WorldWideScience

Sample records for vibration-based structural health

  1. Vibration based structural health monitoring in fibre reinforced composites employing the modal strain energy method

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Meguid, S.A.; Gomes, J.F.S.

    2009-01-01

    The feasibility of a vibration based damage identification method is investigated. The Modal Strain Energy method is applied to a T–beam structure. The dynamic response of an intact structure and a damaged, delaminated structure is analysed employing a commercially available Finite Element package.

  2. Vibration based structural health monitoring of a composite T-beam

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Loendersloot, Richard; Warnet, Laurent; de Boer, Andries; Akkerman, Remko

    2010-01-01

    A vibration based damage identification method is investigated experimentally for a 2.5-dimensional composite structure. The dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is considered. A force–vibration set-up, including a laser

  3. A simple method for enhanced vibration-based structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Guechaichia, A; Trendafilova, I, E-mail: abdelhamid.guechaichia@strath.ac.uk [Department of Mechanical Engineering University of Strathclyde, James Weir Building, 75 Montrose street, Glasgow, G1 IXJ (United Kingdom)

    2011-07-19

    This study suggests a novel method for structural vibration-based health monitoring for beams which only utilises the first natural frequency of the beam in order to detect and localise a defect. The method is based on the application of a static force in different positions along the beam. It is shown that the application of a static force on a damaged beam induces stresses at the defect which in turn cause changes in the structural natural frequencies. A very simple procedure for damage detection is suggested which uses a static force applied in just one point, in the middle of the beam. Localisation is made using two additional application points of the static force. Damage is modelled as a small notch through the whole width of the beam. The method is demonstrated and validated numerically, using a finite element model of the beam, and experimentally for a simply supported beam. Our results show that the frequency variation with the change of the force application point can be used to detect and in the same time localize very precisely even a very small defect. The method can be extended for health monitoring of other more complicated structures.

  4. Vibration-based structural health monitoring of the aircraft large component

    Science.gov (United States)

    Pavelko, V.; Kuznetsov, S.; Nevsky, A.; Marinbah, M.

    2017-10-01

    In the presented paper there are investigated the basic problems of the local system of SHM of large scale aircraft component. Vibration-based damage detection is accepted as a basic condition, and main attention focused to a low-cost solution that would be attractive for practice. The conditions of small damage detection in the full scale structural component at low-frequency excitation were defined in analytical study and modal FEA. In experimental study the dynamic test of the helicopter Mi-8 tail beam was performed at harmonic excitation with frequency close to first natural frequency of the beam. The index of correlation coefficient deviation (CCD) was used for extraction of the features due to embedded pseudo-damage. It is shown that the problem of vibration-based detection of a small damage in the large scale structure at low-frequency excitation can be solved successfully.

  5. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    Energy Technology Data Exchange (ETDEWEB)

    Trendafilova, I, E-mail: Irina.Trendafilova@strath.ac.uk [Department of Mechanical Engineering, University of Strathclyde, 75 Montrose street, Glasgow, G1 1XJ (United Kingdom)

    2011-07-19

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  6. Structural Health Monitoring of Precast Concrete Box Girders Using Selected Vibration-Based Damage Detection Methods

    Directory of Open Access Journals (Sweden)

    Zhengjie Zhou

    2010-01-01

    Full Text Available Precast, prestressed concrete box girders are commonly used as superstructure components for short and medium span bridges. Their configuration and typical side-by-side placement make large portions of these elements inaccessible for visual inspection or the application of nondestructive testing techniques. This paper demonstrates that vibration-based damage detection (VBDD is an effective alternative for monitoring their structural health. A box girder removed from a dismantled bridge was used to evaluate the ability of five different VBDD algorithms to detect and localize low levels of spalling damage, with a focus on using a small number of sensors and only the fundamental mode of vibration. All methods were capable of detecting and localizing damage to a region within approximately 1.6 times the longitudinal spacing between as few as six uniformly distributed accelerometers. Strain gauges configured to measure curvature were also effective, but tended to be susceptible to large errors in near support damage cases. Finite element analyses demonstrated that increasing the number of sensor locations leads to a proportional increase in localization accuracy, while the use of additional modes provides little advantage and can sometimes lead to a deterioration in the performance of the VBDD techniques.

  7. Vibration based structural health monitoring of composite skin-stiffener structures

    NARCIS (Netherlands)

    Ooijevaar, T.H.

    2014-01-01

    Composite materials combine a high strength and stiffness with a relatively low density. These materials can, however, exhibit complex types of damage, like transverse cracks and delaminations. These damage scenarios can severely influence the structural performance of a component. Periodic

  8. Vibration-based health monitoring and model refinement of civil engineering structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W.

    1997-10-01

    Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandia National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.

  9. Vibration based structural health monitoring and the modal strain energy damage index algorithm applied to a composite T-beam

    NARCIS (Netherlands)

    Loendersloot, Richard; Ooijevaar, T.H.; Warnet, Laurent; de Boer, Andries; Akkerman, Remko; Vasques, C.M.A.; Dias Rodrigues, J.

    2011-01-01

    A Finite Element based numerical model for a vibration based damage identification method for a 2.5D composite structure is discussed in this chapter. The linear dynamic response of an intact and a locally delaminated 16-layer unidirectional carbon fibre PEKK reinforced T-beam is analysed. A

  10. Vibration-Based Structural Health Monitoring: Theoretical Foundations and Experimental Validation on Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Anthony Nkem Ede

    2015-09-01

    Full Text Available Quick identification of damages in structures is of great importance to engineers. Among the various techniques available for the evaluation of reinforced concrete structural integrity, non-destructive tests method remain a viable one as its use can lead to speedy decisions that bring savings on repairs or replacement of damaged reinforced concrete structures. This research uses modal parameter-based non- destructive tests to assess damages in reinforced concrete beams under static load. Four-point static loadings were applied to the 3 RC beams to induce three damage scenarios. After each static loading, a dynamic test was performed to access the degree of stiffness degradation. Modal frequencies and mode shapes obtained depicts clearly the stiffness degradations of the beams as the severity of damages on the beams became more pronounced. Results obtained showed that the research procedure adopted is a smart approach for damage assessment in reinforced concrete elements.

  11. Vibration-based structural health monitoring using output-only measurements under changing environment

    Science.gov (United States)

    Deraemaeker, A.; Reynders, E.; De Roeck, G.; Kullaa, J.

    2008-01-01

    This paper deals with the problem of damage detection using output-only vibration measurements under changing environmental conditions. Two types of features are extracted from the measurements: eigenproperties of the structure using an automated stochastic subspace identification procedure and peak indicators computed on the Fourier transform of modal filters. The effects of environment are treated using factor analysis and damage is detected using statistical process control with the multivariate Shewhart- T control charts. A numerical example of a bridge subject to environmental changes and damage is presented. The sensitivity of the damage detection procedure to noise on the measurements, environment and damage is studied. An estimation of the computational time needed to extract the different features is given, and a table is provided to summarize the advantages and drawbacks of each of the features studied.

  12. Vibrational Based Inspection of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Rytter, Anders

    and Structural Engineering at the University of Aalborg since the beginning of 1992. Both projects have been supported by the Danish Technical Research Council. Further, the first mentioned project was supported by the Danish Energy Agency. Their financial support is gratefully acknowledged.......The thesis has been written in relation to two different research projects. Firstly, an offshore test programme, Integrated Experimental/Numerical Analysis of the Dynamic behavior of offshore structures, which was performed at the department of Building Technology and Structural Engineering...... at the University of Aalborg from 1988 to 1991. Secondly, a research project, In-Field Vibration Based Inspection of Civil Engineering Structures, which has been performed as a pilot project by the Consulting Engineers Rambøll, Hannemann and Højlund in cooperation with the department of Building Technology...

  13. Vibration Based Methods For Damage Detection In Structures

    Directory of Open Access Journals (Sweden)

    Manoach E.

    2016-01-01

    Full Text Available Vibration based damage detection methods are among the most popular and promising approaches for health monitoring of structures. In this work a critical review of different methods for damage detection methods of structures is presented. The theoretical bases of the most popular methods based on the changes in the modal properties of the structures are deduced. The review includes the modal displacements, the mode shape slopes, the modal curvatures and the strain energy methods. The efficiency of all these methods is compared by using a finite element analysis of intact and damaged beams. The methods are tested experimentally by using a scanning laser vibrometer to measure the modal properties of specially prepared composite beams with defects. All this methods are compared with the damage detection method based on the analysis of the Poincaré maps of the motion of the structures. Conclusions concerning the advantages and the applicability of the considered methods are deduced.

  14. A vibration-based health monitoring program for a large and seismically vulnerable masonry dome

    Science.gov (United States)

    Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.

    2017-05-01

    Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.

  15. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Kiranyaz, Serkan; Gabbouj, Moncef; Inman, Daniel J.

    2017-02-01

    Structural health monitoring (SHM) and vibration-based structural damage detection have been a continuous interest for civil, mechanical and aerospace engineers over the decades. Early and meticulous damage detection has always been one of the principal objectives of SHM applications. The performance of a classical damage detection system predominantly depends on the choice of the features and the classifier. While the fixed and hand-crafted features may either be a sub-optimal choice for a particular structure or fail to achieve the same level of performance on another structure, they usually require a large computation power which may hinder their usage for real-time structural damage detection. This paper presents a novel, fast and accurate structural damage detection system using 1D Convolutional Neural Networks (CNNs) that has an inherent adaptive design to fuse both feature extraction and classification blocks into a single and compact learning body. The proposed method performs vibration-based damage detection and localization of the damage in real-time. The advantage of this approach is its ability to extract optimal damage-sensitive features automatically from the raw acceleration signals. Large-scale experiments conducted on a grandstand simulator revealed an outstanding performance and verified the computational efficiency of the proposed real-time damage detection method.

  16. Active vibration-based structural health monitoring system for wind turbine blade: Demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2017-01-01

    enough to be able to propagate the entire blade length. This article demonstrates the system on a Vestas V27 wind turbine. One blade of the wind turbine was equipped with the system, and a 3.5-month monitoring campaign was conducted while the turbine was operating normally. During the campaign, a defect......—a trailing-edge opening—was artificially introduced into the blade and its size was gradually increased from the original 15 to 45 cm. Using a semi-supervised learning algorithm, the system was able to detect even the smallest amount of damage while the wind turbine was operating under different weather......This study presents a structural health monitoring system that is able to detect structural defects of wind turbine blade such as cracks, leading/trailing-edge opening, or delamination. It is shown that even small defects of at least 15 cm size can be detected remotely without stopping the wind...

  17. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    ]. Preliminary results indicate that parametric methods are capable of sufficiently providing the structural/modal characteristics such as natural frequencies and damping ratios. The study also aims - at a further level of investigation - to provide a reliable statistically-based methodology for structural health monitoring after major seismic events which potentially cause harming consequences in structures. Acknowledgments This work was supported by the State Scholarships Foundation of Hellas. References [1] J. S. Sakellariou and S. D. Fassois, "Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation," Journal of Sound and Vibration, vol. 297, pp. 1048-1067, 2006. [2] G. Hloupis, I. Papadopoulos, J. P. Makris, and F. Vallianatos, "The South Aegean seismological network - HSNC," Adv. Geosci., vol. 34, pp. 15-21, 2013. [3] F. P. Pentaris, J. Stonham, and J. P. Makris, "A review of the state-of-the-art of wireless SHM systems and an experimental set-up towards an improved design," presented at the EUROCON, 2013 IEEE, Zagreb, 2013. [4] S. D. Fassois, "Parametric Identification of Vibrating Structures," in Encyclopedia of Vibration, S. G. Braun, D. J. Ewins, and S. S. Rao, Eds., ed London: Academic Press, London, 2001. [5] S. D. Fassois and J. S. Sakellariou, "Time-series methods for fault detection and identification in vibrating structures," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 365, pp. 411-448, February 15 2007.

  18. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    OpenAIRE

    Franchetti Paolo; Frizzarin Michele; Leonardi Andrea; Zeni Fabio

    2015-01-01

    A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention ...

  19. Vibration based structural assessment of the rehabilitation intervention in r.c. segmental bridge

    Directory of Open Access Journals (Sweden)

    Franchetti Paolo

    2015-01-01

    Full Text Available A vibration based structural assessment campaign was carried out on a r.c. segmental bridge in North East Italy. The bridge has a cantilever static scheme, fixed at the top of the piers and with a hinge at the centre of the span. The particular configuration of the hinge consists in a couple of steel elements, each one composed by a tongue and groove joint. Since the year 1960, the hinge was subjected to consumption and degradation, that caused a malfunctioning of the device. An intervention of rehabilitation of the bridge led to a reinforcement of the existing hinges with the coupling of new metallic devices: new tongue and groove hinges were applied, that by one side allow the horizontal displacements and rotation, by the other side strongly reduce the relative vertical displacements of the two parts of the bridge. A dynamic test campaign was set up in order to assess the effectiveness of the intervention. The principal dynamic parameters were calculated and analysed with respect to the intervention that was realized. The tests clearly showed the effectiveness of the intervention, and helped the designer to have a better understanding of the structural behaviour of the bridge.

  20. Modal analysis of a concrete highway bridge : Structural calculations and vibration-based results

    NARCIS (Netherlands)

    Miao, S.; Veerman, R.P.; Koenders, E.A.B.; Knobbe, A.

    2013-01-01

    In the field of civil infrastructure, Structural Health Monitoring systems are implemented more and more frequently with the aim to safeguard the safety and service-life of structures such as bridges and tunnels. Changes in the integrity of the material and/or structural properties of this class of

  1. Vibration-based localisation of structural deterioration in frame-like civil engineering structures

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Damkilde, Lars

    2016-01-01

    to other structural systems, for instance, wind turbines—can provide reliable damage localisation in frame-like structures. The performance of the method, which is based on statistical interrogation of changes in a surrogate of the transfer matrix, is tested in a Monte Carlo setting with a numerical steel......With the existing trend of minimising material use in typical frame-like civil engineering structures, such as buildings, bridges, and offshore platforms, these structures will typically be subjected to substantial wind induced vibrations. Besides being a source of disturbance for the occupants...... frame model subjected to white noise excitation....

  2. Vibration-based structural health monitoring of highway bridges.

    Science.gov (United States)

    2008-12-01

    In recent years, the condition of aging transportation infrastructure has drawn attention to the maintenance and : inspection of highway bridges. With the increasing importance of life-lines, such as highways, to the national economy : and the well-b...

  3. Operational Vibration-Based Response Estimation for Offshore Wind Lattice Structures

    NARCIS (Netherlands)

    Van der Male, P.; Lourens, E.

    2015-01-01

    The design for fatigue for offshore wind turbine structures is characterized by uncertainty, resulting from both loading specifications and numerical modelling. At the same time, fatigue is a main design driver for this type of structures. This study presents a strategy to monitor the accumulated

  4. Vibration Based Damage Assessment of a Civil Engineering Structures using a Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with the Backpropagation Algorith as a non-destructive damage assessment technique to locate and quantify a damage in Civil Engineering structures is investigated. Since artificial neural networks are proving...

  5. Review on structural damage assessment via transmissibility with vibration based measurements

    Science.gov (United States)

    Zhou, Yun-Lai; Hongyou, Cao; Zhen, Ni; Abdel Wahab, Magd

    2017-05-01

    In this study, transmissibility based damage assessment techniques with vibration measurement are reviewed with highlighting the recent advancements since damage might induce severe changes and cause huge economic losses in both civil and mechanical engineering structures. In recent years, transmissibility underwent booming and divergent application for damage assessment both in experimental model and engineering application, and this review provides a fundamental understanding for transmissibility based damage assessment by summarizing those research outputs, which can serve as useful reference for further investigations.

  6. Feature Comparison in Structural Health Monitoring of a Vehicle Crane

    National Research Council Canada - National Science Library

    Kullaa, J; Heine, T

    2008-01-01

    Vibration-based structural health monitoring of a vehicle crane was studied. The performance of different features to detect damage was investigated after eliminating the normal operational variations using factor analysis...

  7. An experimental study of vibration based energy harvesting in dynamically tailored structures with embedded acoustic black holes

    Science.gov (United States)

    Zhao, Liuxian; Conlon, Stephen C.; Semperlotti, Fabio

    2015-06-01

    In this paper, we present an experimental investigation on the energy harvesting performance of dynamically tailored structures based on the concept of embedded acoustic black holes (ABHs). Embedded ABHs allow tailoring the wave propagation characteristics of the host structure creating structural areas with extreme levels of energy density. Experiments are conducted on a tapered plate-like aluminum structure with multiple embedded ABH features. The dynamic response of the structure is tested via laser vibrometry in order to confirm the vibration localization and the passive wavelength sweep characteristic of ABH embedded tapers. Vibrational energy is extracted from the host structure and converted into electrical energy by using ceramic piezoelectric discs bonded on the ABHs and shunted on an external electric circuit. The energy harvesting performance is investigated both under steady state and transient excitation. The experimental results confirm that the dynamic tailoring produces a drastic increase in the harvested energy independently from the nature of the excitation input.

  8. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    This study presents an vibration-based system designed for structural health monitoring of wind turbine blades. Mechanical energy is introduced by means of an electromechanical actuator mounted inside the blade. The actuator's plunger periodically hits the blade structure; the induced vibrations...... signal-to-noise ratio. Simultaneously, the frequencies are low enough to be able to propagate the entire blade length, so good results can be obtained even using only one actuator. The system is demonstrated on a real 34m blade mounted on a test rig. Using the suggested approach, the system enables...

  9. Evaluation of seatback vibration based on ISO 2631-1 (1997) standard method: The influence of vehicle seat structural resonance.

    Science.gov (United States)

    Ittianuwat, R; Fard, M; Kato, K

    2017-01-01

    Although much research has been done in developing the current ISO 2631-1 (1997) standard method for assessment seat vibration comfort, little consideration has been given to the influence of vehicle seat structural dynamics on comfort assessment. Previous research has shown that there are inconsistencies between standard methods and subjective evaluation of comfort at around vehicle seat twisting resonant frequencies. This study reports the frequency-weighted r.m.s. accelerations in [Formula: see text], [Formula: see text] and [Formula: see text] axes and the total vibration (point vibration total value) at five locations on seatback surface at around vehicle seat twisting resonant frequencies. The results show that the vibration measured at the centre of seatback surface, suggested by current ISO 2631-1 (1997), at around twisting resonant frequencies was the least for all tested vehicle seats. The greatest point vibration total value on the seatback surface varies among vehicle seats. The variations in vibration measured at different locations on seatback surface at around twisting resonant frequencies were sufficiently great that might affect the comfort assessment of vehicle seat.Practitioner Summary: The influence of vehicle seat structural dynamics has not been considered in current ISO 2631-1 (1997). The results of this study show that the vibration measures on seatback surface at around vehicle seat twisting resonant frequency depends on vehicle seats and dominate at the top or the bottom of seatback but not at the centre.

  10. Vestas V90-3MW Wind Turbine Gearbox Health Assessment Using a Vibration-Based Condition Monitoring System

    Directory of Open Access Journals (Sweden)

    A. Romero

    2016-01-01

    Full Text Available Reliable monitoring for the early fault diagnosis of gearbox faults is of great concern for the wind industry. This paper presents a novel approach for health condition monitoring (CM and fault diagnosis in wind turbine gearboxes using vibration analysis. This methodology is based on a machine learning algorithm that generates a baseline for the identification of deviations from the normal operation conditions of the turbine and the intrinsic characteristic-scale decomposition (ICD method for fault type recognition. Outliers picked up during the baseline stage are decomposed by the ICD method to obtain the product components which reveal the fault information. The new methodology proposed for gear and bearing defect identification was validated by laboratory and field trials, comparing well with the methods reviewed in the literature.

  11. Compressive power spectrum sensing for vibration-based output-only system identification of structural systems in the presence of noise

    Science.gov (United States)

    Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis

    2015-05-01

    Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.

  12. Vibrational Based Inspection Of A Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of accep......The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination...

  13. Online vibration-based crack detection during fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, B.; Vecchio, A.; Auweraer, H. van der [LMS International, Heverlee (Belgium); Mevel, L. [INRIA, Rennes (France); Vanlanduit, S.; Guillaume, P. [Dept. of Mechanical Engineering, VUB, Brussels (Belgium); Goursat, M. [Rocquencourt, INRIA, Le Chesnay (France)

    2003-07-01

    When performing fatigue tests, it is essential to monitor the degradation of the structure with an increasing number of fatigue cycles. In this article, a vibration-based damage detection method will be proposed. Such a method has the advantage that it operates online with the fatigue test. Especially for structures with very high fatigue strength, it is important that the test does not have to be interrupted. The damage detection method that will be used is based on a residual generated from a stochastic subspace identification method. The basic idea is that a model for the undamaged structure is identified and that, afterwards, vibration measurements from a possibly damaged structure are confronted with this model. A statistical local approach hypothesis testing is used to assess the deviation of the new data from the nominal model. After introducing the damage detection method, its performance will be illustrated on data from a fatigue experiment. The method will be compared to other linear and non-linear vibration-based damage detection methods. (orig.)

  14. Feature Comparison in Structural Health Monitoring of a Vehicle Crane

    Directory of Open Access Journals (Sweden)

    J. Kullaa

    2008-01-01

    Full Text Available Vibration-based structural health monitoring of a vehicle crane was studied. The performance of different features to detect damage was investigated after eliminating the normal operational variations using factor analysis. Using eight accelerometers, ten AR parameters from each record were identified for damage detection. Also transmissibilities between sensors were estimated. Damage was introduced with additional masses at different locations of the structure. All damage cases could be detected from either features using control charts, but transmissibilities proved to be more sensitive to damage than the AR coefficients.

  15. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  16. A review of vibration-based MEMS piezoelectric energy harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Saadon, Salem; Sidek, Othman [Collaborative Microelectronic Design Excellence Center (CEDEC), School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2011-01-15

    The simplicity associated with the piezoelectric micro-generators makes it very attractive for MEMS applications, especially for remote systems. In this paper we reviewed the work carried out by researchers during the last three years. The improvements in experimental results obtained in the vibration-based MEMS piezoelectric energy harvesters show very good scope for MEMS piezoelectric harvesters in the field of power MEMS in the near future. (author)

  17. Advancing Autonomous Structural Health Monitoring

    OpenAIRE

    Grisso, Benjamin Luke

    2007-01-01

    The focus of this dissertation is aimed at advancing autonomous structural health monitoring. All the research is based on developing the impedance method for monitoring structural health. The impedance technique utilizes piezoelectric patches to interrogate structures of interested with high frequency excitations. These patches are bonded directly to the structure, so information about the health of the structure can be seen in the electrical impedance of the piezoelectric patch. However, tr...

  18. Structural Health Monitoring of an Advanced Composite Aircraft Structure Using a Modal Approach

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Loendersloot, Richard; Warnet, Laurent; Akkerman, Remko; de Boer, Andries; Chang, F.K.; Guemes, A.

    2011-01-01

    The experimental feasibility of a vibration based approach to identify damage in an advanced composite aircraft structure is presented. Analysis showed that the Modal Strain Energy Damage Index (MSE-DI) algorithm can be used to detect and localize single and multiple damage scenarios by using modal

  19. Damage detection with streamlined structural health monitoring data.

    Science.gov (United States)

    Li, Jian; Deng, Jun; Xie, Weizhi

    2015-04-15

    The huge amounts of sensor data generated by large scale sensor networks in on-line structural health monitoring (SHM) systems often overwhelms the systems' capacity for data transmission and analysis. This paper presents a new concept for an integrated SHM system in which a streamlined data flow is used as a unifying thread to integrate the individual components of on-line SHM systems. Such an integrated SHM system has a few desirable functionalities including embedded sensor data compression, interactive sensor data retrieval, and structural knowledge discovery, which aim to enhance the reliability, efficiency, and robustness of on-line SHM systems. Adoption of this new concept will enable the design of an on-line SHM system with more uniform data generation and data handling capacity for its subsystems. To examine this concept in the context of vibration-based SHM systems, real sensor data from an on-line SHM system comprising a scaled steel bridge structure and an on-line data acquisition system with remote data access was used in this study. Vibration test results clearly demonstrated the prominent performance characteristics of the proposed integrated SHM system including rapid data access, interactive data retrieval and knowledge discovery of structural conditions on a global level.

  20. Structural Health Monitoring of Large Structures

    Science.gov (United States)

    Kim, Hyoung M.; Bartkowicz, Theodore J.; Smith, Suzanne Weaver; Zimmerman, David C.

    1994-01-01

    This paper describes a damage detection and health monitoring method that was developed for large space structures using on-orbit modal identification. After evaluating several existing model refinement and model reduction/expansion techniques, a new approach was developed to identify the location and extent of structural damage with a limited number of measurements. A general area of structural damage is first identified and, subsequently, a specific damaged structural component is located. This approach takes advantage of two different model refinement methods (optimal-update and design sensitivity) and two different model size matching methods (model reduction and eigenvector expansion). Performance of the proposed damage detection approach was demonstrated with test data from two different laboratory truss structures. This space technology can also be applied to structural inspection of aircraft, offshore platforms, oil tankers, ridges, and buildings. In addition, its applications to model refinement will improve the design of structural systems such as automobiles and electronic packaging.

  1. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  2. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  3. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  4. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  5. Impedance-Based Non-Destructive Testing Method Combined with Unmanned Aerial Vehicle for Structural Health Monitoring of Civil Infrastructures

    Directory of Open Access Journals (Sweden)

    Wongi S Na

    2016-12-01

    Full Text Available Unmanned aerial vehicles (UAVs, commonly known as drones, are a rising topic in remote sensing technologies for structural health monitoring. With technology advancement in cameras, the visual inspection method using drones is gaining much attention in the field of civil engineering. However, although visual inspection methods are feasible for finding cracks in structures, the limitations of image processing for finding internal damage or small defects cannot be ignored. To overcome this problem, a possible application concept of UAV, combined with a vibration-based non-destructive health monitoring method, is proposed. The idea is for the drone to temporarily attach the piezoelectric transducer onto a specific region where excitation and data acquisition occurs simultaneously. This eliminates the need for a structure to be covered with hundreds of sensors for monitoring, as this concept uses a single piezoelectric transducer for monitoring a structure. The proposed work offers new areas of research by converging UAV with a vibration-based method, as associated problems are required to be solved.

  6. Vibration-Based Damage Identification in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    Due to the existing trend of placing wind turbines in impassable terrain, for example, offshore, these structures constitute prime candidates for being subjected to structural health monitoring (SHM). The wind turbine blades have in particular been paid research attention [1] as these compose one...... of the most common and critical components to fail in the turbines [2]. The standard structural integrity assessment of blades is based on visual inspection, which requires the turbine in question to be stopped while inspections are conducted. This procedure is extremely costly and tedious, hence emphasizing...

  7. Structural health monitoring for ship structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Angel, Marian [Los Alamos National Laboratory; Bement, Matthew [Los Alamos National Laboratory; Salvino, Liming [NSWC, CADEROCK

    2009-01-01

    Currently the Office of Naval Research is supporting the development of structural health monitoring (SHM) technology for U.S. Navy ship structures. This application is particularly challenging because of the physical size of these structures, the widely varying and often extreme operational and environmental conditions associated with these ships missions, lack of data from known damage conditions, limited sensing that was not designed specifically for SHM, and the management of the vast amounts of data that can be collected during a mission. This paper will first define a statistical pattern recognition paradigm for SHM by describing the four steps of (1) Operational Evaluation, (2) Data Acquisition, (3) Feature Extraction, and (4) Statistical Classification of Features as they apply to ship structures. Note that inherent in the last three steps of this process are additional tasks of data cleansing, compression, normalization and fusion. The presentation will discuss ship structure SHM challenges in the context of applying various SHM approaches to sea trials data measured on an aluminum multi-hull high-speed ship, the HSV-2 Swift. To conclude, the paper will discuss several outstanding issues that need to be addressed before SHM can make the transition from a research topic to actual field applications on ship structures and suggest approaches for addressing these issues.

  8. Smart Sensors Assess Structural Health

    Science.gov (United States)

    2010-01-01

    NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.

  9. High Frequency Vibration Based Fatigue Testing of Developmental Alloys

    Science.gov (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  10. Vibration-based monitoring and diagnostics using compressive sensing

    Science.gov (United States)

    Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.

    2017-04-01

    Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.

  11. Improved vibration-based energy harvesting by annular mass configuration of piezoelectric circular diaphragms

    Science.gov (United States)

    Yang, Yangyiwei; Li, Yuanbo; Guo, Yaqian; Xu, Bai-Xiang; Yang, Tongqing

    2018-03-01

    Vibration-based energy harvesting using piezoelectric circular diaphragms (PCDs) with a structure featuring the central mass (C-mass) configuration has drawn much attention in recent decades. In this work, we propose a new configuration with the annular proof mass (A-mass) where an improved energy harvesting is promised. The numerical analysis was employed using the circuit-coupled piezoelectric simulation, and the experimental validation was implemented using PCDs with the even-width annular electrodes. Samples with the different mass configurations as well as structural parameters ϖ 1 and ϖ 2, which indicate the ratio between the inner boundary radius and piezoelectric ceramic radius as well as the ratio between outer boundary radius and the substrate radius, respectively, were prepared and tested. The impedance-matched output power of full-electrode PCDs was also collected, and some distinct improvement was measured on samples with the certain structural parameters. The power increases from 14.1 mW to 19.0 mW after changing the configuration from C-mass to A-mass with the same parameters (ϖ 1, ϖ 2) = (0.16, 0.9), showing the considerable improvement in energy harvesting by using A-mass configuration.

  12. A local flexibility method for vibration-based damage localization and quantification

    Science.gov (United States)

    Reynders, Edwin; De Roeck, Guido

    2010-06-01

    A method for vibration-based damage localization and quantification, based on quasi-static flexibility, is presented. The experimentally determined flexibility matrix is combined with a virtual load that causes nonzero stresses in a small part of the structure, where a possible local stiffness change is investigated. It is shown that, if the strain-stress relationship for the load is proportional, the ratio of some combination of deformations before and after a stiffness change has occurred, equals the inverse local stiffness ratio. The method is therefore called local flexibility (LF) method. Since the quasi-static flexibility matrix can be composed directly from modal parameters, the LF method allows to determine local stiffness variations directly from measured modal parameters, even if they are determined from output-only data. Although the LF method is in principle generally applicable, the emphasis in this paper is on beam structures. The method is validated with simulation examples of damaged isostatic and hyperstatic beams, and experiments involving a reinforced concrete free-free beam and a three-span prestressed concrete bridge, that are both subjected to a progressive damage test.

  13. New sensors and techniques for the structural health monitoring of propulsion systems.

    Science.gov (United States)

    Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA), through the Aviation Safety Program (AVSP), has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  14. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Mark Woike

    2013-01-01

    Full Text Available The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA, through the Aviation Safety Program (AVSP, has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  15. Sequential projection pursuit for optimised vibration-based damage detection in an experimental wind turbine blade

    Science.gov (United States)

    Hoell, Simon; Omenzetter, Piotr

    2018-02-01

    To advance the concept of smart structures in large systems, such as wind turbines (WTs), it is desirable to be able to detect structural damage early while using minimal instrumentation. Data-driven vibration-based damage detection methods can be competitive in that respect because global vibrational responses encompass the entire structure. Multivariate damage sensitive features (DSFs) extracted from acceleration responses enable to detect changes in a structure via statistical methods. However, even though such DSFs contain information about the structural state, they may not be optimised for the damage detection task. This paper addresses the shortcoming by exploring a DSF projection technique specialised for statistical structural damage detection. High dimensional initial DSFs are projected onto a low-dimensional space for improved damage detection performance and simultaneous computational burden reduction. The technique is based on sequential projection pursuit where the projection vectors are optimised one by one using an advanced evolutionary strategy. The approach is applied to laboratory experiments with a small-scale WT blade under wind-like excitations. Autocorrelation function coefficients calculated from acceleration signals are employed as DSFs. The optimal numbers of projection vectors are identified with the help of a fast forward selection procedure. To benchmark the proposed method, selections of original DSFs as well as principal component analysis scores from these features are additionally investigated. The optimised DSFs are tested for damage detection on previously unseen data from the healthy state and a wide range of damage scenarios. It is demonstrated that using selected subsets of the initial and transformed DSFs improves damage detectability compared to the full set of features. Furthermore, superior results can be achieved by projecting autocorrelation coefficients onto just a single optimised projection vector.

  16. The Vibration Based Fatigue Damage Assessment of Steel and Steel Fiber Reinforced Concrete (SFRC Composite Girder

    Directory of Open Access Journals (Sweden)

    Xu Chen

    2015-01-01

    Full Text Available The steel-concrete composite girder has been usually applied in the bridge and building structures, mostly consisting of concrete slab, steel girder, and shear connector. The current fatigue damage assessment for the composite girder is largely based on the strain values and concrete crack features, which is time consuming and not stable. Hence the vibration-based fatigue damage assessment has been considered in this study. In detail, a steel-steel fiber reinforced concrete (SFRC composite girder was tested. The steel fiber reinforced concrete is usually considered for dealing with the concrete cracks in engineering practice. The composite girder was 3.3m long and 0.45m high. The fatigue load and impact excitation were applied on the specimen sequentially. According to the test results, the concrete crack development and global stiffness degradation during the fatigue test were relatively slow due to the favourable performance of SFRC in tension. But on the other hand, the vibration features varied significantly during the fatigue damage development. Generally, it confirmed the feasibility of executing fatigue damage assessment of composite bridge based on vibration method.

  17. Mechanical strain-amplifying transducer for fiber Bragg grating sensors with applications in structural health monitoring

    Science.gov (United States)

    Nawrot, Urszula; Geernaert, Thomas; De Pauw, Ben; Anastasopoulos, Dimitrios; Reynders, Edwin; De Roeck, Guido; Berghmans, Francis

    2017-04-01

    A well-known structural health monitoring method used to detect and locate damage in civil engineering structures is vibration-based damage identification. It typically monitors the civil structure over time to spot slow or sudden changes in its natural frequencies, damping factors or modal displacements. This approach can prove very powerful, but the sensitivity of those properties to local damage can be rather low. In addition, their cross-sensitivity to environmental influences may completely mask the effect of damage, even of severe damage. Instead one can consider the modal strains and curvatures, which are much more sensitive to local damage, but direct (quasi-)distributed monitoring of these quantities with sufficient strain resolution as well as adequate spatial resolution is not straightforward with current measurement techniques. This stems from the small (sub-microstrain) amplitudes of the strain levels occurring following ambient or operational excitation of the structure under test. To deal with this issue we propose and demonstrate a novel mechanical transducer that amplifies the strain applied to an optical fiber Bragg grating sensor with a factor of about 36. In addition the transducer resonance frequencies are sufficiently high to ensure accurate dynamic strain monitoring of civil structures under ambient excitation.

  18. Piezoelectric Sensor Evaluation for Structural Health Monitoring of Cryogenic Structures

    Science.gov (United States)

    Lassiter, John; Engberg, Robert

    2005-01-01

    This viewgraph presentation provides an overview of Structural Health Monitoring (SHM), and profiles piezoelectric sensors useful for SHM of cryogenic structures. The presentation also profiles impedance tests and other SHM tests conducted at Marshall Space Flight Center (MSFC).

  19. Structural Health Monitoring for Impact Damage in Composite Structures.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis P.; Raymond Bond (Purdue); Doug Adams (Purdue)

    2014-08-01

    Composite structures are increasing in prevalence throughout the aerospace, wind, defense, and transportation industries, but the many advantages of these materials come with unique challenges, particularly in inspecting and repairing these structures. Because composites of- ten undergo sub-surface damage mechanisms which compromise the structure without a clear visual indication, inspection of these components is critical to safely deploying composite re- placements to traditionally metallic structures. Impact damage to composites presents one of the most signi fi cant challenges because the area which is vulnerable to impact damage is generally large and sometimes very dif fi cult to access. This work seeks to further evolve iden- ti fi cation technology by developing a system which can detect the impact load location and magnitude in real time, while giving an assessment of the con fi dence in that estimate. Fur- thermore, we identify ways by which impact damage could be more effectively identi fi ed by leveraging impact load identi fi cation information to better characterize damage. The impact load identi fi cation algorithm was applied to a commercial scale wind turbine blade, and results show the capability to detect impact magnitude and location using a single accelerometer, re- gardless of sensor location. A technique for better evaluating the uncertainty of the impact estimates was developed by quantifying how well the impact force estimate meets the assump- tions underlying the force estimation technique. This uncertainty quanti fi cation technique was found to reduce the 95% con fi dence interval by more than a factor of two for impact force estimates showing the least uncertainty, and widening the 95% con fi dence interval by a fac- tor of two for the most uncertain force estimates, avoiding the possibility of understating the uncertainty associated with these estimates. Linear vibration based damage detection tech- niques were investigated in the

  20. Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System

    Science.gov (United States)

    Wong, Chin Hong; Dahari, Zuraini

    2017-03-01

    The trend of finding new means to harvest energy has triggered numerous researches to explore the potential of raindrop energy harvesting. This paper presents an investigation on raindrop energy harvesting which compares the performance of polyvinylidene fluoride (PVDF) cantilever and bridge structure transducers and the development of a raindrop energy harvesting system. The parameters which contribute to the output voltage such as droplet size, droplets released at specific heights and dimensions of PVDF transducers are analyzed. Based on the experimental results, the outcomes have shown that the bridge structure transducer generated a higher voltage than the cantilever. Several dimensions have been tested and it was found that the 30 mm × 4 mm × 25 μm bridge structure transducer generated a relatively high AC open-circuit voltage, which is 4.22 V. The power generated by the bridge transducer is 18 μW across a load of 330 kΩ. The transducer is able to drive up a standard alternative current (AC) to direct current (DC) converter (full-wave bridge rectifier). It generated a DC voltage, V DC of 8.7 mV and 229 pW across a 330 kΩ resistor per drop. It is also capable to generate 9.3 nJ in 20 s from an actual rain event.

  1. Active vibration-based SHM system: demonstration on an operating Vestas V27 wind turbine

    DEFF Research Database (Denmark)

    Tcherniak, Dmitri; Mølgaard, Lasse Lohilahti

    2016-01-01

    This study presents a system that is able to detect defects like cracks, leading/trailing edge opening or delamination of at least 15 cm size, remotely, without stopping the wind turbine. The system is vibration-based: mechanical energy is artificially introduced by means of an electromechanical ...

  2. Structural Health Monitoring Studies of the Alamosa Canyon and I-40 Bridges

    Energy Technology Data Exchange (ETDEWEB)

    Charles R. Farrar; Phillip J. Cornwell; Scott W. Doebling; Michael B. Prime

    2000-07-01

    From 1994 to 1997 internal research grants from Los Alamos National Laboratory's Laboratory Direct Research and Development (LDRD) office were used to fund an effort aimed at studying global vibration-based damage detection methods. To support this work, several field tests of the Alamosa Canyon Bridge have been performed to study various aspects of applying vibration-based damage detection methods to a real world in situ structure. This report summarizes the data that has been collected from the various vibration tests performed on the Alamosa Canyon Bridge, analyses of these data, and the results that have been obtained. Initially, it was the investigators' intent to introduce various types of damage into this bridge and study several vibration-based damage detection methods. The feasibility of continuously monitoring such a structure for the onset of damage was also going to be studied. However, the restrictions that the damage must be relatively benign or repairable made it difficult to take the damage identification portion of the study to completion. Subsequently, this study focused on quantifying the variability in identified modal parameters caused by sources other than damage. These sources include variability in testing procedures, variability in test conditions, and environmental variability. These variabilities must be understood and their influence on identified modal properties quantified before vibration-based damage detection can be applied with unambiguous results. Quantifying the variability in the identified modal parameters led to the development of statistical analysis procedures that can be applied to the experimental modal analysis results. It is the authors' opinion that these statistical analysis procedures represent one of the major contributions of these studies to the vibration-based damage detection field. Another significant contribution that came from this portion of the study was the extension of a strain

  3. Integrated Structural Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to advance the state of the art in composite health management through refinement of an existing technology developed...

  4. Effective Structural Health Monitoring with Additive Manufacturing

    OpenAIRE

    De Baere, Dieter; Strantza, Maria; Hinderdael, Michaël; Devesse, Wim; Guillaume, Patrick

    2014-01-01

    International audience; The current remaining challenges for structural health monitoring (SHM) systems prevented the introduction of SHM systems on a large scale within industrial applications. An effective SHM system is required for the reduction of the direct operation costs, improvement of the life-safety and the introduction of additive manufactured components for critical structures. In this paper, a new structural health monitoring methodology will be presented for components that can ...

  5. Dynamic Structural Health Monitoring of slender structures using optical sensors.

    Science.gov (United States)

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações--Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior.

  6. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    Science.gov (United States)

    Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661

  7. Integrated vibration-based maintenance: an approach for continuous reduction in LCC. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, B. [ER Konsult Utveckling AB, Vaexjoe (Sweden)

    1998-12-31

    The biggest thread in achieving and maintaining high equipment effectiveness can be stated as: whether the improved manufacturing processes capable of producing quality products at a competitive cost. The effect of a new vibration-based maintenance concept, called Total Quality Maintenance (TQMain), is introduced. It aims to make intensive use of the real-time data acquisition and analysis to detect causes behind product quality deviation and failures in machinery, and following defect development at an early stage to increase machine mean effective life and improve company`s economics. The effect of TQMain on LCC of machinery and company`s economics is discussed. A case study to reveal savings in maintenance cost when a vibration-based policy involved, is presented. Using TQMain, company`s economics can be improved effectively through continuous improvement of the technical and economic effectiveness of production processes. (orig.) 14 refs.

  8. Flexible Structural-Health-Monitoring Sheets

    Science.gov (United States)

    Qing, Xinlin; Kuo, Fuo

    2008-01-01

    A generic design for a type of flexible structural-health-monitoring sheet with multiple sensor/actuator types and a method of manufacturing such sheets has been developed. A sheet of this type contains an array of sensing and/or actuation elements, associated wires, and any other associated circuit elements incorporated into various flexible layers on a thin, flexible substrate. The sheet can be affixed to a structure so that the array of sensing and/or actuation elements can be used to analyze the structure in accordance with structural-health-monitoring techniques. Alternatively, the sheet can be designed to be incorporated into the body of the structure, especially if the structure is made of a composite material. Customarily, structural-health monitoring is accomplished by use of sensors and actuators arrayed at various locations on a structure. In contrast, a sheet of the present type can contain an entire sensor/actuator array, making it unnecessary to install each sensor and actuator individually on or in a structure. Sensors of different types such as piezoelectric and fiber-optic can be embedded in the sheet to form a hybrid sensor network. Similarly, the traces for electric communication can be deposited on one or two layers as required, and an entirely separate layer can be employed to shield the sensor elements and traces.

  9. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  10. Structural Factors Affecting Health Examination Behavioral Intention.

    Science.gov (United States)

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates.

  11. Structural health monitoring 2012. Proceedings. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Boller, Christian (ed.)

    2012-07-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The first volume of the proceedings contains topics dealing with physics, materials and sensors. Five of the contributions are separately analyzed for the ENERGY database.

  12. Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors

    OpenAIRE

    Paulo André; José Jara; Humberto Varum; José Melo; Hugo Rodrigues; Rui Travanca; Paulo Antunes

    2012-01-01

    In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of ...

  13. On-orbit structural health monitoring

    Science.gov (United States)

    Rogowski, Robert S.

    1990-01-01

    On-orbit structural health monitoring aboard space platforms requires the development of sensor systems for assessing impact damage from particles and debris, the effects of atomic oxygen erosion, and the integrity of power systems, storage tanks, pressure vessels, and major structural elements. The task of implementing such a smart structure diagnostic system during the initial phase of the NASA Space Station Freedom is evaluated, with a view to more complete smart structures implementation in the course of station evolution. The data processing/cataloguing task may ultimately require AI and neural networks.

  14. Structural health monitoring of inflatable structures for MMOD impacts

    Science.gov (United States)

    Anees, Muhammad; Gbaguidi, Audrey; Kim, Daewon; Namilae, Sirish

    2017-04-01

    Inflatable structures for space habitat are highly prone to damage caused by micrometeoroid and orbital debris impacts. Although the structures are effectively shielded against these impacts through multiple layers of impact resistant materials, there is a necessity for a health monitoring system to monitor the structural integrity and damage state within the structures. Assessment of damage is critical for the safety of personnel in the space habitat, as well as predicting the repair needs and the remaining useful life of the habitat. In this paper, we propose a unique impact detection and health monitoring system based on hybrid nanocomposite sensors. The sensors are composed of two fillers, carbon nanotubes and coarse graphene platelets with an epoxy matrix material. The electrical conductivity of these flexible nanocomposite sensors is highly sensitive to strains as well as presence of any holes and damage in the structure. The sensitivity of the sensors to the presence of 3mm holes due to an event of impact is evaluated using four point probe electrical resistivity measurements. An array of these sensors when sandwiched between soft good layers in a space habitat can act as a damage detection layer for inflatable structures. An algorithm is developed to determine the event of impact, its severity and location on the sensing layer for active health monitoring.

  15. Benchmark Data for Structural Health Monitoring

    OpenAIRE

    Kullaa, Jyrki

    2014-01-01

    International audience; Data analysis is a key function in structural health monitoring (SHM). To develop algorithms for SHM, one needs realistic data. A library of SHM data is introduced with simulations of vibration measurements resulting in three challenging SHM cases: (1) a beam structure with environmental and operational influences, (2) a beam with a non-linear breathing crack, and (3) moving loads on a beam, modelling traffic on a bridge. In all these cases, the excitation is varying a...

  16. New trends in structural health monitoring

    CERN Document Server

    Güemes, J

    2013-01-01

    Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.

  17. Structural health monitoring 2012. Proceedings. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Boller, Christian (ed.)

    2012-07-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The second volume of the proceedings contains topics dealing with applications in the field of aeronautics, astronautic, civil engineering (bridges), energy (wind power), structural health monitoring (transportation), and poster presentations. Ten of the contributions are separately analyzed for the ENERGY database.

  18. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  19. Design Optimization of Structural Health Monitoring Systems

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Eric B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-06

    Sensor networks drive decisions. Approach: Design networks to minimize the expected total cost (in a statistical sense, i.e. Bayes Risk) associated with making wrong decisions and with installing maintaining and running the sensor network itself. Search for optimal solutions using Monte-Carlo-Sampling-Adapted Genetic Algorithm. Applications include structural health monitoring and surveillance.

  20. Structural health monitoring meets data mining

    NARCIS (Netherlands)

    Miao, Shengfa

    2014-01-01

    With the development of sensing and data processing techniques, monitoring physical systems in the field with a sensor network is becoming a feasible option for many domains. Such monitoring systems are referred to as Structural Health Monitoring (SHM) systems. By definition, SHM is the process of

  1. Structure, (governance and health: an unsolicited response

    Directory of Open Access Journals (Sweden)

    Reidpath Daniel D

    2006-09-01

    Full Text Available Abstract Background In a recently published article, it was suggested that governance was the significant structural factor affecting the epidemiology of HIV. This suggestion was made notwithstanding the observed weak correlation between governance and HIV prevalence (r = .2. Unfortunately, the paper raised but left unexamined the potentially more important questions about the relationship between the broader health of populations and structural factors such as the national economy and physical infrastructure. Methods Utilizing substantially the same data sources as the original article, the relationship between population health (healthy life expectancy and three structural factors (access to improved water, GDP per capita, and governance were examined in each of 176 countries. Results Governance was found to be significantly correlated with population health, as were GDP per capita, and access to improved water. They were also found to be significantly correlated with each other. Conclusion The findings are discussed with reference to the growing interest in structural factors as an explanation for population health outcomes, and the relatively weak relationship between governance and HIV prevalence.

  2. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated...... of the structure over its life-cycle as well as the costs associated with monitoring and possible remedial actions. The suggested approach is illustrated through two case studies concerning the monitoring of welded details in steel structures subjected to fatigue loading. The case studies address the effect...... of the uncertainty associated with the performance of SHM on the value of SHM. Moreover, in order to illustrate the potential of the application of approach for monitoring of structural systems an optimal strategy for SHM is determined for a system comprised of three welded details. © 2013 Taylor & Francis Group...

  3. Decentralized structural health monitoring using smart sensors

    Science.gov (United States)

    Spencer, B. F., Jr.; Nagayama, T.; Rice, Jennifer A.

    2008-03-01

    Decentralized computing is required to harvest the rich information that a dense array of smart sensors can make available for structural health monitoring (SHM). Though smart sensor technology has seen substantial advances during recent years, implementation of smart sensors on full-scale structures has been limited. Direct replacement of wired sensing systems with wireless sensor networks is not straight-forward as off-the-shelf wireless systems are unlikely to provide the data users expect. Sensor component characteristics limit the quality of data collected due to packet loss during communication, time synchronization errors, and slow communication speeds. This paper describes a scalable, decentralized approach to SHM using smart sensors, including the middleware services which address these issues common to smart sensor applications for structural health monitoring. In addition, the results of experimental validation are given. Finally, ongoing research addressing other factors critical to successful implementation of a full-scale smart sensor network for SHM are discussed.

  4. Governance structures impact on eHealth

    DEFF Research Database (Denmark)

    Kierkegaard, Patrick

    2015-01-01

    and secondary data sources. All data collection was carried out through desk-research. Data collection relied on performing an extensive search of literature for relevant studies using combinations of keywords that reflected eHealth and governance-related topics. Inclusion and exclusion criteria׳s were applied......Background National eHealth implementation efforts need to move beyond the scope of making technology the primary focus and instead consider the broader spectrum of influences that can either hinder or facilitate eHealth adoption such as governance structures and policies. In this study, Denmark...... serves as an ideal candidate for further examination due to the country׳s rich history of intertwining events that have played an important role in the dynamic relationship between governance and eHealth success and failures. Methods A case study approach was used to gather a combination of primary...

  5. Health Monitoring for Airframe Structural Characterization

    Science.gov (United States)

    Munns, Thomas E.; Kent, Renee M.; Bartolini, Antony; Gause, Charles B.; Borinski, Jason W.; Dietz, Jason; Elster, Jennifer L.; Boyd, Clark; Vicari, Larry; Ray, Asok; hide

    2002-01-01

    This study established requirements for structural health monitoring systems, identified and characterized a prototype structural sensor system, developed sensor interpretation algorithms, and demonstrated the sensor systems on operationally realistic test articles. Fiber-optic corrosion sensors (i.e., moisture and metal ion sensors) and low-cycle fatigue sensors (i.e., strain and acoustic emission sensors) were evaluated to validate their suitability for monitoring aging degradation; characterize the sensor performance in aircraft environments; and demonstrate placement processes and multiplexing schemes. In addition, a unique micromachined multimeasure and sensor concept was developed and demonstrated. The results show that structural degradation of aircraft materials could be effectively detected and characterized using available and emerging sensors. A key component of the structural health monitoring capability is the ability to interpret the information provided by sensor system in order to characterize the structural condition. Novel deterministic and stochastic fatigue damage development and growth models were developed for this program. These models enable real time characterization and assessment of structural fatigue damage.

  6. Structural health monitoring apparatus and methodology

    Science.gov (United States)

    Giurgiutiu, Victor (Inventor); Yu, Lingyu (Inventor); Bottai, Giola Santoni (Inventor)

    2011-01-01

    Disclosed is an apparatus and methodology for structural health monitoring (SHM) in which smart devices interrogate structural components to predict failure, expedite needed repairs, and thus increase the useful life of those components. Piezoelectric wafer active sensors (PWAS) are applied to or integrated with structural components and various data collected there from provide the ability to detect and locate cracking, corrosion, and disbanding through use of pitch-catch, pulse-echo, electro/mechanical impedance, and phased array technology. Stand alone hardware and an associated software program are provided that allow selection of multiple types of SHM investigations as well as multiple types of data analysis to perform a wholesome investigation of a structure.

  7. Behavioral health expenditures and state organizational structure.

    Science.gov (United States)

    Fleming, E; Ma, C A; McGuire, T G

    2000-01-01

    The authors present a study on expenditures by state mental health, substance abuse, and developmental disability agencies in the United States for the period between 1981 and 1993. The relationship between agency spending and organizational structure of state bureaucracy was examined. Results indicate that organizational structure is a determinant of agency spending. The more independent an agency, the higher its spending; conversely, the more independent its competitor, the lower the agency's spending. The number of levels between an agency and the governor's office was not significant in explaining agency expenditures.

  8. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine

    Science.gov (United States)

    Antoni, Jérôme; Griffaton, Julien; André, Hugo; Avendaño-Valencia, Luis David; Bonnardot, Frédéric; Cardona-Morales, Oscar; Castellanos-Dominguez, German; Daga, Alessandro Paolo; Leclère, Quentin; Vicuña, Cristián Molina; Acuña, David Quezada; Ompusunggu, Agusmian Partogi; Sierra-Alonso, Edgar F.

    2017-12-01

    This paper presents the content and outcomes of the Safran contest organized during the International Conference Surveillance 8, October 20-21, 2015, at the Roanne Institute of Technology, France. The contest dealt with the diagnosis of a civil aircraft engine based on vibration data measured in a transient operating mode and provided by Safran. Based on two independent exercises, the contest offered the possibility to benchmark current diagnostic methods on real data supplemented with several challenges. Outcomes of seven competing teams are reported and discussed. The object of the paper is twofold. It first aims at giving a picture of the current state-of-the-art in vibration-based diagnosis of rolling-element bearings in nonstationary operating conditions. Second, it aims at providing the scientific community with a benchmark and some baseline solutions. In this respect, the data used in the contest are made available as supplementary material.

  9. On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Luciana L. Silva

    2015-01-01

    Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.

  10. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  11. Data driven innovations in structural health monitoring

    Science.gov (United States)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  12. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  13. NASA Applications of Structural Health Monitoring Technology

    Science.gov (United States)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  14. Vibration health monitoring for tensegrity structures

    Science.gov (United States)

    Ashwear, Nasseradeen; Eriksson, Anders

    2017-02-01

    Tensegrities are assembly structures, getting their equilibrium from the interaction between tension in cables and compression in bars. During their service life, slacking in their cables and nearness to buckling in their bars need to be monitored to avoid a sudden collapse. This paper discusses how to design the tensegrities to make them feasible for vibrational health monitoring methods. Four topics are discussed; suitable finite elements formulation, pre-measurements analysis to find the locations of excitation and sensors for the interesting modes, the effects from some environmental conditions, and the pre-understanding of the effects from different slacking scenarios.

  15. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  16. Ionizing radiations in Italian health care structures

    Energy Technology Data Exchange (ETDEWEB)

    Fizzano, M.R.; Frusteri, L. [Technical Advisory Dept. for Risk Assessment and Prevention, Italian Workers Compensation Authority, Rome (Italy)

    2006-07-01

    The Council of the European Union has completely renewed the framework regarding radiation protection by adopting some directives: Directive 97/43 EURATOM lays down the general principles of the radiation protection of individuals undergoing exposure to ionising radiations related to medical exposures, as a supplement of Directive 96/29 EURATOM laying down the basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionising radiations.The incorporation into Italian legislation of the European Community directives on the improvement of health and safety at work has promoted a vast effort in order to revise the surveillance approach in many facilities, including hospitals. In Italy, safety law is referred to every workplace; anyway the use of ionising radiations is ruled by specific laws. So in the health care structures it is necessary integrating both the laws and this process is often difficult to carry on. The Italian Legislative Decree 230/95, one the main laws that aim to protect workers against ionising radiations, introduced Directive 96/29/EURATOM. This Decree asks that a doctor and a technical expert analyse the workplace and classify area and workers in according to dose of ionising radiation established by law. The Italian Legislative Decree 626/94 asks that risk analysis in general is made by doctor and specialist in risk. So, in case of risk from ionising radiation, all these figures have to cooperate in order to make an evaluation risk document. (N.C.)

  17. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  18. Towards spacecraft applications of structural health monitoring

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2012-12-01

    Full Text Available The first part of the paper presents recent developments in the field of structural health monitoring (SHM with special attention on the piezoelectric wafer active sensors (PWAS technologies utilizing guided waves (GW as propagating waves (pitch-catch, pulse-echo, standing wave (electromechanical impedance, and phased arrays. The second part of the paper describes the challenges of extending the PWAS GW SHM approach to in-space applications. Three major issues are identified, (a cryogenic temperatures; (b high temperatures; and (c space radiation exposure. Preliminary results in which these three issues were address in a series of carefully conducted experiments are presented and discussed. The third part of the paper discusses a new project that is about to start in collaboration between three Romanian institutes to address the issues and challenging of developing space SHM technologies based on PWAS concepts. The paper finishes with conclusions and suggestions for further work.

  19. Semi-supervised vibration-based classification and condition monitoring of compressors

    Science.gov (United States)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  20. Experimental Aspects in the Vibration-Based Condition Monitoring of Large Hydrogenerators

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Brito Junior

    2017-01-01

    Full Text Available Based on experimental observations on a set of twenty 700 MW hydrogenerators, compiled from several technical reports issued over the last three decades and collected from the reprocessing of the vibration signals recorded during the last commissioning tests, this paper shows that the accurate determination of the journal bearings operating conditions may be a difficult task. It shows that the outsize bearing brackets of large hydrogenerators are subject to substantial dimensional changes caused by external agents, like the generator electromagnetic field and the bearing cooling water temperature. It also shows that the shaft eccentricity of a journal bearing of a healthy large hydrogenerator, operating in steady-state condition, may experience unpredictable, sudden, and significant changes without apparent reasons. Some of these phenomena are reproduced in ordinary commissioning tests or may be noticed even during normal operation, while others are rarely observed or are only detected through special tests. These phenomena modify journal bearings stiffness and damping, changing the hydrogenerator dynamics, creating discrepancies between theoretical predictions and experimental measurements, and making damage detection and diagnostics difficult. Therefore, these phenomena must be analyzed and considered in the application of vibration-based condition monitoring to these rotating machines.

  1. Monitoring Heart Health and Structural Health: mDFA Quantification

    Directory of Open Access Journals (Sweden)

    Toru Yazawa

    2016-02-01

    Full Text Available The aim of this study was to make a method for an early detection of malfunction, e.g., abnormal vibration/fluctuation in recorded signals. We conducted experimentations of heart health and structural health monitoring. We collected natural signals, e.g., heartbeat fluctuation and mechanical vibration. For the analysis, we used modified detrended fluctuation analysis (mDFA method that we have made recently. mDFA calculated the scaling exponent (SI from the time series data, e.g., R-R interval time series obtained from electrocardiograms. In the present study, peaks were identified by our own method. In every single mDFA computation, we identified ~2000 consecutive peaks from a data: "2000" was necessary number to conduct mDFA. mDFA was able to distinguish between normal and abnormal behaviors: Normal healthy hearts exhibited an SI around 1.0, which is a phenomena comparable to 1/f fluctuation. Job-related stressful hearts and extrasystolic hearts both exhibited a low SI such as 0.7. Normally running car's vibration―recorded steering wheel vibration―exhibited an SI around 0.5, which is white noise like fluctuation. Normally spinning ball-bearings (BB exhibited an SI around 0.1, which belongs to the anti-correlation phenomena. A malfunctioning BB showed an increased SI. At an SI value over 0.2, an inspector must check BB's correct functioning. Here we propose that healthiness in various cyclic vibration behaviors can be quantitatively analyzed by mDFA.

  2. Dedicated Solutions for Structural Health Monitoring of Aircraft Components

    OpenAIRE

    Pitropakis, Ioannis

    2015-01-01

    Aircraft structures, like any other mechanical structure, are subjected to various external factors that influence their lifetime. Mechanicalnbsp;and the environment are only some of the factors that can degrade the structure of aircraft components. Monitoring of these degradations by regular inspections or automated data recording is vital for the structural health of the critical components of an aircraft. This research proposes a number of dedicated solutions for structural health monitori...

  3. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-02-01

    Full Text Available This paper presents a micro-electro-mechanical system (MEMS piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,TiO3 (PZT cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3 and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm−3∙g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  4. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)

    Science.gov (United States)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.

    2011-01-01

    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  5. Flexible ultrasonic transducers for structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.-T. [National Research Council Canada, Industrial Materials Inst., Boucherville, Quebec (Canada); McGill Univ., Dept. of Electrical and Computer Engineering, Montreal, Quebec (Canada); Shiha, J.-L. [McGill Univ., Dept. of Electrical and Computer Engineering, Montreal, Quebec (Canada); Jen, C.-K.; Bussiere, J.F. [National Research Council Canada, Industrial Materials Inst., Boucherville, Quebec (Canada)

    2010-05-15

    Flexible ultrasonic transducers (FUTs) which have on-site installation capability are presented for non-destructive evaluation (NDE) and structural health monitoring (SHM) purposes. These FUTs typically consist of a 70 μm thick piezoelectric lead-zirconate-titanate (PZT) composite (PZT-c) coated by a sol-gel spray technique on a 75 μm thick titanium (Ti) membrane. Such an FUT was glued onto a steel pipe of 101 mm in diameter and 4.5 mm in wall thickness and heated at up to 200{sup o}C with the glue serving as a high temperature ultrasonic couplant. The pipe thickness measurement accuracy at 200{sup o}C is estimated to be 13 μm. FUTs were also glued onto the end edge of a 2 mm thick aluminum (Al) plate to generate and receive predominantly shear-horizontal (SH) plate acoustic waves (PAWs) to detect simulated line defects at temperatures of up to 100{sup o}C. FUTs, glued onto a graphite/epoxy (Gr/Ep) composite plate, were also used for the detection of an artificial disbond. An induction type non-contact method for the evaluation of Al plates and Gr/Ep composites using FUTs is also demonstrated. (author)

  6. An autonomous structural health monitoring solution

    Science.gov (United States)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  7. Wireless sensor networks for structural health monitoring

    CERN Document Server

    Cao, Jiannong

    2016-01-01

    This brief covers the emerging area of wireless sensor network (WSN)-based structural health monitoring (SHM) systems, and introduces the authors’ WSN-based platform called SenetSHM. It helps the reader differentiate specific requirements of SHM applications from other traditional WSN applications, and demonstrates how these requirements are addressed by using a series of systematic approaches. The brief serves as a practical guide, explaining both the state-of-the-art technologies in domain-specific applications of WSNs, as well as the methodologies used to address the specific requirements for a WSN application. In particular, the brief offers instruction for problem formulation and problem solving based on the authors’ own experiences implementing SenetSHM. Seven concise chapters cover the development of hardware and software design of SenetSHM, as well as in-field experiments conducted while testing the platform. The brief’s exploration of the SenetSHM platform is a valuable feature for civil engine...

  8. Course Modules on Structural Health Monitoring with Smart Materials

    Science.gov (United States)

    Shih, Hui-Ru; Walters, Wilbur L.; Zheng, Wei; Everett, Jessica

    2009-01-01

    Structural Health Monitoring (SHM) is an emerging technology that has multiple applications. SHM emerged from the wide field of smart structures, and it also encompasses disciplines such as structural dynamics, materials and structures, nondestructive testing, sensors and actuators, data acquisition, signal processing, and possibly much more. To…

  9. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Schiphorst, F.B.A.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  10. Vibration Based Damage Identification in a Composite T-Beam Utilising Low Cost Integrated Actuators and Sensors

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Warnet, Laurent; Loendersloot, Richard; Akkerman, Remko; de Boer, Andries; Boller, C

    2012-01-01

    The development of integrated measurement systems for composite structures is urged by the fact that a Structural Health Monitoring environment requires these systems to become an integral part of the structure. The feasibility of using low cost piezoelectric diaphragms for dynamic characterisation

  11. Health and the Structure of Adolescent Social Networks

    Science.gov (United States)

    Haas, Steven A.; Schaefer, David R.; Kornienko, Olga

    2010-01-01

    Much research has explored the role of social networks in promoting health through the provision of social support. However, little work has examined how social networks themselves may be structured by health. This article investigates the link between individuals' health and the characteristics of their social network positions.We first develop…

  12. Structural health and the politics of African American masculinity.

    Science.gov (United States)

    Metzl, Jonathan M

    2013-07-01

    This commentary describes ways in which notions of African American men's "health" attained by individual choice-embedded in the notion that African American men should visit doctors or engage in fewer risky behaviors-are at times in tension with larger cultural, economic, and political notions of "health." It argues that efforts to improve the health of Black men must take structural factors into account, and failure to do so circumvents even well-intentioned efforts to improve health outcomes. Using historical examples, the article shows how attempts to identify and intervene into what are now called social determinants of health are strengthened by addressing on-the-ground diagnostic disparities and also the structural violence and racism embedded within definitions of illness and health. And, that, as such, we need to monitor structural barriers to health that exist in institutions ostensibly set up to incarcerate or contain Black men and in institutions ostensibly set up to help them.

  13. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  14. Active Sensing Based Bolted Structure Health Monitoring Using Piezoceramic Transducers

    OpenAIRE

    Wang, R.L.; Gu, H.; SONG, G.

    2013-01-01

    Bolted structures are commonly used in civil infrastructure. It is important to perform bolt inspection regularly to ensure the safety of structures. Traditional bolt inspection methods are time-consuming; moreover, bulky instruments are needed in these methods. In this paper, a piezoceramic based active sensing approach is developed to perform the health monitoring of bolted structures. Surface-bonded piezoceramic patches are used as health monitoring transducers. Wavelet packet analysis is ...

  15. Intelligent Structural Health Management of Civil Infrastructure

    Science.gov (United States)

    2012-10-19

    The collapse of the I-35W Mississippi River Bridge in Minneapolis has spawned a growing interest in the : development of reliable techniques for evaluating the structural integrity of civil infrastructure. Current inspection : techniques tailored to ...

  16. Structural health monitoring of grandstands: a review

    Directory of Open Access Journals (Sweden)

    Gómez-Casero Fuentes Miguel Ángel

    2015-01-01

    Full Text Available This article is a state of the art about Grandstands. The Grandstands are slender structures designed to accommodate a large number of people, which are specially under the actions of wind and the human-structure interaction. Over the years, it has been discuss of this topic, although still the number of publications still remain low. The human-structure interaction is a complex issue, where the loads may have different behaviours, depending many factors, including: type of audience (active or passive, public behaviour (jumping, walking, running, clapping, vandal loads, type of event (sports, concerts, meeting, position and posture of the individual, even influences the type of seat (with or without back, stiffness. However, the structure will behave differently when empty or fully occupied. Another load to consider is the wind, especially when the structure has a roof, screens, large-scale advertising, etc. These two types of loads can interact together, which implies an increase in the normal number of load combinations to consider. There are biomechanical models of human behaviour, used for design these types of structures. In addition, there are mathematical models to simulate the behaviour of the Grandstands by numerical methods. In recent years, all these models are throwing good results, against laboratory tests performed. It has also been monitored real Grandstands. This paper compiles all existing information on this topic.

  17. Family structure and health, how companionship acts as a buffer against ill health

    OpenAIRE

    Kizuki Masashi; Nakamura Keiko; Turagabeci Amelia R; Takano Takehito

    2007-01-01

    Abstract Background Health and well-being are the result of synergistic interactions among a variety of determinants. Family structure and composition are social determinants that may also affect health behaviours and outcomes. This study was performed to examine the associations between family structure and health and to determine the protective effects of support mechanisms to improve quality of health outcome. Methods Six hundred people, selected by multistage sampling to obtain a represen...

  18. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  19. Optical Fiber Sensors for Aircraft Structural Health Monitoring

    OpenAIRE

    Iker García; Joseba Zubia; Gaizka Durana; Gotzon Aldabaldetreku; María Asunción Illarramendi; Joel Villatoro

    2015-01-01

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working ...

  20. Health, Economic Structure and Social Indicators

    OpenAIRE

    Wilkinson, Richard

    1984-01-01

    The way in which economic development transforms the material basis of human social interaction and the widespread belief that the advanced industrial countries suffer from some kind of "social malaise" make it increasingly important to develop good indicators of the hitherto unmeasurable aspects of the quality of life. The paper discusses the possibility of identifying aspects of a population's health which could be used as indicators of otherwise unmeasurable subjective aspects of the quali...

  1. Using a structural competency framework to teach structural racism in pre-health education.

    Science.gov (United States)

    Metzl, Jonathan M; Petty, JuLeigh; Olowojoba, Oluwatunmise V

    2017-06-22

    The inclusion of structural competency training in pre-health undergraduate programs may offer significant benefits to future healthcare professionals. This paper presents the results of a comparative study of an interdisciplinary pre-health curriculum based in structural competency with a traditional premedical curriculum. The authors describe the interdisciplinary pre-health curriculum, titled Medicine, Health, and Society (MHS) at Vanderbilt University. The authors then use a new survey tool, the Structural Foundations of Health Survey, to evaluate structural skills and sensibilities. The analysis compares MHS majors (n = 185) with premed science majors (n = 63) and first-semester freshmen (n = 91), with particular attention to understanding how structural factors shape health. Research was conducted from August 2015 to December 2016. Results suggest that MHS majors identified and analyzed relationships between structural factors and health outcomes at higher rates and in deeper ways than did premed science majors and freshmen, and also demonstrated higher understanding of structural and implicit racism and health disparities. The skills that MHS students exhibited represent proficiencies increasingly stressed by the MCAT, the AAMC, and other educational bodies that emphasize how contextual factors shape expressions of health and illness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Quantifiable and Reliable Structural Health Management Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Major concerns for implementing a practical built-in structural health monitoring system are prediction accuracy and data reliability. It is proposed to develop...

  3. Passive Wireless Sensor System for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Albido proposes to develop a Passive Wireless Sensor System for Structural Health Monitoring capable of measuring high-bandwidth temperature and strain of space and...

  4. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  5. Exploration of video-based structural health monitoring techniques.

    Science.gov (United States)

    2014-10-01

    Structural health monitoring (SHM) has become a viable tool to provide owners with objective data for maintenance and repair. Traditionally, discrete contact sensors such as strain gages or accelerometers have been used : for SHM. However, distribute...

  6. Prognostics Design Solutions in Structural Health Monitoring Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The chapter describes the application of prognostic techniques to the domain of structural health and demonstrates the efficacy of the methods using fatigue data...

  7. On the value of structural health monitoring

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Thöns, Sebastian

    2014-01-01

    in the fields of SHM and the quantification of value of information as well as the identification of typical situations in structural engineering in which SHM has the potential to provide value beyond its costs. Subsequently, the theoretical framework which allows for the quantification of the value...... of information collected through SHM systems is developed and elaborated. It is shown how the value of information can be quantified to support the assessment and optimization of decisions on whether and how to implement SHM. To illustrate the use of the developed theoretical framework for evaluating the benefit...... of SHM an example is provided. The example addresses the life-cycle benefit maximization for offshore jacket structures subject to fatigue crack growth utilizing monitoring of near field fatigue stresses as a means of optimizing risk based inspection and maintenance strategies....

  8. The structure of state health agencies: a strategic analysis.

    Science.gov (United States)

    Ford, Eric W; Duncan, W Jack; Ginter, Peter M

    2003-03-01

    Leaders in public organizations are adopting many private sector management practices to control costs and increase efficiency. Nowhere is this more evident than among state health agencies. State health agencies were encouraged to change the way they operate by the 1988 Institute of Medicine (IOM) report on The Future of Public Health. This report portrayed public health as being in disarray. To address major deficiencies identified by the IOM study, some public health leaders have reevaluated their environments, reconfigured their organizations, and adopted a strategic mindset. The purpose of this research is to explore the various organizational configurations of state health agencies. Replicating methods used in studies of private sector organizations, five distinct strategic configurations or archetypes were identified. This comprehensive public health agency taxonomy will assist future researchers in analyzing public health organizations' environments, structures, and strategies.

  9. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    OpenAIRE

    Bremer, Kort.; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors " embedded " in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferomet...

  10. Structural quality of reproductive health services in South-Central ...

    African Journals Online (AJOL)

    Background: The quality of health services has been known to be grossly deficient in developing countries, but only few studies were carried out to document the deficiencies in a systematic manner. Objective: To assess the quality of reproductive health services in rural settings with emphasis on the structural aspect.

  11. Factor Structure of Mental Health Measures for Older Adults.

    Science.gov (United States)

    Zautra, Alex J.; And Others

    1988-01-01

    Examined factor structure of mental health self-reports among older adults who were either physically disabled (N=59), recently widowed (N=52), or matched controls (N=113). Subjects completed Mental Health Inventory, Psychiatric Epidemiology Research Interview Demoralization Composite, and Bradburn Positive Affect Scale. Analyses suggest…

  12. Can market structure explain cross-country differences in health?

    Directory of Open Access Journals (Sweden)

    Kate Rybczynski

    2013-03-01

    Full Text Available There is a well documented health disparity between several European countries and the United States. This health gap remains even after controlling for socioeconomic status and risk factors. At the same time, we note that the U.S. market structure is characterized by significantly more large corporations and "super-sized" retail outlets than Europe. Because big business is hierarchical in nature and has been reported to engender urban sprawl, inferior work environments, and loss of social capital, all identified as correlates of poor health, we suggest that differences in market structure may help account for some of the unexplained differences in health across Europe and North America. Using national level data, this study explores the relationship between market structure and health. We investigate whether individuals who live in countries with proportionately more small business are healthier than those who do not. We use two measures of national health: life expectancy at birth, and age-standardized estimates of diabetes rates. Results from ordinary least squares regressions suggest that, there is a large and statistically significant association between market structure (the ratio of small to total businesses and health, even after controlling income, public percent of health expenditure, and obesity rates. This association is robust to additional controls such as insufficient physical activity, smoking, alcohol disease, and air pollution.

  13. Time-frequency Methods for Structural Health Monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  14. Time-frequency methods for structural health monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  15. Application of Artificial Immune System in Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Jiachen Zhang

    2014-01-01

    Full Text Available A large number of methods have been proposed in the area of structural health monitoring (SHM. However, many of them rely on the prior knowledge of structural-parameter-values or the assumption that the structural-parameter-values do not change without damage. This dependence on specific parameter values limits these methods’ applicability. This paper proposes an artificial immune system- (AIS- based approach for the civil structural health monitoring, which does not require specific parameter values to work. A linear three-floor structure model and a number of single-damage scenarios were used to evaluate the proposed method’s performance. The high success rate showed this approach’s great potential for the SHM tasks. This approach has merits of less dependence on the structural-parameter-values and low demand on the training conditions.

  16. Technical Specifications of Structural Health Monitoring for Highway Bridges: New Chinese Structural Health Monitoring Code

    Directory of Open Access Journals (Sweden)

    Fernando Moreu

    2018-03-01

    Full Text Available Governments and professional groups related to civil engineering write and publish standards and codes to protect the safety of critical infrastructure. In recent decades, countries have developed codes and standards for structural health monitoring (SHM. During this same period, rapid growth in the Chinese economy has led to massive development of civil engineering infrastructure design and construction projects. In 2016, the Ministry of Transportation of the People’s Republic of China published a new design code for SHM systems for large highway bridges. This document is the first technical SHM code by a national government that enforces sensor installation on highway bridges. This paper summarizes the existing international technical SHM codes for various countries and compares them with the new SHM code required by the Chinese Ministry of Transportation. This paper outlines the contents of the new Chinese SHM code and explains its relevance for the safety and management of large bridges in China, introducing key definitions of the Chinese–United States SHM vocabulary and their technical significance. Finally, this paper discusses the implications for the design and implementation of a future SHM codes, with suggestions for similar efforts in United States and other countries.

  17. Organizational structure and job satisfaction in public health nursing.

    Science.gov (United States)

    Campbell, Sara L; Fowles, Eileen R; Weber, B Jan

    2004-01-01

    The purpose of this descriptive study was to describe the characteristics and relationship of organizational structure and job satisfaction in public health nursing. A significant relationship was found between organizational structure variables and job satisfaction for public health nurses employed in down state Illinois local health departments. The findings of this study suggest that work environments in which supervisors and subordinates consult together concerning job tasks and decisions, and in which individuals are involved with peers in decision making and task definition, are positively related to job satisfaction. This information will assist nurse administrators in development of work structures that support participative decision making and enhance job satisfaction, critical to retaining and attracting a well-qualified public health nurse workforce.

  18. More than culture: structural racism, intersectionality theory, and immigrant health.

    Science.gov (United States)

    Viruell-Fuentes, Edna A; Miranda, Patricia Y; Abdulrahim, Sawsan

    2012-12-01

    Explanations for immigrant health outcomes often invoke culture through the use of the concept of acculturation. The over reliance on cultural explanations for immigrant health outcomes has been the topic of growing debate, with the critics' main concern being that such explanations obscure the impact of structural factors on immigrant health disparities. In this paper, we highlight the shortcomings of cultural explanations as currently employed in the health literature, and argue for a shift from individual culture-based frameworks, to perspectives that address how multiple dimensions of inequality intersect to impact health outcomes. Based on our review of the literature, we suggest specific lines of inquiry regarding immigrants' experiences with day-to-day discrimination, as well as on the roles that place and immigration policies play in shaping immigrant health outcomes. The paper concludes with suggestions for integrating intersectionality theory in future research on immigrant health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Health sociology from post-structuralism to the new materialisms.

    Science.gov (United States)

    Fox, Nick J

    2016-01-01

    The article reviews the impact of post-structuralism and postmodern social theory upon health sociology during the past 20 years. It then addresses the emergence of new materialist perspectives, which to an extent build upon insights of post-structuralist concerning power, but mark a turn away from a textual or linguistic focus to address the range of materialities that affect health, illness and health care. I conclude by assessing the impact of these movements for health sociology. © The Author(s) 2015.

  20. [Health promotion through development and improvement of organizational structure].

    Science.gov (United States)

    Udris, I

    1993-01-01

    Postulates of work and organizational psychology describe criteria for human working conditions and the Ottawa-Charta of the World Health Organization depicts principles of health promotion. Based on these postulates and principles measures of corrective and preventive organizational design are presented. Deficiencies in health promotion are outlined derived by questionnaire data of employees and interview data of managers of Swiss companies in the service sector. An encouraging example of a successful introduction of semi-autonomous working groups in a Swiss bank shows the enhancement of health potentials by improving organizational structures.

  1. Development of new structural health monitoring techniques

    Science.gov (United States)

    Fekrmandi, Hadi

    During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop -- DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

  2. [Position of health at international relations. Part I. Structural dimensions of health].

    Science.gov (United States)

    Cianciara, Dorota; Wysocki, Mirosław J

    2011-01-01

    In the article, the health is perceived as complex, multidimensional concept and not as absence of disease. This is consistent with public health perspective, where public health is regarded as public as well as political activity. It aims to solve health and social problems, depends on analysis of phenomena, needs the negotiations and relies on making decision on feasible directions of changes--what, why, how, where, when and by whom should be done. Public health policy developed as a result of international relations, and UN family fora especially, is regarded as significant for creating of health position. The aim of this article was: (1) the analysis of selected concepts and definitions related to structural dimensions of health, used in UN international arrangements; (2) an attempt to explain the evolution of health structure notions at worldwide agenda. The UN main bodies, programmes and funds working on the health field are mentioned and voting rules in UN General Assembly and World Health Assembly are reminded. The following structural dimensions were considered: (a) well-being, (b) human rights, (c) everyday resource, health potential, (4) equity. All were explored in WHO Constitution, Universal Declaration of Human Rights, International Covenant on Economic, Social and Cultural Rights, Ottawa Charter for Health Promotion and numerous WHA and UN GA resolutions, decisions as well as other documents. Some remarkable differences in English and Polish language versions and meanings were pointed out. It was argued that present perception of structural dimension of health is strongly derived from the preamble of the WHO Constitution adopted and signed on 22 July 1946 by the representatives of 61 States. It is an evidence of the strength of this document and wisdom of its authors. The greater progress is associated. with concepts and notion of organizational dimensions of health perceived as action and processes leading to health. Long-term efforts to strengthen

  3. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  4. Vibration Based Damage Assessment of a Cantilever using a Neural Network

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated.......In this paper the possibility of using a Multilayer Perceptron (MLP) network trained with with the Backpropagation Algorithm as a non-destructive damage assessment technique to locate and quantify a damage in structures is investigated....

  5. Family Structure Changes and Children's Health, Behavior, and Educational Outcomes

    DEFF Research Database (Denmark)

    Rasmussen, Astrid Würtz

    on children. In this study I empirically test whether children are traumatized both in the short and the long run by shocks in the family structure during childhood. I focus on educational, behavioral, and health outcomes. A population sample of Danish children born in January to May 1985 is used...... for the analysis. The empirical cross-sectional analysis indicates a negative relation between the number of family structure changes and children.s health, behavior, and educational outcomes. These results are con.rmed by a differences-in-differences analysis of health outcomes. This suggests......More and more children do not grow up in traditional nuclear families. Instead, they grow up in single-parent households or in families with a step-parent. Hence, it is important to improve our understanding of the impact of "shocks" in family structure due to parental relationship dissolution...

  6. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  7. Family Structure Changes and Children's Health, Behavior, and Educational Outcomes

    DEFF Research Database (Denmark)

    Rasmussen, Astrid Würtz

    More and more children do not grow up in traditional nuclear families. Instead they grow up in single parent households or in families with a step-parent. Hence it is important to improve our understanding of the impact of 'shocks' in family structure due to parental relationship dissolution...... on children. In this study I empirically test whether children are traumatized by shocks in the family structure during childhood. I focus on both educational, behavioral, and health outcomes. A population sample of Danish children born in January to May 1983, 1984, and 1985 is used for the analysis....... The empirical cross-sectional analysis indicates a negative relation between the number of family structure changes and children's educational outcomes. Children experiencing many family structure changes also seem to have worse health outcomes....

  8. Family Structure Changes and Children's Health, Behavior, and Educational Outcomes

    DEFF Research Database (Denmark)

    Rasmussen, Astrid Würtz

    on children. In this study I empirically test whether children are traumatized both in the short and the long run by shocks in the family structure during childhood. I focus on educational, behavioral, and health outcomes. A population sample of Danish children born in January to May 1983, 1984, and 1985...... is used for the analysis. The empirical cross-sectional analysis indicates a negative relation between the number of family structure changes and children.s educational outcomes. Children experiencing many family structure changes also seem to have worse health outcomes.......More and more children do not grow up in traditional nuclear families. Instead they grow up in single parent households or in families with a step-parent. Hence it is important to improve our understanding of the impact of "shocks" in family structure due to parental relationship dissolution...

  9. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Directory of Open Access Journals (Sweden)

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  10. Commentary: Institutes versus traditional administrative academic health center structures.

    Science.gov (United States)

    Karpf, Michael; Lofgren, Richard

    2012-05-01

    In the Point-Counterpoint section of this issue, Kastor discusses the pros and cons of a new, institute-based administrative structure that was developed at the Cleveland Clinic in 2008, ostensibly to improve the quality and efficiency of patient care. The real issue underlying this organizational transformation is not whether the institute model is better than the traditional model; instead, the issue is whether the traditional academic health center (AHC) structure is viable or whether it must evolve. The traditional academic model, in which the department and chair retain a great deal of autonomy and authority, and in which decision-making processes are legislative in nature, is too tedious and laborious to effectively compete in today's health care market. The current health care market is demanding greater efficiencies, lower costs, and thus greater integration, as well as more transparency and accountability. Improvements in both quality and efficiency will demand coordination and integration. Focusing on quality and efficiency requires organizational structures that facilitate cohesion and teamwork, and traditional organizational models will not suffice. These new structures must and will replace the loose amalgamation of the traditional AHC to develop the focus and cohesion to address the pressures of an evolving health care system. Because these new structures should lead to more successful clinical enterprises, they will, in fact, support the traditional academic missions of research and education more successfully than traditional organizational models can.

  11. SMART Layer and SMART Suitcase for structural health monitoring applications

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin; Kumar, Amrita; Beard, Shawn J.

    2001-06-01

    Knowledge of integrity of in-service structures can greatly enhance their safety and reliability and lower structural maintenance cost. Current practices limit the extent of real-time knowledge that can be obtained from structures during inspection, are labor-intensive and thereby increase life-cycle costs. Utilization of distributed sensors integrated with the structure is a viable and cost-effective means of monitoring the structure and reducing inspection costs. Acellent Technologies is developing a novel system for actively and passively interrogating the health of a structure through an integrated network of sensors and actuators. Acellent's system comprises of SMART Layers, SMART Suitcase and diagnostic software. The patented SMART Layer is a thin dielectric film with an embedded network of distributed piezoelectric actuators/sensors that can be surface-mounted on metallic structures or embedded inside composite structures. The SMART Suitcase is a portable diagnostic unit designed with multiple sensor/actuator channels to interface with the SMART Layer, generate diagnostic signals from actuators and record measurements from the embedded sensors. With appropriate diagnostic software, Acellent's system can be used for monitoring structural condition and for detecting damage while the structures are in service. This paper enumerates on the SMART Layer and SMART Suitcase and their applicability to composite and metal structures.

  12. A clustering approach for structural health monitoring on bridges

    OpenAIRE

    Diez Oliván, Alberto; Dang Khoa, Nguyen Lu; Makki Alamdari, Mehrisadat; Wang, Yang; Chen, Fang; Runcie, Peter

    2016-01-01

    Structural health monitoring is a process for identifying damage in civil infrastructures using sensing system. It has been increasingly employed due to advances in sensing technologies and data analytic using machine learning. A common problem within this scenario is that limited data of real structural faults are available. Therefore, unsupervised and novelty detection machine learning methods must be employed. This work presents a clustering based approach to group substructures or joints ...

  13. Integrated fiber optic structural health sensors for inflatable space habitats

    Science.gov (United States)

    Ohanian, Osgar John; Garg, Naman; Castellucci, Matthew A.

    2017-04-01

    Inflatable space habitats offer many advantages for future space missions; however, the long term integrity of these flexible structures is a major concern in harsh space environments. Structural Health Monitoring (SHM) of these structures is essential to ensure safe operation, provide early warnings of damage, and measure structural changes over long periods of time. To address this problem, the authors have integrated distributed fiber optic strain sensors to measure loading and to identify the occurrence and location of damage in the straps and webbing used in the structural restraint layer. The fiber optic sensors employed use Rayleigh backscatter combined with optical frequency domain reflectometry to enable measurement of strain every 0.65 mm (0.026 inches) along the sensor. The Kevlar woven straps that were tested exhibited large permanent deformation during initial cycling and continued to exhibit hysteresis thereafter, but there was a consistent linear relationship between the sensor's measurement and the actual strain applied. Damage was intentionally applied to a tensioned strap, and the distributed strain measurement clearly identified a change in the strain profile centered on the location of the damage. This change in structural health was identified at a loading that was less than half of the ultimate loading that caused a structural failure. This sensing technique will be used to enable integrated SHM sensors to detect loading and damage in future inflatable space habitat structures.

  14. Quantification of the Value of Structural Health Monitoring Information for Fatigue Deteriorating Structural Systems

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Schneider, Ronald; Faber, Michael Havbro

    2015-01-01

    This paper addresses the quantification of the value of structural health monitoring (SHM) before its implementation for structural systems on the basis of its Value of Information (VoI). The value of SHM is calculated utilizing the Bayesian pre-posterior decision analysis modelling the structura...

  15. Young smokers' narratives: public health, disadvantage and structural violence.

    Science.gov (United States)

    Lewis, Sue; Russell, Andrew

    2013-06-01

    This research article on youth smoking in disadvantaged communities is the product of a qualitative study to understand the issues faced by young smokers--and those trying not to be smokers--in such communities. Environmental factors and peer influence are widely recognised influences on adolescents' take-up and continuation of smoking but less is known about whether, what, how and why circumstances in disadvantaged communities affect young people's pathways towards and away from smoking. Focusing on a youth club in a disadvantaged neighbourhood in the North East of England, narratives about young people's relationships with tobacco provide an ethnographically rich, thick description of the experiences of a group that is too often easily ignored. We argue that young people are caught between competing domains that together exert a form of structural violence. These are, first, the economic and political structures that have overseen de-industrialisation; second, the media structures that create desire for what they cannot afford; third the structures of international organised crime that conspire to provide them with the means to consume from which 'legitimate' structures effectively exclude them. Rather than expecting young people to comply with the health imperative, interventions need to bridge issues of agency and critical consciousness, which structural violence otherwise insidiously erodes. © 2013 The Authors. Sociology of Health & Illness © 2013 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  16. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bru Brea, Jose Maria [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koester, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  17. Family routines: a structural perspective for viewing family health.

    Science.gov (United States)

    Denham, Sharon A

    2002-06-01

    Although rituals are considered in the anthropological and sociological literature, less attention is given to associated biophysical and health perspectives. Three ethnographic studies were conducted to identify the ways family health was defined and practiced. Findings indicated that routines were an important aspect of family health. Families described routines linked to family health and discussed how they evolved, ways they were modified over time, and how families recreated them when stress and change were encountered. Findings indicated that routines provide a structural perspective for assessments, interventions, and outcome evaluations related to health and useful to nursing practice. This article explains some of what is known about family routines, describes the author's findings, and suggests implications for nursing.

  18. Insurer market structure and variation in commercial health care spending.

    Science.gov (United States)

    McKellar, Michael R; Naimer, Sivia; Landrum, Mary B; Gibson, Teresa B; Chandra, Amitabh; Chernew, Michael

    2014-06-01

    To examine the relationship between insurance market structure and health care prices, utilization, and spending. Claims for 37.6 million privately insured employees and their dependents from the Truven Health Market Scan Database in 2009. Measures of insurer market structure derived from Health Leaders Inter study data. Regression models are used to estimate the association between insurance market concentration and health care spending, utilization, and price, adjusting for differences in patient characteristics and other market-level traits. Insurance market concentration is inversely related to prices and spending, but positively related to utilization. Our results imply that, after adjusting for input price differences, a market with two equal size insurers is associated with 3.9 percent lower medical care spending per capita (p = .002) and 5.0 percent lower prices for health care services relative to one with three equal size insurers (p market might lead to higher prices and higher spending for care, suggesting some of the gains from insurer competition may be absorbed by higher prices for health care. Greater attention to prices and utilization in the provider market may need to accompany procompetitive insurance market strategies. © Health Research and Educational Trust.

  19. Recent Research and Application Activities on Structural Health ...

    African Journals Online (AJOL)

    Developments and applications of Structural Health Monitoring (SHM) systems have become active particularly for long-span bridges in Korea. They are composed of sensors, data acquisition system, data transmission system, information processing, damage assessment, and information management. In this paper ...

  20. Acoustic emission structural health management systems (AE-SHMS)

    Science.gov (United States)

    Finlayson, Richard D.; Friesel, Mark A.; Carlos, Mark F.; Miller, Ronnie K.; Godinez, Valery

    2000-05-01

    Many of today's methods of inspecting structures are very time consuming, labor intensive and in many cases (due to limited access), impractical. In addition, long shutdown times are required to perform the inspections, thus creating tremendous expenses associated with manpower, materials and lost production. With continuing advances in signal processing and communications a significant interest has been shown in developing new diagnostic technologies for monitoring the integrity of structures with known defects, or for detecting new defects, in real time with minimum human involvement. The continued use of aging structures, especially in regard to the airworthiness of aging aircraft, is a major area of concern. Recent developments in both active and passive Acoustic Emission monitoring as an advanced tool for 'Structural Health Management Systems (SHMS),' are illustrated by using two recently developed acoustic emission systems; the Acoustic Emission-Health and Usage Monitoring System (AE-HUMS) helicopter drivetrain health monitoring system, and the Acoustic Emission Flight Instrument System (AEFIS) composite health monitoring system. The data collected with these types of systems is processed with advanced data screening and classification techniques, which are employed to take full advantage of parametric and waveform-based acoustic emission.

  1. Family structure and health, how companionship acts as a buffer against ill health

    Directory of Open Access Journals (Sweden)

    Kizuki Masashi

    2007-11-01

    Full Text Available Abstract Background Health and well-being are the result of synergistic interactions among a variety of determinants. Family structure and composition are social determinants that may also affect health behaviours and outcomes. This study was performed to examine the associations between family structure and health and to determine the protective effects of support mechanisms to improve quality of health outcome. Methods Six hundred people, selected by multistage sampling to obtain a representative population of men and women aged 20–60 living in communities in Japan, were included in this study. Data regarding subjective views of one's own health, family structure, lifestyle and social support were collected through structured face-to-face interviews on home visits. Systolic and diastolic blood pressures, height and weight were measured by trained examiners. The associations between family structure and health after controlling for demographics, lifestyle and social support were examined using logistic and linear regression analyses. Results Subjects living alone were significantly more likely to be in ill health, as determined using the General Health Questionnaire, in comparison to those in extended families (OR = 3.14. Subjects living alone or as couples were significantly more likely to suffer from severe hypertension in comparison to those living in extended families (OR = 8.25, OR = 4.90. These associations remained after controlling for the influence of lifestyle. Subjects living only with spouse or in nuclear family had higher probabilities of mental ill health in the absence than in the presence of people showing concern for their well-being. Conclusion The results of this study infers that a support mechanism consisting of companionship and the presence of family or other people concerned for one's well being acts as a buffer against deleterious influence of living in small family that will lead to improved quality of health outcome.

  2. Experimental Evaluation of Vibration-Based Damage Identification Methods on a Composite Aircraft Structure with Internally-Mounted Piezodiaphragm Sensors

    NARCIS (Netherlands)

    Hwang, Joong Sun; Loendersloot, Richard; Tinga, Tiedo; Chang, F.K.; Guemes, A.

    2015-01-01

    Maintenance strategies in various fields of industry, including aerospace applications, are shifting from time-scheduled to condition based strategies. An important requirement to allow this shift is to acquire knowledge on the failure modes and mechanisms of the system under observation. This

  3. Structural health monitoring systems in difficult environments. Offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Faulkner, P.; Cutter, P.; Owens, A. [Strainstall Monitoring, Midsomer Norton (United Kingdom)

    2012-07-01

    The paper discusses the design and capability of Structural Health Monitoring Systems (SHMS) deployed on Offshore Wind Turbines together with the management of the tasks and risks in the offshore environment. The application of SHMS in difficult environments is a particularly challenging task, where ease of installation, ruggedness and reliability of equipment is essential in providing the key information of the structural integrity of Offshore Wind Turbine Towers. This information is required to evaluate the structural response, status and remaining operational life of the structure. The installation and commissioning of such systems have a significant focus on safety and access to the structures where onsite retrofitting of sensors and instrumentation are carried out in the field. Experience has been gained during the installation and commissioning of over 30 systems that have been deployed in the field in the UK offshore sector over the last two year period. (orig.)

  4. Impedance-based structural health monitoring (Conference Presentation)

    Science.gov (United States)

    Park, Gyuhae; Inman, Daniel J.

    2017-04-01

    This paper presents an overview of impedance-based structural health monitoring, which has been pioneered by Inman and his research group. The basic principle behind this technique is to apply high frequency structural excitations (typically greater than 30 kHz) through the surface-bonded piezoelectric transducers, and measure the impedance of structures by monitoring the current and voltage applied to the piezoelectric transducers. Changes in impedance indicate changes in the structure, which in turn can indicate that damage has occurred. For the last two decades, extensive research works have been performed to various applications, including mechanical, aerospace and civil structural components. The technique has been also extended to piezoelectric sensor diagnostics, concrete cure monitoring, and biomedical applications. This paper presents the summary of how this technique has been evolved with the significant contribution by Inman.

  5. Piezoelectric paint sensor for real-time structural health monitoring

    Science.gov (United States)

    Zhang, Yunfeng

    2005-05-01

    Sensors, which collect data for further information processing, are core component of any viable structural health monitoring system. Continuous on-line structural health monitoring can be achieved through the use of advanced sensors developed for real-time structural health monitoring applications. To overcome the problems associated with traditional piezoelectric ceramics, a polymer-based piezoelectric paint material has been developed and recently used for sensors. The piezoelectric paint is composed of tiny piezoelectric particles mixed within polymer matrix and therefore belongs to "0-3" piezoelectric composite. Because of the electro-mechanical coupling properties of piezoelectric paint, the dynamic responses of host structures can be monitored by measuring the output voltage signals from the piezoelectric paint sensor. Piezoelectric paint sensors hold a great potential for dynamic strain sensing applications due to the ease with which their mechanical properties can be adjusted, low fabrication cost, ease of implementation, and conformability to curved surface Additionally, a novel surface crack detection technique has been conceived and validated experimentally, in which cracks of the host structure is detected by observing the measured signals from an piezoelectric paint sensor with multi-electrode configuration. This paper presents this piezoelectric paint-based crack monitoring method as well as validation test data. The piezoelectric paint sensor is ideal for surface crack detection in locations with complex geometry, such as welded joints, which conventional sensors are ill equipped to do.

  6. Coffee melanoidins: structures, mechanisms of formation and potential health impacts.

    Science.gov (United States)

    Moreira, Ana S P; Nunes, Fernando M; Domingues, M Rosário; Coimbra, Manuel A

    2012-09-01

    During the roasting process, coffee bean components undergo structural changes leading to the formation of melanoidins, which are defined as high molecular weight nitrogenous and brown-colored compounds. As coffee brew is one of the main sources of melanoidins in the human diet, their health implications are of great interest. In fact, several biological activities, such as antioxidant, antimicrobial, anticariogenic, anti-inflammatory, antihypertensive, and antiglycative activities, have been attributed to coffee melanoidins. To understand the potential of coffee melanoidin health benefits, it is essential to know their chemical structures. The studies undertaken to date dealing with the structural characterization of coffee melanoidins have shown that polysaccharides, proteins, and chlorogenic acids are involved in coffee melanoidin formation. However, exact structures of coffee melanoidins and mechanisms involved in their formation are far to be elucidated. This paper systematizes the available information and provides a critical overview of the knowledge obtained so far about the structure of coffee melanoidins, mechanisms of their formation, and their potential health implications.

  7. Insurer Market Structure and Variation in Commercial Health Care Spending

    Science.gov (United States)

    McKellar, Michael R; Naimer, Sivia; Landrum, Mary B; Gibson, Teresa B; Chandra, Amitabh; Chernew, Michael

    2014-01-01

    Objective To examine the relationship between insurance market structure and health care prices, utilization, and spending. Data Sources Claims for 37.6 million privately insured employees and their dependents from the Truven Health Market Scan Database in 2009. Measures of insurer market structure derived from Health Leaders Inter study data. Methods Regression models are used to estimate the association between insurance market concentration and health care spending, utilization, and price, adjusting for differences in patient characteristics and other market-level traits. Results Insurance market concentration is inversely related to prices and spending, but positively related to utilization. Our results imply that, after adjusting for input price differences, a market with two equal size insurers is associated with 3.9 percent lower medical care spending per capita (p = .002) and 5.0 percent lower prices for health care services relative to one with three equal size insurers (p prices and higher spending for care, suggesting some of the gains from insurer competition may be absorbed by higher prices for health care. Greater attention to prices and utilization in the provider market may need to accompany procompetitive insurance market strategies. PMID:24303879

  8. Vibration-Based Method Developed to Detect Cracks in Rotors During Acceleration Through Resonance

    Science.gov (United States)

    Sawicki, Jerzy T.; Baaklini, George Y.; Gyekenyesi, Andrew L.

    2004-01-01

    In recent years, there has been an increasing interest in developing rotating machinery shaft crack-detection methodologies and online techniques. Shaft crack problems present a significant safety and loss hazard in nearly every application of modern turbomachinery. In many cases, the rotors of modern machines are rapidly accelerated from rest to operating speed, to reduce the excessive vibrations at the critical speeds. The vibration monitoring during startup or shutdown has been receiving growing attention (ref. 1), especially for machines such as aircraft engines, which are subjected to frequent starts and stops, as well as high speeds and acceleration rates. It has been recognized that the presence of angular acceleration strongly affects the rotor's maximum response to unbalance and the speed at which it occurs. Unfortunately, conventional nondestructive evaluation (NDE) methods have unacceptable limits in terms of their application for online crack detection. Some of these techniques are time consuming and inconvenient for turbomachinery service testing. Almost all of these techniques require that the vicinity of the damage be known in advance, and they can provide only local information, with no indication of the structural strength at a component or system level. In addition, the effectiveness of these experimental techniques is affected by the high measurement noise levels existing in complex turbomachine structures. Therefore, the use of vibration monitoring along with vibration analysis has been receiving increasing attention.

  9. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications.

    Science.gov (United States)

    Di Sante, Raffaella

    2015-07-30

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  10. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  11. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Science.gov (United States)

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  12. Development of a Vibration-Based Electromagnetic Energy Harvester by a Conductive Direct-Write Process

    Directory of Open Access Journals (Sweden)

    Yao-Yun Feng

    2017-03-01

    Full Text Available A conductive direct-write process of multilayered coils for micro electromagnetic generators is proposed. This novel approach of using silver ink to form the conductive structures largely reduces the fabrication complexity, and it provides a faster alternative to the conventional semiconductor methods. Multi-layered coils with insulation were accurately layered on a micromachined cantilevered diaphragm by a dispenser. Coils several layers thick could be used to increase the power output and double coils were separated by a layer of insulation. Six prototypes, all capable of efficient conversion of vibrational energy into electrical energy, were fabricated. The experimental results, which include measurements of the electromotive force and power output, are presented. Prototypes with two coils and thicker conducting layers had less resistance and the power output was much more than that of a single-coil unit. This generator can produce 82 nW of power at a resonance frequency of 275 Hz under 5 g excitation.

  13. Structural health monitoring algorithm comparisons using standard data sets

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Eloi; Park, Gyuhae; Figueiras, Joaquim; Farrar, Charles; Worden, Keith

    2009-03-01

    The real-world structures are subjected to operational and environmental condition changes that impose difficulties in detecting and identifying structural damage. The aim of this report is to detect damage with the presence of such operational and environmental condition changes through the application of the Los Alamos National Laboratory’s statistical pattern recognition paradigm for structural health monitoring (SHM). The test structure is a laboratory three-story building, and the damage is simulated through nonlinear effects introduced by a bumper mechanism that simulates a repetitive impact-type nonlinearity. The report reviews and illustrates various statistical principles that have had wide application in many engineering fields. The intent is to provide the reader with an introduction to feature extraction and statistical modelling for feature classification in the context of SHM. In this process, the strengths and limitations of some actual statistical techniques used to detect damage in the structures are discussed. In the hierarchical structure of damage detection, this report is only concerned with the first step of the damage detection strategy, which is the evaluation of the existence of damage in the structure. The data from this study and a detailed description of the test structure are available for download at: http://institute.lanl.gov/ei/software-and-data/.

  14. Vibration-Based Adaptive Novelty Detection Method for Monitoring Faults in a Kinematic Chain

    Directory of Open Access Journals (Sweden)

    Jesus Adolfo Cariño-Corrales

    2016-01-01

    Full Text Available This paper presents an adaptive novelty detection methodology applied to a kinematic chain for the monitoring of faults. The proposed approach has the premise that only information of the healthy operation of the machine is initially available and fault scenarios will eventually develop. This approach aims to cover some of the challenges presented when condition monitoring is applied under a continuous learning framework. The structure of the method is divided into two recursive stages: first, an offline stage for initialization and retraining of the feature reduction and novelty detection modules and, second, an online monitoring stage to continuously assess the condition of the machine. Contrary to classical static feature reduction approaches, the proposed method reformulates the features by employing first a Laplacian Score ranking and then the Fisher Score ranking for retraining. The proposed methodology is validated experimentally by monitoring the vibration measurements of a kinematic chain driven by an induction motor. Two faults are induced in the motor to validate the method performance to detect anomalies and adapt the feature reduction and novelty detection modules to the new information. The obtained results show the advantages of employing an adaptive approach for novelty detection and feature reduction making the proposed method suitable for industrial machinery diagnosis applications.

  15. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays

    Science.gov (United States)

    Black, Richard J.; Faridian, Ferey; Moslehi, Behzad; Sotoudeh, Vahid

    2012-01-01

    Structural health monitoring (SHM) is one of the most important tools available for the maintenance, safety, and integrity of aerospace structural systems. Lightweight, electromagnetic-interference- immune, fiber-optic sensor-based SHM will play an increasing role in more secure air transportation systems. Manufacturers and maintenance personnel have pressing needs for significantly improving safety and reliability while providing for lower inspection and maintenance costs. Undetected or untreated damage may grow and lead to catastrophic structural failure. Damage can originate from the strain/stress history of the material, imperfections of domain boundaries in metals, delamination in multi-layer materials, or the impact of machine tools in the manufacturing process. Damage can likewise develop during service life from wear and tear, or under extraordinary circumstances such as with unusual forces, temperature cycling, or impact of flying objects. Monitoring and early detection are key to preventing a catastrophic failure of structures, especially when these are expected to perform near their limit conditions.

  16. Fiber Optic Displacement Sensor System for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun Ho; Ahn, Byung Jun; Kim, Dae Hyun [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2011-08-15

    It has been doing to research on novel techniques for structural health monitoring by applying various sensor techniques to measure the deflection in mechanical and civil structures. Several electric-based displacement sensors have many difficulties for using them because of EMI (Electro-Magnetic Interference) noise of many lead-wires when they are installed to many points in the structures. In this paper, it is proposed an affordable intensity-based fiber optic sensor to measure small displacement solving the problems of conventional sensors. In detail, the sensor head was designed on the basis of the principle of bending loss and a basic experiment was performed to obtain the sensitivity, the linearity and the stroke of the sensor. Moreover, a prototype was designed and manufactured to be easily installed to a structure and a real-time control software was also successfully developed to drive the fiber optic sensor system.

  17. Structural Health Monitoring Using High-Frequency Electromechanical Impedance Signatures

    Directory of Open Access Journals (Sweden)

    Wei Yan

    2010-01-01

    Full Text Available An overview of recent advances in electromechanical impedance- (EMI- based structural health monitoring is presented in this paper. The basic principle of the EMI method is to use high-frequency excitation to sense the local area of a structure. Changes in impedance indicate changes in the structure, which in turn indicate that damages appear. An accurate EMI model based on the method of reverberation-ray matrix is introduced to correlate changes in the signatures to physical parameters of structures for damage detection. Comparison with other numerical results and experimental data validates the present model. A brief remark of the feasibility of implementing the EMI method is considered and the effects of some physical parameters on EMI technique are also discussed.

  18. Optical Fiber Sensors for Aircraft Structural Health Monitoring.

    Science.gov (United States)

    García, Iker; Zubia, Joseba; Durana, Gaizka; Aldabaldetreku, Gotzon; Illarramendi, María Asunción; Villatoro, Joel

    2015-06-30

    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnel.

  19. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  20. Redirection of Lamb Waves for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    W. H. Ong

    2012-01-01

    Full Text Available Currently, structures are designed without structural health monitoring (SHM in mind. It is proposed that SHM should be addressed at the design stage of new structures. This paper explores the benefit which can be gained from such considerations. The scope encompasses Lamb-wave-based SHM and a given fatigue critical location (FCL. Optimization is performed using specialised ray tracing. A case study is carried out using a specimen that simulates a hard-to-inspect region in a fuel vent hole in wings structures of aircraft. This work will report on the potential use of the focussing of stress wave to improve detectability of defect in this hard-to-inspect location. Following optimization, results are produced numerically and experimentally. The results revealed sensitivity to damage is nearly doubled while minimum detectable damage size is significantly decreased. As a result, this study brings together an assortment of specialised tools to form a workflow ready for implementation.

  1. Vibration-based estimation of tension for an axially travelling web in roll-to-roll manufacturing

    Science.gov (United States)

    Ma, Liang; Chen, Jiankui; Tang, Wei; Yin, Zhouping

    2018-01-01

    Precise estimation of web tension in roll-to-roll manufacturing is critical to ensure product quality. A vibration-based method to estimate web tension is proposed in this paper. By employing the Hamilton principle, the governing equations of motion are derived, which are discretized and solved by the Galerkin method. The natural frequencies are computed from the eigenvalue equation. This study attempts to derive an approximate fitting formula among the axial tension, the travelling speed and the natural frequency, from which the web tension can be calculated conveniently and quickly by employing the measured natural frequencies. A laser displacement sensor is used to measure the transverse vibration displacements of the travelling web and detect free vibration frequency. A major advantage of the proposed method is its contactless, which is more useful under conditions where load cells are not available. An experimental test is carried out to confirm the effectiveness and accuracy of the proposed approach. The web tensions estimated by the vibration method are compared with the measured tensions by load cells.

  2. Investigation of Effectiveness of Some Vibration-Based Techniques in Early Detection of Real-Time Fatigue Failure in Gears

    Directory of Open Access Journals (Sweden)

    Hasan Ozturk

    2010-01-01

    Full Text Available Bending fatigue crack is a dangerous and insidious mode of failure in gears. As it produces no debris in its early stages, it gives little warning during its progression, and usually results in either immediate loss of serviceability or greatly reduced power transmitting capacity. This paper presents the applications of vibration-based techniques (i.e. conventional time and frequency domain analysis, cepstrum, and continuous wavelet transform to real gear vibrations in the early detection, diagnosis and advancement monitoring of a real tooth fatigue crack and compares their detection and diagnostic capabilities on the basis of experimental results. Gear fatigue damage is achieved under heavy-loading conditions and the gearbox is allowed to run until the gears suffer badly from complete tooth breakage. It has been found that the initiation and progression of fatigue crack cannot be easily detected by conventional time and frequency domain approaches until the fault is significantly developed. On the contrary, the wavelet transform is quite sensitive to any change in gear vibration and reveals fault features earlier than other methods considered.

  3. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine

    DEFF Research Database (Denmark)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany

    2016-01-01

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this pr......Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose...... of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally...

  4. Printed strain sensor array for application to structural health monitoring

    Science.gov (United States)

    Zymelka, Daniel; Togashi, Kazuyoshi; Ohigashi, Ryoichi; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi

    2017-10-01

    We demonstrate the development and practical use of low-cost printed strain sensor arrays built for applications in structural health monitoring. Sensors embedded in the array were designed to provide compensation for temperature variations and to enable their use in different seasons. The evaluation was carried out in laboratory tests and with practical application on a highway bridge. Measurements on the bridge were performed 7 months and 1 year after their installation. The developed devices were fully operational and could detect and localize cracks accurately in the monitored bridge structure.

  5. Smart Structures and Intelligent Systems for Health Monitoring and Diagnostics

    Directory of Open Access Journals (Sweden)

    M. A. El-Sherif

    2005-01-01

    Full Text Available “Smart and intelligent” structures are defined as structures capable of monitoring their own “health” condition and structural behavior, such structures are capable of sensing external environmental conditions, making decisions, and sending the information to other locations. Available conventional devices and systems are not technologically mature for such applications. New classes of miniature devices and networking systems are urgently needed for such applications. In this paper, two examples of the successful work achieved so far, in biomedical application of smart structures, are presented. The first one is based on the development of a smart bone fixation device for rehabilitation and treatment. This device includes a smart composite bar that can sense physical stress applied to the fractured bones, and send the information to the patient's physician remotely. The second is on the development of smart fabrics for many applications including health monitoring and diagnostics. Successful development of such smart fabrics with embedded fiber optic sensors and networks is mainly dependent on the development of the proper miniature sensor technology, and on the integration of these sensors into textile structures. The developed smart structures will be discussed and samples of the results will be presented.

  6. Statistical Pattern-Based Assessment of Structural Health Monitoring Data

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2014-01-01

    Full Text Available In structural health monitoring (SHM, various sensors are installed at critical locations of a structure. The signals from sensors are either continuously or periodically analyzed to determine the state and performance of the structure. An objective comparison of the sensor data at different time ranges is essential for assessing the structural condition or excessive load experienced by the structure which leads to potential damage in the structure. The objectives of the current study are to establish a relationship between the data from various sensors to estimate the reliability of the data and potential damage using the statistical pattern matching techniques. In order to achieve these goals, new methodologies based on statistical pattern recognition techniques have been developed. The proposed methodologies have been developed and validated using sensor data obtained from an instrumented bridge and road test data from heavy vehicles. The application of statistical pattern matching techniques are relatively new in SHM data interpretation and current research demonstrates that it has high potential in assessing structural conditions, especially when the data are noisy and susceptible to environmental disturbances.

  7. Thermal sensitivity of Lamb waves for structural health monitoring applications.

    Science.gov (United States)

    Dodson, J C; Inman, D J

    2013-03-01

    One of the drawbacks of the current Lamb wave structural health monitoring methods are the false positives due to changing environmental conditions such as temperature. To create an environmental insensitive damage detection scheme, the physics of thermal effects on Lamb waves must be understood. Dispersion and thermal sensitivity curves for an isotropic plate with thermal stress and thermally varying elastic modulus are presented. The thermal sensitivity of dispersion curves is analytically developed and validated by experimental measurements. The group velocity thermal sensitivity highlights temperature insensitive features at two critical frequencies. The thermal sensitivity gives us insight to how temperature affects Lamb wave speeds in different frequency ranges and will help those developing structural health monitoring algorithms. Published by Elsevier B.V.

  8. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring.

    Science.gov (United States)

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-12-12

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  9. Structural health monitoring of compression connectors for overhead transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [ORNL; Wang, Jy-An John [ORNL; Swindeman, Joseph P [ORNL; Ren, Fei [ORNL; Chan, John [Electric Power Research Institute (EPRI)

    2017-01-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over aluminum conductive strands. The connectors are designed to operate at temperatures up to 125 C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements. However, information about the structural integrity of connectors cannot be obtained. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to create structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  10. Structural health monitoring of compression connectors for overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John

    2017-04-01

    Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.

  11. Microwave Sensor for Blade Tip Clearance and Structural Health Measurements

    Science.gov (United States)

    Woike, Mark R.; Bencic, Timothy J.

    2008-01-01

    The use of microwave based sensors for the health monitoring of rotating machinery is being explored at the NASA Glenn Research Center. The microwave sensor works on the principle of sending a continuous signal towards a rotating component and measuring the reflected signal. The phase shift of the reflected signal is proportional to the distance between the sensor and the component that is being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in the rotating machinery. It is intended to use these probes in the hot sections of turbine engines for closed loop turbine clearance control and structural health measurements. Background on the sensors, an overview of their calibration and preliminary results from using them to make blade tip clearance and health measurements on a large axial vane fan will be presented.

  12. Ultrasonic wave-based structural health monitoring embedded instrument

    Energy Technology Data Exchange (ETDEWEB)

    Aranguren, G.; Monje, P. M., E-mail: pedromaria.monje@ehu.es [Electronic Design Group, Faculty of Engineering of Bilbao, University of the Basque Country, Bilbao (Spain); Cokonaj, Valerijan [AERnnova Engineering Solutions Ibérica S.A., Madrid (Spain); Barrera, Eduardo; Ruiz, Mariano [Instrumentation and Applied Acoustic Research Group of the Technical University of Madrid, Madrid (Spain)

    2013-12-15

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  13. Ultrasonic wave-based structural health monitoring embedded instrument.

    Science.gov (United States)

    Aranguren, G; Monje, P M; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  14. Ultrasonic wave-based structural health monitoring embedded instrument

    Science.gov (United States)

    Aranguren, G.; Monje, P. M.; Cokonaj, Valerijan; Barrera, Eduardo; Ruiz, Mariano

    2013-12-01

    Piezoelectric sensors and actuators are the bridge between electronic and mechanical systems in structures. This type of sensor is a key element in the integrity monitoring of aeronautic structures, bridges, pressure vessels, wind turbine blades, and gas pipelines. In this paper, an all-in-one system for Structural Health Monitoring (SHM) based on ultrasonic waves is presented, called Phased Array Monitoring for Enhanced Life Assessment. This integrated instrument is able to generate excitation signals that are sent through piezoelectric actuators, acquire the received signals in the piezoelectric sensors, and carry out signal processing to check the health of structures. To accomplish this task, the instrument uses a piezoelectric phased-array transducer that performs the actuation and sensing of the signals. The flexibility and strength of the instrument allow the user to develop and implement a substantial part of the SHM technique using Lamb waves. The entire system is controlled using configuration software and has been validated through functional, electrical loading, mechanical loading, and thermal loading resistance tests.

  15. Passive and Active Sensing Technologies for Structural Health Monitoring

    Science.gov (United States)

    Do, Richard

    A combination of passive and active sensing technologies is proposed as a structural health monitoring solution for several applications. Passive sensing is differentiated from active sensing in that with the former, no energy is intentionally imparted into the structure under test; sensors are deployed in a pure detection mode for collecting data mined for structural health monitoring purposes. In this thesis, passive sensing using embedded fiber Bragg grating optical strain gages was used to detect varying degrees of impact damage using two different classes of features drawn from traditional spectral analysis and auto-regressive time series modeling. The two feature classes were compared in detail through receiver operating curve performance analysis. The passive detection problem was then augmented with an active sensing system using ultrasonic guided waves (UGWs). This thesis considered two main challenges associated with UGW SHM including in-situ wave propagation property determination and thermal corruption of data. Regarding determination of wave propagation properties, of which dispersion characteristics are the most important, a new dispersion curve extraction method called sparse wavenumber analysis (SWA) was experimentally validated. Also, because UGWs are extremely sensitive to ambient temperature changes on the structure, it significantly affects the wave propagation properties by causing large errors in the residual error in the processing of the UGWs from an array. This thesis presented a novel method that compensates for uniform temperature change by considering the magnitude and phase of the signal separately and applying a scalable transformation.

  16. Carbon Nanotube-Based Structural Health Monitoring Sensors

    Science.gov (United States)

    Wincheski, Russell; Jordan, Jeffrey; Oglesby, Donald; Watkins, Anthony; Patry, JoAnne; Smits, Jan; Williams, Phillip

    2011-01-01

    Carbon nanotube (CNT)-based sensors for structural health monitoring (SHM) can be embedded in structures of all geometries to monitor conditions both inside and at the surface of the structure to continuously sense changes. These CNTs can be manipulated into specific orientations to create small, powerful, and flexible sensors. One of the sensors is a highly flexible sensor for crack growth detection and strain field mapping that features a very dense and highly ordered array of single-walled CNTs. CNT structural health sensors can be mass-produced, are inexpensive, can be packaged in small sizes (0.5 micron(sup 2)), require less power than electronic or piezoelectric transducers, and produce less waste heat per square centimeter than electronic or piezoelectric transducers. Chemically functionalized lithographic patterns are used to deposit and align the CNTs onto metallic electrodes. This method consistently produces aligned CNTs in the defined locations. Using photo- and electron-beam lithography, simple Cr/Au thin-film circuits are patterned onto oxidized silicon substrates. The samples are then re-patterned with a CNT-attracting, self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES) to delineate the desired CNT locations between electrodes. During the deposition of the solution-suspended single- wall CNTs, the application of an electric field to the metallic contacts causes alignment of the CNTs along the field direction. This innovation is a prime candidate for smart skin technologies with applications ranging from military, to aerospace, to private industry.

  17. Evaluation of bonded piezoelectric AE sensor for structural health monitoring

    Science.gov (United States)

    Jacques, M.; Desai, P.; Salih, F.; Sundaresan, M.

    2008-03-01

    The development of high sensitivity sensors capable of accurately reproducing propagating Lamb waves is crucial for the success of AE based structural health monitoring applications. Plate like members are the most common elements encountered in structural health monitoring. The stress waves propagate as guided waves or Lamb waves in these members. While the traditional acoustic emission sensors are sensitive to displacements normal to the surface of the structural member, the bonded sensors are sensitive to the surface strains. A calibration procedure specifically for the Lamb wave modes is devised using a Laser Vibrometer. The calibration was performed by observing the stress waves propagating in aluminum plates. Based on this calibration, it is established that the bonded PZT sensors reproduce the stress waveforms in these structures reasonably well. This ability was probably responsible for the success of these sensors in distinguishing different source mechanisms and correlation with crack growth rates seen in past studies. In addition to this calibration, the two simulated AE sources were also modeled using finite element technique. The results of the numerical simulation were found to correlate well with the experimental results.

  18. Health monitoring of welded structures using statistical process control

    Science.gov (United States)

    Srinivasa Rao, Putti; Ratnam, Ch.

    2012-02-01

    This paper presents health monitoring of welded structures using acceleration time response data. Residual errors are extracted from the measured acceleration time response data using an auto-regressive model. Damage identification is done by monitoring the residual errors using Shewhart and exponentially weighted moving average control charts. The applicability of the proposed method is tested with the welded structure model. Five damage levels are investigated and the damage is introduced by cutting a slot in the weld using an electrical discharge machine. Acceleration time response data are collected using piezoelectric sensors for all damage levels. The results show that both Shewhart and exponentially weighted moving average control charts are capable of identifying the presence of damage in the welded structure model under consideration. Exponentially weighted moving average control charts are more sensitive in damage identification than Shewhart control charts.

  19. Probabilistic Structural Health Monitoring of the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.; Macias, Jesus; Kaouk, Mohamed; Gafka, Tammy L.; Kerr, Justin H.

    2011-01-01

    A structural health monitoring (SHM) system can contribute to the risk management of a structure operating under hazardous conditions. An example is the Wing Leading Edge Impact Detection System (WLEIDS) that monitors the debris hazards to the Space Shuttle Orbiter s Reinforced Carbon-Carbon (RCC) panels. Since Return-to-Flight (RTF) after the Columbia accident, WLEIDS was developed and subsequently deployed on board the Orbiter to detect ascent and on-orbit debris impacts, so as to support the assessment of wing leading edge structural integrity prior to Orbiter re-entry. As SHM is inherently an inverse problem, the analyses involved, including those performed for WLEIDS, tend to be associated with significant uncertainty. The use of probabilistic approaches to handle the uncertainty has resulted in the successful implementation of many development and application milestones.

  20. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  1. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  2. Development of structural health monitoring systems for composite bonded repairs on aircraft structures

    Science.gov (United States)

    Galea, Stephen C.; Powlesland, Ian G.; Moss, Scott D.; Konak, Michael J.; van der Velden, Stephen P.; Stade, Bryan; Baker, Alan A.

    2001-08-01

    The application of bonded composite patches to repair or reinforce defective metallic structures is becoming recognized as a very effective versatile repair procedure for many types of problems. Immediate applications of bonded patches are in the fields of repair of cracking, localized reinforcement after removal of corrosion damage and for reduction of fatigue strain. However, bonded repairs to critical components are generally limited due to certification concerns. For certification and management of repairs to critical structure, the Smart Patch approach may be an acceptable solution from the airworthiness prospective and be cost effective for the operator and may even allow some relaxation of the certification requirements. In the most basic form of the Smart Patch in-situ sensors can be used as the nerve system to monitor in service the structural condition (health or well-being) of the patch system and the status of the remaining damage in the parent structure. This application would also allow the operator to move away from current costly time-based maintenance procedures toward real-time health condition monitoring of the bonded repair and the repaired structure. TO this end a stand-alone data logger device, for the real-time health monitoring of bonded repaired systems, which is in close proximity to sensors on a repair is being developed. The instrumentation will measure, process and store sensor measurements during flight and then allow this data to be up-loaded, after the flight, onto a PC, via remote (wireless) data access. This paper describes two in-situ health monitoring systems which will be used on a composite bonded patch applied to an F/A-18. The two systems being developed consists of a piezoelectric (PVDF) film-based and a conventional electrical-resistance foil strain gauge-based sensing system. The latter system uses a primary cell (Lithium- based battery) as the power source, which should enable an operating life of 1-2 years. The patch

  3. Parenting Stress, Mental Health, Dyadic Adjustment: A Structural Equation Model

    Directory of Open Access Journals (Sweden)

    Luca Rollè

    2017-05-01

    Full Text Available Objective: In the 1st year of the post-partum period, parenting stress, mental health, and dyadic adjustment are important for the wellbeing of both parents and the child. However, there are few studies that analyze the relationship among these three dimensions. The aim of this study is to investigate the relationships between parenting stress, mental health (depressive and anxiety symptoms, and dyadic adjustment among first-time parents.Method: We studied 268 parents (134 couples of healthy babies. At 12 months post-partum, both parents filled out, in a counterbalanced order, the Parenting Stress Index-Short Form, the Edinburgh Post-natal Depression Scale, the State-Trait Anxiety Inventory, and the Dyadic Adjustment Scale. Structural equation modeling was used to analyze the potential mediating effects of mental health on the relationship between parenting stress and dyadic adjustment.Results: Results showed the full mediation effect of mental health between parenting stress and dyadic adjustment. A multi-group analysis further found that the paths did not differ across mothers and fathers.Discussion: The results suggest that mental health is an important dimension that mediates the relationship between parenting stress and dyadic adjustment in the transition to parenthood.

  4. Family structure and child health outcomes in the United States.

    Science.gov (United States)

    Bass, Loretta E; Warehime, M Nicole

    2011-01-01

    We use categorical and logistic regression models to investigate the extent that family structure affects children’s health outcomes at age five (i.e., child’s type of health insurance coverage, the use of a routine medical doctor, and report of being in excellent health) using a sample of 4,898 children from the "Fragile Families and Child Well-Being Study." We find that children with married biological parents are most likely to have private health insurance compared with each of three other relationship statuses. With each additional child in the home, a child is less likely to have private insurance compared with no insurance and Medicaid insurance. Children with cohabiting biological parents are less likely to have a routine doctor compared with children of married biological parents, yet having additional children in the household is not associated with having a routine doctor. Children with biological parents who are not romantically involved and those with additional children in the household are less likely to be in excellent health, all else being equal.

  5. Implementing optical fibres for the structural health monitoring of composite patch repaired structures

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Kotsidis, Elias A.; Tsouvalis, Nicholas G.

    2017-01-01

    Structural health monitoring is increasingly being implemented to improve the level of safety of structures and to reduce inspection and repair costs by allowing for correct planning of these actions, if needed. Composite patch repairing presents an appealing alternative to traditional repair...... methods as it enables the reduction of closedown time and the mitigation of complications associated with traditional repair methods. As reinforcement with the use of composite patches is predominantly performed at defected structures, the urge to monitor the performance of the repair becomes even greater...... are reflected to the recorded strain measurements, finite element models have been generated. Results indicate that composite patch repairing drastically increased the load bearing capacity of the plates and that optical fibres constitute an appealing health monitoring system for such applications, being able...

  6. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  7. Structural developmental psychology and health promotion in the third age.

    Science.gov (United States)

    Bauger, Lars; Bongaardt, Rob

    2017-01-12

    In response to the ever-increasing longevity in Western societies, old age has been divided into two different periods, labelled the third and fourth age. Where the third age, with its onset at retirement, mostly involves positive aspects of growing old, the fourth age involves functional decline and increased morbidity. This article focuses on the entry to the third age and its potential for health promotion initiatives. Well-being is an important factor to emphasize in such health promotion, and this article views the lifestyle of third agers as essential for their well-being. The structural developmental theory of Robert Kegan delineates how a person's way of knowing develops throughout the life course. This theory is an untapped and salient perspective for health promotion initiatives in the third age. This article outlines Kegan's approach as a tool for developing psychologically spacious health promotion, and suggests future directions for research on the topic. © The Author 2017. Published by Oxford University Press.

  8. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  9. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  10. Structural Health Monitoring of Bridges with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2014-11-01

    Systems with fiber optic sensors FBG (Fiber Bragg Grating are consolidated in the Structural Health Monitoring (SMH of bridges, Nondestructive Testing (NDT static and dynamic measurements of deformation, displacement, deflection, temperature and vibration. This article provides a brief introduction to the technology and the fundamentals of fiber optic sensors, also present comparative advantages over its traditional counterpart is presented. Their characteristics are described and measurement graphics are presented as an application example of the FBG sensors. Finally, some key aspects to consider for proper use in the field are mentioned.

  11. Structural Health Monitoring Sensor Development at NASA Langley Research Center

    Science.gov (United States)

    Prosser, W. H.; Wu, M. C.; Allison, S. G.; DeHaven, S. L.; Ghoshal, A.

    2002-01-01

    NASA is applying considerable effort on the development of sensor technology for structural health monitoring (SHM). This research is targeted toward increasing the safety and reliability of aerospace vehicles, while reducing operating and maintenance costs. Research programs are focused on applications to both aircraft and space vehicles. Sensor technologies under development span a wide range including fiber-optic sensing, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, fiber-optic sensors are one of the leading candidates and are the major focus of this presentation. In addition, recent advances in active and passive acoustic sensing will also be discussed.

  12. Review on pressure sensors for structural health monitoring

    Science.gov (United States)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, B. C.

    2017-08-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  13. Time-frequency methods for structural health monitoring.

    Science.gov (United States)

    Pyayt, Alexander L; Kozionov, Alexey P; Mokhov, Ilya I; Lang, Bernhard; Meijer, Robert J; Krzhizhanovskaya, Valeria V; Sloot, Peter M A

    2014-03-12

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and "strange" behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany).

  14. Dynamic time warping for temperature compensation in structural health monitoring

    Science.gov (United States)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  15. Damage detection and health monitoring of operational structures

    Energy Technology Data Exchange (ETDEWEB)

    James, G.; Mayes, R.; Carne, T.; Reese, G.

    1994-09-01

    Initial damage detection/health monitoring experiments have been performed on three different operational structures: a fracture critical bridge, a composite wind turbine blade, and an aging aircraft. An induced damage test was performed on the Rio Grande/I40 bridge before its demolition. The composite wind turbine test was fatgued to failure with periodic modal testing performed throughout the testing. The front fuselage of a DC-9 aircraft was used as the testbed for an induced damage test. These tests have yielded important insights into techniques for experimental damage detection on real structures. Additionally, the data are currently being used with current damage detection algorithms to further develop the numerical technology. State of the art testing technologies such as, high density modal testing, scanning laser vibrometry and natural excitation testing have also been utilized for these tests.

  16. Time-Frequency Methods for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander L. Pyayt

    2014-03-01

    Full Text Available Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM of flood protection systems (levees, earthen dikes and concrete dams using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany and “strange” behaviour of sensors installed in a Boston levee (UK and a Rhine levee (Germany.

  17. Family Structure Changes and Children's Health, Behavior, and Educational Outcomes

    DEFF Research Database (Denmark)

    Rasmussen, Astrid Würtz

    relation between family structure changes and children's outcomes. Children who have experienced family structure changes during childhood seem to have worse educational outcomes and a higher propensity to being hospitalized and convicted of a crime. The children in the dataset experience up to 13 family...... childhood. I focus on educational, behavioral and health outcomes and investigate both the selection and causation explanations. For the estimations I use a Danish administrative register dataset with the full population of children born in January to May 1983, 1984, and 1985. I find a clear negative......More and more children do not grow up in traditional nuclear families. Instead they grow up in single parent  households or in families with a step-parent. For example, in 1980, almost 83% of all Danish children in the ages 0 to 17 lived with both of their parents, but this number steadily...

  18. Review on pressure sensors for structural health monitoring

    Science.gov (United States)

    Sikarwar, Samiksha; Satyendra; Singh, Shakti; Yadav, Bal Chandra

    2017-12-01

    This paper reports the state of art in a variety of pressure and the detailed study of various matrix based pressure sensors. The performances of the bridges, buildings, etc. are threatened by earthquakes, material degradations, and other environmental effects. Structural health monitoring (SHM) is crucial to protect the people and also for assets planning. This study is a contribution in developing the knowledge about self-sensing smart materials and structures for the construction industry. It deals with the study of self-sensing as well as mechanical and electrical properties of different matrices based on pressure sensors. The relationships among the compression, tensile strain, and crack length with electrical resistance change are also reviewed.

  19. Predictive simulation of guide-wave structural health monitoring

    Science.gov (United States)

    Giurgiutiu, Victor

    2017-04-01

    This paper presents an overview of recent developments on predictive simulation of guided wave structural health monitoring (SHM) with piezoelectric wafer active sensor (PWAS) transducers. The predictive simulation methodology is based on the hybrid global local (HGL) concept which allows fast analytical simulation in the undamaged global field and finite element method (FEM) simulation in the local field around and including the damage. The paper reviews the main results obtained in this area by researchers of the Laboratory for Active Materials and Smart Structures (LAMSS) at the University of South Carolina, USA. After thematic introduction and research motivation, the paper covers four main topics: (i) presentation of the HGL analysis; (ii) analytical simulation in 1D and 2D; (iii) scatter field generation; (iv) HGL examples. The paper ends with summary, discussion, and suggestions for future work.

  20. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  1. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  2. Automated structural health monitoring based on adaptive kernel spectral clustering

    Science.gov (United States)

    Langone, Rocco; Reynders, Edwin; Mehrkanoon, Siamak; Suykens, Johan A. K.

    2017-06-01

    Structural health monitoring refers to the process of measuring damage-sensitive variables to assess the functionality of a structure. In principle, vibration data can capture the dynamics of the structure and reveal possible failures, but environmental and operational variability can mask this information. Thus, an effective outlier detection algorithm can be applied only after having performed data normalization (i.e. filtering) to eliminate external influences. Instead, in this article we propose a technique which unifies the data normalization and damage detection steps. The proposed algorithm, called adaptive kernel spectral clustering (AKSC), is initialized and calibrated in a phase when the structure is undamaged. The calibration process is crucial to ensure detection of early damage and minimize the number of false alarms. After the calibration, the method can automatically identify new regimes which may be associated with possible faults. These regimes are discovered by means of two complementary damage (i.e. outlier) indicators. The proposed strategy is validated with a simulated example and with real-life natural frequency data from the Z24 pre-stressed concrete bridge, which was progressively damaged at the end of a one-year monitoring period.

  3. Structural health monitoring methodology for aircraft condition-based maintenance

    Science.gov (United States)

    Saniger, Jordi; Reithler, Livier; Guedra-Degeorges, Didier; Takeda, Nobuo; Dupuis, Jean Pierre

    2001-06-01

    Reducing maintenance costs while keeping a constant level of safety is a major issue for Air Forces and airlines. The long term perspective is to implement condition based maintenance to guarantee a constant safety level while decreasing maintenance costs. On this purpose, the development of a generalized Structural Health Monitoring System (SHMS) is needed. The objective of such a system is to localize the damages and to assess their severity, with enough accuracy to allow low cost corrective actions. The present paper describes a SHMS based on acoustic emission technology. This choice was driven by its reliability and wide use in the aerospace industry. The described SHMS uses a new learning methodology which relies on the generation of artificial acoustic emission events on the structure and an acoustic emission sensor network. The calibrated acoustic emission events picked up by the sensors constitute the knowledge set that the system relies on. With this methodology, the anisotropy of composite structures is taken into account, thus avoiding the major cause of errors of classical localization methods. Moreover, it is adaptive to different structures as it does not rely on any particular model but on measured data. The acquired data is processed and the event's location and corrected amplitude are computed. The methodology has been demonstrated and experimental tests on elementary samples presented a degree of accuracy of 1cm.

  4. Structural control and health monitoring of building structures with unknown ground excitations: Experimental investigation

    Science.gov (United States)

    He, Jia; Xu, You-Lin; Zhan, Sheng; Huang, Qin

    2017-03-01

    When health monitoring system and vibration control system both are required for a building structure, it will be beneficial and cost-effective to integrate these two systems together for creating a smart building structure. Recently, on the basis of extended Kalman filter (EKF), a time-domain integrated approach was proposed for the identification of structural parameters of the controlled buildings with unknown ground excitations. The identified physical parameters and structural state vectors were then utilized to determine the control force for vibration suppression. In this paper, the possibility of establishing such a smart building structure with the function of simultaneous damage detection and vibration suppression was explored experimentally. A five-story shear building structure equipped with three magneto-rheological (MR) dampers was built. Four additional columns were added to the building model, and several damage scenarios were then simulated by symmetrically cutting off these columns in certain stories. Two sets of earthquakes, i.e. Kobe earthquake and Northridge earthquake, were considered as seismic input and assumed to be unknown during the tests. The structural parameters and the unknown ground excitations were identified during the tests by using the proposed identification method with the measured control forces. Based on the identified structural parameters and system states, a switching control law was employed to adjust the current applied to the MR dampers for the purpose of vibration attenuation. The experimental results show that the presented approach is capable of satisfactorily identifying structural damages and unknown excitations on one hand and significantly mitigating the structural vibration on the other hand.

  5. A Hybrid Numerical Analysis Method for Structural Health Monitoring

    Science.gov (United States)

    Forth, Scott C.; Staroselsky, Alexander

    2001-01-01

    A new hybrid surface-integral-finite-element numerical scheme has been developed to model a three-dimensional crack propagating through a thin, multi-layered coating. The finite element method was used to model the physical state of the coating (far field), and the surface integral method was used to model the fatigue crack growth. The two formulations are coupled through the need to satisfy boundary conditions on the crack surface and the external boundary. The coupling is sufficiently weak that the surface integral mesh of the crack surface and the finite element mesh of the uncracked volume can be set up independently. Thus when modeling crack growth, the finite element mesh can remain fixed for the duration of the simulation as the crack mesh is advanced. This method was implemented to evaluate the feasibility of fabricating a structural health monitoring system for real-time detection of surface cracks propagating in engine components. In this work, the authors formulate the hybrid surface-integral-finite-element method and discuss the mechanical issues of implementing a structural health monitoring system in an aircraft engine environment.

  6. Estimating summary measures of health: a structured workbook approach

    Directory of Open Access Journals (Sweden)

    Le Petit Christel

    2005-05-01

    Full Text Available Abstract Background Summary measures of health that combine mortality and morbidity into a single indicator are being estimated in the Canadian context for approximately 200 diseases and conditions. To manage the large amount of data and calculations for this many diseases, we have developed a structured workbook system with easy to use tools. We expect this system will be attractive to researchers from other countries or regions of Canada who are interested in estimating the health-adjusted life years (HALYs lost to premature mortality and year-equivalents lost to reduced functioning, as well as population attributable fractions (PAFs associated with risk factors. This paper describes the workbook system using cancers as an example, and includes the entire system as a free, downloadable package. Methods The workbook system was developed in Excel and runs on a personal computer. It is a database system that stores data on population structure, mortality, incidence, distributions of cases entering a multitude of health states, durations of time spent in health states, preference scores that weight for severity, life table estimates of life expectancies, and risk factor prevalence and relative risks. The tools are Excel files with embedded macro programs. The main tool generates workbooks that estimate HALY, one per disease, by copying data from the database into a pre-defined template. Other tools summarize the HALY results across diseases for easy analysis. Results The downloadable zip file contains the database files initialized with Canadian data for cancers, the tools, templates and workbooks that estimate PAF and a user guide. The workbooks that estimate HALY are generated from the system at a rate of approximately one minute per disease. The resulting workbooks are self-contained and can be used directly to explore the details of a particular disease. Results can be discounted at different rates through simple parameter modification

  7. Strain-based energy harvesting for structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Debeaux, S.; Masson, P.; Frechette, L. [Sherbrooke Univ., PQ (Canada). Dept. of Mechanical Engineering

    2009-07-01

    Structural health monitoring (SHM) has been proposed for the maintenance of aircraft fuselage and wings. Wireless sensors and self-powered actuators are recommended in order to avoid extensive wiring of the nodes. One idea is to convert the mechanical energy (vibrations) in an aircraft into electricity using piezoelectric materials. This study investigated the potential of strain-based energy harvesters as opposed to inertial harvesters to supply wireless nodes on typical aircraft structures. In particular, it experimentally compared different piezoelectric energy harvesting devices for use in structural health monitoring. The experimental setup reproduced the simple vibration behaviour of an aircraft wing with respect to frequency and strain level. The study examined 2 distinct groups of piezoelectric harvesting devices, notably piezoelectric harvesting devices polarized in 3-3, and piezoelectric harvesting devices polarized in 3-1. Power dissipation in a resistive load was tested along with energy storage in a capacitance. The optimal voltage was linearly dependent on the strain, but independent of the frequency. The optimal current was linearly dependent on both the frequency and the strain level. The power dissipated in a resistive load was linearly dependent on the frequency but quadratically related to the strain level. The dissipated power in the piezoelectric material was a linear function of the capacitance and inversely proportional to the relative permittivity. The study results were in agreement with literature which indicates that power density in the order of 100 {mu}W/cm{sup 3} is sufficient for many applications, including structural health monitoring. Larger devices will be needed to increase the harvested energy. A simple model was used to describe typical dynamic behaviour of aircraft components, notably a beam representing the whole wing subjected to atmospheric effects, and a plate representing a fuselage panel. Different configurations of

  8. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  9. PHIRE (Public Health Innovation and Research in Europe): methods, structures and evaluation

    NARCIS (Netherlands)

    Barnboorn, F; McCarthy, M.; Devillé, W.; Alexanderson, K.; Voss, M.; Conceição, C.

    2013-01-01

    INTRODUCTION: Public Health Innovation and Research in Europe (PHIRE), building on previous European collaborative projects, was developed to assess national uptake and impacts of European public health innovations, to describe national public health research programmes, strategies and structures

  10. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  11. Architectural frameworks: defining the structures for implementing learning health systems.

    Science.gov (United States)

    Lessard, Lysanne; Michalowski, Wojtek; Fung-Kee-Fung, Michael; Jones, Lori; Grudniewicz, Agnes

    2017-06-23

    The vision of transforming health systems into learning health systems (LHSs) that rapidly and continuously transform knowledge into improved health outcomes at lower cost is generating increased interest in government agencies, health organizations, and health research communities. While existing initiatives demonstrate that different approaches can succeed in making the LHS vision a reality, they are too varied in their goals, focus, and scale to be reproduced without undue effort. Indeed, the structures necessary to effectively design and implement LHSs on a larger scale are lacking. In this paper, we propose the use of architectural frameworks to develop LHSs that adhere to a recognized vision while being adapted to their specific organizational context. Architectural frameworks are high-level descriptions of an organization as a system; they capture the structure of its main components at varied levels, the interrelationships among these components, and the principles that guide their evolution. Because these frameworks support the analysis of LHSs and allow their outcomes to be simulated, they act as pre-implementation decision-support tools that identify potential barriers and enablers of system development. They thus increase the chances of successful LHS deployment. We present an architectural framework for LHSs that incorporates five dimensions-goals, scientific, social, technical, and ethical-commonly found in the LHS literature. The proposed architectural framework is comprised of six decision layers that model these dimensions. The performance layer models goals, the scientific layer models the scientific dimension, the organizational layer models the social dimension, the data layer and information technology layer model the technical dimension, and the ethics and security layer models the ethical dimension. We describe the types of decisions that must be made within each layer and identify methods to support decision-making. In this paper, we outline

  12. Modeling ultrasonic NDE and guided wave based structural health monitoring

    Science.gov (United States)

    Ravi, Nitin B.; Rathod, Vivek T.; Chakraborty, Nibir.; Mahapatra, D. R.; Sridaran, Ramanan; Boller, Christian

    2015-04-01

    Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

  13. Impedance-based structural health monitoring of additive manufactured structures with embedded piezoelectric wafers

    Science.gov (United States)

    Scheyer, Austin G.; Anton, Steven R.

    2017-04-01

    Embedding sensors within additive manufactured (AM) structures gives the ability to develop smart structures that are capable of monitoring the mechanical health of a system. AM provides an opportunity to embed sensors within a structure during the manufacturing process. One major limitation of AM technology is the ability to verify the geometric and material properties of fabricated structures. Over the past several years, the electromechanical impedance (EMI) method for structural health monitoring (SHM) has been proven to be an effective method for sensing damage in structurers. The EMI method utilizes the coupling between the electrical and mechanical properties of a piezoelectric transducer to detect a change in the dynamic response of a structure. A piezoelectric device, usually a lead zirconate titanate (PZT) ceramic wafer, is bonded to a structure and the electrical impedance is measured across as range of frequencies. A change in the electrical impedance is directly correlated to changes made to the mechanical condition of the structure. In this work, the EMI method is employed on piezoelectric transducers embedded inside AM parts to evaluate the feasibility of performing SHM on parts fabricated using additive manufacturing. The fused deposition modeling (FDM) method is used to print specimens for this feasibility study. The specimens are printed from polylactic acid (PLA) in the shape of a beam with an embedded monolithic piezoelectric ceramic disc. The specimen is mounted as a cantilever while impedance measurements are taken using an HP 4194A impedance analyzer. Both destructive and nondestructive damage is simulated in the specimens by adding an end mass and drilling a hole near the free end of the cantilever, respectively. The Root Mean Square Deviation (RMSD) method is utilized as a metric for quantifying damage to the system. In an effort to determine a threshold for RMSD, the values are calculated for the variation associated with taking multiple

  14. Defect classification in sparsity-based structural health monitoring

    Science.gov (United States)

    Golato, Andrew; Ahmad, Fauzia; Santhanam, Sridhar; Amin, Moeness G.

    2017-05-01

    Guided waves have gained popularity in structural health monitoring (SHM) due to their ability to inspect large areas with little attenuation, while providing rich interactions with defects. For thin-walled structures, the propagating waves are Lamb waves, which are a complex but well understood type of guided waves. Recent works have cast the defect localization problem of Lamb wave based SHM within the sparse reconstruction framework. These methods make use of a linear model relating the measurements with the scene reflectivity under the assumption of point-like defects. However, most structural defects are not perfect points but tend to assume specific forms, such as surface cracks or internal cracks. Knowledge of the "type" of defects is useful in the assessment phase of SHM. In this paper, we present a dual purpose sparsity-based imaging scheme which, in addition to accurately localizing defects, properly classifies the defects present simultaneously. The proposed approach takes advantage of the bias exhibited by certain types of defects toward a specific Lamb wave mode. For example, some defects strongly interact with the anti-symmetric modes, while others strongly interact with the symmetric modes. We build model based dictionaries for the fundamental symmetric and anti-symmetric wave modes, which are then utilized in unison to properly localize and classify the defects present. Simulated data of surface and internal defects in a thin Aluminum plate are used to validate the proposed scheme.

  15. Structural Health Monitoring for a Z-Type Special Vehicle.

    Science.gov (United States)

    Yuan, Chaolin; Ren, Liang; Li, Hongnan

    2017-06-01

    Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG) sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM) scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  16. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  17. Bridges analysis, design, structural health monitoring, and rehabilitation

    CERN Document Server

    Bakht, Baidar

    2015-01-01

    This book offers a valuable guide for practicing bridge engineers and graduate students in structural engineering; its main purpose is to present the latest concepts in bridge engineering in fairly easy-to-follow terms. The book provides details of easy-to-use computer programs for: ·      Analysing slab-on-girder bridges for live load distribution. ·      Analysing slab and other solid bridge components for live load distribution. ·      Analysing and designing concrete deck slab overhangs of girder bridges under vehicular loads. ·      Determining the failure loads of concrete deck slabs of girder bridges under concentrated wheel loads. In addition, the book includes extensive chapters dealing with the design of wood bridges and soil-steel bridges. Further, a unique chapter on structural health monitoring (SHM) will help bridge engineers determine the actual load carrying capacities of bridges, as opposed to their perceived analytical capacities. The chapter addressing structures...

  18. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  19. Historic Bim: a New Repository for Structural Health Monitoring

    Science.gov (United States)

    Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-05-01

    Recent developments in Building Information Modelling (BIM) technologies are facilitating the management of historic complex structures using new applications. This paper proposes a generative method combining the morphological and typological aspects of the historic buildings (H-BIM), with a set of monitoring information. This combination of 3D digital survey, parametric modelling and monitoring datasets allows for the development of a system for archiving and visualizing structural health monitoring (SHM) data (Fig. 1). The availability of a BIM database allows one to integrate a different kind of data stored in different ways (e.g. reports, tables, graphs, etc.) with a representation directly connected to the 3D model of the structure with appropriate levels of detail (LoD). Data can be interactively accessed by selecting specific objects of the BIM, i.e. connecting the 3D position of the sensors installed with additional digital documentation. Such innovative BIM objects, which form a new BIM family for SHM, can be then reused in other projects, facilitating data archiving and exploitation of data acquired and processed. The application of advanced modeling techniques allows for the reduction of time and costs of the generation process, and support cooperation between different disciplines using a central workspace. However, it also reveals new challenges for parametric software and exchange formats. The case study presented is the medieval bridge Azzone Visconti in Lecco (Italy), in which multi-temporal vertical movements during load testing were integrated into H-BIM.

  20. Automatic Sensor-Fault Detection System for Comprehensive Structural Health Monitoring System

    National Research Council Canada - National Science Library

    Chan, Hian-Leng; Zhang, Chang; Qing, Peter X; Ooi, Teng K; Marotta, Steve A

    2005-01-01

    Structural health monitoring systems are viewed as viable means to reduce life-cycle costs, increase structural reliability, and extend the operational hours for a wide variety of composite structures...

  1. Structural health monitoring of constrained tapered beamlike structures using natural frequencies and nodal points

    Energy Technology Data Exchange (ETDEWEB)

    Wang Le; Yang Zhichun [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072 (China); Waters, T P, E-mail: le.wang@nwpu.edu.cn, E-mail: tpw@isvr.soton.ac.uk [Institute of Sound and Vibration Research, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2011-07-19

    The integrity and safety of beam-like structures are dependent in part on their boundary conditions which can vary with time due to damage or aging. Structural health monitoring of such structures should therefore include attention to boundary conditions. Where the boundary conditions can be represented by a lumped spring then the identification of associated stiffness parameter values may be a means to quantifying the integrity of the support. This paper investigates such a method for identifying the equivalent translational and rotational stiffness of a constrained tapered beam-like structure. An analytical model of a beam of tapered width and thickness is adopted as a simplified representation of a tower-like structure. The model is used to explore in what scenarios natural frequencies and/or nodal points might be sufficiently sensitive to changes in support conditions to be measurable indicators of damage. The method is evaluated by Monte Carlo simulations for a numerical example where the severity of noise can be controlled.

  2. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    Science.gov (United States)

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well. PMID:28208636

  3. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors.

    Science.gov (United States)

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-02-10

    Optical fiber-based sensors "embedded" in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well.

  4. Directional transduction for guided wave structural health monitoring

    Science.gov (United States)

    Salas, Ken I.

    The principal objectives of structural health monitoring (SHM) are the detection, location, and classification of structural defects that may adversely affect the performance of engineering systems. Ultrasonic testing based on guided waves (GW) is one of the most promising solutions for SHM. These waves are capable of inspecting large structural areas, and can be made sensitive to specific defect types by controlling the testing parameters. A key challenge in the development of GW SHM systems is the lack of robust transduction devices for efficient structural interrogation. This dissertation presents the design, fabrication, and testing of the Composite Long-range Variable-length Emitting Radar (CLoVER) transducer. This device is composed of independent piezocomposite sectors capable of efficiently exciting highly directional GW for structural inspection. The first step in the development of the new device consists of formulating a theoretical model based on 3-D elasticity to characterize its GW excitation properties. In contrast to reduced structural theories, the developed model captures the multi-modal nature of GW at high frequencies (MHz-range). After a thorough numerical verification, the model is used to determine the efficiency of the transducer relative to conventional configurations under similar electric inputs. The in-house fabrication and characterization procedures for CLoVER transducers are described and applied to more conventional piezocomposite transducer geometries. The free strain performance of these conventional in-house actuators is shown to be similar to that of commercially available piezocomposite ones. An extensive experimental investigation is subsequently presented to assess the CLoVER GW excitation characteristics in isotropic and composite materials. The radiation patterns excited by these devices are spatially characterized using laser vibrometry, and the results confirm the ability of the devices to induce highly directional GW

  5. Printing of microstructure strain sensor for structural health monitoring

    Science.gov (United States)

    Le, Minh Quyen; Ganet, Florent; Audigier, David; Capsal, Jean-Fabien; Cottinet, Pierre-Jean

    2017-05-01

    Recent advances in microelectronics and materials should allow the development of integrated sensors with transduction properties compatible with being printed directly onto a 3D substrate, especially metallic and polymer substrates. Inorganic and organic electronic materials in microstructured and nanostructured forms, intimately integrated in ink, offer particularly attractive characteristics, with realistic pathways to sophisticated embodiments. Here, we report on these strategies and demonstrate the potential of 3D-printed microelectronics based on a structural health monitoring (SHM) application for the precision weapon systems. We show that our printed sensors can be employed in non-invasive, high-fidelity and continuous strain monitoring of handguns, making it possible to implement printed sensors on a 3D substrate in either SHM or remote diagnostics. We propose routes to commercialization and novel device opportunities and highlight the remaining challenges for research.

  6. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    Science.gov (United States)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  7. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Directory of Open Access Journals (Sweden)

    Jianping Yao

    2011-03-01

    Full Text Available Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  8. Rate-based structural health monitoring using permanently installed sensors.

    Science.gov (United States)

    Corcoran, Joseph

    2017-09-01

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of 'trends' in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are 'self-accelerating' with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine.

  9. Fiber optic sensors for structural health monitoring of air platforms.

    Science.gov (United States)

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  10. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Inka Mueller

    2017-01-01

    Full Text Available The use of piezoelectric wafer active sensors (PWAS for structural health monitoring (SHM purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV. New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems.

  11. Inspection of Piezoceramic Transducers Used for Structural Health Monitoring.

    Science.gov (United States)

    Mueller, Inka; Fritzen, Claus-Peter

    2017-01-16

    The use of piezoelectric wafer active sensors (PWAS) for structural health monitoring (SHM) purposes is state of the art for acousto-ultrasonic-based methods. For system reliability, detailed information about the PWAS itself is necessary. This paper gives an overview on frequent PWAS faults and presents the effects of these faults on the wave propagation, used for active acousto-ultrasonics-based SHM. The analysis of the wave field is based on velocity measurements using a laser Doppler vibrometer (LDV). New and established methods of PWAS inspection are explained in detail, listing advantages and disadvantages. The electro-mechanical impedance spectrum as basis for these methods is discussed for different sensor faults. This way this contribution focuses on a detailed analysis of PWAS and the need of their inspection for an increased reliability of SHM systems.

  12. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Science.gov (United States)

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  13. Rate-based structural health monitoring using permanently installed sensors

    Science.gov (United States)

    Corcoran, Joseph

    2017-09-01

    Permanently installed sensors are becoming increasingly ubiquitous, facilitating very frequent in situ measurements and consequently improved monitoring of `trends' in the observed system behaviour. It is proposed that this newly available data may be used to provide prior warning and forecasting of critical events, particularly system failure. Numerous damage mechanisms are examples of positive feedback; they are `self-accelerating' with an increasing rate of damage towards failure. The positive feedback leads to a common time-response behaviour which may be described by an empirical relation allowing prediction of the time to criticality. This study focuses on Structural Health Monitoring of engineering components; failure times are projected well in advance of failure for fatigue, creep crack growth and volumetric creep damage experiments. The proposed methodology provides a widely applicable framework for using newly available near-continuous data from permanently installed sensors to predict time until failure in a range of application areas including engineering, geophysics and medicine.

  14. Receptor tyrosine kinase structure and function in health and disease

    Directory of Open Access Journals (Sweden)

    Oleg A. Karpov

    2015-09-01

    Full Text Available Receptor tyrosine kinases (RTKs are membrane proteins that control the flow of information through signal transduction pathways, impacting on different aspects of cell function. RTKs are characterized by a ligand-binding ectodomain, a single transmembrane α-helix, a cytosolic region comprising juxtamembrane and kinase domains followed by a flexible C-terminal tail. Somatic and germline RTK mutations can induce aberrant signal transduction to give rise to cardiovascular, developmental and oncogenic abnormalities. RTK overexpression occurs in certain cancers, correlating signal strength and disease incidence. Diverse RTK activation and signal transduction mechanisms are employed by cells during commitment to health or disease. Small molecule inhibitors are one means to target RTK function in disease initiation and progression. This review considers RTK structure, activation, and signal transduction and evaluates biological relevance to therapeutics and clinical outcomes.

  15. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    Science.gov (United States)

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  16. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Directory of Open Access Journals (Sweden)

    You-Liang Ding

    2015-01-01

    Full Text Available Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge’s abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  17. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Science.gov (United States)

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  18. Phase Space Dissimilarity Measures for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Bubacz, Jacob A [ORNL; Chmielewski, Hana T [ORNL; Pape, Alexander E [ORNL; Depersio, Andrew J [ORNL; Hively, Lee M [ORNL; Abercrombie, Robert K [ORNL; Boone, Shane [ORNL

    2011-11-01

    A novel method for structural health monitoring (SHM), known as the Phase Space Dissimilarity Measures (PSDM) approach, is proposed and developed. The patented PSDM approach has already been developed and demonstrated for a variety of equipment and biomedical applications. Here, we investigate SHM of bridges via analysis of time serial accelerometer measurements. This work has four aspects. The first is algorithm scalability, which was found to scale linearly from one processing core to four cores. Second, the same data are analyzed to determine how the use of the PSDM approach affects sensor placement. We found that a relatively low-density placement sufficiently captures the dynamics of the structure. Third, the same data are analyzed by unique combinations of accelerometer axes (vertical, longitudinal, and lateral with respect to the bridge) to determine how the choice of axes affects the analysis. The vertical axis is found to provide satisfactory SHM data. Fourth, statistical methods were investigated to validate the PSDM approach for this application, yielding statistically significant results.

  19. Active Wireless System for Structural Health Monitoring Applications.

    Science.gov (United States)

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  20. Lamb wave structural health monitoring using frequency-wavenumber analysis

    Science.gov (United States)

    Tian, Zhenhua; Yu, Lingyu

    2013-01-01

    Lamb waves have shown great potential for structural health monitoring (SHM) in plate-like structures. Their attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distance. However, Lamb waves are dispersive and multimodal. Moreover, the propagating Lamb waves may include incident, reflected and converted waves. Various wave modes make the interpretation of Lamb wave signal very difficult. This paper presents studies on Lamb wave propagation using frequency-wavenumber analysis. By using two-dimensional Fourier transform (2-D FT), the time-space wavefield can be transformed into frequency-wavenumber domain, where various wave modes and waves propagating in different directions can be clearly discerned. By a frequency-wavenumber filtering strategy, the desired wave modes or wave propagation at certain direction can be extracted and further utilized for the purpose of SHM. The frequency-wavenumber analysis and its applications to Lamb wave SHM are illustrated through two experimental investigations. One is Lamb wave propagation in a plate half immersed in water and the other is Lamb wave mode decomposition by using two-dimensional frequency-wavenumber filtering strategy. Lamb waves are excited by piezoelectric wafer sensor and measured by scanning laser Doppler vibrometer. Various wave modes were visualized and successfully decomposed.

  1. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  2. Assessment of complex environmental health problems: framing the structures and structuring the frameworks.

    Science.gov (United States)

    Knol, Anne B; Briggs, David J; Lebret, Erik

    2010-06-15

    Many environmental risks are multi-faceted and their health consequences can be far-ranging in both time and space. It can be a challenging task to develop informed policies for such risks. Integrated environmental health impact assessment aims to support policy by assessing environmental health effects in ways that take into account the complexities and uncertainties involved. For such assessment to be successful, a clear and agreed conceptual framework is needed, which defines the issue under consideration and sets out the principles on which the assessment is based. Conceptual frameworks facilitate involvement of stakeholders, support harmonized discussions, help to make assumptions explicit, and provide a framework for data analysis and interpretation. Various conceptual frameworks have been developed for different purposes, but as yet no clear taxonomy exists. We propose a three-level taxonomy of conceptual frameworks for use in environmental health impact assessment. At the first level of the taxonomy, structural frameworks show the wide context of the issues at hand. At the second level, relational frameworks describe how the assessment variables are causally related. At the third level, this causal structure is translated into an operational model, which serves as a basis for analysis. The different types of frameworks are complementary and all play a role in the assessment process. The taxonomy is illustrated using a hypothetical assessment of urban brownfield development for residential uses. We suggest that a better understanding of types of conceptual frameworks and their potential roles in the different phases of assessment will contribute to more informed assessments and policies. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, P G; Apostolellis, P G; Fassois, S D, E-mail: mixail@mech.upatras.gr, E-mail: fassois@mech.upatras.gr [Laboratory for Stochastic Mechanical Systems and Automation (SMSA), Department of Mechanical and Aeronautical Engineering, University of Patras, GR 265 00 Patras (Greece)

    2011-07-19

    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  4. Microwave Structural Health Monitoring Sensor for Deformation Measurement of Bended Steel Structures: Influence of Curvature Effect

    Directory of Open Access Journals (Sweden)

    P. Lopato

    2017-12-01

    Full Text Available In this paper the utilization of microstrip antenna sensor for deformation monitoring in bended steel structures is presented. This kind of sensing element can be used in structural health monitoring systems. Deformation measurement by patch sensor is based on the reflection coefficient S11 investigation. So far, relationship between resonant frequency and change of patch dimensions was considered in literature only for planar microstrip sensors. In case of samples subjected to bending process the sensor geometry became non-planar. This fact affects measured resonant frequency, thus it should be studied. In order to analyse influence of patch sensor curvature on resonant frequency during bending process Finite Element Method (FEM simulations were carried out. Results of analysis were experimentally verified.

  5. Structural Health Management of Damaged Aircraft Structures Using the Digital Twin Concept

    Science.gov (United States)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan

    2017-01-01

    The development of multidisciplinary integrated Structural Health Management (SHM) tools will enable accurate detection, and prognosis of damaged aircraft under normal and adverse conditions during flight. As part of the digital twin concept, methodologies are developed by using integrated multiphysics models, sensor information and input data from an in-service vehicle to mirror and predict the life of its corresponding physical twin. SHM tools are necessary for both damage diagnostics and prognostics for continued safe operation of damaged aircraft structures. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable, catastrophic propagation of damage during a flight, load levels must be maintained that are below a reduced load-carrying capacity for continued safe operation of an aircraft. Hence, a capability is needed for accurate real-time predictions of damage size and safe load carrying capacity for structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size, location, and orientation is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size, location, and orientation is obtained by minimizing the difference between the reference responses and the

  6. Ultrasonic guided wave mechanics for composite material structural health monitoring

    Science.gov (United States)

    Gao, Huidong

    The ultrasonic guided wave based method is very promising for structural health monitoring of aging and modern aircraft. An understanding of wave mechanics becomes very critical for exploring the potential of this technology. However, the guided wave mechanics in complex structures, especially composite materials, are very challenging due to the nature of multi-layer, anisotropic, and viscoelastic behavior. The purpose of this thesis is to overcome the challenges and potentially take advantage of the complex wave mechanics for advanced sensor design and signal analysis. Guided wave mechanics is studied in three aspects, namely wave propagation, excitation, and damage sensing. A 16 layer quasi-isotropic composite with a [(0/45/90/-45)s]2 lay up sequence is used in our study. First, a hybrid semi-analytical finite element (SAFE) and global matrix method (GMM) is used to simulate guided wave propagation in composites. Fast and accurate simulation is achieved by using SAFE for dispersion curve generation and GMM for wave structure calculation. Secondly, the normal mode expansion (NME) technique is used for the first time to study the wave excitation characteristics in laminated composites. A clear and simple definition of wave excitability is put forward as a result of NME analysis. Source influence for guided wave excitation is plotted as amplitude on a frequency and phase velocity spectrum. This spectrum also provides a guideline for transducer design in guided wave excitation. The ultrasonic guided wave excitation characteristics in viscoelastic media are also studied for the first time using a modified normal mode expansion technique. Thirdly, a simple physically based feature is developed to estimate the guided wave sensitivity to damage in composites. Finally, a fuzzy logic decision program is developed to perform mode selection through a quantitative evaluation of the wave propagation, excitation and sensitivity features. Numerical simulation algorithms are

  7. The Health Behavior Checklist: Factor structure in community samples and validity of a revised good health practices scale.

    Science.gov (United States)

    Hampson, Sarah E; Edmonds, Grant W; Goldberg, Lewis R

    2017-01-01

    This study examined the factor structure and predictive validity of the commonly used multidimensional Health Behavior Checklist. A three-factor structure was found in two community samples that included men and women. The new 16-item Good Health Practices scale and the original Wellness Maintenance scale were the only Health Behavior Checklist scales to be related to cardiovascular and metabolic risk factors. While the other Health Behavior Checklist scales require further validation, the Good Health Practices scale could be used where more objective or longer measures are not feasible.

  8. Structural health management of aerospace hotspots under fatigue loading

    Science.gov (United States)

    Soni, Sunilkumar

    Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a

  9. Structural health and prognostics management for offshore wind turbines :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Resor, Brian Ray; White, Jonathan Randall; Paquette, Joshua A.; Yoder, Nathanael C.

    2012-12-01

    Operations and maintenance costs for offshore wind plants are expected to be significantly higher than the current costs for onshore plants. One way in which these costs may be able to be reduced is through the use of a structural health and prognostic management system as part of a condition based maintenance paradigm with smart load management. To facilitate the creation of such a system a multiscale modeling approach has been developed to identify how the underlying physics of the system are affected by the presence of damage and how these changes manifest themselves in the operational response of a full turbine. The developed methodology was used to investigate the effects of a candidate blade damage feature, a trailing edge disbond, on a 5-MW offshore wind turbine and the measurements that demonstrated the highest sensitivity to the damage were the local pitching moments around the disbond. The multiscale method demonstrated that these changes were caused by a local decrease in the blades torsional stiffness due to the disbond, which also resulted in changes in the blades local strain field. Full turbine simulations were also used to demonstrate that derating the turbine power by as little as 5% could extend the fatigue life of a blade by as much as a factor of 3. The integration of the health monitoring information, conceptual repair cost versus damage size information, and this load management methodology provides an initial roadmap for reducing operations and maintenance costs for offshore wind farms while increasing turbine availability and overall profit.

  10. Structural health and prognostics management for offshore wind turbines :

    Energy Technology Data Exchange (ETDEWEB)

    Myrent, Noah J.; Kusnick, Joshua F.; Barrett, Natalie C.; Adams, Douglas E.; Griffith, Daniel

    2013-04-01

    Operations and maintenance costs for offshore wind plants are significantly higher than the current costs for land-based (onshore) wind plants. One way to reduce these costs would be to implement a structural health and prognostic management (SHPM) system as part of a condition based maintenance paradigm with smart load management and utilize a state-based cost model to assess the economics associated with use of the SHPM system. To facilitate the development of such a system a multi-scale modeling approach developed in prior work is used to identify how the underlying physics of the system are affected by the presence of damage and faults, and how these changes manifest themselves in the operational response of a full turbine. This methodology was used to investigate two case studies: (1) the effects of rotor imbalance due to pitch error (aerodynamic imbalance) and mass imbalance and (2) disbond of the shear web; both on a 5-MW offshore wind turbine in the present report. Based on simulations of damage in the turbine model, the operational measurements that demonstrated the highest sensitivity to the damage/faults were the blade tip accelerations and local pitching moments for both imbalance and shear web disbond. The initial cost model provided a great deal of insight into the estimated savings in operations and maintenance costs due to the implementation of an effective SHPM system. The integration of the health monitoring information and O&M cost versus damage/fault severity information provides the initial steps to identify processes to reduce operations and maintenance costs for an offshore wind farm while increasing turbine availability, revenue, and overall profit.

  11. New smart materials to address issues of structural health monitoring.

    Energy Technology Data Exchange (ETDEWEB)

    Chaplya, Pavel Mikhail

    2004-12-01

    Nuclear weapons and their storage facilities may benefit from in-situ structural health monitoring systems. Appending health-monitoring functionality to conventional materials and structures has been only marginally successful. The purpose of this project was to evaluate feasibility of a new smart material that includes self-sensing health monitoring functions similar to that of a nervous system of a living organism. Reviews of current efforts in the fields of heath-monitoring, nanotechnology, micro-electromechanical systems (MEMS), and wireless sensor networks were conducted. Limitations of the current nanotechnology methods were identified and new approaches were proposed to accelerate the development of self-sensing materials. Wireless networks of MEMS sensors have been researched as possible prototypes of self-sensing materials. Sensor networks were also examined as enabling technologies for dense data collection techniques to be used for validation of numerical methods and material parameter identification. Each grain of the envisioned material contains sensors that are connected in a dendritic manner similar to networks of neurons in a nervous system. Each sensor/neuron can communicate with the neighboring grains. Both the state of the sensor (on/off) and the quality of communication signal (speed/amplitude) should indicate not only a presence of a structural defect but the nature of the defect as well. For example, a failed sensor may represent a through-grain crack, while a lost or degraded communication link may represent an inter-granular crack. A technology to create such material does not exist. While recent progress in the fields of MEMS and nanotechnology allows to envision these new smart materials, it is unrealistic to expect creation of self-sensing materials in the near future. The current state of MEMS, nanotechnology, communication, sensor networks, and data processing technologies indicates that it will take more than ten years for the

  12. A Structural Model Decomposition Framework for Systems Health Management

    Science.gov (United States)

    Roychoudhury, Indranil; Daigle, Matthew J.; Bregon, Anibal; Pulido, Belamino

    2013-01-01

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

  13. On Assessing the Robustness of Structural Health Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Stull, Christopher J. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory

    2012-08-24

    As Structural Health Monitoring (SHM) continues to gain popularity, both as an area of research and as a tool for use in industrial applications, the number of technologies associated with SHM will also continue to grow. As a result, the engineer tasked with developing a SHM system is faced with myriad hardware and software technologies from which to choose, often adopting an ad hoc qualitative approach based on physical intuition or past experience to making such decisions. This paper offers a framework that aims to provide the engineer with a quantitative approach for choosing from among a suite of candidate SHM technologies. The framework is outlined for the general case, where a supervised learning approach to SHM is adopted, and the presentation will focus on applying the framework to two commonly encountered problems: (1) selection of damage-sensitive features and (2) selection of a damage classifier. The data employed for these problems will be drawn from a study that examined the feasibility of applying SHM to the RAPid Telescopes for Optical Response observatory network.

  14. PVDF Multielement Lamb Wave Sensor for Structural Health Monitoring.

    Science.gov (United States)

    Ren, Baiyang; Lissenden, Cliff J

    2016-01-01

    The characteristics of Lamb waves, which are multimodal and dispersive, provide both challenges and opportunities for structural health monitoring (SHM). Methods for nondestructive testing with Lamb waves are well established. For example, mode content can be determined by moving a sensor to different positions and then transforming the spatial-temporal data into the wavenumber-frequency domain. This mode content information is very useful because at every frequency each mode has a unique wavestructure, which is largely responsible for its sensitivity to material damage. Furthermore, mode conversion occurs when the waves interact with damage, making mode content an excellent damage detection feature. However, in SHM, the transducers are typically at fixed locations and are immovable. Here, an affixed polyvinylidene fluoride (PVDF) multielement sensor is shown to provide these same capabilities. The PVDF sensor is bonded directly to the waveguide surface, conforms to curved surfaces, has low mass, low profile, low cost, and minimal influence on passing Lamb waves. While the mode receivability is dictated by the sensor being located on the surface of the waveguide, both symmetric and antisymmetric modes can be detected and group velocities measured.

  15. Energy Harvesting for Structural Health Monitoring Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, G.; Farrar, C. R.; Todd, M. D.; Hodgkiss, T.; Rosing, T.

    2007-02-26

    This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portion of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.

  16. Simultaneous excitation system for efficient guided wave structural health monitoring

    Science.gov (United States)

    Hua, Jiadong; Michaels, Jennifer E.; Chen, Xin; Lin, Jing

    2017-10-01

    Many structural health monitoring systems utilize guided wave transducer arrays for defect detection and localization. Signals are usually acquired using the ;pitch-catch; method whereby each transducer is excited in turn and the response is received by the remaining transducers. When extensive signal averaging is performed, the data acquisition process can be quite time-consuming, especially for metallic components that require a low repetition rate to allow signals to die out. Such a long data acquisition time is particularly problematic if environmental and operational conditions are changing while data are being acquired. To reduce the total data acquisition time, proposed here is a methodology whereby multiple transmitters are simultaneously triggered, and each transmitter is driven with a unique excitation. The simultaneously transmitted waves are captured by one or more receivers, and their responses are processed by dispersion-compensated filtering to extract the response from each individual transmitter. The excitation sequences are constructed by concatenating a series of chirps whose start and stop frequencies are randomly selected from a specified range. The process is optimized using a Monte-Carlo approach to select sequences with impulse-like autocorrelations and relatively flat cross-correlations. The efficacy of the proposed methodology is evaluated by several metrics and is experimentally demonstrated with sparse array imaging of simulated damage.

  17. Process and Structural Health Monitoring of Composite Structures with Embedded Fiber Optic Sensors and Piezoelectric Transducers

    Science.gov (United States)

    Keulen, Casey James

    Advanced composite materials are becoming increasingly more valuable in a plethora of engineering applications due to properties such as tailorability, low specific strength and stiffness and resistance to fatigue and corrosion. Compared to more traditional metallic and ceramic materials, advanced composites such as carbon, aramid or glass reinforced plastic are relatively new and still require research to optimize their capabilities. Three areas that composites stand to benefit from improvement are processing, damage detection and life prediction. Fiber optic sensors and piezoelectric transducers show great potential for advances in these areas. This dissertation presents the research performed on improving the efficiency of advanced composite materials through the use of embedded fiber optic sensors and surface mounted piezoelectric transducers. Embedded fiber optic sensors are used to detect the presence of resin during the injection stage of resin transfer molding, monitor the degree of cure and predict the remaining useful life while in service. A sophisticated resin transfer molding apparatus was developed with the ability of embedding fiber optics into the composite and a glass viewing window so that resin flow sensors could be verified visually. A novel technique for embedding optical fiber into both 2- and 3-D structures was developed. A theoretical model to predict the remaining useful life was developed and a systematic test program was conducted to verify this model. A network of piezoelectric transducers was bonded to a composite panel in order to develop a structural health monitoring algorithm capable of detecting and locating damage in a composite structure. A network configuration was introduced that allows for a modular expansion of the system to accommodate larger structures and an algorithm based on damage progression history was developed to implement the network. The details and results of this research are contained in four manuscripts that

  18. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems and Auburn University propose a Fiber Bragg Grating (FBG) integrated Structural Health Monitoring (SHM) sensor system capable of...

  19. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  20. Structural Health Monitoring with Fiber Bragg Grating and Piezo Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IFOS and its research institute collaborator, Washington State University (WSU), have demonstrated feasibility of a structural health monitoring (SHM) system for...

  1. Highly Reliable Structural Health Monitoring of Smart Composite Vanes for Jet Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Intelligent Fiber Optic Systems (IFOS) successfully demonstrated a Fiber Bragg Grating (FBG) based integrated Structural Health Monitoring (SHM) sensor...

  2. Structural Vulnerability: Operationalizing the Concept to Address Health Disparities in Clinical Care.

    Science.gov (United States)

    Bourgois, Philippe; Holmes, Seth M; Sue, Kim; Quesada, James

    2017-03-01

    The authors propose reinvigorating and extending the traditional social history beyond its narrow range of risk behaviors to enable clinicians to address negative health outcomes imposed by social determinants of health. In this Perspective, they outline a novel, practical medical vulnerability assessment questionnaire that operationalizes for clinical practice the social science concept of "structural vulnerability." A structural vulnerability assessment tool designed to highlight the pathways through which specific local hierarchies and broader sets of power relationships exacerbate individual patients' health problems is presented to help clinicians identify patients likely to benefit from additional multidisciplinary health and social services. To illustrate how the tool could be implemented in time- and resource-limited settings (e.g., emergency department), the authors contrast two cases of structurally vulnerable patients with differing outcomes. Operationalizing structural vulnerability in clinical practice and introducing it in medical education can help health care practitioners think more clearly, critically, and practically about the ways social structures make people sick. Use of the assessment tool could promote "structural competency," a potential new medical education priority, to improve understanding of how social conditions and practical logistics undermine the capacities of patients to access health care, adhere to treatment, and modify lifestyles successfully. Adoption of a structural vulnerability framework in health care could also justify the mobilization of resources inside and outside clinical settings to improve a patient's immediate access to care and long-term health outcomes. Ultimately, the concept may orient health care providers toward policy leadership to reduce health disparities and foster health equity.

  3. Data Analysis Algorithm Suitable for Structural Health Monitoring Based on Dust Network Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed project will attempt to develop a data analysis system for structural health monitoring on space structures. The data analysis software will be a key...

  4. Structural health monitoring for fatigue life prediction of orthotropic brdige decks

    NARCIS (Netherlands)

    Pijpers, R.J.M.; Pahlavan, P.L.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Infrastructure asset owners are more and more confronted with structures reaching the end of their structural life. Structural Health Monitoring (SHM) systems should provide up-to-date information about the actual condition, as well predict the structural life and required maintenance of the assets

  5. Acute mental health care according to recent mental health legislation. Part III. Structuring space for acute mental health care.

    Science.gov (United States)

    Janse van Rensburg, A; Janse van Rensburg, A B R

    2011-05-01

    This is the third of three reports on the follow-up review of mental health care at Helen Joseph Hospital (HJH). The study reviewed existing South African standards for mental health care facilities. Architectural principles and implications for the use of space were deducted from recent legislation. Objectives were to evaluate the use of space in the existing physical facilities, to identify appropriate architectural solutions considering identified human rights requirements and to provide provisional cost estimates to align the unit towards its designated functions. Personal interviews were conducted. An on-site assessment and survey was made of existing and potential new spaces. Spatial requirements for implementing the Mental Health Act, No. 17 of 2002 (MHCA) were explored. Principles for spatial design of acute facilities include that: - spaces should communicate clear individual identity; - space should be segregated into zones according to user functionality and privacy; - communal leisure spaces should open into safe contained outdoor spaces; - circulation routes should preferably be circular; - sufficient visual connection should exist between circulation space and group activities; and - open lines of sight should be provided to all access points. The potential options for extension included: - an extensive unused single storey structural shell for a potential office wing on the same floor; - a huge vacant double volume space which could be accessed across the existing flat roof for potential occupational therapy activities; and - the existing roof area could be altered and secured to become an adequate outside leisure and garden area. A proposed concept design in two phases - based on these principles - was submitted to hospital and provincial management. To implement the MHCA without violating the human rights of mental health care users at HJH will require specific adjustment and extension of the current use of space at HJH.

  6. Intra-household allocation and the mental health of children: structural estimation analysis

    OpenAIRE

    Morris A. Davis; E. Michael Foster

    1999-01-01

    This paper estimates the structural parameters of a dynamic model where parents with one child periodically decide whether or not their child uses various mental health services. In this model, mental health services improve a child's mental health (which parents care about), however, mental health services may be costly to the parents both in terms of utility and household consumption. Using a panel data set collected as part of the Fort Bragg Mental Health Demonstration, we estimate the mod...

  7. Opportunities and challenges for structural health monitoring of radioactive waste systems and structures

    Energy Technology Data Exchange (ETDEWEB)

    Giurgiutiu, Victor [University of South Carolina, Columbia, SC 29208 (United States); Mendez Torres, Adrian E. [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-07-01

    Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications based on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the

  8. International observatory on mental health systems: structure and operation

    Directory of Open Access Journals (Sweden)

    Minas Harry

    2009-04-01

    Full Text Available Abstract Introduction Sustained cooperative action is required to improve the mental health of populations, particularly in low and middle-income countries where meagre mental health investment and insufficient human and other resources result in poorly performing mental health systems. The Observatory The International Observatory on Mental Health Systems is a mental health systems research, education and development network that will contribute to the development of high quality mental health systems in low and middle-income countries. The work of the Observatory will be done by mental health systems research, education and development groups that are located in and managed by collaborating organisations. These groups will be supported by the IOMHS Secretariat, the International IOMHS Steering Group and a Technical Reference Group. Summary The International Observatory on Mental Health Systems is: 1 the mental health systems research, education and development groups; 2 the IOMHS Steering Group; 3 the IOMHS Technical Reference Group; and 4 the IOMHS Secretariat. The work of the Observatory will depend on free and open collaboration, sharing of knowledge and skills, and governance arrangements that are inclusive and that put the needs and interests of people with mental illness and their families at the centre of decision-making. We welcome contact from individuals and institutions that wish to contribute to achieving the goals of the Observatory. Now is the time to make it happen where it matters, by turning scientific knowledge into effective action for people's health. (J.W. Lee, in his acceptance speech on his appointment as the Director-General of the World Health Organization 1.

  9. Effects of Piezoelectric (PZT) Sensor Bonding and the Characteristics of the Host Structure on Impedance Based Structural Health Monitoring

    Science.gov (United States)

    Jalloh, Abdul

    2005-01-01

    This study was conducted to investigate the effects of certain factors on the impedance signal in structural health monitoring. These factors were: the quality of the bond between the sensor and the host structure, and the characteristics of the host structure, such as geometry, mass, and material properties. This work was carried out to answer a set of questions, related to these factors, that were developed by the project team. The project team was comprised of Dr. Doug Ramers and Dr. Abdul Jalloh of the Summer Faculty Fellowship Program, Mr. Arnaldo Colon- Perez, a student intern from the University of Puerto Rico of Turabo, and Mr. John Lassiter and Mr. Bob Engberg of the Structural and Dynamics Test Group at NASA Marshall Space Flight Center (MSFC). This study was based on a review of the literature on structural health monitoring to investigate the factors referred to above because there was not enough time to plan and conduct the appropriate tests at MSFC during the tenure of the Summer Faculty Fellowship Program project members. The surveyed literature documents works on structural health monitoring that were based on laboratory tests that were conducted using bolted trusses and other civil engineering type structures for the most part. These are not the typical types of structures used in designing and building NASA s space vehicles and systems. It was therefore recommended that tests be conducted using NASA type structures, such as pressure vessels, to validate the observations made in this report.

  10. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  11. Perceptions and Attitudes of Health Professionals in Kenya on National Health Care Resource Allocation Mechanisms: A Structural Equation Modeling

    Science.gov (United States)

    Owili, Patrick Opiyo; Hsu, Yi-Hsin Elsa; Chern, Jin-Yuan; Chiu, Chiung-Hsuan Megan; Wang, Bill; Huang, Kuo-Cherh; Muga, Miriam Adoyo

    2015-01-01

    Background Health care resource allocation is key towards attaining equity in the health system. However, health professionals’ perceived impact and attitude towards health care resource allocation in Sub-Saharan Africa is unknown; furthermore, they occupy a position which makes them notice the impact of different policies in their health system. This study explored perceptions and attitudes of health professionals in Kenya on health care resource allocation mechanism. Method We conducted a survey of a representative sample of 341 health professionals in Moi Teaching and Referral Hospital from February to April 2012, consisting of over 3000 employees. We assessed health professionals’ perceived impact and attitudes on health care resource allocation mechanism in Kenya. We used structural equation modeling and applied a Confirmatory Factor Analysis using Robust Maximum Likelihood estimation procedure to test the hypothesized model. Results We found that the allocation mechanism was negatively associated with their perceived positive impact (-1.04, p allocation mechanism was negatively associated with their overall satisfaction (-0.08) and attitude (-0.98) at p allocation was positively associated with overall satisfaction (0.29, p allocation mechanism has a negative effect towards perceptions, attitudes and overall satisfaction of health professionals who are at the frontline in health care. These findings can serve as a crucial reference for policymakers as the Kenyan health system move towards devolving the system of governance. PMID:26039053

  12. Survey of social health insurance structure in selected countries; providing framework for basic health insurance in Iran.

    Science.gov (United States)

    Mohammadi, Effat; Raissi, Ahmad Reza; Barooni, Mohsen; Ferdoosi, Massoud; Nuhi, Mojtaba

    2014-01-01

    Health system reforms are the most strategic issue that has been seriously considered in healthcare systems in order to reduce costs and increase efficiency and effectiveness. The costs of health system finance in our country, lack of universal coverage in health insurance, and related issues necessitate reforms in our health system financing. The aim of this research was to prepare a structure of framework for social health insurance in Iran and conducting a comparative study in selected countries with social health insurance. This comparative descriptive study was conducted in three phases. The first phase of the study examined the structure of health social insurance in four countries - Germany, South Korea, Egypt, and Australia. The second phase was to develop an initial model, which was designed to determine the shared and distinguishing points of the investigated structures, for health insurance in Iran. The third phase was to validate the final research model. The developed model by the Delphi method was given to 20 professionals in financing of the health system, health economics and management of healthcare services. Their comments were collected in two stages and its validity was confirmed. The study of the structure of health insurance in the selected countries shows that health social insurance in different countries have different structures. Based on the findings of the present study, the current situation of the health system, and the conducted surveys, the following framework is suitable for the health social insurance system in Iran. The Health Social Insurance Organization has a unique service by having five funds of governmental employees, companies and NGOs, self-insured, villagers, and others, which serves as a nongovernmental organization under the supervision of public law and by decision- and policy-making of the Health Insurance Supreme Council. Membership in this organization is based on the nationality or residence, which the insured by

  13. Health spending slowdown is mostly due to economic factors, not structural change in the health care sector.

    Science.gov (United States)

    Dranove, David; Garthwaite, Craig; Ody, Christopher

    2014-08-01

    The source of the recent slowdown in health spending growth remains unclear. We used new and unique data on privately insured people to estimate the effect of the economic slowdown that began in December 2007 on the rate of growth in health spending. By exploiting regional variations in the severity of the slowdown, we determined that the economic slowdown explained approximately 70 percent of the slowdown in health spending growth for the people in our sample. This suggests that the recent decline is not primarily the result of structural changes in the health sector or of components of the Affordable Care Act, and that-absent other changes in the health care system-an economic recovery will result in increased health spending. Project HOPE—The People-to-People Health Foundation, Inc.

  14. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    Science.gov (United States)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  15. Creating academic structures to promote nursing's role in global health policy.

    Science.gov (United States)

    Gimbel, S; Kohler, P; Mitchell, P; Emami, A

    2017-03-01

    We highlight key components of emerging academic structures in global health nursing and explain how this investment can expand nursing's broader engagement in global health policy development. Engaging nursing in global health policy development is vital to ensure the scale-up of effective health programmes. Globally, nurses promote development of interprofessional healthcare teams who are responsible for translating sound global health policy and evidence-based programming into practice. However, the role of nurses within policy forums and on influential decision-making bodies within the global health space remains limited, which reinforces suboptimal global health policy implementation. Investment in globally engaged academic structures is an important way to expand participation of nursing in global health policy development. A review of the current knowledge and substantive findings related to academic structures promoting global health nursing was conducted, and included a directed search of institutional websites, related grey and peer-reviewed literature, and communication with top-tier schools of nursing in the United States, to identify specific developments in global health nursing academic structures. Effective academic structures promoting global health nursing include a framework of four critical components - Research, Education, Policy and Partnership. Academic structure type and core activities vary depending on institutional priorities. Increasingly, global health research, driven by individual nursing investigators, is expanding; however, in order to translate these advances into expanded involvement in global health policy development, academic structures within schools of nursing need to systematically expand educational opportunities, bolster research capacity and promote partnership with policymakers. © 2017 The Authors International Nursing Review published by John Wiley & Sons Ltd on behalf of International Council of Nurses.

  16. Combined vibration and guided wave-based approach for composite panels health assessment

    Science.gov (United States)

    Radzienski, Maciej; Cao, Maosen; Wei, Xu; Kudela, Pawel; Ostachowicz, Wieslaw

    2017-04-01

    Various non-destructive testing (NDT) methods have been developed to extract information about state of a structure. Two of them: vibration-based and guided wave-based techniques are one of the most commonly used and well developed. Both approaches can be implemented using Scanning Laser Doppler Vibrometer measurements and excitation by means of piezoelectric transducer. In this paper authors present a combined approached for NDT using successive and simultaneous measurement of both mode shapes and guided waves. Vibration-based damage detection is focused on detection of mode shape singularity, created by material discontinuity. This method utilizes wavelet transform and Teager energy operator for damage indication. Guided wave-based damage detection uses propagating elastic wave energy variation on the specimen surface as well as any changes in wave propagation pattern due to its interaction with material discontinuity as a tool for structural health assessment. Combining this two different techniques can give higher accuracy in defect detection. At the same time any additional specimen preparation are necessary, any set-up changes are required and the all the data can be registered in the same amount of time (simultaneous excitation). To confirm proposed technique a honeycomb core sandwich aluminum plate with debonding is tested. A results obtained with both techniques and combined approach are presented.

  17. A Structural Model Decomposition Framework for Systems Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Systems health management (SHM) is an impor- tant set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying...

  18. Tooth structural health monitoring with a fiber optic microbend sensor

    Science.gov (United States)

    Kishen, A.; Rafique, A.

    2006-02-01

    The purpose of this study is to monitor structural response in intact teeth and teeth with structural loss using a noninvasive fiber optic microbend (FOMB) sensor. In this study a miniature fiber optic microbend sensor is fabricated and tested on intact tooth specimens, tooth specimens in which one-third crown structure was removed, tooth specimens in which access cavity was prepared and tooth specimens in which access cavity and root canal were prepared. The microbend sensor displayed a direct relationship between the applied load and the output light intensity. The rate of change in light intensity with increase in loads corresponded with the structural response of the tooth. This experiment highlights the potential of FOMB sensor technology to quantitatively monitor tooth structural loss during post endodontic restorations.

  19. The relationship between professional preparation and class structure on health instruction in the secondary classroom.

    Science.gov (United States)

    Hammig, Bart; Ogletree, Roberta; Wycoff-Horn, Marcie R

    2011-09-01

    The aim of the present study was to examine the impact of professional preparation and class structure on health content delivery and time spent delivering content among required health education classes in the United States. Data from the classroom-level file of the 2006 School Health Policies and Programs Study were utilized. A series of multivariable logistic regression models were employed to determine if instruction of content was dependent on professional preparation and/or class structure. Years of teaching health topics and size of the school district were included as covariates in the multivariable logistic models. We also conducted a multivariable logistic regression model to examine if time spent teaching each topic area was dependent upon professional preparation and/or class structure. Findings indicated that professionally prepared teachers were significantly more likely to deliver content in 6 of 12 health topic areas when compared to untrained teachers. Class structure was also an important predictor of content delivery among many topic areas. Teachers who taught classes that were devoted to health instruction were significantly more likely to deliver content in the following topic areas: alcohol/drug prevention, tobacco prevention, sexuality, pregnancy, human immuno virus and sexually transmitted disease prevention, emotional/mental health and suicide, and violence prevention. Research concerning the relationship between professional preparation and teaching outcomes is scant. The present study indicates that health content coverage and time spent on instruction are associated with both professional preparation and class structure for many health content areas. © 2011, American School Health Association.

  20. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  1. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples.

    Science.gov (United States)

    Duan, Wen Hui; Wang, Quan; Quek, Ser Tong

    2010-12-06

    The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  2. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Science.gov (United States)

    Duan, Wen Hui; Wang, Quan; Quek, Ser Tong

    2010-01-01

    The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined. PMID:28883375

  3. Assessment of complex environmental health problems: framing the structures and structuring the frameworks.

    NARCIS (Netherlands)

    Knol, A.B.; Briggs, D.J.; Lebret, E.

    2010-01-01

    Many environmental risks are multi-faceted and their health consequences can be far-ranging in both time and space. It can be a challenging task to develop informed policies for such risks. Integrated environmental health impact assessment aims to support policy by assessing environmental health

  4. Humor: Power Conveying Social Structures Inside Forensic Mental Health Nursing.

    Science.gov (United States)

    Gildberg, Frederik A; Paaske, Kristian J; Rasmussen, Vivian L; Nissen, Ricko D; Bradley, Stephen K; Hounsgaard, Lise

    2016-01-01

    According to research literature, humor inside the staff-patient interaction seems to be significant in the area of forensic mental healthcare. However, existing literature on the subject is limited. Therefore, the aim of this study was to explore the characteristics of the use humor by forensic mental health staff members in interactions with forensic mental health inpatients. The study included 32 forensic mental health staff members, used 307 hours of participant observations, 48 informal interviews, and seven formal semistructured interviews. Outcomes identify four themes concerning the conveyance of power to, from, and between forensic mental health staff and patients as they interact: (a) "the informal use: the human-to-human approach," characterized by an informal use of humor and without any reference to mental health issues; (b) the "formal use of humor: the staff-patient approach," characterized as formal with a view on the patient as mentally ill, unable to understand humor, and with the aim of using humor to prevent conflicts or negative behavior; (c) "protest against requested care: the human-patient approach," characterized by the use of humor as a protest against requested care; and the use of (d) "inadequacy humor: the staff-human approach," characterized by the use of inadequacy-humor referring to, for example, patients' physical features. Recommendations and clinical implications are discussed.

  5. In Situ Guided Wave Structural Health Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Corrosion and fatigue induced metal-loss and cracks are common problems for missiles and aircraft structures. A wide range of field conditions such as humidity,...

  6. Structural Health Monitoring Using Fiber Bragg Grating Sensor Matrix Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Bragg Grating had been identified as very important elements, especially for strain measurements in smart structures. In many applications, arrays of FBG...

  7. Quantifiable and Reliable Structural Health Management Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Project Constellation, NASA is developing a new generation of spacecraft for human spaceflight. A significant percentage of the structures used in these...

  8. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  9. Addressing health inequalities by using Structural Funds. A question of opportunities.

    Science.gov (United States)

    Neagu, Oana Maria; Michelsen, Kai; Watson, Jonathan; Dowdeswell, Barrie; Brand, Helmut

    2017-03-01

    Making up a third of the EU budget, Structural and Investment Funds can provide important opportunities for investing in policies that tackle inequalities in health. This article looks back and forward at the 2007-2013 and 2014-2020 financial periods in an attempt to inform the development of health equity as a strand of policy intervention under regional development. It combines evidence from health projects funded through Structural Funds and a document analyses that locates interventions for health equity under the new regulations. The map of opportunities has changed considerably since the last programming period, creating more visibility for vulnerable groups, social determinants of health and health systems sustainability. As the current programming period is progressing, this paper contributes to maximizing this potential but also identifying challenges and implementation gaps for prospective health system engagement in pursuing health equity as part of Structural Funds projects. The austerity measures and their impact on public spending, building political support for investments as well as the difficulties around pursuing health gains as an objective of other policy areas are some of the challenges to overcome. European Structural and Investment Funds could be a window of opportunity that triggers engagement for health equity if sectors adopt a transformative approach and overcome barriers, cooperate for common goals and make better use of the availability of these resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Implementing a structured triage system at a community health ...

    African Journals Online (AJOL)

    Aim: We set out to standardise the triage process and to manage unbooked patients presenting to the community health centre (CHC) in a manner that is medico-legally safe, cost efficient and patient friendly, using the Kaizen method. Methods: The principles of Kaizen were used to observe and identify inefficiencies in the ...

  11. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...

  12. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Luca Gallucci

    2017-11-01

    Full Text Available Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  13. An Embedded Wireless Sensor Network with Wireless Power Transmission Capability for the Structural Health Monitoring of Reinforced Concrete Structures.

    Science.gov (United States)

    Gallucci, Luca; Menna, Costantino; Angrisani, Leopoldo; Asprone, Domenico; Moriello, Rosario Schiano Lo; Bonavolontà, Francesco; Fabbrocino, Francesco

    2017-11-07

    Maintenance strategies based on structural health monitoring can provide effective support in the optimization of scheduled repair of existing structures, thus enabling their lifetime to be extended. With specific regard to reinforced concrete (RC) structures, the state of the art seems to still be lacking an efficient and cost-effective technique capable of monitoring material properties continuously over the lifetime of a structure. Current solutions can typically only measure the required mechanical variables in an indirect, but economic, manner, or directly, but expensively. Moreover, most of the proposed solutions can only be implemented by means of manual activation, making the monitoring very inefficient and then poorly supported. This paper proposes a structural health monitoring system based on a wireless sensor network (WSN) that enables the automatic monitoring of a complete structure. The network includes wireless distributed sensors embedded in the structure itself, and follows the monitoring-based maintenance (MBM) approach, with its ABCDE paradigm, namely: accuracy, benefit, compactness, durability, and easiness of operations. The system is structured in a node level and has a network architecture that enables all the node data to converge in a central unit. Human control is completely unnecessary until the periodic evaluation of the collected data. Several tests are conducted in order to characterize the system from a metrological point of view and assess its performance and effectiveness in real RC conditions.

  14. STRATEGIC MANAGEMENT OF BIOCHEMICAL AND BIOPHYSICAL CONTROL STRUCTURES AND SUSTAINABILITY HEALTH ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Ioana-Andreea, MARINESCU

    2014-11-01

    Full Text Available Scientific Investigation of sustainability sanitary herein, matters to a define the structure of the health sector; b knowing the contents of the local health systems, c to obtain information about the properties and characteristics associated with health in Romania; d obtaining views on the mission, objectives, goals and targets pursued by health services; e scheduling results, effects and positive consequences among human communities to ensure sustainable health in the framework of sustainable development of the country and, last but not least; f it is intended to measure people's participation and the rule management process, based on biochemical and biophysical control structures. Mainly, it is considered that the sustainability and health have depicted conceptual content that must be secured effectively recovered, concrete operational activities of health systems in laboratories and hospitals.

  15. Data-intensive structural health monitoring in the infrawatch project

    NARCIS (Netherlands)

    Veerman, R.P.; Miao, S.; Koenders, E.A.B.; Knobbe, A.

    2013-01-01

    The InfraWatch project is a Dutch research project, aimed at developing novel techniques for large-scale monitoring of concrete infra-structures. The project involves a large bridge, fitted with multiple types of sensors that capture the high-resolution dynamic behavior of the bridge. With 145

  16. Perspectives on Structural Health Monitoring of Composite Civil Aircraft

    NARCIS (Netherlands)

    Groves, R.M.

    2016-01-01

    Safe and cost effective operation are the highest priorities for civil aircraft. Considering that many events that can occur during normal aircraft operation which cause a reduction in the residual strength of the structure, a rigid adherence to inspection and maintenance schedules and timely repair

  17. Bayesian Computational Sensor Networks for Aircraft Structural Health Monitoring

    Science.gov (United States)

    2016-02-02

    and (4) input sources (e.g., cracks, holes). This was achieved in terms of extensions to our previously developed techniques . These decentralized...SHM) deals with evaluating structures for changes in their characteristics, predicting useful lifetime without maintenance, and recommending...SHM transducers (e.g., ultrasound ) acting in both undamaged and damaged composite materials, and showed how to achieve simultaneous improved

  18. Recent Research and Application Activities on Structural Health ...

    African Journals Online (AJOL)

    ... measured data, and (4) a test road project for pavement design verification and enhancement by the Korea Highway Corporation. Finally R&D activities of a new engineering research center entitled Smart Infra-Structure Technology Center at Korea Advanced Institute of Science and Technology are also briefly described.

  19. The Taxonic Latent Structure and Taxometrics in Forensic Mental Health.

    Science.gov (United States)

    Maraun, Michael D; Hart, Stephen D

    2016-10-01

    Recently, researchers in the field of forensic mental health have attempted to address the technical, empirical question of whether important clinical problems, such as psychopathy or malingering, constitute taxa (i.e., discrete conditions). In this paper, we provide a detailed elucidation of the foundational logic of the quantitative methods employed to answer this question, focusing on the taxometric procedures developed by Paul Meehl and colleagues. We attempt to demonstrate that research on taxonicity is hampered by (a) researchers' unfamiliarity with or misunderstanding of the logic underlying latent variable technologies and (b) the fundamental incapacity of Meehlian procedures to provide a test of taxonicity. We conclude by discussing the utility of taxometric procedures to research in forensic mental health and, more broadly, in the field of applied psychological measurement. © The Author(s) 2016.

  20. A methodology aimed to guarantee technology continuity in health structures.

    Science.gov (United States)

    Miniati, R; Dori, F; Iadanza, E; Scatizzi, L; Niccolini, F; Sarti, A

    2011-01-01

    In healthcare the importance of clinical continuity is essential for both patients life and health organization activity. Since technology continuity is having more and more importance for the service continuity, a correct management of medical devices must be guided by criteria that ensure its safe, appropriate and economical use through a well planned purchase, appropriate preventive and corrective maintenance Indeed, the aim of health technology managers is to optimize the integration of external interventions assistance and internal technical service to guarantee an efficient and cost-effective maintenance system. This paper proposes an innovative carefully thought methodology which is aimed to provide technological and procedural actions which offer support to decision makers in technology management regarding the implementation of continuity in medical services and response to technology failures and emergency events.

  1. Structural health monitoring to detect the presence, location and magnitude of structural damage in cadaveric porcine spines.

    Science.gov (United States)

    Kawchuk, Gregory Neil; Decker, Colleen; Dolan, Ryan; Carey, Jason

    2009-01-19

    Structural health monitoring has been used successfully to identify defects in civil infrastructure and aerospace applications. Given that the majority of low back pain is thought to be mechanical in nature, our objective was to determine if structural health monitoring techniques could be employed successfully to identify the presence, location and magnitude of structural alterations within the spine. In six eviscerated cadaveric pigs, bone screws were drilled into the anterior bodies of L1-L5 and tri-axial accelerometers fixed to each spinous process. Vibration was then applied to the L3 spinous and frequency response functions obtained from each sensor axis before and after specific alterations of spinal structure. These alterations were produced at four unique locations and included (1) use of a cable tie to link anterior bone pins together and (2) progressive disc sectioning. Eighty percent of all data were used to train a neural network while the remaining data were used to test the network's ability to distinguish between structural states. The presence, location and magnitude of structural change within the spine was identified correctly in 5030/5040 possible neural network decisions. The diagnostic sensitivity and specificity of this technique ranged from 0.994 to 1.000. These results indicate that there is sufficient information embedded in frequency response data to identify the presence, location and magnitude of specific structural changes in the spine. If these techniques can be evolved for human use, structural health monitoring may provide a new approach toward understanding the underlying relations between spinal structure and function.

  2. Relationship between molecular structure of cereal dietary fiber and health effects: focus on glucose/insulin response and gut health.

    Science.gov (United States)

    Gemen, Raymond; de Vries, Jan F; Slavin, Joanne L

    2011-01-01

    Epidemiological and animal data show associations between whole grain and dietary fiber intakes and disease risk reduction. Dietary fiber can be considered a "black box" since its molecular structure can vary significantly. Limited data are available linking the health effects of dietary fiber to certain molecular structures. The present review was conducted to examine the existing knowledge of structure/effect relationships with a focus on human intervention studies that examined the relationships between the molecular structure of cereal dietary fiber and both the blood glucose and insulin responses and gut health. An extensive search of the existing literature was conducted using the PubMed database for the period 1993-2008. Of 48 publications originally identified using the search criteria, 13 provided molecular information in conjunction with fiber type. Several indications show a link between molecular structure and physiological effects. Limited data from human intervention trials are available to verify hypotheses derived from in vitro studies that relate the molecular structure of cereal dietary fiber to both insulin and glucose response and gut health. © 2011 International Life Sciences Institute.

  3. Adoption of Smart Structures for Prevention of Health Hazards in Buildings

    Science.gov (United States)

    Oke, Ayodeji; Aigbavboa, Clinton; Ngema, Wiseman

    2017-11-01

    The importance of building quality to the health and well-being of occupants and surrounding neighbors cannot be overemphasized. Smart structures were construed to proffer solution to various issues of sustainable development including social factors that is concerned with health and safety of people. Based on existing literature materials on building quality, smart structures and general aspect of sustainable developments, this study examined the benefits of smart structures in the prevention of various health issues in infrastructural buildings, which has been a concern for stakeholders in the architecture, engineering and construction industry. The criterion for indoor environmental quality was adopted and various health and bodily issues related to building quality were explained. The adoption of smart structure concept will help to manage physical, chemical, biological and psychological factors of building with a view to enhancing better quality of life of occupants.

  4. Compressive sensing of full wave field data for structural health monitoring applications

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; De Marchi, Luca; Perelli, Alessandro

    2015-01-01

    Numerous nondestructive evaluations and structural health monitoring approaches based on guide waves rely on analysis of wave fields recorded through scanning laser Doppler vibrometers (SLDVs) or ultrasonic scanners. The informative content which can be extracted from these inspections is relevan...

  5. Structural health monitoring and remote sensing of transportation infrastructure using embedded frequency selective surfaces.

    Science.gov (United States)

    2014-07-01

    The objective of this project was to investigate the use of Frequency Selective Surfaces (FSS) for structural health monitoring applications. Frequency Selective Surfaces (FSS) have long been used in the RF/microwave community to control scattering f...

  6. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  7. Low cost structural health monitoring of bridges using wireless sensors : research summary.

    Science.gov (United States)

    2012-05-01

    Problem: Structural health monitoring is critical to protecting bridges against aging, : failures, and potentially collapse. However, instrumentiation techniques : suffer from non-scalability due to the high cost of instrumentation devices : and inst...

  8. A pilot study on diagnostic sensor networks for structure health monitoring.

    Science.gov (United States)

    2013-08-01

    The proposal was submitted in an effort to obtain some preliminary results on using sensor networks for real-time structure health : monitoring. The proposed work has twofold: to develop and validate an elective algorithm for the diagnosis of coupled...

  9. Unpowered Wireless Ultrasound Generation and Sensing for Structural Health Monitoring of Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Damage detection based on ultrasonic waves is one of the most popular inspection schemes employed by many structural health monitoring (SHM) systems. We propose a...

  10. Structural impediments to TQM in Australian health care.

    Science.gov (United States)

    Degeling, P; Carnegie, M

    1995-01-01

    The culture of quality called for by total quality management (TQM) has much to recommend it. Australian experience, however, suggests that it is not something that can easily be added to the profession-based structures and cultures prevailing in most Australian hospitals. Implementing TQM is not just a matter of advocating it. The institutional transformation implied by TQM requires additional action on multiple fronts, both internal and external to the hospital.

  11. Development of an Integrated Multi-channel Ultrasonic System for Online Structural Health Monitoring of Large Structures

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Heung Seop; Park, Jin Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Hak Joon; Song, Sung Jin [Sungkyunkwan University, Seoul (Korea, Republic of)

    2009-05-15

    Structural health monitoring (SHM) has becoming one of important issues in the maintenance of various structures such as large steel plates, vessels, and pipes in nuclear power plants. Especially, ultrasonic guided waves have been proposed by many researchers for promising SHM applications because they have ability to travel long distances in the target structures. However, the interpretation of guided wave signals obtained from complex geometrical structures is very difficult. Recently, to address such difficulty, computed tomography (CT) and array methods have been proposed for generating two dimensional images of plate-like structures using spatially distributed ultrasonic transducers. We developed an integrated multi-channel ultrasonic system that can handle array transducers and carried out experiments by using the developed system to construct CT images of a defect in a specimen.

  12. Structural Health Monitoring Using Lamb Wave Reflections and Total Focusing Method for Image Reconstruction

    OpenAIRE

    Muller, Aurelia; Robertson Welsh, Bradley; Gaydecki, Patrick; Gresil, Matthieu; Soutis, Constantinos

    2017-01-01

    This investigation aimed to adapt the total focusing method (TFM) algorithm (originated form the synthetic aperture technique in digital signal processing) to accommodate a circular array of piezoelectric sensors (PZT) and characterise defects using guided wave signals for the development of a structural health monitoring system. This research presents the initial results of a broader research focusing on the development of a structural health monitoring guided wave system for advance carbon ...

  13. Self-diagnosis of smart structures based on dynamical properties

    Science.gov (United States)

    Fritzen, C.-P.; Kraemer, P.

    2009-08-01

    When we talk about "smart structures" we can think about different properties and capabilities which make a structure "intelligent" in a certain sense. Originally, the expression "smart" was used in the context that a structure can react and adapt to certain environmental conditions, such as change of shape, compensation of deformations, active vibration damping, etc. Over the last year, the expression "smart" has been extended to the field of structural health monitoring (SHM), where sensor networks, actuators and computational capabilities are used to enable a structure to perform a self-diagnosis with the goal that this structure can release early warnings about a critical health state, locate and classify damage or even to forecast the remaining life-time. This paper intends to give an overview and point out recent developments of vibration-based methods for SHM. All these methods have in common that a structural change due to a damage results in a more or less significant change of the dynamic behavior. For the diagnosis an inverse problem has to be solved. We discuss the use of modal information as well as the direct use of forced and ambient vibrations in the time and frequency domain. Examples from civil and aerospace engineering as well as off-shore wind energy plants show the applicability of these methods.

  14. Feasibility Investigation on the Development of a Structural Damage Diagnostic and Monitoring System for Rocket Engines

    Science.gov (United States)

    Shen, Ji Y.; Sharpe, Lonnie, Jr.

    1998-01-01

    The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.

  15. Body mass index, perceived health, and happiness: their determinants and structural relationships

    NARCIS (Netherlands)

    Cornelisse-Vermaat, J.R.; Antonides, G.; Ophem, van J.A.C.; Maassen van den Brink, H.

    2006-01-01

    The structural relationships between body mass index, perceived health and happiness have been studied in a survey of 700 native Dutch citizens. We found an indirect effect of body mass index on happiness, via perceived health. Age had an inverted U-shaped relationship with body mass index, and both

  16. Supporting Structures for Education for Sustainable Development and School-Based Health Promotion

    Science.gov (United States)

    Madsen, Katrine Dahl; Nordin, Lone Lindegaard; Simovska, Venka

    2016-01-01

    The article aims to explore the following question: "How is education for sustainable development and health education in schools approached and contextualized at a municipal level, and what contradictions and tensions might local structures imply for sustainable health promoting school development?" Based on interviews with key agents…

  17. Classroom Goal Structures and HIV and Pregnancy Prevention Education in Rural High School Health Classrooms

    Science.gov (United States)

    Anderman, Eric M.; Cupp, Pamela K.; Lane, Derek R.; Zimmerman, Rick; Gray, DeLeon L.; O'Connell, Ann

    2011-01-01

    Over 5,000 adolescents enrolled in required rural high school health courses reported their perceptions of mastery and extrinsic goal structures in their health classrooms. Data were collected from all students at three time points (prior to HIV and pregnancy instruction, 3 months after instruction, and 1 year after instruction). Results indicated…

  18. Supporting structures for education for sustainable development and school-based health promotion

    DEFF Research Database (Denmark)

    Madsen, Katrine Dahl; Nordin, Lone Lindegard; Simovska, Venka

    2016-01-01

    The article aims to explore the following question: How is education for sustainable development and health education in schools approached and contextualized at a municipal level, and what contradictions and tensions might local structures imply for sustainable health promoting school developmen...

  19. Body Mass Index, perceived health, and hapiness: Their determinants and structural relationships

    NARCIS (Netherlands)

    Cornelisse-Vermaat, J.; Antonides, G.; van Ophem, J.A.C.; Maassen van den Brink, H.

    2006-01-01

    The structural relationships between body mass index, perceived health and happiness have been studied in a survey of 700 native Dutch citizens. We found an indirect effect of body mass index on happiness, via perceived health. Age had an inverted U-shaped relationship with body mass index, and both

  20. Sociology, social structure and health-related stigma.

    Science.gov (United States)

    Scambler, Graham

    2006-08-01

    There is a long and cross-disciplinary tradition of analysing chronic and disabling illness in terms of relations of stigma. The present paper offers a sociological approach which emphasizes: (a) the causal importance of social structures for grasping stigma relations; (b) the importance of understanding stigma relations in the context of wider societal change; and (c) the ways in which relations of stigma typically interact with other relations, such as those of class and command. It is suggested that consideration of specific and often condition-related strategies to reduce stigma might profitably be set in such a context.

  1. Structural Health Monitoring of Composite Wound Pressure Vessels

    Science.gov (United States)

    Grant, Joseph; Kaul, Raj; Taylor, Scott; Jackson, Kurt; Myers, George; Sharma, A.

    2002-01-01

    The increasing use of advanced composite materials in the wide range of applications including Space Structures is a great impetus to the development of smart materials. Incorporating these FBG sensors for monitoring the integrity of structures during their life cycle will provide valuable information about viability of the usage of such material. The use of these sensors by surface bonding or embedding in this composite will measure internal strain and temperature, and hence the integrity of the assembled engineering structures. This paper focuses on such a structure, called a composite wound pressure vessel. This vessel was fabricated from the composite material: TRH50 (a Mitsubishi carbon fiber with a 710-ksi tensile strength and a 37 Msi modulus) impregnated with an epoxy resin from NEWPORT composites (WDE-3D-1). This epoxy resin in water dispersed system without any solvents and it cures in the 240-310 degrees F range. This is a toughened resin system specifically designed for pressure applications. These materials are a natural fit for fiber sensors since the polyimide outer buffer coating of fiber can be integrated into the polymer matrix of the composite material with negligible residual stress. The tank was wound with two helical patterns and 4 hoop wraps. The order of winding is: two hoops, two helical and two hoops. The wall thickness of the composite should be about 80 mil or less. The tank should burst near 3,000 psi or less. We can measure the actual wall thickness by ultrasonic or we can burst the tank and measure the pieces. Figure 1 shows a cylinder fabricated out of carbon-epoxy composite material. The strain in different directions is measured with a surface bonded fiber Bragg gratings and with embedded fiber Bragg gratings as the cylinder is pressurized to burst pressures. Figure 2 shows the strain as a function of pressure of carbon-epoxy cylinder as it is pressurized with water. Strain is measured in different directions by multiple gratings

  2. Wave Propagation in Thin-walled Composite Structures : Application to Structural Health Monitoring

    NARCIS (Netherlands)

    Pahlavan, L.

    2012-01-01

    In order for the increased use of fiber-reinforced composite structures to be financially feasible, employment of reliable and economical systems to detect damage and evaluate structural integrity is necessary. This task has traditionally been performed using off-line non-destructive testing (NDT)

  3. A structural model of health behavior modification among patients with cardiovascular disease.

    Science.gov (United States)

    Goong, Hwasoo; Ryu, Seungmi; Xu, Lijuan

    2016-02-01

    The purpose of the study was to test a structural equation model in which social support, health beliefs, and stage of change predict the health behaviors of patients with cardiovascular disease. A cross-sectional correlational design was used. Using convenience sampling, a survey about social support, health belief, stage of change, and health behavior was completed by 314 adults with cardiovascular disease from outpatient clinics in 2 university hospitals in Korea. Data were analyzed using a structural equation model with the Analysis of Moment program. The participants were aged 53.44±13.19 years (mean±SD), and about 64% of them were male. The proposed model fit the data from the study well, explaining 19% and 60% of the variances in the stage of change and health behavior, respectively. The findings indicate that the performance of health behavior modification among the patients with cardiovascular disease can be explained by social support, health belief, and stage of change based on a health-belief and stage-of-change model. Further studies are warranted to confirm the efficacy of health-promoting strategies in initiating and maintaining the performance of health behaviors by providing social support from family and medical staff and enhancing health belief. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Coordinated robotic system for civil structural health monitoring

    Directory of Open Access Journals (Sweden)

    Qidwai Uvais

    2017-01-01

    Full Text Available With the recent advances in sensors, robotics, unmanned aerial vehicles, communication, and information technologies, it is now feasible to move towards the vision of ubiquitous cities, where virtually everything throughout the city is linked to an information system through technologies such as wireless networking and radio-frequency identification (RFID tags, to provide systematic and more efficient management of urban systems, including civil and mechanical infrastructure monitoring, to achieve the goal of resilient and sustainable societies. In this proposed system, unmanned aerial vehicle (UAVs is used to ascertain the coarse defect signature using panoramic imaging. This involves image stitching and registration so that a complete view of the surface is seen with reference to a common reference or origin point. Thereafter, crack verification and localization has been done using the magnetic flux leakage (MFL approach which has been performed with the help of a coordinated robotic system. In which the first robot is placed at the top of the structure whereas the second robot is equipped with the designed MFL sensory system. With the initial findings, the proposed system identifies and localize the crack in the given structure.

  5. In Situ Guided Wave Structural Health Monitoring System

    Science.gov (United States)

    Zhao, George; Tittmann, Bernhard R.

    2011-01-01

    Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.

  6. Structural Health Monitoring in Changing Operational Conditions Using Tranmissibility Measurements

    Directory of Open Access Journals (Sweden)

    Christof Devriendt

    2010-01-01

    Full Text Available This article uses frequency domain transmissibility functions for detecting and locating damage in operational conditions. In recent articles numerical and experimental examples were presented and the possibility to use the transmissibility concept for damage detection seemed quite promising. In the work discussed so far, it was assumed that the operational conditions were constant, the structure was excited by a single input in a fixed location. Transmissibility functions, defined as a simple ratio between two measured responses, do depend on the amplitudes or locations of the operational forces. The current techniques fail in the case of changing operational conditions. A suitable operational damage detection method should however be able to detect damage in a very early stage even in the case of changing operational conditions. It will be demonstrated in this paper that, by using only a small frequency band around the resonance frequencies of the structure, the existing methods can still be used in a more robust way. The idea is based on the specific property that the transmissibility functions become independent of the loading condition in the system poles. A numerical and experimental validation will be given.

  7. Production cost structure in US outpatient physical therapy health care.

    Science.gov (United States)

    Lubiani, Gregory G; Okunade, Albert A

    2013-02-01

    This paper investigates the technology cost structure in US physical therapy care. We exploit formal economic theories and a rich national data of providers to tease out implications for operational cost efficiencies. The 2008-2009 dataset comprising over 19 000 bi-weekly, site-specific physical therapy center observations across 28 US states and Occupational Employment Statistics data (Bureau of Labor Statistics) includes measures of output, three labor types (clinical, support, and administrative), and facilities (capital). We discuss findings from the iterative seemingly unrelated regression estimation system model. The generalized translog cost estimates indicate a well-behaved underlying technology structure. We also find the following: (i) factor demands are downwardly sloped; (ii) pair-wise factor relationships largely reflect substitutions; (iii) factor demand for physical therapists is more inelastic compared with that for administrative staff; and (iv) diminishing scale economies exist at the 25%, 50%, and 75% output (patient visits) levels. Our findings advance the timely economic understanding of operations in an increasingly important segment of the medical care sector that has, up-to-now (because of data paucity), been missing from healthcare efficiency analysis. Our work further provides baseline estimates for comparing operational efficiencies in physical therapy care after implementations of the 2010 US healthcare reforms. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Stigma as a Structural Power in Mental Health Care Reform: An Ethnographic Study Among Mental Health Care Professionals in Belgium.

    Science.gov (United States)

    Sercu, Charlotte; Bracke, Piet

    2016-12-01

    The growing interest among scholars and professionals in mental health stigma is closely related to different mental health care reforms. This article explores professionals' perceptions of the dehospitalization movement in the Belgian context, paying particular attention to the meaning of stigma. Combined participant observation and semi-structured interviews were used to both assess and contextualize the perceptions of 43 professionals. The findings suggest that stigma may function as a structural barrier to professionals' positive evaluation of de-hospitalization, depending on the framework they are working in. It is important to move beyond a unilateral understanding of the relationship between stigma and de-hospitalization in order to attain constructive health care reform. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Advancing Research on Structural Stigma and Sexual Orientation Disparities in Mental Health Among Youth.

    Science.gov (United States)

    Hatzenbuehler, Mark L

    2017-01-01

    Psychological research on stigma has focused largely on the perceptions of stigmatized individuals and their interpersonal interactions with the nonstigmatized. This work has been critical in documenting many of the ways in which stigma operates to harm those who are targeted. However, this research has also tended to overlook broader structural forms of stigma, which refer to societal-level conditions, cultural norms, and institutional policies and practices that constrain the lives of the stigmatized. In this article I describe the emerging field of research on structural stigma and review evidence documenting the harmful consequences of structural stigma for the mental/behavioral health of lesbian, gay, and bisexual youth. This research demonstrates that structural stigma represents an important, but thus far largely underrecognized, mechanism underlying mental health disparities related to sexual orientation among youth. I offer several suggestions to advance research in this area, including (a) adopting a life-course approach to the study of structural stigma; (b) developing novel measures of structural stigma; (c) expanding both the range of methods used for studying structural stigma and the sequelae of structural stigma that are evaluated; (d) identifying potential mediators and moderators of the structural stigma-health relationship; (e) examining intersectionalities; and (f) testing generalizability of structural stigma across other groups, with a particular focus on transgender youth. The implications of this research for preventive interventions and for public policy are also discussed.

  10. Multiscale Modeling of Advanced Materials for Damage Prediction and Structural Health Monitoring

    Science.gov (United States)

    2015-05-01

    airframes (Farrar and Worden, 2007; Mohanty, Chattopadhyay, and Peralta , 2010). Wave-based damage detection and quantification techniques have been...Chattopadhyay, A., Peralta , P., Papandreou-Suppappola, A., & Kovvali, N. (2009). A multidisciplinary approach to structural health monitoring and...S., Chattopadhyay, A., & Peralta , P. (2010). Adaptive residual useful life estimation of a structural hotspot. Journal of Intelligent Material

  11. Embedded optical fiber sensors for continuous health monitoring of civil engineering structures in composite materials

    OpenAIRE

    Chapeleau, Xavier; Drissi Habti, Monssef; TOMIYAMA, Tomonori

    2010-01-01

    Embedding optical fibre-based sensors into composite structures in civil engineering is a promising alternative for structural health monitoring (SHM). This article is a review of the main sensing techniques based on optical fibres. Localized and multiplexed measurements as well as distributed measurements techniques are presented.

  12. The Structure and Quality of Social Network Support among Mental Health Consumers of Clubhouse Programs

    Science.gov (United States)

    Pernice-Duca, Francesca M.

    2008-01-01

    This study explored the structure and quality of social network support among a group of adult consumers of community-based mental health programs known as "clubhouses". The structure and quality of social network support was also examined by diagnosis, specifically between consumers living with and without schizophrenia. The study…

  13. Development of flexural vibration inspection techniques to rapidly assess the structural health of rural bridge systems

    Science.gov (United States)

    Brian K. Brashaw; Robert Vatalaro; Xiping Wang; Kevin Sarvela; James P. Wacker

    2008-01-01

    Approximately 4,000 vehicle bridges in the State of Minnesota contain structural timber members. Recent research at the University of Minnesota Duluth Natural Resources Research Institute (UMD NRRI) has been conducted on vibration testing of timber bridges as a means of developing rapid in-place testing techniques for assessing the structural health of bridges. The...

  14. Semiclassical treatments for small-molecule dynamics in low-temperature crystals using fixed and adiabatic vibrational bases

    Science.gov (United States)

    Chapman, Craig T.; Cina, Jeffrey A.

    2007-09-01

    Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculations of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Without resorting to a simple harmonic analysis, both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath. Both approaches expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intermolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude—but still perhaps coherent—motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials. Computational demands for propagation of the parameter equations of motion appear quite manageable for tens or hundreds of atoms and scale similarly with system size in the two cases. Because of the time-scale separation between intermolecular and lattice vibrations, the AVB/GB theory may in some instances require fewer vibrational basis states than the FVB/GB approach. Either framework should enable practical first-principles calculations of nonlinear optical

  15. A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes

    Science.gov (United States)

    Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-07-01

    A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.

  16. Complexities in Assessing Structural Health of Civil Infrastructures

    Directory of Open Access Journals (Sweden)

    Abdullah Al-Hussein

    2017-01-01

    Full Text Available The complexity in the health assessment of civil infrastructures, as it evolves over a long period of time, is briefly discussed. A simple problem can become very complex based on the current needs, sophistication required, and the technological advancements. To meet the current needs of locating defect spots and their severity accurately and efficiently, infrastructures are represented by finite elements. To increase the implementation potential, the stiffness parameters of all the elements are identified and tracked using only few noise-contaminated dynamic responses measured at small part of the infrastructure. To extract the required information, Kalman filter concept is integrated with other numerical schemes. An unscented Kalman filter (UKF concept is developed for highly nonlinear dynamic systems. It is denoted as 3D UKF-UI-WGI. The basic UKF concept is improved in several ways. Instead of using one long duration time-history in one global iteration, very short duration time-histories and multiple global iterations with weight factors are used to locate the defect spot more accurately and efficiently. The capabilities of the procedure are demonstrated with the help of two informative examples. The proposed procedure is much superior to the extended Kalman filter-based procedures developed by the team earlier.

  17. Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves

    Energy Technology Data Exchange (ETDEWEB)

    Bezdek, M.; Joseph, K.; Titmann, B. R. [The Pennsylvania State University, University Park (United States)

    2012-06-15

    Some applications require structural health monitoring in inaccessible components. This paper presents a technique useful for Structural Health Monitoring of double wall structures, such as double wall steam pipes and double wall pressure vessels separated from an ultrasonic transducer by three layers. Detection has been demonstrated at distances in excess of one meter for a fixed transducer. The case presented here is for one of the layers, the middle layer, being a fluid. For certain transducer configurations the wave propagating in the fluid is a wave with low velocity and attenuation. The paper presents a model based on wave theory and finite element simulation; the experimental set-up and observations, and comparison between theory and experiment. The results provide a description of the technique, understanding of the phenomenon and its possible applications in Structural Health Monitoring.

  18. Family structure, social capital, and mental health disparities among Canadian mothers.

    Science.gov (United States)

    Colton, T; Janzen, B; Laverty, W

    2015-06-01

    To examine the extent to which inequities in mental health between single and partnered mothers can be explained by social capital, independently and in concert with socio-economic circumstances. Cross-sectional study. The sample consisted of 2920 mothers participating in Statistics Canada's 2010 General Social Survey. Chi-square and logistic regression analyses were used to investigate the extent to which family structure differences in self-rated mental health, if observed, were mediated by various dimensions of social capital. Compared with partnered mothers, fair/poor self-rated mental health was more common among previously married mothers (OR = 3.14; 95% CI 2.15-4.59) and never married mothers (OR = 3.01; 95% CI 1.95-4.65). After adjustment for socio-economic and social capital variables, the odds ratio between single mother family structure and fair/poor mental health decreased but remained significant (ORpreviously married = 1.90, 95% CI 1.22-2.98; ORnever married = 1.90, 95% CI 1.14-3.16). Single mothers' more limited access to economic and social capital resources partially explain their compromised self-rated mental health. Longitudinal research with multi-item measures of mental health is needed to corroborate these findings and extend their understanding of the relationship between family structure, social capital, and mothers' mental health. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  19. Structural racism and health inequities in the USA: evidence and interventions.

    Science.gov (United States)

    Bailey, Zinzi D; Krieger, Nancy; Agénor, Madina; Graves, Jasmine; Linos, Natalia; Bassett, Mary T

    2017-04-08

    Despite growing interest in understanding how social factors drive poor health outcomes, many academics, policy makers, scientists, elected officials, journalists, and others responsible for defining and responding to the public discourse remain reluctant to identify racism as a root cause of racial health inequities. In this conceptual report, the third in a Series on equity and equality in health in the USA, we use a contemporary and historical perspective to discuss research and interventions that grapple with the implications of what is known as structural racism on population health and health inequities. Structural racism refers to the totality of ways in which societies foster racial discrimination through mutually reinforcing systems of housing, education, employment, earnings, benefits, credit, media, health care, and criminal justice. These patterns and practices in turn reinforce discriminatory beliefs, values, and distribution of resources. We argue that a focus on structural racism offers a concrete, feasible, and promising approach towards advancing health equity and improving population health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A relational approach to health practices: towards transcending the agency-structure divide.

    Science.gov (United States)

    Veenstra, Gerry; Burnett, Patrick John

    2014-02-01

    Many health scholars find that Pierre Bourdieu's theory of practice leaves too little room for individual agency. We contend that, by virtue of its relational, field-theoretic underpinnings, the idea of leaving room for agency in Bourdieu's theory of practice is misguided. With agency manifested in interactions and social structures consisting of relations built upon relations, the stark distinction between agency and structure inherent to substantialist thinking is undermined, even dissolved, in a relational field-theoretic context. We also contend that, when treated as relationally bound phenomena, Bourdieu's notions of habitus, doxa, capital and field illuminate creative, adaptive and future-looking practices. We conclude by discussing difficulties inherent to implementing a relational theory of practice in health promotion and public health. © 2014 The Authors. Sociology of Health & Illness © 2014 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  1. Short health anxiety inventory: factor structure and psychometric properties in Spanish adolescents.

    Science.gov (United States)

    Morales, Alexandra; Espada, José P; Carballo, José L; Piqueras, José A; Orgilés, Mireia

    2015-02-01

    The Short Health Anxiety Inventory is a common screening tool for assessing health anxiety among adolescents; however, its psychometric properties and internal structure have not been evaluated within a Spanish-speaking population. The goodness of fit of four models of the latent structure of the Short Health Anxiety Inventory was tested by using confirmatory factor analysis in a sample of 832 Spanish secondary school adolescents. Based on these results, the reliability of the original two-factor model was tested. Differences in health anxiety by gender and age were also examined. The results support use of the Spanish version of the Short Health Anxiety Inventory by researchers and clinicians among Spanish adolescents. © The Author(s) 2013.

  2. Redesigning a Ministry of Health's organizational structure: exploring implementation challenges through Botswana's experiences.

    Science.gov (United States)

    Seitio-Kgokgwe, Onalenna; Gauld, Robin D C; Hill, Philip C; Barnett, Pauline

    2016-04-01

    The Botswana's Ministry of Health redesigned and adopted a new organizational structure in 2005, which was poorly implemented. This article explores factors that influenced the implementation of this organizational structure. This article draws from data collected through in-depth interviews with 54 purposively selected key informants comprising policy makers, senior managers and staff of the Ministry of Health (N = 40) and senior officers from various stakeholder organizations (N = 14). Participants generally felt that the review of the Ministry of Health organizational structure was important. The previous structure was considered obsolete with fragmented functions that limited the overall performance of the health system. The new organizational structure was viewed to be aligned to current national priorities with potential to positively influence performance. Some key weaknesses identified included lack of consultation and information sharing with workers during the restructuring process, which affected the understanding of their new roles, failure to mobilize key resources to support implementation of the new structure and inadequate monitoring of the implementation process. Redesigning an organizational structure is a major change. There is a need for effective and sustained leadership to plan, direct, coordinate, monitor and evaluate the implementation phase of the reform. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Structural racism in the workplace: Does perception matter for health inequalities?

    Science.gov (United States)

    McCluney, Courtney L; Schmitz, Lauren L; Hicken, Margaret T; Sonnega, Amanda

    2017-05-20

    Structural racism has been linked to racial health inequalities and may operate through an unequal labor market that results in inequalities in psychosocial workplace environments (PWE). Experiences of the PWE may be a critical but understudied source of racial health disparities as most adults spend a large portion of their lives in the workplace, and work-related stress affects health outcomes. Further, it is not clear if the objective characteristics of the workplace are important for health inequalities or if these inequalities are driven by the perception of the workplace. Using data from the 2008 to 2012 waves of the Health and Retirement Study (HRS), a probability-based sample of US adults 50 years of age and older and the Department of Labor's Occupational Information Network (O*NET), we examine the role of both standardized, objective (O*NET) and survey-based, subjective (as in HRS) measures of PWEs on health and Black-White health inequalities. We find that Blacks experience more stressful PWEs and have poorer health as measured by self-rated health, episodic memory function, and mean arterial pressure. Mediation analyses suggest that these objective O*NET ratings, but not the subjective perceptions, partially explain the relationship between race and health. We discuss these results within the extant literature on workplace and health and health inequalities. Furthermore, we discuss the use of standardized objective measures of the PWE to capture racial inequalities in workplace environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Health monitoring of an aeroelastic system with a freeplay nonlinearity

    Science.gov (United States)

    Trickey, Stephen T.; Seaver, Mark; Nichols, Jonathan M.

    2004-07-01

    In past work we have demonstrated a vibration based health monitoring methodology which was experimentally validated on several plate and beam systems. The method is based on processing time series data by transforming the data into a state space object, an attractor, and then identifying geometric features of the attractor. The system's structural health or level of damage is monitored by tracking the evolution of the geometric feature as the system evolves. Our previous research indicated that low dimensional inputs work best for characterizing the features. Also discovered was the fact that the features could be characterized with minimal performance loss by using a band limited noise input. The current work assess whether an ambient excitation can serve as the input to the structure and still successfully identify and track geometric features of the system in much the same way that the band limited noise was able to characterize the system. The system in question is a 2D typical section airfoil model with a control surface. A reduced order aerodynamic approach developed by Peters is used to model the fluid loading on the structure. Damage is induced on the structure by introducing increasing amounts of freeplay in the restoring torque of the control surface. The novel and most important component of the model from the stand point of implementing an on-line structural health monitoring system is the use of an ambient source of excitation namely atmospheric gust loading.

  5. Unmanned aerial vehicle (UAV) application to the structural health assessment of large civil engineering structures

    Science.gov (United States)

    Castiglioni, Carlo A.; Rabuffetti, Angelo S.; Chiarelli, Gian P.; Brambilla, Giovanni; Georgi, Julia

    2017-09-01

    This paper summarizes the experience gained in the structural assessment of an existing Thermal Power Plant (TPP) located near Pristina, focusing on the cooling tower and the flue gas stack, which are the main structures of the TPP. Scope of the work was the evaluation of the actual conditions of the structures and to identify the eventual repair measures in order to guarantee a safe and reliable operation of the TPP in view of the extension of its operational lifetime for the next 30 years. With this aim, a sequence of different activities was performed, like: a topographic survey to compare the actual geometrical configuration with the design one, an investigation of the material properties, an in depth visual inspection in order to detect any visible existing damage. Due to the very high elevations of the constructions and to the lack of appropriate structures aimed to their inspections and maintenance, this activity could not be performed without using Unmanned Aerial Vehicle (UAV). This resulted the safest, most economical and less time-consuming solution identified to map the surface damage in the reinforced concrete elements of these large structures including zones that could not be inspected because out of reach by other means.

  6. A taxonomy of state public health preparedness units: an empirical examination of organizational structure.

    Science.gov (United States)

    Menachemi, Nir; Yeager, Valerie A; Duncan, W Jack; Katholi, Charles R; Ginter, Peter M

    2012-01-01

    State public health preparedness units (SPHPUs) were developed in response to federal funding to improve response to disasters: a responsibility that had not traditionally been within the purview of public health. The SPHPUs were created within the existing public health organizational structure, and their placement may have implications for how the unit functions, how communication takes place, and ultimately how well the key responsibilities are performed. This study empirically identifies a taxonomy of similarly structured SPHPUs and examines whether this structure is associated with state geographic, demographic, and threat-vulnerability characteristics. Data representing each SPHPU were extracted from publically available sources, including organizational charts and emergency preparedness plans for 2009. A cross-sectional segmentation analysis was conducted of variables representing structural attributes. Fifty state public health departments. Variables representing "span of control" and "hierarchal levels" were extracted from organizational charts. Structural "complexity" and "centralization" were extracted from state emergency preparedness documents and other secondary sources. On average, 6.6 people report to the same manager as the SPHPU director; 2.1 levels separate the SPHPU director from the state health officer; and a mean of 13.5 agencies collaborate with SPHPU during a disaster. Despite considerable variability in how SPHPUs had been structured, results of the cluster and principal component analysis identified 7 similarly structured groups. Neither the taxonomic groups nor the individual variables representing structure were found to be associated with state characteristics, including threat vulnerabilities. Our finding supports the hypothesis that SPHPUs are seemingly inadvertently (eg, not strategically) organized. This taxonomy provides the basis for which future research can examine how SPHPU structure relates to performance measures and

  7. Autonomous structural health monitoring technique for interplanetary drilling applications using laser Doppler velocimeters

    Science.gov (United States)

    Statham, Shannon M.

    The research work presented in this thesis is devoted to the formulation and field testing of a dynamics-based structural health monitoring system for an interplanetary subsurface exploration drill system. Structural health monitoring is the process of detecting damage or other types of defects in structural and mechanical systems that have the potential to adversely affect the current or future performance of these systems. Interplanetary exploration missions, specifically to Mars, involve operations to search for water and other signs of extant or past life. Such missions require advanced robotic systems that are more susceptible to structural and mechanical failures, which motivates a need for structural health monitoring techniques relevant to interplanetary exploration systems. Strict design requirements for interplanetary exploration missions create unique research problems and challenges compared with structural health monitoring procedures and techniques developed to date. These challenges include implementing sensors and devices that will not interfere with the drilling operation, producing "real-time" diagnostics of the drilling condition, and developing an automation procedure for complete autonomous operations. The first research area involves modal analysis experiments to understand the dynamic characteristics of interplanetary drill structural systems in operation. These experiments also validate the use of Laser Doppler Velocimeter sensors in real-time structural health monitoring and prove the drill motor system adequately excites the drill for dynamic measurements and modal analysis while the drill is in operation. The second research area involves the development of modal analysis procedures for rotating structures using a Chebyshev signal filter to remove harmonic component and other noise from the rotating drill signal. This filter is necessary to accurately analyze the condition of the rotating drill auger tube while in operation. The third

  8. A cost effective wireless structural health monitoring network for buildings in earthquake zones

    Science.gov (United States)

    Pentaris, F. P.; Stonham, J.; Makris, J. P.

    2014-10-01

    The design, programming and implementation of a cost effective wireless structural health monitoring system (wSHMs) is presented, able to monitor the seismic and/or man-made acceleration in buildings. This system actually operates as a sensor network exploiting internet connections that commonly exist, aiming to monitor the structural health of the buildings being installed. Key-feature of wSHMs is that it can be implemented in Wide Area Network mode to cover many remote structures and buildings, on metropolitan scale. Acceleration data is able to send, in real time, from dozens of buildings of a broad metropolitan area, to a central database, where they are analyzed in order to depict possible structural damages or nonlinear characteristics and alert for non-appropriateness of specific structures.

  9. The structure of mushroom polysaccharides and their beneficial role in health.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping

    2015-10-01

    Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.

  10. Impact of oral health on physical and psychosocial dimensions: an analysis using structural equation modeling

    Directory of Open Access Journals (Sweden)

    Marise Fagundes Silveira

    2014-06-01

    Full Text Available This study aimed to estimate the prevalence of impact of oral health conditions on physical and psychosocial dimensions among adolescents and to identify factors associated with severity of impact. The impact of oral health status was assessed by the instrument Oral Health Impact Profile (OHIP-14. The covariates were: socioeconomic status, habits and health care, use of dental services, and normative conditions of oral health. Structural equation modeling was performed, and 15.6% of adolescents reported impact in at least one dimension of the OHIP-14. The dimensions that showed the highest prevalence of impact were psychological distress (11.8% and physical pain (6.6%. The number of teeth needing dental treatment, number of filled teeth, and CPI significantly affected severity of impact. In this adolescent population, unfavorable socioeconomic conditions were associated with reduced use of dental services, associated in turn with precarious oral health conditions and increased severity of impact.

  11. Development of a model based Structural-Health-Monitoring-Systems for condition monitoring of rotor blades; Entwicklung eines modellgestuetzten Structural-Health-Monitoring-Systems zur Zustandsueberwachung von Rotorblaettern

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, C.; Friedmann, H.; Henkel, F.O. [Woelfel Beratende Ingenieure GmbH und Co.KG, Hoechberg (Germany); Frankenstein, B.; Schubert, L. [Fraunhofer-Institut fuer Zerstoerungsfreie Pruefverfahren, Dresden (Germany)

    2010-07-01

    The authors of the contribution under consideration report on a development of a Structural-Health-Monitoring-System which is to supervise the condition of the rotor blades of wind power plants and to detect in time structural changes before total failures. It is based on a combination of measuring techniques from the areas of the led rollers in the ultrasonic range and low-frequency modal analysis. The combination of both techniques was already promisingly used with past investigations of rotor blades. By means of modal analysis, statements to the total behaviour of the structure of rotor blades are possible. Endangered and strongly stressed areas additionally are supervised by led rollers within the ultrasonic range. The authors also report on the conception and execution of a fatigue test at a material rotor blade with a length by 39.1 m.

  12. Developing Governance Structures in Health Care System Consolidation: A Framework for Nurse Leaders.

    Science.gov (United States)

    Swartz, Colleen H; Bentley, Sarah

    2016-01-01

    Given the acceleration and increasing complexity of integrative care models across health systems, the question how governance and management structure(s) should be operationalized and evolved to achieve peak system performance is paramount. In a recent evaluation of partnerships with the University of Kentucky HealthCare (UK HealthCare), the conceptualization of the integration management model was explored. It was recognized that nursing leadership, governance structure, and relationships are vital for successful movement and migration of appropriate care models. In this case, the evolving governance models and the forecasted impact on models of care delivery were carefully considered. This included the potential impact on nursing practice. As the model was developed, a conceptual framework was utilized to examine potential variant relationship arrangements and to provide organization to key constructs. Utilization of a blueprint to optimize decision making and provide a replicable approach was essential to management of the integration philosophy.

  13. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  14. Factor structure and internal reliability of an exercise health belief model scale in a Mexican population.

    Science.gov (United States)

    Villar, Oscar Armando Esparza-Del; Montañez-Alvarado, Priscila; Gutiérrez-Vega, Marisela; Carrillo-Saucedo, Irene Concepción; Gurrola-Peña, Gloria Margarita; Ruvalcaba-Romero, Norma Alicia; García-Sánchez, María Dolores; Ochoa-Alcaraz, Sergio Gabriel

    2017-03-01

    Mexico is one of the countries with the highest rates of overweight and obesity around the world, with 68.8% of men and 73% of women reporting both. This is a public health problem since there are several health related consequences of not exercising, like having cardiovascular diseases or some types of cancers. All of these problems can be prevented by promoting exercise, so it is important to evaluate models of health behaviors to achieve this goal. Among several models the Health Belief Model is one of the most studied models to promote health related behaviors. This study validates the first exercise scale based on the Health Belief Model (HBM) in Mexicans with the objective of studying and analyzing this model in Mexico. Items for the scale called the Exercise Health Belief Model Scale (EHBMS) were developed by a health research team, then the items were applied to a sample of 746 participants, male and female, from five cities in Mexico. The factor structure of the items was analyzed with an exploratory factor analysis and the internal reliability with Cronbach's alpha. The exploratory factor analysis reported the expected factor structure based in the HBM. The KMO index (0.92) and the Barlett's sphericity test (p exercise based on the HBM in Mexican populations.

  15. The Structure and Effectiveness of Health Systems: Exploring the Impact of System Integration in Rural China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-08-01

    Full Text Available Introduction: Facing the challenges of aging populations, increasing chronic diseases prevalence and health system fragmentation, there have been several pilots of integrated health systems in China. But little is known about their structure, mechanism and effectiveness. The aim of this paper is to analyze health system integration and develop recommendations for achieving integration. Method: Huangzhong and Hualong counties in Qinghai province were studied as study sites, with only Huangzhong having implemented health system integration. Questionnaires, interviews, and health ­insurance records were sources of data. Social network analysis was employed to analyze integration, through structure measurement and effectiveness evaluation. Results: Health system integration in Huangzhong is higher than in Hualong, so is system ­effectiveness. The patient referral network in Hualong has more “leapfrog” referrals. The information sharing ­networks in both counties are larger than the other types of networks. The average distance in the joint ­training network of Huangzhong is less than in Hualong. Meanwhile, there are deficiencies common to both systems. Conclusion: Both county health systems have strengths and limitations regarding system integration. The use of medical consortia in Huangzhong has contributed to system effectiveness. Future research might consider alternative more context specific models of health system integration.

  16. History, Structure and Agency in Global Health Governance Comment on "Global Health Governance Challenges 2016 - Are We Ready?"

    Science.gov (United States)

    Gill, Stephen; Benatar, Solomon R

    2016-08-29

    Ilona Kickbusch's thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  17. Preparing a Health Care White Paper: Providing Structure to the Writing Process.

    Science.gov (United States)

    Rotarius, Timothy; Rotarius, Velmarie

    2016-01-01

    Health care leaders operate in a very complex and turbulent business environment. Both government regulations and market forces are very active in the industry. Thus, health care managers have many multifaceted and, sometimes, contradictory expectations placed upon them and their organizations. To ensure professional accountability, health care executives often join professional associations and strive for licenses and certifications that are intended to place the professional above the rest. One important avenue to achieve various licensing and certification accomplishments involves writing a white paper about a specific topic of interest to the industry and organization. Presented herein are structural processes that facilitate the creation and preparation of a health care white paper. Both conceptual and empirical structures of white papers are presented, with the similarities and the differences between conceptual and empirical papers highlighted.

  18. Corruption and population health outcomes: an analysis of data from 133 countries using structural equation modeling.

    Science.gov (United States)

    Factor, Roni; Kang, Minah

    2015-09-01

    The current study aims to develop a theoretical framework for understanding the antecedents of corruption and the effects of corruption on various health indicators. Using structural equation models, we analyzed a multinational dataset of 133 countries that included three main groups of variables--antecedents of corruption, corruption measures, and health indicators. Controlling for various factors, our results suggest that corruption rises as GDP per capita falls and as the regime becomes more autocratic. Higher corruption is associated with lower levels of health expenditure as a percentage of GDP per capita, and with poorer health outcomes. Countries with higher GDP per capita and better education for women have better health outcomes regardless of health expenditures and regime type. Our results suggest that there is no direct relationship between health expenditures and health outcomes after controlling for the other factors in the model. Our study enhances our understanding of the conceptual and theoretical links between corruption and health outcomes in a population, including factors that may mediate how corruption can affect health outcomes.

  19. Structural Vulnerability and Health: Latino Migrant Laborers in the United States

    Science.gov (United States)

    Quesada, James; Hart, Laurie K.; Bourgois, Philippe

    2011-01-01

    Latino immigrants in the United States constitute a paradigmatic case of a population group subject to structural violence. Their subordinated location in the global economy and their culturally depreciated status in the United States are exacerbated by legal persecution. Medical Anthropology Volume 30, issues 4 and 5, include a series of ethnographic analyses of the processes that render undocumented Latino immigrants structurally vulnerable to ill-health. We hope to extend the social science concept of ‘structural vulnerability’ to make it a useful tool for health care. Defined as a positionality that imposes physical/emotional suffering on specific population groups and individuals in patterned ways, structural vulnerability is a product of two complementary forces: (1) class-based economic exploitation and cultural, gender/sexual, and racialized discrimination; and (2) processes of symbolic violence and subjectivity formation that have increasingly legitimized punitive neoliberal discourses of individual unworthiness. PMID:21777121

  20. Development and Application of a Structural Health Monitoring System Based on Wireless Smart Aggregates.

    Science.gov (United States)

    Yan, Shi; Ma, Haoyan; Li, Peng; Song, Gangbing; Wu, Jianxin

    2017-07-17

    Structural health monitoring (SHM) systems can improve the safety and reliability of structures, reduce maintenance costs, and extend service life. Research on concrete SHMs using piezoelectric-based smart aggregates have reached great achievements. However, the newly developed techniques have not been widely applied in practical engineering, largely due to the wiring problems associated with large-scale structural health monitoring. The cumbersome wiring requires much material and labor work, and more importantly, the associated maintenance work is also very heavy. Targeting a practical large scale concrete crack detection (CCD) application, a smart aggregates-based wireless sensor network system is proposed for the CCD application. The developed CCD system uses Zigbee 802.15.4 protocols, and is able to perform dynamic stress monitoring, structural impact capturing, and internal crack detection. The system has been experimentally validated, and the experimental results demonstrated the effectiveness of the proposed system. This work provides important support for practical CCD applications using wireless smart aggregates.

  1. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  2. Structural health monitoring (vibration) as a tool for identifying structural alterations of the lumbar spine: a twin control study.

    Science.gov (United States)

    Kawchuk, Gregory N; Hartvigsen, Jan; Edgecombe, Tiffany; Prasad, Narasimha; van Dieen, Jaap H

    2016-03-11

    Structural health monitoring (SHM) is an engineering technique used to identify mechanical abnormalities not readily apparent through other means. Recently, SHM has been adapted for use in biological systems, but its invasive nature limits its clinical application. As such, the purpose of this project was to determine if a non-invasive form of SHM could identify structural alterations in the spines of living human subjects. Lumbar spines of 10 twin pairs were visualized by magnetic resonance imaging then assessed by a blinded radiologist to determine whether twin pairs were structurally concordant or discordant. Vibration was then applied to each subject's spine and the resulting response recorded from sensors overlying lumbar spinous processes. The peak frequency, area under the curve and the root mean square were computed from the frequency response function of each sensor. Statistical analysis demonstrated that in twins whose structural appearance was discordant, peak frequency was significantly different between twin pairs while in concordant twins, no outcomes were significantly different. From these results, we conclude that structural changes within the spine can alter its vibration response. As such, further investigation of SHM to identify spinal abnormalities in larger human populations is warranted.

  3. Health belief structural equation model predicting sleep behavior of employed college students.

    Science.gov (United States)

    Knowlden, Adam P; Sharma, Manoj

    2014-01-01

    Adequate sleep comprising 7 to 8 hours per day is vital for health and effective functioning for all adults. The purpose of this study was to specify a health belief model to measure and predict the sleep behavior of employed college students. A 52-item instrument was developed with acceptable validity and reliability. A cross-sectional, convenience sample of 188 students was recruited for this study. Structural equation modeling was used to build models. The health belief model explained 34% of the variance in sleep behavior, with perceived severity, perceived barriers, cues to action, and self-efficacy identified as significant predictors.

  4. Damage detection algorithm-embedded smart sensor node system for bridge structural health monitoring

    Science.gov (United States)

    Park, Jae-Hyung; Ho, Duc-Duy; Kim, Jeong-Tae; Ryu, Yeon-Sun; Yun, Chung-Bang

    2009-03-01

    In this study, a system using autonomous smart sensor nodes is developed for bridge structural health monitoring (SHM). In order to achieve the research goal, the following tasks are implemented. Firstly, acceleration-based and impedancebased smart sensor nodes are designed. Secondly, an autonomous operation system using smart sensor nodes is designed for hybrid health monitoring using global and local health monitoring methods. Finally, the feasibility and applicability of the proposed system are experimentally evaluated in a lab-scaled prestressed concrete (PSC) girder for which a set of damage scenarios are experimentally monitored by wireless sensor nodes and embedded software.

  5. Violence, stigma and mental health among female sex workers in China: A structural equation modeling.

    Science.gov (United States)

    Zhang, Liying; Li, Xiaoming; Wang, Bo; Shen, Zhiyong; Zhou, Yuejiao; Xu, Jinping; Tang, Zhenzhu; Stanton, Bonita

    2017-07-01

    Intimate partner violence is prevalent among female sex workers (FSWs) in China, and it is significantly associated with mental health problems among FSWs. However, limited studies have explored the mechanisms/process by which violence affects mental health. The purpose of this study was to explore the relationships among partner violence, internalized stigma, and mental health problems among FSWs. Data were collected using a self-administered cross-sectional survey administered to 1,022 FSWs in the Guangxi Zhuang Autonomous Region (Guangxi), China during 2008-2009. We used structural equation modeling to test the hypothesized relationships. Results indicated that violence perpetrated by either stable sexual partners or clients was directly and positively associated with mental health problems. Violence also had an indirect relation to mental health problems through stigma. Results highlight the need for interventions on counseling and care for FSWs who have experienced violence and for interventions to increase FSWs' coping skills and empowerment strategies.

  6. A structuration framework for bridging the macro-micro divide in health-care governance.

    Science.gov (United States)

    Bodolica, Virginia; Spraggon, Martin; Tofan, Gabriela

    2016-08-01

    Extant studies demonstrate that macro (hierarchical) and micro (relational) governance initiatives in health-care settings continue to be developed in isolation rather than interactively. Government-driven hierarchical governance endeavours that guide health-care reforms and medical practice are disconnected from micro-level physician-patient interactions being unable to account for patient preferences in the macro-level policymaking. We undertake a review of the recent literature to couch our argument for a unified governance framework for bridging the macro-micro divide in medical contexts. Adopting an interdisciplinary approach to health-care delivery, we maintain that the (strong) structuration theory provides a fruitful opportunity for narrowing the gap between hierarchical and relational governance. Emphasizing the coexistence of institutional structures and human agency, the (strong) structuration theory elucidates how macro and micro governance devices shape each other's structure via mutually reinforcing cycles of influence. Micro-level encounters between patients and physicians give rise to social structures that constitute the constraining and enabling forces through which macro-level health-care infrastructures are altered and reproduced over time. Permitting to illustrate how patients' agency can effectively emerge from complex networks of clinical trajectories, the advanced structuration framework for macro-micro governance integration avoids the extremes of paternalism and autonomy through a balanced consideration of professional judgement and patient preferences. The macro-micro integration of governance efforts is a critical issue in both high-income states, where medical institutions attempt to deploy substantial realignment efforts, and developing nations, which are lagging behind due to leadership weaknesses and lower levels of governmental investment. A key priority for regulators is the identification of relevant systems to support this

  7. India's Proposed Universal Health Coverage Policy: Evidence for Age Structure Transition Effect and Fiscal Sustainability.

    Science.gov (United States)

    Narayana, Muttur Ranganathan

    2016-12-01

    India's High Level Expert Group on Universal Health Coverage in 2011 recommended a universal, public-funded and national health coverage policy. As a plausible forward-looking macroeconomic reform in the health sector, this policy proposal on universal health coverage (UHC) needs to be evaluated for age structure transition effect and fiscal sustainability to strengthen its current design and future implementation. Macroeconomic analyses of the long-term implications of age structure transition and fiscal sustainability on India's proposed UHC policy. A new measure of age-specific UHC is developed by combining the age profile of public and private health consumption expenditure by using the National Transfer Accounts methodology. Different projections of age-specific public health expenditure are calculated over the period 2005-2100 to account for the age structure transition effect. The projections include changes in: (1) levels of the expenditure as gross domestic product grows, (2) levels and shape of the expenditure as gross domestic product grows and expenditure converges to that of developed countries (or convergence scenario) based on the Lee-Carter model of forecasting mortality rates, and (3) levels of the expenditure as India moves toward a UHC policy. Fiscal sustainability under each health expenditure projection is determined by using the measures of generational imbalance and sustainability gap in the Generational Accounting methodology. Public health expenditure is marked by age specificities and the elderly population is costlier to support for their healthcare needs in the future. Given the discount and productivity growth rates, the proposed UHC is not fiscally sustainable under India's current fiscal policies except for the convergence scenario. However, if the income elasticity of public expenditure on social welfare and health expenditure is less than one, fiscal sustainability of the UHC policy is attainable in all scenarios of projected public

  8. A close inspection and vibration sensing aerial robot for steel structures with an EPM-based landing device

    Science.gov (United States)

    Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako

    2017-04-01

    This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.

  9. Integrating collaborative place-based health promotion coalitions into existing health system structures: the experience from one Australian health coalition

    Directory of Open Access Journals (Sweden)

    Carolyn Ehrlich

    2015-12-01

    Full Text Available Background: Increasingly, place-based collaborative partnerships are being implemented to develop the capacity of communities to build supportive environments and improve population health outcomes. These place-based initiatives require cooperative and coordinated responses that can exist within social systems and integrate multiple responses. However, the dynamic interplay between co-existing systems and new ways of working makes implementation outcomes unpredictable.Method: We interviewed eight programme leaders, three programme teams and two advisory groups to explore the capacity of one social system to implement and normalise a collaborative integrated place-based health promotion initiative in the Logan and Beaudesert area in South East Queensland, Australia. The construct of capacity as defined in the General Theory of Implementation was used to develop a coding framework. Data were then placed into conceptually coherent groupings according to this framework until all data could be accounted for.Results: Four themes defined capacity for implementation of a collaborative and integrated response; namely, the ability to (1 traverse a nested and contradictory social landscape, (2 be a responsive and ‘good’ community partner, (3 establish the scaffolding required to work ‘in place’; and (4 build a shared meaning and engender trust. Overall, we found that the capacity of the system to embed a place-based health promotion initiative was severely limited by the absence of these features.Conclusion: Conflict, disruption and constant change within the context into which the place-based collaborative partnership was being implemented meant that existing relationships were constantly undermined and the capacity of the partners to develop trust-based coherent partnerships was constantly diminished. To enhance the likelihood that collaborative and integrated place-based health promotion initiatives will become established ways of working

  10. Development of Structural Health Monitoring System for pipes in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H. S.; Choi, Y. C.; Shin, S. H.; Youn, D. B.; Park, J. H.

    2010-01-15

    Structural health monitoring (SHM) has becoming an important issue in the maintenance of various structures such as large steel plates, vessels, and pipes in nuclear power plants. There are important factors to be considered in developing an SHM system. With consideration of these factors, we have developed a computerized multi-channel ultrasonic system that can handle array transducers and generate a high-power pulse for online SHM of the plates and pipes. The proposed system is compact but has all the necessary functions for SHM of important structure such as pipes and plates in a NPP

  11. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    Science.gov (United States)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the

  12. Organization and Finance of China's Health Sector: Historical Antecedents for Macroeconomic Structural Adjustment.

    Science.gov (United States)

    Li, Hui; Hilsenrath, Peter

    2016-01-01

    China has exploded onto the world economy over the past few decades and is undergoing rapid transformation toward relatively more services. The health sector is an important part of this transition. This article provides a historical account of the development of health care in China since 1949. It also focuses on health insurance and macroeconomic structural adjustment to less saving and more consumption. In particular, the question of how health insurance impacts precautionary savings is considered. Multivariate analysis using data from 1990 to 2012 is employed. The household savings rate is the dependent variable in 3 models segmented for rural and urban populations. Independent variables include out-of-pocket health expenditures, health insurance payouts, housing expenditure, education expenditure, and consumption as a share of gross domestic product (GDP). Out-of-pocket health expenditures were positively correlated with household savings rates. But health insurance remains weak, and increased payouts by health insurers have not been associated with lower levels of household savings so far. Housing was positively correlated, whereas education had a negative association with savings rates. This latter finding was unexpected. Perhaps education is perceived as investment and a substitute for savings. China's shift toward a more service-oriented economy includes growing dependence on the health sector. Better health insurance is an important part of this evolution. The organization and finance of health care is integrally linked with macroeconomic policy in an environment constrained by prevailing institutional convention. Problems of agency relationships, professional hegemony, and special interest politics feature prominently, as they do elsewhere. China also has a dual approach to medicine relying heavily on providers of traditional Chinese medicine. Both of these segments will take part in China's evolution, adding another layer of complexity to policy. © The

  13. The Role of Electronic Health Records in Structuring Nursing Handoff Communication and Maintaining Situation Awareness

    Science.gov (United States)

    Alghenaimi, Said

    2012-01-01

    In healthcare institutions, work must continue 24 hours a day, 7 days a week. A team of nurses is needed to provide around-the-clock patient care, and this process requires transfer of patient care responsibilities, a process known as a "handoff." The present study explored the role of electronic health records in structuring handoff…

  14. Health care needs in end-stage COPD: a structured literature review

    NARCIS (Netherlands)

    Habraken, Jolanda M.; Willems, Dick L.; de Kort, Susanne J.; Bindels, Patrick J. E.

    2007-01-01

    OBJECTIVE: To give an overview of relevant literature regarding health care needs in end-stage COPD and to identify specific areas where knowledge about needs is still lacking. METHODS: We conducted a structured literature review. We used Bradshaw's classification system. RESULTS: Seventy-seven

  15. Modal Strain Energy Based Structural Health Monitoring on Rib Stiffened Composite Panels

    NARCIS (Netherlands)

    Hwang, Joong Sun; Loendersloot, Richard; Tinga, Tiedo

    2016-01-01

    Previously, an evaluation study has been conducted on a Structural Health Monitoring (SHM) strategy applied to a composite aileron by deriving the Modal Strain Energy Damage Indicator (MSE-DI). MSE-DI was used to localize the impact damage location. However, this study has also shown that the damage

  16. Effects of Structural Family Therapy on Child and Maternal Mental Health Symptomatology

    Science.gov (United States)

    Weaver, Addie; Greeno, Catherine G.; Marcus, Steven C.; Fusco, Rachel A.; Zimmerman, Tina; Anderson, Carol

    2013-01-01

    Objective: This pilot study examined the effect of structural family therapy (SFT) on children's impairment and depressive symptomatology and mothers' depressive symptomatology and anxiety for 31 families served by a community mental health clinic. Method: A one group predesign/postdesign, with a baseline and two follow-up time points, was used.…

  17. Structural Health Monitoring of Composite Materials Using Distributed Fiber Bragg Sensors

    Science.gov (United States)

    Grant, Joseph; Kual, Raj; Taylor, Scott; Jackson, Kurt V.; Myers, George; Wang, Y.; Sharma, A.; Burdine, Robert (Technical Monitor)

    2002-01-01

    Health monitoring of polymer matrix composite materials using fiber optic Bragg grating (FBG) sensors is accomplished using a tunable IR (infrared) laser via transmission mode. Results are presented from experiments of composite structures with FBG's embedded at various orientations, and surface measurements of various cryogenic composite vessels.

  18. A new approach for structural health monitoring by applying anomaly detection on strain sensor data

    NARCIS (Netherlands)

    Trichias, K.; Pijpers, R.J.M.; Meeuwissen, H.B.

    2014-01-01

    Structural Health Monitoring (SHM) systems help to monitor critical infrastructures (bridges, tunnels, etc.) remotely and provide up-to-date information about their physical condition. In addition, it helps to predict the structure’s life and required maintenance in a cost-efficient way. Typically,

  19. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  20. An Integrated Health Monitoring Method for Structural Fatigue Life Evaluation Using Limited Sensor Data.

    Science.gov (United States)

    He, Jingjing; Zhou, Yibin; Guan, Xuefei; Zhang, Wei; Wang, Yanrong; Zhang, Weifang

    2016-11-04

    A general framework for structural fatigue life evaluation under fatigue cyclic loading using limited sensor data is proposed in this paper. First, limited sensor data are measured from various sensors which are preset on the complex structure. Then the strain data at remote spots are used to obtain the strain responses at critical spots by the strain/stress reconstruction method based on empirical mode decomposition (REMD method). All the computations in this paper are directly performed in the time domain. After the local stress responses at critical spots are determined, fatigue life evaluation can be performed for structural health management and risk assessment. Fatigue life evaluation using the reconstructed stresses from remote strain gauge measurement data is also demonstrated with detailed error analysis. Following this, the proposed methodology is demonstrated using a three-dimensional frame structure and a simplified airfoil structure. Finally, several conclusions and future work are drawn based on the proposed study.

  1. Structural Health Monitoring Using High-Density Fiber Optic Strain Sensor and Inverse Finite Element Methods

    Science.gov (United States)

    Vazquez, Sixto L.; Tessler, Alexander; Quach, Cuong C.; Cooper, Eric G.; Parks, Jeffrey; Spangler, Jan L.

    2005-01-01

    In an effort to mitigate accidents due to system and component failure, NASA s Aviation Safety has partnered with industry, academia, and other governmental organizations to develop real-time, on-board monitoring capabilities and system performance models for early detection of airframe structure degradation. NASA Langley is investigating a structural health monitoring capability that uses a distributed fiber optic strain system and an inverse finite element method for measuring and modeling structural deformations. This report describes the constituent systems that enable this structural monitoring function and discusses results from laboratory tests using the fiber strain sensor system and the inverse finite element method to demonstrate structural deformation estimation on an instrumented test article

  2. An Integrated Health Monitoring Method for Structural Fatigue Life Evaluation Using Limited Sensor Data

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2016-11-01

    Full Text Available A general framework for structural fatigue life evaluation under fatigue cyclic loading using limited sensor data is proposed in this paper. First, limited sensor data are measured from various sensors which are preset on the complex structure. Then the strain data at remote spots are used to obtain the strain responses at critical spots by the strain/stress reconstruction method based on empirical mode decomposition (REMD method. All the computations in this paper are directly performed in the time domain. After the local stress responses at critical spots are determined, fatigue life evaluation can be performed for structural health management and risk assessment. Fatigue life evaluation using the reconstructed stresses from remote strain gauge measurement data is also demonstrated with detailed error analysis. Following this, the proposed methodology is demonstrated using a three-dimensional frame structure and a simplified airfoil structure. Finally, several conclusions and future work are drawn based on the proposed study.

  3. The development of structural health monitoring (SHM) procedures for the structural integrity and maintenance repair of offshore ageing pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Abd Murad, Mahadi [Dept. of Applied Mechanics, School of Engineering, Cranfield Univ. (United Kingdom)

    2009-07-01

    In the oil and gas industry, pipelines are essential components of the energy supply chain. This infrastructure will still need to perform for many more decades, as the world demand for oil and gas continues to increase. Oil and gas pipeline operations are considered one of the highest risk activities in the industry. Any failure of a pipeline system will cause a significant impact to the environment and economy. However, many oil and gas pipelines are nearing the end of their design life but have many more years of production left. Despite the best designed and well maintained pipelines, the unavoidable defects such as metal loss due to corrosion, erosion, cracks and others mean structural integrity can be compromised. Operators need to be aware of the effects of these defects on their pipelines, and more importantly to be able to assess and monitor structural integrity. Pipeline monitoring is frequently restricted to visual inspection and mass or flow measurements leading to very limited capabilities to detect and locate pipeline failures such as leakages. As a result, pipeline failures are usually noticed only when the output flow is affected or when they have severe effects on the surrounding environment leading to potentially costly situations. The integrity assessment of oil and gas pipelines is well developed. Formerly, inspection and maintenance have been carried out at predefined intervals in order to ensure structural integrity. Today with the increasing availability of advanced sensor methods, pipeline operators have available very powerful and cost-effective tools. Structural Health Monitoring (SHM) can be used for rapid condition screening and aims to provide, in near real time, reliable information regarding the integrity of the structure. This paper reviews the development of SHM procedures in particular, introducing optical fiber sensors (FBG) and electrical sensors (electrical gauges) embedded between composite wrapping and parent material (i

  4. Characterization of Aircraft Structural Damage Using Guided Wave Based Finite Element Analysis for In-Flight Structural Health Management

    Science.gov (United States)

    Seshadri, Banavara R.; Krishnamurthy, Thiagarajan; Ross, Richard W.

    2016-01-01

    The development of multidisciplinary Integrated Vehicle Health Management (IVHM) tools will enable accurate detection, diagnosis and prognosis of damage under normal and adverse conditions during flight. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and structural damage conditions. A major concern is the growth of undetected damage/cracks due to fatigue and low velocity foreign object impact that can reach a critical size during flight, resulting in loss of control of the aircraft. To avoid unstable catastrophic propagation of damage during a flight, load levels must be maintained that are below the load-carrying capacity for damaged aircraft structures. Hence, a capability is needed for accurate real-time predictions of safe load carrying capacity for aircraft structures with complex damage configurations. In the present work, a procedure is developed that uses guided wave responses to interrogate damage. As the guided wave interacts with damage, the signal attenuates in some directions and reflects in others. This results in a difference in signal magnitude as well as phase shifts between signal responses for damaged and undamaged structures. Accurate estimation of damage size and location is made by evaluating the cumulative signal responses at various pre-selected sensor locations using a genetic algorithm (GA) based optimization procedure. The damage size and location is obtained by minimizing the difference between the reference responses and the responses obtained by wave propagation finite element analysis of different representative cracks, geometries and sizes.

  5. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    Science.gov (United States)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  6. Imbalance between Goals and Organizational Structure in Primary Health Care in Iran- a Systematic Review.

    Science.gov (United States)

    Zanganeh Baygi, Mehdi; Seyedin, Hesam

    2013-07-01

    In recent years, the main focus of health sector reforms in Iran is the family physician and referral system plan. Fundamental changes in the goals and strategies, has increased the necessity of the need to reform the organizational structure. This study tries to review and summarize all cases about the organizational structure of Iran and its challenges in primary health care system. This study was a systematic review of published and grey literature. We searched the relevant databases, bibliography of related papers, and laws, using appropriate search strategies and key words. The CASP tool was used by two experts to evaluate the quality of retrieved papers and inconsistencies were resolved by discussion. After removal of duplicate citations, a total of 52 titles were identified through database searching, among which 30 met the inclusion criteria. Considering the research quality criteria, 14 papers were recognized qualified, which were categorized into two groups of: articles and policies. The results showed ineffectiveness of the current organizational structure at different level. The majority of the papers recommend performing reforms in the system because of changes in goals and strategies. Also, some suggest an appropriate information system to be designed in the current structures. Centralization and delegation process are the main discussions for the studies. Because of fundamental changes in goals and strategies, reforms in the organizational structure of primary health system in Iran especially in peripheral levels are highly recommended.

  7. Australia's private health insurance industry: structure, competition, regulation and role in a less than 'ideal world'.

    Science.gov (United States)

    Shamsullah, Ardel

    2011-02-01

    Australia's private health insurance funds have been prominent participants in the nation's health system for 60 years. Yet there is relatively little public awareness of the distinctive origins of the health funds, the uncharacteristic organisational nature of these commercial enterprises and the peculiarly regulated nature of their industry. The conventional corporate responsibility to shareholders was, until recently, completely irrelevant, and remains marginal to the sector. However, their purported answerability to contributors, styled as 'members', was always doubtful for most health funds. After a long period of remarkable stability in the sector, despite significant shifts in health funding policy, recent years have brought notable changes, with mergers, acquisitions and exits from the industry. The research is based on the detailed study of the private health funds, covering their history, organisational character and industry structure. It argues that the funds have always been divorced from the disciplines of the competitive market and generally have operated complacently within a system of comprehensive regulation and generous subsidy. The prospect of the private health funds enjoying an expanded role under a form of 'social insurance', as suggested by the National Health and Hospitals Reform Commission, is not supported.

  8. Health Promotion Behavior of Chinese International Students in Korea Including Acculturation Factors: A Structural Equation Model.

    Science.gov (United States)

    Kim, Sun Jung; Yoo, Il Young

    2016-03-01

    The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.

  9. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    Science.gov (United States)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  10. Damage Characterization Using the Extended Finite Element Method for Structural Health Management

    Science.gov (United States)

    Krishnamurthy, Thiagarajan; Gallegos, Adam M.

    2011-01-01

    The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage/cracks due to fatigue and low velocity foreign impact that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage/cracks in critical structural components is highly important in developing efficient structural health management systems.

  11. Damage Characterization Method for Structural Health Management Using Reduced Number of Sensor Inputs

    Science.gov (United States)

    Krishnamurthy, T.; Hochhalter, Jacob D.; Gallegos, Adam M.

    2012-01-01

    The development of validated multidisciplinary Integrated Vehicle Health Management (IVHM) tools, technologies, and techniques to enable detection, diagnosis, prognosis, and mitigation in the presence of adverse conditions during flight will provide effective solutions to deal with safety related challenges facing next generation aircraft. The adverse conditions include loss of control caused by environmental factors, actuator and sensor faults or failures, and damage conditions. A major concern in these structures is the growth of undetected damage (cracks) due to fatigue and low velocity foreign impacts that can reach a critical size during flight, resulting in loss of control of the aircraft. Hence, development of efficient methodologies to determine the presence, location, and severity of damage in critical structural components is highly important in developing efficient structural health management systems.

  12. Application of eco-exergy for assessment of ecosystem health and development of structurally dynamic models

    DEFF Research Database (Denmark)

    Zhang, J.; Gürkan, Zeren; Jørgensen, S.E.

    2010-01-01

    Eco-exergy has been widely used in the assessment of ecosystem health, parameter estimations, calibrations, validations and prognoses. It offers insights into the understanding of ecosystem dynamics and disturbance-cl riven changes. Particularly, structurally dynamic models (SDMs), which...... of structurally dynamic models (SDMs). The limitations and possible future applications of the approach are also addressed. (C) 2009 Elsevier B.V. All rights reserved....... are developed using eco-exergy as the goal function, have been applied in explaining and exploring ecosystem properties and changes in community structure driven by biotic and abiotic factors. In this paper, we review the application of eco-exergy for the assessment of ecosystem health and development...

  13. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City

    Directory of Open Access Journals (Sweden)

    Adrien Oth

    2012-01-01

    Full Text Available Major threats to bridges primarily consist of the aging of the structural elements, earthquake-induced shaking and standing waves generated by windstorms. The necessity of information on the state of health of structures in real-time, allowing for timely warnings in the case of damaging events, requires structural health monitoring (SHM systems that allow the risks of these threats to be mitigated. Here we present the results of a short-duration experiment carried out with low-cost wireless instruments for monitoring the vibration characteristics and dynamic properties of a strategic civil infrastructure, the Adolphe Bridge in Luxembourg City. The Adolphe Bridge is a masonry arch construction dating from 1903 and will undergo major renovation works in the upcoming years. Our experiment shows that a network of these wireless sensing units is well suited to monitor the vibration characteristics of such a historical arch bridge and hence represents a low-cost and efficient solution for SHM.

  14. Multi-sensor sheets based on large-area electronics for advanced structural health monitoring of civil infrastructure.

    Science.gov (United States)

    2014-09-01

    Structural Health Monitoring has a great potential to provide valuable information about the actual structural : condition and can help optimize the management activities. However, few eective and robust monitoring technology exist which hinders a...

  15. FE-ANN based modeling of 3D simple reinforced concrete girders for objective structural health evaluation.

    Science.gov (United States)

    2017-06-01

    The structural deterioration of aging infrastructure systems and the costs of repairing these systems is an increasingly important issue worldwide. Structural health monitoring (SHM), most commonly visual inspection and condition rating, has proven t...

  16. QSAR modeling based on structure-information for properties of interest in human health.

    Science.gov (United States)

    Hall, L H; Hall, L M

    2005-01-01

    The development of QSAR models based on topological structure description is presented for problems in human health. These models are based on the structure-information approach to quantitative biological modeling and prediction, in contrast to the mechanism-based approach. The structure-information approach is outlined, starting with basic structure information developed from the chemical graph (connection table). Information explicit in the connection table (element identity and skeletal connections) leads to significant (implicit) structure information that is useful for establishing sound models of a wide range of properties of interest in drug design. Valence state definition leads to relationships for valence state electronegativity and atom/group molar volume. Based on these important aspects of molecules, together with skeletal branching patterns, both the electrotopological state (E-state) and molecular connectivity (chi indices) structure descriptors are developed and described. A summary of four QSAR models indicates the wide range of applicability of these structure descriptors and the predictive quality of QSAR models based on them: aqueous solubility (5535 chemically diverse compounds, 938 in external validation), percent oral absorption (%OA, 417 therapeutic drugs, 195 drugs in external validation testing), AMES mutagenicity (2963 compounds including 290 therapeutic drugs, 400 in external validation), fish toxicity (92 substituted phenols, anilines and substituted aromatics). These models are established independent of explicit three-dimensional (3-D) structure information and are directly interpretable in terms of the implicit structure information useful to the drug design process.

  17. Portuguese validation of the Short Health Anxiety Inventory: Factor structure, reliability, and factor invariance.

    Science.gov (United States)

    Morales, Alexandra; Reis, Sibília; Espada, José P; Orgilés, Mireia

    2016-09-01

    The Short Health Anxiety Inventory is a brief instrument to assess health anxiety widely used across countries; however, no validated version is available for Portuguese-speaking population. Factorial structure, reliability, and equivalency factor with the Spanish version were analyzed with Portuguese adolescents aged 14-18 years. A Portuguese adolescent cohort ( N = 629) and a comparative Spanish adolescent cohort ( N = 1502) were evaluated. The original two-factor version was the best fitting model for the Portuguese version. The reliability was excellent. Complete measurement invariance across both countries was supported. The Portuguese version of the Short Health Anxiety Inventory is a valid screening inventory to assess health anxiety in adolescents.

  18. SHARD - a SeisComP3 module for Structural Health Monitoring

    Science.gov (United States)

    Weber, B.; Becker, J.; Ellguth, E.; Henneberger, R.; Herrnkind, S.; Roessler, D.

    2016-12-01

    Monitoring building and structure response to strong earthquake ground shaking or human-induced vibrations in real-time forms the backbone of modern structural health monitoring (SHM). The continuous data transmission, processing and analysis reduces drastically the time decision makers need to plan for appropriate response to possible damages of high-priority buildings and structures. SHARD is a web browser based module using the SeisComp3 framework to monitor the structural health of buildings and other structures by calculating standard engineering seismology parameters and checking their exceedance in real-time. Thresholds can be defined, e.g. compliant with national building codes (IBC2000, DIN4149 or EC8), for PGA/PGV/PGD, response spectra and drift ratios. In case thresholds are exceeded automatic or operator driven reports are generated and send to the decision makers. SHARD also determines waveform quality in terms of data delay and variance to report sensor status. SHARD is the perfect tool for civil protection to monitor simultaneously multiple city-wide critical infrastructure as hospitals, schools, governmental buildings and structures as bridges, dams and power substations.

  19. Internet of Things (IoT Platform for Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelgawad

    2017-01-01

    Full Text Available Increase in the demand for reliable structural health information led to the development of Structural Health Monitoring (SHM. Prediction of upcoming accidents and estimation of useful life span of a structure are facilitated through SHM. While data sensing is the core of any SHM, tracking the data anytime anywhere is a prevailing challenge. With the advancement in information technology, the concept of Internet of Things (IoT has made it possible to integrate SHM with Internet to track data anytime anywhere. In this paper, a SHM platform embedded with IoT is proposed to detect the size and location of damage in structures. The proposed platform consists of a Wi-Fi module, a Raspberry Pi, an Analog to Digital Converter (ADC, a Digital to Analog Converter (DAC, a buffer, and piezoelectric (PZT sensors. The piezoelectric sensors are mounted as a pair in the structure. Data collected from the piezoelectric sensors will be used to detect the size and location of damage using a proposed mathematical model. Implemented on a Raspberry Pi, the proposed mathematical model will estimate the size and location of structural damage, if any, and upload the data to Internet. This data will be stored and can be checked remotely from any mobile device. The system has been validated using a real test bed in the lab.

  20. Determination of orthotropic mechanical properties of 3D printed parts for structural health monitoring

    Science.gov (United States)

    Poissenot-Arrigoni, Bastien; Scheyer, Austin; Anton, Steven R.

    2017-04-01

    The evolution of additive manufacturing has allowed engineers to use 3D printing for many purposes. As a natural consequence of the 3D printing process, the printed object is anisotropic. As part of an ongoing project to embed piezoelectric devices in 3D printed structures for structural health monitoring (SHM), this study aims to find the mechanical properties of the 3D printed material and the influence of different external factors on those properties. The orthotropic mechanical properties of a 3D printed structure are dependent on the printing parameters used to create the structure. In order to develop an orthotropic material model, mechanical properties will be found experimentally from additively manufactured samples created from polylactic acid (PLA) using a consumer-level fused deposition modeling (FDM) printer; the Lulzbot TAZ 6. Nine mechanical constants including three Young's moduli, three Poisson's ratios, and three shear moduli are needed to fully describe the 3D elastic behavior of the material. Printed specimens with different raster orientations and print orientations allow calculation of the different material constants. In this work, seven of the nine mechanical constants were found. Two shear moduli were unable to be measured due to difficulties in printing two of the sample orientations. These mechanical properties are needed in order to develop orthotropic material models of systems employing 3D printed PLA. The results from this paper will be used to create a model of a piezoelectric transducer embedded in a 3D printed structure for structural health monitoring.

  1. Factor structure and internal reliability of an exercise health belief model scale in a Mexican population

    Directory of Open Access Journals (Sweden)

    Oscar Armando Esparza-Del Villar

    2017-03-01

    Full Text Available Abstract Background Mexico is one of the countries with the highest rates of overweight and obesity around the world, with 68.8% of men and 73% of women reporting both. This is a public health problem since there are several health related consequences of not exercising, like having cardiovascular diseases or some types of cancers. All of these problems can be prevented by promoting exercise, so it is important to evaluate models of health behaviors to achieve this goal. Among several models the Health Belief Model is one of the most studied models to promote health related behaviors. This study validates the first exercise scale based on the Health Belief Model (HBM in Mexicans with the objective of studying and analyzing this model in Mexico. Methods Items for the scale called the Exercise Health Belief Model Scale (EHBMS were developed by a health research team, then the items were applied to a sample of 746 participants, male and female, from five cities in Mexico. The factor structure of the items was analyzed with an exploratory factor analysis and the internal reliability with Cronbach’s alpha. Results The exploratory factor analysis reported the expected factor structure based in the HBM. The KMO index (0.92 and the Barlett’s sphericity test (p < 0.01 indicated an adequate and normally distributed sample. Items had adequate factor loadings, ranging from 0.31 to 0.92, and the internal consistencies of the factors were also acceptable, with alpha values ranging from 0.67 to 0.91. Conclusions The EHBMS is a validated scale that can be used to measure exercise based on the HBM in Mexican populations.

  2. Pediatric health-related quality of life: a structural equation modeling approach.

    Directory of Open Access Journals (Sweden)

    Ester Villalonga-Olives

    Full Text Available OBJECTIVES: One of the most referenced theoretical frameworks to measure Health Related Quality of Life (HRQoL is the Wilson and Cleary framework. With some adaptions this framework has been validated in the adult population, but has not been tested in pediatric populations. Our goal was to empirically investigate it in children. METHODS: The contributory factors to Health Related Quality of Life that we included were symptom status (presence of chronic disease or hospitalizations, functional status (developmental status, developmental aspects of the individual (social-emotional behavior, and characteristics of the social environment (socioeconomic status and area of education. Structural equation modeling was used to assess the measurement structure of the model in 214 German children (3-5 years old participating in a follow-up study that investigates pediatric health outcomes. RESULTS: Model fit was χ2 = 5.5; df = 6; p = 0.48; SRMR  = 0.01. The variance explained of Health Related Quality of Life was 15%. Health Related Quality of Life was affected by the area education (i.e. where kindergartens were located and development status. Developmental status was affected by the area of education, socioeconomic status and individual behavior. Symptoms did not affect the model. CONCLUSIONS: The goodness of fit and the overall variance explained were good. However, the results between children' and adults' tests differed and denote a conceptual gap between adult and children measures. Indeed, there is a lot of variety in pediatric Health Related Quality of Life measures, which represents a lack of a common definition of pediatric Health Related Quality of Life. We recommend that researchers invest time in the development of pediatric Health Related Quality of Life theory and theory based evaluations.

  3. A multilevel cross-lagged structural equation analysis for reciprocal relationship between social capital and health.

    Science.gov (United States)

    Yu, Ge; Sessions, John G; Fu, Yu; Wall, Martin

    2015-10-01

    We investigated the reciprocal relationship between individual social capital and perceived mental and physical health in the UK. Using data from the British Household Panel Survey from 1991 to 2008, we fitted cross-lagged structural equation models that include three indicators of social capital vis. social participation, social network, and loneliness. Given that multiple measurement points (level 1) are nested within individuals (level 2), we also applied a multilevel model to allow for residual variation in the outcomes at the occasion and individual levels. Controlling for gender, age, employment status, educational attainment, marital status, household wealth, and region, our analyses suggest that social participation predicts subsequent change in perceived mental health, and vice versa. However, whilst loneliness is found to be significantly related to perceived mental and physical health, reciprocal causality is not found for perceived mental health. Furthermore, we find evidence for reverse effects with both perceived mental and physical health appearing to be the dominant causal factor with respect to the prospective level of social network. Our findings thus shed further light on the importance of social participation and social inclusion in health promotion and aid the development of more effective public health policies in the UK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Road traffic noise, sensitivity, annoyance and self-reported health--a structural equation model exercise.

    Science.gov (United States)

    Fyhri, Aslak; Klaeboe, Ronny

    2009-01-01

    The proposed effect of road traffic noise on hypertension and ischemic heart disease finds mixed empirical support. One problem with many studies is that the directions of the causal relationships are not identified. This is often the case when cross-sectional data and multivariate regression models are utilised. The aim of the study was to explore the relationship between road traffic noise and health. More specifically the relationships between noise complaints, noise sensitivity and subjectively reported hypertension and heart problems were investigated. 1842 respondents in Oslo, Norway were interviewed about their experience of the local environment and their subjective health complaints. The interviews were conducted as part of two surveys. Individual measures of air pollution (NO(2)) and noise (Lden) were calculated. The data were analysed using Structural Equation Models. Only sensitivity to noise is related to hypertension and chest pain. No relationships between noise exposure and health complaints were identified. Rather than noise being the causal agent leading to health problems, the results suggest that the noise-health relationships in these studies may be spurious. It is conceivable that individual vulnerability is reflected both in ill health and in being sensitive to noise. The benefit of including more contextual variables in a model of noise-health relationships is supported.

  5. Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks

    Science.gov (United States)

    Chen, Bo; Zang, Chuanzhi

    2009-03-01

    This paper presents an artificial immune pattern recognition (AIPR) approach for the damage detection and classification in structures. An AIPR-based Structure Damage Classifier (AIPR-SDC) has been developed by mimicking immune recognition and learning mechanisms. The structure damage patterns are represented by feature vectors that are extracted from the structure's dynamic response measurements. The training process is designed based on the clonal selection principle in the immune system. The selective and adaptive features of the clonal selection algorithm allow the classifier to generate recognition feature vectors that are able to match the training data. In addition, the immune learning algorithm can learn and remember various data patterns by generating a set of memory cells that contains representative feature vectors for each class (pattern). The performance of the presented structure damage classifier has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) Structural Health Monitoring Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms.

  6. Design and performance of optimal detectors for guided wave structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Dib, G.; Udpa, L.

    2016-01-01

    Ultrasonic guided wave measurements in a long term structural health monitoring system are affected by measurement noise, environmental conditions, transducer aging and malfunction. This results in measurement variability which affects detection performance, especially in complex structures where baseline data comparison is required. This paper derives the optimal detector structure, within the framework of detection theory, where a guided wave signal at the sensor is represented by a single feature value that can be used for comparison with a threshold. Three different types of detectors are derived depending on the underlying structure’s complexity: (i) Simple structures where defect reflections can be identified without the need for baseline data; (ii) Simple structures that require baseline data due to overlap of defect scatter with scatter from structural features; (iii) Complex structure with dense structural features that require baseline data. The detectors are derived by modeling the effects of variabilities and uncertainties as random processes. Analytical solutions for the performance of detectors in terms of the probability of detection and false alarm are derived. A finite element model is used to generate guided wave signals and the performance results of a Monte-Carlo simulation are compared with the theoretical performance. initial results demonstrate that the problems of signal complexity and environmental variability can in fact be exploited to improve detection performance.

  7. Health Assessment of Large Two Dimensional Structures Using Limited Information: Recent Advances

    Directory of Open Access Journals (Sweden)

    Ajoy Kumar Das

    2012-01-01

    Full Text Available Some recent advances of a recently developed structural health assessment procedure proposed by the research team at the University of Arizona, commonly known as generalized iterative least-squares extended Kalman filter with unknown input (GILS-EKF-UI are presented. The procedure is a finite elements-based time-domain system-identification technique. It can assess structural health at the element level using only limited number of noise-contaminated responses. With the help of examples, it is demonstrated that the structure can be excited by multiple loadings simultaneously. The method can identify defects in various stages of degradation in single or multiple members and also relatively less severe defect. The defective element(s need not be in the substructure, but the defect detection capability increases if the defect spot is close to the substructure. Two alternatives are suggested to locate defect spot more accurately within a defective element. The paper advances several areas of GILS-EKF-UI to assess health of large structural systems.

  8. Governance structure reform and antibiotics prescription in community health centres in Shenzhen, China.

    Science.gov (United States)

    Liang, Xiaoyun; Xia, Tingsong; Zhang, Xiulan; Jin, Chenggang

    2014-06-01

    It is unclear whether changing the governance structure of community health centres (CHCs) could affect antibiotic prescribing behaviour. To explore how changes in governance structure affect antibiotic prescription for children younger than 5 years of age with acute upper respiratory tract infections (AURI) in CHCs in Shenzhen, China. This study used an interrupted time series design with a comparison series. On 1 June 2009, the Health Bureau of Shenzhen's Baoan District transferred CHCs from a hospital-affiliated model to a self-managed independent model regarding finance, personnel and employee compensation. We collected 23481 electronic medical records of children younger than 5 years of age who were treated for AURI on an outpatient basis 1 year before and 1 year after governance structure reform. We used segmented regression analysis to evaluate the effect of reform on antibiotic prescription. After the reform, the proportion of patients receiving an antibiotic injection per month and the proportion of patients receiving two or more antibiotics conditional on receiving an antibiotic per month decreased 9.17% and 7.34%, respectively (P governance structure reform can have positive effects on behaviour for antibiotic prescribing. Moreover, this short-term effect might have important implications for further community health reforms in China. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. [The structure of social representations on health and illness among members of social movements].

    Science.gov (United States)

    Shimizu, Helena Eri; Silva, Jessica Reis E; de Moura, Luciana Melo; Bermúdez, Ximena Pamela Días; Odeh, Muna Muhammad

    2015-09-01

    The scope of the study was to identify the structure of social representations regarding health and illness as expressed by representatives of social movements. The study included 66 members of social movements in the Federal District of Brazil. A questionnaire was applied to obtain the socio-economic profile of the participants and the free association technique was used in order to identify the likely peripheral and central core of the social representations analyzed by version 2000 EVOC software (Ensemble de Programmes Permettant l'Analyse des Évocations). The study results indicate that the majority of the participants have been activists for longer than six years, male, young adults, with above high school level education, monthly income over two minimum salaries, and are users of the Brazilian Unified Health System. Concerning the social representations of health structure, it was found that "quality of life" comprised the core system, while in the case of the social representations of illness, the core was found to be "suffering." The study suggests that the respondents' social representations of health and illness remain distant from a Social Determinants paradigm considered necessary for the assertion of the right to health and for achieving quality of life.

  10. Bringing home the health humanities: narrative humility, structural competency, and engaged pedagogy.

    Science.gov (United States)

    Tsevat, Rebecca K; Sinha, Anoushka A; Gutierrez, Kevin J; DasGupta, Sayantani

    2015-11-01

    As health humanities programs grow and thrive across the country, encouraging medical students to read, write, and become more reflective about their professional roles, educators must bring a sense of self-reflexivity to the discipline itself. In the health humanities, novels, patient histories, and pieces of reflective writing are often treated as architectural spaces or "homes" that one can enter and examine. Yet, narrative-based learning in health care settings does not always allow its participants to feel "at home"; when not taught with a critical attention to power and pedagogy, the health humanities can be unsettling and even dangerous. Educators can mitigate these risks by considering not only what they teach but also how they teach it.In this essay, the authors present three pedagogical pillars that educators can use to invite learners to engage more fully, develop critical awareness of medical narratives, and feel "at home" in the health humanities. These pedagogical pillars are narrative humility (an awareness of one's prejudices, expectations, and frames of listening), structural competency (attention to sources of power and privilege), and engaged pedagogy (the protection of students' security and well-being). Incorporating these concepts into pedagogical practices can create safe and productive classroom spaces for all, including those most vulnerable and at risk of being "unhomed" by conventional hierarchies and oppressive social structures. This model then can be translated through a parallel process from classroom to clinic, such that empowered, engaged, and cared-for learners become empowering, engaging, and caring clinicians.

  11. The interplay between structure and agency in shaping the mental health consequences of job loss

    Directory of Open Access Journals (Sweden)

    Anaf Julia

    2013-02-01

    Full Text Available Abstract Background Job loss is a discrete life event, with multiple adverse consequences for physical and mental health and implications for agency. Our research explores the consequences of job loss for retrenched workers’ mental health by examining the interplay between their agency and the structures shaping their job loss experiences. Methods We conducted two waves of in-depth, semi-structured interviews with a sample of 33 of the more than 1000 workers who lost their jobs at Mitsubishi Motors in South Australia during 2004 and 2005 as a result of industry restructuring. Interviews capturing the mental health consequences of job loss were recorded and transcribed verbatim. Thematic analysis was employed to determine the health consequences of the job loss and the impact of structural factors. Results Main themes that emerged from the qualitative exploration of the psychological distress of job loss included stress, changes to perceived control, loss of self-esteem, shame and loss of status, experiencing a grieving process, and financial strain. Drawing on two models of agency we identified the different ways workers employed their agency, and how their agency was enabled, but mainly constrained, when dealing with job loss consequences. Conclusions Respondents’ accounts support the literature on the moderating effects of economic resources such as redundancy packages. The results suggest the need for policies to put more focus on social, emotional and financial investment to mediate the structural constraints of job loss. Our study also suggests that human agency must be understood within an individual’s whole of life circumstances, including structural and material constraints, and the personal or interior factors that shape these circumstances.

  12. The interplay between structure and agency in shaping the mental health consequences of job loss.

    Science.gov (United States)

    Anaf, Julia; Baum, Frances; Newman, Lareen; Ziersch, Anna; Jolley, Gwyneth

    2013-02-06

    Job loss is a discrete life event, with multiple adverse consequences for physical and mental health and implications for agency. Our research explores the consequences of job loss for retrenched workers' mental health by examining the interplay between their agency and the structures shaping their job loss experiences. We conducted two waves of in-depth, semi-structured interviews with a sample of 33 of the more than 1000 workers who lost their jobs at Mitsubishi Motors in South Australia during 2004 and 2005 as a result of industry restructuring. Interviews capturing the mental health consequences of job loss were recorded and transcribed verbatim. Thematic analysis was employed to determine the health consequences of the job loss and the impact of structural factors. Main themes that emerged from the qualitative exploration of the psychological distress of job loss included stress, changes to perceived control, loss of self-esteem, shame and loss of status, experiencing a grieving process, and financial strain. Drawing on two models of agency we identified the different ways workers employed their agency, and how their agency was enabled, but mainly constrained, when dealing with job loss consequences. Respondents' accounts support the literature on the moderating effects of economic resources such as redundancy packages. The results suggest the need for policies to put more focus on social, emotional and financial investment to mediate the structural constraints of job loss. Our study also suggests that human agency must be understood within an individual's whole of life circumstances, including structural and material constraints, and the personal or interior factors that shape these circumstances.

  13. A framework for data compression and damage detection in structural health monitoring applied on a laboratory three-story structure

    Directory of Open Access Journals (Sweden)

    Manoel Afonso Pereira de Lima

    2016-09-01

    Full Text Available Structural Health Monitoring (SHM is an important technique used to preserve many types of structures in the short and long run, using sensor networks to continuously gather the desired data. However, this causes a strong impact in the data size to be stored and processed. A common solution to this is using compression algorithms, where the level of data compression should be adequate enough to allow the correct damage identification. In this work, we use the data sets from a laboratory three-story structure to evaluate the performance of common compression algorithms which, then, are combined with damage detection algorithms used in SHM. We also analyze how the use of Independent Component Analysis, a common technique to reduce noise in raw data, can assist the detection performance. The results showed that Piecewise Linear Histogram combined with Nonlinear PCA have the best trade-off between compression and detection for small error thresholds while Adaptive PCA with Principal Component Analysis perform better with higher values.

  14. Structural health monitoring tools for late and end of life management of offshore wind turbines

    DEFF Research Database (Denmark)

    McGugan, Malcolm; McKirdy, Scott

    2016-01-01

    The late and end of life stages in an offshore wind turbines (OWT) life cycle have unique features that must be considered. The initial focus on risks associated with start-up issues due to design, manufacturing or process elements gives way to a stable period of operation and maintenance...... optimisation and service condition monitoring. However, as with other structures, in time the issues of "wear and tear" and remaining life assessment become increasingly prevalent. The dynamics of operating an offshore wind farm varies considerably from existing oil & gas structures. With lower operating...... margins and the predominance of low redundancy structures, accurate structural health monitoring can play a strong role in safe management and enable increased operating time at end of life and decommissioning. Late life operations of offshore wind farms can pose significant challenges, balancing...

  15. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gyeongrak Choi

    2016-07-01

    Full Text Available We present a nanocomposite strain sensor (NCSS to develop a novel structural health monitoring (SHM sensor that can be easily installed in a composite structure. An NCSS made of a multi-walled carbon nanotubes (MWCNT/epoxy composite was installed on a target structure with facile processing. We attempted to evaluate the NCSS sensing characteristics and benchmark compared to those of a conventional foil strain gauge. The response of the NCSS was fairly good and the result was nearly identical to the strain gauge. A neuron, which is a biomimetic long continuous NCSS, was also developed, and its vibration response was investigated for structural damage detection of a composite cantilever. The vibration response for damage detection was measured by tracking the first natural frequency, which demonstrated good result that matched the finite element (FE analysis.

  16. A Spray-On Carbon Nanotube Artificial Neuron Strain Sensor for Composite Structural Health Monitoring.

    Science.gov (United States)

    Choi, Gyeongrak; Lee, Jong Won; Cha, Ju Young; Kim, Young-Ju; Choi, Yeon-Sun; Schulz, Mark J; Moon, Chang Kwon; Lim, Kwon Tack; Kim, Sung Yong; Kang, Inpil

    2016-07-26

    We present a nanocomposite strain sensor (NCSS) to develop a novel structural health monitoring (SHM) sensor that can be easily installed in a composite structure. An NCSS made of a multi-walled carbon nanotubes (MWCNT)/epoxy composite was installed on a target structure with facile processing. We attempted to evaluate the NCSS sensing characteristics and benchmark compared to those of a conventional foil strain gauge. The response of the NCSS was fairly good and the result was nearly identical to the strain gauge. A neuron, which is a biomimetic long continuous NCSS, was also developed, and its vibration response was investigated for structural damage detection of a composite cantilever. The vibration response for damage detection was measured by tracking the first natural frequency, which demonstrated good result that matched the finite element (FE) analysis.

  17. Incorporating Structural Health Monitoring in the design of slip formed concrete wind turbine towers

    DEFF Research Database (Denmark)

    Hovgaard, Mads Knude

    into the maintenance planning, as the data adds information concerning the reliability. Parallel to the evolution of this applied science, the disciplines of condition monitoring, fault detection, nondestructive evaluation and damage prognosis, have spawned the topic of Structural Health Monitoring (SHM). Formally......The design of most civil structures follows the partial-safety-factor format. The partial-safety-factors are coefficients written in codes and guidelines, i.e. decided by administrative societal organs. They ensure that all new structures have similar and sufficient safety levels. When civil...... actions. The Bayesian pre-posterior analysis enables optimization of life-cycle cost, taking the unknown outcome of various actions into account. This has been practiced for several decades in the planning of maintenance actions for offshore structures. Recently, monitoring data have begun to be included...

  18. Ultrasonics transduction in metallic and composite structures for structural health monitoring using extensional and shear horizontal piezoelectric wafer active sensors

    Science.gov (United States)

    Abdelrahman, Ayman Kamal

    Structural health monitoring (SHM) is crucial for monitoring structures performance, detecting the initiation of flaws and damages, and predicting structural life span. The dissertation emphasizes on developing analytical and numerical models for ultrasonics transduction between piezoelectric wafer active sensors (PWAS), and metallic and composite structures. The first objective of this research is studying the power and energy transduction between PWAS and structure for the aim of optimizing guided waves mode tuning and PWAS electromechanical (E/M) impedance for power-efficient SHM systems. Analytical models for power and energy were developed based on exact Lamb wave solution with application on multimodal Lamb wave situations that exist at high excitation frequencies and/or relatively thick structures. Experimental validation was conducted using Scanning Laser Doppler Vibrometer. The second objective of this work focuses on shear horizontal (SH) PWAS which are poled in thickness-shear direction (d35 mode). Analytical and finite element predictive models of the E/M impedance of free and bonded SH-PWAS were developed. Next, the wave propagation method has been considered for isotropic materials. Finally, the power and energy of SH waves were analytically modeled and a MATLAB graphical user interface (GUI) was developed for determining phase and group velocities, mode shapes, and energy of SH waves. The third objective focuses on guided wave propagation in composites. The transfer matrix method (TMM) has been used to calculate dispersion curves of guided waves in composites. TMM suffers numerical instability at high frequency-thickness values, especially in multilayered composites. A method of using stiffness matrix method was investigated to overcome instability. A procedure of using combined stiffness transfer matrix method (STMM) was presented and coded in MATLAB. This was followed by a comparative study between commonly used methods for the calculation of

  19. BASIC REQUIREMENTS TO STRUCTURE OF TYPICAL MEDICAL INFORMATIVE SYSTEMS IN HEALTH CARE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    О. P. Mintser

    2012-11-01

    Full Text Available In modern development of health care for providing proper quality of medicare there is a necessity in accumulation and analysis of data during the long period, application of electronic and consulting models. The presented work determines basic principles of construction of the informative systems for optimization of management of health care establishments, first of all, at making decisions. Basic tasks and requirements to the informative systems on regional and local levels are considered. It is proven that typical structures of the medical informative systems must have possibilities of risks monitoring for patients and decisions as to danger identification for managers.

  20. Structural health monitoring of Syncrude's Aurora 2 oil sand crusher

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.P.

    2008-07-01

    Structural health monitoring (SHM) is a tool used to monitor the safeness of a structure with reliable data acquisition systems and sensors. The Aurora 2 oil sand crusher at Syncrude Canada's mining facility in Fort McMurray, Alberta has been instrumented with such a system to monitor and provide a health report on demand. This thesis extended the use of SHM beyond the conventional boundaries of bridges and buildings to industrial structures. It established a knowledge-base on crusher behaviour and the loads acting on it under different operating conditions. Structural behaviour of the crusher, including strain patterns and their inter-relationship with different dump types, critical strain magnitudes, and impact factors at various locations under severe loading were established. Dynamic properties of the structure such as fundamental frequencies of vibration and their modal damping ratios were determined. The study showed that in general, the structural components have a reasonable fatigue life, but annual inspections and tightening of bolts is needed to address factors such as critical stresses. The role of data processing and management was significant, given that 1.5 GB of data was produced each day. A multi threshold based data processing and management algorithm was developed to reduce data by 10,000 times. Statistical analyses were conducted to establish the parameters for monitoring the structure. A finite element model of the structure was calibrated with field observations to propose a new field design load case. A numerical damage simulation exercise presented suitable strategies for damage detection by monitoring the strain magnitudes and strain patterns in the vicinity of a damage. The remaining life of the oil sand crusher can be predicted and its performance monitored using the SHM system.

  1. On the reliability of a PCA-based method for structural diagnosis in bridge structures with environmental disturbances

    Directory of Open Access Journals (Sweden)

    Lacarbonara W.

    2012-07-01

    Full Text Available The basis for a vibration-based damage detection method is that changes in the constitutive properties of a structure will, in turn, modify its dynamic characteristics. Civil engineering structures are often subjected to time-varying environmental conditions and, as a consequence, the associated deviation of the identified structural features from the undamaged state may smear the changes caused by structural damages, thus causing non-issued alarms or false damage diagnoses. In order to assess their reliability for future in field applications, damage detection methods can be preliminarily validated by means of mechanical models in which the major changing environmental conditions are appropriately simulated. In doing so, two issues must be considered: the first is about the adopted thermomechanical model, the second deals with modeling realistic damage scenarios. To date, diagnostic tools are usually verified by means of oversimplified thermomechanical models, and the reliability of damage detection methods is demonstrated with reference to the damage severity only, whereas insufficient efforts have been directed toward the assessment of their effectiveness for the identification of space and time-varying damage scenarios. Through a refined three-dimensional thermomechanical model and a principal component analysis (PCA diagnostic tool, this study addresses the feasibility of this specific class of damage detection methods for health monitoring of reinforced concrete bridge structures subject to realistic temperature effects.

  2. Structural Stigma and Health Inequalities: Research Evidence and Implications for Psychological Science

    Science.gov (United States)

    Hatzenbuehler, Mark L.

    2016-01-01

    Psychological research has provided essential insights into how stigma operates to disadvantage those who are targeted by it. At the same time, stigma research has been criticized for being too focused on the perceptions of stigmatized individuals and on micro-level interactions, rather than attending to structural forms of stigma. This article describes the relatively new field of research on structural stigma, which is defined as societal-level conditions, cultural norms, and institutional policies that constrain the opportunities, resources, and wellbeing of the stigmatized. I review emerging evidence that structural stigma related to mental illness and sexual orientation (1) exerts direct and synergistic effects on stigma processes that have long been the focus of psychological inquiry (e.g., concealment, rejection sensitivity); (2) serves as a contextual moderator of the efficacy of psychological interventions; and (3) contributes to numerous adverse health outcomes for members of stigmatized groups—ranging from dysregulated physiological stress responses to premature mortality—indicating that structural stigma represents an under-recognized mechanism producing health inequalities. Each of these pieces of evidence suggests that structural stigma is relevant to psychology and therefore deserves the attention of psychological scientists interested in understanding and ultimately reducing the negative effects of stigma. PMID:27977256

  3. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  4. [Relationship between organisational structure and worksite health management in the information technology and communications sector].

    Science.gov (United States)

    Ansmann, L; Jung, J; Nitzsche, A; Pfaff, H

    2012-05-01

    Worksite health management (WHM) can positively influence employee health and performance. However, it has not yet been comprehensively implemented in companies. This study aims to identify the role of organisational structures in the implementation of WHM. In this cross-sectional study, data were collected on the companies' WHM and the organisational structure. Out of 522 randomly selected companies within the German information technology and communication (ITC) sector, one managing director for each company was being questioned through telephone interviews. Bivariate and multivariate logistic regression analyses were conducted. The results of the study reveal that the implementation of WHM is positively correlated with a large company size (OR 2.75; 95%-CI 1.10-6.88) and with the existence of an employee representation (OR 2.48; 95%-CI 1.54-3.98). Other structural characteristics, such as the employment of a company physician, the percentage of temporary workers as well as the staff's age and sex distribution do not seem to have a significant impact on the implementation of WHM. The results indicate that the implementation of WHM can only be explained to a certain degree by organisational structures. However, the findings highlight the fact that companies with few structural resources are in particular need of tailored support when implementing WHM. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Joseph Davidson

    2014-01-01

    Full Text Available This paper reviews recent developments in energy harvesting technologies for structural health monitoring applications. Many industries have a great deal of interest in obtaining technology that can be used to monitor the health of machinery and structures. In particular, the need for autonomous monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, data acquisition, wireless communication, and energy harvesting systems. Among all of these components, this paper focuses on the energy harvesting technologies. Since low-power sensors and wireless communications are used in newer SHM systems, a number of researchers have recently investigated techniques to extract energy from the local environment to power these stand-alone systems. Ambient energy sources include vibration, thermal gradients, solar, wind, pressure, etc. If the structure has a rich enough loading, then it may be possible to extract the needed power directly from the structure itself. Harvesting energy using piezoelectric materials by converting applied stress to electricity is most common. Other methods to harvest energy such as electromagnetic, magnetostrictive, or thermoelectric generator are also reviewed. Lastly, an energy harvester with frequency tuning capability is demonstrated.

  6. Value of information: A roadmap to quantifying the benefit of structural health monitoring

    DEFF Research Database (Denmark)

    Straub, D.; Chatzi, E.; Bismut, E.

    2017-01-01

    The concept of value of information (VoI) enables quantification of the benefits provided by structural health monitoring (SHM) systems – in principle. Its implementation is challenging, as it requires an explicit modelling of the structural system’s life cycle, in particular of the decisions...... that are taken based on the SHM information. In this paper, we approach the VoI analysis through an influence diagram (ID), which supports the modelling process. We provide a simple example for illustration and discuss challenges associated with real-life implementation....

  7. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load.

    Science.gov (United States)

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-06-14

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved.

  8. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2017-06-01

    Full Text Available Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved.

  9. The impact of family structure on the health of children: Effects of divorce.

    Science.gov (United States)

    Anderson, Jane

    2014-11-01

    Nearly three decades of research evaluating the impact of family structure on the health and well-being of children demonstrates that children living with their married, biological parents consistently have better physical, emotional, and academic well-being. Pediatricians and society should promote the family structure that has the best chance of producing healthy children. The best scientific literature to date suggests that, with the exception of parents faced with unresolvable marital violence, children fare better when parents work at maintaining the marriage. Consequently, society should make every effort to support healthy marriages and to discourage married couples from divorcing.

  10. [Model for the organizational structure of the Regional Service for Animal Health].

    Science.gov (United States)

    Crespo León, F; Ruiz Mercader, J; Ferrer Romero, J; Jerez de Pablo, J A; Sotillo Mesanza, F

    1997-12-01

    The organisational structure of any unit must be a reflection of the way in which work is distributed and of specialisation in the constituent parts. Co-ordination between these parts requires the establishment of standards, strategies, procedures and official controls, as well as a chain of command, in order to attain the desired objectives. The authors present an alternative model for designing an organisational structure for district Veterinary Services of a given country. This model will assist the establishment of basic criteria for evaluating such Services, facilitating their integration into the procedure for planning animal health activities, and providing a better comprehension of their function within the livestock sector.

  11. ARMA modelled time-series classification for structural health monitoring of civil infrastructure

    Science.gov (United States)

    Peter Carden, E.; Brownjohn, James M. W.

    2008-02-01

    Structural health monitoring (SHM) is the subject of a great deal of ongoing research leading to the capability that reliable remote monitoring of civil infrastructure would allow a shift from schedule-based to condition-based maintenance strategies. The first stage in such a system would be the indication of an extraordinary change in the structure's behaviour. A statistical classification algorithm is presented here which is based on analysis of a structure's response in the time domain. The time-series responses are fitted with Autoregressive Moving Average (ARMA) models and the ARMA coefficients are fed to the classifier. The classifier is capable of learning in an unsupervised manner and of forming new classes when the structural response exhibits change. The approach is demonstrated with experimental data from the IASC-ASCE benchmark four-storey frame structure, the Z24 bridge and the Malaysia-Singapore Second Link bridge. The classifier is found to be capable of identifying structural change in all cases and of forming distinct classes corresponding to different structural states in most cases.

  12. The cross-national structure of mental disorders: results from the World Mental Health Surveys.

    Science.gov (United States)

    de Jonge, Peter; Wardenaar, Klaas J; Lim, Carmen C W; Aguilar-Gaxiola, Sergio; Alonso, Jordi; Andrade, Laura Helena; Bunting, Brendan; Chatterji, Somnath; Ciutan, Marius; Gureje, Oye; Karam, Elie G; Lee, Sing; Medina-Mora, Maria Elena; Moskalewicz, Jacek; Navarro-Mateu, Fernando; Pennell, Beth-Ellen; Piazza, Marina; Posada-Villa, José; Torres, Yolanda; Kessler, Ronald C; Scott, Kate

    2017-12-19

    The patterns of comorbidity among mental disorders have led researchers to model the underlying structure of psychopathology. While studies have suggested a structure including internalizing and externalizing disorders, less is known with regard to the cross-national stability of this model. Moreover, little data are available on the placement of eating disorders, bipolar disorder and psychotic experiences (PEs) in this structure. We evaluated the structure of mental disorders with data from the World Health Organization Composite International Diagnostic Interview, including 15 lifetime mental disorders and six PEs. Respondents (n = 5478-15 499) were included from 10 high-, middle- and lower middle-income countries across the world aged 18 years or older. Confirmatory factor analyses (CFAs) were used to evaluate and compare the fit of different factor structures to the lifetime disorder data. Measurement invariance was evaluated with multigroup CFA (MG-CFA). A second-order model with internalizing and externalizing factors and fear and distress subfactors best described the structure of common mental disorders. MG-CFA showed that this model was stable across countries. Of the uncommon disorders, bipolar disorder and eating disorder were best grouped with the internalizing factor, and PEs with a separate factor. These results indicate that cross-national patterns of lifetime common mental-disorder comorbidity can be explained with a second-order underlying structure that is stable across countries and can be extended to also cover less common mental disorders.

  13. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  14. [Beijing college students' self-consciousness: its level, structure and relationship with mental health].

    Science.gov (United States)

    Fan, Zhiwei; He, Shuchang

    2013-11-01

    To investigate Beijing college students' self-consciousness and its relationship with mental health. Convenient samples of 928 college students from five universities in Beijing were inquired and assessed with the self-consciousness scale and the Kessler 10 psychological distress scale. Confirmatory factor analysis and structural equation modeling were used to analyze the data. College students' scores of self-consciousness did not differ in sex, age, grade and major type. 83.5% of the participants had relatively low scores (10-24) of psychological distress, but those of the students of liberal arts were higher (P college students' self-consciousness is relatively high and has a relatively complex structure. While self-reflectiveness and style consciousness have negative effects, internal state awareness is good for mental health.

  15. Nurse versus community health worker identification of psychosocial risks in pregnancy through a structured interview.

    Science.gov (United States)

    Godecker, Amy L; Harrison, Patricia A; Sidebottom, Abbey C

    2013-11-01

    A structured psychosocial risk screening interview, the Prenatal Risk Overview, was administered to 733 women in prenatal care. Either a community health worker (CHW) or a registered nurse (RN) conducted the interview based on day of the week. A comparison of identified risk factors found no significant differences between study samples for six of 13 domains. For CHW interviews, significantly more participants were classified as Moderate/ High Risk for Depression, Lack of Telephone Access, Food Insecurity, and Housing Instability, and as High Risk for Lack of Social Support, Lack of Transportation Access, and Housing Instability. For RN interviews, significantly more participants were classified as High Risk for Alcohol Use. Community health workers successfully conducted psychosocial screening and elicited more self-reported risk than RNs, especially lack of basic needs. Comparing the hourly salary/ wage, the cost for CHWs was 56% lower than for RNs. Preliminary findings support use of paraprofessionals for structured screening interviews.

  16. Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Martin, Richard E.; Sawicki, Jerzy T.; Baaklini, George Y.

    2005-01-01

    This paper addresses recent efforts at the NASA Glenn Research Center at Lewis Field relating to the set-up and assessment of electro-mechanical (E/M) impedance based structural health monitoring. The overall aim is the application of the impedance based technique to aeronautic and space based structural components. As initial steps, a laboratory was created, software written, and experiments conducted on aluminum plates in undamaged and damaged states. A simulated crack, in the form of a narrow notch at various locations, was analyzed using piezoelectric-ceramic (PZT: lead, zirconate, titarate) patches as impedance measuring transducers. Descriptions of the impedance quantifying hardware and software are provided as well as experimental results. In summary, an impedance based health monitoring system was assembled and tested. The preliminary data showed that the impedance based technique was successful in recognizing the damage state of notched aluminum plates.

  17. [Do the structure and functioning of the elderly's social network influence functional health: a preliminary study].

    Science.gov (United States)

    Masse, Marie; Swine, Christian

    2015-06-01

    We examined structural and functional characteristics of social networks related to health and well-being among community-dwelling older adults. A survey was performed in Brussels, using an original name-generating network inventory, to explore the structure and types of social ties (e.g. children, friends, neighbors) which forms the elderly's network. Different kinds of support (instrumental, emotional, social) were assessed due to the multiple contents of social exchanges between the elderly and their network's members. Our results highlighted some important social network resources. Especially, social participation, contacts with friends of the same age and reciprocity of social relationships are likely to promote functional health and well-being in later life. We discuss our findings in relation to major social network's typologies referring to older adults.

  18. Sensor-Only System Identification for Structural Health Monitoring of Advanced Aircraft

    Science.gov (United States)

    Kukreja, Sunil L.; Bernstein, Dennis S.

    2012-01-01

    Environmental conditions, cyclic loading, and aging contribute to structural wear and degradation, and thus potentially catastrophic events. The challenge of health monitoring technology is to determine incipient changes accurately and efficiently. This project addresses this challenge by developing health monitoring techniques that depend only on sensor measurements. Since actively controlled excitation is not needed, sensor-to-sensor identification (S2SID) provides an in-flight diagnostic tool that exploits ambient excitation to provide advance warning of significant changes. S2SID can subsequently be followed up by ground testing to localize and quantify structural changes. The conceptual foundation of S2SID is the notion of a pseudo-transfer function, where one sensor is viewed as the pseudo-input and another is viewed as the pseudo-output, is approach is less restrictive than transmissibility identification and operational modal analysis since no assumption is made about the locations of the sensors relative to the excitation.

  19. Coupling Sensing Hardware with Data Interrogation Software for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Charles R. Farrar

    2006-01-01

    Full Text Available The process of implementing a damage detection strategy for aerospace, civil and mechanical engineering infrastructure is referred to as structural health monitoring (SHM. The authors' approach is to address the SHM problem in the context of a statistical pattern recognition paradigm. In this paradigm, the process can be broken down into four parts: (1 Operational Evaluation, (2 Data Acquisition and Cleansing, (3 Feature Extraction and Data Compression, and (4 Statistical Model Development for Feature Discrimination. These processes must be implemented through hardware or software and, in general, some combination of these two approaches will be used. This paper will discuss each portion of the SHM process with particular emphasis on the coupling of a general purpose data interrogation software package for structural health monitoring with a modular wireless sensing and processing platform. More specifically, this paper will address the need to take an integrated hardware/software approach to developing SHM solutions.

  20. Structural Intervention With School Nurses Increases Receipt of Sexual Health Care Among Male High School Students.

    Science.gov (United States)

    Dittus, Patricia J; Harper, Christopher R; Becasen, Jeffrey S; Donatello, Robin A; Ethier, Kathleen A

    2018-01-01

    Adolescent males are less likely to receive health care and have lower levels of sexual and reproductive health (SRH) knowledge than adolescent females. The purpose of this study was to determine if a school-based structural intervention focused on school nurses increases receipt of condoms and SRH information among male students. Interventions to improve student access to sexual and reproductive health care were implemented in six urban high schools with a matched set of comparison schools. Interventions included working with school nurses to improve access to sexual and reproductive health care, including the provision of condoms and information about pregnancy and sexually transmitted disease prevention and services. Intervention effects were assessed through five cross-sectional yearly surveys, and analyses include data from 13,740 male students. Nurses in intervention schools changed their interactions with male students who visited them for services, such that, among those who reported they went to the school nurse for any reason in the previous year, those in intervention schools reported significant increases in receipt of sexual health services over the course of the study compared with students in comparison schools. Further, these results translated into population-level effects. Among all male students surveyed, those in intervention schools were more likely than those in comparison schools to report increases in receipt of sexual health services from school nurses. With a minimal investment of resources, school nurses can become important sources of SRH information and condoms for male high school students. Published by Elsevier Inc.

  1. XML and its impact on content and structure in electronic health care documents.

    Science.gov (United States)

    Sokolowski, R.; Dudeck, J.

    1999-01-01

    Worldwide information networks have the requirement that electronic documents must be easily accessible, portable, flexible and system-independent. With the development of XML (eXtensible Markup Language), the future of electronic documents, health care informatics and the Web itself are about to change. The intent of the recently formed ASTM E31.25 subcommittee, "XML DTDs for Health Care", is to develop standard electronic document representations of paper-based health care documents and forms. A goal of the subcommittee is to work together to enhance existing levels of interoperability among the various XML/SGML standardization efforts, products and systems in health care. The ASTM E31.25 subcommittee uses common practices and software standards to develop the implementation recommendations for XML documents in health care. The implementation recommendations are being developed to standardize the many different structures of documents. These recommendations are in the form of a set of standard DTDs, or document type definitions that match the electronic document requirements in the health care industry. This paper discusses recent efforts of the ASTM E31.25 subcommittee. PMID:10566338

  2. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    OpenAIRE

    Woike, Mark; Abdul-Aziz, Ali; Oza, Nikunj; Matthews, Bryan

    2013-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aero...

  3. Structural Health Monitoring Static Test of a Wind Turbine Blade: August 1999

    Energy Technology Data Exchange (ETDEWEB)

    Sundaresan, M. J.; Schulz, M. J.; Ghoshal, A.

    2002-03-01

    Structural health monitoring research is being performed by NCA&T, the NREL and Sandia Laboratories to develop a''Smart Blade'' with an embedded sensor system integrated into the blade by the manufacturer to continuously monitor the condition of the loading in the blade and reduce or prevent fatigue damage of the blade. This will reduce maintenance costs and improve the reliability of wind power.

  4. The structure of occupational health nurses' support for return-to-work to workers with depression.

    Science.gov (United States)

    Hatanaka, Junko

    2016-07-29

    The present study aimed to explore the structure of occupational health nurses' support for return-to-work to workers with depression. Semi-structured interviews were conducted with 10 occupational health nurses who support workers returning to work. Data were analyzed using the Modified Grounded Theory Approach. The qualitatively analyzed data was grouped into 9 categories. The support for return-to-work was divided into 3 periods: (1) the first priority for recovery, (2) preparation for return-to-work, and (3) adaptation to work. There were indirect supports to workers such as "environmental arrangement for medical treatment," "connection," and "support form parties concerned about workers," and direct supports such as "readiness for medical treatment," "overcoming social and psychological problems," and "working life independence. " Direct support was facilitated by "construction of the relationship. " The occupational health nurses' philosophy was to support "profitable return-to-work for both the worker and the employer. " These processes were "support of confidence recovery process " to regain confidence lost through absence from work because of depression and to accomplish a smooth return-to-work. There were problems in each period corresponding to the return-to-work conditions, and occupational health nurses supported the employees in overcoming each problem. Moreover, it was said that cooperation with the parties concerned in the office would greatly influence the success or failure in the return-to-work support, and it was thought that direct supports and indirect supports to employees with respect to adjustment with the parties concerned in the office were necessary. The structure of occupational health nurses' supports was to support the confidence recovery process of workers by indirect and direct support at each period of return-to-work.

  5. Relationship between Structural and Intermediary Determinants of Health and Preterm Delivery

    Science.gov (United States)

    Dolatian, Mahrokh; Mirabzadeh, Arash; Forouzan, Ameneh Setareh; Sajjadi, Homeira; Alavimajd, Hamid; Mahmoodi, Zohreh; Moafi, Farnoosh

    2014-01-01

    Background Preterm birth is a major health problem that leads to infant morbidity and mortality. The main goal of this study was to find the relationship between social determinants of health and preterm delivery. Methods A prospective longitudinal cohort study was carried out on 500 pregnant women in their 24th to 28th gestational weeks in 2012. The pregnant women filled out a self-report questionnaire on the structural determinant, perceived stress, and perceived social support. The participants were followed up until labor and the data about mother and the newborn were collected after labor. The data were analyzed by SPSS 21 and Lisrel 8.8 software programs using pathway analysis. Results The final path model fit well (CFI=0.96; RMSEA=0.060). Path analysis showed that among structural factors, income had a direct effect (β=0.06) and the factors of income (β=0.00594), number of children (family size) (β=-0.024), as well as mother's education (β=-0.0084) had the greatest overall effect on gestational age at birth respectively. Also, the results showed that among intermediate factors of social determinants of health, stress in the direct path (β=-0.12) and among the overall effects, the perceived stress (β=-0.12) and perceived social support (β=0.0396) affected the gestational age at birth. Conclusion The current study showed that some structural and intermediary determinants such as income and perceived stress had an effect on preterm labor. PMID:24918080

  6. Reframing the Interpretation of Sex Worker Health: A Behavioral–Structural Approach

    Science.gov (United States)

    Tuminez, Astrid S.

    2011-01-01

    Expanding sexually transmitted infection (STI) epidemics in many parts of Asia increase the importance of effective human immunodeficiency virus (HIV)/STI prevention programs for female sex workers. Designing sex worker health research and programs demands a well-stated conceptual approach, especially when one is interpreting the relationship between local policy environments and sex worker health. However, the core principles of the 2 most common conceptual approaches used in sex worker health programs—abolitionism and empowerment—have frequently divergent assumptions and implications. The abolitionist approach sees major aspects of the sex industry as fundamentally coercive and exploitative of women and supports dismantling all or parts of the sex sector. The empowerment approach strengthens sex workers’ agency and rights in order to build collective self-efficacy and have women invested in implementing their own HIV/STI prevention programs. This review compares these approaches using implication analysis and empirical cases from Asia. The misperception of an unresolvable gap between the 2 approaches ignores common ground that forms the basis of a new behavioral–structural conceptual framework. Explicitly accounting for the interaction between female sex worker behaviors and larger structures and policies, a behavioral–structural approach may provide a solid foundation for sex work research and programs. PMID:22043033

  7. Structural Health Monitoring on Turbine Engines Using Microwave Blade Tip Clearance Sensors

    Science.gov (United States)

    Woike, Mark; Abdul-Aziz, Ali; Clem, Michelle

    2014-01-01

    The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA) has taken a lead role in the investigation of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. As part of this effort, microwave sensor technology has been investigated as a means of making high temperature non-contact blade tip clearance, blade tip timing, and blade vibration measurements for use in gas turbine engines. This paper presents a summary of key results and findings obtained from the evaluation of two different types of microwave sensors that have been investigated for use possible in structural health monitoring applications. The first is a microwave blade tip clearance sensor that has been evaluated on a large scale Axial Vane Fan, a subscale Turbofan, and more recently on sub-scale turbine engine like disks. The second is a novel microwave based blade vibration sensor that was also used in parallel with the microwave blade tip clearance sensors on the experiments with the sub-scale turbine engine disks.

  8. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    Science.gov (United States)

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  9. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2014-01-01

    Full Text Available It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province. The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  10. Characterization of piezoelectric paint and its refinement for structural health monitoring applications

    Science.gov (United States)

    Yang, Cheng; Fritzen, Claus-Peter

    2012-04-01

    Piezoelectric paint is a composite piezoelectric material, due to its outstanding properties consisting of flexibility and conformability, it has been a great interest in structural health monitoring applications recently. The normal piezoelectric ceramics offer high piezoelectric properties, but are difficult to adhere on curly structural surfaces. For normal polymers, it offers high flexibility but missing the ability to transform the mechanical energy into the electrical energy, and vice versa. The piezoelectric paint combines the features of both, so it could be distributed on both even and uneven structural surface, as a sensor or actuator. This work starts with the development of the piezoelectric paint, followed by a systematic characterization of its mechanical and piezoelectric properties, which includes microstructure, Young's modulus, sensitivity and piezoelectric charge constant da1. The characterization results helps to understand the performance of the piezoelectric paint more deeply. Finally, a refinement method is demonstrated to improve the piezoelectricity of the paint. The results showed that the piezoelectricity was greatly improved and therefore its applications in structural health monitoring is widely expanded.

  11. Enhancing adverse drug event detection in electronic health records using molecular structure similarity: application to pancreatitis.

    Directory of Open Access Journals (Sweden)

    Santiago Vilar

    Full Text Available Adverse drug events (ADEs detection and assessment is at the center of pharmacovigilance. Data mining of systems, such as FDA's Adverse Event Reporting System (AERS and more recently, Electronic Health Records (EHRs, can aid in the automatic detection and analysis of ADEs. Although different data mining approaches have been shown to be valuable, it is still crucial to improve the quality of the generated signals.To leverage structural similarity by developing molecular fingerprint-based models (MFBMs to strengthen ADE signals generated from EHR data.A reference standard of drugs known to be causally associated with the adverse event pancreatitis was used to create a MFBM. Electronic Health Records (EHRs from the New York Presbyterian Hospital were mined to generate structured data. Disproportionality Analysis (DPA was applied to the data, and 278 possible signals related to the ADE pancreatitis were detected. Candidate drugs associated with these signals were then assessed using the MFBM to find the most promising candidates based on structural similarity.The use of MFBM as a means to strengthen or prioritize signals generated from the EHR significantly improved the detection accuracy of ADEs related to pancreatitis. MFBM also highlights the etiology of the ADE by identifying structurally similar drugs, which could follow a similar mechanism of action.The method proposed in this paper provides evidence of being a promising adjunct to existing automated ADE detection and analysis approaches.

  12. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  13. Structuring and coding in health care records: a qualitative analysis using diabetes as a case study

    Directory of Open Access Journals (Sweden)

    Ann R R Robertson

    2015-03-01

    Full Text Available Background   Globally, diabetes mellitus presents a substantial burden to individuals and healthcare systems. Structuring and/or coding of medical records underpin attempts to improve information sharing and searching, potentially bringing clinical and secondary uses benefits.Aims and objectives   We investigated if, how and why records for adults with diabetes were structured and/or coded, and explored stakeholders’ perceptions of current practice.Methods   We carried out a qualitative, theoretically-informed case study of documenting healthcare information for diabetes patients in family practice and hospital settings, using semi-structured interviews, observations, systems demonstrations and documentary data.Results   We conducted 22 interviews and four on-site observations, and reviewed 25 documents. For secondary uses – research, audit, public health and service planning – the benefits of highly structured and coded diabetes data were clearly articulated. Reported clinical benefits in terms of managing and monitoring diabetes, and perhaps encouraging patient self-management, were modest. We observed marked differences in levels of record structuring and/or coding between settings, and found little evidence that these data were being exploited to improve information sharing between them.Conclusions   Using high levels of data structuring and coding in medical records for diabetes patients has potential to be exploited more fully, and lessons might be learned from successful developments elsewhere in the UK.

  14. Hybrid graphene/geopolymeric cement as a superionic conductor for structural health monitoring applications

    Science.gov (United States)

    Saafi, M.; Piukovics, G.; Ye, J.

    2016-10-01

    In this paper, we demonstrate for the first time a novel hybrid superionic long gauge sensor for structural health monitoring applications. The sensor consists of two graphene electrodes and a superionic conductor film made entirely of fly ash geopolymeric material. The sensor employs ion hopping as a conduction mechanism for high precision temperature and tensile strain sensing in structures. The design, fabrication and characterization of the sensor are presented. The temperature and strain sensing mechanisms of the sensor are also discussed. The experimental results revealed that the crystal structure of the superionic film is a 3D sodium-poly(sialate-siloxo) framework, with a room temperature ionic conductivity between 1.54 × 10-2 and 1.72 × 10-2 S m-1 and, activation energy of 0.156 eV, which supports the notion that ion hopping is the main conduction mechanism for the sensor. The sensor showed high sensitivity to both temperature and tensile strain. The sensor exhibited temperature sensitivity as high as 21.5 kΩ °C-1 and tensile strain sensitivity (i.e., gauge factor) as high as 358. The proposed sensor is relatively inexpensive and can easily be manufactured with long gauges to measure temperature and bulk strains in structures. With further development and characterization, the sensor can be retrofitted onto existing structures such as bridges, buildings, pipelines and wind turbines to monitor their structural integrity.

  15. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Zhigang Sun

    2013-01-01

    Full Text Available Piezoelectric transducers have a long history of applications in nondestructive evaluation of material and structure integrity owing to their ability of transforming mechanical energy to electrical energy and vice versa. As condition based maintenance has emerged as a valuable approach to enhancing continued aircraft airworthiness while reducing the life cycle cost, its enabling structural health monitoring (SHM technologies capable of providing on-demand diagnosis of the structure without interrupting the aircraft operation are attracting increasing R&D efforts. Piezoelectric transducers play an essential role in these endeavors. This paper is set forth to review a variety of ingenious ways in which piezoelectric transducers are used in today’s SHM technologies as a means of generation and/or detection of diagnostic acoustic waves.

  16. An experimental study on distributed damage detection algorithms for structural health monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardhana, Madhuka; Zhu Xinqun; Liyanapathirana, Ranjith, E-mail: m.jayawardhana@uws.edu.au, E-mail: xinqun.zhu@uws.edu.au, E-mail: ranjith@ieee.org [School of Engineering, University of Western Sydney, Penrith South DC, NSW 1797 (Australia)

    2011-07-19

    Distributed structural damage detection has become the subject of many recent studies in Structural Health Monitoring (SHM). Development of smart sensor nodes has facilitated the growth of this concept enabling decentralized data processing capabilities of nodes whose sole responsibility once was acquisition of data. An experimental study has been carried out on a two span reinforced concrete slab in this paper. Different crack damages are created by the static loads and the impact tests that are carried out on the slab. Two damage detection and localization methods, one based on Auto Correlation Function-Cross Correlation Function (ACF-CCF) and the other on Auto Regressive (AR) time series model are used to detect damage from measured responses. The results from the two methods are compared in order to determine which method has been more effective and reliable in determining the damage to the concrete structure.

  17. High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures

    Science.gov (United States)

    Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.

    2011-01-01

    High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.

  18. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  19. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    X. W. Ye

    2014-01-01

    Full Text Available In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM of civil infrastructure.

  20. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    Science.gov (United States)

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  1. Design, Manufacturing and Experimental Validation of Optical Fiber Sensors Based Devices for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Angela CORICCIATI

    2016-06-01

    Full Text Available The use of optical fiber sensors is a promising and rising technique used for Structural Health Monitoring (SHM, because permit to monitor continuously the strain and the temperature of the structure where they are applied. In the present paper three different types of smart devices, that are composite materials with an optical fiber sensor embedded inside them during the manufacturing process, are described: Smart Patch, Smart Rebar and Smart Textile, which are respectively a plate for local exterior intervention, a rod for shear and flexural interior reinforcement and a textile for an external whole application. In addition to the monitoring aim, the possible additional function of these devices could be the reinforcement of the structures where they are applied. In the present work, after technology manufacturing description, the experimental laboratory characterization of each device is discussed. At last, smart devices application on medium scale masonry walls and their validation by mechanical tests is described.

  2. On the Value of Structural Health Monitoring Information for the Operation of Wind Parks

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Faber, Michael H.; Val, Dimitri V.

    2017-01-01

    In the present paper, an approach for the quantification of the Value of Structural Health Monitoring (SHM) Information building upon a framework for infrastructure system utility and decision analysis is developed and applied to the operation of wind parks. The quantification of the value of SHM...... facilitates a benefit and risk informed assessment and optimization of SHM strategies and encompasses models for the infrastructure functionality, the structural constituent and system risks and its management as well as the performance of SHM strategies. A wind park system model incorporating the structural...... wind turbine systems and its components is developed accounting for the wind park functionality, i.e. power production, its operation and its cascading damage and failure scenarios. This system model facilitates to quantify the expected benefits and risks throughout the service life accounting...

  3. Asthma care: Structural foundations at primary health care at Al-Qassim region, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    AL-Haddad Nasser

    2006-01-01

    Full Text Available BACKGROUND: Proper structural foundations for asthma care at primary health care centers [PHCCs], are of essential importance, regarding its management. OBJECTIVE: To assess the adherence of PHCCs to the recommended structural foundation for asthma care. MATERIALS AND METHODS: 35 PHCCs were selected in a cluster random fashion. A questionnaire for structural standards was designed, based on the Saudi national protocol for the management of asthma (SNPMA. A physician and a nurse, each from PHCC, were trained for data collection. Structural facilities deficiency was arbitrarily classified into: least deficient (>75%, moderate to severe deficient (25-75% and most deficient (< 25%. RESULTS: The total population registered, was 131190 [urban: 85701 (65.4%, rural: 45489 (34.6%]. Total registered asthmatics was 4093 [urban: 2585 (63.1%, rural: 1508 (36.9%]. The asthma prevalence rate did not differ significantly between urban (3% and rural (3.3% areas . Structural facilities distribution for asthma care, did not significantly vary among urban and rural PHCCs and none of them fulfilled 100% of the desired standards. The least deficient, were the availability of asthma register and salbutamol, in its various forms. The moderately to severely deficient were the SNPMA, peak flow meter (PFM, nebulizer system, Theophylline and systemic corticosteroid. However, they were most deficient in trained doctors and nurses, record charts for Peak flow meter, spacer, educational material and inhalers of corticosteroid or cromoglycate. CONCLUSION: Proper structural foundations for asthma care at PHCCs, at AL-Qassim region, were below the desired national standards. They were most deficient in trained doctors and nurses, record charts for PFM, spacers, educational material and anti-inflammatory inhalers. Future health directorate strategies have to provide such beneficial interventions for proper asthma care.

  4. Family Structure and Child Health: Does the Sex Composition of Parents Matter?

    Science.gov (United States)

    Reczek, Corinne; Spiker, Russell; Liu, Hui; Crosnoe, Robert

    2016-10-01

    The children of different-sex married couples appear to be advantaged on a range of outcomes relative to the children of different-sex cohabiting couples. Despite the legalization of same-sex marriage in the United States, whether and how this general pattern extends to the children of same-sex married and cohabiting couples is unknown. This study examines this question with nationally representative data from the 2004-2013 pooled National Health Interview Survey (NHIS). Results reveal that children in cohabiting households have poorer health outcomes than children in married households regardless of the sex composition of their parents. Children in same-sex and different-sex married households are relatively similar to each other on health outcomes, as are children in same-sex and different-sex cohabiting households. These patterns are not fully explained by socioeconomic differences among the four different types of families. This evidence can inform general debates about family structure and child health as well as policy interventions aiming to reduce child health disparities.

  5. How compatible are liberty and equality in structuring a health care system?

    Science.gov (United States)

    Menzel, Paul T

    2003-06-01

    In their normative role in shaping the basic structure of a health care system, liberty and equality are often thought to conflict so sharply that health policy is condemned to remain an ideological battleground. In this paper, I will articulate my own view of why much of the apparently fundamental conflict between individual liberty and responsibility, on the one hand, and equality and equality's related concern for cost-efficiency, on the other hand, is less intractable than it is usually assumed to be. The result will be to break the rigid and stereotypical association of liberty-emphasizing social philosophies with the pluralistic market paradigm for a health care system and egalitarian, equity-emphasizing social philosophies with the unitary public system paradigm. Understanding better the moral ingredients of liberty and equitable distribution as well as the complexity of how liberty and equality actually intersect in a health care system opens the door to seeing the possibility of significant reconciliation. I will conclude, among other things, that even semi-libertarian views of distributive justice should strongly embrace compulsory, universal coverage of health care for some significant level of care, and that egalitarian views ought not to regard different levels of coverage for people of different income levels as necessarily unjust.

  6. Trends and structural shifts in health tourism: evidence from seasonal time-series data on health-related travel spending by Canada during 1970-2010.

    Science.gov (United States)

    Loh, Chung-Ping A

    2015-05-01

    There has been a growing interest in better understanding the trends and determinants of health tourism activities. While much of the expanding literature on health tourism offers theoretical or qualitative discussion, empirical evidences has been lacking. This study employs Canada's outbound health tourism activities as an example to examine the trends in health tourism and its association with changing domestic health care market characteristics. A time-series model that accounts for potential structural changes in the trend is employed to analyze the quarterly health-related travel spending series reported in the Balance of Payments Statistics (BOPS) during 1970-2010 (n = 156). We identified a structural shift point which marks the start of an accelerated growth of health tourism and a flattened seasonality in such activities. We found that the health tourism activities of Canadian consumers increase when the private investment in medical facilities declines or when the private MPI increases during the years following the structural-change. We discussed the possible linkage of the structural shift to the General Agreement on Trade in Services (GATS), which went into effect in January, 1995. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Influencing Self-Reported Health among Rural Low-Income Women through Health Care and Social Service Utilization: A Structural Equation Model

    Science.gov (United States)

    Bice-Wigington, Tiffany; Huddleston-Casas, Catherine

    2012-01-01

    Using structural equation modeling, this study examined the mesosystemic processes among rural low-income women, and how these processes subsequently influenced self-reported health. Acknowledging the behavioral processes inherent in utilization of health care and formal social support services, this study moved beyond a behavioral focus by…

  8. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ) System for Structural Health Monitoring of Civil Structures.

    Science.gov (United States)

    Heo, Gwanghee; Jeon, Joonryong

    2017-07-12

    In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.

  9. Structural health monitoring using fiber optic distributed sensors for vacuum-assisted resin transfer molding

    Science.gov (United States)

    Eum, S. H.; Kageyama, K.; Murayama, H.; Uzawa, K.; Ohsawa, I.; Kanai, M.; Kobayashi, S.; Igawa, H.; Shirai, T.

    2007-12-01

    In this study we implemented manufacturing process and strain monitoring of a composite structure by optical fiber sensors for vacuum-assisted resin transfer molding (VaRTM). Optical fibers with fiber Bragg gratings were embedded into a glass fiber reinforced plastic specimen made by VaRTM and the applicability of structural health monitoring with fiber Bragg grating (FBG) sensors based on optical frequency domain reflectometry (OFDR) was investigated. In this study, long-gage FBGs which are 10 times longer than ordinary FBGs (which are about 10 mm long) were employed for distributed sensing. We can easily map the strain or temperature profile along gratings by OFDR and the spatial resolution of this sensing technique is about 1 mm. The resin flow process in VaRTM could be monitored by measuring the difference in temperature between the resin and preform. Then, the shrinkage of resin could be also monitored during the curing process. The specimen was then subjected to a bending load in a three-point bending test and the strain distributions along the FBGs were measured. From these results we could show the applicability of distributed sensors to quality assurance of a composite structure made by VaRTM and assessment of the structural integrity of in-service composite structures.

  10. Implementation of a novel efficient low cost method in structural health monitoring

    Science.gov (United States)

    Asadi, S.; Sepehry, N.; Shamshirsaz, M.; Vaghasloo, Y. A.

    2017-05-01

    In active structural health monitoring (SHM) methods, it is necessary to excite the structure with a preselected signal. More studies in the field of active SHM are focused on applying SHM on higher frequency ranges since it is possible to detect smaller damages, using higher excitation frequency. Also, to increase spatial domain of measurements and enhance signal to noise ratio (SNR), the amplitude of excitation signal is usually amplified. These issues become substantial where piezoelectric transducers with relatively high capacitance are used and consequently, need to utilize high power amplifiers becomes predominant. In this paper, a novel method named Step Excitation Method (SEM) is proposed and implemented for Lamb wave and transfer impedance-based SHM for damage detection in structures. Three different types of structure are studied: beam, plate and pipe. The related hardware is designed and fabricated which eliminates high power analog amplifiers and decreases complexity of driver significantly. Spectral Finite Element Method (SFEM) is applied to examine performance of proposed SEM. In proposed method, by determination of impulse response of the system, any input could be applied to the system by both finite element simulations and experiments without need for multiple measurements. The experimental results using SEM are compared with those obtained by conventional direct excitation method for healthy and damaged structures. The results show an improvement of amplitude resolution in damage detection comparing to conventional method which is due to achieving an SNR improvement up to 50%.

  11. Scheduling structural health monitoring activities for optimizing life-cycle costs and reliability of wind turbines

    Science.gov (United States)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2017-04-01

    Optimization of the life-cycle costs and reliability of offshore wind turbines (OWTs) is an area of immense interest due to the widespread increase in wind power generation across the world. Most of the existing studies have used structural reliability and the Bayesian pre-posterior analysis for optimization. This paper proposes an extension to the previous approaches in a framework for probabilistic optimization of the total life-cycle costs and reliability of OWTs by combining the elements of structural reliability/risk analysis (SRA), the Bayesian pre-posterior analysis with optimization through a genetic algorithm (GA). The SRA techniques are adopted to compute the probabilities of damage occurrence and failure associated with the deterioration model. The probabilities are used in the decision tree and are updated using the Bayesian analysis. The output of this framework would determine the optimal structural health monitoring and maintenance schedules to be implemented during the life span of OWTs while maintaining a trade-off between the life-cycle costs and risk of the structural failure. Numerical illustrations with a generic deterioration model for one monitoring exercise in the life cycle of a system are demonstrated. Two case scenarios, namely to build initially an expensive and robust or a cheaper but more quickly deteriorating structures and to adopt expensive monitoring system, are presented to aid in the decision-making process.

  12. Pairwise graphical models for structural health monitoring with dense sensor arrays

    Science.gov (United States)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  13. Development of structural health monitoring and early warning system for reinforced concrete system

    Energy Technology Data Exchange (ETDEWEB)

    Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah [Civil Engineering Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia); Murtiadi, Suryawan [Civil Engineering Department, Universitas Mataram, Mataram 83125 (Indonesia); Widodo, Amien [Geophysical Engineering Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia); Riksakomara, Edwin; Sani, Nisfu Asrul [Information Systems Department, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia)

    2015-04-24

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limit value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.

  14. Health monitoring with optical fiber sensors: from human body to civil structures

    Science.gov (United States)

    Pinet, Éric; Hamel, Caroline; Glišić, Branko; Inaudi, Daniele; Miron, Nicolae

    2007-04-01

    Although structural health monitoring and patient monitoring may benefit from the unique advantages of optical fiber sensors (OFS) such as electromagnetic interferences (EMI) immunity, sensor small size and long term reliability, both applications are facing different realities. This paper presents, with practical examples, several OFS technologies ranging from single-point to distributed sensors used to address the health monitoring challenges in medical and in civil engineering fields. OFS for medical applications are single-point, measuring mainly vital parameters such as pressure or temperature. In the intra-aortic balloon pumping (IABP) therapy, a miniature OFS can monitor in situ aortic blood pressure to trigger catheter balloon inflation/deflation in counter-pulsation with heartbeats. Similar sensors reliably monitor the intracranial pressure (ICP) of critical care patients, even during surgical interventions or examinations under medical resonance imaging (MRI). Temperature OFS are also the ideal monitoring solution for such harsh environments. Most of OFS for structural health monitoring are distributed or have long gage length, although quasi-distributed short gage sensors are also used. Those sensors measure mainly strain/load, temperature, pressure and elongation. SOFO type deformation sensors were used to monitor and secure the Bolshoi Moskvoretskiy Bridge in Moscow. Safety of Plavinu dam built on clay and sand in Latvia was increased by monitoring bitumen joints displacement and temperature changes using SMARTape and Temperature Sensitive Cable read with DiTeSt unit. A similar solution was used for monitoring a pipeline built in an unstable area near Rimini in Italy.

  15. The structure of mental health research: networks of influence among psychiatry and clinical psychology journals.

    Science.gov (United States)

    Haslam, N; Lusher, D

    2011-12-01

    Psychiatry and clinical psychology are the two dominant disciplines in mental health research, but the structure of scientific influence and information flow within and between them has never been mapped. Citations among 96 of the highest impact psychiatry and clinical psychology journals were examined, based on 10 052 articles published in 2008. Network analysis explored patterns of influence between journal clusters. Psychiatry journals tended to have greater influence than clinical psychology journals, and their influence was asymmetrical: clinical psychology journals cited psychiatry journals at a much higher rate than the reverse. Eight journal clusters were found, most dominated by a single discipline. Their citation network revealed an influential central cluster of 'core psychiatry' journals that had close affinities with a 'psychopharmacology' cluster. A group of 'core clinical psychology' journals was linked to a 'behavior therapy' cluster but both were subordinate to psychiatry journals. Clinical psychology journals were less integrated than psychiatry journals, and 'health psychology/behavioral medicine' and 'neuropsychology' clusters were relatively peripheral to the network. Scientific publication in the mental health field is largely organized along disciplinary lines, and is to some degree hierarchical, with clinical psychology journals tending to be structurally subordinate to psychiatry journals.

  16. The evolving organizational structure of academic health centers: the case of the University of Florida.

    Science.gov (United States)

    Barrett, Douglas J

    2008-09-01

    The organizational structures of academic health centers (AHCs) vary widely, but they all exist along a continuum of integration--that is, the degree to which the academic and clinical missions operate under a single administrative and governance structure. This author provides a brief overview of the topic of AHC integration, including the pros and cons of more integrated or less integrated models. He then traces the evolution of the University of Florida (UF) Health Science Center, which was created in the 1950s as a fully integrated AHC and which now operates under a more distributed management and governance model. Starting as a completely integrated AHC, UF's Health Science Center reached a time of maximal nonintegration (or dys-integration) in the late 1990s and at the beginning of this decade. Circumstances are now pushing the expanding clinical and academic enterprises to be more together as they face the challenges of market competition, federal research budget constraints, and reengineering clinical operations to reduce costs, enhance access, and improve quality and patient safety. Although formal organizational integration may not be possible or appropriate for any number of legal or political reasons, the author suggests that AHCs should strive for "functional integration" to be successful in the current turbulent environment.

  17. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement

    Science.gov (United States)

    Feng, Lei; Yi, Xiaohua; Zhu, Dapeng; Xie, Xiongyao; Wang, Yang

    2015-08-01

    In a modern metropolis, metro rail systems have become a dominant mode for mass transportation. The structural health of a metro tunnel is closely related to public safety. Many vibration-based techniques for detecting and locating structural damage have been developed in the past several decades. However, most damage detection techniques and validation tests are focused on bridge and building structures; very few studies have been reported on tunnel structures. Among these techniques, transmissibility function and cross correlation analysis are two well-known diagnostic approaches. The former operates in frequency domain and the latter in time domain. Both approaches can be applied to detect and locate damage through acceleration data obtained from sensor arrays. Furthermore, the two approaches can directly utilize structural response data without requiring excitation measurement, which offers advantages in field testing on a large structure. In this research, a numerical finite element model of a metro tunnel is built and different types of structural defects are introduced at multiple locations of the tunnel. Transmissibility function and cross correlation analysis are applied to perform structural damage detection and localization, based on simulated structural vibration data. Numerical results demonstrate that the introduced defects can be successfully identified and located. The sensitivity and feasibility of the two approaches have been verified when sufficient distribution of measurement locations is available. Damage detection results of the two different approaches are compared and discussed.

  18. A novel embeddable spherical smart aggregate for structural health monitoring: part I. Fabrication and electrical characterization

    Science.gov (United States)

    Kong, Qingzhao; Fan, Shuli; Bai, Xiaolong; Mo, Y. L.; Song, Gangbing

    2017-09-01

    Recently developed piezoceramic-based transducers, known as smart aggregates (SAs), have shown their applicability and versatility in various applications of structural health monitoring (SHM). The lead zirconate titanate (PZT) patches embedded inside SAs have different modes that are more suitable for generating or receiving different types of stress waves (e.g. P and S waves, each of which has a unique role in SHM). However, due to the geometry of the 2D PZT patch, the embedded SA can only generate or receive the stress wave in a single direction and thus greatly limits its applications. This paper is the first of a series of two companion papers that introduces the authors’ latest work in developing a novel, embeddable spherical smart aggregate (SSA) for the health monitoring of concrete structures. In addition to the 1D guided wave produced by SA, the SSA embedded in concrete structures can generate or receive omni-directional stress waves that can significantly improve the detection aperture and provide additional functionalities in SHM. In the first paper (Part I), the detailed fabrication procedures with the help of 3D printing technology and electrical characterization of the proposed SSA is presented. The natural frequencies of the SSA were experimentally obtained and further compared with the numerical results. In addition, the influence of the components’ thickness (spherical piezoceramic shell and epoxy) and outer radius (spherical piezoceramic shell and protection concrete) on the natural frequencies of the SSA were analytically studied. The results will help elucidate the key parameters that determine the natural frequencies of the SSA. The natural frequencies of the SSA can thus be designed for suitability in the damage detection of concrete structures. In the second paper (Part II), further numerical and experimental verifications on the performance of the proposed SSA in concrete structures will be discussed.

  19. Impacts of structuring the electronic health record: a systematic review protocol and results of previous reviews.

    Science.gov (United States)

    Hyppönen, Hannele; Saranto, Kaija; Vuokko, Riikka; Mäkelä-Bengs, Päivi; Doupi, Persephone; Lindqvist, Minna; Mäkelä, Marjukka

    2014-03-01

    This paper (1) presents the protocol of an on-going systematic literature review on the methods of structuring electronic health record (EHR) data and studying the impacts of implemented structures, thus laying basis for the analysis of the empirical articles (2) describes previous reviews published on the subject and retrieved during the search of bibliographic databases, and (3) presents a summary of the results of previous reviews. Cochrane instructions were exploited to outline the review protocol - phases and search elements. Test searches were conducted to refine the search. The abstracts and/or full texts of review papers captured by the search were read by two of the team members independently, with disagreements first negotiated between them and if necessary eventually resolved in the team meetings. Additional review articles were picked from the reference lists of the reviews included in our search results. The elements defined in the search strategy and analytic framework were converted to a data extraction tool, which was tested by extracting data from the reviews captured by the search. Descriptive analysis of the extracted data was conducted. The 12-stage review protocol that we developed includes definition of the problem, the search strategy and search terms, testing the strategy, conducting the search, updating search from references found, removing duplicates, defining the inclusion and exclusion criteria, exclusion and inclusion of papers, definition of the analytic framework to extract data, extracting data and reporting results. Our searches in fifteen electronic bibliographic databases retrieved 27 reviews, of which 14 were included for full text analysis. Of these, 11 focused on medical and three on nursing record structures. The data structures included forms, ontologies, classifications and terminologies. Some evidence was found on data structure impact on information quality, process quality and efficiency, but not on patients or

  20. Development of an integrated software solution for piezoelectric active-sensing in structural health monitoring

    Science.gov (United States)

    Jacobs, Laura D.; Park, Gyuhae; Farrar, Charles R.

    2007-04-01

    In this study, a novel approach of integrating data interrogation algorithms of active sensing methods for structural health monitoring (SHM) applications, including Lamb wave propagation, impedance method, and sensor-diagnostics, is presented. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MatLab-based user interface called H.O.P.S. (Health Of Plate Structures) was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. This side-by-side comparison of results simplifies the task of identifying the relative effectiveness and sensitivity of each algorithm. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification in a structure.