have been prepared at liquid nitrogen temperatures in the absence of proton exchange. Vibrational data for the anhydrous cubic crystalline ammonia, containing isolated NH3 or ND3, confirm that, relative to water ice, intermolecular coupling in ammonia ice exerts a relatively minor influence on the infrared and Raman spectra. Nevertheless, sizeable decoupling shifts, particularly for ν1, have been observed and attributed to a combination of factors including correlation field and Fermi resonance effects. The Raman polarization data has also affirmed long standing assignments of ν1 and ν3 for ammonia ice. Warming of the ammonia thin films resulted in limited isotopic scrambling at 130 K, apparently possible only through the agency of trace concentrations of water. The vibrational coupling pattern for the resultant NHD2 and NH2D molecules suggest that proton (deuteron) migration away from the exchange centers is impossible at temperatures up to 150 K. By contrast, isotopic scrambling was rapid and complete at 140 K for amorphous ammonia hydrate films (˜35% NH3, ˜65% D2O) which were also prepared without exchange at ˜90 K. The proton (deuteron) exchange rate is much greater for the amorphous ammonia hydrate at 140 K than for pure water ice. Such exchange requires both ion-pair defect formation and proton mobility. Since the NH3 suppresses the H3O+ concentration via formation of NH+4, a suppression the likes of which has been shown to stop proton exchange in water ice, the evidence strongly suggests that NH4+ in ammonia, like H3O+ in water, is an effective proton transfer agent, probably acting through a tunneling mechanism (i.e., H3N+-HṡṡṡNH3→H3NṡṡṡH-N+H3 etc.) to render the proton mobile in the ammonia hydrate. This mobility combined with the greater NH4+ concentration, relative to the H3O+ concentration in H2O ice Ic, results in isotopic scrambling at the reduced temperature.

  16. Spectroscopic and vibrational analysis of the methoxypsoralen system: A comparative experimental and theoretical study

    Science.gov (United States)

    Liu, Y.; Yuan, H.; Vo-Dinh, T.

    2013-03-01

    Raman spectra measurements and density functional theory (DFT) calculations were performed to investigate three psoralens: 5-amino-8-methoxypsoralen (5-A-8-MOP), 5-methoxypsoralen (5-MOP) and 8-methoxypsoralen (8-MOP) with the aim of differentiating these similar bioactive molecules. The Raman spectra were recorded in the region 300-3500 cm-1. All three psoralens were found to have similar Raman spectrum in the region 1500-1650 cm-1. 5-A-8-MOP can be easily differentiated from 5-MOP or 8-MOP based on the Raman spectrum. The Raman spectrum differences at 651 and 795 cm-1 can be used to identify 5-MOP from 8-MOP. The theoretically computed vibrational frequencies and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-311++G(d,p) basis set were found to yield results that are very comparable to experimental Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program.

  17. Adsorption of 1- and 2-butylimidazoles at the copper/air and steel/air interfaces studied by sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Casford, Michael T L; Davies, Paul B

    2012-07-24

    The structure of thin films of 1- and 2-butylimidazoles adsorbed on copper and steel surfaces under air was examined using sum frequency generation (SFG) vibrational spectroscopy in the ppp and ssp polarizations. Additionally, the SFG spectra of both isomers were recorded at 55 °C at the liquid imidazole/air interface for reference. Complementary bulk infrared, reflection-absorption infrared spectroscopy (RAIRS), and Raman spectra of both imidazoles were recorded for assignment purposes. The SFG spectra in the C-H stretching region at the liquid/air interface are dominated by resonances from the methyl end group of the butyl side chain of the imidazoles, indicating that they are aligned parallel or closely parallel to the surface normal. These are also the most prominent features in the SFG spectra on copper and steel. In addition, both the ppp and ssp spectra on copper show resonances from the C-H stretching modes of the imidazole ring for both isomers. The ring C-H resonances are completely absent from the spectra on steel and at the liquid/air interface. The relative intensities of the SFG spectra can be interpreted as showing that, on copper, under air, both butylimidazoles are adsorbed with their butyl side chains perpendicular to the interface and with the ring significantly inclined away from the surface plane and toward the surface normal. The SFG spectra of both imidazoles on steel indicate an orientation where the imidazole rings are parallel or nearly parallel to the surface. The weak C-H resonances from the ring at the liquid/air interface suggest that the tilt angle of the ring from the surface normal at this interface is significantly greater than it is on copper.

  18. Probing electronic and vibrational properties at the electrochemical interface using SFG spectroscopy: Methanol electro-oxidation on Pt(1 1 0)

    Science.gov (United States)

    Vidal, F.; Busson, B.; Tadjeddine, A.

    2005-02-01

    We report the study of methanol electro-oxidation on Pt(1 1 0) using infrared-visible sum-frequency generation (SFG) vibrational spectroscopy. The use of this technique enables to probe the vibrational and electronic properties of the interface simultaneously in situ. We have investigated the vibrational properties of the interface in the CO ads internal stretch spectral region (1700-2150 cm -1) over a wide range of potentials. The analysis of the evolution of the C-O stretch line shape, which is related to the interference between the vibrational and electronic parts of the non-linear response, with the potential allows us to show that the onset of bulk methanol oxidation corresponds to the transition from a negatively to a positively charged surface.

  19. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  20. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  1. Gas Phase Vibrational Spectroscopy of Weakly Volatil Safe Taggants Using a Synchrotron Source

    Science.gov (United States)

    Cuisset, Arnaud; Hindle, Francis; Mouret, Gael; Gruet, Sebastien; Pirali, Olivier; Roy, Pascale

    2013-06-01

    The high performances of the AILES beamline of SOLEIL allow to study at medium resolution (0.5 cm^{-1}) the gas phase THz vibrational spectra of weakly volatil compounds. Between 2008 and 2010 we recorded and analyzed the THz/Far-IR spectra of phosphorous based nerve agents thanks to sufficient vapour pressures from liquid samples at room temperature. Recently, we extended these experiments towards the vibrational spectroscopy of vapour pressures from solid samples. This project is quite challenging since we target lower volatile compounds, and so requires very high sensitive spectrometers. Moreover a specially designed heated multipass-cell have been developped for the gas phase study of very weak vapor pressures. Thanks to skills acquired during initial studies and recent experiments performed on AILES with solid PAHs, we have recorded and assigned the gas phase vibrational fingerprints from the THz to the NIR spectral domain (10-4000 cm-1) of a set of targeted nitro-derivatives. The study was focused onto the para, ortho-mononitrotoluene (p-NT, o-NT), the 1,4 Dinitrobenzene (1,4 DNB), the 2,3-dimethyl-2,3-dinitrobutane (DMNB), and 2,4 and 2,6-dinitrotoluene (2,4-2,6 DNT), which are safe taggants widely used for the detection of commercial explosives. These taggants are usually added to plastic explosives in order to facilitate their vapour detection. Therefore, there is a continuous interest for their detection and identification in realistic conditions via optical methods. A first step consists in the recording of their gas phase vibrational spectra. These expected spectra focused onto molecules involved into defence and security domains are not yet available to date and will be very useful for the scientific community. This work is supported by the contract ANR-11-ASTR-035-01. A. Cuisset, G. Mouret, O. Pirali, P. Roy, F. Cazier, H. Nouali, J. Demaison, J. Phys. Chem. B, 2008, 112:, 12516-12525 I. Smirnova, A. Cuisset, R. Bocquet, F. Hindle, G. Mouret, O

  2. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene IV. 3,3-Dimethyl-1,2-bis(trimethylgermyl)cyclopropene

    Science.gov (United States)

    Panchenko, Yu. N.; De Maré, G. R.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2003-06-01

    The infrared (IR) and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylgermyl)cyclopropene (I) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors comprised of elements transferred from the sets used to correct the QMFF's of 3,3-dimethylbutene-1, and 1-methyl-, 1,2-dimethyl-, and 3,3-dimethylcyclopropene (17 scale factors for a 105-dimensional problem). This set of scale factors was used previously to correct the QMFF of 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene and 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene. The scaled QMFF obtained was used to solve the vibrational problem. Differential Raman cross-sections were calculated using the quantum mechanical values of the Raman activities. The appropriate theoretical spectrograms for the Raman and IR spectra of I were constructed. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distributions and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values calculated using the unscaled QMFF.

  3. Fourier transform infrared emission spectra of MnH and MnD

    Science.gov (United States)

    Gordon, Iouli E.; Appadoo, Dominique R. T.; Shayesteh, Alireza; Walker, Kaley A.; Bernath, Peter F.

    2005-01-01

    Fourier transform infrared emission spectra of MnH and MnD were observed in the ground X7Σ + electronic state. The vibration-rotation bands from v = 1 → 0 to v = 3 → 2 for MnH and from v = 1 → 0 to v = 4 → 3 for MnD were recorded at an instrumental resolution of 0.0085 cm -1. Spectroscopic constants were determined for each vibrational level and equilibrium constants were found from a Dunham-type fit. The equilibrium vibrational constant ( ωe) for MnH was found to be 1546.84518(65) cm -1, the equilibrium rotational constant ( Be) is 5.6856789(103) cm -1 and the eqilibrium bond distance ( re) was determined to be 1.7308601(47) Å.

  4. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene II. 3,3-Dimethyl-1,2-bis(trimethylsilyl)cyclopropene

    Science.gov (United States)

    Panchenko, Yu. N.; De Maré, G. R.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2003-07-01

    The IR and Raman spectra of 3,3-dimethyl-1,2-bis(trimethylsilyl)cyclopropene (I) (synthesised using standard procedures) were measured in the liquid phase. Total geometry optimisation was performed at the HF/6-31G* level. The HF/6-31G*//HF/6-31G* quantum mechanical force field (QMFF) was calculated and used to determine the theoretical fundamental vibrational frequencies, their predicted IR intensities, Raman activities, and Raman depolarisation ratios. Using Pulay's scaling method and the theoretical molecular geometry, the QMFF of I was scaled by a set of scaling factors used previously for 3,3-dimethyl-1,2-bis(tert-butyl)cyclopropene (17 scale factors for a 105-dimensional problem). The scaled QMFF obtained was used to solve the vibrational problem. The quantum mechanical values of the Raman activities were converted to differential Raman cross sections. The figures for the experimental and theoretical Raman and IR spectra are presented. Assignments of the experimental vibrational spectra of I are given. They take into account the calculated potential energy distribution and the correlation between the estimations of the experimental IR and Raman intensities and Raman depolarisation ratios and the corresponding theoretical values (including Raman cross sections) calculated using the unscaled QMFF.

  5. Theoretical investigation on the molecular structure, Infrared, Raman and NMR spectra of para-halogen benzenesulfonamides, 4-X-C 6H 4SO 2NH 2 (X = Cl, Br or F)

    Science.gov (United States)

    Karabacak, Mehmet; Çınar, Mehmet; Çoruh, Ali; Kurt, Mustafa

    2009-02-01

    In the present study, the structural properties of para-halogen benzenesulfonamides, 4-XC 6H 4SO 2NH 2 (4-chlorobenzenesulfonamide (I), 4-bromobenzenesulfonamide (II) and 4-fluorobenzenesulfonamide (III)) have been studied extensively utilizing ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP exchange correlation. The vibrational frequencies were calculated and scaled values were compared with experimental values. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the halogen substituent on the characteristic benzenesulfonamides bands in the spectra are discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. Finally, geometric parameters, vibrational bands and chemical shifts were compared with available experimental data of the molecules. The fully optimized geometries of the molecules were found to be consistent with the X-ray crystal structures. The observed and calculated frequencies and chemical shifts were found to be in very good agreement.

  6. Vibrational, DFT, and thermal analysis of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate

    Science.gov (United States)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.

    2013-12-01

    New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  7. Immediate effects of whole body vibration on patellar tendon properties and knee extension torque.

    Science.gov (United States)

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-03-01

    Reports about the immediate effects of whole body vibration (WBV) exposure upon torque production capacity are inconsistent. However, the changes in the torque-angle relationship observed by some authors after WBV may hinder the measurement of torque changes at a given angle. Acute changes in tendon mechanical properties do occur after certain types of exercise but this hypothesis has never been tested after a bout of WBV. The purpose of the present study was to investigate whether tendon compliance is altered immediately after WBV, effectively shifting the optimal angle of peak torque towards longer muscle length. Twenty-eight subjects were randomly assigned to either a WBV (n = 14) or a squatting control group (n = 14). Patellar tendon CSA, stiffness and Young's modulus and knee extension torque-angle relationship were measured using ultrasonography and dynamometry 1 day before and directly after the intervention. Tendon CSA was additionally measured 24 h after the intervention to check for possible delayed onset of swelling. The vibration intervention had no effects on patellar tendon CSA, stiffness and Young's modulus or the torque-angle relationship. Peak torque was produced at ~70° knee angle in both groups at pre- and post-test. Additionally, the knee extension torque globally remained unaffected with the exception of a small (-6%) reduction in isometric torque at a joint angle of 60°. The present results indicate that a single bout of vibration exposure does not substantially alter patellar tendon properties or the torque-angle relationship of knee extensors.

  8. Understanding the reaction between muonium atoms and hydrogen molecules: zero point energy, tunnelling, and vibrational adiabaticity

    Science.gov (United States)

    Aldegunde, J.; Jambrina, P. G.; García, E.; Herrero, V. J.; Sáez-Rábanos, V.; Aoiz, F. J.

    2013-11-01

    The advent of very precise measurements of rate coefficients in reactions of muonium (Mu), the lightest hydrogen isotope, with H2 in its ground and first vibrational state and of kinetic isotope effects with respect to heavier isotopes has triggered a renewed interests in the field of muonic chemistry. The aim of the present article is to review the most recent results about the dynamics and mechanism of the reaction Mu+H2 to shed light on the importance of quantum effects such as tunnelling, the preservation of the zero point energy, and the vibrational adiabaticity. In addition to accurate quantum mechanical (QM) calculations, quasiclassical trajectories (QCT) have been run in order to check the reliability of this method for this isotopic variant. It has been found that the reaction with H2(v=0) is dominated by the high zero point energy (ZPE) of the products and that tunnelling is largely irrelevant. Accordingly, both QCT calculations that preserve the products' ZPE as well as those based on the Ring Polymer Molecular Dynamics methodology can reproduce the QM rate coefficients. However, when the hydrogen molecule is vibrationally excited, QCT calculations fail completely in the prediction of the huge vibrational enhancement of the reactivity. This failure is attributed to tunnelling, which plays a decisive role breaking the vibrational adiabaticity when v=1. By means of the analysis of the results, it can be concluded that the tunnelling takes place through the ν1=1 collinear barrier. Somehow, the tunnelling that is missing in the Mu+H2(v=0) reaction is found in Mu+H2(v=1).

  9. The spectra of conical bubble sonoluminescence in 1,2-propanediol and glycol

    International Nuclear Information System (INIS)

    He Shoujie; Jing Ha; Li Xuechen; Li Qing; Dong Lifang; Wang, Long

    2007-01-01

    A conical bubble straight tube apparatus was set up to study sonoluminescence. The spectra of conical bubble sonoluminescence for 1,2-propanediol and glycol were detected. The results show that the luminescence is intense, and the spectra consist of a broad background on which five clear sequences of Swan bands and three sequences of the B 2 Σ + → X 2 Σ + transition of CN are superimposed. A band assigned to the A 2 Δ → X 2 Π transition of CH was also measured and the vibrational and rotational structures of Swan bands could be resolved. The origin of the C* 2 and C 2 H* is discussed. Finally, the achieved molecular vibrational temperature is estimated to be about 5400 ± 350 K

  10. H infinity controller design to a rigid-flexible satellite with two vibration modes

    International Nuclear Information System (INIS)

    De Souza, A G; De Souza, L C G

    2015-01-01

    The satellite attitude control system (ACS) design becomes more complex when the satellite structure has components like, flexible solar panels, antennas and mechanical manipulators. These flexible structures can interact with the satellite rigid parts during translational and/or rotational manoeuvre damaging the ACS pointing accuracy. Although, a well-designed controller can suppress such disturbances quickly, the controller error pointing may be limited by the minimum time necessary to suppress such disturbances thus affecting the satellite attitude acquisition. This paper deals with the rigid-flexible satellite ACS design using the H infinity method. The rigid-flexible satellite is represented by a beam connected to a central rigid hub at one end and free at the other one. The equations of motions are obtained considering small flexible deformations and the Euler-Bernoulli hypothesis. The results of the simulations have shown that the H-infinity controller was able to control the rigid motion and suppress the vibrations. (paper)

  11. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  12. An insight into the structure, vibrations, electronic and reactivity properties of the tautomers 1-(diaminomethylene)thiourea and 2-imino-4-thiobiuret

    Science.gov (United States)

    Arjunan, V.; Anitha, R.; Durgadevi, G.; Marchewka, M. K.; Mohan, S.

    2017-04-01

    The conformational analysis of 1-(diaminomethylene)thiourea (MTU) has been done to find out the more stable conformer. The more stable geometry of MTU and 2-imino-4-thiobiuret (ITB) are optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The molecules are not planar. The complete molecular structural parameters and thermodynamic properties of the optimised geometry have been determined. The molecule of MTU is not a planar but twisted. The MEP of MTU lies in the region from +1.175e × 10-2 to -1.175e × 10-2 while the total electron density spread between +6.371e × 10-2 and -6.371e × 10-2. The MEP of ITB distributed between +1.179e × 10-2 and -1.179e × 10-2 while the total electron density of ITB lies in the region +7.729e × 10-2 and -7.729e × 10-2. The energies of important MOs of the compound were also evaluated from DFT method. The LUMO shows that the nitrogen and sulphur atoms are the most nucleophilic attacking sites whereas the HOMO reveals that nitrogen, sulphur and carbon atoms are for the electrophilic substitutions. The vibrational frequencies of the fundamental modes of the compounds have been precisely assigned, analysed and the theoretical results were compared with the experimental wavenumbers. 1H and 13C NMR isotropic chemical shifts were determined and the assignments are compared with the experimental values. In MTU molecule, the n → π* transitions such as n(N5) → π*C4-S6 and n(N1) → π*C2-N3 interactions are strongly stabilised by 66.60 and 41.24 kcal mol-1, respectively. In the case of ITB compound, the stabilisation energy of lone pair donor orbital, n(N5) → σ*C4-S6 is 46.03 kcal mol-1. The dual descriptors Δfk, Δsk and Δωk values clearly indicate that the order of nucleophilic attack in MTU is S6 > N11 > N1 > N5 > N3 while in ITB the order follows as N1 > N11 > N5>S6 > N3.

  13. Does GaH5 exist?

    Science.gov (United States)

    Speakman, Lucas D.; Turney, Justin M.; Schaefer, Henry F.

    2005-11-01

    The existence or nonexistence of GaH5 has been widely discussed [N. M. Mitzel, Angew. Chem. Int. Ed. 42, 3856 (2003)]. Seven possible structures for gallium pentahydride have been systematically investigated using ab initio electronic structure theory. Structures and vibrational frequencies have been determined employing self-consistent field, coupled cluster including all single and double excitations (CCSD), and CCSD with perturbative triples levels of theory, with at least three correlation-consistent polarized-valence-(cc-pVXZ and aug-cc-pVXZ) type basis sets. The X˜A'1 state for GaH5 is predicted to be weakly bound complex 1 between gallane and molecular hydrogen, with Cs symmetry. The dissociation energy corresponding to GaH5→GaH3+H2 is predicted to be De=2.05kcalmol-1. The H-H stretching fundamental is predicted to be v =4060cm-1, compared to the tentatively assigned experimental feature of Wang and Andrews [J. Phys. Chem. A 107, 11371 (2003)] at 4087cm-1. A second Cs structure 2 with nearly equal energy is predicted to be a transition state, corresponding to a 90° rotation of the H2 bond. Thus the rotation of the hydrogen molecule is essentially free. However, hydrogen scrambling through the C2v structure 3 seems unlikely, as the activation barrier for scrambling is at least 30kcalmol-1 higher in energy than that for the dissociation of GaH5 to GaH3 and H2. Two additional structures consisting of GaH3 with a dihydrogen bond perpendicular to gallane (C3v structure 4) and an in-plane dihydrogen bond [Cs(III) structure 5] were also examined. A C3v symmetry second-order saddle point has nearly the same energy as the GaH3+H2 dissociation limit, while the Cs(III) structure 5 is a transition structure to the C3v structure. The C4v structure 6 and the D3h structure 7 are much higher in energy than GaH3+H2 by 88 and 103kcalmol-1, respectively.

  14. Vibration analysis of cooling system of upgraded PARR-1: (primary pumps)

    International Nuclear Information System (INIS)

    Ayazuddin, S.K.; Baig, R.; Pervez, S.

    1992-12-01

    During the conversion and up gradation of PARR-1, major changes were made in the cooling system of the reactor with the addition of new heat exchanger assemblies and cooling tower. It was therefore, planned to perform vibration analysis on the cooling system to check proper installation and investigate any abnormality in the operation. As a first step, vibration measurements was made on the primary pumps PW-P1 and PW-P2. Power spectral density (PSD) or frequency spectrum of the signal produced from an accelerometer placed on the pump motor assembly was analysed to identify faults which are commonly found in rotating and reciprocating machinery such as unbalance, shaft misalignment and bearing instability. The root mean square (RMS) of the signal was compared with the vibration criterion chart to determine the operating condition of the pump motor assembly. The procedure used for the analysis and faults detected in the primary pump-motor system are discussed. 9 figs. (author)

  15. Molecular structure, vibrational spectroscopic analysis (IR & Raman), HOMO-LUMO and NBO analysis of anti-cancer drug sunitinib using DFT method

    Science.gov (United States)

    Mıhçıokur, Özlem; Özpozan, Talat

    2017-12-01

    Oxindole and its derivatives have wide applications in different industries such as in synthetic & natural fibers, dyes for hair and plastic materials in addition to their biological importance. In the present study, one of the oxindole derivatives, N-(2-diethylaminoethyl)-5-[(Z)-(5-fluoro-2-oxo-1H-indol-3-ylidene)methyl]-2,4-dimethyl-1H-pyrrole-3-carboxamide (Sunitinib), which is used as an anti-cancer drug, was investigated in terms of structural, vibrational spectroscopic and theoretical analysis. The calculations have been performed for gaseous, aqueous and DMSO phases, respectively. Potential Energy Surface (PES) scan has been carrried out to obtain the most stable structures of all the phases of the title molecule using B3LYP/6-31G(d,p) level and the geometrical variations among them are discussed. The solvent effect for Sunitinib in aqueous and DMSO phases have been performed by means of the self-consistent recognition reaction field (SCRF) method as implemented in the integral equation formalism polarized continuum model (IEFPCM). On the other hand, NBO analysis has been carried out to understand probable hydrogen bonding sites and charge transfers. Additionally, the HOMO and the LUMO energies are calculated using B3LYP/6-31G(d,p) to determine the intra molecular charge transfers (ICT) within the molecule and the kinetic stabilities for each phases. The molecular electrostatic potential surface (MESP) has been plotted over the optimized structure to estimate the reactive sites of electrophilic and nucleophilic attacks regarding Sunitinib molecule. The potential energy distribution (PED) has been calculated using VEDA4 program and vibrational assignments of the experimental spectra (IR & Raman) have been elucidated by means of the calculated vibrational spectra. The observed vibrational spectra of Sunitinib is compared with the calculated spectra obtained by using B3LYP functional both with 6-31G(d,p) and 6-311++G(d,p) basis sets. Theoretical results

  16. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  17. Synthesis, crystal structure, vibrational spectra and theoretical calculations of quantum chemistry of a potential antimicrobial Meldrum's acid derivative

    Science.gov (United States)

    Campelo, M. J. M.; Freire, P. T. C.; Mendes Filho, J.; de Toledo, T. A.; Teixeira, A. M. R.; da Silva, L. E.; Bento, R. R. F.; Faria, J. L. B.; Pizani, P. S.; Gusmão, G. O. M.; Coutinho, H. D. M.; Oliveira, M. T. A.

    2017-10-01

    A new derivative of Meldrum's acid 5-((5-chloropyridin-2-ylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione (CYMM) of molecular formula C12H11ClN2O4 was synthesized and structurally characterized using single crystal X-ray diffraction technique. The vibrational properties of the crystal were studied by Fourier Transform infrared (FT-IR), Fourier Transform Raman (FT-Raman) techniques and theoretical calculations of quantum chemistry using Density functional theory (DFT) and Density functional perturbation theory (DFPT). A comparison with experimental spectra allowed the assignment of all the normal modes. The descriptions of the normal modes were carried by means of potential energy distribution (PED). Additionally, analysis of the antimicrobial activity and antibiotic resistance modulatory activity was carried out to evaluate the antibacterial potential of the CYMM.

  18. Resonant inelastic x-ray scattering and photoemission measurement of O2: Direct evidence for dependence of Rydberg-valence mixing on vibrational states in O 1s → Rydberg states

    Science.gov (United States)

    Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.

    2017-07-01

    High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.

  19. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  20. Vibrational spectra for hydrogenated amorphous semiconductors

    International Nuclear Information System (INIS)

    Kamitakahara, W.A.; Bouchard, A.M.; Biswas, R.; Gompf, F.; Suck, J.B.

    1990-01-01

    Hydrogen vibration spectra have been measured by neutron scattering for several amorphous semiconductor materials, including a-Ge:H and a-SiC:H samples containing about 10 at. % H. The data for a-Ge:H are compared in detail with the results of realistic computer simulations

  1. Overexpressed Calponin3 by Subsonic Vibration Induces Neural Differentiation of hUC-MSCs by Regulating the Ionotropic Glutamate Receptor.

    Science.gov (United States)

    Kim, Hyun-Jung; Kim, Jin-Hee; Song, Yeo-Ju; Seo, Young-Kwon; Park, Jung-Keug; Kim, Chan-Wha

    2015-09-01

    In this study, we used proteomics to investigate the effects of sonic vibration (SV) on mesenchymal stem cells derived from human umbilical cords (hUC-MSCs) during neural differentiation to understand how SV enhances neural differentiation of hUC-MSCs. We investigated the levels of gene and protein related to neural differentiation after 3 or 5 days in a group treated with 40-Hz SV. In addition, protein expression patterns were compared between the control and the 40-Hz SV-treated hUC-MSC groups via a proteomic approach. Among these proteins, calponin3 (CNN3) was confirmed to have 299 % higher expression in the 40-Hz SV stimulated hUC-MSCs group than that in the control by Western blotting. Notably, overexpression of CNN3-GFP in Chinese hamster ovary (CHO)-K1 cells had positive effects on the stability and reorganization of F-actin compared with that in GFP-transfected cells. Moreover, CNN3 changed the morphology of the cells by making a neurite-like form. After being subjected to SV, messenger RNA (mRNA) levels of glutamate receptors such as PSD95, GluR1, and NR1 as well as intracellular calcium levels were upregulated. These results suggest that the activity of glutamate receptors increased because of CNN3 characteristics. Taken together, these results demonstrate that overexpressed CNN3 during SV increases expression of glutamate receptors and promotes functional neural differentiation of hUC-MSCs.

  2. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates.

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M; Bačić, Zlatko

    2018-04-14

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H 2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H 2 in the v=0 and v=1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H 2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H 2 inside a hydrate domain is assumed to be pairwise additive. The H 2 -H 2 O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H 2 , v=0 or v=1, is derived from the high-quality ab initio full-dimensional (9D) PES of the H 2 -H 2 O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H 2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H 2 change very little with the domain size, unlike the H 2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H 2 O molecules in the first three complete hydration shells around H 2 .

  3. The effect of the condensed-phase environment on the vibrational frequency shift of a hydrogen molecule inside clathrate hydrates

    Science.gov (United States)

    Powers, Anna; Scribano, Yohann; Lauvergnat, David; Mebe, Elsy; Benoit, David M.; Bačić, Zlatko

    2018-04-01

    We report a theoretical study of the frequency shift (redshift) of the stretching fundamental transition of an H2 molecule confined inside the small dodecahedral cage of the structure II clathrate hydrate and its dependence on the condensed-phase environment. In order to determine how much the hydrate water molecules beyond the confining small cage contribute to the vibrational frequency shift, quantum five-dimensional (5D) calculations of the coupled translation-rotation eigenstates are performed for H2 in the v =0 and v =1 vibrational states inside spherical clathrate hydrate domains of increasing radius and a growing number of water molecules, ranging from 20 for the isolated small cage to over 1900. In these calculations, both H2 and the water domains are treated as rigid. The 5D intermolecular potential energy surface (PES) of H2 inside a hydrate domain is assumed to be pairwise additive. The H2-H2O pair interaction, represented by the 5D (rigid monomer) PES that depends on the vibrational state of H2, v =0 or v =1 , is derived from the high-quality ab initio full-dimensional (9D) PES of the H2-H2O complex [P. Valiron et al., J. Chem. Phys. 129, 134306 (2008)]. The H2 vibrational frequency shift calculated for the largest clathrate domain considered, which mimics the condensed-phase environment, is about 10% larger in magnitude than that obtained by taking into account only the small cage. The calculated splittings of the translational fundamental of H2 change very little with the domain size, unlike the H2 j = 1 rotational splittings that decrease significantly as the domain size increases. The changes in both the vibrational frequency shift and the j = 1 rotational splitting due to the condensed-phase effects arise predominantly from the H2O molecules in the first three complete hydration shells around H2.

  4. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  5. RESCUE: An artificial neural network tool for the NMR spectral assignment of proteins

    International Nuclear Information System (INIS)

    Pons, J.L.; Delsuc, M.A.

    1999-01-01

    The assignment of the 1 H spectrum of a protein or a polypeptide is the prerequisite for advanced NMR studies. We present here an assignment tool based on the artificial neural network technology, which determines the type of the amino acid from the chemical shift values observed in the 1 H spectrum. Two artificial neural networks have been trained and extensively tested against a non-redundant subset of the BMRB chemical shift data bank [Seavey, B.R. et al. (1991) J. Biomol. NMR, 1, 217-236]. The most promising of the two accomplishes the analysis in two steps, grouping related amino acids together. It presents a mean rate of success above 80% on the test set. The second network tested separates down to the single amino acid; it presents a mean rate of success of 63%. This tool has been used to assist the manual assignment of peptides and proteins and can also be used as a block in an automated approach to assignment. The program has been called RESCUE and is made publicly available at the following URL: http://www.infobiosud.univ-montp1.fr/rescue

  6. ESR measurement of the concentration of vibrationally excited hydrogen and deuterium molecules

    International Nuclear Information System (INIS)

    Gershenzon, Yu.M.; Ivanov, A.V.; Il'in, S.D.; Kucheryavyi, S.I.; Rozenshtein, V.B.

    1988-01-01

    A method is described for measuring the concentration of vibrationally excited H 2 and D 2 molecules using an ESR microwave spectrometer. The essence of the method is the titration of H 2 (v = 1) and D 2 (v = 1) with D and H atoms and measurement of the concentrations of the titration products H and D, respectively. Stoichiometric titration coefficients were determined in the form of proportionality coefficients between the titration signals Δ[H], Δ[D] and the concentrations of H 2 (v = 1), D 2 (v = 1)

  7. Control of pipe vibrations; Schwingungsminderung bei Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Sinambari, G.R. [FH Bingen, Fachrichtung Umweltschutz, und IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany); Thorn, U. [IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany)

    2005-06-01

    Following commissioning of a new vacuum system for the refinery of MiRO Mineraloelraffinerie Oberrhein GmbH and Co. KG, vibrations occurred in the furnace exhaust pipes. As these had to be regarded as critical for the fatigue strength of the pipes, the pipes' vibration response in the critical frequency range was investigated immediately by means of a vibration analysis, and appropriate measures for vibration control were elaborated. All investigations, and the installation of the hydraulic vibration dampers, took place with the system operating. The effectiveness of the measures taken was checked by means of measurements following installation. The measures succeeded in attenuating the vibrations to a level at which, empirically, damage need no longer be expected. This paper illustrates the procedure for developing the vibration control measures and the essential results of the investigations. (orig.)

  8. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  9. Analysis of molecular structure and vibrational spectra of hexadecyl (cetyl) trimethylammonium brode (CTAB)

    International Nuclear Information System (INIS)

    Goekce, H.; Bahceli, S.

    2010-01-01

    FT-IR and Raman spectra of CTAB [C 1 6H 3 3N(CH 3 ) 3 ] + Br - have been experimentally recorded in the region 550-4000 cm - 1 and 400-3100 cm - 1, respectively. The molecular geometry and vibrational frequencies of CTAB in the ground state have been calculated by using ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with the 6-31+G(d,p) basis set. The obtained optimized geometric parameters (bond lengths and bond angles) and vibrational frequencies were in very good agreement with the experimental data. The comparisons of the observed fundamental vibrational frequencies and calculated results for the fundamental vibrational frequencies of CTAB shows that the scaled B3LYP method is superior compared to the scaled HF method.

  10. Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations

    Science.gov (United States)

    Zhu, Jin; Zhang, Wei

    2015-04-01

    Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever

  11. Mechanochemical synthesis of 1-stanna-2,3-dicarba-closo-dodecaborane SnB9C2H11

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.; Solomatina, L.Ya.

    1990-01-01

    The possibility of synthesis of 1-stanna-2, 3-dicarba-dodecaborane (2), SnB 9 C 2 H 11 by the mechanical activation of solid mixtures of CsB 9 C 2 H 12 , NaH and SnCl 2 has been studied. These solid phase mechano-chemical reactions were performed in vacuum vibration mills without any liquid solvents at room temperature. Crystalline SnB 9 C 2 H 11 was produced by sublimation in vacuum at 140 deg C. Yioeld of the sublimate was 3-6%

  12. Quantum dynamics of small H2 and D2 clusters in the large cage of structure II clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bačić, Zlatko

    2008-12-01

    We report diffusion Monte Carlo (DMC) calculations of the quantum translation-rotation (T-R) dynamics of one to five para-H2 (p-H2) and ortho-D2 (o-D2) molecules inside the large hexakaidecahedral (51264) cage of the structure II clathrate hydrate, which was taken to be rigid. These calculations provide a quantitative description of the size evolution of the ground-state properties, energetics, and the vibrationally averaged geometries, of small (p-H2)n and (o-D2)n clusters, n=1-5, in nanoconfinement. The zero-point energy (ZPE) of the T-R motions rises steeply with the cluster size, reaching 74% of the potential well depth for the caged (p-H2)4. At low temperatures, the rapid increase of the cluster ZPE as a function of n is the main factor that limits the occupancy of the large cage to at most four H2 or D2 molecules, in agreement with experiments. Our DMC results concerning the vibrationally averaged spatial distribution of four D2 molecules, their mean distance from the cage center, the D2-D2 separation, and the specific orientation and localization of the tetrahedral (D2)4 cluster relative to the framework of the large cage, agree very well with the low-temperature neutron diffraction experiments involving the large cage with the quadruple D2 occupancy.

  13. Molecular Structure And Vibrational Frequencies of Tetrafluoro isophthalonitrile By Hartree-Fock And Density Functional Theory Calculations

    International Nuclear Information System (INIS)

    Ayikoglu, A.

    2008-01-01

    The molecular structure, vibrational frequencies and corresponding vibrational assignments of tetrafluoro isophthalonitrile (TFPN) in the ground state have been calculated using the Hartree-Fock (HF) and density functional methods (B3LYP) with 6-311++G (d, p) basis set. The calculations were utilized in the CS symmetry of TFPN. The obtained vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) were seen to be in good agreement with the experimental data. The comparison of the observed and calculated results showed that the B3LYP method is superior to the HF method for both the vibrational frequencies and geometric parameters

  14. Crystal structure and vibrational spectra of melaminium arsenate

    Science.gov (United States)

    Anbalagan, G.; Marchewka, M. K.; Pawlus, K.; Kanagathara, N.

    2015-01-01

    The crystals of the new melaminium arsenate (MAS) [C3H7N6+ṡH2AsO4-] were obtained by the slow evaporation of an aqueous solution at room temperature. Single crystal X-ray diffraction analysis reveals that the crystal belongs to triclinic system with centro symmetric space group P-1. The crystals are built up from single protonated melaminium residues and single dissociated arsenate H2AsO4- anions. The protonated melaminium ring is almost planar. A combination of ionic and donor-acceptor hydrogen-bond interactions linking together the melaminium and arsenate residues forms a three-dimensional network. Vibrational spectroscopic analysis is reported on the basis of FT-IR and FT-Raman spectra recorded at room temperature. Hydrogen bonded network present in the crystal gives notable vibrational effect. DSC has also been performed for the crystal shows no phase transition in the studied temperature range (113-293 K).

  15. Vibrational frequencies and structural investigation of (M(CN)4)2- (M Cd, Hg and Zn) ions

    International Nuclear Information System (INIS)

    Gurkan, Keshan; Tomas, Polivka; Cemal, Parlak; Mustafa, Shenyel

    2011-01-01

    The normal mode frequencies and corresponding vibrational assignments of tetracyanometallate (II) ions ([M(CN) 4 ] 2 -, M = Cd, Hg and Zn) have been theoretically examined by means of standard quantum chemical techniques. All normalmodes have been successfully assigned to one of six types of motion utilizing the T d symmetry of M(CN) 4 2 -. Calculations have been performed at the Becke-3-Lee-Yang-Parr (B3LYP) density functional method using the Lanl2dz effective core basis set. Furthermore, reliable vibrational assignments have been made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of the title ions have been predicted together with their infrared intensities and Raman activities. Theoretical results have been successfully compared against available experimental data

  16. Collisional energy transfer between highly excited vibrational levels of K2 (11Σu+, V=46∼61) and H2

    International Nuclear Information System (INIS)

    Zhang Liping; Cai Qin; Luan Nannan; Dai Kang; Shen Yifan

    2011-01-01

    Using the CARS (Coherent Anti-stokes Raman Spectroscopy) detection technique, the electronic-to-rovibrational levels energy transfer between electronically excited K 2 (which is in the state of 1 1 ∑ u + , V=46∼61) and H 2 has been investigated. The scanned CARS spectra reveals that H 2 molecules are produced only at the V=1, J=2 and V=2, J=0, 1, 2 rovibrational levels during energy transfer processes. From scanned CARS spectral peaks the population ratios are obtained. The n 1 /n 4 9 n 2 /n 4 , and n 3 /n 4 are 3.3±0.5, 2.2±0.3 and 2.0±0.3, respectively, where n 1 , n 2 , n 3 and n 4 represent the number densities of H 2 at rovibrational levels (2, 0), (2, 1), (2, 2) and (1, 2), respectively. The population ratios indicate that the H 2 molecules produced by the energy transfer process are 88% populated at the V=2 level and 12% at V=1. The relative fractions (, , ) of average energy disposal are derived as (0.53, 0.01, 0.46), having major vibrational and translational energy release. Through simple kinetic model at the experimental conditions of T=573 K and P(H 2 ) =5 X 10 3 Pa, collisional transfer rate coefficients k 12 =(3.3±0.7) X 10 -14 and k 2 =(1.4±0.3) X 10 -14 cm 3 s -1 have been obtained. (authors)

  17. Studies on 2-(toluene-4-sulfonylamino)-benzoic acid: structure spectroscopic properties

    International Nuclear Information System (INIS)

    Tarcan, E.; Atalay, Y.; Guenay, N.

    2010-01-01

    The molecular geometry, vibrational (IR) spectrum, vibrational frequencies and 1 H and 1 3C NMR chemical shifts were carried out of 2-(toluene-4-sulfonylamino)-benzoic acid with ab initio and density functional computations. On the basis of the comparison between calculated and experimental results assignments of fundamental vibrational modes are examined. The X-ray geometry, experimental frequencies and chemical shifts are compared with the results of our theoretical calculations

  18. Quantum Monte Carlo for vibrating molecules

    International Nuclear Information System (INIS)

    Brown, W.R.; Lawrence Berkeley National Lab., CA

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H 2 O and C 3 vibrational states, using 7 PES's, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H 2 O and C 3 . In order to construct accurate trial wavefunctions for C 3 , the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C 3 the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C 3 PES's suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies

  19. Toward the first study of chemical reaction dynamics of Mu with vibrational-state-selected reactants in the gas phase: The Mu+H2*(v=1) reaction by stimulated Raman pumping

    International Nuclear Information System (INIS)

    Bakule, Pavel; Sukhorukov, Oleksandr; Matsuda, Yasuyuki; Pratt, Francis; Gumplinger, Peter; Momose, Takamasa; Torikai, Eiko; Fleming, Donald

    2009-01-01

    Stimulated Raman pumping (SRP) is used to produce H 2 in its first vibrational state, in order to measure, for the first time, the Mu+H 2 *(v=1)→MuH+H reaction rate at room temperature, as a prototypical example of new directions in gas-phase muonium chemistry, utilizing the pulsed muon beam and a new dedicated laser system at the RIKEN/RAL Laboratory. Reported here is a preliminary result but the final results are expected to provide definitive new tests of reaction rate theory on the highly accurate H 3 potential energy surface. The major difficulty in this experiment, compared to the standard SRP process, is to ensure a homogeneous excitation over a volume of several cm 3 and of sufficient intensity to ensure a measurable Mu relaxation rate. The techniques used to accomplish this are described. The experiment utilizes the 2nd harmonic output of a Nd:YAG laser (532 nm) with pulse energies up to 500 mJ at a repetition rate of 25 Hz. Different optical setups have been constructed and tested in order to optimize the number of laser-pumped H 2 molecules and their overlap with the stopping profile of the muon beam in the reaction cell (total volume ∼100x40x4mm 3 ). The first result of this experiment gives a measured relaxation rate due to laser excitation of λ*=0.085±0.051μs -1 , consistent with theory but limited by both low statistics and particularly a high background relaxation rate.

  20. Acute effects of a vibration-like stimulus during knee extension exercise.

    Science.gov (United States)

    Mileva, Katya N; Naleem, Asif A; Biswas, Santonu K; Marwood, Simon; Bowtell, Joanna L

    2006-07-01

    This study was conducted to test whether a low-frequency vibration-like stimulus (rapid variable resistance) applied during a single session of knee extension exercise would alter muscle performance. Torque, knee joint angle, EMG activity of rectus femoris (RF) and vastus lateralis (VL) muscles, and VL muscle oxygenation status (near-infrared spectroscopy) were recorded during metronome-guided knee extension exercise. Nine healthy adults completed four trials exercising at contraction intensities of 35% (L) or 70% (H) of one-repetition maximum (1RM) in control (no vibration, Vb-) or vibrated condition (superimposed 10-Hz vibration-like stimulus, Vb+). Maximum voluntary contraction and 1RM were tested pre- and postexercise. During 1RM tests, muscle dynamic strength (P=0.02) and power (P=0.05) were significantly higher during vibrated rather than nonvibrated trials, and strength was significantly higher post- than preexercise (P=0.002), except during LVb- trial. Median spectral frequency of VL and RF EMG activity was significantly higher during postexercise than preexercise 1RM test in the vibration trials but unchanged in the control trials (Pvibration superimposition tended to speed muscle deoxygenation rate (P=0.065, 36% effect size) particularly during L trials. Vibration superimposition during knee extension exercise at low contraction intensity enhanced muscle performance. This effect appears to result from adaptation of neural factors such as motor unit excitability (recruitment and firing frequency, conduction velocity of excitation) in response to sensory receptor stimulation. Muscle vibration may increase the training effects derived from light-to-moderate exercise.

  1. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  2. Vibrationally enhanced associative photodesorption of H{sub 2} (D{sub 2}) from Ru(0001). Quantum and classical approaches

    Energy Technology Data Exchange (ETDEWEB)

    Vazhappilly, Tijo Joseph

    2008-04-15

    This thesis investigates the femtosecond laser induced associative photodesorption of hydrogen, H{sub 2}, and deuterium, D{sub 2}, from a ruthenium metal surface. One of the goals of the present thesis is to suggest, on the basis of theoretical simulations, strategies to control/enhance the photodesorption yield from Ru(0001). For this purpose, we suggest a hybrid scheme to control the reaction, where the adsorbate vibrations are initially excited by an infrared (IR) pulse, prior to the vis pulse. Both adiabatic and non-adiabatic representations for photoinduced desorption problems are employed here. The adiabatic representation is realized within the classical picture using Molecular Dynamics (MD) with electronic frictions. In a quantum mechanical description, non-adiabatic representations are employed within open-system density matrix theory. The time evolution of the desorption process is studied using a two-mode reduced dimensionality model with one vibrational coordinate and one translational coordinate of the adsorbate. The ground and excited electronic state potentials, and dipole function for the IR excitation are taken from first principles. The IR driven vibrational excitation of adsorbate modes with moderate efficiency is achieved by (modified) {pi}-pulses or/and optimal control theory. The fluence dependence of the desorption reaction is computed by including the electronic temperature of the metal calculated from the two-temperature model. We then employed the IR+vis strategy in both models. Here, we found that vibrational excitation indeed promotes the desorption of hydrogen and deuterium. (orig.)

  3. Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule.

    Science.gov (United States)

    Duchko, A N; Bykov, A D

    2015-10-21

    Large-order Rayleigh-Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H2CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm(-1)), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm.

  4. Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, and trimethylgermyl derivatives of 3,3-dimethylcyclopropene . VI: Application of observed trends to stannyl derivatives

    Science.gov (United States)

    Panchenko, Yu. N.; De Maré, G. R.; Abramenkov, A. V.; Baird, M. S.; Tverezovsky, V. V.; Nizovtsev, A. V.; Bolesov, I. G.

    2004-09-01

    The effects of substitution of X=C by Si or Ge in X(CH 3) 3 moieties attached to the formal double bond of 3,3-dimethylcyclopropene are examined. Regularities in observed trends of vibrational frequencies implicating the moieties containing the X atom, as the X atomic mass is increased, are extrapolated to X=Sn. The results of this extrapolation made it possible to assign the known experimental vibrational frequencies of 3,3-dimethyl-1-(trimethylstannyl)cyclopropene and 3,3-dimethyl-1,2-bis(trimethylstannyl)cyclopropene.

  5. Dissociative ionization of liquid water induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H + and OH - ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H 2 O, the quantum yield at 283 +- 1 K varies from 2 x 10 -9 to 4 x 10 -5 for wave numbers between 7605 and 18140 cm -1 . In D 2 O, the dependence of quantum yield on wavelength has the same qualitative shape as for H 2 O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D 2 O than for excitation of D 2 O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H 2 O and with isotopic composition at 25 +- 1 0 C

  6. New interpretation of Petty and Moran's ion-impact Ne--H+3 experiment

    International Nuclear Information System (INIS)

    Carney, G.D.

    1979-01-01

    The calculated energy intervals for breathing and bending vibrations of H + 3 given by Carney and Porter (2) agree with the observed ion-impact spectroscopy experiments of petty and Moran (1). The vibrational anharmonicity in H + 3 and rotational excitation processes are discussed

  7. Vibration characteristics of a PWR fuel rod supported by optimized H type spacer grids

    International Nuclear Information System (INIS)

    Choi, M. H.; Kang, H. S.; Yoon, K. H.; Kim, H. K.; Song, K. N.

    2002-01-01

    The spacer grids are one of the main structural components in the fuel assembly, which supports and protects the fuel rods from the external loads by seismic and coolant flow. In this study, a modal test and a FE vibration analysis using ABAQUS are performed on a PWR dummy fuel rod of 3.847 m which is continuously supported by eight Optimized H type spacer grids. The experimental results agree with previous works that the natural frequencies decrease, while the amplitudes increase, with the increase of the excitation force. The force levels showing the maximum displacement of 0.2 mm are in the range from 0.2 N to 0.3 N, and at the same force range the fundamental frequencies are measured around 42.0 Hz, at which the relatively big displacements are observed at the 7th span. The results from the modal tests and the FE analyses are compared by both Modal Assurance Criteria (MAC) values and mode shapes. The MAC values at 2nd, 4th, and 7th mode are below 50%. It is believed that the reason of the low MACs at those modes is that the vibration amplitudes of the modes are more distorted by the excitation force than those of the other modes

  8. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    Science.gov (United States)

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Normal co-ordinate analysis of 1, 8-dibromooctane

    Science.gov (United States)

    Singh, Devinder; Jaggi, Neena; Singh, Nafa

    2010-02-01

    The organic compound 1,8-dibromooctane (1,8-DBO) exists in liquid phase at ambient temperatures and has versatile synthetic applications. In its liquid phase 1,8-DBO has been expected to exist in four most probable conformations, with all its carbon atoms in the same plane, having symmetries C 2h , C i , C 2 and C 1 . In the present study a detailed vibrational analysis in terms of assignment of Fourier transform infrared (FT-IR) and Raman bands of this molecule using normal co-ordinate calculations has been done. A systematic set of symmetry co-ordinates has been constructed for this molecule and normal co-ordinate analysis is carried out using the computer program MOLVIB. The force-field transferred from already studied lower chain bromo-alkanes is subjected to refinement so as to fit the observed infrared and Raman frequencies with those of calculated ones. The potential energy distribution (PED) has also been calculated for each mode of vibration of the molecule for the assumed conformations.

  10. Effects of whole-body vibration training on explosive strength and postural control in young female athletes.

    Science.gov (United States)

    Fort, Azahara; Romero, Daniel; Bagur, Caritat; Guerra, Myriam

    2012-04-01

    This study aimed to evaluate the effectiveness of a whole-body vibration training program to improve neuromuscular performance in young elite female athletes. Twenty-three women basketball players (14-18 years old) were randomly assigned to a control group (CG, n = 11) or to a whole-body vibration group (WBVG, n = 12). During the study period, both groups continued their usual training program, but the WBVG also underwent a 15-week vibration training program. We analyzed the countermovement jump test (CMJ), the 1-leg hop test for the right leg and for the left leg, and the single-limb standing balance for both legs and with eyes open and closed at 3 time points: before training (T1), after an 8-week training period (T2), and after a further 7-week training period (T3). Compared with the CG, CMJ increased significantly in the WBVG from T1 to T2 (6.47%, p training program improves explosive strength and postural stability in adolescent female basketball players.

  11. Vibrations of wind power plants; Schwingungen von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the meeting of the department vibration engineering of the Association of German Engineers (Duesseldorf, Federal Republic of Germany) between 3rd and 4th February, 2010 in Hanover (Federal Republic of Germany) the following lectures are presented: (1) Reduction of forced strengths generated by wagging and snaking of the rotor in the power strain of wind power plants (F. Mitsch); (2) Reduction of vibrations at wind power plants by means of active additional systems (S. Katz, S. Pankoke, N. Loix); (3) Reduction of vibrations by means of balancing and alignment (E. Becker, M. Kenzler); (4) Active absorber for reducing tonal emissions of vibration at wind power plants (R. Neugebauer, M. Linke, H. Kunze, M. Ulrich); (5) Control structures for damping torsion vibrations and peak loads in the power strain of wind power converters (C. Sourkounis); (6) Possibilities of a non-contact investigation of vibrations at wind power plants (R. Behrendt, E. Reimers, H. Wiegers); (7) Influences on the loadability of CMS statements (R. Wirth); (8) Recording modal structural properties with sensor grids and methods of operational modal analysis (A. Friedmann, D. Mayer, M. Koch, M. Kauba, T. Melz); (9) Early failure detection of damages of roller bearings in wind power gear units with variable speed (B. Hacke, G. Poll); (10) Condition monitoring in wind power plants - structure monitoring and life time monitoring of wind power plants (SCMS and LCMS) (H. Lange); (11) Development of a model-based structural health monitoring system for condition monitoring of rotor blades (C. Ebert, H. Friedmann, F.O. Henkel, B. Frankenstein, L. Schubert); (12) Efficient remote monitoring at wind power plants by means of an external diagnosis centre (G. Ceglarek); (13) Accurate turbine modelling at component and assembly level for durability and acoustic analysis (D. v. Werner, W. Hendricx); (14) Possibilities of the investigation of the dynamic behaviour of power strains in wind power plants by

  12. The Influence of Whole-Body Vibration on Creatine Kinase Activity and Jumping Performance in Young Basketball Players

    Science.gov (United States)

    Fachina, Rafael; da Silva, Antônio; Falcão, William; Montagner, Paulo; Borin, João; Minozzo, Fábio; Falcão, Diego; Vancini, Rodrigo; Poston, Brach; de Lira, Claudio

    2013-01-01

    Purpose: To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. Method: Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively)…

  13. Ion-molecule interactions of biological importance. A vibrational spectroscopic study of magnesium complexes with hydroxylated quinones; Interactions ions-molecules d'interet biologique. Etude par spectrometrie de vibrations de la complexation du magnesium avec des molecules quinoniques hydroxylees

    Energy Technology Data Exchange (ETDEWEB)

    Kirszenbaum, Marek

    1976-06-14

    Luteoskyrin and rugulosin are two naturally occurring yellow pigments with hydroxylated bis-anthraquinonic structures. They cause serious liver disorders in man due to the formation of complexes of the type pigment-Mg{sup 2+}-DNA. In order to elucidate the structure of these complexes we have studied the vibrational spectra of some model systems, namely 1-hydroxy- and 1,4-dihydroxyanthraquinone, their magnesium chelate complexes, and a series of simpler complexes as the acetylacetonates of some divalent metals. Complete vibrational assignment are proposed for anthraquinone-9,10, the two hydroxylated and deureroxylated derivatives and their magnesium complexes. The substitution of {sup 26}Mg in place of {sup 24}Mg in these complexes enabled us to assign the Mg-O vibrations; their number corresponds to a hexa-coordinated metal in the acetylacetonate case and to a tetra-coordinated structure in the anthraquinone-olates complexes. The position of the ν C=0 and ν C-0 vibrations bands in the complexes shows that the bonds in the chelated ring of Mg(1-O-AQ){sub 2} retains their single and double bond characteristic whereas in the CMg(1,4-O{sub 2},-AQ){sub n} a resonating structure appears in the ring. The study of the IR and R spectra of the complexes enabled a tetrahedral structure to be proposed for the oxygens around the magnesium. Finally it was noted that the Mg-O bonds possessed a high degree of covalent character. (author) [French] La luteoskyrine et la rugulosine, deux pigments jaunes de structure de bis-anthraquinones hydroxylees, provoquent des troubles hepatiques graves par la formation des complexes pigment-Mg{sup 2+}-ADN. Dans le but d'eclaircir la structure de ces complexes nous avons etudie, par spectrometrie de vibrations, les systemes-modeles suivants: la 1-hydroxy- et la 1,4-dihydroxyanthraquinones, leurs complexes magnesies et une serie des complexes plus simples, tels que les acetylacetonates. de metaux divalents. Nous avons propose une attribution

  14. Dynamics of H+ + CO at E(Lab) = 30 eV.

    Science.gov (United States)

    Stopera, Christopher; Maiti, Buddhadev; Grimes, Thomas V; McLaurin, Patrick M; Morales, Jorge A

    2012-02-07

    , which are quantitatively correct for v(f) = 2, but under(over)estimated for v(f) = 0(1). Discrepancies in some H(+) + CO SLEND vibrational properties, not observed in H(+) + H(2) and H(+) + N(2) SLEND results, are attributed to the moderately overestimated SLEND vibrational energy through its effect upon the canonical CS probabilities. Correction of that energy to its experimental values produces a remarkable improvement in the average vibrational excitation probabilities. Ways to obtain more accurate vibrational properties with higher-level versions of electron nuclear dynamics are discussed.

  15. Vibrational, NMR and quantum chemical investigations of acetoacetanilde, 2-chloroacetoacetanilide and 2-methylacetoacetanilide.

    Science.gov (United States)

    Arjunan, V; Kalaivani, M; Senthilkumari, S; Mohan, S

    2013-11-01

    The vibrational assignment and analysis of the fundamental modes of the compounds acetoacetanilide (AAA), 2-chloroacetoacetanilide (2CAAA) and 2-methylacetoacetanilide (2MAAA) have been performed. Density functional theory studies have been carried out with B3LYP method utilising 6-311++G(**) and cc-pVTZ basis sets to determine structural, thermodynamic and vibrational characteristics of the compounds and also to understand the influence of chloro and methyl groups on the characteristic frequencies of amide (CONH) group. Intramolecular hydrogen bond exists in acetoacetanilide and o-substituted acetoacetanilide molecules and the N⋯O distance is found to be around 2.7Å. The (1)H and (13)C nuclear magnetic resonance chemical shifts of the molecules were determined and the same have been calculated using the gauge independent atomic orbital (GIAO) method. The energies of the frontier molecular orbitals have been determined. In AAA, 2CAAA and 2MAAA molecules, the nN→πCO(∗) interaction between the nitrogen lone pair and the amide CO antibonding orbital gives strong stabilization of 64.75, 62.84 and 64.18kJmol(-1), respectively. The blue shift in amide-II band of 2MAAA is observed by 45-50cm(-1) than that of AAA. The steric effect of ortho methyl group significantly operating on the NH bond properties. The amide-III, the CN stretching mode of methyl and chloro substituted acetoacetanilide compounds are not affected by the substitution while the amide-V band, the NH out of plane bending mode of 2-chloroacetoacetanilide compound is shifted to a higher frequency than that of AAA. The substituent chlorine plays significantly and the blue shift in o-substituted compounds than the parent in the amide-V vibration is observed. The amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA are significantly raised than that of AAA. A blue shift of amide-VI, CO out of plane bending modes of 2MAAA and 2CAAA than AAA is observed. Copyright © 2013 Elsevier B.V. All rights

  16. Structural, vibrational and nuclear magnetic resonance investigations of 4-bromoisoquinoline by experimental and theoretical DFT methods.

    Science.gov (United States)

    Arjunan, V; Thillai Govindaraja, S; Jayapraksh, A; Mohan, S

    2013-04-15

    Quantum chemical calculations of energy, structural parameters and vibrational wavenumbers of 4-bromoisoquinoline (4BIQ) were carried out by using B3LYP method using 6-311++G(**), cc-pVTZ and LANL2DZ basis sets. The optimised geometrical parameters obtained by DFT calculations are in good agreement with electron diffraction data. Interpretations of the experimental FTIR and FT-Raman spectra have been reported with the aid of the theoretical wavenumbers. The differences between the observed and scaled wavenumber values of most of the fundamentals are very small. The thermodynamic parameters have also been computed. Electronic properties of the molecule were discussed through the molecular electrostatic potential surface, HOMO-LUMO energy gap and NBO analysis. To provide precise assignments of (1)H and (13)CNMR spectra, isotropic shielding and chemical shifts were calculated with the Gauge-Invariant Atomic Orbital (GIAO) method. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Vibrational spectra of monouranates and uranium hydroxides as reaction products of alkali with uranyl nitrate

    International Nuclear Information System (INIS)

    Komyak, A.I.; Umrejko, D.S.; Posledovich, M.R.

    2013-01-01

    Vibrational (IR absorption and Raman scattering) spectra for the reaction products of uranyl nitrate hexahydrate with NaOH and KOH have been studied. As a result of exchange reactions, the uranyl-ion coordinated nitrate groups are completely replaced by hydroxyl ions and various uranium and uranyl oxides or hydrates are formed. An analysis of the vibrations has been performed in terms of the frequencies of a free or coordinated nitrate group; comparison with the vibrations of the well-known uranium oxides and of the uranyl group UO 2 2+ has been carried out. Vibrational spectra of a free nitrate group are characterized by four vibrational frequencies 1050, 724, 850, and 1380 cm -1 , among which the frequencies at 724 and 1380 cm -1 are doubly degenerate and attributed to E’ symmetry of the point group D 3h . When this group is uranium coordinated, its symmetry level is lowered to C 2v , all vibrations of this group being active both in Raman and IR spectra. The doubly degenerate vibrations are exhibited as two bands and a frequency of the out-of-plane vibration is lowered to 815 cm -1 . (authors)

  18. Autoionizing np Rydberg states of H2

    International Nuclear Information System (INIS)

    Xu, E.Y.; Helm, H.; Kachru, R.

    1989-01-01

    We report a study of the autoionizing np Rydberg states near the lowest ionization threshold of H 2 . Using resonant two-photon excitation, intermediate states in specific rotovibrational levels in the double well, E,F 1 Σ/sub g/ + states are prepared. Then, a second, tunable laser is used to photoionize via excitation of the np Rydberg states. Because of the stepwise laser excitation scheme employed in our experiment the photoionization occurs from states with vibrational wave functions very similar to those of the H 2 + core. As a consequence, the autoionizing states appear as nearly symmetric resonances, rather than the highly asymmetric Beutler-Fano profiles observed from the direct photoexcitation from the ground state of H 2 . Our experiments show that the J = 1 np states are broader than the J = 3 np states converging to the same limit, suggesting that the two states autoionize into the epsilon-cp and epsilon-cf continuum, respectively. We compare our observations with a theoretical analysis using a multichannel quantum defect theory. The J = 1 states reveal the profound effect caused by the perturbation of the autoionizing Rydberg series converging to the lowest vibrational and rotational state of H 2 + by low-n states converging to higher vibrational states of the H 2 -ion core

  19. Synthesis, structural and vibrational investigation on 2-phenyl-N-(pyrazin-2-yl)acetamide combining XRD diffraction, FT-IR and NMR spectroscopies with DFT calculations.

    Science.gov (United States)

    Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A

    2015-01-25

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  1. Forced vibration tests on the reactor building of a nuclear power station, 1

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Tsunoda, Tomohiko; Wakamatsu, Kunio; Kaneko, Masataka; Nakamura, Mitsuru; Kunoh, Toshio; Murahashi, Hisahiro

    1988-01-01

    Tsuruga Unit No.2 Nuclear Power Station of the Japan Atomic Power Company is the first PWR-type 4-loop plant constructed in Japan with a prestressed concrete containment vessel (PCCV). This report describes forced vibration tests carried out on the reactor building of this plant. The following were obtained as results: (1) The results of the forced vibration tests corresponded well on the whole with design values. (2) The vibration characteristics of the PCCV observed in the tests after prestressing are no different from the ones before prestressing. This shows that the vibration properties of the PCCV are practically independent of prestressing loads. (3) A seismic response analysis of the design basis earthquake was made on the design model reflecting the test results. The seismic safety of the plant was confirmed by this analysis. (author)

  2. The millimeter-wave spectrum of highly vibrationally excited SiO

    International Nuclear Information System (INIS)

    Mollaaghababa, R.; Gottlieb, C.A.; Vrtilek, J.M.; Thaddeus, P.

    1991-01-01

    The millimeter-wave rotational spectra of SiO in high vibrational states (v = 0-40) in its electronic ground state were measured between 228 and 347 GHz in a laboratory discharge through SiH4 and CO. On ascending the vibrational ladder, populations decline precipitously for the first few levels, with a vibrational temperature of about 1000 K; at v of roughly 3, however, they markedly flatten out, and from there to v of roughly 40 the temperature is of the order of 10,000 K. With the Dunham coefficients determined here, the rotational spectrum of highly vibrationally excited SiO can now be calculated into the far-infrared to accuracies required for radioastronomy. Possible astronomical sources of highly vibrationally excited SiO are certain stellar atmospheres, ultracompact H II regions, very young supernova ejecta, and dense interstellar shocks. 16 refs

  3. One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process.

    Science.gov (United States)

    Ghandi, Mehdi; Salahi, Saleh; Taheri, Abuzar; Abbasi, Alireza

    2018-05-01

    A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.

  4. Study of vibrational and rapid local motions of hydrogen in the storage compound Ti0.8 Zr0.2 CrMnH3 by slow neutron scattering

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1987-01-01

    The vibrational and the rapid local motions of hydrogen in the storage compound Ti 0,8 Zr 0,2 CrMnH 3 have been studied by slow neutron scattering with the beryllium-filter-time-of-flight spectrometer. The form of the density of states of the normal modes of vibrations in host metal does no appear to change on hydrogenation, but a shift of 25% towards lower frequencies has been observed. Debye temperatures for the metal and corresponding hydride have been estimated to be respectively (522 +- 15)K and (311 +- 10)K. An energy distribution consisting of three peeks ∼ 50mev (FWHM) wide corresponding to the energy transfer of 85, 115 and 141mev has been observed and were attributed to hydrogen local vibrations in three types of interstices wich differs in composition of Ti and Zr atoms. In the quasielastic scattering, a broadening of 15μev has been detected for the momentum transfer Q = 2,1(angstrom) -1 and for temperature T= 125 0 C. The broadening has been attributed to rapid local motions of hydrogen in a dumb-bell of lenght equal to the jump lenght for diffusion, l approx. 3(angstrom). (author) [pt

  5. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Raman scattering and lattice stability of NaAlH{sub 4} and Na{sub 3}AlH{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Yukawa, H. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)], E-mail: hiroshi@numse.nagoya-u.ac.jp; Morisaku, N.; Li, Y.; Komiya, K.; Rong, R.; Shinzato, Y. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan); Sekine, R. [Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka 422-8529 (Japan); Morinaga, M. [Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-Ku, Nagoya 464-8603 (Japan)

    2007-10-31

    In situ Raman spectroscopy measurements have been performed during the decomposition of NaAlH{sub 4} in order to investigate the transition from the four-coordinated complex anion, [AlH{sub 4}]{sup -}, in NaAlH{sub 4} to the six-coordinated complex anion, [AlH{sub 6}]{sup 3-}, in Na{sub 3}AlH{sub 6}. Also, the local geometry and the Al-H vibrations are analyzed theoretically by the first-principle calculations of the electronic structures. It is found that the Raman sift at 1765 cm{sup -1} for the Al-H stretching vibration in NaAlH{sub 4} shifts towards the higher frequency side, 1801 cm{sup -1} upon melting. This Raman spectrum for the liquid phase recovers to the original position when it is cooled down to room temperature before Na{sub 3}AlH{sub 6} start to appear. The Raman peak around 1800 cm{sup -1} is still observed after the decomposition of NaAlH{sub 4} occurs to precipitate Na{sub 3}AlH{sub 6}. However, this peak does not recover to its original position by cooling, but still persists in the sample cooled down to room temperature. From these results, the intermediate transition state during the decomposition of NaAlH{sub 4} into Na{sub 3}AlH{sub 6} is discussed. In addition, it is shown from a series of calculation that the highest frequency of the Al-H vibration correlates with the shortest Al-H bond length in the MAlH{sub 4}-type and its derivative complex hydrides.

  7. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  8. A complete vibrational study on a potential environmental toxicant agent, the 3,3',4,4'-tetrachloroazobenzene combining the FTIR, FTRaman, UV-Visible and NMR spectroscopies with DFT calculations.

    Science.gov (United States)

    Castillo, María V; Pergomet, Jorgelina L; Carnavale, Gustavo A; Davies, Lilian; Zinczuk, Juan; Brandán, Silvia A

    2015-01-05

    In this study 3,3',4,4'-tetrachloroazobenzene (TCAB) was prepared and then characterized by infrared, Raman, multidimensional nuclear magnetic resonance (NMR) and ultraviolet-visible spectroscopies. The density functional theory (DFT) together with the 6-31G(*) and 6-311++G(**) basis sets were used to study the structures and vibrational properties of the two cis and trans isomers of TCAB. The harmonic vibrational wavenumbers for the optimized geometries were calculated at the same theory levels. A complete assignment of all the observed bands in the vibrational spectra of TCAB was performed combining the DFT calculations with the scaled quantum mechanical force field (SQMFF) methodology. The molecular electrostatic potentials, atomic charges, bond orders and frontier orbitals for the two isomers of TCAB were compared and analyzed. The comparison of the theoretical ultraviolet-visible spectrum with the corresponding experimental demonstrates a good concordance while the calculated (1)H and (13)C chemicals shifts are in good conformity with the corresponding experimental NMR spectra of TCAB in solution. The npp(*) transitions for both forms were studied by natural bond orbital (NBO) while the topological properties were calculated by employing Bader's Atoms in the Molecules (AIM) theory. This study shows that the cis and trans isomers exhibit different structural and vibrational properties and absorption bands. Copyright © 2014. Published by Elsevier B.V.

  9. Dispersion of low frequency vibrations in the deuterated naphthalene crystal

    International Nuclear Information System (INIS)

    Bokhenkov, E.L.; Sheka, E.; Natkaniec, I.

    1977-01-01

    The dispersion curves of the lattice vibrations and of the two lowest intramolecular vibrations in d 8 -naphthalene (C 10 D 8 ) crystal have been measured by coherent inelastic neutron scattering for the [010] and the [100] directions at the temperature of 98 K and partially at 5 K. The results are compared with calculations based on the Kitaigorodskii parameters for C-C, C-H and H-H interactions in organic molecular crystals. (author)

  10. Resummation of divergent perturbation series: Application to the vibrational states of H2CO molecule

    International Nuclear Information System (INIS)

    Duchko, A. N.; Bykov, A. D.

    2015-01-01

    Large-order Rayleigh–Schrödinger perturbation theory (RSPT) is applied to the calculation of anharmonic vibrational energy levels of H 2 CO molecule. We use the model of harmonic oscillators perturbed by anharmonic terms of potential energy. Since the perturbation series typically diverge due to strong couplings, we apply the algebraic approximation technique because of its effectiveness shown earlier by Goodson and Sergeev [J. Chem. Phys. 110, 8205 (1999); ibid. 124, 094111 (2006)] and in our previous articles [A. D. Bykov et al. Opt. Spectrosc. 114, 396 (2013); ibid. 116, 598 (2014)]. To facilitate the resummation of terms contributing to perturbed states, when resonance mixing between states is especially strong and perturbation series diverge very quick, we used repartition of the Hamiltonian by shifting the normal mode frequencies. Energy levels obtained by algebraic approximants were compared with the results of variational calculation. It was found that for low energy states (up to ∼5000 cm −1 ), algebraic approximants gave accurate values of energy levels, which were in excellent agreement with the variational method. For highly excited states, strong and multiple resonances complicate series resummation, but a suitable change of normal mode frequencies allows one to reduce the resonance mixing and to get accurate energy levels. The theoretical background of the problem of RSPT series divergence is discussed along with its numerical analysis. For these purposes, the vibrational energy is considered as a function of a complex perturbation parameter. Layout and classification of its singularities allow us to model the asymptotic behavior of the perturbation series and prove the robustness of the algorithm

  11. Experimental and theoretical study on the structure and vibrational spectra of β-2-aminopyridinium dihydrogenphosphate

    Science.gov (United States)

    Çırak, Çağrı; Demir, Selçuk; Ucun, Fatih; Çubuk, Osman

    2011-08-01

    Experimental and theoretical vibrational spectra of β-2-aminopyridinium dihydrogenphosphate (β-2APDP) have been investigated. The FT-IR spectrum of β-2APDP was recorded in the region 4000-400 cm -1. The optimized molecular structure and theoretical vibrational frequencies of β-2APDP have been investigated using ab initio Hartree-Fock (HF) and density functional B3LYP method with 6-311++G(d,p) basis set. The optimized geometric parameters (bond lengths and bond angles) and theoretical frequencies have been compared with the corresponding experimental data and it is found that they agree well with each other. All the assignments of the theoretical frequencies were performed by potential energy distributions using VEDA 4 program. Furthermore, the used scale factors were obtained from the ratio of the frequency values of the strongest peaks in the experimental and theoretical IR spectra. From the results it was concluded that the B3LYP method is superior to the HF method for the vibrational frequencies.

  12. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  13. Dispersion-corrected first-principles calculation of terahertz vibration, and evidence for weak hydrogen bond formation

    Science.gov (United States)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2013-03-01

    A weak hydrogen bond (WHB) such as CH-O is very important for the structure, function, and dynamics in a chemical and biological system WHB stretching vibration is in a terahertz (THz) frequency region Very recently, the reasonable performance of dispersion-corrected first-principles to WHB has been proven. In this lecture, we report dispersion-corrected first-principles calculation of the vibrational absorption of some organic crystals, and low-temperature THz spectral measurement, in order to clarify WHB stretching vibration. The THz frequency calculation of a WHB crystal has extremely improved by dispersion correction. Moreover, the discrepancy in frequency between an experiment and calculation and is 10 1/cm or less. Dispersion correction is especially effective for intermolecular mode. The very sharp peak appearing at 4 K is assigned to the intermolecular translational mode that corresponds to WHB stretching vibration. It is difficult to detect and control the WHB formation in a crystal because the binding energy is very small. With the help of the latest intense development of experimental and theoretical technique and its careful use, we reveal solid-state WHB stretching vibration as evidence for the WHB formation that differs in respective WHB networks The research was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant No. 22550003).

  14. Vibration analysis of the piping system using the modal analysis method, 1

    International Nuclear Information System (INIS)

    Fujikawa, Takeshi; Kurohashi, Michiya; Inoue, Yoshio

    1975-01-01

    Modal analysis method was developed for the vibration analysis of piping system in nuclear or chemical plants, with finite element theory, and verified by sinusoidal vibration method. The natural vibration equation for pipings was derived with stiffness, attenuation and mass matrices, and eigenvalues are obtained with usual method, then the forced vibration equation for pipings was derived with the same manner, and the special solutions are given by modal method from the eigenvalues of the natural vibration equation. Three simple piping models (one, two and three dimensional) were made, and the natural vibration frequency was measured with forced input from an electrical dynamic shaker and a sound speaker. The experimental values of natural vibration frequency showed good agreement with the results by the analytical method. Therefore the theoretical approach for piping system vibration was proved to be valid. (Iwase, T.)

  15. Rare gas dependence of vibration--vibration energy transfer processes: A diagnostic technique. Applications to CH2D2 and CH3F

    International Nuclear Information System (INIS)

    Apkarian, V.A.; Weitz, E.

    1979-01-01

    The rare gas dependence of V--V rates can be used as a diagnostic technique to identify different mechanisms of vibrational energy transfer and determine the rate constants for individual kinetic steps. The method is especially useful for the identification and measurement of rates of resonant vibrational energy transfer processes. Analytical and numerical solutions of pertinent model equations are presented and their range of applicability is discussed. The technique is applied to CH 2 D 2 and CH 3 F. In CH 2 D 2 results of studies on ν 9 , [ν 1 , ν 6 ] and states in the 2000 cm -1 region are presented where the application of the technique has made it possible to identify the pathways leading to population of these states and to assign rate constants to some of the steps involved. In CH 3 F, by studying the Ar dependence of the V--V rates of the [ν 2 , ν 5 ] and [ν 1 , ν 4 ] states it has been possible to construct a complete map of energy transfer pathways which can explain all experimental observations for this system, to date. The general applicability of the technique and its potential application to other systems is also considered

  16. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

    Science.gov (United States)

    Muthu, S; Prasath, M; Paulraj, E Isac; Balaji, R Arun

    2014-01-01

    The Fourier Transform infrared and Fourier Transform Raman spectra of 7-chloro-5 (2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one (7C3D4B) were recorded in the regions 4000-400 and 4000-100 cm(-1), respectively. The appropriate theoretical spectrograms for the IR and Raman spectra of the title molecule were also constructed. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they supported each other. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Dissociative ionization of liquid water induced by vibrational overtone excitation

    Energy Technology Data Exchange (ETDEWEB)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H/sup +/ and OH/sup -/ ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H/sub 2/O, the quantum yield at 283 +- 1 K varies from 2 x 10/sup -9/ to 4 x 10/sup -5/ for wave numbers between 7605 and 18140 cm/sup -1/. In D/sub 2/O, the dependence of quantum yield on wavelength has the same qualitative shape as for H/sub 2/O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D/sub 2/O than for excitation of D/sub 2/O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H/sub 2/O and with isotopic composition at 25 +- 1/sup 0/C.

  18. Lattice vibrations and barrier to hindered rotation in lithium tetradeuteroaluminate by 2H, 7Li and 27Al NMR

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Kirakosyan, G.A.

    1996-01-01

    Temperature dependences of 2 H, 7 Li, 27 Al NMR line shape in LiAlD 4 lithium polycrystal tetradeuteroaluminate in the range of 103-420 K have been studied. The quadrupole bond constants and asymmetry parameters of electric field gradient tensor have been measured. The frequencies of lattice vibrations have been evaluated in the framework of the Buyer model. From temperature dependences of spin-lattice relaxation time and 2 H NMR line shape the activation energies of AlD 4 anion decelerated rotation, amounting to 74 and 62 k J/mol respectively, have been determined. 15 refs.; 5 figs.; 2 tabs

  19. Aplicação de análise de componentes principais para verificação de atribuições de sinais nos espetros de RMN ¹H: o caso dos 3-aril (1,2,4-oxadiazol-5-carboidrazida benzilidenos Principal component analysis for verifying ¹H NMR spectral assignments: the case of 3-aryl (1,2,4-oxadiazol-5-carbohydrazide benzylidenes

    Directory of Open Access Journals (Sweden)

    João Bosco P. da Silva

    2005-06-01

    Full Text Available The ¹H NMR data set of a series of 3-aryl (1,2,4-oxadiazol-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA. Using the original ¹H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazol group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted.

  20. The Effects of Local Vibration on Balance, Power, and Self-Reported Pain After Exercise.

    Science.gov (United States)

    Custer, Lisa; Peer, Kimberly S; Miller, Lauren

    2017-05-01

    Muscle fatigue and acute muscle soreness occur after exercise. Application of a local vibration intervention may reduce the consequences of fatigue and soreness. To examine the effects of a local vibration intervention after a bout of exercise on balance, power, and self-reported pain. Single-blind crossover study. Laboratory. 19 healthy, moderately active subjects. After a 30-min bout of full-body exercise, subjects received either an active or a sham vibration intervention. The active vibration intervention was performed bilaterally over the muscle bellies of the triceps surae, quadriceps, hamstrings, and gluteals. At least 1 wk later, subjects repeated the bout, receiving the other vibration intervention. Static balance, dynamic balance, power, and self-reported pain were measured at baseline, after the vibration intervention, and 24 h postexercise. After the bout of exercise, subjects had reduced static and dynamic balance and increased self-reported pain regardless of vibration intervention. There were no differences between outcome measures between the active and sham vibration conditions. The local vibration intervention did not affect balance, power, or self-reported pain.