Sample records for vibration test design

  1. Experimental Design and Validation of an Accelerated Random Vibration Fatigue Testing Methodology


    Yu Jiang(Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua City, Zhejiang Province 321004, China); Gun Jin Yun; Li Zhao; Junyong Tao


    Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a ...

  2. Design and Test of Semi-Active Vibration-Reducing System for Lathe

    Directory of Open Access Journals (Sweden)

    Hongsheng Hu


    Full Text Available In this paper, its theory design, analysis and test system of semi-active vibration controlling system used for precision machine have been done. Firstly, lathe bed and spindle entity were modeled by using UG software; Then modes of the machine bed and the key components of spindle were obtained by using ANSYS software; Finally, harmonic response analysis of lathe spindle under complex load was acquired, which provided a basis of MR damper’s structure optimization design for a certain type of precision machine. In order to prove its effectives, a prototype semi-active vibration controlling lathe with MR damper was developed. Tests have been done, and comparison results between passive vibration isolation equipment and semi-active vibration controlling equipment proved its good performances of MR damper.

  3. Design of Accelerated Reliability Test for CNC Motorized Spindle Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Chen Chao


    Full Text Available Motorized spindle is the key functional component of CNC machining centers which is a mechatronics system with long life and high reliability. The reliability test cycle of motorized spindle is too long and infeasible. This paper proposes a new accelerated test for reliability evaluation of motorized spindle. By field reliability test, authors collect and calculate the load data including rotational speed, cutting force and torque. Load spectrum distribution law is analyzed. And authors design a test platform to apply the load spectrum. A new method to define the fuzzy acceleration factor based on the vibration signal is proposed. Then the whole test plan of accelerated reliability test is done.

  4. Sensor design for outdoor racing bicycle field testing for human vibration comfort evaluation (United States)

    Vanwalleghem, Joachim; De Baere, Ives; Loccufier, Mia; Van Paepegem, Wim


    This paper is concerned with the vibrational comfort evaluation of the cyclist when cycling a rough surface. Outdoor comfort tests have so far only been done through instrumenting the bicycle with accelerometers. This work instruments a racing bicycle with custom-made contact force sensors and velocity sensors to acquire human comfort through the absorbed power method. Comfort evaluation is assessed at the hand-arm and seat interface of the cyclist with the bicycle. By means of careful finite-element analysis for designing the force gauges at the handlebar and the seat combined with precise calibration of both force and velocity sensors, all sensors have proven to work properly. Initial field tests are focused on the proper functioning of the designed sensors and their suitability for vibration comfort measurements. Tests on a cobblestone road reveal that the outcome of the absorbed power values is within the same range as those from laboratory tests found in the literature. This sensor design approach for outdoor testing with racing bicycles may give a new interpretation on evaluating the cyclist's comfort since the vibrational load is not only quantified in terms of acceleration but also in terms of force and velocity at the bicycle-cyclist contact points.

  5. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng


    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  6. 49 CFR 178.985 - Vibration test. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.985 Section 178.985... Testing of Large Packagings § 178.985 Vibration test. (a) General. All rigid Large Packaging and flexible Large Packaging design types must be capable of withstanding the vibration test. (b) Test method. (1) A...

  7. 33 CFR 159.103 - Vibration test. (United States)


    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  8. Designing, modelling and testing of vibration energy harvester with nonlinear stiffness (United States)

    Rubes, Ondrej; Hadas, Zdenek


    This paper is focused on a design of a piezoelectric vibration energy harvester with an additional nonlinear stiffness. Common piezoelectric energy harvesters consist of a cantilever with piezoceramic layers and a tip mass for tuning up the operation frequency. This system is excited by mechanical vibrations and it provides an autonomous source of electrical energy. A linear stiffness of the cantilever has very narrow resonance frequency bandwidth which makes the piezoelectric cantilever sensitive to tuning up of the resonance frequency. It could be tuned only for one narrow vibration frequency bandwidth. The piezoelectric vibration energy harvester with nonlinear stiffness could provide the resonance frequency bandwidth wider and it allows energy harvesting from the wider bandwidth of excitation vibrations. The additional nonlinear stiffness is implemented by using a set of permanent magnets. A simulation and an experiment were performed and the results show a wider resonance bandwidth. However, it depended on direction of vibration frequency sweeping. The frequency bandwidth is more than three times wider but there is only a half resonance amplitude of oscillations. That means that the maximal harvested power is lower but the average harvested power around resonance frequency was higher which was the goal of this research.

  9. Design and Performance Testing of a Novel Three-Dimensional Elliptical Vibration Turning Device

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin


    Full Text Available A novel three-dimensional (3D elliptical vibration turning device which is on the basis of the leaf-spring-flexure-hinges-based (LSFH-based double parallel four-bar linkages (DPFLMs has been proposed. In order to evaluate the performance of the developed 3D elliptical vibration cutting generator (EVCG, the off-line tests were carried out to investigate the stroke, dynamic performance, resolution, tracking accuracy and hysteresis along the three vibration axes. Experimental results indicate that the maximum stroke of three vibration axes can reach up to 26 μm. The working bandwidth can reach up to 1889 Hz. The resolution and hysteresis tests show that the developed 3D EVCG has a good tracking accuracy, relative high resolution and low hysteresis, which is appropriate for micro/nano machining. Kinematical modeling is carried out to investigate the tool vibration trajectory. Experimental results shown that the simulation results agree well with the experimental one, which indicate that the developed 3D EVCG can be used as an option for micro/nano machining.

  10. Design, analysis and testing of a new piezoelectric tool actuator for elliptical vibration turning (United States)

    Lin, Jieqiong; Han, Jinguo; Lu, Mingming; Yu, Baojun; Gu, Yan


    A new piezoelectric tool actuator (PETA) for elliptical vibration turning has been developed based on a hybrid flexure hinge connection. Two double parallel four-bar linkage mechanisms and two right circular flexure hinges were chosen to guide the motion. The two input displacement directional stiffness were modeled according to the principle of virtual work modeling method and the kinematic analysis was conducted theoretically. Finite element analysis was used to carry out static and dynamic analyses. To evaluate the performance of the developed PETA, off-line experimental tests were carried out to investigate the step responses, motion strokes, resolutions, parasitic motions, and natural frequencies of the PETA along the two input directions. The relationship between input displacement and output displacement, as well as the tool tip’s elliptical trajectory in different phase shifts was analyzed. By using the developed PETA mechanism, micro-dimple patterns were generated as the preliminary application to demonstrate the feasibility and efficiency of PETA for elliptical vibration turning.

  11. Benefits of Spacecraft Level Vibration Testing (United States)

    Gordon, Scott; Kern, Dennis L.


    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  12. Ship Vibration Design Guide (United States)


    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  13. Design and Execution of a Test Rig for Studying the Vibrations of a Gearbox

    Directory of Open Access Journals (Sweden)

    Zoltan Korka


    Full Text Available The current trend in the construction of gearboxes, regarding the speed increase, favours the increase of the dynamic loads which are accompanying the operation of these kinds of machines. The phenomena of dynamic contact like frictions, collisions and shocks which are taking place in cinematic couples, engines and mechanisms during their movement, are generating vibrations in a wide range of frequencies.

  14. 49 CFR 178.819 - Vibration test. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  15. 14 CFR 33.83 - Vibration test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  16. 14 CFR 33.43 - Vibration test. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  17. Effectiveness of an Occupational Health Intervention Program to Reduce Whole Body Vibration Exposure: An Evaluation Study With a Controlled Pretest-Post-test Design

    NARCIS (Netherlands)

    Tiemessen, Ivo J. H.; Hulshof, Carel T. J.; Frings-Dresen, Monique H. W.


    Background An effective intervention program aiming to reduce whole body vibration (WBV) exposure at work will reduce the number of low back complaints in the near future. Methods An evaluation study with a controlled pretest-post-test design. Nine companies and 126 drivers were included in the

  18. Design of a nonlinear torsional vibration absorber (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  19. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance (United States)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan


    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  20. High force vibration testing with wide frequency range (United States)

    Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn


    A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.

  1. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)


    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  2. Peri-prosthetic fracture vibration testing

    Energy Technology Data Exchange (ETDEWEB)

    Cruce, Jesse R [Los Alamos National Laboratory; Erwin, Jenny R [Los Alamos National Laboratory; Remick, Kevin R [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Menegini, R. Michael [INDIANA UNIV.; Racanelli, Joe [STRYKER ORTHOPARDICS


    The purpose of this study was to establish a test setup and vibration analysis method to predict femoral stem seating and prevent bone fracture using accelerometer and force response data from an instrumented stem and impactor. This study builds upon earlier studies to identify a means to supplement a surgeon's tactile and auditory senses by using damage identification techniques normally used for civil and mechanical structures. Testing was conducted using foam cortical shell sawbones prepared for stems of different geometries. Each stem was instrumented with an accelerometer. Two impactor designs were compared: a monolithic impactor and a two-piece impactor, each with an integrated load cell and accelerometer. Acceleration and force measurements were taken in the direction of impaction. Comparisons between different methods of applying an impacting force were made, including a drop tower and a surgical hammer. The effect of varying compliance on the data was also investigated. The ultimate goal of this study was to assist in the design of an integrated portable data acquisition system capable of being used in future cadaveric testing. This paper will discuss the experimental setup and the subsequent results of the comparisons made between impactors, prosthetic geometries, compliances, and impact methods. The results of this study can be used for both future replicate testing as well as in a cadaveric environment.

  3. Design of Wind Turbine Vibration Monitoring System

    Directory of Open Access Journals (Sweden)

    Shoubin Wang


    Full Text Available In order to ensure safety of wind turbine operation and to reduce the occurrence of faults as well as to improve the reliability of wind turbine operation, a vibration monitoring for wind turbine is developed. In this paper, it analyses the enlargement of all the parts of the structure and the working mechanism, the research method of wind turbine operation vibration is introduced, with the focus being the use of the sensor principle. Finally the hardware design and software of this system is introduced and the main function of this system is described, which realizes condition monitoring of the work state of wind turbines.

  4. Nanoscale piezoelectric vibration energy harvester design (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin


    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  5. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande


    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  6. Scanning slit for HIE-ISOLDE: vibrations test (linear motion actuator from UHV design, MAXON brushless motor, speed = 10 mm/s)

    CERN Document Server

    Bravin, E; Sosa, A


    This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving in and out of beam path in the HIE-ISOLDE short box prototype. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), and it was adapted to be driven by a brushless EC motor from MAXON. The speed of the scanning blade during the tests was 10 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 40 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements...

  7. Scanning slit for HIE-ISOLDE: vibrational test (linear motion actuator from UHV design, speed = 2.5 mm/s)

    CERN Document Server

    Bravin, E; Sosa, A


    This report summarizes the results of a series of tests performed on the prototype HIE-ISOLDE diagnostic box (HIE-DB) regarding the vibrations and drifts in the transverse position of the scanning blade while moving inside or outside the box. To monitor the transverse position of the blade, a series of 0.1 mm diameter holes were drilled on it and their positions were tracked with an optical system. The linear motion actuator was acquired from UHV design (model LSM38-150-SS), is driven by a stepper motor and has all the guiding mechanisms outside vacuum. The maximum speed of the scanning blade during the tests was 2.5 mm/s. The transverse movement of the slit in the direction perpendicular to the movement was lower than 50 m, and is dominated by the displacement of the contact point of the applied force on the lead-screw. An offset on the slit position was observed while changing the direction of movement of the blade, its amplitude being of the order of 30 m. The amplitudes of the displacements of the transve...

  8. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing


    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun


    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  9. The Shock Vibration Bulletin. Part 3. Isolation and Damping, Vibration Test Criteria, and Vibration Analysis and Test (United States)


    fatigae equivalent test time of 45-mimates. 1. BACKGROUND subjected to both vibration and loose cargo testing as well an the type and amount of...Environmental Test the track laying environment. Nethods, 10 March 1975. 8. FUTURE EFFORTS 11. Soci, Darrell F., Fatigae Life Estimation Techniques, Technical

  10. 46 CFR 162.050-37 - Vibration test. (United States)


    ... 46 Shipping 6 2010-10-01 2010-10-01 false Vibration test. 162.050-37 Section 162.050-37 Shipping...: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Pollution Prevention Equipment § 162.050-37 Vibration test. (a... and each control of a separator must be subjected to continuous sinusoidal vibration in each of the...

  11. Sound insulation and vibration tests for lightweight steel framing floors


    Shi, Wanqing; Edfast, Fredrik; Ågren, Anders


    An experimental study of sound insulation and vibrations of lightweight steel framing floors due to different floor construction set up were performed. Floors with 3m, 5m and 7.2m span were tested. The impact and airborne sound insulation for 3m span floor were measured based on ISO 140 in lab condition. Vibration tests were carried out on all three different spans. The vibration transmission loss of the structure was determined from the surface vibration measurements. The fundamental natural...

  12. Adaptive and robust active vibration control methodology and tests

    CERN Document Server

    Landau, Ioan Doré; Castellanos-Silva, Abraham; Constantinescu, Aurelian


    This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLAB®routines, Simulink® diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material. Thre...

  13. Ambient Vibration Test on Reinforced Concrete Bridges

    Directory of Open Access Journals (Sweden)

    Idris Nurul Shazwin


    Full Text Available An investigation was carried out to determine dynamic characteristic of reinforced concrete (RC bridges by using ambient vibration test (AVT. The ambient vibration sources on bridges may come from traffic, wind, wave motion and seismic events. AVT describes the dynamic characteristics of the bridge and ground by measuring the natural frequencies using highly sensitive seismometer sensor. This test is beneficial due to light weight equipment and smaller number of operator required, cheap and easy to be handled. It is able to give a true picture of the bridge dynamic behavior without any artificial force excitation when vibration data is recorded. A three-span reinforced concrete bridge located in Sri Medan, Batu Pahat, Johor was measured by using microtremor equipment consist of three units of 1 Hz eigenfrequency passive sensors used in this test was performed in normal operating condition without excitation required from any active sources or short period noise perturbations. Ten measurements were conducted on the bridge deck and ten measurements on the ground surface in order to identify the natural frequencies of the bridge. Several peak frequencies were identified from three components of Fourier Amplitude Spectra (FAS in transverse (North-South, longitudinal (East-West and vertical (Up-Down direction as well as squared average Horizontal to Vertical Spectral Ratio (HVSR of ground response, computed by using Geopsy software. From the result, it was expected the bridge have five vibration modes frequencies in the range of 1.0 Hz and 7.0 Hz with the first two modes in the transverse and longitudinal direction having a frequency 1.0 Hz, the third mode is 2.2 Hz in transverse direction, fourth and fifth mode is 5.8 Hz and 7.0 Hz. For ground natural frequencies are in range 1.0 Hz to 1.3 Hz for North-South direction and 1.0 Hz to 1.6 Hz for East-West direction. Finally the results are compared with several empirical formulas for simple

  14. Force Limited Random Vibration Test of TESS Camera Mass Model (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.


    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  15. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.


    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  16. Damping Estimation Using Free Decays and Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Magalhães, Filipe; Brincker, Rune; Cunha, Álvaro


    The accurate identification of modal damping ratios of Civil Engineering structures is a subject of major importance, as the amplitude of structural vibrations in resonance is inversely proportional to these coefficients. Their experimental identification can be performed either from ambient...... vibration or from free vibration tests. In the last case, the structural response after application of an impulse or after the application of harmonic loads can be used. Ambient vibration tests have the strong advantage of being more practical and economical. However, recent applications of both approaches...

  17. Test Operations Procedure (TOP) 01-2-603 Rotorcraft Laboratory Vibration Test Schedules (United States)


    Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-2-603 Rotorcraft Laboratory Vibration Test Schedules...This TOP provides Laboratory Vibration Test Schedules (LVTS) for selected rotary wing aircraft. The LVTS presented in this TOP were developed from... vibration environment of a given rotary wing platform in a laboratory setting. 15. SUBJECT TERMS Laboratory Vibration Test Schedule (LVTS

  18. A new compound control method for sine-on-random mixed vibration test (United States)

    Zhang, Buyun; Wang, Ruochen; Zeng, Falin


    Vibration environmental test (VET) is one of the important and effective methods to provide supports for the strength design, reliability and durability test of mechanical products. A new separation control strategy was proposed to apply in multiple-input multiple-output (MIMO) sine on random (SOR) mixed mode vibration test, which is the advanced and intensive test type of VET. As the key problem of the strategy, correlation integral method was applied to separate the mixed signals which included random and sinusoidal components. The feedback control formula of MIMO linear random vibration system was systematically deduced in frequency domain, and Jacobi control algorithm was proposed in view of the elements, such as self-spectrum, coherence, and phase of power spectral density (PSD) matrix. Based on the excessive correction of excitation in sine vibration test, compression factor was introduced to reduce the excitation correction, avoiding the destruction to vibration table or other devices. The two methods were synthesized to be applied in MIMO SOR vibration test system. In the final, verification test system with the vibration of a cantilever beam as the control object was established to verify the reliability and effectiveness of the methods proposed in the paper. The test results show that the exceeding values can be controlled in the tolerance range of references accurately, and the method can supply theory and application supports for mechanical engineering.

  19. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.


    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  20. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft (United States)

    Cox, T. H.; Gilyard, G. B.


    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  1. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li


    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  2. Vibration-based testing of bolted joints

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Sah, Si Mohamed; Fidlin, Alexander


    In recent pilot studies we have started investigating how to possibly use measured flexural (i.e. transverse/bending) vibrations, induced by bolt-tapping, to estimate bolt tightness. Some of the vibration features we investigated showed strong correlation with bolt tightness. For example, the low...... to bolt tension, but also to slenderness ratio. Thus, if only the natural frequency feature were to be used for estimating bolt tension, accuracy will drop off for the short and thick bolts that are often used in critical joints....

  3. Used fuel rail shock and vibration testing options analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steven B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Best, Ralph E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Klymyshyn, Nicholas A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jensen, Philip J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maheras, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges

  4. Design of the Active Elevon Rotor for Low Vibration (United States)

    Fulton, Mark V.; Rutkowski, Michael (Technical Monitor)


    Helicopter fuselages vibrate more than desired, and traditional solutions have limited effectiveness and can impose an appreciable weight penalty. Alternative methods of combating high vibration, including Higher Harmonic Control (HHC) via harmonic swashplate motion and Individual Blade Control (IBC) via active pitch links, have been studied for several decades. HHC via an on-blade control surface was tested in 1977 on a full scale rotor using a secondary active swashplate and a mechanical control system. Recent smart material advances have prompted new research into the use of on-blade control concepts. Recent analytical studies have indicated that the use of on-blade control surfaces produces vibration reduction comparable to swashplate-based HHC but for less power. Furthermore, smart materials (such as piezoceramics) have been shown to provide sufficient control authority for preliminary rotor experiments. These experiments were initially performed at small scale for reduced tip speeds. More recent experiments have been conducted at or near full tip speeds, and a full-scale active rotor is under development by Boeing with Eurocopter et al. pursuing a similarly advanced full-scale implementation. The US Army Aeroflightdynamics Directorate has undertaken a new research program called the Active Elevon Rotor (AER) Focus Demo. This program includes the design, fabrication, and wind. tunnel testing of a four-bladed, 12.96 ft diameter rotor with one or two on-blade elevons per blade. The rotor, which will be Mach scaled, will use 2-5/rev elevon motion for closed-loop control and :will be tested in late 2001. The primary goal of the AER Focus Demo is the reduction of vibratory hub loads by 80% and the reduction of vibratory blade structural loads. A secondary goal is the reduction of rotor power. The third priority is the measurement and possible reduction of Blade Vortex Interaction (BVI) noise. The present study is focused on elevon effectiveness, that is, the elevon

  5. Design of vibration sensor based on fiber Bragg grating (United States)

    Zhang, Zhengyi; Liu, Chuntong


    Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.

  6. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong


    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  7. High Frequency Vibration Based Fatigue Testing of Developmental Alloys (United States)

    Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.

    Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.

  8. Optimum design of a gearbox for low vibration (United States)

    Inoue, Katsumi; Townsend, Dennis P.; Coy, John J.


    A computer program was developed for designing a low vibration gearbox. The code is based on a finite element shell analysis, a modal analysis, and a structural optimization method. In the finite element analysis, a triangular shell element with 18 degrees-of-freedom is used. In the optimization method, the overall vibration energy of the gearbox is used as the objective function and is minimized at the exciting frequency by varying the finite element thickness. Modal analysis is used to derive the sensitivity of the vibration energy with respect to the design variable. The sensitivity is representative of both eigenvalues and eigenvectors. The optimum value is computed by the gradient projection method and a unidimensional search procedure under the constraint condition of constant weight. The computer code is applied to a design problem derived from an experimental gearbox in use at the NASA Lewis Research Center. The top plate and two side plates of the gearbox are redesigned and the contribution of each surface to the total vibration is determined. Results show that optimization of the top plate alone is effective in reducing total gearbox vibration.

  9. A New Large Vibration Test Facility Concept for the James Webb Space Telescope (United States)

    Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug


    The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.

  10. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur


    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number:

  11. Random vibration test of Mars Exploration Rover spacecraft (United States)

    Scharton, T.; Lee, D.


    The primary objective of the random vibration test was to identify any hardware problems, which might compromise the mission. The test objectives, configuration, and requirements are briefly described in this presentation, and a representative sample of the measured data is presented.

  12. 49 CFR Appendix C to Part 173 - Procedure for Base-level Vibration Testing (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Procedure for Base-level Vibration Testing C... Base-level Vibration Testing Base-level vibration testing shall be conducted as follows: 1. Three... platform. 4. Immediately following the period of vibration, each package shall be removed from the platform...

  13. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.


    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...... peaks in the nonlinear frequency response for a large range of forcing amplitudes. An analytical tuning procedure is developed and provides the load-deflection characteristic of the NLTVA. Based on this prescribed relation, the NLTVA design is performed by two different approaches, namely thanks to (i...

  14. Effect of structural design on traffic-induced building vibrations

    DEFF Research Database (Denmark)

    Persson, Peter; Andersen, Lars Vabbersgaard; Persson, Kent


    are related to the type of construction material (if it would be a light or heavy structure), and to the slab thickness. The finite element method is employed for discretizing the building structure that is coupled to a semi-analytical model considering a layered ground. © 2017 The Authors. Published......Population growth and urbanization results in densified cities, where new buildings are being built closer to existing vibration sources such as road-, tram- and rail traffic. In addition, new transportation systems are constructed closer to existing buildings. Potential disturbing vibrations...... properties, and type and size of the building are governing factors. In the paper, a study is presented aiming at investigating the influence of various parameters of the building's structural design on vibration levels in the structure caused by ground surface loads, e.g. traffic. Parameters studied...

  15. Vibration Challenges in the Design of NASA's Ares Launch Vehicles (United States)

    Ryan, Stephen G.


    This paper focuses on the vibration challenges inherent in the design of NASA s Ares launch vehicles. A brief overview of the launch system architecture is provided to establish the context for the discussion. Following this is a general discussion of the design considerations and analytical disciplines that are affected by vibration. The first challenge discussed is that of coupling between the vehicle flight control system and fundamental vibrational modes of the vehicle. The potential destabilizing influence of the vibrational dynamics is described along with discussion of the typical methods employed to overcome this issue. Next is a general discussion of the process for developing the design loads for the primary structure. This includes quasi-steady loads and dynamic loads induced by the structural dynamic response. The two principal parts of this response are the gust induced responses of the lower frequency modes and the buffet induced responses of the higher frequency modes. Structural dynamic model validation will also be addressed. Following this, discussions of three somewhat unique topics of Pogo Instability, Solid Booster Thrust Oscillation, and Liquid Rocket Engine Turbopump Rotordynamic Stability and Response are presented.

  16. Minigenerator - Analysis, Design and Tests

    Directory of Open Access Journals (Sweden)

    Pavel Fiala


    Full Text Available The paper presents results of the analysis of the vibrational generator. The paper deals with the design of a vibrational generator that is used as a power supply for independent electric circuits. The vibrational generator can be used in the various areas, e.g. traffic, electronics, special-purpose machines, and robotics. The proposed design employs magnetic damping of the core movement. It was numerically evaluated and it was shown that it was possible to obtain significantly larger output voltage and output power than in experimental settings used previously [1].

  17. Sound & Vibration 20 Design Guidelines for Health Care Facilities

    CERN Document Server

    Tocci, Gregory; Cavanaugh, William


    Sound, vibration, noise and privacy have significant impacts on health and performance. As a result, they are recognized as essential components of effective health care environments. However, acoustics has only recently become a prominent consideration in the design, construction, and operation of healthcare facilities owing to the absence, prior to 2010, of clear and objective guidance based on research and best practices. Sound & Vibration 2.0 is the first publication to comprehensively address this need. Sound & Vibration 2.0 is the sole reference standard for acoustics in health care facilities and is recognized by: the 2010 FGI Guidelines for the Design and Construction of Health Care Facilities (used in 60 countries); the US Green Building Council’s LEED for Health Care (used in 87 countries); The Green Guide for Health Care V2.2; and the International Code Council (2011). Sound & Vibration 2.0 was commissioned by the Facility Guidelines Institute in 2005, written by the Health Care Acous...

  18. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.


    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  19. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units (United States)

    Van Dyke, Michael B.


    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  20. An equipment test for grading lumber by transverse vibration technique

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigo Carreira


    Full Text Available Due to the great variability of its mechanical properties, the rational use of lumber for structural purposes is directly conditioned to its grading. There are several techniques available for grading structural lumber. The most relevant one is the transverse vibration technique which obtained reliable results in non-destructive evaluation of lumber. The purpose of this work is to present the bases for the mechanical grading of lumber and the results of the calibration test of the frst transverse vibration equipment developed in Brazil. In this research 30 beams of cupiúba (Goupia glabra with nominal dimensions of 5 cm X 10 cm X 300 cm, were used. The tests were accomplished at the Wood and Timber Structures Laboratory (LaMEM of the University of São Paulo (USP. The results showed a strong correlation between the elasticity modulus measured by the static bending test and the one obtained with the transverse vibration equipment, showing the high reliability of the vibration method for the grading of structural lumber. A determination coeffcient (R² of 0.896 was obtained with the Brazilian equipment, showing that it can be used in the grading of lumber.

  1. Vibration Testing of NASA's Time Machine Near-Infrared Spectrograph (United States)

    Jentsch, M.; Knecht, M.; Jollet, D.; Kommer, A.


    "NASA, ESA, and the Canadian Space Agency (CSA) are collaborating to develop JWST, a successor to the Hubble Space Telescope and enable observation and measurement of infrared wavelengths. JWST will be able to study every phase in the evolution of the Universe in great detail - from the first stars and galaxies to form after the Big Bang to the formation of planetary systems in our own Milky Way galaxy today. This will be made possible by JWST's huge primary mirror (which, with 18 hexagonal segments spanning a total of six and a half metres in diameter, will be the largest telescope in space) and its suite of four highly- sensitive scientific instruments, one of which is NIRSpec, able to detect the faintest radiation from the most distant galaxies.Mostly made from silicon carbide (SiC100), NIRSpec weighs only 200 kilograms and will operate at temperatures of -233°C as JWST orbits 1.5 million kilometres away from Earth. Once in space, the telescope and its instruments will remain in operation for up to 10 years." [4]The NIRSpec Optical Assembly consists of a ceramic optical bench supported by a set of hybrid kinematic mounts, several high performance optical subassemblies (e.g. the three mirror anastigmats (TMAs) also made of silicon carbide), mechanisms and a micro shutter assembly (MSA) which allows a detailed selection of at least 100 objects simultaneously at various spectral resolutions.Besides many other environmental testing the structural mechanics test campaign was divided into two parts. The qualification has been performed with the ETU (engineering test unit) consisting of the optical bench including the mounts and all ceramic parts in flight like configuration. A part of the subassemblies has been substituted by flight representative design models. Sine and random vibration qualification runs in three spatial axes have been performed to fulfil the requirements derived for the spacecraft configuration to cover Ariane 5 launch loads and the JWST program

  2. Vibration Analysis and Design of a Structure Subjected to Human Walking Excitations

    Directory of Open Access Journals (Sweden)

    M. Setareh


    Full Text Available Annoying building floor vibrations have become a serious serviceability issue. This is mainly due to decrease in the system mass resulting from the use of higher strength materials; use of computer-assisted design and the Load and Resistance Factor Design Method to optimize the structure based on the strength requirements; fewer partitions and more innovative designs by architects achieving long, column free spans resulting in a reduction in the natural frequency and damping. This paper provides details of the vibration analysis and design of a novel office building. Three-dimensional computer models of the structure were created and various modifications were made to the original structure, designed based on static loads, to reduce the possible excessive floor vibrations when subjected to walking excitations. Tuned mass dampers were also designed as a back-up vibration control system. A series of dynamic tests were conducted on the building floor to identify the dynamic properties of the structure and these were then used to update the original computer model. Finally, various forcing functions representing human walks and the updated computer model of the structure were used to evaluate the accuracy of the walking excitation force models to predict the structural response. Conclusions are made on the validity of each forcing function studied here.

  3. Design of an Ultrasonic Elliptic-Vibration Shoe and Its Performance in Ultrasonic Elliptic-Vibration-Shoe Centerless Grinding (United States)

    Fan, Yufeng; Wu, Yongbo; Kato, Masana; Tachibana, Toru; Syoji, Katsuo; Kuriyagawa, Tsunemoto

    We describe the design of an ultrasonic elliptic-vibration shoe and its performance in ultrasonic elliptic-vibration-shoe centerless grinding. First, the vibration modes of the shoe for the bending and longitudinal directions are discussed and determined from the point of view of fixing the support of the shoe. Then the structure and dimensions of the shoe are determined by FEM (Finite Element Method) analysis. In order to clarify the performance of the produced shoe, an evaluation apparatus is built. The elliptic motions under different applied voltages are investigated using laser vibrometers. Finally, workpiece rotational motion control tests and actual grinding operations are carried out. As a result, it is clarified that the workpiece rotational speed changes linearly with variation of the applied voltage. This indicates that the workpiece rotational motion can be precisely controlled by the elliptic motion of the shoe. In addition, the workpiece roundness was clearly improved from an initial value of 25µm to a final value of 0.64µm after grinding, indicating that the produced shoe performed well in actual grinding operations.

  4. Modal confidence factor in vibration testing (United States)

    Ibrahim, S. R.


    The modal confidence factor (MCF) is a number calculated for every identified mode for a structure under test. The MCF varies from 0.00 for a distorted nonlinear, or noise mode to 100.0 for a pure structural mode. The theory of the MCF is based on the correlation that exists between the modal deflection at a certain station and the modal deflection at the same station delayed in time. The theory and application of the MCF are illustrated by two experiments. The first experiment deals with simulated responses from a two-degree-of-freedom system with 20%, 40%, and 100% noise added. The second experiment was run on a generalized payload model. The free decay response from the payload model contained 22% noise.

  5. 30 CFR 27.39 - Tests to determine resistance to vibration. (United States)


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests to determine resistance to vibration. 27... determine resistance to vibration. (a) Laboratory tests for reliability and durability. Components... two separate vibration tests, each of one-hour duration. The first test shall be conducted at a...

  6. Design and experimental study of a velocity amplified electromagnetic vibration energy harvester (United States)

    Klein, Jackson A.; Zuo, Lei


    Dedicated sensors are widely used throughout many industries to monitor everyday operations, maintain safety and report performance characteristics. In order to adopt a more sustainable solution, intensive research is being conducted for self-powered sensing. To enable sensors to power themselves, harvesting energy from environmental vibration has been widely studied, however, its overall effectiveness remains questionable due to small vibration amplitudes and thus limited harvestable energy density. This paper addresses the issue by proposing a novel vibration energy harvester in which a metal compliant mechanism frame is used to house both a linear electromagnetic generator and proof mass. Due to the compliant mechanism, the proposed energy harvester is capable of amplifying machine vibration velocity for a dedicated electromagnetic generator, largely increasing the energy density. The harvester prototype is also fabricated and experimentally characterized to verify its effectiveness. When operating at its natural frequency in a low base amplitude, 0.001 in (25.4μm) at 19.4 Hz, during lab tests, the harvester has been shown to produce up to 0.91 V AC open voltage, and a maximum power of 2 mW, amplifying the relative proof mass velocity by approximately 5.4 times. In addition, a mathematical model is created based on the pseudo-rigid-body dynamics and the analysis matches closely with experiments. The proposed harvester was designed using vibration data from nuclear power plants. Further steps for improving such a design are given for broader applications.

  7. Online vibration-based crack detection during fatigue testing

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, B.; Vecchio, A.; Auweraer, H. van der [LMS International, Heverlee (Belgium); Mevel, L. [INRIA, Rennes (France); Vanlanduit, S.; Guillaume, P. [Dept. of Mechanical Engineering, VUB, Brussels (Belgium); Goursat, M. [Rocquencourt, INRIA, Le Chesnay (France)


    When performing fatigue tests, it is essential to monitor the degradation of the structure with an increasing number of fatigue cycles. In this article, a vibration-based damage detection method will be proposed. Such a method has the advantage that it operates online with the fatigue test. Especially for structures with very high fatigue strength, it is important that the test does not have to be interrupted. The damage detection method that will be used is based on a residual generated from a stochastic subspace identification method. The basic idea is that a model for the undamaged structure is identified and that, afterwards, vibration measurements from a possibly damaged structure are confronted with this model. A statistical local approach hypothesis testing is used to assess the deviation of the new data from the nominal model. After introducing the damage detection method, its performance will be illustrated on data from a fatigue experiment. The method will be compared to other linear and non-linear vibration-based damage detection methods. (orig.)

  8. Regression analysis application for designing the vibration dampers

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov


    Full Text Available Multi-frequency vibration dampers protect air power lines and fiber optic communication channels against Aeolian vibrations. To have a maximum efficiency the natural frequencies of dampers should be evenly distributed over the entire operating frequency range from 3 to 150 Hz. A traditional approach to damper design is to investigate damper features using the fullscale models. As a result, a conclusion on the damper capabilities is drawn, and design changes are made to achieve the required natural frequencies. The article describes a direct optimization method to design dampers.This method leads to a clear-cut definition of geometrical and mass parameters of dampers by their natural frequencies. The direct designing method is based on the active plan and design experiment.Based on regression analysis, a regression model is obtained as a second order polynomial to establish unique relation between the input (element dimensions, the weights of cargos and the output (natural frequencies design parameters. Different problems of designing dampers are considered using developed regression models.As a result, it has been found that a satisfactory accuracy of mathematical models, relating the input designing parameters to the output ones, is achieved. Depending on the number of input parameters and the nature of the restrictions a statement of designing purpose, including an optimization one, can be different when restrictions for design parameters are to meet the conflicting requirements.A proposed optimization method to solve a direct designing problem allows us to determine directly the damper element dimensions for any natural frequencies, and at the initial stage of the analysis, based on the methods of nonlinear programming, to disclose problems with no solution.The developed approach can be successfully applied to design various mechanical systems with complicated nonlinear interactions between the input and output parameters.

  9. Advanced Vibration Analysis Tool Developed for Robust Engine Rotor Designs (United States)

    Min, James B.


    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo- Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using natural-frequency curve veerings to identify ranges of operating conditions (rotational speeds and engine orders) in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued.

  10. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK


    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  11. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility (United States)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.


    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  12. Random Vibration Testing of Advanced Wet Tantalum Capacitors (United States)

    Teverovsky, Alexander


    Advanced wet tantalum capacitors allow for improved performance of power supply systems along with substantial reduction of size and weight of the systems that is especially beneficial for space electronics. Due to launch-related stresses, acceptance testing of all space systems includes random vibration test (RVT). However, many types of advanced wet tantalum capacitors cannot pass consistently RVT at conditions specified in MIL-PRF-39006, which impedes their use in space projects. This requires a closer look at the existing requirements, modes and mechanisms of failures, specifics of test conditions, and acceptance criteria. In this work, different lots of advanced wet tantalum capacitors from four manufacturers have been tested at step stress random vibration conditions while their currents were monitored before, during, and after the testing. It has been shown that the robustness of the parts and their reliability are mostly due to effective self-healing processes and limited current spiking or minor scintillations caused by RVT do not increase the risk of failures during operation. A simple model for scintillations events has been used to simulate current spiking during RVT and optimize test conditions. The significance of scintillations and possible effects of gas generation have been discussed and test acceptance criteria for limited current spiking have been suggested.

  13. Vibration test on KMRR reactor structure and primary cooling system piping

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Seung Hoh; Kim, Tae Ryong; Park, Jin Hoh; Park, Jin Suk; Ryoo, Jung Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    Most equipments, piping systems and reactor structures in nuclear power plants are subjected to flow induced vibration due to high temperature and high pressure coolant flowing inside or outside of the equipments, systems and structures. Because the flow induced vibration sometimes causes significant damage to reactor structures and piping systems, it is important and necessary to evaluate the vibration effect on them and to prove their structural integrity. Korea Multipurpose Research Reactor (KMRR) being constructed by KAERI is 30 MWt pool type research reactor. Since its main structures and piping systems were designed and manufactured in accordance with the standards and guidelines for commercial nuclear power plant, it was decided to evaluate their vibratory response in accordance with the standards and guidelines for commercial NPP. The objective of this vibration test is the assessment of vibration levels of KMRR reactor structure and primary cooling piping system for their structural integrity under the steady-state or transient operating condition. 38 figs, 14 tabs, 2 refs. (Author).

  14. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng


    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  15. Vibration and Acoustic Test Facility (VATF): User Test Planning Guide (United States)

    Fantasia, Peter M.


    Test process, milestones and inputs are unknowns to first-time users of the VATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  16. Vibration and thermal vacuum qualification test results for a low-voltage tungsten-halogen light (United States)

    Sexton, J. Andrew


    The results of a space flight qualification test program for a low-voltage, quartz tungsten-halogen light are presented. The test program was designed to qualify a halogen light for use in the Pool Boiling Experiment, a Get Away Special (GAS) payload that will be flown in the space shuttle payload bay. Vibration and thermal vacuum tests were performed. The test results indicated that the halogen light will survive the launch and ascent loads, and that the convection-free environment associated with the GAS payload system will not detrimentally affect the operation of the halogen light.

  17. Modal vibration testing of the DVA-1 radio telescope (United States)

    Byrnes, Peter W. G.; Lacy, Gordon


    The Dish Verification Antenna 1 (DVA-1) is a 15m aperture offset Gregorian radio telescope featuring a rim-supported single piece molded composite primary reflector on an altitude-azimuth pedestal mount. Vibration measurements of the DVA-1 telescope were conducted over three days in October 2014 by NSI Herzberg engineers. The purpose of these tests was to measure the first several natural frequencies of the DVA-1 telescope. This paper describes the experimental approach, in particular the step-release method, and summarizes some interesting results, including unexpectedly high damping of the first mode over a narrow range of zenith angles.

  18. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang


    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  19. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering


    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  20. Design and fabrication of a double-sided piezoelectric transducer for harvesting vibration power

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wei-Tsai; Chen, Ying-Chung [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Kao, Kuo-Sheng [Department of Computer and Communication, Shu-Te University, Kaohsiung, Taiwan, ROC (China); Chu, Yu-Hsien [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC (China); Cheng, Chien-Chuan, E-mail: [Department of Electronic Engineering, De Lin Institute of Technology, Taipei, Taiwan, ROC (China)


    This investigation examines a means of integrating high-performance ZnO piezoelectric thin films with a flexible stainless steel substrate (SUS304) to fabricate a double-sided piezoelectric transducer for vibration-energy harvesting applications. The double-sided piezoelectric transducer is constructed by depositing ZnO piezoelectric thin films on both the front and the back sides of the SUS304 substrate. The titanium and platinum layers were deposited using a dual-gun DC sputtering system between the ZnO piezoelectric thin film and the back side of the SUS304 substrate. The scanning electron microscopy and X-ray diffraction of ZnO piezoelectric films reveal a rigid surface structure and a highly c-axis-preferring orientation. To fabricate a transducer with a low resonant frequency, a tip-mass of 0.5 g and a vibration-area of 1 cm{sup 2} are designed, based on the cantilever vibration theory. The maximum open circuit voltage of the power transducer is approximately 18 V. After rectification and filtering through a 33 nF capacitor, a specific power output of 1.31 μW/cm{sup 2} is obtained from the transducers with a load resistance of 6 MΩ. The variation of the power output of ± 0.001% is obtained after 24-hour continuous test. - Highlights: ► A double-sided piezoelectric transducer is fabricated with the ZnO thin films. ► Vibrated frequency of a double-sided transducer is designed and presented. ► A maximum output power of 3.23 μW/cm{sup 2} is obtained under turbulent vibration.

  1. Theoretical and Numerical Experiences on a Test Rig for Active Vibration Control of Mechanical Systems with Moving Constraints

    Directory of Open Access Journals (Sweden)

    M. Rinchi


    Full Text Available Active control of vibrations in mechanical systems has recently benefited of the remarkable development of robust control techniques. These control techniques are able to guarantee performances in spite of unavoidable modeling errors. They have been successfully codified and implemented for vibrating structures whose uncertain parameters could be assumed to be time-invariant. Unfortunately a wide class of mechanical systems, such as machine tools with carriage motion realized by a ball-screw, are characterized by time varying modal parameters. The focus of this paper is on modeling and controlling the vibrations of such systems. A test rig for active vibration control is presented. An analytical model of the test rig is synthesized starting by design data. Through experimental modal analysis, parametric identification and updating procedures, the model has been refined and a control system has been synthesized.

  2. Solar Ultraviolet Magnetograph Investigation (SUMI) Component Responses to Payload Vibration Testing (United States)

    Hunt, Ronald A.


    Vibration testing of SUMI was performed at both the experiment and payload levels. No accelerometers were installed inside the experiment during testing, but it is certain that component responses were very high. The environments experienced by optical and electronic components in these tests is an area of ongoing concern. The analysis supporting this presentation included a detailed finite element model of the SUMI experiment section, the dynamic response of which, correlated well with accelerometer measurements from the testing of the experimental section at Marshall Space Flight Center. The relatively short timeframe available to complete the task and the limited design information available was a limitation on the level of detail possible for the non-experiment portion of the model. However, since the locations of interest are buried in the experimental section of the model, the calculated responses should be enlightening both for the development of test criteria and for guidance in design.

  3. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design (United States)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao


    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations

  4. Analytical design method of a device for ultrasonic elliptical vibration cutting. (United States)

    Huang, Weihai; Yu, Deping; Zhang, Min; Ye, Fengfei; Yao, Jin


    Ultrasonic elliptical vibration cutting (UEVC) is effective in ultraprecision diamond cutting of hard-brittle materials and ferrous metals. However, its design is quite empirical and tedious. This paper proposes an analytical design method for developing the UEVC device which works at the Flexural-Flexural complex-mode to generate the elliptical vibration. For such UEVC device, the resonant frequencies of the two flexural vibrations are required to be the same. In addition, the nodal points of the two flexural vibrations should be coincident so that the device can be clamped without affecting the vibrations. Based on the proposed analytical design method, an UEVC device was first designed. Modal analysis of the designed UEVC device was performed by using the finite element method, which shows that the resonant frequencies coincide well with the targeted ones. Then a prototype UEVC device was fabricated, and its vibration characteristics were measured by an impedance analyzer and a laser displacement sensor. Experimental results indicate that the designed UEVC device can generate elliptical vibration with the resonant frequencies closed to the target ones. In addition, the vibration trajectory can be precisely tuned by adjusting the phase difference and the amplitude of the applied voltage. Simulation and experimental results validated the effectiveness of the analytical design method.

  5. Design Driven Testing Test Smarter, Not Harder

    CERN Document Server

    Stephens, M


    The groundbreaking book Design Driven Testing brings sanity back to the software development process by flipping around the concept of Test Driven Development (TDD) - restoring the concept of using testing to verify a design instead of pretending that unit tests are a replacement for design. Anyone who feels that TDD is "Too Damn Difficult" will appreciate this book. Design Driven Testing shows that, by combining a forward-thinking development process with cutting-edge automation, testing can be a finely targeted, business-driven, rewarding effort. In other words, you'll learn how to test

  6. Practical design of a nonlinear tuned vibration absorber

    DEFF Research Database (Denmark)

    Grappasonni, C.; Habib, G.; Detroux, T.


    The aim of the paper is to develop a new nonlinear tuned vibration absorber (NLTVA) capable of mitigating the vibrations of nonlinear systems which are known to exhibit frequency-energy-dependent oscillations. A nonlinear generalization of Den Hartog's equal-peak method is proposed to ensure equal...

  7. Design of a Long-Stroke Noncontact Electromagnetic Actuator for Active Vibration Isolation (United States)

    Banerjee, Bibhuti; Allaire, Paul E.


    A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.

  8. Tuneable vibration absorber design to suppress vibrations: An application in boring manufacturing process (United States)

    Moradi, H.; Bakhtiari-Nejad, F.; Movahhedy, M. R.


    Dynamic vibration absorbers are used to reduce the undesirable vibrations in many applications such as electrical transmission lines, helicopters, gas turbines, engines, bridges, etc. Tuneable vibration absorbers (TVA) are also used as semi-active controllers. In this paper, the application of a TVA for suppression of chatter vibrations in the boring manufacturing process is presented. The boring bar is modeled as a cantilever Euler-Bernoulli beam and the TVA is composed of mass, spring and dashpot elements. In addition, the effect of spring mass is considered in this analysis. After formulation of the problem, the optimum specifications of the absorber such as spring stiffness, absorber mass and its position are determined using an algorithm based on the mode summation method. The analog-simulated block diagram of the system is developed and the effects of various excitations such as step, ramp, etc. on the absorbed system are simulated. In addition, chatter stability is analyzed in dominant modes of boring bar. Results show that at higher modes, larger critical widths of cut and consequently more material removal rate (MRR) can be achieved. In the case of self-excited vibration, which is associated with a delay differential equation, the optimum absorber suppresses the chatter and increases the limit of stability.

  9. Design for Vibration Monitoring: A Methodology for Reliable and Cost-Effective Vibration Monitoring (United States)

    Tumer, Irem Y.; Koga, Dennis (Technical Monitor)


    The purpose of health monitoring systems is to detect failures or defects for increased safety and performance and to provide on-condition maintenance with reduced costs. The problems associated with health monitoring systems include high rates of false alarms and missed failures, which make monitoring an unreliable and costly task. The reason for this is that unaccounted variations invalidate signal modeling assumptions. Our approach was to focus on vibration monitoring of rotating components. We analyzed baseline signals to determine statistical variations, identify and model factors that influence vibrations (pre-production vs. post-production variations), determine hit and false alarm rates with baseline flight data, model and predict effects of defects and variations on vibrations, and develop algorithms and metrics for failure and anomaly detection in the presence of variations.

  10. The Influence of Acceleration on the Efficiency of Sand Compaction Tests Conducted on a Vibrating Table (United States)

    Szajna, Waldemar St.


    The paper presents a standard vibrating table for fresh concrete testing adopted for determination of maximum dry density (ρdmax) of sand. Vibration is an efficient method for coarse soil compaction therefore vibrating tables are useful for ρdmax determination. Acceleration that the soil is subject to is one of the basic parameters of efficient compaction. A vibrating table with inertial excitation was supplemented by a frequency converter and subjected to dynamic tests. The results of measurements of dynamic parameters are included. The paper presents problems connected with this method and describes the relationship between efficiency of compaction and accelerations which the soil is subjected to.

  11. Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

    NARCIS (Netherlands)

    Wijker, Jacob J; de Boer, Andries; Ellenbroek, Marcellinus Hermannus Maria


    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), is a

  12. Vibration isolation analysis of new design OEM damper for malaysia vehicle suspension system featuring MR fluid (United States)

    Unuh, M. H.; Muhamad, P.; Norfazrina, H. M. Y.; Ismail, M. A.; Tanasta, Z.


    The applications of semi-active damper employing magnetorheological (MR) fluids keep increasing in fulfilling the demand to control undesired vibration effect. The aim of this study is to introduce the new design of damper for Malaysian vehicle model as well to evaluate its effectiveness in promoting comfort. The vibration isolation performance of the OEM damper featuring MR fluid was analysed physically under real road profile excitation experimentally. An experiment using quarter car rig suspension and LMS SCADAS Mobile was conducted to demonstrate the influence of current in controlling the characteristics of MR fluid in alter the damping behaviour under 5 cm bump impact. Subsequently, the displacement values were measured with respect to time. The new design OEM damper featuring MR fluid was validated by comparing the data with original equipment manufacturer (OEM) passive damper results under the same approach of testing. Comparison of numerical data of the new design OEM damper shown that it can reduce the excitation amplitude up to 40% compared to those obtained by OEM passive damper. Finally, the new design OEM damper featuring MR fluid has effectively isolated the disturbance from the road profile and control the output force.

  13. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: McDonnell-Douglas Helicopter Company achievements (United States)

    Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa


    This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.

  14. Rotor Vibration Reduction Using Multi-Element Multi-Path Design (United States)

    Su, Keye

    Multi-Element Multi-Path (MEMP) structural design is a new concept for rotor vibration reduction. This thesis explores the possibility of applying MEMP design to helicopter rotor blades. A conceptual design is developed to investigate the MEMP blade's vibration reduction performance. In the design, the rotor blade is characterized by two centrifugally loaded beams which are connected to each other through linear and torsional springs. A computer program is built to simulate the behavior of such structures. Detailed parametric studies are conducted. The main challenges in this thesis involve the blade hub load vibration analysis, the blade thickness constraint and the blade parameter selection. The results show substantial vibration reduction for the MEMP design but the large relative deflection between the two beams, conceptualized as an internal spar and airfoil shell, remains a problem for further study.

  15. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk Project (United States)

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...


    Directory of Open Access Journals (Sweden)

    В. Макаренко


    Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.

  17. A Novel Control System Design for Vibrational MEMS Gyroscopes

    Directory of Open Access Journals (Sweden)

    Qing Zheng


    Full Text Available There are two major control problems associated with vibrational MEMS gyroscopes: to control two vibrating axes (or modes of the gyroscope, and to estimate a time-varying rotation rate. This paper demonstrates how a novel active disturbance rejection control addresses these problems in the presence of the mismatch of natural frequencies between two axes, mechanical-thermal noises, Quadrature errors, and parameter variations. A demodulation approach based on the estimated dynamics of the system by an extended state observer is used to estimate the rotation rate. The simulation results on a Z-axis MEMS gyroscope show that the controller is very effective by driving the output of the drive axis to a desired trajectory, forcing the vibration of the sense axis to zero for a force-to-rebalance operation and precisely estimating the rotation rate.

  18. Sweeping shunted electro-magnetic tuneable vibration absorber: Design and implementation (United States)

    Turco, E.; Gardonio, P.


    This paper presents a study on the design and implementation of a time-varying shunted electro-magnetic Tuneable Vibration Absorber for broad-band vibration control of thin structures. A time-varying RL-shunt is used to harmonically vary the stiffness and damping properties of the Tuneable Vibration Absorber so that its mechanical fundamental natural frequency is continuously swept in a given broad frequency band whereas its mechanical damping is continuously adapted to maximize the vibration absorption from the hosting structure where it is mounted. The paper first recalls the tuning and positioning criteria for the case where a classical Tuneable Vibration Absorber is installed on a thin walled cylindrical structure to reduce the response of a resonating flexural mode. It then discusses the design of the time-varying shunt circuit to produce the desired stiffness and damping variations in the electro-magnetic Tuneable Vibration Absorber. Finally, it presents a numerical study on the flexural vibration and interior sound control effects produced when an array of these shunted electro-magnetic Tuneable Vibration Absorbers are mounted on a thin walled cylinder subject to a rain-on-the-roof stochastic excitation. The study shows that the array of proposed systems effectively controls the cylinder flexural response and interior noise over a broad frequency band without need of tuning and thus system identification of the structure. Therefore, the systems can be successfully used also on structures whose physical properties vary in time because of temperature changes or tensioning effects for example.

  19. Force limited random vibration testing: the computation of the semi-empirical constant C2 for a real test article and unknown supporting structure

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries


    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load),

  20. The Shock and Vibration Bulletin. Part 4. Vibration Testing, Instrumentation, Loads and Environments, Tracked Vehicles (United States)


    distribution. . % logic. Clock speeds were kept very low, extensive buf- fering and shielding were used, and capacitive filters were This idea was...As Lorisciousness of the • . o a load from a shorted to open circuit, and capacitive to concept grows. it is expected that the control systems...transducer, and an angular velocity vibrometer . for collecting a broad base of aircraft angular Their applications will be discussed in light vibration

  1. Topographic analysis of the skull vibration-induced nystagmus test with piezoelectric accelerometers and force sensors. (United States)

    Dumas, Georges; Lion, Alexis; Perrin, Philippe; Ouedraogo, Evariste; Schmerber, Sébastien


    Vibration-induced nystagmus is elicited by skull or posterior cervical muscle stimulations in patients with vestibular diseases. Skull vibrations delivered by the skull vibration-induced nystagmus test are known to stimulate the inner ear structures directly. This study aimed to measure the vibration transfer at different cranium locations and posterior cervical regions to contribute toward stimulus topographic optimization (experiment 1) and to determine the force applied on the skull with a hand-held vibrator to study the test reproducibility and provide recommendations for good clinical practices (experiment 2). In experiment 1, a 100 Hz hand-held vibrator was applied on the skull (vertex, mastoids) and posterior cervical muscles in 11 healthy participants. Vibration transfer was measured by piezoelectric sensors. In experiment 2, the vibrator was applied 30 times by two experimenters with dominant and nondominant hands on a mannequin equipped to measure the force. Experiment 1 showed that after unilateral mastoid vibratory stimulation, the signal transfer was higher when recorded on the contralateral mastoid than on the vertex or posterior cervical muscles (Pvibration transfer was measured on vertex and posterior cervical muscles. Experiment 2 showed that the force applied to the mannequin varied according to the experimenters and the handedness, higher forces being observed with the most experienced experimenter and with the dominant hand (10.3 ± 1.0 and 7.8 ± 2.9 N, respectively). The variation ranged from 9.8 to 29.4% within the same experimenter. Bone transcranial vibration transfer is more efficient from one mastoid to the other mastoid than other anatomical sites. The mastoid is therefore the optimal site for skull vibration-induced nystagmus test in patients with unilateral vestibular lesions and enables a stronger stimulation of the healthy side. In clinical practice, the vibrator should be placed on the mastoid and should be held by the clinician

  2. Conceptional design of test loop for FIV in fuel bundle

    Energy Technology Data Exchange (ETDEWEB)

    Sim, W. G.; Yang, J. S.; Kim, S. W. [Hannam Univ., Taejeon (Korea)


    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model. Because of this reason, it is required to design proper test loop. Using the optimized test loop, with the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 23 figs., 2 tabs. (Author)

  3. Design and experiments of an active isolator for satellite micro-vibration

    Directory of Open Access Journals (Sweden)

    Li Weipeng


    Full Text Available In this paper, a soft active isolator (SAI derived from a voice coil motor is studied to determine its abilities as a micro-vibration isolation device for sensitive satellite payloads. Firstly, the two most important parts of the SAI, the mechanical unit and the low-noise driver, are designed and manufactured. Then, a rigid-flexible coupling dynamic model of the SAI is built, and a dynamic analysis is conducted. Furthermore, a controller with a sky-hook damper is designed. Finally, results from the performance tests of the mechanical/electronic parts and the isolation experiments are presented. The SAI attenuations are found to be more than −20 dB above 5 Hz, and the control effect is stable.

  4. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM) (United States)

    Hu, J.; Xu, F.; Huang, A. Q.; Yuan, F. G.


    In this study, an optimal vibration-based energy harvesting system using magnetostrictive material (MsM) was designed and tested to enable the powering of a wireless sensor. In particular, the conversion efficiency, converting from magnetic to electric energy, is approximately modeled from the magnetic field induced by the beam vibration. A number of factors that affect the output power such as the number of MsM layers, coil design and load matching are analyzed and explored in the design optimization. From the measurements, the open-circuit voltage can reach 1.5 V when the MsM cantilever beam operates at the second natural frequency 324 Hz. The AC output power is 970 µW, giving a power density of 279 µW cm - 3. The attempt to use electrical reactive components (either inductors or capacitors) to resonate the system at any frequency has also been analyzed and tested experimentally. The results showed that this approach is not feasible to optimize the power. Since the MsM device has low output voltage characteristics, a full-wave quadrupler has been designed to boost the rectified output voltage. To deliver the maximum output power to the load, a complex conjugate impedance matching between the load and the MsM device is implemented using a discontinuous conduction mode (DCM) buck-boost converter. The DC output power after the voltage quadrupler reaches 705 µW and the corresponding power density is 202 µW cm - 3. The output power delivered to a lithium rechargeable battery is around 630 µW, independent of the load resistance.

  5. A General Purpose Digital System for Field Vibration Testing

    DEFF Research Database (Denmark)

    Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos


    This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists...

  6. Multispecies Environmental Testing Designs

    NARCIS (Netherlands)

    Brink, van den P.J.; Daam, M.A.


    In order to increase the realism in the ecological risk assessment of chemicals, multispecies experiments are carried out. They have the advantage over laboratory single-species tests that they evaluate more realistic exposure regimes, assess effects on populations rather than individuals, allow the

  7. Vortex-Induced Vibrations of a Riser with Design Variations (United States)


    profile (x-z plane) reveals how the VIV amplitude changes along the river. Each of the two profiles consists of a series of snapshots every 0.01...stiffness in the z-direction, which in turn allows the amplitude of VIV to increase. In summary, this pendulation and any shape/tension changes are...for this is that as the pendulum vibrates up into a more horizontal orientation, stiffness decreases. This then allows the inter-cycle sub- amplitude

  8. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes (United States)

    Kvaternik, R. G.; Walton, W. C., Jr.


    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  9. Vibration test report for in-chimney bracket and instrumented fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, D. B.; Cho, Y. G.; Ahn, G. H.; Lee, J. H.; Park, J.H


    The vibration levels of in-chimney bracket structure which is installed in reactor chimney and instrumented fuel assembly(Type-B Bundle) are investigated under the steady state normal operating condition of the reactor. For this purpose, 4 acceleration data on the guide tube of the instrumented fuel assembly and in-chimney bracket structures subjected to fluid induced vibration are measured. For the analysis of the vibration data, vibration analysis program which can perform basic time and frequency domain analysis, is prepared, and its reliability is verified by comparing the analysis results with those of commercial analysis program(I-DEAS). In time domain analysis, maximum amplitudes, and RMS values of accelerations and displacements from the measured vibration signal, are obtained. The frequency components of the vibration data are analyzed by using the frequency domain analysis. These analysis results show that the levels of the measured vibrations are within the allowable level, and the low frequency component near 10 Hz is dominant in the vibration signal. For the evaluation of the structural integrity on the in-chimney bracket and related structures including the instrumented fuel assembly, the static analysis for ANSYS finite element model is carried out. These analysis results show that the maximum stresses are within the allowable stresses of the ASME code, and the maximum displacement of the top of the flow tube is within the displacement limit. Therefore any damage on the structural integrity is not expected when the irradiation test is performed using the in-chimney bracket.

  10. A General Purpose Digital System for Field Vibration Testing


    Brincker, Rune; Larsen, Jesper Abildgaard; Ventura, Carlos


    This paper describes the development and concept implementation of a highly sensitive digital recording system for seismic applications and vibration measurements on large Civil Engineering structures. The system is based on highly sensitive motion transducers that have been used by seismologists and geophysicists for decades. The conventional geophone's ratio of cost to performance, including noise, linearity and dynamic range is unmatched by advanced modern accelerometers. The unit comprise...

  11. Actuator design for vibration assisted machining of high performance materials with ultrasonically modulated cutting speed (United States)

    Rinck, Philipp M.; Sitzberger, Sebastian; Zaeh, Michael F.


    In vibration assisted machining, an additional high-frequency oscillation is superimposed on the kinematics of the conventional machining process. This generates oscillations on the cutting edge in the range of a few micrometers, thereby causing a high-frequency change in the cutting speed or the feed. Consequently, a reduction of cutting forces, an increase of the tool life as well as an improvement of the workpiece quality can be achieved. In milling and grinding it has been shown that these effects are already partially present in the case of a vibration excitation in axial direction relative to the workpiece, which is perpendicular to the cutting direction. Further improvements of the process results can be achieved by superimposing a vibration in cutting direction and thus modifying the cutting speed at high frequency. The presented work shows the design of an ultrasonic actuator that enables vibration-assisted milling and grinding with ultrasonically modulated cutting speed. The actuator system superimposes a longitudinal torsional ultrasonic oscillation to the milling or grinding tool. It uses a bolt clamped Langevin transducer and a helically slotted horn, which degenerates the longitudinal vibration into a combined longitudinal torsional (L-T) vibration at the output surface. A finite element analysis is used to determine the vibration resonance frequency and mode shapes to maximize the torsional output. Afterwards, the simulation has been experimentally validated.

  12. Correlation of finite element free vibration predictions using random vibration test data. M.S. Thesis - Cleveland State Univ. (United States)

    Chambers, Jeffrey A.


    Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.

  13. Detail design of test loop for FIV in fuel bundle and preliminary test

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Woo Gunl; Lee, Wan Young; Kim, Sung Won [Hannam University, Taejeon (Korea)


    It is urgent to develop the analytical model for the structural/mechanical integrity of fuel rod. In general, it is not easy to develop a pure analytical model. Occasionally, experimental results have been utilized for the model.Because of this reason, it is required to design proper test loop. Using the optimized test loop, With the optimized test loop, the dynamic behaviour of the rod will be evaluated and the critical flow velocity, which the rod loses the stability in, will be measured for the design of the rod. To verify the integrity of the fuel rod, it is required to evaluate the dynamic behaviour and the critical flow velocity with the test loop. The test results will be utilized to the design of the rod. Generally, the rod has a ground vibration due to turbulence in wide range of flow velocity and the amplitude of vibration becomes larger by the resonance, in a range of the velocity where occurs vortex. The rod loses stability in critical flow velocity caused by fluid-elastic instability. For the purpose of the present work to perform the conceptional design of the test loop, it is necessary (1) to understand the mechanism of the flow-induced vibration and the related experimental coefficients, (2) to evaluate the existing test loops for improving the loop with design parameters and (3) to decide the design specifications of the major equipments of the loop. 35 refs., 14 figs., 4 tabs. (Author)

  14. Comparison of vibrational comfort assessment criteria for design of timber floors among the European countries

    DEFF Research Database (Denmark)

    Zhang, Binsheng; Rasmussen, Birgit; Jorissen, André


    As part of the research work carried out by the Working Group 3 of COST Action FP0702, the need for vibrational comfort design for buildings and current regulations for comfort assessment of structural vibrations of timber floors in Europe have been summarised. Also the design practices of timber...... floors with respect to vibrational serviceability criteria, including those for fundamental frequency, unit point load deflection and unit impulse velocity, in up to thirteen European countries have been gathered and their differences been further assessed by analysing flooring systems constructed...... with three types of joists, i.e. solid timber joists, engineered I-joists and metal web joists. The unit point load deflection criterion is the most crucial one for structural design of timber floors with various types of joists and usually dominates the whole design. Finland tends to be the strictest...

  15. Similitude design for the vibration problems of plates and shells: A review (United States)

    Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou


    Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

  16. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis (United States)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.


    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was

  17. Piezoelectric Cylindrical Design for Harvesting Energy in Multi-Directional Vibration Source (United States)

    Nguyen, M. S.; Ng, S. H.; Kim, P.; Yoon, Y. J.


    Vibration Energy Harvester (VEH) has attracted a great attention recently both in academia and industry. One of the most challenging issues in VEH is the possibility to harvest vibration energy in multiple directions. In fact, Conventional VEH (CVEH) using cantilever beam’s structure may possibly become inefficient for the application under multi-directional vibration sources. To overcome this shortcoming of CVEH, this paper proposes a novel design of piezoelectric cylindrical energy harvester (PCEH) which is using patches of piezoelectric material attached to the surface of a cylindrical structure. The Finite Element Method (FEM) analysis using COMSOL Multiphysics software package showed that PCEH has a great potential for the applicability of VEH in the multi-directional vibrating applications such as wearable devices and biomedical devices.

  18. A New Vibration Absorber Design for Under-Chassis Device of a High-Speed Train

    Directory of Open Access Journals (Sweden)

    Yu Sun


    Full Text Available To realize the separation of vertical and lateral stiffness of the under-chassis device, a new type of vibration absorber is designed by using the negative stiffness of the disc spring in parallel with the rubber component. To solve its transmission characteristics, harmonic transfer method was used. A rigid-flexible coupling multibody dynamic model of a high-speed train with an elastic car body is established, and the vertical and lateral optimal stiffness of the under-chassis device are calculated. The Sperling index and acceleration PSD of the vehicle with the new vibration absorber and the vehicle with traditional rubber absorber are compared and analyzed. The results show that, with the new vibration absorber, vehicle’s running stability and vibration of the car body are more effective than the vehicle with the traditional rubber absorber.

  19. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.


    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  20. Nondestructive determination of fatigue crack damage in composites using vibration tests. (United States)

    Dibenedetto, A. T.; Gauchel, J. V.; Thomas, R. L.; Barlow, J. W.


    The vibration response of glass reinforced epoxy and polyester laminates was investigated. The complex modulus and the damping capacity were measured as fatigue crack damage accumulated. Changes in the Young's modulus as well as the damping capacity correlated with the amount of crack damage. The damping was especially sensitive to debonding of the reinforcement from the resin matrix. Measurement of these vibration response changes shows promise as a means to nondestructively test the structural integrity of filament-reinforced composite structural members.

  1. Rational design equations for the Aeolian vibration of overhead power lines

    Energy Technology Data Exchange (ETDEWEB)

    Lu, M.L.; Chopra, N. [BC Hydro, Burnaby, BC (Canada)


    Aeolian vibration must be considered when designing overhead power transmission lines because of its potential risk of causing fatigue failure to the conductor, hardware, and tower members. Aeolian vibration is caused by the alternate shedding of Karman vortices from the top and bottom of the line's conductor when the conductor is exposed to a side wind. This paper presented a novel approach to analytically predict the vortex-induced vibration (i.e. Aeolian vibration) of an overhead power line's single conductor due to wind. The paper described the derivation of an analytical solution to the basic problem of the Aeolian vibration of a conductor span with equivalent supports on both ends by using the energy balance principle as well as the semi-empirical equations for the wind power input and the self damping of a conductor. The paper noted that a wind's turbulence effect may also be taken into account by using a previously found analytical solution. Simple, pragmatic design equations were established for undamped conductor spans by curve-fitting the numerical data from analytical solutions. It was concluded that the complicated problem of Aeolian vibration of a single conductor without damper or with multiple dampers could be easily solved by using the analytical solutions developed in this paper and that simple, yet rational design equations have been established for the Aeolian vibration of undamped conductor spans to bridge the gap between the apparently complicated theory and the often overly simplified actual design practice. 13 refs., 1 tab., 4 figs.

  2. Vibration Mitigation without Dissipative Devices: First Large-Scale Testing of a State Switched Inducer

    Directory of Open Access Journals (Sweden)

    Daniel Tirelli


    Full Text Available A new passive device for mitigating cable vibrations is proposed and its efficiency is assessed on 45-meter long taut cables through a series of free and forced vibration tests. It consists of a unilateral spring attached perpendicularly to the cable near the anchorage. Because of its ability to change the cable dynamic behaviour through intermittent activation, the device has been called state switched inducer (SSI. The cable behaviour is shown to be deeply modified by the SSI: the forced vibration response is anharmonicc and substantially reduced in amplitude whereas the free vibration decay is largely sped up through a beating phenomenon. The vibration mitigation effect is mainly due to the activation and coupling of various vibration modes, as evidenced in the response spectra of the equipped cable. This first large-scale experimental campaign shows that the SSI outperforms classical passive devices, thus paving the way to a new kind of low-cost vibration mitigation systems which do not rely on dissipation.

  3. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments (United States)

    Cronkhite, James D.


    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  4. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data (United States)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)


    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  5. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: A government overview (United States)

    Kvaternik, Raymond G.


    NASA-Langley, under the Design Analysis Methods for Vibrations (DAMVIBS) Program, set out in 1984 to establish the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. Considerable work has been done by the industry participants in the program since that time. Because the DAMVIBS Program is being phased out, a government/industry assessment of the program has been made to identify those accomplishments and contributions which may be ascribed to the program. The purpose of this paper is to provide an overview of the program and its accomplishments and contributions from the perspective of the government sponsoring organization.

  6. Design Optimization of a Mecanum Wheel to Reduce Vertical Vibrations by the Consideration of Equivalent Stiffness

    Directory of Open Access Journals (Sweden)

    Jong-Jin Bae


    Full Text Available Mecanum wheels are capable of moving a vehicle to any direction instantaneously by the combination of independent wheel rotations. Because the mecanum wheel is composed of a hub and rollers, however, it has unavoidable drawbacks such as vertical and horizontal vibrations due to the sequential contacts between rollers and ground. In order to investigate the dynamic characteristics of a mecanum wheel, we made a prototype and performed experiments to measure the vertical vibrations. Interestingly, it was observed that the vertical accelerations were asymmetric with respect to the average value of signals; the vibration signals of upward and downward directions show quite different shape. This asymmetric phenomenon was confirmed through the dynamic simulations performed by RecurDyn. In addition, the peak-to-peak and RMS values of the displacements and accelerations were calculated to investigate the effects of the curvature of rollers on the vertical vibrations of the vehicle. Furthermore, we proposed a mecanum wheel having a spring to attenuate the vibrations. It was also noted that the significant reduction of the vertical accelerations was observed due to the absence of the spring. Finally, considering the equivalent stiffness of the mecanum wheel for several different fillet radii, we found the optimal geometric design which minimizes the vertical vibration of a mecanum wheel.

  7. Impact of mechanism vibration characteristics by joint clearance and optimization design of its multi-objective robustness (United States)

    Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao


    and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.

  8. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor (United States)

    Adams, D. W.


    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  9. Design and verification of a novel hollow vibrating module for laser machining. (United States)

    Wang, Zhaozhao; Jang, Seungbong; Kim, EunHee; Jeon, Yongho; Lee, Soo-Hun; Lee, Moon G


    If a vibration module is added on laser machining system, the quality of surface finish and aspect ratio on metals can be significantly enhanced. In this study, a single mobility model of vibrating laser along the path of laser beam was put forward. In order to realize the desired unidirectional motion, a resonance type vibration module with optical lens was designed and manufactured. This cylindrical module was composed of curved-beam flexure elements. The cylindrical coordinate system was established to describe the relationship of a curved-beam flexure element's motion and deformation. In addition, the stiffness matrix of the curved-beam element was obtained. Finite element method and dynamical modeling were provided to analyze the resonance frequency and the displacement of the motion. The feasibility of the design was demonstrated with the help of experiments on frequency response. Experimental results show good agreement with theoretical analysis and simulation predictions.

  10. Technical Road Testing of the 18,000 BTU Air Conditioners (Vibration Profile) (United States)


    equimped with a calibrated fifth wheel driven speedanetr. Instrumented testing was crducted on the Mzso area izproved gravel road, Belgian block, two...item, conducting the test, and acquiring and processing all test data. 1.5 SYSTEM DESCRIPTION Two 50/60 Hz, 3-2hase, 208-volt, 18,000 BTU/hr compact...operationally checked periodically and at the conclusion of the road vibration test. A limited amount of data processing was performed at the test

  11. Active vibration control testing of the SPICES program: final demonstration article (United States)

    Dunne, James P.; Jacobs, Jack H.


    The Synthesis and Processing of Intelligent Cost Effective Structures (SPICES) Program is a partnership program sponsored by the Advanced Research Projects Agency. The mission of the program is to develop cost effective material processing and synthesis technologies to enable new products employing active vibration suppression and control devices to be brought to market. The two year program came to fruition in 1995 through the fabrication of the final smart components and testing of an active plate combined with two trapezoidal rails, forming an active mount. Testing of the SPICES combined active mount took place at McDonnell Douglas facilities in St. Louis, MO, in October-December 1995. Approximately 15 dB reduction in overall response of a motor mounted on the active structure was achieved. Further details and results of the SPICES combined active mount demonstration testing are outlined. Results of numerous damping and control strategies that were developed and employed in the testing are presented, as well as aspects of the design and fabrication of the SPICES active mount components.

  12. Parametric Design and Multiobjective Optimization of Maglev Actuators for Active Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Qianqian Wu


    Full Text Available The microvibration has a serious impact on science experiments on the space station and on image quality of high resolution satellites. As an important component of the active vibration isolation platform, the maglev actuator has a large stroke and exhibits excellent isolating performance benefiting from its noncontact characteristic. A maglev actuator with good linearity was designed in this paper. Fundamental features of the maglev actuator were obtained by finite element simulation. In order to minimize the coil weight and the heat dissipation of the maglev actuator, parametric design was carried out and multiobjective optimization based on the genetic algorithm was adopted. The optimized actuator has better mechanical properties than the initial one. Active vibration isolation platforms for different-scale payload were designed by changing the arrangement of the maglev actuators. The prototype to isolate vibration for small-scale payload was manufactured and the experiments for verifying the characteristics of the actuators were set up. The linearity of the actuator and the mechanical dynamic response of the vibration isolation platform were obtained. The experimental results highlight the effectiveness of the proposed design.

  13. An on-road shock and vibration response test series utilizing worst case and statistical analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cap, J.S. [Sandia National Labs., Albuquerque, NM (US). Mechanical and Thermal Environments Dept.


    Defining the maximum expected shock and vibration responses for an on-road truck transportation environment is strongly dependent on the amount of response data that can be obtained. One common test scheme consists of measuring response data over a relatively short prescribed road course and then reviewing that data to obtain the maximum response levels. The more mathematically rigorous alternative is to collect an unbiased ensemble of response data during a long road trip. This paper compares data gathered both ways during a recent on-road certification test for a tractor trailer van being designed by Sandia.

  14. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma


    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  15. Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building

    Directory of Open Access Journals (Sweden)

    Kyung-Won Min


    Full Text Available This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper.

  16. Design and optimization of a bi-axial vibration-driven electromagnetic generator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin, E-mail:; Yu, Qiangmo; Zhao, Jiangxin; Zhao, Nian; Wen, Yumei; Li, Ping; Qiu, Jing [Department of Optoelectronic Engineering, Research Center of Sensors and Instruments, Chongqing University, Chongqing 400044 (China)


    To scavenge energy from ambient vibrations with arbitrary in-plane motion directions and over a wide frequency range, a novel electromagnetic vibration energy harvester is designed and optimized. In the harvester, a circular cross-section elastic rod, not a traditional thin cantilever beam, is used to extract ambient vibration energy because of its capability to collect vibration from arbitrary in-plane motion directions. The magnetic interaction between magnets and the iron core contributes to a nonlinear oscillation of the rod with increased frequency bandwidth. The influences of the structure configurations on the electrical output and the working bandwidth of the harvester are investigated using Ansoft's Maxwell 3D to achieve optimal performance. The experimental results show that the harvester is sensitive to vibrations from arbitrary in-plane directions and it exhibits a bandwidth of 5.7 Hz and a maximum power of 13.4 mW at an acceleration of 0.6 g (with g=9.8 ms⁻²).

  17. Numerical methods for acquisition and analysis of vibration tests; Methodes numeriques d'acquisition et de depouillement d'essais aux vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Badel, D.; Cocchi, G.; Oules, H. [Centre d' Etudes Scientifiques et Techniques d' Aquitaine (France). Centre d' Etudes Nucleaires


    The S.I.D.E.X. is a digital computer assisted facility for Data acquisition and Data processing. It is designed for sine wave or random environment tests, mechanical or acoustical vibrations, shock waves. The mathematical principles and the system configuration have been described in the CEA file nb R-3666. The present one describes the numerical methods and the programs available up to now. Some examples of results obtained are shown at the end. (authors) [French] Le systeme integre de depouillement pour l'experimentation S.I.D.E.X., a pour but d'effectuer les calibration, les acquisitions et les depouillements des essais aux vibrations sinusoidales ou aleatoires, mecaniques ou acoustiques et des essais de chocs. Les methodes mathematiques correspondantes et la configuration digitale employee ont ete decrites dans le rapport CEA nb CEA-R-3666. Le present rapport indique les methodes numeriques en vigueur et les programmes actuellement disponibles. Des exemples de resultats obtenus sont egalement presentes. (auteurs)

  18. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: Boeing Helicopters airframe finite element modeling (United States)

    Gabel, R.; Lang, P.; Reed, D.


    Mathematical models based on the finite element method of structural analysis, as embodied in the NASTRAN computer code, are routinely used by the helicopter industry to calculate airframe static internal loads used for sizing structural members. Historically, less reliance has been placed on the vibration predictions based on these models. Beginning in the early 1980's NASA's Langley Research Center initiated an industry wide program with the objective of engendering the needed trust in vibration predictions using these models and establishing a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process. Emphasis in this paper is placed on the successful modeling of the Army/Boeing CH-47D which showed reasonable correlation with test data. A principal finding indicates that improved dynamic analysis requires greater attention to detail and perhaps a finer mesh, especially the mass distribution, than the usual stress model. Post program modeling efforts show improved correlation placing key modal frequencies in the b/rev range with 4 percent of the test frequencies.

  19. NASA-DoD Lead-Free Electronics Project: Vibration Test (United States)

    Woodrow, Thomas A.


    Vibration testing was conducted by Boeing Research and Technology (Seattle) for the NASA-DoD Lead-Free Electronics Solder Project. This project is a follow-on to the Joint Council on Aging Aircraft/Joint Group on Pollution Prevention (JCAA/JG-PP) Lead-Free Solder Project which was the first group to test the reliability of lead-free solder joints against the requirements of the aerospace/miLItary community. Twenty seven test vehicles were subjected to the vibration test conditions (in two batches). The random vibration Power Spectral Density (PSD) input was increased during the test every 60 minutes in an effort to fail as many components as possible within the time allotted for the test. The solder joints on the components were electrically monitored using event detectors and any solder joint failures were recorded on a Labview-based data collection system. The number of test minutes required to fail a given component attached with SnPb solder was then compared to the number of test minutes required to fail the same component attached with lead-free solder. A complete modal analysis was conducted on one test vehicle using a laser vibrometer system which measured velocities, accelerations, and displacements at one . hundred points. The laser vibrometer data was used to determine the frequencies of the major modes of the test vehicle and the shapes of the modes. In addition, laser vibrometer data collected during the vibration test was used to calculate the strains generated by the first mode (using custom software). After completion of the testing, all of the test vehicles were visually inspected and cross sections were made. Broken component leads and other unwanted failure modes were documented.

  20. Ares I Static Tests Design (United States)

    Carson, William; Lindemuth, Kathleen; Mich, John; White, K. Preston; Parker, Peter A.


    Probabilistic engineering design enhances safety and reduces costs by incorporating risk assessment directly into the design process. In this paper, we assess the format of the quantitative metrics for the vehicle which will replace the Space Shuttle, the Ares I rocket. Specifically, we address the metrics for in-flight measurement error in the vector position of the motor nozzle, dictated by limits on guidance, navigation, and control systems. Analyses include the propagation of error from measured to derived parameters, the time-series of dwell points for the duty cycle during static tests, and commanded versus achieved yaw angle during tests. Based on these analyses, we recommend a probabilistic template for specifying the maximum error in angular displacement and radial offset for the nozzle-position vector. Criteria for evaluating individual tests and risky decisions also are developed.

  1. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)


    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  2. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...

  3. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin


    and the diaphragm collapse voltage for the microphones. Conclusions are that the FEM programs can be used to simulate the transducers to the degree of precision required in development of existing transducers. The programs also represent a virtual prototype that gives a better understanding of the behaviour......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...

  4. Lessons learned from CIRFT testing on SNF vibration integrity study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Rob L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    A cyclic integrated reversible-bending fatigue tester (CIRFT) was developed to support U.S. NRC and DOE Used Fuel Disposition Campaign studies on high burn-up (HBU) spent nuclear fuel (SNF) transportation during normal conditions of transport (NCT). Two devices were developed; the first CIRFT was successfully installed and operated in the ORNL hot-cells in September 2013. Since hot cell testing commenced several HBU SNF samples from both Zr-4 and M5 clads were investigated. The second CIRFT device was developed in February 2014, and has been used to test clad/fuel surrogate rods (stainless steel with alumina pellet inserts). The second CIRFT machine has also been used for sensor development and test sensitivity analyses, as well as loading boundary condition parameter studies. The lessons learned from CIRFT testing will be presented in this paper.

  5. Vibration mitigation of a bridge cable using a nonlinear energy sink: design and experiment

    Directory of Open Access Journals (Sweden)

    Weiss Mathieu


    Full Text Available This work deals with the design and experiment of a cubic nonlinear energy sink (NES for horizontal vibration mitigation of a bridge cable. Modal analysis of horizontal linear modes of the cable is experimentally performed using accelerometers and displacement sensors. A theoretical simplified 2-dof model of the coupled cable-NES system is used to analytically design the NES by mean of multi-time scale systems behaviours and detection its invariant manifold, equilibrium and singular points which stand for periodic and strongly modulated regimes, respectively. Numerical integration is used to confirm the efficiency of the designed NES for the system under step release excitation. Then, the prototype system is built using geometrical cubic nonlinearity as the potential of the NES. Efficiency of the prototype system for mitigation of horizontal vibrations of the cable under for step release and forced excitations is experimentally demonstrated.

  6. Optical design and testing: introduction. (United States)

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin


    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  7. A Procedure for Accurately Measuring the Shaker Overturning Moment During Random Vibration Tests (United States)

    Nayeri, Reza D.


    Motivation: For large system level random vibration tests, there may be some concerns about the shaker's capability for the overturning moment. It is the test conductor's responsibility to predict and monitor the overturning moment during random vibration tests. If the predicted moment is close to the shaker's capability, test conductor must measure the instantaneous moment at low levels and extrapolate to higher levels. That data will be used to decide whether it is safe to proceed to the next test level. Challenge: Kistler analog formulation for computing the real-time moment is only applicable to very limited cases in which we have 3 or 4 load cells installed at shaker interface with hardware. Approach: To overcome that limitation, a simple procedure was developed for computing the overturning moment time histories using the measured time histories of the individual load cells.

  8. Fatigue Failure Results for Multi-Axial versus Uniaxial Stress Screen Vibration Testing

    Directory of Open Access Journals (Sweden)

    Wayne E. Whiteman


    Full Text Available To date, the failure potential and prediction between simultaneous multi-axial versus sequentially applied uniaxial vibration stress screen testing has been the subject of great debate. In most applications, current vibration tests are done by sequentially applying uniaxial excitation to the test specimen along three orthogonal axes. The most common standards for testing military equipment are published in MIL-STD-810F and NAVMAT P-9492. Previous research had shown that uniaxial testing may be unrealistic and inadequate. This current research effort is a continuing effort to systematically investigate the differences between fatigue damage mechanisms and the effects of uniaxial versus tri-axial testing. This includes assessing the ability of the tri-axial method in predicting the formation of damage mechanisms, specifically looking at the effects of stress or fatigue failure. Multi-axial testing achieves the synergistic effect of exciting all modes simultaneously and induces a more realistic vibration stress loading condition. As such, it better approximates real-world operating conditions. This paper provides the latest results on the differences between multi-axial and uniaxial testing of a simple notched cantilever beam.

  9. Design and Performance Test of Locking Curved-Nut

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min Cheol; Kang, Ho Sung; Kim, Do Yeop; Lee, Suk Yong; Lee, Eung Suk [Chungbuk Nat’l Univ., Cheongju (Korea, Republic of); Jeong, Hui Jong [Viblock Company, Cheongwon (Korea, Republic of)


    Many types of locking nut are commercializing in the various industries where has heavy vibration. Because Nut's loosing causes a serious accident. But the most locking nuts are too expensive as the complicate manufacturing process. In this study, we design the new type of locking nut, 'Curved-Nut' that is relatively simple making process. We study a relation between the elastic energy and the nut loosing mechanism. So it is analysed, the elastic energy of Curved-Nut comparing with the locking test. The Curved-Nut was manufactured on the commercial nut using a milling tool with horizontal cutting, one or two time under the nut. As the result, the more elastic energy the more prevent the loosing of the nut. We verified the performance of the loosing nut using the vibration testing equipment (NAS3350).

  10. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system (United States)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu


    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  11. In-situ testing of the liquefaction potential of soft ground using an s-wave vibrator and seismic cones. Part 1. System, concept and preliminary test result; S ha vibrator oyobi seismic cone wo mochiita gen`ichi jiban ekijoka potential no hyoka. 1. System kosei oyobi genchi yosatsu keisoku kekka

    Energy Technology Data Exchange (ETDEWEB)

    Inazaki, T. [Public Works Research Institute, Tsukuba (Japan)


    For the purpose of evaluating liquefaction in situ, it was proposed that an S-wave vibrator designed to serve as a source in a reflection exploration method be utilized as a strong vibration generating source, and measurement was conducted in this connection. Equipment used in this test included an S-wave vibrator, static cone penetration machine, and various measuring cones. A multiplicity of measuring cones had been inserted beforehand into the target layers and comparison layers, and changes upon vibrator activation were measured. On a dry bed of the Tonegawa river, a 40m{sup 2} field was set up, and 41 cone penetration tests were conducted, with the cones positioned zigzag at 5m intervals. In this way, the ground structure was disclosed from the surface to the 10m-deep level. For the measurement, 3-component cones and seismic cones were placed at prescribed depths, and fluctuations and waveforms presented by pore water pressure at each level were determined with the vibration source changing its place. It was found that the changes in the pore water pressure exposed to vibration assume characteristic patterns corresponding to the conditions of vibration application. 5 figs., 1 tab.

  12. Mimo pillow--an intelligent cushion designed with maternal heart beat vibrations for comforting newborn infants. (United States)

    Chen, Wei; Oetomo, Sidarto Bambang; Tetteroo, Daniel; Versteegh, Frank; Mamagkaki, Thelxi; Pereira, Mariana Serras; Janssen, Lindy; van Meurs, Andrea


    Premature infants are subject to numerous interventions ranging from a simple diaper change to surgery while residing in neonatal intensive care units. These neonates often suffer from pain, distress, and discomfort during the first weeks of their lives. Although pharmacological pain treatment often is available, it cannot always be applied to relieve a neonate from pain or discomfort. This paper describes a nonpharmacological solution, called Mimo, which provides comfort through mediation of a parent's physiological features to the distressed neonate via an intelligent pillow system embedded with sensing and actuating functions. We present the design, the implementation, and the evaluation of the prototype. Clinical tests at Máxima Medical Center in the Netherlands show that among the nine of ten infants who showed discomfort following diaper change, a shorter recovery time to baseline skin conductance analgesimeter values could be measured when the maternal heartbeat vibration in the Mimo was switched ON and in seven of these ten a shorter crying time was measured.

  13. Design of an accurate wireless data logger for vibration analysis with Android interface (United States)

    Blanco, J. R.; Menéndez, J.; Ferrero, F. J.; Campo, J. C.; Valledor, M.


    In this work a new accurate wireless data logger using the Android interface was developed to monitor vibrations at low-cost. The new data logger is completely autonomous and extremely reduced in size. This instrument enables data collection wirelessly and the ability to display it on any tablet or smartphone with operating system Android. The prototype allows the monitoring of any industrial system with minimal investment in material and installation costs. The data logger is capable of making 12.8 kSPS enough to sample up to 5 kHz signals. The basic specification of the data logger includes a high resolution 1-axis piezoelectric accelerometer with a working range of ±30 G. In addition to the acceleration measurements, temperature can also be recorded. The data logger was tested during a 6-month period in industrial environments. The details of the specific hardware and software design are described. The proposed technology can be easily transferred to many other areas of industrial monitoring.

  14. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting (United States)

    Li, Ying; Baker, Evan; Reissman, Timothy; Sun, Cheng; Liu, Wing Kam


    Through finite element analysis and a 3D printing assisted experimental study, we demonstrate a design of mechanical metamaterials for simultaneous mechanical wave filtering and energy harvesting. The mechanical metamaterials compromise a square array of free-standing cantilevers featuring piezoelectric properties being attached to a primary structural frame. A complete bandgap has thus been created via the strong coupling of the bulk elastic wave propagating along the structural frame and the distributed local resonance associated with the square array of piezoelectrically active cantilevers. Operating within the stop-band, external vibration energy has been trapped and transferred into the kinetic energy of the cantilevers, which is further converted into electric energy through mechano-electrical conversion of its integrated piezoelectric elements. Therefore, two distinct functions, vibration isolation and energy harvesting, are achieved simultaneously through the designed mechanical metamaterials.

  15. Force limited random vibration testing: the computation of the semi-empirical constant $C(2) $ C 2 for a real test article and unknown supporting structure (United States)

    Wijker, J. J.; Ellenbroek, M. H. M.; Boer, A. de


    To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the test article (load), C^2 is a very important parameter for FLVT. A number of computational methods to estimate C^2 are described in the literature, i.e. the simple and the complex two degree of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of C^2 to perform a representative random vibration test based on force limitation, when the description of the supporting structure (source) is more or less unknown. Marchand discussed the formal description of obtaining C^2, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between test article and supporting structure. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected. The asparagus patch model consists of modal effective masses and spring stiffnesses associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter C^2. When no mathematical model of the source can be made available, estimations of the value C^2 can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value C^2 can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two

  16. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation (United States)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.


    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  17. Design for coupled-mode flutter and non-synchronous vibration in turbomachinery (United States)

    Clark, Stephen Thomas

    This research presents the detailed investigation of coupled-mode flutter and non-synchronous vibration in turbomachinery. Coupled-mode flutter and non-synchronous vibration are two aeromechanical challenges in designing turbomachinery that, when present, can cause engine blade failure. Regarding flutter, current industry design practices calculate the aerodynamic loads on a blade due to a single mode. In response to these design standards, a quasi three-dimensional, reduced-order modeling tool was developed for identifying the aeroelastic conditions that cause multi-mode flutter. This tool predicts the onset of coupled-mode flutter reasonable well for four different configurations, though certain parameters were tuned to agree with experimentation. Additionally, the results of this research indicate that mass ratio, frequency separation, and solidity have an effect on critical rotor speed for flutter. Higher mass-ratio blades require larger rotational velocities before they experience coupled-mode flutter. Similarly, increasing the frequency separation between modes and raising the solidity increases the critical rotor speed. Finally, and most importantly, design guidelines were generated for defining when a multi-mode flutter analysis is required in practical turbomachinery design. Previous work has shown that industry computational fluid dynamics can approximately predict non-synchronous vibration (NSV), but no real understanding of frequency lock-in and blade limit-cycle amplitude exists. Therefore, to understand the causes of NSV, two different reduced-order modeling approaches were used. The first approach uses a van der Pol oscillator to model a non-linear fluid instability. The van der Pol model is then coupled to a structural degree of freedom. This coupled system exhibits the two chief properties seen in experimental and computational non-synchronous vibration. Under various conditions, the fluid instability and the natural structural frequency will lock

  18. Sensor Placement Optimization of Vibration Test on Medium-Speed Mill

    Directory of Open Access Journals (Sweden)

    Lihua Zhu


    Full Text Available Condition assessment and decision making are important tasks of vibration test on dynamic machines, and the accuracy of dynamic response can be achieved by the sensors placed on the structure reasonably. The common methods and evaluation criteria of optimal sensor placement (OSP were summarized. In order to test the vibration characteristic of medium-speed mill in the thermal power plants, the optimal placement of 12 candidate measuring points in X, Y, and Z directions on the mill was discussed for different targeted modal shapes, respectively. The OSP of medium-speed mill was conducted using the effective independence method (EfI and QR decomposition algorithm. The results showed that the order of modal shapes had an important influence on the optimization results. The difference of these two methods on the sensor placement optimization became smaller with the decrease of the number of target modes. The final scheme of OSP was determined based on the optimal results and the actual test requirements. The field test results were basically consistent with the finite element analysis results, which indicated the sensor placement optimization for vibration test on the medium-speed mill was feasible.

  19. Accelerated Vibration Test of coolant channel components under simulated flow induced excitation

    Energy Technology Data Exchange (ETDEWEB)

    Meher, K.K., E-mail:; Pandey, J.K., E-mail:; RamaRao, A., E-mail:


    Highlights: • The present study deals with the issue of loosening of the nut in the Grayloc joint due to flow induced vibration and fret in the feeder pipes in contact due to differential creep in the neighbouring channels. • Accelerated test has been done on the Grayloc joint on simulated flow induced vibration to study the effect of loosening of the nut. • In the present accelerated test, the component has not been led to failure (loosening) and an estimation of its service life has been approached based on the severity of test. • The inverse square law approach based on PSD comparison for severity of test have been used to correlate the actual operational hours and the Laboratory test hours to verify the loosening of the Grayloc nut for the present study. • By inverse power law approach, the minimum number of reactor-hours equivalent to 80 h of testing is 46,080 h (5.26 full power years). - Abstract: The present study outlines the accelerated testing procedure of a Grayloc joint assembly for possible loosening of its nut due to flow induced vibration. The concern of the Grayloc nut getting loosened in the absence of a lock nut due to flow induced vibration and the resulting fretting in the feeder pipes in contact due to differential creep in the neighbouring channels has been addressed here. The severity of the test was decided based on actual site measurement under different operating flow conditions and comparison of power spectral density (PSD). The laboratory test results were extrapolated for estimation of life of the component under operating condition using inverse power law approach. The uniqueness of the accelerated test is that the component under test has not been led to failure for assessing its operating life unlike conventional accelerated testing. From the tests and analysis, it was deduced that 80 h of accelerated laboratory testing was equivalent to 5.26 full power years (46,080 h) of the reactor operating life. The test duration was

  20. Wireless sensing and vibration control with increased redundancy and robustness design. (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan


    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  1. Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal (United States)

    Sizov, Igor; Rahman, Masudur; Gelmont, Boris; Norton, Michael L.; Globus, Tatiana


    Sub-terahertz (sub-THz) vibrational spectroscopy is a new spectroscopic branch for characterizing biological macromolecules. In this work, highly resolved sub-THz resonance spectroscopy is used for characterizing engineered molecular structures, an artificially designed DNA monocrystal, built from a short DNA sequence. Using a recently developed frequency domain spectroscopic instrument operating at room temperature with high spectral and spatial resolution, we demonstrated very intense and specific spectral lines from a DNA crystal in general agreement with a computational molecular dynamics (MD) simulation of a short double stranded DNA fragment. The spectroscopic signature measured in the frequency range between 310 and 490 GHz is rich in well resolved and reproducible spectral features thus demonstrating the capability of THz resonance spectroscopy to be used for characterizing custom macromolecules and structures designed and implemented via nanotechnology for a wide variety of application domains. Analysis of MD simulation indicates that intense and narrow vibrational modes with atomic movements perpendicular (transverse) and parallel (longitudinal) to the long DNA axis coexist in dsDNA, with much higher contribution from longitudinal vibrations.

  2. Novel controller design demonstration for vibration alleviation of helicopter rotor blades (United States)

    Ulker, Fatma Demet; Nitzsche, Fred


    This paper presents an advanced controller design methodology for vibration alleviation of helicopter rotor sys- tems. Particularly, vibration alleviation in a forward ight regime where the rotor blades experience periodically varying aerodynamic loading was investigated. Controller synthesis was carried out under the time-periodic H2 and H∞ framework and the synthesis problem was solved based on both periodic Riccati and Linear Matrix Inequality (LMI) formulations. The closed-loop stability was analyzed using Floquet-Lyapunov theory, and the controller's performance was validated by closed-loop high-delity aeroelastic simulations. To validate the con- troller's performance an actively controlled trailing edge ap strategy was implemented. Computational cost was compared for both formulations.

  3. Investigation on the use of optimization techniques for helicopter airframe vibrations design studies (United States)

    Sreekanta Murthy, T.


    Results of the investigation of formal nonlinear programming-based numerical optimization techniques of helicopter airframe vibration reduction are summarized. The objective and constraint function and the sensitivity expressions used in the formulation of airframe vibration optimization problems are presented and discussed. Implementation of a new computational procedure based on MSC/NASTRAN and CONMIN in a computer program system called DYNOPT for optimizing airframes subject to strength, frequency, dynamic response, and dynamic stress constraints is described. An optimization methodology is proposed which is thought to provide a new way of applying formal optimization techniques during the various phases of the airframe design process. Numerical results obtained from the application of the DYNOPT optimization code to a helicopter airframe are discussed.

  4. Improved orthogonality check for measured modes. [from ground vibration testing of structures (United States)

    Berman, A.


    A method is proposed for performing an orthogonality check for normal modes derived from ground vibration testing. The method utilizes partitioned mass and stiffness matrices for a linear undamped representation of a structure. The normalization of the modes by the proposed method inherently includes the effects of significant displacements which were not measured; and the method may allow the use of fewer measurement points than would be necessary with the conventional method.

  5. The Shock Vibration Bulletin. Part 4. Structural Dynamics and Modal Test and Analysis (United States)


    Feb. 1971. 17 16. B. Bresler, and A. C. Scordelis , ’Shear Strength of Reinforced Concrete Beams-,Series 100, Issue 13, Structure and Material Research...their adequacy. Dynamic analyses, choice of failure thresholds of failure are even harder to theories , and an accurate dynamic model are estimate...without experimental evidence. shown to be crucial in fulfilling the 29 71 L requirements. Vibration testing data are theories of failure have to be

  6. Force Limited Vibration Testing and Subsequent Redesign of the Naval Postgraduate School CubeSat Launcher (United States)


    complex (e.g., Honeycomb ), this approach can significantly increase the cost of a satellite program. 3. Limit the responses of the satellite to match...LEFT BLANK xv LIST OF ACRONYMS AND ABBREVIATIONS ABC Aft Bulkhead Carrier ADaMSat AS&T Development and Maturation Satellite AFSPC Air Force Space...vibration testing FRF frequency response function GEMSat Government Experimental Multi- Satellite GRACE Government Rideshare Advanced Concepts Experiments

  7. Nanoelectronic circuit design and test (United States)

    Simsir, Muzaffer Orkun

    Controlling power consumption in CMOS integrated circuits (ICs) during normal mode of operation is becoming one of the limiting factors to further scaling. In addition, it is a well known fact that during testing of a complex IC, power consumption can far exceed the values reached during its normal operation. High power consumption, combined with limited cooling support, leads to overheating of ICs. This can cause permanent damage to the chip or can invalidate test results due to the fact that extreme temperature variations lead to changes in path delays. Therefore, even good chips can fail the test. For these reasons, thermal problems during test need to be identified to prevent the loss of yield in CMOS ICs. In this thesis, we propose a methodology for thermally characterizing circuits under test. Using this methodology, it is possible to simulate the thermal profiles of the chips during test and prevent possible yield loss because of thermal problems. In addition to the problems associated with power and temperature, a more important barrier is the scaling limitations of the CMOS technology. It has been predicted that in next decade, it will not be possible to scale it further. In the near future, rather than a transition to a completely new technology, extensions to CMOS seem to be more realistic. Double-gate CMOS technology is one of the most promising alternatives that offers a simple extension to CMOS. The transistors of this technology are formed by adding a second gate across the conventional CMOS transistor gate. Designing circuits using this technology has attracted a lot of attention. However, as circuit design methods mature, there is a need to identify how these circuits can be tested. From a circuit testing viewpoint, it is unclear if CMOS fault models are comprehensive enough to model all defects in double-gate CMOS circuits. Therefore, fault models of this technology need to be defined to enable manufacturing-time testing. In this thesis, we

  8. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA Lithium-Ion 18650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper


    Full Text Available This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE J2380 standard. This vibration test is synthesized to represent 100,000 miles of North American customer operation at the 90th percentile. This study identified that both the electrical performance and the mechanical properties of the NCA lithium-ion cells were relatively unaffected when exposed to vibration energy that is commensurate with a typical vehicle life. Minor changes observed in the cell’s electrical characteristics were deemed not to be statistically significant and more likely attributable to laboratory conditions during cell testing and storage. The same conclusion was found, irrespective of cell orientation during the test.

  9. A novel vibration sensor based on phase grating interferometry (United States)

    Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei


    Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.

  10. Optimized design of suspension systems for hand-arm transmitted vibration reduction (United States)

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarabini, Marco


    This paper describes a systematic approach for optimizing suspension systems to reduce the vibrations transmitted to workers by hand-held power tools. The optimization is based on modeling tool-operator interactions using a mobility scheme. The tool is modeled as a vibration generator, and its internal impedance is included. A hand-arm impedance matrix is used to model the operator upper limbs. The mobility model is used to identify the optimal suspension characteristics, which in our study were the set of parameters that minimizes the frequency-weighted acceleration at the hand-tool interface. Different handling conditions (one and two hands) and different working cycles with the same tools can be included in the optimization process. The constraints derived from the limitation on the increase in the tool mass and the static deflection of the mounting system under the working loads are also considered. The proposed method has been applied to the reduction of the vibrations transmitted to the operator by a small pneumatic hammer. The designed system reduced the worker's exposure so that it is within the limits of the EU directive. The agreement between the model predictions and the measured suspension performances validates the effectiveness of this approach.

  11. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    Directory of Open Access Journals (Sweden)

    G. Bernardini


    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  12. A seismic vibrator driven by linear synchronous motors : Developing a prototype vibrator, investigating the vibrator-ground contact and exploring robust signal design

    NARCIS (Netherlands)

    Noorlandt, R.P.


    The seismic method is an important indirect method to investigate the subsurface of the earth. By analyzing how the earth affects the propagation of mechanical waves, the structure of the earth and its seismic properties can be inferred. The seismic vibrator is the most commonly used land source in

  13. A New Framework For Helicopter Vibration Suppression; Time-Periodic System Identification and Controller Design (United States)

    Ulker, Fatma Demet

    In forward flight, helicopter rotor blades function within a highly complex aerodynamic environment that includes both near-blade and far-blade aerodynamic phenomena. These aerodynamic phenomena cause fluctuating aerodynamic loads on the rotor blades. These loads when coupled with the dynamic characteristics and elastic motion of the blade create excessive amount of vibration. These vibrations degrade helicopter performance, passenger comfort and contributes to high cost maintenance problems. In an effort to suppress helicopter vibration, recent studies have developed active control strategies using active pitch links, flaps, twist actuation and higher harmonic control of the swash plate. In active helicopter vibration control, designing a controller in a computationally efficient way requires accurate reduced-order models of complex helicopter aeroelasticity. In previous studies, controllers were designed using aeroelastic models that were obtained by coupling independently reduced aerodynamic and structural dynamic models. Unfortunately, these controllers could not satisfy stability and performance criteria when implemented in high-fidelity computer simulations or real-time experiments. In this thesis, we present a novel approach that provides accurate time-periodic reduced-order models and time-periodic H2 and H infinity controllers that satisfy the stability and performance criteria. Computational efficiency and the necessity of using the approach were validated by implementing an actively controlled flap strategy. In this proposed approach, the reduced-order models were directly identified from high-fidelity coupled aeroelastic analysis by using the time-periodic subspace identification method. Time-periodic H2 and Hinfinity controllers that update the control actuation at every time step were designed. The control synthesis problem was solved using Linear Matrix Inequality and periodic Riccati Equation based formulations, for which an in-house periodic

  14. A procedure obtaining stiffnesses and masses of a structure from vibration modes and substructure static test data (United States)

    Edighoffer, H. H.


    A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.

  15. Research on the Random Shock Vibration Test Based on the Filter-X LMS Adaptive Inverse Control Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Wei


    Full Text Available The related theory and algorithm of adaptive inverse control were presented through the research which pointed out the adaptive inverse control strategy could effectively eliminate the noise influence on the system control. Proposed using a frequency domain filter-X LMS adaptive inverse control algorithm, and the control algorithm was applied to the two-exciter hydraulic vibration test system of random shock vibration control process and summarized the process of the adaptive inverse control strategies in the realization of the random shock vibration test. The self-closed-loop and field test show that using the frequency-domain filter-X LMS adaptive inverse control algorithm can realize high precision control of random shock vibration test.

  16. Statistical correlation analysis for comparing vibration data from test and analysis (United States)

    Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.


    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.

  17. Serological tests for diagnosis and staging of hand-arm vibration syndrome (HAVS). (United States)

    Kao, Dennis S; Yan, Ji-Geng; Zhang, Lin-Ling; Kaplan, Rachel E; Riley, Danny A; Matloub, Hani S


    The current gold standard for the diagnosis and staging of hand-arm vibration syndrome (HAVS) is the Stockholm workshop scale, which is subjective and relies on the patient's recalling ability and honesty. Therefore, great potentials exist for diagnostic and staging errors. The purpose of this study is to determine if objective serum tests, such as levels of soluble thrombomodulin (sTM) and soluble intercellular adhesion molecule-1 (sICAM-1), may be used in the diagnosis and staging of HAVS. Twenty two nonsmokers were divided into a control group (n = 11) and a vibration group (n = 11). The control group included subjects without history of frequent vibrating tool use. The vibration group included construction workers with average vibrating tool use of 12.2 years. All were classified according to the Stockholm workshop scale (SN, sensorineural symptoms; V, vascular symptoms. SN0, no numbness; SN1, intermittent numbness; SN2, reduced sensory perception; SN3, reduced tactile discrimination; V0, no vasospasmic attacks; V1, intermittent vasospasm involving distal phalanges; V2, intermittent vasospasm extending to middle phalanges; V3, intermittent vasospasm extending to proximal phalanges; V4, skin atrophy/necrosis). All control subjects were SN0 V0. Seven out of 11 vibration subjects were SN1 V1, and 4 out of 11 were SN1 V2. A 10-cm(3) sample of venous blood was collected from each subject. The sTM and sICAM-1 levels were determined by enzyme-linked immunosorbent assay. The mean plasma sTM levels were as follows: control group = 2.93 +/- 0.47 ng/ml, and vibration group = 3.61 +/- 0.24 ng/ml. The mean plasma sICAM-1 levels were as follows: control group = 218.8 +/- 54.1 ng/ml, and vibration group = 300.3 +/- 53.2 ng/ml. The sTM and sICAM-1 differences between control and vibration groups were statistically significant (p Stockholm workshop scale, mean plasma sTM levels were SN0 V0 group = 2.93 +/- 0.47 ng/ml, SN1 V1 group = 3.59 +/- 0.25 ng/ml, and SN1 V2 group = 3

  18. Experimental Analysis of Mast Lifting and Bending Forces on Vibration Patterns Before and After Pinion Reinstallation in an OH-58 Transmission Test Rig (United States)

    Huff, Edward M.; Lewicki, David G.; Tumer, Irem Y.; Decker, Harry; Barszez, Eric; Zakrajsek, James J.; Norvig, Peter (Technical Monitor)


    As part of a collaborative research program between NASA Ames Research Center (ARC), NASA Glenn Research Center (GRC), and the US Army Laboratory, a series of experiments is being performed in GRC's 500 HP OH-58 Transmission Test Rig facility and ARC's AH-I Cobra and OH-58c helicopters. The findings reported in this paper were drawn from Phase-I of a two-phase test-rig experiment, and are focused on the vibration response of an undamaged pinion gear operating in the transmission test rig. To simulate actual flight conditions, the transmission system was run at three torque levels, as well as two mast lifting and two mast bending levels. The test rig was also subjected to disassembly and reassembly of the main pinion housing to simulate the effect of maintenance operations. An analysis of variance based on the total power of the spectral distribution indicates the relative effect of each experimental factor, including Wong interactions with torque. Reinstallation of the main pinion assembly is shown to introduce changes in the vibration signature, suggesting the possibility of a strong effect of maintenance on HUMS design and use. Based on these results, further research will be conducted to compare these vibration responses with actual OH58c helicopter transmission vibration patterns.

  19. The Design of Vibration Sensing System Used for the Internet of Things (United States)

    Ji, Wei; Ma, Xuejie


    A vibration sensing system used for the Internet of Things is presented in this paper. Using the distributed feedback fiber lasers (DFB-FL) collects external sound signals and digital phase generated carrier (PGC) method realizes wavelength demodulation. The platform is designed based on an open architecture and B/S (Browser/Server) technology which makes it an ideal platform to be operated under a network environment. The sensing system is no power supply and could be monitored anytime and anywhere which is the requirement of Internet of things.

  20. Design of a Testing Facility for Investigation of Drill Pipes Fatigue Failure

    Directory of Open Access Journals (Sweden)

    Jamil Abdo


    Full Text Available Drillstring and down-hole tool failure usually results from failing to control one or more of the vibration mechanisms. The solution starts with the ability to measure different modes of vibration, hence identifying different vibration mechanisms. Lateral, torsion and axial are vibration modes that take place when drill pipes run into problems downhole. Due to the three modes of vibration mechanisms such as bit bounce, stick-slip, lateral shocks, bit and bottom hole assembly (BHA whirl, parametric and torsional resonance occur. Understanding the causes of the destructive loads is the main step towards developing approaches to prevent or reduce their effects, hence improving drilling performance. Vibration modes and mechanisms lead to failure of the drill pipes, BHA and drill bits. Drill pipes fatigue failure is very common due to capability of producing all vibration modes and mechanisms. Drill pipe and downhole tool assembly failure usually result from failing to have power over one or more of these vibration mechanisms. A novel in house experimental setup has been developed to mimic downhole axial, lateral and torsional vibration modes and mechanisms in drilling operations. In this paper, we focus on the design and construction of the testing facility. A number of tests were conducted to validate the capability and performance of the test setup. Drill pipe fatigue failure due to lateral cyclic stresses induced in the drill pipe has also been investigated and presented in this paper. The results show that operating on a rotation speed higher than 90% of the drillstring critical speed leads to yielding in the drillstring.

  1. The Health Monitoring Method of Concrete Dams Based on Ambient Vibration Testing and Kernel Principle Analysis

    Directory of Open Access Journals (Sweden)

    Lin Cheng


    Full Text Available The ambient vibration testing (AVT measurement of concrete dams on full-scale can show the practical dynamic properties of structure in the operation state. For most current researches, the AVT data is generally analyzed to identify the structural vibration characteristics, that is, modal parameters. The identified modal parameters, which can provide the global damage information or the damage location information of structure, can be used as the basis of structure health monitoring. Therefore, in this paper, the health monitoring method of concrete dams based on the AVT is studied. The kernel principle analysis (KPCA based method is adopted to eliminate the effect of environmental variables and monitor the health of dam under varying environments. By taking full advantage of the AVT data obtained from vibration observation system of dam, the identification capabilities and the warning capabilities of structural damage can be improved. With the simulated AVT data of the numerical model of a concrete gravity dam and the measured AVT data of a practical engineering, the performance of the dam health monitoring method proposed in this paper is verified.

  2. A simple method for designing structural models with closely spaced modes of vibration (United States)

    Hallauer, W. L., Jr.; Weisshaar, T. A.; Shostak, A. G.


    A simple method for designing a mathematical model with closely spaced vibration modes is described. The design process begins with a reference model having specified geometry, continuous inertia and stiffness distributions, and degrees of freedom, all of which remain unchanged. Two natural frequencies of this model are then forced together by means of systematic perturbation of the model's discrete inertia and stiffness parameters. There is only one eigenvalue solution per design cycle, and the gradient vector is calculated directly from the resulting modal quantities. The minimization procedure employed is unconstrained. As applications, a cantilevered plane grid model with five degrees of freedom and a bending-torsion-oscillator with eleven degrees of freedom are treated.

  3. Advanced Vibration Analysis Tools and New Strategies for Robust Design of Turbine Engine Rotors (United States)

    Min, James B.


    The adverse effects of small, random structural irregularities among the blades, called mistuning, can result in blade forced-response amplitudes and stresses that are much larger than those predicted for a perfectly tuned rotor. Manufacturing tolerances, deviations in material properties, or nonuniform operational wear causes mistuning; therefore, mistuning is unavoidable. Furthermore, even a small mistuning can have a dramatic effect on the vibratory behavior of a rotor because it can lead to spatial localization of the vibration energy (see the following photographs). As a result, certain blades may experience forced response amplitudes and stresses that are substantially larger than those predicted by an analysis of the nominal (tuned) design. Unfortunately, these random uncertainties in blade properties, and the immense computational effort involved in obtaining statistically reliable design data, combine to make this aspect of rotor design cumbersome.

  4. AVM branch vibration test equipment; Moyens d`essais vibratoires au sein du departement AMV

    Energy Technology Data Exchange (ETDEWEB)

    Anne, J.P.


    An inventory of the test equipment of the AVM Branch ``Acoustic and Vibratory Mechanics Analysis Methods`` group has been undertaken. The purpose of this inventory is to enable better acquaintance with the technical characteristics of the equipment, providing an accurate definition of their functionalities, ad to inform potential users of the possibilities and equipment available in this field. The report first summarizes the various experimental surveys conduced. Then, using the AVM equipment database to draw up an exhaustive list of available equipment, it provides a full-scope picture of the vibration measurement systems (sensors, conditioners and exciters) and data processing resources commonly used on industrial sites and in laboratories. A definition is also given of a mobile test unit, called `shelter`, and a test bench used for the testing and performance rating of the experimental analysis methods developed by the group. The report concludes with a description of two fixed installations: - the calibration bench ensuring the requisite quality level for the vibration measurement systems ; - the training bench, whereby know-how acquired in the field in the field of measurement and experimental analysis processes is made available to others. (author). 27 refs., 15 figs., 2 appends.

  5. Development of a sine-dwell ground vibration test (GVT) system

    CSIR Research Space (South Africa)

    Van Zyl, Lourens H


    Full Text Available Vibration Test (GVT) System Presented at CSIR Research and Innovation Conference: 27 - 28 February 2006 DPSS Mr Louw van Zyl Mr Erik Wegman 27 February 2006 Slide 2 © CSIR 2006 Agenda • Introduction Why ground... stream_source_info VanZyl_2006.pdf.txt stream_content_type text/plain stream_size 9765 Content-Encoding UTF-8 stream_name VanZyl_2006.pdf.txt Content-Type text/plain; charset=UTF-8 Development of a Sine-Dwell Ground...

  6. Analysis of crack initiation and growth in the high level vibration test at Tadotsu

    Energy Technology Data Exchange (ETDEWEB)

    Kassir, M.K.; Park, Y.J.; Hofmayer, C.H.; Bandyopadhyay, K.K.; Shteyngart, S. [Brookhaven National Lab., Upton, NY (United States)


    The High Level Vibration Test data are used to assess the accuracy and usefulness of current engineering methodologies for predicting crack initiation and growth in a cast stainless steel pipe elbow under complex, large amplitude loading. The data were obtained by testing at room temperature a large scale modified model of one loop of a PWR primary coolant system at the Tadotsu Engineering Laboratory in Japan. Fatigue crack initiation time is reasonably predicted by applying a modified local strain approach (Coffin-Mason-Goodman equation) in conjunction with Miner`s rule of cumulative damage. Three fracture mechanics methodologies are applied to investigate the crack growth behavior observed in the hot leg of the model. These are: the {Delta}K methodology (Paris law), {Delta}J concepts and a recently developed limit load stress-range criterion. The report includes a discussion on the pros and cons of the analysis involved in each of the methods, the role played by the key parameters influencing the formulation and a comparison of the results with the actual crack growth behavior observed in the vibration test program. Some conclusions and recommendations for improvement of the methodologies are also provided.

  7. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells. (United States)

    Naumann, E. C.


    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  8. Functional Testing of Wireless Sensor Node Designs

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan


    test approach can enable their conformance to design and deployment specifications. We discuss off-line, hierarchical, functional testing of complete wireless sensor nodes containing configurable logic through a combination of FPGA-based board test and Software-Based Self-Test (SBST) techniques....... The proposed functional test methodology has been applied to a COTS-based sensor node development platform and can be applied, in general, for testing all types of wireless sensor node designs....

  9. Estimation of the effects of rain-wind induced vibration in the design stage of inclined stay cables

    NARCIS (Netherlands)

    Geurts, C.P.W.; Staalduinen, P.C. van


    Rain-wind induced vibration of stay cables is a great concern for the designers of cable stayed bridges. Despite numerous experimental investigations, an accurate quantitative prediction of this effect in the design stage is not feasible without extensive experiments. This paper presents a model to

  10. Designing special test instruments for preventive maintenance. (United States)

    McCullough, C E; Baker, L S


    Periodic performance testing of biomedical equipment can be made considerably more efficient by careful design of test procedures and by fabrication of special test instruments which are designed for those procedures. The design philosophy behind such procedures and instruments and its applicability to a wide variety of biomedical devices is discussed. As a practical example, an ECG machine/patient monitor test system is described and construction details are given.

  11. Design of three-element dynamic vibration absorber for damped linear structures (United States)

    Anh, N. D.; Nguyen, N. X.; Hoa, L. T.


    The standard type of dynamic vibration absorber (DVA) called the Voigt DVA is a classical model and has long been investigated. In the paper, we will consider an optimization problem of another model of DVA that is called three-element type DVA for damped primary structures. Unlike the standard absorber configuration, the three-element DVA contains two spring elements in which one is connected to a dashpot in series and the other is placed in parallel. There have been some studies on the design of the three-element DVA for undamped primary structures. Those studies have shown that the three-element DVA produces better performance than the Voigt DVA does. When damping is present at the primary system, to the best knowledge of the authors, there has been no study on the three-element dynamic vibration absorber. This work presents a simple approach to determine the approximate analytical solutions for the H∞ optimization of the three-element DVA attached to the damped primary structure. The main idea of the study is based on the criteria of the equivalent linearization method in order to replace approximately the original damped structure by an equivalent undamped one. Then the approximate analytical solution of the DVA's parameters is given by using known results for the undamped structure obtained. The comparisons have been done to verify the effectiveness of the obtained results.

  12. Design and verification of a negative resistance electromagnetic shunt damper for spacecraft micro-vibration (United States)

    Stabile, Alessandro; Aglietti, Guglielmo S.; Richardson, Guy; Smet, Geert


    Active control techniques are often required to mitigate the micro-vibration environment existing on board spacecraft. However, reliability issues and high power consumption are major drawbacks of active isolation systems that have limited their use for space applications. In the present study, an electromagnetic shunt damper (EMSD) connected to a negative-resistance circuit is designed, modelled and analysed. The negative resistance produces an overall reduction of the circuit resistance that results in an increase of the induced current in the closed circuit and thus the damping performance. This damper can be classified as a semi-active damper since the shunt does not require any control algorithm to operate. Additionally, the proposed EMSD is characterised by low required power, simplified electronics and small device mass, allowing it to be comfortably integrated on a satellite. This work demonstrates, both analytically and experimentally, that this technology is capable of effectively isolating typical satellite micro-vibration sources over the whole temperature range of interest.

  13. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL


    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  14. Design of 500kW grate fired test facility using CFD

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup; Kær, Søren Knudsen; Jørgensen, K.


    A 500kW vibrating grate fired test facility for solid biomass fuels has been designed using numerical models including CFD. The CFD modelling has focussed on the nozzle layout and flowpatterns in the lower part of the furnace, and the results have established confidence in the chosen design......, indicating that the test facility will adequately provide conditions resembling those found in full-scale industrial plants....

  15. A3 Subscale Diffuser Test Article Design (United States)

    Saunders, G. P.


    This paper gives a detailed description of the design of the A3 Subscale Diffuser Test (SDT) Article Design. The subscale diffuser is a geometrically accurate scale model of the A3 altitude rocket facility. It was designed and built to support the SDT risk mitigation project located at the E3 facility at Stennis Space Center, MS (SSC) supporting the design and construction of the A3 facility at SSC. The subscale test article is outfitted with a large array of instrumentation to support the design verification of the A3 facility. The mechanical design of the subscale diffuser and test instrumentation are described here

  16. The Skull Vibration-Induced Nystagmus Test of Vestibular Function—A Review (United States)

    Dumas, Georges; Curthoys, Ian S.; Lion, Alexis; Perrin, Philippe; Schmerber, Sébastien


    A 100-Hz bone-conducted vibration applied to either mastoid induces instantaneously a predominantly horizontal nystagmus, with quick phases beating away from the affected side in patients with a unilateral vestibular loss (UVL). The same stimulus in healthy asymptomatic subjects has little or no effect. This is skull vibration-induced nystagmus (SVIN), and it is a useful, simple, non-invasive, robust indicator of asymmetry of vestibular function and the side of the vestibular loss. The nystagmus is precisely stimulus-locked: it starts with stimulation onset and stops at stimulation offset, with no post-stimulation reversal. It is sustained during long stimulus durations; it is reproducible; it beats in the same direction irrespective of which mastoid is stimulated; it shows little or no habituation; and it is permanent—even well-compensated UVL patients show SVIN. A SVIN is observed under Frenzel goggles or videonystagmoscopy and recorded under videonystagmography in absence of visual-fixation and strong sedative drugs. Stimulus frequency, location, and intensity modify the results, and a large variability in skull morphology between people can modify the stimulus. SVIN to 100 Hz mastoid stimulation is a robust response. We describe the optimum method of stimulation on the basis of the literature data and testing more than 18,500 patients. Recent neural evidence clarifies which vestibular receptors are stimulated, how they cause the nystagmus, and why the same vibration in patients with semicircular canal dehiscence (SCD) causes a nystagmus beating toward the affected ear. This review focuses not only on the optimal parameters of the stimulus and response of UVL and SCD patients but also shows how other vestibular dysfunctions affect SVIN. We conclude that the presence of SVIN is a useful indicator of the asymmetry of vestibular function between the two ears, but in order to identify which is the affected ear, other information and careful clinical judgment are

  17. Optimization design of high power ultrasonic circular ring radiator in coupled vibration. (United States)

    Xu, Long; Lin, Shuyu; Hu, Wenxu


    This paper presents a new high power ultrasonic (HPU) radiator, which consists of a transducer, an ultrasonic horn, and a metal circular ring. Both the transducer and horn in longitudinal vibrations are used to drive a metal circular ring in a radial-axial coupled vibration. This coupled vibration cannot only generate ultrasound in both the radial and axial directions, but also focus the ultrasound inside the circular ring. Except for the radial-axial coupled vibration mode, the third longitudinal harmonic vibration mode with relative large vibration amplitude is also detected, which can be used as another operation mode. Overall, the HPU with these two vibration modes should have good potential to be applied in liquid processing, such as sonochemistry, ultrasonic cleaning, and Chinese herbal medicine extraction. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. 10 CFR 63.133 - Design testing. (United States)


    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 63.133 Section 63.133 Energy NUCLEAR... MOUNTAIN, NEVADA Performance Confirmation Program § 63.133 Design testing. (a) During the early or developmental stages of construction, a program for testing of engineered systems and components used in the...

  19. 10 CFR 60.142 - Design testing. (United States)


    ... 10 Energy 2 2010-01-01 2010-01-01 false Design testing. 60.142 Section 60.142 Energy NUCLEAR... Performance Confirmation Program § 60.142 Design testing. (a) During the early or developmental stages of construction, a program for in situ testing of such features as borehole and shaft seals, backfill, and the...

  20. Objectives and Progress on Ground Vibration Testing for the Ares Projects (United States)

    Tuma, Margaret L.; Chenevert, Donald J.


    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA s next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be conducting the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO will perform the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orion/lander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. The current plan is to test six configurations in three unique test positions inside TS 4550. Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Position 1 represents the entire launch stack at lift-off (using inert first stage segments). Because of long disuse, TS 4550 is being repaired and modified for reactivation to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. Two new cranes will help move test articles at the test stand and at the

  1. Correlation of analysis with high level vibration test results for primary coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H. [Brookhaven National Lab., Upton, NY (United States); Costello, J.F. [Nuclear Regulatory Commission, Washington, DC (United States)


    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results.

  2. Correlation of analysis with high level vibration test results for primary coolant piping

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Hofmayer, C.H. (Brookhaven National Lab., Upton, NY (United States)); Costello, J.F. (Nuclear Regulatory Commission, Washington, DC (United States))


    Dynamic tests on a modified 1/2.5-scale model of pressurized water reactor (PWR) primary coolant piping were performed using a large shaking table at Tadotsu, Japan. The High Level Vibration Test (HLVT) program was part of a cooperative study between the United States (Nuclear Regulatory Commission/Brookhaven National Laboratory, NRC/BNL) and Japan (Ministry of International Trade and Industry/Nuclear Power Engineering Center). During the test program, the excitation level of each test run was gradually increased up to the limit of the shaking table and significant plastic strains, as well as cracking, were induced in the piping. To fully utilize the test results, NRC/BNL sponsored a project to develop corresponding analytical predictions for the nonlinear dynamic response of the piping for selected test runs. The analyses were performed using both simplified and detailed approaches. The simplified approaches utilize a linear solution and an approximate formulation for nonlinear dynamic effects such as the use of a deamplification factor. The detailed analyses were performed using available nonlinear finite element computer codes, including the MARC, ABAQUS, ADINA and WECAN codes. A comparison of various analysis techniques with the test results shows a higher prediction error in the detailed strain values in the overall response values. A summary of the correlation analyses was presented before the BNL. This paper presents a detailed description of the various analysis results and additional comparisons with test results.

  3. Designing a Test Fixture with DFSS Methodology

    Directory of Open Access Journals (Sweden)

    Charles G. Kibbe


    Full Text Available This paper addresses the application of Design for Six Sigma (DFSS methodology to the design of a marine riser joint hydraulic line test fixture. The original test fixture was evaluated using Value Steam Mapping (VSM and appropriate Lean design tools such as 3D Modeling and Finite Element Analysis (FEA. A new test fixture was developed which resulted in improving the process cycle efficiency for the test from 25% to 50% percent, leading to a 50% reduction in test cost. Handling of the new test fixture is greatly improved as compared to the original fixture.

  4. Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, H. L. [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Abdelkefi, A. [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Yang, Y., E-mail: [School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, L. [Department of Mechanics, Huazhong University of Science and Technology, Wuhan 430074 (China)


    The characteristics and performances of four distinct vortex-induced vibrations (VIVs) piezoelectric energy harvesters are experimentally investigated and compared. The difference between these VIV energy harvesters is the installation of the cylindrical bluff body at the tip of cantilever beam with different orientations (bottom, top, horizontal, and vertical). Experiments show that the synchronization regions of the bottom, top, and horizontal configurations are almost the same at low wind speeds (around 1.5 m/s). The vertical configuration has the highest wind speed for synchronization (around 3.5 m/s) with the largest harvested power, which is explained by its highest natural frequency and the smallest coupled damping. The results lead to the conclusion that to design efficient VIV energy harvesters, the bluff body should be aligned with the beam for low wind speeds (<2 m/s) and perpendicular to the beam at high wind speeds (>2 m/s)

  5. Vibration Analysis and Parameter Design of Two Degree of Freedom System Using Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yeongmin; Lee, Jongsoo [Yonsei Univ., Seoul (Korea, Republic of)


    Today, we are using computer simulations in various engineering disciplines to reduce the time and cost of product development. The scope of simulations is increasingly complex and diverse for different fields such as mechanical, electrical, thermal, and fluid. Thus, it is necessary to use integrated simulations. In order to overcome these problems, a language has been developed to effectively describe and implement simulations is Modelica. To model and simulate a system, physical models can be broadly divided into causal and acausal models. The most important feature of Modelica is acausal programming. In this study, we will introduce simple concepts and explain about the usage of Modelica. Furthermore, we will explain the vibration analysis of a two degree-of-freedom system and the design of appropriate parameters by using Modelica.

  6. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design (United States)

    Harrison, Phil; LaVerde, Bruce; Teague, David


    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  7. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang


    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  8. Designing a CR Test bed

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Buthler, Jakob Lindbjerg; Tonelli, Oscar


    , the software is most of the times open source and ready to use for third party users. Even though the software solution developers claim complete easiness in the development of custom applications, in reality there are a number of practical hardware and software issues that research groups need to face, before...... they are up and running in generating results. With this chapter we would like to provide a tutorial guide, based on direct experience, on how to enter in the world of test bed-based research, providing both insight on the issues encountered in every day development, and practical solutions. Finally...

  9. Design of a Bionic Cilia MEMS three-dimensional vibration sensor (United States)

    Zhen, Li; Guojun, Zhang; Chenyang, Xue; Shujuan, Wu


    A biomimetic three-dimensional piezoresistive vibration sensor based on MEMS technology is reported. The mechanical properties of the sensor are analyzed and the static and dynamic characteristics of the sensor are simulated by ANSYS Workbench 12.0. The structure was made by MEMS processes including lithography, ion implantation, PECVD, etching, etc. Finally, the sensor is tested by using a TV5220 sensor auto calibration system. The results show that the lowest sensitivity of the sensor is 394.7 μV/g and can reach up to 460.2 μV/g, and the dimension coupling is less than 0.6152%, and the working frequency range is 0-1000 Hz.

  10. Research and design of underwater flow-induced vibration energy harvester based on Karman vortex street (United States)

    Yao, Gang; Wang, Hai; Yang, Chunlai; Wen, Li


    With the increasing development of wireless sensor network (WSN), power supply for WSN nodes had attracted increasing attention, and the energy harvesting system based on Karman vortex street has been widely used in underwater WSN. But the research of the influences of affecting factors towards the energy harvesting system is yet to be completed. So, in this paper, an underwater flow-induced vibration energy harvesting system based on Karman vortex street was proposed and tested. The influence of bluff body geometry and flow velocity towards the performance of the energy harvesting has been researched. The results showed that the output voltage increased as the diameter of bluff body and the water velocity increase. The power generation efficiency was the best when the shape of bluff body was circular.

  11. Geotechnical Design Asssisted by Laboratory Testing

    DEFF Research Database (Denmark)

    Foged, Niels; Dysli, Michel; Head, Ken H.


    Eurocode 7 Part 2 is intended to serve as a reference document for the use of laboratory tests for geotechnical design. It covers the execution and interpretation of the most commonly used laboratory tests. The standard aims at ensuring that adequate quality is reached in the execution...... of laboratory tests and their interpretation. Within the framework of European Standardisation, Eurocode 7 Part 1 on the design of geotechnical structures was established. Complementary, Eurocode 7 Part 3 addresses field testing....

  12. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies. (United States)

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark


    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations.

  13. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron


    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  14. The relationship between clinical and standardized tests for hand-arm vibration syndrome. (United States)

    Poole, C J M; Mason, H; Harding, A-H


    Standardized laboratory tests are undertaken to assist the diagnosis and staging of hand-arm vibration syndrome (HAVS), but the strength of the relationship between the tests and clinical stages of HAVS is unknown. To assess the relationship between the results of thermal aesthesiometry (TA), vibrotactile (VT) thresholds and cold provocation (CP) tests with the modified Stockholm scales for HAVS and to determine whether the relationship is affected by finger skin temperature. Consecutive records of workers referred to a Tier 5 HAVS assessment centre from 2006 to 2015 were identified. The diagnosis and staging of cases was undertaken from the clinical information contained in the records. Cases with alternative or mixed diagnoses were excluded and staging performed according to the modified Stockholm scale without knowledge of the results of the standardized laboratory tests. A total of 279 cases of HAVS were analysed. Although there was a significant trend for sensorineural (SN) and vascular scores to increase with clinical stage (P 30°C. CP scores distributed bimodally and correlated poorly with clinical staging (r = 0.2). Standardized SN tests distinguish between the lower Stockholm stages, but not above 2SN early. This has implications for health surveillance and UK policy. © Crown copyright 2016.

  15. A Design Study Of A Wireless Power Transfer System For Use To Transfer Energy From A Vibration Energy Harvester (United States)

    Grabham, N. J.; Harden, C.; Vincent, D.; Beeby, S. P.


    A wirelessly powered remote sensor node is presented along with its design process. The purpose of the node is the further expansion of the sensing capabilities of the commercial Perpetuum system used for condition monitoring on trains and rolling stock which operates using vibration energy harvesting. Surplus harvested vibration energy is transferred wirelessly to a remote satellite sensor to allow measurements over a wider area to be made. This additional data is to be used for long term condition monitoring. Performance measurements made on the prototype remote sensor node are reported and advantages and disadvantages of using the same RF frequency for power and data transfer are identified.

  16. A powerful test for Balaam's design. (United States)

    Mori, Joji; Kano, Yutaka


    The crossover trial design (AB/BA design) is often used to compare the effects of two treatments in medical science because it performs within-subject comparisons, which increase the precision of a treatment effect (i.e., a between-treatment difference). However, the AB/BA design cannot be applied in the presence of carryover effects and/or treatments-by-period interaction. In such cases, Balaam's design is a more suitable choice. Unlike the AB/BA design, Balaam's design inflates the variance of an estimate of the treatment effect, thereby reducing the statistical power of tests. This is a serious drawback of the design. Although the variance of parameter estimators in Balaam's design has been extensively studied, the estimators of the treatment effect to improve the inference have received little attention. If the estimate of the treatment effect is obtained by solving the mixed model equations, the AA and BB sequences are excluded from the estimation process. In this study, we develop a new estimator of the treatment effect and a new test statistic using the estimator. The aim is to improve the statistical inference in Balaam's design. Simulation studies indicate that the type I error of the proposed test is well controlled, and that the test is more powerful and has more suitable characteristics than other existing tests when interactions are substantial. The proposed test is also applied to analyze a real dataset. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Designing a Software Test Automation Framework


    Sabina AMARICAI; Constantinescu, Radu


    Testing is an art and science that should ultimately lead to lower cost businesses through increasing control and reducing risk. Testing specialists should thoroughly understand the system or application from both the technical and the business perspective, and then design, build and implement the minimum-cost, maximum-coverage validation framework. Test Automation is an important ingredient for testing large scale applications. In this paper we discuss several test automation frameworks, th...

  18. H-infinity optimization of a variant design of the dynamic vibration absorber—Revisited and new results (United States)

    Cheung, Y. L.; Wong, W. O.


    The H∞ optimum parameters of a dynamic vibration absorber (DVA) with ground-support are derived to minimize the resonant vibration amplitude of a single degree-of-freedom (sdof) system under harmonic force excitation. The optimum parameters which are derived based on the classical fixed-points theory and reported in literature for this non-traditional DVA are shown to be not leading to the minimum resonant vibration amplitude of the controlled mass. A new procedure is proposed for the H∞ optimization of such a dynamic vibration absorber. A new set of optimum tuning frequency and damping of the absorber is derived, thereby resulting in lower maximum amplitude responses than those reported in the literature. The proposed optimized variant DVA is also compared to a ground-hooked damper of the same damping capacity of the damper in the DVA. It is proved that the proposed optimized DVA has better suppression of the resonant vibration amplitude of the controlled system than both the traditional DVA and also the ground-hooked damper if the proposed design procedure of the variant DVA is followed.

  19. Integration Design and Optimization Control of a Dynamic Vibration Absorber for Electric Wheels with In-Wheel Motor

    Directory of Open Access Journals (Sweden)

    Mingchun Liu


    Full Text Available This paper presents an integration design scheme and an optimization control strategy for electric wheels to suppress the in-wheel vibration and improve vehicle ride comfort. The in-wheel motor is considered as a dynamic vibration absorber (DVA, which is isolated from the unsprung mass by using a spring and a damper. The proposed DVA system is applicable for both the inner-rotor motor and outer-rotor motor. Parameters of the DVA system are optimized for the typical conditions, by using the particle swarm optimization (PSO algorithm, to achieve an acceptable vibration performance. Further, the DVA actuator force is controlled by using the alterable-domain-based fuzzy control method, to adaptively suppress the wheel vibration and reduce the wallop acting on the in-wheel motor (IWM as well. In addition, a suspension actuator force is also controlled, by using the linear quadratic regulator (LQR method, to enhance the suspension performance and meanwhile improve vehicle ride comfort. Simulation results demonstrate that the proposed DVA system effectively suppresses the wheel vibration and simultaneously reduces the wallop acting on the IWM. Also, the alterable-domain-based fuzzy control method performs better than the conventional ones, and the LQR-based suspension exhibits excellent performance in vehicle ride comfort.

  20. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing (United States)

    Tuma, M. L.; Chenevert, D. J.


    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  1. Design and fabrication of vibration based energy harvester using microelectromechanical system piezoelectric cantilever for low power applications. (United States)

    Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho


    We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.

  2. Design of serial linkage-type vibration energy harvester with three resonant frequencies (United States)

    Kim, Hyun Soo; Kim, Jun Woo; Park, Shi-Baek; Choi, Yong Je


    This paper presents a new design method of a planar 3 degrees-of-freedom(DOF) serial linkage-type vibration energy harvester with a single proof mass. The harvester is designed to generate electrical power at equally spaced three target resonant frequencies which can be chosen arbitrarily. For given target frequencies and a proof mass, the design method involves (1) the determination of the stiffness matrix, (2) the synthesis of the stiffness by means of a parallel connection of three line springs and (3) its conversion into a 3DOF device connected serially by torsional springs. The torsional springs are realized by the flexible hinge joints and the polyvinylidene fluoride(PVDF) films are attached on the joints. Upon determination of the desired stiffness matrix, the SQP algorithm is utilized to find the optimum locations and spring constants of the serial hinge joints for the minimum difference among three electrical power peaks. The FEM analysis and experiments are conducted to verify the proposed design method. Three measured resonant power peaks occur at 24.7, 30.4 and 33.6 Hz comparing to the target frequencies of 25, 30 and 35 Hz. The normalized maximum power of 14.5 {{uW}}/{({{{ms}}}-2)}2 is generated at 24.7 Hz. The experimental results also demonstrate that the harvester can generate at least 18.6% of the peak power throughout the frequency range from 23.1 to 36.5 Hz, which ensures consistently acquirable power within the operating frequency range by virtue of the coupled effect of a serial linkage-type structure.

  3. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs. (United States)

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P


    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions.

  4. Small-scale rotor test rig capabilities for testing vibration alleviation algorithms (United States)

    Jacklin, Stephen A.; Leyland, Jane Anne


    A test was conducted to assess the capabilities of a small scale rotor test rig for implementing higher harmonic control and stability augmentation algorithms. The test rig uses three high speed actuators to excite the swashplate over a range of frequencies. The actuator position signals were monitored to measure the response amplitudes at several frequencies. The ratio of response amplitude to excitation amplitude was plotted as a function of frequency. In addition to actuator performance, acceleration from six accelerometers placed on the test rig was monitored to determine whether a linear relationship exists between the harmonics of N/Rev control input and the least square error (LSE) identification technique was used to identify local and global transfer matrices for two rotor speeds at two batch sizes each. It was determined that the multicyclic control computer system interfaced very well with the rotor system and kept track of the input accelerometer signals and their phase angles. However, the current high speed actuators were found to be incapable of providing sufficient control authority at the higher excitation frequencies.

  5. Vortex-Induced Vibration Tests of a Marine Growth Wrapped Cylinder at Subcritical Reynolds Number

    Directory of Open Access Journals (Sweden)

    Kurian V. J.


    Full Text Available Vortex Induced Vibrations (VIV may cause great damage to deep water risers. Estimation of accurate hydrodynamic coefficients and response amplitudes for fouled tubular cylinders subjected to VIVs is a complex task. This paper presents the results of an extensive experimental investigation on in-line and cross-flow forces acting on cylinders wrapped with marine growth, subjected to current at Subcritical Reynolds Number. The drag and lift force coefficients have been determined through the use of the Fast Fourier Analysis methods. The different tests were conducted in the offshore engineering laboratory at Universiti Teknologi PETRONAS (UTP, Malaysia. In this study, a cylinder with outer diameter Do = 27 mm, fixed at top as cantilever beam was used. The in-line and cross-flow forces were measured using VIV Force Totaller (VIVFT. VIVFT is a two degree of freedom (2DOF forces sensor developed by UTP to measure the VIV forces. The tests were conducted for current velocity varied between 0.118 to 0.59 m/s. The test results suggest that the cylinder wrapped with marine growth has shown an overall increase in drag and inertia coefficients as well as on response amplitudes.

  6. Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle (United States)

    Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero


    This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.

  7. Computerized Adaptive Testing System Design: Preliminary Design Considerations. (United States)

    Croll, Paul R.

    A functional design model for a computerized adaptive testing (CAT) system was developed and presented through a series of hierarchy plus input-process-output (HIPO) diagrams. System functions were translated into system structure: specifically, into 34 software components. Implementation of the design in a physical system was addressed through…

  8. Infra-red and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems (United States)

    Barcena, Jorge; Garmendia, Iñaki; Triantou, Kostoula; Mergia, Konstatina; Perez, Beatriz; Florez, Sonia; Pinaud, Gregory; Bouilly, Jean-Marc; Fischer, Wolfgang P. P.


    A new thermal protection system for atmospheric earth re-entry is proposed. This concept combines the advantages of both reusable and ablative materials to establish a new hybrid concept with advanced capabilities. The solution consists of the design and the integration of a dual shield resulting on the overlapping of an external thin ablative layer with a Ceramic Matrix Composite (CMC) thermo-structural core. This low density ablative material covers the relatively small heat peak encountered during re-entry the CMC is not able to bear. On the other hand the big advantage of the CMC based TPS is of great benefit which can deal with the high integral heat for the bigger time period of the re-entry. To verify the solution a whole testing plan is envisaged, which as part of it includes thermal shock test by infra-red heating (heating flux up to 1 MW/m2) and vibration test under launcher conditions (Volna and Ariane 5). Sub-scale tile samples (100×100 mm2) representative of the whole system (dual ablator/ceramic layers, insulation, stand-offs) are specifically designed, assembled and tested (including the integration of thermocouples). Both the thermal and the vibration test are analysed numerically by simulation tools using Finite Element Models. The experimental results are in good agreement with the expected calculated parameters and moreover the solution is qualified according to the specified requirements.

  9. Test-retest reliability of muscle vibration effects on postural sway

    NARCIS (Netherlands)

    Kiers, H.; Brumagne, S.; van Dieen, J.H.; Vanhees, L.


    The effect of alterations in the processing of proprioceptive signals, on postural control, has been studied using muscle vibration effects. However, reliability and agreement of muscle vibration have still to be addressed.This study aimed to assess intra- and interday reliability and agreement of

  10. Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC Lithium-Ion 18,650 Battery Cells

    Directory of Open Access Journals (Sweden)

    James Michael Hooper


    Full Text Available Electric vehicle (EV manufacturers are employing cylindrical format cells in the construction of the vehicles’ battery systems. There is evidence to suggest that both the academic and industrial communities have evaluated cell degradation due to vibration and other forms of mechanical loading. The primary motivation is often the need to satisfy the minimum requirements for safety certification. However, there is limited research that quantifies the durability of the battery and in particular, how the cells will be affected by vibration that is representative of a typical automotive service life (e.g., 100,000 miles. This paper presents a study to determine the durability of commercially available 18,650 cells and quantifies both the electrical and mechanical vibration-induced degradation through measuring changes in cell capacity, impedance and natural frequency. The impact of the cell state of charge (SOC and in-pack orientation is also evaluated. Experimental results are presented which clearly show that the performance of 18,650 cells can be affected by vibration profiles which are representative of a typical vehicle life. Consequently, it is recommended that EV manufacturers undertake vibration testing, as part of their technology selection and development activities to enhance the quality of EVs and to minimize the risk of in-service warranty claims.

  11. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C


    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  12. Noise, vibration and harshness (NVH) criteria as functions of vehicle design and consumer expectations (United States)

    Raichel, Daniel R.


    The criteria for NVH design are to a large degree determined by the types of vehicles and the perceived desires of the purchasers of vehicles, as well as the cost of incorporating NVH measures. Vehicles may be classified into specific types, e.g., economy car, midsize passenger, near-luxury and luxury passenger cars, sports cars, vans, minivans, and sports utility vehicles of varying sizes. The owner of a luxury sedan would expect a quiet ride with minimal vibration and harshness-however, if that sedan is to display sporting characteristics, some aspects of NVH may actually have to be increased in order to enhance a feeling of driver exhilaration. A discussion of the requirements for specific types of vehicles is provided, with due regard for effects on the usability of installed sound/video systems, driver and passenger fatigue, feel of steering mechanisms and other mechanical components, consumer market research, etc. A number of examples of vehicles on the market are cited.

  13. Design and fabrication of self-powered micro-harvesters rotating and vibrated micro-power systems

    CERN Document Server

    Pan, C T; Lin, Liwei; Chen, Ying-Chung


    Presents the latest methods for designing and fabricating self-powered micro-generators and energy harvester systems Design and Fabrication of Self-Powered Micro-Harvesters introduces the latest trends of self-powered generators and energy harvester systems, including the design, analysis and fabrication of micro power systems. Presented in four distinct parts, the authors explore the design and fabrication of: vibration-induced electromagnetic micro-generators; rotary electromagnetic micro-generators; flexible piezo-micro-generator with various widths; and PVDF electrospunpiezo-energy with

  14. Analysis of Levene's Test under Design Imbalance. (United States)

    Keyes, Tim K.; Levy, Martin S.


    H. Levene (1960) proposed a heuristic test for heteroscedasticity in the case of a balanced two-way layout, based on analysis of variance of absolute residuals. Conditions under which design imbalance affects the test's characteristics are identified, and a simple correction involving leverage is proposed. (SLD)

  15. Designing a Software Test Automation Framework

    Directory of Open Access Journals (Sweden)

    Sabina AMARICAI


    Full Text Available Testing is an art and science that should ultimately lead to lower cost businesses through increasing control and reducing risk. Testing specialists should thoroughly understand the system or application from both the technical and the business perspective, and then design, build and implement the minimum-cost, maximum-coverage validation framework. Test Automation is an important ingredient for testing large scale applications. In this paper we discuss several test automation frameworks, their advantages and disadvantages. We also propose a custom automation framework model that is suited for applications with very complex business requirements and numerous interfaces.

  16. Comparison of whole-body vibration exposures in buses: effects and interactions of bus and seat design. (United States)

    Jonsson, Per M G; Rynell, Patrik W; Hagberg, Mats; Johnson, Peter W


    Bus and seat design may be important for the drivers' whole-body vibration (WBV). WBV exposures in buses during actual operation were assessed. WBV attenuation performance between an air-suspension seat and a static pedestal seat in low-floor buses was compared; there were no differences in WBV attenuation between the seats. Air-suspension seat performance in a high-floor and low-floor bus was compared. Relative to the pedestal seat with its relatively static, limited travel seat suspension, the air-suspension seat with its dynamic, longer travel suspension provided little additional benefit. Relative to the measurement collected at the bus floor, the air-suspension seat amplified the WBV exposures in the high-floor bus. All WBV exposures were below European Union (EU) daily exposure action values. The EU Vibration Directive only allows the predominant axis of vibration exposure to be evaluated but a tri-axial vector sum exposure may be more representative of the actual health risks. Low back pain is common in bus drivers and studies have shown a relationship with whole body vibration. Relative to a pedestal seat with its limited travel seat suspension, the air-suspension seat with its longer travel suspension provided little additional benefit. Exposures were below European Union daily exposure action values.

  17. Design of Vibration Absorber using Spring and Rubber for Armored Vehicle 5.56 mm Caliber Rifle

    Directory of Open Access Journals (Sweden)

    Aditya Sukma Nugraha


    Full Text Available This paper presents a design of vibration absorber using spring and rubber for 5.56 mm caliber rifle armored vehicle. Such a rifle is used in a Remote-Controlled Weapon System (RCWS or a turret where it is fixed using a two degree of freedom pan-tilt mechanism. A half car lumped mass dynamic model of armored vehicles was derived. Numerical simulation was conducted using fourth order Runge Kutta method. Various types of vibration absorbers using spring and rubber with different configurations are installed in the elevation element. Vibration effects on horizontal direction, vertical direction and angular deviation of the elevation element was investigated. Three modes of fire were applied i.e. single fire, semi-automatic fire and automatic fire. From simulation results, it was concluded that the parallel configuration of damping rubber type 3, which has stiffness of 980,356.04 (N/m2 and damping coefficient of 107.37 (N.s/m, and Carbon steel spring whose stiffness coefficient is 5.547 x 106 (N/m2 provides the best vibration absorption. 

  18. Ambient Vibration Tests of an Arch Dam with Different Reservoir Water Levels: Experimental Results and Comparison with Finite Element Modelling

    Directory of Open Access Journals (Sweden)

    Sergio Vincenzo Calcina


    Full Text Available This paper deals with the ambient vibration tests performed in an arch dam in two different working conditions in order to assess the effect produced by two different reservoir water levels on the structural vibration properties. The study consists of an experimental part and a numerical part. The experimental tests were carried out in two different periods of the year, at the beginning of autumn (October 2012 and at the end of winter (March 2013, respectively. The measurements were performed using a fast technique based on asynchronous records of microtremor time-series. In-contact single-station measurements were done by means of one single high resolution triaxial tromometer and two low-frequency seismometers, placed in different points of the structure. The Standard Spectral Ratio method has been used to evaluate the natural frequencies of vibration of the structure. A 3D finite element model of the arch dam-reservoir-foundation system has been developed to verify analytically determined vibration properties, such as natural frequencies and mode shapes, and their changes linked to water level with the experimental results.

  19. Water NSTF Design, Instrumentation, and Test Planning

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.


    The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric

  20. Comparison of analysis and vibration test results for a multiple supported piping system

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.


    The behavior of a nuclear power plant piping system subjected to high level vibrational excitation is investigated experimentally and analytically. The objective is to evaluate the piping analysis method employed in the SMACS computer code. Experimental data are obtained from the Large Shaker Experiments (SHAG) conducted at the HDR Test Facility in Kahl/Main, FRG, in which the dynamic behavior of an in-plant piping system with various support configurations was investigated. Comparisons of calculational results with measured data indicate that the adequacy of the prediction depends primarily on the modeling of boundary conditions and dynamic supports. Treating the latter as rigid and using building motion as input, in general, results in under prediction of piping response. On the other hand when accelerations on the pipe side of the dynamic support attachment are used as input, piping response is highly overpredicted. Also modeling wall/floor component attachments as fixed usually leads to underprediction of amplitude as well as differences in the frequency content of response. 9 refs., 18 figs., 1 tab.

  1. Tire stiffness and damping determined from static and free-vibration tests. [aircraft tires (United States)

    Sleeper, R. K.; Dreher, R. C.


    Stiffness and damping of a nonrolling tire were determined experimentally from both static force-displacement relations and the free-vibration behavior of a cable-suspended platen pressed against the tire periphery. Lateral and force-and-aft spring constants and damping factors of a 49 x 17 size aircraft tire for different tire pressure and vertical loads were measured assuming a rate-independent damping form. In addition, a technique was applied for estimating the magnitude of the tire mass which participates in the vibratory motion of the dynamic tests. Results show that both the lateral and force-and-aft spring constants generally increase with tire pressure but only the latter increased significantly with vertical tire loading. The fore-and-aft spring constants were greater than those in the lateral direction. The static-spring-constant variations were similar to the dynamic variations but exhibited lower magnitudes. Damping was small and insensitive to tire loading. Furthermore, static damping accounted for a significant portion of that found dynamically. Effective tire masses were also small.

  2. Vibration analysis on driver’s seat of agricultural tractors during tillage tests

    Energy Technology Data Exchange (ETDEWEB)

    Gialamas, T.; Gravalos, I.; Kateris, D.; Xyradakis, P.; Dimitriadis, C.


    The vibration of the driver’s seat of agricultural tractors was investigated during three alternative tillage operations. Three tractors including a range of specifications were considered, at a range of forward speeds. The interactions between the tractors, implements and speeds were examined using the SPSS program and the GLM-ANOVA method. The results analysis indicated that the tractors played the first major role in vibration development in the lateral axis and was followed by the implements. In contrast, the implements played the first major role in the development of vibration in the horizontal axis and are followed by factor tractors. The statistically significant effect in vertical and horizontal axes shows the factor implements. In addition, the statistically significant effect in the vertical and lateral axes shows again the implements to be the most significant factor. Of the implements, the plough shows the highest vibration and displays statistically significant difference in comparison with the other implements.

  3. Distributed vibration sensing on optical fibre: field testing in borehole seismic applications (United States)

    Frignet, B.; Hartog, A. H.; Mackie, D.; Kotov, O. I.; Liokumovich, L. B.


    We describe the measurement of seismic waves in a borehole using distributed vibration sensing conveyed on wireline cable. The optical measurement is compared directly with the results of a multi-level borehole seismic survey with conventional electrical accelerometers.

  4. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation (United States)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John


    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  5. Vibration Durability Testing of Nickel Cobalt Aluminum Oxide (NCA) Lithium-Ion 18650 Battery Cells


    Hooper, James Michael; Marco, James; Chouchelamane, Gael Henri; Lyness, Christopher; Taylor, James


    This paper outlines a study undertaken to determine if the electrical performance of Nickel Cobalt Aluminum Oxide (NCA) 3.1 Ah 18650 battery cells can be degraded by road induced vibration typical of an electric vehicle (EV) application. This study investigates if a particular cell orientation within the battery assembly can result in different levels of cell degradation. The 18650 cells were evaluated in accordance with Society of Automotive Engineers (SAE) J2380 standard. This vibration tes...

  6. Finite-Element Vibration Analysis and Modal Testing of Graphite Epoxy Tubes and Correlation Between the Data (United States)

    Taleghani, Barmac K.; Pappa, Richard S.


    Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.

  7. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  8. Designing healthy communities: Testing the walkability model


    Zuniga-Teran, Adriana; Orr, Barron; Gimblett, Randy; Chalfoun, Nader; Marsh, Stuart; Guertin, David; Going, Scott


    Research from multiple domains has provided insights into how neighborhood design can be improved to have a more favorable effect on physical activity, a concept known as walkability. The relevant research findings/hypotheses have been integrated into a Walkability Framework, which organizes the design elements into nine walkability categories. The purpose of this study was to test whether this conceptual framework can be used as a model to measure the interactions between the built environme...

  9. Designing, engineering, and testing wood structures (United States)

    Gorman, Thomas M.


    The objective of this paper is to introduce basic structural engineering concepts in a clear, simple manner while actively involving students. This project emphasizes the fact that a good design uses materials efficiently. The test structure in this experiment can easily be built and has various design options. Even when the structure is loaded to collapsing, only one or two pieces usually break, leaving the remaining pieces intact and reusable.

  10. Design, modeling and testing of data converters

    CERN Document Server

    Kiaei, Sayfe; Xu, Fang


    This book presents the a scientific discussion of the state-of-the-art techniques and designs for modeling, testing and for the performance analysis of data converters. The focus is put on sustainable data conversion. Sustainability has become a public issue that industries and users can not ignore. Devising environmentally friendly solutions for data conversion designing, modeling and testing is nowadays a requirement that researchers and practitioners must consider in their activities. This book presents the outcome of the IWADC workshop 2011, held in Orvieto, Italy.

  11. Tethered satellite thermal design and test (United States)

    Chapter, John J.


    The Tethered Satellite System (TSS) is the first Shuttle Orbiter mission that investigates electrodynamic phenomenon of a 20 km conductive tether, in space. The TSS Mission is planned for January 1992. The 'Deployer' that provides the mechanisms that control a tethered satellite is mounted on a Spacelab Pallet. The Deployer thermal design uses Multilayer Insulation (MLI), heaters, and the Spacelab payload freon loop. The pallet and Deployer are isolated from the space thermal environment with MLI that forms an enclosure that is a unique part of the thermal design. This paper describes the TSS thermal design, presents the analysis approach, and details the Deployer thermal balance test.

  12. Design, analysis, and testing of a CCD array mounting structure (United States)

    Sultana, John A.; O'Neill, Mark B.


    A method has been developed for mounting charge-coupled device (CCD) arrays in an optical telescope so as to minimize thermal defocusing errors. The mounting arrangement was developed for a six-inch aperture, visible band, off-axis reimaging telescope attached to an experimental satellite. The mounting arrangement consists of two pieces: a fiberglass frame which holds the actively cooled CCD package and provides thermal isolation from the telescope body; and a titanium flexure, which acts to minimize structural distortions caused by the difference in thermal expansion properties of the CCD array and the telescope body. This paper describes the design, analysis, and testing of this CCD array mounting arrangement. A detailed finite-element model of the CCD array and the mount was developed and used to predict thermally-induced defocus and gravity sag deformations, as well as natural frequencies. Experimental tests to verify the computer model results were performed using holographic interferometry. Vibration tests were also performed to verify the natural frequencies as well as structural integrity during launch. A comparison of the computer model predictions and the holographic interferometric measurements of thermally-induced defocussing indicates agreement to within 15 to 20%. Both the experimental and computer results indicate that the mounting structure provides focus stability over the operational temperature range of the telescope with sufficient structural integrity to survive the anticipated spacecraft launch loads.

  13. A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Jiejian DI


    Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.

  14. Advanced wing design survivability testing and results (United States)

    Bruno, J.; Tobias, M.


    Composite wings on current operational aircraft are conservatively designed to account for stress/strain concentrations, and to assure specified damage tolerance. The technology that can lead to improved composite wing structures and associated structural efficiency is to increase design ultimate strain levels beyond their current limit of 3500 to 4000 micro-in/in to 6000 micro-in/in without sacrificing structural integrity, durability, damage tolerance, or survivability. Grumman, under the sponsorship of the Naval Air Development Center (NADC), has developed a high-strain composite wing design for a subsonic aircraft wing using novel and innovative design concepts and manufacturing methods, while maintaining a state-of-the-art fiber/resin system. The current advanced wing design effort addressed a tactical subsonic aircraft wing using previously developed, high-strain wing design concepts in conjunction with newer/emerging fiber and polymer matrix composite (PMC) materials to achieve the same goals, while reducing complexity. Two categories of advanced PMC materials were evaluated: toughened thermosets; and engineered thermoplastics. Advanced PMC materials offer the technological opportunity to take maximum advantage of improved material properties, physical characteristics, and tailorability to increase performance and survivability over current composite structure. Damage tolerance and survivability to various threats, in addition to structural integrity and durability, were key technical issues addressed during this study, and evaluated through test. This paper focuses on the live-fire testing, and the results performed to experimentally evaluate the survivability of the advanced wing design.

  15. Dynamics and genetic fuzzy neural network vibration control design of a smart flexible four-bar linkage mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Rong Bao, E-mail:; Rui Xiaoting [Nanjing University of Science and Technology, Institute of Launch Dynamics (China); Tao Ling [Chinese Academy of Sciences (ASIPP), Institute of Plasma Physics (China)


    In this paper, a dynamic modeling method and an active vibration control scheme for a smart flexible four-bar linkage mechanism featuring piezoelectric actuators and strain gauge sensors are presented. The dynamics of this smart mechanism is described by the Discrete Time Transfer Matrix Method of Multibody System (MS-DTTMM). Then a nonlinear fuzzy neural network control is employed to suppress the vibration of this smart mechanism. For improving the dynamic performance of the fuzzy neural network, a genetic algorithm based on the MS-DTTMM is designed offline to tune the initial parameters of the fuzzy neural network. The MS-DTTMM avoids the global dynamics equations of the system, which results in the matrices involved are always very small, so the computational efficiency of the dynamic analysis and control system optimization can be greatly improved. Formulations of the method as well as a numerical simulation are given to demonstrate the proposed dynamic method and control scheme.

  16. Testing of a Narrow Gap Detector designed for a sensitive X-ray polarimeter (United States)

    Gilberto Almonte, Rafael; Hill, Joanne E.; Morris, David C.; Emmett, Thomas


    Time projection polarimeters are gas detectors where incident X-rays interact with a gas atom to produce a photoelectron whose direction is correlated with the polarization of the incident X-ray. By imaging the path of many photoelectrons the polarization of the incident X-ray can be determined.The next generation of time projection polarimeter incorporates a narrow gap detector to minimize the diffusion in the transfer gap between the gas electron multiplier and the readout strips. We report on the testing performed to bring the narrow-gap design to Technology Readiness Level (TRL)-6.TRL-6 testing included random and sine burst vibration tests and thermal cycling tests. In addition thermal shock tests and creep tests were performed to further demonstrate that the design would meet requirements, particularly flatness, throughout the life of a 2 year mission.The post-test inspection following the vibration testing showed no degradation or loss of flatness. Thermal Shock testing showed no indication that the extreme temperature had any effect on the detector. Creep testing showed no positive or negative trends in flatness. Thermal cycle testing also showed no change in detector behavior. All the requirements have been met and the narrow gap polarimeter is at TRL-6.


    African Journals Online (AJOL)

    establishing the optimum mesh of grind for the various ores, to achieve effective separation of the cobalt minerals from those of copper. This prompted the designing and testing of .... well clear of the falling stream before it could begin the return stroke to avoid stray particles falling into it, whilst ensuring that the samplers did ...

  18. Evaluating vibration performance of a subsea pump module by full-scale testing and numerical modelling

    NARCIS (Netherlands)

    Beek, P.J.G. van; Pereboom, H.P.; Slot, H.J.


    Prior to subsea installation, a subsea system has to be tested to verify whether it performs in accordance with specifications and component specific performance evaluation criteria. It is important to verify that the assembled components work in accordance with the assumptions and design criteria

  19. Design of a Real-Time Adaptively Tuned Dynamic Vibration Absorber with a Variable Stiffness Property Using Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Toshihiko Komatsuzaki


    Full Text Available An elastomer composite with controllable stiffness, known as a magnetorheological elastomer (MRE, is used in a dynamic vibration absorber whose natural frequency is tuned adaptively to the disturbance frequency through the application of an external magnetic field. The field-dependent property test of the fabricated MRE sample shows that the stiffness changes by more than six times compared to the baseline property value at a 40% iron powder volume concentration. The MRE is then used to fabricate a frequency-tunable dynamic absorber for mitigating transient vibrations of a one-degree-of-freedom system. Investigations show that the proposed absorber outperforms a conventional passive-type absorber throughout the tunable frequency range.

  20. Accelerated lifetime test of vibration isolator made of Metal Rubber material (United States)

    Ao, Hongrui; Ma, Yong; Wang, Xianbiao; Chen, Jianye; Jiang, Hongyuan


    The Metal Rubber material (MR) is a kind of material with nonlinear damping characteristics for its application in the field of aerospace, petrochemical industry and so on. The study on the lifetime of MR material is impendent to its application in engineering. Based on the dynamic characteristic of MR, the accelerated lifetime experiments of vibration isolators made of MR working under random vibration load were conducted. The effects of structural parameters of MR components on the lifetime of isolators were studied and modelled with the fitting curves of degradation data. The lifetime prediction methods were proposed based on the models.

  1. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab. (United States)

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W


    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators.

  2. A Computerized Test of Design Fluency.

    Directory of Open Access Journals (Sweden)

    David L Woods

    Full Text Available Tests of design fluency (DF assess a participant's ability to generate geometric patterns and are thought to measure executive functions involving the non-dominant frontal lobe. Here, we describe the properties of a rapidly administered computerized design-fluency (C-DF test that measures response times, and is automatically scored. In Experiment 1, we found that the number of unique patterns produced over 90 s by 180 control participants (ages 18 to 82 years correlated with age, education, and daily computer-use. Each line in the continuous 4-line patterns required approximately 1.0 s to draw. The rate of pattern production and the incidence of repeated patterns both increased over the 90 s test. Unique pattern z-scores (corrected for age and computer-use correlated with the results of other neuropsychological tests performed on the same day. Experiment 2 analyzed C-DF test-retest reliability in 55 participants in three test sessions at weekly intervals and found high z-score intraclass correlation coefficients (ICC = 0.79. Z-scores in the first session did not differ significantly from those of Experiment 1, but performance improved significantly over repeated tests. Experiment 3 investigated the performance of Experiment 2 participants when instructed to simulate malingering. Z-scores were significantly reduced and pattern repetitions increased, but there was considerable overlap with the performance of the control population. Experiment 4 examined performance in veteran patients tested more than one year after traumatic brain injury (TBI. Patients with mild TBI performed within the normal range, but patients with severe TBI showed reduced z-scores. The C-DF test reliably measures visuospatial pattern generation ability and reveals performance deficits in patients with severe TBI.

  3. Severe Accident Test Station Design Document

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howell, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure to provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.

  4. Design and experimental tests of free electron laser wire scanners

    Directory of Open Access Journals (Sweden)

    G. L. Orlandi


    Full Text Available SwissFEL is a x-rays free electron laser (FEL driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH and at FERMI (Elettra-Sincrotrone Trieste, Italy. In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al(99∶Si(1 and tungsten (W wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  5. Design and experimental tests of free electron laser wire scanners (United States)

    Orlandi, G. L.; Heimgartner, P.; Ischebeck, R.; Loch, C. Ozkan; Trovati, S.; Valitutti, P.; Schlott, V.; Ferianis, M.; Penco, G.


    SwissFEL is a x-rays free electron laser (FEL) driven by a 5.8 GeV linac under construction at Paul Scherrer Institut. In SwissFEL, wire scanners (WSCs) will be complementary to view-screens for emittance measurements and routinely used to monitor the transverse profile of the electron beam during FEL operations. The SwissFEL WSC is composed of an in-vacuum beam-probe—motorized by a stepper motor—and an out-vacuum pick-up of the wire signal. The mechanical stability of the WSC in-vacuum hardware has been characterized on a test bench. In particular, the motor induced vibrations of the wire have been measured and mapped for different motor speeds. Electron-beam tests of the entire WSC setup together with different wire materials have been carried out at the 250 MeV SwissFEL Injector Test Facility (SITF, Paul Scherrer Institut, CH) and at FERMI (Elettra-Sincrotrone Trieste, Italy). In particular, a comparative study of the relative measurement accuracy and the radiation-dose release of Al (99 )∶Si (1 ) and tungsten (W) wires has been carried out. On the basis of the outcome of the bench and electron-beam tests, the SwissFEL WSC can be qualified as a high resolution and machine-saving diagnostic tool in consideration of the mechanical stability of the scanning wire at the micrometer level and the choice of the wire material ensuring a drastic reduction of the radiation-dose release with respect to conventional metallic wires. The main aspects of the design, laboratory characterization and electron beam tests of the SwissFEL WSCs are presented.

  6. Deep Borehole Field Test Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  7. Robust design of multiple trailing edge flaps for helicopter vibration reduction: A multi-objective bat algorithm approach (United States)

    Mallick, Rajnish; Ganguli, Ranjan; Seetharama Bhat, M.


    The objective of this study is to determine an optimal trailing edge flap configuration and flap location to achieve minimum hub vibration levels and flap actuation power simultaneously. An aeroelastic analysis of a soft in-plane four-bladed rotor is performed in conjunction with optimal control. A second-order polynomial response surface based on an orthogonal array (OA) with 3-level design describes both the objectives adequately. Two new orthogonal arrays called MGB2P-OA and MGB4P-OA are proposed to generate nonlinear response surfaces with all interaction terms for two and four parameters, respectively. A multi-objective bat algorithm (MOBA) approach is used to obtain the optimal design point for the mutually conflicting objectives. MOBA is a recently developed nature-inspired metaheuristic optimization algorithm that is based on the echolocation behaviour of bats. It is found that MOBA inspired Pareto optimal trailing edge flap design reduces vibration levels by 73% and flap actuation power by 27% in comparison with the baseline design.

  8. Avoiding bias in safety testing design

    DEFF Research Database (Denmark)

    Calow, Peter


    All scientists are biased, no matter what their backgrounds or affiliations, so what is it about the scientific method that overcomes this and which makes science so successful? Key features are transparency and critical peer scrutiny. These general issues will be will be considered in terms of t...... of the scientific basis of risk assessment, including the design of safety testing procedures, particularly as applied to industrial chemicals....

  9. Blade Vibration Measurement System (United States)

    Platt, Michael J.


    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  10. Design and Implementation of a Digital Controller for a Vibration Isolation and Vernier Pointing System (United States)

    Neff, Daniel J.; Britcher, Colin P.


    This paper discusses the recommissioning of the Annular Suspension and Pointing System (ASPS), originally developed in the mid 1970's for pointing and vibration isolation of space experiments. The hardware was developed for NASA Langley Research Center by Sperry Flight Systems (now Honeywell Satellite Systems), was delivered to NASA in 1983. Recently, the hardware was loaned to Old Dominion University (ODU). The ASPS includes coarse gimbal assemblies and a Vernier Pointing Assembly (VPA) that utilize magnetic suspension to provide noncontacting vibration isolation and vernier pointing of the payload. The VPA is the main focus of this research. At ODU, the system has been modified such that it can now be operated in a l-g environment without a gravity offload. Suspension of the annular iron rotor in five degrees-of-freedom has been achieved with the use of modern switching power amplifiers and a digital controller implemented on a 486-class PC.

  11. The Shock and Vibration Bulletin. Part 2. Model Test and Analysis, Testing Techniques, Machinery Dynamics, Isolation and Damping, Structural Dynamics (United States)


    jBfr 5? JOR JS T SIONAL/lBRATIONjerF^EAR-RANCHED PROPULSION.gVSTEMS j... 117 / H.F. Tavares, Cepstrum Engenharia Ltda., Rio de Janeiro, Brazil and V...MODELLING IN FINITE ELEMENT ANALYSES OF TORSIONAL VIBRATION OF GEAR-BRANCHED PROPULSION SYSTEMS H. F. Tavares Cepstrum Engenharia Ltda. S8o Paulo

  12. Noise and Vibration Modeling for Anti-Lock Brake Systems (United States)

    Zhan, Wei

    A new methodology is proposed for noise and vibration analysis for Anti-Lock Brake Systems (ABS). First, a correlation between noise and vibration measurement data and simulation results need to be established. This relationship allows the engineers to focus on modeling and simulation instead of noise and vibration testing. A comprehensive ABS model is derived for noise and vibration study. The model can be set up to do different types of simulations for noise and vibration analysis. If some data is available from actual testing, then the test data can be easily imported into the model as an input to replace the corresponding part in the model. It is especially useful when the design needs to be modified, or trade-off between ABS performance and noise and vibration is necessary. The model can greatly reduce the time to market for ABS products. It also makes system level optimization possible.

  13. Design and Test of Capacitive Micromachined Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Hongliang Wang


    Full Text Available Currently, most capacitive micromachined ultrasound transducers, adopting surface sacrificial technology encounter various problems such as difficult cavity etch, low controllability of membrane thickness etc., and their operating frequencies are more concentrated in several MHz bandwidths that cannot meet the requirements of long-distance imaging applications. In order to solve these problems, this paper proposes a new capacitive ultrasound transducer based on Si-Si bonding technology, which consists of an integration vibration membrane requiring no extra separate metal film and having high sensitivity, uniform thickness and more controllable frequencies. This transducer has several great advantages such as: easy processing, simple structure and process technology, and a high degree of integration. The structure and size of the transducer is determined by theoretical analysis and finite element analysis software ANSYS, and a process flow is also presented. Through scanning by SEM and Polytec MSA-400, the processed transducer is tested and analyzed, and the results are consonant with the simulation, verifying the reliability of the design and fabrication.

  14. Structural Health Monitoring Using Wireless Technologies: An Ambient Vibration Test on the Adolphe Bridge, Luxembourg City

    Directory of Open Access Journals (Sweden)

    Adrien Oth


    Full Text Available Major threats to bridges primarily consist of the aging of the structural elements, earthquake-induced shaking and standing waves generated by windstorms. The necessity of information on the state of health of structures in real-time, allowing for timely warnings in the case of damaging events, requires structural health monitoring (SHM systems that allow the risks of these threats to be mitigated. Here we present the results of a short-duration experiment carried out with low-cost wireless instruments for monitoring the vibration characteristics and dynamic properties of a strategic civil infrastructure, the Adolphe Bridge in Luxembourg City. The Adolphe Bridge is a masonry arch construction dating from 1903 and will undergo major renovation works in the upcoming years. Our experiment shows that a network of these wireless sensing units is well suited to monitor the vibration characteristics of such a historical arch bridge and hence represents a low-cost and efficient solution for SHM.

  15. Design and test of aircraft engine isolators for reduced interior noise (United States)

    Unruh, J. F.; Scheidt, D. C.


    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  16. OPSAID Initial Design and Testing Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Steven A.; Stamp, Jason Edwin [Sandia National Laboratories, Albuquerque, NM; Chavez, Adrian R. [Sandia National Laboratories, Albuquerque, NM


    Process Control System (PCS) security is critical to our national security. Yet, there are a number of technological, economic, and educational impediments to PCS owners implementing effective security on their systems. OPSAID (Open PCS Security Architecture for Interoperable Design), a project sponsored by the US Department of Energy's Office of Electricity Delivery and Reliability, aims to address this issue through developing and testing an open source architecture for PCS security. Sandia National Laboratories, along with a team of PCS vendors and owners, have developed and tested this PCS security architecture. This report describes their progress to date.2 AcknowledgementsThe authors acknowledge and thank their colleagues for their assistance with the OPSAID project.Sandia National Laboratories: Alex Berry, Charles Perine, Regis Cassidy, Bryan Richardson, Laurence PhillipsTeumim Technical, LLC: Dave TeumimIn addition, the authors are greatly indebted to the invaluable help of the members of the OPSAID Core Team. Their assistance has been critical to the success and industry acceptance of the OPSAID project.Schweitzer Engineering Laboratory: Rhett Smith, Ryan Bradetich, Dennis GammelTelTone: Ori Artman Entergy: Dave Norton, Leonard Chamberlin, Mark AllenThe authors would like to acknowledge that the work that produced the results presented in this paper was funded by the U.S. Department of Energy/Office of Electricity Delivery and Energy Reliability (DOE/OE) as part of the National SCADA Test Bed (NSTB) Program. Executive SummaryProcess control systems (PCS) are very important for critical infrastructure and manufacturing operations, yet cyber security technology in PCS is generally poor. The OPSAID (Open PCS (Process Control System) Security Architecture for Interoperable Design) program is intended to address these security shortcomings by accelerating the availability and deployment of comprehensive security technology for PCS, both for existing PCS

  17. Performance testing of diesel engines using vibrational-acoustical diagnostic methods

    Energy Technology Data Exchange (ETDEWEB)

    Maack, H.H.; Neumann, G.


    Vibroacoustic condition monitoring is based on the measurement, processing and analysis of the solid-borne and airborne vibration signals emanating from a machine. Several assemblies belonging to diesel engines have a characteristic signal structure induced by impact excitation. The author proceeds from a generalised condition monitoring process to discuss the problem of the origin, transmission, measurement and analysis of vibroacoustic signals from diesel engines and presents a procedure based on a combination of frequency analysis in the temporary elimination of signal components.


    Hydrological tracer testing is the most reliable diagnostic technique available for establishing flow trajectories and hydrologic connections and for determining basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed that combines basic measured field parameters (e.g., discharge, distance, cross-sectional area) in functional relationships that describe solute-transport processes related to flow velocity and time of travel. The new method applies these initial estimates for time of travel and velocity to a hypothetical continuously stirred tank reactor as an analog for the hydrologic flow system to develop initial estimates for tracer concentration and axial dispersion, based on a preset average tracer concentration. Root determination of the one-dimensional advection-dispersion equation (ADE) using the preset average tracer concentration then provides a theoretical basis for an estimate of necessary tracer mass.Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to

  19. Insights Gained from Testing Alternate Cell Designs

    Energy Technology Data Exchange (ETDEWEB)

    J. E. O' Brien; C. M. Stoots; J. S. Herring; G. K. Housley; M. S. Sohal; D. G. Milobar; Thomas Cable


    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, initially developed by the Forschungszentrum Jülich and now manufactured by the French ceramics firm St. Gobain. These cells have an active area of 16 cm2 per cell. They were initially developed as fuel cells, but are being tested as electrolytic cells in the INL test stands. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed another fuel cell concept with the goals of reduced weight and high power density. The NASA cell is structurally symmetrical, with both electrodes supporting the thin electrolyte and containing micro-channels for gas diffusion. This configuration is called a bi

  20. 29 mm Diameter Test Target Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Olivas, Eric Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Naranjo, Angela Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA at 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.

  1. Wind Turbine Blade Design for Subscale Testing (United States)

    Hassanzadeh, Arash; Naughton, Jonathan W.; Kelley, Christopher L.; Maniaci, David C.


    Two different inverse design approaches are proposed for developing wind turbine blades for sub-scale wake testing. In the first approach, dimensionless circulation is matched for full scale and sub-scale wind turbine blades for equal shed vorticity in the wake. In the second approach, the normalized normal and tangential force distributions are matched for large scale and small scale wind turbine blades, as these forces determine the wake dynamics and stability. The two approaches are applied for the same target full scale turbine blade, and the shape of the blades are compared. The results show that the two approaches have been successfully implemented, and the designed blades are able to produce the target circulation and target normal and tangential force distributions.

  2. Data Management Techniques for Blade Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław


    Full Text Available Well-designed procedures are required to handle large amounts of data, generated by complex measurement systems used in engine tests. The paper presents selected methodologies and software tools for characterisation and monitoring of blade vibration. Common file formats and data structures as well as methods to process and visualise tip-timing data are discussed. Report Generation Framework (RGF developed in Python is demonstrated as a flexible tool for processing and publishing blade vibration results.

  3. Analysis and testing of an integrated semi-active seat suspension for both longitudinal and vertical vibration control (United States)

    Bai, Xian-Xu; Jiang, Peng; Pan, Hui; Qian, Li-Jun


    An integrated semi-active seat suspension for both longitudinal and vertical vibration control is analyzed and tested in this paper. The seat suspension consists of a switching mechanism transforming both longitudinal and vertical motions into a rotary motion and a real-time damping-controllable system-a rotary magnetorheological (MR) damper working in pure shear mode and its corresponding control system. The switching mechanism employs the parallelogram frames as a motion guide which keeps the seat moving longitudinally and vertically. At the same time, both longitudinal and vertical motions are transformed into a reciprocating rotary motion that is transmitted to the rotary MR damper after an amplification by a gear mechanism. Both the longitudinal and vertical vibrations can be attenuated in real time through controlling the damping force (or torque) of the rotary MR damper. The mathematical model of the seat suspension system is established, simulated, and analyzed. The experimental test based on the test rig in Hefei University of Technology is implemented, and the results of simulation and experimental test are compared and analyzed.

  4. Identification of dynamic characteristics by field vibration test in Tsurumi Tsubasa bridge; Tsurumi Tsubasakyo no shindo jikken ni yoru doteki tokusei no dotei

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. [Saitama University, Saitama (Japan). Faculty of Engineering; Takano, H.; Ogasawara, M.; Shimosato, T. [Metropolitan Expressway Public Corp., Tokyo (Japan); Kato, M.; Okada, J. [NKK Corp., Tokyo (Japan)


    Field vibration test of the Tsurumi Tsubasa Bridge, a long span cable stayed bridge, has been conducted. Focusing on its dynamic characteristics, an identification method from test results and its validity were investigated. The natural frequency identified using mode circle and resonance curve from steady vibration test agreed with that identified by the peak method from free damping test. Accordingly, there was no difference due to identification methods, and both methods provided appropriate accuracy. The natural vibration mode obtained from the steady vibration test agreed with that obtained by the eigenvalue analysis. The dispersion of experimental values, which indicates the adaptation to mode circle method, became a scale indicating reliability of identified values. When the damping obtained by the half power method for the microtremors test is compared with that identified from the steady vibration test and free damping test, it is required to compare them at lower amplitude level region, considering that the amplitude level of microtremors test is very low. For the dynamic characteristics of the Tsurumi Tsubasa Bridge, it was found that it has lower natural frequency and higher modal damping compared with other cable stayed bridges with similar scale of span. 18 refs., 13 figs., 4 tabs.

  5. Temperature buffer test design, instrumentation and measurements (United States)

    Sandén, Torbjörn; Goudarzi, Reza; de Combarieu, Michel; Åkesson, Mattias; Hökmark, Harald

    The Temperature Buffer Test, TBT, is a heated full-scale field experiment carried out jointly by ANDRA and SKB at the SKB Äspö Hard Rock Laboratory in Southeast Sweden. An existing 8 m deep, 1.8 m diameter KBS-3-type deposition hole located at -420 m level has been selected for the test. The objectives are to improve the general understanding of Thermo-Hydro-Mechanical, THM, behavior of buffer materials submitted to severe thermal conditions with temperatures well over 100 °C during water uptake of partly saturated bentonite-based buffer materials, and to check, in due time, their properties after water saturation. The test includes two carbon steel heating canisters each 3 m high and 0.6 m diameter, surrounded by 0.6 m of buffer material. There is a 0.2 m thick sand shield between the upper heater and the surrounding bentonite, while the lower heater is surrounded by bentonite only. On top of the stack of bentonite blocks is a confining plug anchored to the rock. In the slot between buffer and rock wall is a sand filter equipped with pipes to control the water pressure at the boundary, which is seldom done with an EBS in situ experiment. Both heater mid-height planes are densely instrumented in order to follow, with direct or indirect methods, buffer THM evolution. Temperature, relative humidity, stress and pore pressure have been monitored since the test start in March 2003. Total water inflow is also monitored. Firstly, the present paper describes the test design, the instrumentation, the plug anchoring system and the system for water boundary pressure control. Second, having described the test, the paper shows different measurements that illustrate evolution of temperature, saturation, suction and swelling pressure in the upper and the lower buffer.

  6. Comparative studies of perceived vibration strength for commercial mobile phones. (United States)

    Lee, Heow Pueh; Lim, Siak Piang


    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. Design, Construction, and Testing of Lightweight X-ray Mirror Modules (United States)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.


    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

  8. Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Directory of Open Access Journals (Sweden)

    M. Pavlik


    Full Text Available The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits was achieved.

  9. The Shock and Vibration Bulletin: Proceedings on the Symposium on ShocK and Vibration (52nd) Held in New Orleans, Louisiana on 26-28 October 1981. Part 3. Environmental Testing and Simulation, Flight Environments. (United States)


    New York, NY ITIZ AND AUTHIORS OF PAPERS PRESENTED IN THE SHORT DISCUSSION TOPICS SESSION NOTE: lb... pepere were only pneemnteo at the Symposium...system then is to create the Gunfire vibration testing is typically per- desired line spectrum, fourier transform it formed on black boxes which do not

  10. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Cox, Thomas S [ORNL; Baldwin, Charles A [ORNL; Bevard, Bruce Balkcom [ORNL


    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other

  11. 24 CFR 3280.903 - General requirements for designing the structure to withstand transportation shock and vibration. (United States)


    ... the structure to withstand transportation shock and vibration. 3280.903 Section 3280.903 Housing and... structure to withstand transportation shock and vibration. (a) The cumulative effect of highway transportation shock and vibration upon a manufactured home structure may result in incremental degradation of...

  12. A low cycle fatigue test device for micro-cantilevers based on self-excited vibration principle. (United States)

    Qi, Mingjing; Liu, Zhiwei; Yan, Xiaojun


    This paper reports a low-cycle fatigue test device for micro-cantilevers, which are widely used in micro scale structures. The working principle of the device is based on the phenomenon that a micro-cantilever can be set into self-excited vibration between two electrodes under DC voltage. Compared with previous devices, this simple device can produce large strain amplitude on non-notched specimens, and allows a batch of specimens to be tested simultaneously. Forty-two micro-cantilever specimens were tested and their fatigue fracture surfaces exhibit typical low cycle fatigue characteristics. As such, the device is very attractive for future fatigue investigation for micro scale structures.

  13. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis (United States)

    Ekrami, Yasamin; Cook, Joseph S.


    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  14. Design and Experimental Characterization of a Vibration Energy Harvesting Device for Rotational Systems

    Directory of Open Access Journals (Sweden)

    Lutao Yan


    Full Text Available This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.

  15. Modelling of micro vibration energy harvester considering size effect (United States)

    Li, Chuangye; Huo, Rui; Wang, Weike


    Considering increase of stiffness caused by size effect, equivalent Young's modulus was introduced for futher analysis. Experimental platform was established to test vibration characteristics. Dynamic equation for micro piezoelectric cantilever beam considering size effect was studied with finite element analysis and experiment. Results shows it is accurate. Based on that, dynamic model for micro vibration energy harvester was improved, a T-type micro vibration energy harvester was designed and fabricated. Resonant frequency, tip displacement and output voltage of the harvester were obtained. Comparing with macroscopic model for vibration harvester, improved one reduces errors by 13%, 35% and 22%.

  16. Designing healthy communities: Testing the walkability model

    Directory of Open Access Journals (Sweden)

    Adriana A. Zuniga-Teran


    Full Text Available Research from multiple domains has provided insights into how neighborhood design can be improved to have a more favorable effect on physical activity, a concept known as walkability. The relevant research findings/hypotheses have been integrated into a Walkability Framework, which organizes the design elements into nine walkability categories. The purpose of this study was to test whether this conceptual framework can be used as a model to measure the interactions between the built environment and physical activity. We explored correlations between the walkability categories and physical activity reported through a survey of residents of Tucson, Arizona (n=486. The results include significant correlations between the walkability categories and physical activity as well as between the walkability categories and the two motivations for walking (recreation and transportation. To our knowledge, this is the first study that reports links between walkability and walking for recreation. Additionally, the use of the Walkability Framework allowed us to identify the walkability categories most strongly correlated with the two motivations for walking. The results of this study support the use of the Walkability Framework as a model to measure the built environment in relation to its ability to promote physical activity.

  17. Learning Design at White Sands Test Facility (United States)

    Grotewiel, Shane


    During the Fall of 2010, I spent my time at NASA White Sands Test Facility in Las Cruces, NM as an Undergraduate Student Research Program (USRP) Intern. During that time, I was given three projects to work on: Large Altitude Simulation System (LASS) basket strainer, log books, and the design of a case for touch screen monitors used for simulations. I spent most of my time on the LASS basket strainer. The LASS system has a water feed line with a basket strainer that filters out rust. In 2009, there were three misfires which cost approximately $27,000 and about 8% of the allotted time. The strainer was getting a large change in pressure that would result in a shutdown of the system. I have designed a new basket that will eliminate the large pressure change and it can be used with the old basket strainer housing. The LASS system has three steam generators (modules). Documents pertaining to these modules are stored electronically, and the majority of the documents are not able to be searched with keywords, so they have to be gone through one by one. I have come up with an idea on how to organize these files so that the Propulsion Department may efficiently search through the documents needed. Propulsion also has a LASS simulator that incorporates two touch screen monitors. Currently these monitors are in six foot by two foot metal cabinet on wheels. During simulation these monitors are used in the block house and need to be taken out of the block house when not in use. I have designed different options for hand held cases for storing and transporting the monitors in and out of the block house. The three projects previously mentioned demonstrate my contributions to the Propulsion Department and have taught me real world experience that is essential in becoming a productive engineer.

  18. Gearbox vibration diagnostic analyzer (United States)


    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  19. Advanced burner test reactor preconceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA


    advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  1. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen


      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  2. Note: A kinematic shaker system for high amplitude, low frequency vibration testing. (United States)

    Swaminathan, Anand; Poese, Matthew E; Smith, Robert W M; Garrett, Steven L


    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  3. Fluidized Bed Asbestos Sampler Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Karen E. Wright; Barry H. O' Brien


    A large number of samples are required to characterize a site contaminated with asbestos from previous mine or other industrial operations. Current methods, such as EPA Region 10’s glovebox method, or the Berman Elutriator method are time consuming and costly primarily because the equipment is difficult to decontaminate between samples. EPA desires a shorter and less costly method for characterizing soil samples for asbestos. The objective of this was to design and test a qualitative asbestos sampler that operates as a fluidized bed. The proposed sampler employs a conical spouted bed to vigorously mix the soil and separate fine particulate including asbestos fibers on filters. The filters are then analyzed using transmission electron microscopy for presence of asbestos. During initial testing of a glass prototype using ASTM 20/30 sand and clay fines as asbestos surrogates, fine particulate adhered to the sides of the glass vessel and the tubing to the collection filter – presumably due to static charge on the fine particulate. This limited the fines recovery to ~5% of the amount added to the sand surrogate. A second prototype was constructed of stainless steel, which improved fines recovery to about 10%. Fines recovery was increased to 15% by either humidifying the inlet air or introducing a voltage probe in the air space above the sample. Since this was not a substantial improvement, testing using the steel prototype proceeded without using these techniques. Final testing of the second prototype using asbestos suggests that the fluidized bed is considerably more sensitive than the Berman elutriator method. Using a sand/tremolite mixture with 0.005% tremolite, the Berman elutriator did not segregate any asbestos structures while the fluidized bed segregated an average of 11.7. The fluidized bed was also able to segregate structures in samples containing asbestos at a 0.0001% concentration, while the Berman elutriator method did not detect any fibers at this

  4. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes (United States)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.


    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  5. Designing a hand rest tremor dynamic vibration absorber using H{sub 2} optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Rahnavard, Mostafa; Dizaji, Ahmad F. [Tehran University, Tehran (Iran, Islamic Republic of); Hashemi, Mojtaba [Amirkabir University, Tehran (Iran, Islamic Republic of); Faramand, Farzam [Sharif University, Tehran (Iran, Islamic Republic of)


    An optimal single DOF dynamic absorber is presented. A tremor has a random nature and then the system is subjected to a random excitation instead of a sinusoidal one; so the H{sub 2} optimization criterion is probably more desirable than the popular H{sub ∞} optimization method and was implemented in this research. The objective of H{sub 2} optimization criterion is to reduce the total vibration energy of the system for overall frequencies. An objective function, considering the elbow joint angle, θ {sub 2}, tremor suppression as the main goal, was selected. The optimization was done by minimization of this objective function. The optimal system, including the absorber, performance was analyzed in both time and frequency domains. Implementing the optimal absorber, the frequency response amplitude of θ{sub 2} was reduced by more than 98% and 80% at the first and second natural frequencies of the primary system, respectively. A reduction of more than 94% and 78%, was observed for the shoulder joint angle, θ{sub 1}. The objective function also decreased by more than 46%. Then, two types of random inputs were considered. For the first type, θ{sub 1} and θ {sub 2} revealed 60% and 39% reduction in their rms values, whereas for the second type, 33% and 50% decrease was observed.

  6. Analysis and testing of an inner bypass magnetorheological damper for shock and vibration mitigation (United States)

    Bai, Xian-Xu; Hu, Wei; Wereley, Norman M.


    Aiming at fundamentally improving the performance of MR dampers, including maximizing dynamic range (i.e., ratio of field-on to field-off damping force) while simultaneously minimizing field-off damping force, this study presents the principle of an inner bypass magnetorheological damper (IBMRD). The IBMRD is composed of a pair of twin tubes, i.e., the inner tube and outer concentric tube, a movable piston-shaft arrangement, and an annular MR fluid flow gap sandwiched between the concentric tubes. In the IBMRD, the inner tube serves simultaneously as the guide for the movable piston and the bobbin for the electromagnetic coil windings, and five active rings on the inner tube, annular MR fluid flow gap, and outer tube forms five closed magnetic circuits. The annular fluid flow gap is an inner bypass annular valve where the rheology of the MR fluids, and hence the damping force of the MR damper, is controlled. Based on the structural principle of the IBMRD, the IBMRD is configured and its finite element analysis (FEA) is implemented. After theoretically constructing the hydro-mechanical model for the IBMRD, its mathematical model is established using a Bingham-plastic nonlinear fluid model. The characteristics of the IBMRD are theoretically evaluated and compared to those of a conventional piston-bobbin MR damper with an identical active length and cylinder diameter. In order to validate the theoretical results predicted by the mathematical model, the prototype IBMRD is designed, fabricated, and tested. The servo-hydraulic testing machine (type: MTS 810) and rail-guided drop tower are used to provide sinusoidal displacement excitation and shock excitation to the IBMRD, respectively.

  7. Optimal Design of One-Folded Leaf Spring with High Fatigue Life Applied to Horizontally Vibrating Linear Actuator in Smart Phone

    Directory of Open Access Journals (Sweden)

    Ki Bum Lee


    Full Text Available Horizontally vibrating linear actuator (HVLA instead of VVLA has been under study in a few past years and recently HVLA with thickness of 2.5 mm was developed. The one-folded leaf spring to guide the moving part is newly designed and applied in HVLA, but unfortunately it makes HVLA be wider. Accordingly, this paper presents the optimal design of one-folded leaf spring, which results in reduction of HLVA width. The commercial design optimization tool “PIAnO” was utilized based on design of experiments (DOE, approximation techniques, and optimization algorithm. In addition, for the vibration modal analysis and harmonic response analysis to generate metamodeling, the software “ANSYS” is utilized. The optimal width of leaf spring was reduced by 46% compared to the initial one, while all the design constraints were satisfied, which clearly showed the validity of the proposed design approach.

  8. The Investigations of Friction under Die Surface Vibration in Cold Forging Process

    DEFF Research Database (Denmark)

    Jinming, Sha

    The objective of this thesis is to fundamentally study the influence of die surface vibration on friction under low frequency in metal forging processes. The research includes vibrating tool system design for metal forming, theoretical and experimental investigations, and finite element simulations...... on die surface vibration in forging process. After a general introduction to friction mechanisms and friction test techniques in metal forming, the application of ultrasonic vibration in metal forming, the influence of sliding velocity on friction is described. Some earlier investigations...... is undergoing vibration. In the experiments, die surface orientation, frequency and amplitude of vibration, vibrating wave form and the direction of vibration has been taken into account as the parameters which influence friction behaviour in forging process. The results reveal that friction could be reduced up...


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the testing of the rebuilt laboratory prototype and its conversion into a version that will be operable in the drilling tests at TerraTek Laboratories. In addition, formations for use in these tests were designed and constructed, and a test protocol was developed. The change in scope and no-cost extension of Phase II to January, 2006, described in our last report, were approved. The tests are scheduled to be run during the week of January 23, and should be completed before the end of the month.

  10. Optimal Test Design with Rule-Based Item Generation (United States)

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.


    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  11. Optimal test design with rule-based item generation

    NARCIS (Netherlands)

    Geerlings, Hanneke; van der Linden, Willem J.; Glas, Cornelis A.W.


    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the

  12. Single Event Testing on Complex Devices: Test Like You Fly versus Test-Specific Design Structures (United States)

    Berg, Melanie; LaBel, Kenneth A.


    We present a framework for evaluating complex digital systems targeted for harsh radiation environments such as space. Focus is limited to analyzing the single event upset (SEU) susceptibility of designs implemented inside Field Programmable Gate Array (FPGA) devices. Tradeoffs are provided between application-specific versus test-specific test structures.


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  14. Defects detection on the welded reinforcing steel with self-shielded wires by vibration tests

    Directory of Open Access Journals (Sweden)

    Crâştiu Ion


    Full Text Available The aim of this paper is the development and validation of a vibroacustic technique to welding defects detection, especially for welded reinforcing structures. In welded structures subjected to dynamic cyclic loads may appear and propagate fatigue cracks due to local structural damage. These cracks may initiate due to the technological parameters used in welding process, or due to environmental operating conditions. By the means of Finite Element Method (FEM, the natural frequencies and shape modes of more welded steel specimens are determined. The analysis is carried out in undamaged condition as well as damaged one, after artificially induced damages. The experimental measurement of the vibroacustic response is carried out by using a condenser microphone, which is suitable for high-fidelity acoustic measurements in the frequency range of 20 – 20.000 Hz. The vibration responses of the welded specimens, in free-free conditions, are carried out using algorithms based on Fast Fourier Transform (FFT, and Prony's series. The results are compared to modal parameters estimated using FE Analysis.

  15. A New Design of the Test Rig to Measure the Transmission Error of Automobile Gearbox (United States)

    Hou, Yixuan; Zhou, Xiaoqin; He, Xiuzhi; Liu, Zufei; Liu, Qiang


    Noise and vibration affect the performance of automobile gearbox. And transmission error has been regarded as an important excitation source in gear system. Most of current research is focused on the measurement and analysis of single gear drive, and few investigations on the transmission error measurement in complete gearbox were conducted. In order to measure transmission error in a complete automobile gearbox, a kind of electrically closed test rig is developed. Based on the principle of modular design, the test rig can be used to test different types of gearbox by adding necessary modules. The test rig for front engine, rear-wheel-drive gearbox is constructed. And static and modal analysis methods are taken to verify the performance of a key component.

  16. Composite Struts Would Damp Vibrations (United States)

    Dolgin, Benjamin P.


    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  17. Teal Ruby - Design, manufacture and test (United States)

    Pepi, J. W.; Kahan, M. A.; Barnes, W. H.; Zielinski, R. J.

    The Teal Ruby infrared telescope, designed to passively operate in a cryogenic and orbital environment, and capable of maintaining integrity under a severe set of design criteria, is presented. The infrared telescope unit, a curved-field centered design, is described; a woven graphite epoxy composite structure encloses the lightweight fused silica mirrors. The completed telescope design satisfies the necessary criteria, including spacecraft payload capabilities, good stiffness characteristics, low heat loss, and low thermal expansion. To meet performance in terms of optical resolution, the overall design error is held to one-tenth of one wavelength or less of near infrared light. To ascertain the design validity, a detailed mathematical model was constructed using the NASTRAN digital routine. The instrument is scheduled for Space Shuttle orbital launch, one of its purposes being the verification of the capabilities of an infrared sensor and a mosaic focal plane.

  18. Design guide for Geothermal Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard. G.L.


    The intent of this design guide is to provide the engineer with the necessary information to produce a design for a workable installation. It contains a project scope, specific design information, and project control procedures. The desired process is to flash the geothermal brine to steam in three or four stages and transfer the steam heat energy to the working fluid circulating in closed loop. (MHR)

  19. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis (United States)

    Tuma, Margaret L.; Chenevert, Donald J.


    NASA has conducted dynamic tests on each major launch vehicle during the past 45 years. Each test provided invaluable data to correlate and correct analytical models. GVTs result in hardware changes to Saturn and Space Shuttle, ensuring crew and vehicle safety. Ares I IVGT will provide test data such as natural frequencies, mode shapes, and damping to support successful Ares I flights. Testing will support controls analysis by providing data to reduce model uncertainty. Value of testing proven by past launch vehicle successes and failures. Performing dynamic testing on Ares vehicles will provide confidence that the launch vehicles will be safe and successful in their missions.

  20. Testing and Formal Verification of Logarithmic Function Design (United States)

    Agarwal, Sanjeev; Bhuria, Indu


    Logarithmic function has been designed on basis of multiplicative normalization and then its testing is been done using tetraMAX. It is observed that 7050 possible faults can be there in the design and tetraMAX ATPG can provide test coverage of 99.29%. Using design compiler .db file is generated which is used for functional verification of the design with respect to RTL design. Compare points are shown by cone views of the design.

  1. GOES-R Active Vibration Damping Controller Design, Implementation, and On-Orbit Performance (United States)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.


    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. In order to meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping of the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural

  2. Stochastic Modeling of Structural Uncertainty/Variability from Ground Vibration Modal Test Data (Postprint) (United States)


    inclusion of a nonlinear bend–twist couple without permanent deformation of the test article. For modal testing, a Polytec PSV -400-3D scanning laser...scanned using the Polytec PSV -400-3D scanning LDV. The joined-wing test article was excited with an autoping hammer with a force sensor mounted to the

  3. Minimization of the Vibration Energy of Thin-Plate Structures and the Application to the Reduction of Gearbox Vibration (United States)

    Inoue, Katsumi; Krantz, Timothy L.


    While the vibration analysis of gear systems has been developed, a systematic approach to the reduction of gearbox vibration has been lacking. The technique of reducing vibration by shifting natural frequencies is proposed here for gearboxes and other thin-plate structures using the theories of finite elements, modal analysis, and optimization. A triangular shell element with 18 degrees of freedom is developed for structural and dynamic analysis. To optimize, the overall vibration energy is adopted as the objective function to be minimized at the excitation frequency by varying the design variable (element thickness) under the constraint of overall constant weight. Modal analysis is used to determine the sensitivity of the vibration energy as a function of the eigenvalues and eigenvectors. The optimum design is found by the gradient projection method and a unidimensional search procedure. By applying the computer code to design problems for beams and plates, it was verified that the proposed method is effective in reducing vibration energy. The computer code is also applied to redesign the NASA Lewis gear noise rig test gearbox housing. As one example, only the shape of the top plate is varied, and the vibration energy levels of all the surfaces are reduced, yielding an overall reduction of 1/5 compared to the initial design. As a second example, the shapes of the top and two side plates are varied to yield an overall reduction in vibration energy of 1/30.

  4. A critical review of the neurophysiological evidence underlying clinical vestibular testing using sound, vibration and galvanic stimuli. (United States)

    Curthoys, Ian S


    In addition to activating cochlear receptors, air conducted sound (ACS) and bone conducted vibration (BCV) activate vestibular otolithic receptors, as shown by neurophysiological evidence from animal studies--evidence which is the foundation for using ACS and BCV for clinical vestibular testing by means of vestibular-evoked myogenic potentials (VEMPs). Recent research is elaborating the specificity of ACS and BCV on vestibular receptors. The evidence that saccular afferents can be activated by ACS has been mistakenly interpreted as showing that ACS only activates saccular afferents. That is not correct - ACS activates both saccular and utricular afferents, just as BCV activates both saccular and utricular afferents, although the patterns of activation for ACS and BCV do not appear to be identical. The otolithic input to sternocleidomastoid muscle appears to originate predominantly from the saccular macula. The otolithic input to the inferior oblique appears to originate predominantly from the utricular macula. Galvanic stimulation by surface electrodes on the mastoids very generally activates afferents from all vestibular sense organs. This review summarizes the physiological results, the potential artifacts and errors of logic in this area, reconciles apparent disagreements in this field. The neurophysiological results on BCV have led to a new clinical test of utricular function - the n10 of the oVEMP. The cVEMP tests saccular function while the oVEMP tests utricular function. Copyright (c) 2009 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes


    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  6. Design, Simulation, and Optimization of a Frequency-Tunable Vibration Energy Harvester That Uses a Magnetorheological Elastomer

    Directory of Open Access Journals (Sweden)

    Wan Sun


    Full Text Available This study focuses on the design, simulation, and load power optimization for the development of a novel frequency-tunable electromagnetic vibrational energy harvester. The unique characteristic of a magnetorheological elastomer (MRE is utilized, that the shear modulus can be varied by changing the strength of an applied magnetic field. The electromagnetic energy harvester is fabricated, the external electric circuit is connected, and the performance is evaluated through a series of experiments. The resonant frequencies and the parasitic damping constant are measured experimentally for different tuning magnet gap distances, which validate the application of the MRE to the development of a frequency-tunable energy harvesting system. The harvested energy of the system is measured by the voltage across the load resistor. The maximum load power is attained by optimizing the external circuit connected to the coil system. The analysis results are presented for harvesting the maximum load power in terms of the coil parameters and external circuit resistance. The optimality of the load resistance is validated by comparing the analytical results with experimental results. The optimal load resistances under various resonance frequencies are also found for the design and composition of the optimal energy harvesting circuit of the energy harvester system.

  7. Design and Experimental Implementation of a Beam-Type Twin Dynamic Vibration Absorber for a Cantilevered Flexible Structure Carrying an Unbalanced Rotor: Numerical and Experimental Observations

    Directory of Open Access Journals (Sweden)

    Abdullah Özer


    Full Text Available This paper presents experimental and numerical results about the effectiveness of a beam-type twin dynamic vibration absorber for a cantilevered flexible structure carrying an unbalanced rotor. An experimental laboratory prototype setup has been built and implemented in our laboratory and numerical investigations have been performed through finite element analysis. The proposed system design consists of a primary cantilevered flexible structure with an attached dual-mass cantilevered secondary dynamic vibration absorber arrangement. In addition, an unbalanced rotor system is attached to the tip of the flexible cantilevered structure to inspect the system response under harmonic excitations. Numerical findings and experimental observations have revealed that significant vibration reductions are possible with the proposed dual-mass, cantilevered dynamic vibration absorber on a flexible cantilevered platform carrying an unbalanced rotor system at its tip. The proposed system is efficient and it can be practically tuned for variety of design and operating conditions. The designed setup and the results in this paper can serve for practicing engineers, researchers and can be used for educational purposes.

  8. Design and performance test of spacecraft test and operation software (United States)

    Wang, Guohua; Cui, Yan; Wang, Shuo; Meng, Xiaofeng


    Main test processor (MTP) software is the key element of Electrical Ground Support Equipment (EGSE) for spacecraft test and operation used in the Chinese Academy of Space Technology (CAST) for years without innovation. With the increasing demand for a more efficient and agile MTP software, the new MTP software was developed. It adopts layered and plug-in based software architecture, whose core runtime server provides message queue management, share memory management and process management services and forms the framework for a configurable and open architecture system. To investigate the MTP software's performance, the test case of network response time, test sequence management capability and data-processing capability was introduced in detail. Test results show that the MTP software is common and has higher performance than the legacy one.

  9. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis (United States)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...


    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hanbing [University of Tennessee, Knoxville (UTK); Meek, Thomas T. [University of Tennessee, Knoxville (UTK); Han, Qingyou [ORNL


    In order to investigate the effects of ultrasonic vibration on degassing of aluminum alloys, three experimental systems have been designed and built: one for ultrasonic degassing in open air, one for ultrasonic degassing under reduced pressure, and one for ultrasonic degassing with a purging gas. Experiments were first carried out in air to test degassing using ultrasonic vibration alone. The limitations with ultrasonic degassing were outlined. Further experiments were then performed under reduced pressures and in combination with purging argon gas. Experimental results suggest that ultrasonic vibration alone is efficient for degassing a small volume of melt. Ultrasonic vibration can be used for assisting vacuum degassing, making vacuum degassing much faster than that without using ultrasonic vibration. Ultrasonically assisted argon degassing is the fastest method for degassing among the three methods tested in this research. More importantly, dross formation during ultrasonically assisted argon degassing is much less than that during argon degassing. The mechanisms of ultrasonic degassing are discussed.

  11. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  12. Diagnostic tests in Raynaud's phenomena in workers exposed to vibration: a comparative study

    DEFF Research Database (Denmark)

    Olsen, N


    C, was regarded as an abnormal response, FSP(A) test. A hand cooling, preceded by 30 minute body precooling, was performed in water at 10 degrees C during five minute ischaemia. The finger colours after hand cooling were evaluated by a directly visual inspection, FCV test, and by a blind assessment...

  13. Flow distribution and tube vibration in heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.L.


    A project was initiated to study flow distribution and tube vibration in heat exchangers. An experimental program was carried out on a full-size heat exchanger in four test phases of parametric study. The flow induced vibration data were used to quantify and develop non-intrusive vibration monitoring techniques for online problem evaluation and to study the influence of design features and conditions on the vibration. The in-tube vibration data obtained have shown that the vibroacoustic and microphone monitoring techniques to be reliable and accurate methods for the detection of tube impacting in an operating heat exchanger. Development of work on the use of a two-accelerator vibroacoustic technique for the location of impacting zones in a bundle showed promise and is currently being employed in the field. The in-tube vibration data have demonstrated the effects that changes in the design of a bundle can have on tube vibration in that bundle. These results indicate that an important factor in bundle design is the local flow distribution in areas of high vibration susceptibility. The in-tube data have demonstrated that tubes in zones other than the inlet region can be susceptible to a form of periodic resonant excitation. This observation has implications for cases where flow reduction is implemented to avoid an instability problem. Such a reduction could bring the tube bundle into a flow regime where it is susceptible to the resonant excitation. 10 refs., 55 figs., 4 tabs.

  14. Algorithmic test design using classical item parameters


    van der Linden, Willem J.; Adema, Jos J.


    Two optimalization models for the construction of tests with a maximal value of coefficient alpha are given. Both models have a linear form and can be solved by using a branch-and-bound algorithm. The first model assumes an item bank calibrated under the Rasch model and can be used, for instance, when classical test theory has to serve as an interface between the item bank system and a user not familiar with modern test theory. Maximization of alpha was obtained by inserting a special constra...

  15. APEX 3D Propeller Test Preliminary Design (United States)

    Colozza, Anthony J.


    A low Reynolds number, high subsonic mach number flight regime is fairly uncommon in aeronautics. Most flight vehicles do not fly under these aerodynamic conditions. However, recently there have been a number of proposed aircraft applications (such as high altitude observation platforms and Mars aircraft) that require flight within this regime. One of the main obstacles to flight under these conditions is the ability to reliably generate sufficient thrust for the aircraft. For a conventional propulsion system, the operation and design of the propeller is the key aspect to its operation. Due to the difficulty in experimentally modeling the flight conditions in ground-based facilities, it has been proposed to conduct propeller experiments from a high altitude gliding platform (APEX). A preliminary design of a propeller experiment under the low Reynolds number, high mach number flight conditions has been devised. The details of the design are described as well as the potential data that will be collected.

  16. Downhole Vibration Monitoring and Control System

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. The key feature of this system is its use of a magnetorheological fluid (MRF) to allow the damping coefficient to be changed extensively, rapidly and reversibly without the use of mechanical valves, but only by the application of a current. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. Much of the effort was devoted to the design and testing of the MRF damper, itself. The principal objectives of Phase II were: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in a drilling laboratory. Phase II concluded on January 31, 2006, and a final report was issued. Work on Phase III of the project began during the first quarter, 2006, with the objectives of building precommercial prototypes, testing them in a drilling laboratory and the field; developing and implementing a commercialization plan. All of these have been accomplished. The Downhole Vibration Monitoring & Control System (DVMCS) prototypes have been successfully proven in testing at the TerraTek drilling facility and at the Rocky Mountain Oilfield Test Center (RMOTC.) Based on the results of these tests, we have signed a definitive development and distribution agreement with Smith, and commercial deployment is underway. This current version of the DVMCS monitors and controls axial vibrations. Due to time and budget constraints of this program, it was not possible to complete a system that would also deal with lateral and torsional (stick-slip) vibrations as originally planned; however, this effort is continuing without DOE

  17. Design and Test of a Cognitive Model (United States)

    Cunningham, Michael A.; Gary, Harry J.


    A presentation of arguments demonstrating piaget's sensorimotor stages in Hebb's terms, and the suggestion for performing a computer test. This paper is an early progress report of an attempt to translate some plausible arguments into a rigorous demonstration. (Author)

  18. Test Rig Design and Presentation for a Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole


    The design and development of a hydraulic yaw system for multi MWturbines is presented and the concept explained. As part of the development of the new concept a full scale test rig for a 5 MW wind turbine has been designed and constructed. The test rig is presented along with its unique design...

  19. Vibration Characteristics of Roundabout Swing of HAWT Wind Wheel

    Directory of Open Access Journals (Sweden)

    Jian-long Ma


    Full Text Available Modal testing was used to show that the roundabout swing was a natural vibration mode of the wind wheel of a horizontal-axis wind turbine (HAWT. During the vibration, the blade root was simultaneously subjected to bending and rotary shear stresses. A method for indirect testing and determination of the dynamic frequencies of the typical vibrations of the wind wheel was developed, based on the frequency-holding characteristic of each subsignal during the transmission of the multiple mixed-vibration signals. The developed method enabled simple and accurate acquisition of the dynamic frequencies without destruction of the flow and structural fields. The dynamic vibration stress of the roundabout swing was found to be significantly stronger than those of the first- and second-order flexural vibrations of the blades. By a combination of numerical simulations and tests, it was determined that the pneumatic circumferential force was the primary determinant of the roundabout swing vibration frequencies, the relationship being quadratic. The roundabout swing vibration potentially offers new explanations and analytical pathways regarding the behavior of horizontal-axis wind turbines, which have been found to be frequently involved in fatigue-damage accidents within periods shorter than their design lives.

  20. Design and calibration of a semi-active control logic to mitigate structural vibrations in wind turbines

    DEFF Research Database (Denmark)

    Caterino, Nicola; Georgakis, Christos T.; Spizzuoco, Mariacristina


    /20 scale model of a real, one hundred meters tall wind turbine has been assumed as case study for shaking table tests. A special control algorithm has been purposely designed to drive MR dampers. Starting from the results of preliminary laboratory tests, a finite element model of such structure has been...

  1. Design and fabrication of a PZT cantilever for low frequency vibration energy harvesting. (United States)

    Kim, Moonkeun; Hwang, Beomseok; Min, Nam Ki; Jeong, Jaehwa; Kwon, Kwang-Ho; Park, Kang-Bak


    In this study, a PZT cantilever with a Si proof mass is designed and fabricated for a low frequency energy harvesting application. A mathematical model of a multi-layer composite beam was derived and applied in a parametric analysis of the piezoelectric cantilever. Finally, the dimensions of the cantilever were determined for the resonant frequency of the cantilever. Our cantilever design was based on MATLAB and ANSYS simulations. For this simulation, the proof mass volumes were varied from 0 to 0.5 mm3 and resonant frequencies were calculated from 833.5 Hz to 125.5 Hz, respectively. Based on simulation, we fabricated a device with beam dimensions of about 4.10 mm x 0.48 mm x 0.012 mm, and an integrated Si proof mass with dimensions of about 0.481 mm x 0.48 mm x 0.45 mm. The resonant frequency, maximum peak voltage, and highest average power of the cantilever device were 224.8 Hz, 4.8 mV, and 2.24 nW, respectively.

  2. Designing and implementing test automation frameworks with QTP

    CERN Document Server

    Bhargava, Ashish


    A tutorial-based approach, showing basic coding and designing techniques to build test automation frameworks.If you are a beginner, an automation engineer, an aspiring test automation engineer, a manual tester, a test lead or a test architect who wants to learn, create, and maintain test automation frameworks, this book will accelerate your ability to develop and adapt the framework.

  3. Designing of monitoring setup for vibration signature analysis of steam turbine driven high capacity rotary screw compressor

    Energy Technology Data Exchange (ETDEWEB)

    Pyne, T.; Vinod, J. [Birla VXL Ltd., Porbandar (India)


    Tracking the behaviour by signature analysis of machines like Screw Compressor having large number of auxiliaries, high power transmissions, variation of process gas properties, changes of load condition, fluctuating revolutions is truly a challenging job. These unavoidable process conditions often disturb the whole setup and there is every possibility to miss important and relevant information. Standards for overall monitoring as well as for peak-amplitudes responsible for root cause identification are not always available because these machines are `custom designed` and manufacturer`s standards are of paramount importance to consider. The health of these machines cannot be assessed by simply comparing with the international standards unlike most common machines such as fans, pumps, motors etc. with minimum number of auxiliaries. There may also be limitations in the features of the instruments used for the purpose. In this presentation, an attempt has been made to setup a monitoring approach for screw compressor which will help the industries initially setting base-line data to implement vibration analysis based off-line predictive maintenance programme either with the help of an analyser or with a latest software. (orig.) 3 refs.

  4. 14 CFR 33.63 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  5. 14 CFR 33.33 - Vibration. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  6. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo


    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  7. An evaluation of iced bridge hanger vibrations through wind tunnel testing and quasi-steady theory

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos T.; Larsen, A.


    for wind perpendicular to the cylinder at velocities below 30 m/s and for temperatures between -5C and -1C. Aerodynamic drag, lift and moment coefficients are obtained from the static tests, whilst mean and fluctuating responses are obtained from the dynamic tests. The influence of varying surface...... roughness is also examined. The static force coefficients are used to predict parameter regions where aerodynamic instability of the iced bridge hanger might be expected to occur, through use of an adapted theoretical 3- DOF quasi-steady galloping instability model, which accounts for sectional axial...

  8. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)


    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  9. Algorithmic test design using classical item parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.; Adema, Jos J.

    Two optimalization models for the construction of tests with a maximal value of coefficient alpha are given. Both models have a linear form and can be solved by using a branch-and-bound algorithm. The first model assumes an item bank calibrated under the Rasch model and can be used, for instance,

  10. Design Study of Beijing XFEL Test Facility

    CERN Document Server

    Dai, J P


    As R&D of X-ray Free Electron Laser facility in China, the construction of Beijing XFEL Test Facility (BTF) has been proposed. And the start to end simulation of BTF was made with codes PARMELA, ELEGANT and TDA. This paper presents the motivation, the scheme and the simulation results of BTF.

  11. Alighment and Vibration Issues in TeV Linear Collider Design

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.E.; /SLAC


    The next generation of linear colliders will require alignment accuracies and stabilities of component placement at least one, perhaps two, orders of magnitude better than can be achieved by the conventional methods and procedures in practice today. The magnitudes of these component-placement tolerances for current designs of various linear collider subsystems are tabulated. In the micron range, long-term ground motion is sufficiently rapid that on-line reference and mechanical correction systems are called for. Some recent experiences with the upgraded SLAC laser alignment systems and examples of some conceivable solutions for the future are described. The so called ''girder'' problem is discussed in the light of ambient and vibratory disturbances. The importance of the quality of the underlying geology is stressed. The necessity and limitations of particle-beam-derived placement information are mentioned.

  12. Equal modal damping design for a family of resonant vibration control formats

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker


    The principle of equal modal damping is used to give a unified presentation and calibration of resonant control of structures for different control formats, based on velocity, acceleration–position or position feedback. When introducing a resonant controller the original resonant mode splits......-velocity formats, while the position and extended position feedback format give a simple stability condition in terms of the gain factors and the structure flexibility matrix. The paper concludes with a simple design procedure based on the desired effective damping of a flexible structure with equal modal control...... of the resulting modal damping ratio. While velocity feedback, and the associated acceleration–position formats, lead to near-equal resonant peak heights of the velocity in a frequency response diagram, position feedback leads to balanced acceleration peaks. It is demonstrated, how a simple additional time...

  13. Design Optimization for Vibration Reduction of Viscoelastic Damped Structures Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie


    Full Text Available Due to the large number of design variables that can be present in complex systems incorporating visco-elastic damping, this work examines the application of genetic algorithms in optimizing the response of these structures. To demonstrate the applicability of genetic algorithms (GAs, the approach is applied to a simple viscoelastically damped constrained-layer beam. To that end, a finite element model (FEM derived by Zapfe, which was based on Rao's formulation, was used for a beam with constrained-layer damping. Then, a genetic algorithm is applied to simultaneously determine the thicknesses of the viscoelastic damping layer and the constraining layer that provide the best response. While the targeted response is ultimately at the discretion of the designer, a few different choices for the fitness function are shown along with their corresponding impact on the vibratory response. By integrating the FEM code within the GA routine, it is easier to include the frequency-dependence of both the shear modulus and the loss factors for the viscoelastic layer. Examples are provided to demonstrate the capabilities of the method. It is shown that while a multi-mode optimization target provides significant reductions, the response for that configuration is inferior to the response when only single-mode reduction is considered. The results also reveal that the optimum configuration has a lower response level than when a thick layer of damping material is used. By demonstrating the applicability of GA for a simple beam structure, the approach can be extended to more complex damped structures.

  14. Design and Calibration Tests of an Active Sound Intensity Probe

    Directory of Open Access Journals (Sweden)

    Thomas Kletschkowski


    Full Text Available The paper presents an active sound intensity probe that can be used for sound source localization in standing wave fields. The probe consists of a sound hard tube that is terminated by a loudspeaker and an integrated pair of microphones. The microphones are used to decompose the standing wave field inside the tube into its incident and reflected part. The latter is cancelled by an adaptive controller that calculates proper driving signals for the loudspeaker. If the open end of the actively controlled tube is placed close to a vibrating surface, the radiated sound intensity can be determined by measuring the cross spectral density between the two microphones. A one-dimensional free field can be realized effectively, as first experiments performed on a simplified test bed have shown. Further tests proved that a prototype of the novel sound intensity probe can be calibrated.

  15. An Evaluation of Test and Physical Uncertainty of Measuring Vibration in Wooden Junctions

    DEFF Research Database (Denmark)

    Dickow, Kristoffer Ahrens; Kirkegaard, Poul Henning; Andersen, Lars Vabbersgaard


    In the present paper a study of test and material uncertainty in modal analysis of certain wooden junctions is presented. The main structure considered here is a T-junction made from a particleboard plate connected to a spruce beam of rectangular cross section. The size of the plate is 1.2 m by 0...

  16. Design and realization of test question bank database system (United States)

    Wang, Xin; Wang, Zhong; Huang, Wei; Wen, Guanqi; Zhang, Shaolei


    This paper introduces the analysis of system, the design of database and the design process of software, and then summarizes the characteristics of the test question bank, and gets very good results in the actual use.

  17. Speculations on the Future of Test Design. (United States)


    Harris, Pastorok, & Wilcox , 1977) rather than the broader foundation provided by generalizability theory. In short, the closest that has been come to...developments. Review of Educational Research, 48, 1-47. Harris C. W., Pastorok, A., & Wilcox , R. R. (1977). Achievement testing: Item methods of study. Los...I Dr. Richard Sorensen Navy Personnel R&D Center San Diego, CA 92152 I Dr. Frederick Steinheiser CNG - OP115 Navy Annex Arlington, VA 20370 I Mr. Brad

  18. A Design Methodology for Computer Security Testing


    Ramilli, Marco


    The field of "computer security" is often considered something in between Art and Science. This is partly due to the lack of widely agreed and standardized methodologies to evaluate the degree of the security of a system. This dissertation intends to contribute to this area by investigating the most common security testing strategies applied nowadays and by proposing an enhanced methodology that may be effectively applied to different threat scenarios with the same degree of effectiveness. ...

  19. Vibration Testing Procedures for Bone Stiffness Assessment in Fractures Treated with External Fixation. (United States)

    Mattei, Lorenza; Longo, Antonia; Di Puccio, Francesca; Ciulli, Enrico; Marchetti, Stefano


    A bone healing assessment is crucial for the successful treatment of fractures, particularly in terms of the timing of support devices. However, in clinical practice, this assessment is only made qualitatively through bone manipulation and X-rays, and hence cannot be repeated as often as might be required. The present study reconsiders the quantitative method of frequency response analysis for healing assessments, and specifically for fractures treated with an external fixator. The novelty consists in the fact that bone excitation and response are achieved through fixator pins, thus overcoming the problem of transmission through soft-tissues and their damping effect. The main objective was to develop and validate a test procedure in order to characterize the treated bone. More than 80 tests were performed on a tibia phantom alone, a phantom with pins, and a phantom with a complete fixator. Different excitation techniques and input-output combinations were compared. The results demonstrated the effectiveness of a procedure based on impact tests using a micro-hammer. Pins and fixator were demonstrated to influence the frequency response of the phantom by increasing the number of resonant frequencies. This procedure will be applied in future studies to monitor healing both in in vitro and in vivo conditions.

  20. Experimental Issues in Testing a Semiactive Technique to Control Earthquake Induced Vibration

    Directory of Open Access Journals (Sweden)

    Nicola Caterino


    Full Text Available This work focuses on the issues to deal with when approaching experimental testing of structures equipped with semiactive control (SA systems. It starts from practical experience authors gained in a recent wide campaign on a large scale steel frame structure provided with a control system based on magnetorheological dampers. The latter are special devices able to achieve a wide range of physical behaviours using low-power electrical currents. Experimental activities involving the use of controllable devices require special attention in solving specific aspects that characterize each of the three phases of the SA control loop: acquisition, processing, and command. Most of them are uncommon to any other type of structural testing. This paper emphasizes the importance of the experimental assessment of SA systems and shows how many problematic issues likely to happen in real applications are also present when testing these systems experimentally. This paper highlights several problematic aspects and illustrates how they can be addressed in order to achieve a more realistic evaluation of the effectiveness of SA control solutions. Undesired and unavoidable effects like delays and control malfunction are also remarked. A discussion on the way to reduce their incidence is also offered.

  1. Bellows design and testing for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Suetsugu, Y. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)


    A bellows assembly with an RF-shield has been developed for the KEK B-Factory (KEKB). The RF-shield is a usual finger-type but has a special spring-finger to press the contact-finger on to the beam tube without fail. The mechanical workings of the RF-shield is tested using a trial model and no mechanical problem is found except for the dust production. The necessary contact force, 50 g/finger, is obtained experimentally transmitting the 508 MHz microwave up to 80 kW through the trial model. (author)

  2. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Tests of Dec 1999/Jan 2000 (S/O 784077, OC-454) (United States)

    Heffner, R.


    This is the Engineering Test Report, AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Test of Dec 1999/Jan 2000 (S/O 784077, OC-454), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  3. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit...... with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments. One of the main strengths of the conference is a wide but high-quality coverage of design, design automation and test topics, from the system level (including PCB and FPGA...

  4. Field Test Data for Detecting Vibrations of a Building Using High-Speed Video Cameras (United States)


    5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Research Laboratory ATTN: RDRL-SES-P 2800 Powder Mill Road...The team set up a low-frequency ServoDrive speaker inside of ARL’s Building 108 facility. In this experiment, the speaker generated tones at 19, 28...ground-truth data. The field test and the data collected are documented in this report. The team developed image processing algorithms to analyze the

  5. Strength and fatigue testing of large size wind turbines rotors. Vol. II: Full size natural vibration and static strength test, a reference case

    Energy Technology Data Exchange (ETDEWEB)

    Arias, F.; Soria, E.


    This report shows the methods and procedures selected to define a strength test for large size wind turbine, anyway in particular it application on a 500 kW blade and it results obtained in the test carried out in july of 1995 in Asinel`s test plant (Madrid). Henceforth, this project is designed in an abbreviate form whit the acronym SFAT. (Author)

  6. Vibration measurements on timber frame floors

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Oosterhout, G.P.C. van; Donkervoort, R.


    In the design of lightweight floors vibrational aspects become more and more important. With the foreseen introduction of Eurocode 5 the vibration of timber floors becomes a part of the design for serviceability. Design rules for the vibrational behaviour are given in Eurocode 5. The first rule is

  7. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David


    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  8. Bellows design and testing for KEKB

    Energy Technology Data Exchange (ETDEWEB)

    Suetsugu, Y.; Kanazawa, K. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Ohshima, K. [Irie-Koken Co. Ltd., Akasaka Kawagoe (Japan)


    The bellows assembly with an RF-shield has been developed for the KEK B-Factory (KEKB). The RF-shield is a usual finger-type but has a special spring-finger to press the contact-finger to the beam tube. The mechanical workings of the RF-shield is tested using a trial model and no mechanical problem is found except for the dust generation. The necessary contact force is obtained experimentally transmitting the 508MHz microwave up to 80 kW through the trial model. The higher order modes power leaked into the inside of bellows assembly is also estimated measuring the coupling coefficient of the RF-shield. (Author).

  9. Computer-Aided Test Flow in Core-Based Design

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.


    This paper copes with the efficient test-pattern generation in a core-based design. A consistent Computer-Aided Test (CAT) flow is proposed based on the required core-test strategy. It generates a test-pattern set for the embedded cores with high fault coverage and low DfT area overhead. The CAT

  10. A default Bayesian hypothesis test for ANOVA designs

    NARCIS (Netherlands)

    Wetzels, R.; Grasman, R.P.P.P.; Wagenmakers, E.J.


    This article presents a Bayesian hypothesis test for analysis of variance (ANOVA) designs. The test is an application of standard Bayesian methods for variable selection in regression models. We illustrate the effect of various g-priors on the ANOVA hypothesis test. The Bayesian test for ANOVA

  11. Test of a High Power Target Design

    CERN Multimedia


    %IS343 :\\\\ \\\\ A high power tantalum disc-foil target (RIST) has been developed for the proposed radioactive beam facility, SIRIUS, at the Rutherford Appleton Laboratory. The yield and release characteristics of the RIST target design have been measured at ISOLDE. The results indicate that the yields are at least as good as the best ISOLDE roll-foil targets and that the release curves are significantly faster in most cases. Both targets use 20 -25 $\\mu$m thick foils, but in a different internal geometry.\\\\ \\\\Investigations have continued at ISOLDE with targets having different foil thickness and internal geometries in an attempt to understand the release mechanisms and in particular to maximise the yield of short lived isotopes. A theoretical model has been developed which fits the release curves and gives physical values of the diffusion constants.\\\\ \\\\The latest target is constructed from 2 $\\mu$m thick tantalum foils (mass only 10 mg) and shows very short release times. The yield of $^{11}$Li (half-life of ...

  12. The immediate effect of vibration therapy on flexibility in female ...

    African Journals Online (AJOL)

    Therefore, the aim of this study was to investigate the acute effects of vibration therapy on the flexibility of female gymnasts. A pre-test, post-test design was used to evaluate this effect. Fifty two gymnasts were assigned to either the control group or to one of three experimental groups. For both the pre- and post-testing all ...

  13. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. (United States)

    Lee, Christopher M; Kafle, Kabindra; Park, Yong Bum; Kim, Seong H


    This study reports that the noncentrosymmetry and phase synchronization requirements of the sum frequency generation (SFG) process can be used to distinguish the three-dimensional organization of crystalline cellulose distributed in amorphous matrices. Crystalline cellulose is produced as microfibrils with a few nanometer diameters by plants, tunicates, and bacteria. Crystalline cellulose microfibrils are embedded in wall matrix polymers and assembled into hierarchical structures that are precisely designed for specific biological and mechanical functions. The cellulose microfibril assemblies inside cell walls are extremely difficult to probe. The comparison of vibrational SFG spectra of uniaxially-aligned and disordered films of cellulose Iβ nanocrystals revealed that the spectral features cannot be fully explained with the crystallographic unit structure of cellulose. The overall SFG intensity, the alkyl peak shape, and the alkyl/hydroxyl intensity ratio are sensitive to the lateral packing and net directionality of the cellulose microfibrils within the SFG coherence length scale. It was also found that the OH SFG stretch peaks could be deconvoluted to find the polymorphic crystal structures of cellulose (Iα and Iβ). These findings were used to investigate the cellulose crystal structure and mesoscale cellulose microfibril packing in intact plant cell walls, tunicate tests, and bacterial films.

  14. Students' Initial Knowledge State and Test Design: Towards a Valid and Reliable Test Instrument (United States)

    CoPo, Antonio Roland I.


    Designing a good test instrument involves specifications, test construction, validation, try-out, analysis and revision. The initial knowledge state of forty (40) tertiary students enrolled in Business Statistics course was determined and the same test instrument undergoes validation. The designed test instrument did not only reveal the baseline…

  15. The Effects of Vibration on the Gait Pattern and Vibration Perception Threshold of Children With Idiopathic Toe Walking. (United States)

    Fanchiang, Hsinchen Daniel; Geil, Mark; Wu, Jianhua; Chen, Yu-Ping; Wang, Yong Tai


    The effectiveness of idiopathic toe walking treatments is not conclusive. The study investigated the use of vibration as a therapeutic/treatment method for children with idiopathic toe walking. Fifteen children with idiopathic toe walking and 15 typically developing children, aged 4 to 10 years, completed the study. The study included a barefoot gait examination and a vibration perception threshold test before and after standing on a whole body vibration machine for 60 seconds. Temporal-spatial parameters were recorded along with HR32, a calculation designed to distinguish on aspects of the toe-walking pattern. No significant gait pattern differences were found between children with idiopathic toe walking and typically developing children after one bout of vibration intervention. HR32 was found to be a means to identify the toe-walking pattern (P vibration of children with idiopathic toe walking was not found in the current study (P = .921). © The Author(s) 2014.

  16. Design and test of a power-generated magnetorheological damper (United States)

    Bai, Xian-Xu; Zou, Qi; Qian, Li-Jun


    A power-generated magnetorheological (MR) damper with integrating a controllable damping mechanism and a power-generation mechanism is proposed in this paper. The controllable damping mechanism is realized by an annular rotary gap filled with MR fluids working in pure shear mode. The rotary damping moment is transformed to a linear damping force via a ball-screw mechanism. The power-generation mechanism is realized via a permanent magnet rotor and a stator with winding coils, which transforms the vibration energy of the system into electric power or directly to power the controllable damping mechanism. The characteristics of the controllable damping force and the power-generated performance are theoretically analyzed and experimentally tested.

  17. Testing and performance of a new friction damper for seismic vibration control (United States)

    Martínez, Carlos A.; Curadelli, Oscar


    In the last two decades, great efforts were carried out to reduce the seismic demand on structures through the concept of energy dissipation instead of increasing the stiffness and strength. Several devices based on different energy dissipation principles have been developed and implemented worldwide, however, most of the dissipation devices are usually installed using diagonal braces, which entail certain drawbacks on apertures for circulation, lighting or ventilation and architectural or functional requirements often preclude this type of installations. In this work, a conceptual development of a novel energy dissipation device, called Multiple Friction Damper (MFD), is proposed and examined. To verify its characteristics and performance, the MFD was implemented on a single storey steel frame experimental model and tested under different conditions of normal force and real time acceleration records. Experimental results demonstrated that the new MFD constitutes an effective and reliable alternative to control the structural response in terms of displacement and acceleration. A mathematical formulation based on the Wen's model reflecting the nonlinear behaviour of the device is also presented.

  18. Using partial safety factors in wind turbine design and testing

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.D. [National Renewable Energy Lab., Golden, CO (United States)


    This paper describes the relationship between wind turbine design and testing in terms of the certification process. An overview of the current status of international certification is given along with a description of limit-state design basics. Wind turbine rotor blades are used to illustrate the principles discussed. These concepts are related to both International Electrotechnical Commission and Germanischer Lloyd design standards, and are covered using schematic representations of statistical load and material strength distributions. Wherever possible, interpretations of the partial safety factors are given with descriptions of their intended meaning. Under some circumstances, the authors` interpretations may be subjective. Next, the test-load factors are described in concept and then related to the design factors. Using technical arguments, it is shown that some of the design factors for both load and materials must be used in the test loading, but some should not be used. In addition, some test factors not used in the design may be necessary for an accurate test of the design. The results show that if the design assumptions do not clearly state the effects and uncertainties that are covered by the design`s partial safety factors, outside parties such as test labs or certification agencies could impose their own meaning on these factors.

  19. Design, Construction and Testing of a Dry Sand Sieving Machine ...

    African Journals Online (AJOL)

    Michael Horsfall and Design, Construction and Testing of a Dry Sand Sieving Machine. OLADEJI AKANNI OGUNWOLE. Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria. ABSTRACT: This paper reports on the design, construction and Testing of a dry sand sieving.

  20. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C. [Westinghouse Electric Company LLC, Cranberry Township, PA 16066 (United States); Amador C, C.; Sosa F, W., E-mail: [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Km 42.5 Carretera Cardel-Nautla, 91680 Alto Lucero, Veracruz (Mexico)


    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  1. Vibration Characteristics Determined for Stainless Steel Sandwich Panels With a Metal Foam Core for Lightweight Fan Blade Design (United States)

    Ghosn, Louis J.; Min, James B.; Raj, Sai V.; Lerch, Bradley A.; Holland, Frederic A., Jr.


    The goal of this project at the NASA Glenn Research Center is to provide fan materials that are safer, weigh less, and cost less than the currently used titanium alloy or polymer matrix composite fans. The proposed material system is a sandwich fan construction made up of thin solid face sheets and a lightweight metal foam core. The stiffness of the sandwich structure is increased by separating the two face sheets by the foam layer. The resulting structure has a high stiffness and lighter weight in comparison to the solid facesheet material alone. The face sheets carry the applied in-plane and bending loads (ref. 1). The metal foam core must resist the transverse shear and transverse normal loads, as well as keep the facings supported and working as a single unit. Metal foams have ranges of mechanical properties, such as light weight, impact resistance, and vibration suppression (ref. 2), which makes them more suitable for use in lightweight fan structures. Metal foams have been available for decades (refs. 3 and 4), but the difficulties in the original processes and high costs have prevented their widespread use. However, advances in production techniques and cost reduction have created a new interest in this class of materials (ref. 5). The material chosen for the face sheet and the metal foam for this study was the aerospace-grade stainless steel 17-4PH. This steel was chosen because of its attractive mechanical properties and the ease with which it can be made through the powder metallurgy process (ref. 6). The advantages of a metal foam core, in comparison to a typical honeycomb core, are material isotropy and the ease of forming complex geometries, such as fan blades. A section of a 17-4PH sandwich structure is shown in the following photograph. Part of process of designing any blade is to determine the natural frequencies of the particular blade shape. A designer needs to predict the resonance frequencies of a new blade design to properly identify a useful

  2. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration (United States)

    Irvine, T.


    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested accordingly. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  3. Multiaxis Rainflow Fatigue Methods for Nonstationary Vibration (United States)

    Irvine, T.


    Mechanical structures and components may be subjected to cyclical loading conditions, including sine and random vibration. Such systems must be designed and tested according. Rainflow cycle counting is the standard method for reducing a stress time history to a table of amplitude-cycle pairings prior to the Palmgren-Miner cumulative damage calculation. The damage calculation is straightforward for sinusoidal stress but very complicated for random stress, particularly for nonstationary vibration. This paper evaluates candidate methods and makes a recommendation for further study of a hybrid technique.

  4. The Design, Fabrication, and Testing of Composite Heat Exchange Coupons (United States)

    Quade, Derek J.; Meador, Michael A.; Shin, Euy-Sik; Johnston, James C.; Kuczmarski, Maria A.


    Several heat exchanger (HX) test panels were designed, fabricated and tested at the NASA Glenn Research Center to explore the fabrication and performance of several designs for composite heat exchangers. The development of these light weight, high efficiency air-liquid test panels was attempted using polymer composites and carbon foam materials. The fundamental goal of this effort was to demonstrate the feasibility of the composite HX for various space exploration and thermal management applications including Orion CEV and Altair. The specific objectives of this work were to select optimum materials, designs, and to optimize fabrication procedures. After fabrication, the individual design concept prototypes were tested to determine their thermal performance and to guide the future development of full-size engineering development units (EDU). The overall test results suggested that the panel bonded with pre-cured composite laminates to KFOAM Grade L1 scored above the other designs in terms of ease of manufacture and performance.

  5. Design of Test Parts to Characterize Micro Additive Manufacturing Processes

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Mischkot, Michael


    The minimum feature size and obtainable tolerances of additive manufacturing processes are linked to the smallest volumetric elements (voxels) that can be created. This work presents the iterative design of a test part to investigate the resolution of AM processes with voxel sizes at the micro...... scale. Each design iteration reduces the test part size, increases the number of test features, improves functionality, and decreases coupling in the part. The final design is a set of three test parts that are easy to orient and measure, and that provide useful information about micro additive...... manufacturing processes....

  6. The influence of flywheel micro vibration on space camera and vibration suppression (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo


    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  7. Effect of vibration on visual display terminal work performance. (United States)

    Hsieh, Yao-Hung; Lin, Chiuhsiang Joe; Chen, Hsiao-Ching


    Today electronic visual displays have dramatic use in daily life. Reading these visual displays is subject to their vibration. Using a software-simulation of a vibrated environment, the study investigated the effect of vibration on visual performance and fatigue for several numerical display design characteristics including the font size and the number of digits displayed. Both the frequency and magnitude of vibration had significant effects on the reaction time, accuracy, and visual fatigue. 10 graduate students (23-30 years old; M = 25.6), randomly tested in this experiment, were offered about 25 U.S. dollars for their participation. Numbers in vertical presentation were affected more in vertical vibration than those in horizontal presentation. Analysis showed whenever the display is used in vibration environment, an increased font size may be an effective way to compensate the adverse effect of vibration. The software design of displayed materials must be designed to take the motion effect into consideration to increase the quality of the screen display.

  8. Hand function tests and questions on hand symptoms as related to the Stockholm workshop scales for diagnosis of hand-arm vibration syndrome. (United States)

    Cederlund, R; Iwarsson, S; Lundborg, G


    The severity of hand-arm vibration syndrome (HAVS) is usually graded according to the Stockholm workshop scales. Although the Stockholm workshop scales are regarded the gold standard for assessing the severity of HAVS, they are based primarily on subjective symptoms. The aim of the present study was to explore the agreement between Stockholm workshop scales and the outcome from ten well-defined clinical tests commonly used in hand rehabilitation for assessment of hand function. One hundred and eleven vibration-exposed workers participated in the study. Ten objective tests of hand function and four questions on subjective hand symptoms were included. The results indicated that, out of these tests, perception of vibration, perception of touch/pressure and dexterity showed a moderate agreement with Stockholm workshop scales. Among specific questions on hand symptoms, cold intolerance and pain showed a high agreement with Stockholm workshop scales. It is concluded that defined objective tests combined with directed questions on specific hand symptoms, together with the Stockholm workshop scales, may be helpful for diagnosing HAVS.

  9. Design, manufacturing and testing of Controllable Rubber Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Løgstrup Andersen, Tom; Aagaard Madsen, Helge; Barlas, Thanasis K

    The overall goal for the INDUFLAP project was realization of a test facility for development and test of Controllable Rubber Trailing Edge Flaps (CRTEF) for wind turbines. This report covers experimental work at DTU Wind Energy including design, manufacture and test of different configurations...... of flaps with voids in chord- or spanwise direction. Development of rubber flaps has involved further design improvements. Non-metallic spring elements and solutions for sealing of continuous extruded rubber profiles have been investigated....

  10. Hypothesis Designs for Three-Hypothesis Test Problems


    Yan Li; Xiaolong Pu


    As a helpful guide for applications, the alternative hypotheses of the three-hypothesis test problems are designed under the required error probabilities and average sample number in this paper. The asymptotic formulas and the proposed numerical quadrature formulas are adopted, respectively, to obtain the hypothesis designs and the corresponding sequential test schemes under the Koopman-Darmois distributions. The example of the normal mean test shows that our methods are qu...

  11. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit....... Challenges that you all face or soon will face in your daily practice are the increasing design complexity of highly integrated systems, the introduction of reconfigurability and embedded software, and the control of power, reliability and variability in nanometer IC designs. All these issues...... with 78 sessions covering the latest in system design and embedded software, IC design methodologies and EDA tool developments. One of the main strengths of the conference is a wide but high-quality coverage of design, design automation and test topics, from the system level (including PCB and FPGA...

  12. Hybrid Computerized Adaptive Testing: From Group Sequential Design to Fully Sequential Design (United States)

    Wang, Shiyu; Lin, Haiyan; Chang, Hua-Hua; Douglas, Jeff


    Computerized adaptive testing (CAT) and multistage testing (MST) have become two of the most popular modes in large-scale computer-based sequential testing. Though most designs of CAT and MST exhibit strength and weakness in recent large-scale implementations, there is no simple answer to the question of which design is better because different…

  13. Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Aragão-Santiago, Leticia


    CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence on the pr......CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence...

  14. Designing an Affordable Usability Test for E-Learning Modules (United States)

    O'Bryan, Corliss A.; Johnson, Donald M.; Shores-Ellis, Katrina D.; Crandall, Philip G.; Marcy, John A.; Seideman, Steve C.; Ricke, Steven C.


    This article provides background and an introduction to a user-centered design and usability test in an inexpensive format that allows content experts who are novices in e-learning development to perform testing on newly developed technical training modules prior to their release. The use of a small number of test participants, avoidance of…

  15. Study of test script design methods for Web Service performance testing (United States)

    Xu, Peng


    Web Service interface technology is more and more widely applied in information system. And more requirements of Web Service performance testing are demanded. Nevertheless, designing the test script for performance testing is hard to take into practice. In this paper, two kinds of test script design methods for Web Service performance testing are presented by using LoadRunner and SOAP UI tools. That is The Service Call Method and The SOAP Method.

  16. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao


    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  17. The J-2X Fuel Turbopump - Design, Development, and Test (United States)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.


    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  18. Design Specifications for a Novel Climatic Wind Tunnel for the Testing of Structural Cables

    DEFF Research Database (Denmark)

    Georgakis, Christos; Koss, Holger; Ricciardelli, Francesco


    The newly proposed Femern fixed link between Denmark and Germany will push the limits in engineering design. The selection of a cable-stayed or suspension bridge will lead to one of the longest bridges of its type in the world. The challenges of designing a bridge are many and the prospects...... of cable vibrations already preoccupy both the owners and designers. In this connection, the Danish owners/operators Femern Bælt A/S, together with Storebælt A/S, are funding a collaborative research project to examine the ways of reducing the risk of cable vibrations on a bridge solution. A novel climatic...

  19. Qualification of the JWST MIRI Instrument Using Force Limited Vibration (United States)

    Sykes, J.; Eccleston, P.; Laine, B.; Ngan, I.; Salvignol, J. C.


    The MIRI instrument design was qualified for sine and random environments using force limited testing to limit the dynamic responses of the sensitive optical components and mechanisms while demonstrating adequate margin with regard to the environmental flight conditions. Force limiting was achieved using force transducers located between the interface of the instrument and the shaker adapter during the vibration test. Interface forces for each of the three interface points were measured in three orthogonal axes during the low level sine test and used to compute the overturning moment, while the resulting global interface force was directly measured by combining the signals from three individual interfaces during the high level vibrations such that automatic notching could be applied. The test was performed in the recently upgraded vibration facility of the Rutherford Appleton Laboratory. In order to demonstrate and develop the MIRI flight model test approach and procedures, a pull- through test was carried out using the Structural Model of the instrument which had been previously vibrated in 2005 at a different facility. This early test allowed measurement of the facility behaviour with the test article, exercising the notching and abort functions, and highlighting an issue with the stiffness of the adapter, as well as several other lessons learned. An adapter with additional in-plane stiffness to ensure in-phase movement of the interfaces and correct functioning of the force-limiting system was subsequently designed, manufactured and tested in time for the instrument FM test. The vibration test was executed very smoothly thanks to the lessons learned from the preparatory test and the work carried out by the team in advance of the test in preparing modelling and analysis tools which could be used in quasi-real time during the test campaign. The paper intends to present the force limited vibration notching approach as well as the lessons learned from this test.

  20. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith


    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  1. Design, development and testing twin pulse tube cryocooler (United States)

    Gour, Abhay Singh; Sagar, Pankaj; Karunanithi, R.


    The design and development of Twin Pulse Tube Cryocooler (TPTC) is presented. Both the coolers are driven by a single Linear Moving Magnet Synchronous Motor (LMMSM) with piston heads at both ends of the mover shaft. Magnetostatic analysis for flux line distribution was carried-out during design and development of LMMSM based pressure wave generator. Based on the performance of PWG, design of TPTC was carried out using Sage and Computational Fluid Dynamics (CFD) analysis. Detailed design, fabrication and testing of LMMSM, TPTC and their integration tests are presented in this paper.

  2. Design of Test Wrapper Scan Chain Based on Differential Evolution

    Directory of Open Access Journals (Sweden)

    Aijun Zhu


    Full Text Available Integrated Circuit has entered the era of design of the IP-based SoC (System on Chip, which makes the IP core reuse become a key issue. SoC test wrapper design for scan chain is a NP Hard problem, we propose an algorithm based on Differential Evolution (DE to design wrapper scan chain. Through group’s mutation, crossover and selection operations, the design of test wrapper scan chain is achieved. Experimental verification is carried out according to the international standard benchmark ITC’02. The results show that the algorithm can obtain shorter longest wrapper scan chains, compared with other algorithms.

  3. Advanced Control Design for Wind Turbines; Part I: Control Design, Implementation, and Initial Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A. D.; Fingersh, L. J.


    The purpose of this report is to give wind turbine engineers information and examples of the design, testing through simulation, field implementation, and field testing of advanced wind turbine controls.

  4. Steps for Vibration Reduction of 50kg-Class Micro-Satellite Structure (United States)

    Nakamura, Masato; Furukawa, Takuya; Chiba, Masakatsu; Okubo, Hiroshi; Akita, Takeshi; Sugiyama, Yoshihiko; Nakamura, Yosuke; Imamura, Hiroaki; Umehara, Nobuhito

    The paper reports several steps taken to reduce vibration responses of a 50kg-class micro-satellite structure, which is subjected to severe mechanical/vibratory environment during launching. In order to satisfy the required mechanical interface conditions, anti-vibration design of satellite structure was modified to enhance damping capacity of the structure by applying adherent aisogrid-panel, honeycomb panel, polyimid-tape-inserted connections, and damping pads. Considerable reduction of vibration responses was confirmed by vibration test of structural-thermal model.

  5. Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation. (United States)

    Hinners, A. H., Jr.; Correale, J. V.


    This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.

  6. Honeycomb technology materials, design, manufacturing, applications and testing

    CERN Document Server

    Bitzer, Tom


    Honeycomb Technology is a guide to honeycomb cores and honeycomb sandwich panels, from the manufacturing methods by which they are produced, to the different types of design, applications for usage and methods of testing the materials. It explains the different types of honeycomb cores available and provides tabulated data of their properties. The author has been involved in the testing and design of honeycomb cores and sandwich panels for nearly 30 years. Honeycomb Technology reflects this by emphasizing a `hands-on' approach and discusses procedures for designing sandwich panels, explaining the necessary equations. Also included is a section on how to design honeycomb energy absorbers and one full chapter discussing honeycomb core and sandwich panel testing. Honeycomb Technology will be of interest to engineers in the aircraft, aerospace and building industries. It will also be of great use to engineering students interested in basic sandwich panel design.

  7. MITG post-test analysis and design improvements

    Energy Technology Data Exchange (ETDEWEB)

    Schock, A.


    The design, performance analysis, and key attributes of the Modular Isotopic Thermoelectric Generator (MITG) were described in a 1981 IECEC paper; and the design, fabrication, and testing of prototypical MITG test assemblies were described in preceding papers in these proceedings. Each test assembly simulated a typical modular slice of the flight generator. The present paper describes a detailed thermal-stress analysis, which identified the causes of stress-related problems observed during the tests. It then describes how additional analyses were used to evaluate design changes to alleviate those problems. Additional design improvements are discussed in the next paper in these proceedings, which also describes revised fabrication procedures and updated performance estimates for the generator.

  8. Conceptual Design Report for the Extreme Ecosystems Test Chambers

    Energy Technology Data Exchange (ETDEWEB)

    C. Barnes; J. Beller; K. Caldwell; K. Croft; R. Cherry; W. Landman


    This conceptual design supports the creation of Extreme Ecosystems Test Chambers, which will replicate deep subsurface and subocean environments characterized by high pressure (2,000 psi) and subfreezing to high temperature (-4 to 300 degrees F) with differing chemical and saturation conditions. The design provides a system to support research and development that includes heat transfer, phase change issues in porous media, microbiology in extreme environments, and carbon sequestration and extraction. The initial system design is based on the research needs to support the commercial production of methane hydrates from subsurface sediments. The design provides for three pressure vessels: a Down Hole Test Vessel, a Vertical Multi-phase Test Vessel, and a Horizontal Multi-phase Test Vessel.

  9. SMART Wind Turbine Rotor: Design and Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Resor, Brian R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); White, Jonathan R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  10. Engine Test Stand Design Constraints Expert System Project (United States)

    National Aeronautics and Space Administration — Propulsion test stands are designed for thermal and pressure loads for certain classes of engines. These plume induced loads are: radiative heating, acoustics and...

  11. Design and Testing of CPAS Main Deployment Bag Energy Modulator (United States)

    Mollmann, Catherine


    During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.

  12. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server



    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  13. Preconceptual design of the new production reactor circulator test facility

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, G.


    This report presents the results of a study of a new circulator test facility for the New Production Reactor Modular High-Temperature Gas-Cooled Reactor. The report addresses the preconceptual design of a stand-alone test facility with all the required equipment to test the Main Circulator/shutoff valve and Shutdown Cooling Circulator/shutoff valve. Each type of circulator will be tested in its own full flow, full power helium test loop. Testing will cover the entire operating range of each unit. The loop will include a test vessel, in which the circulator/valve will be mounted, and external piping. The external flow piping will include a throttle valve, flowmeter, and heat exchanger. Subsystems will include helium handling, helium purification, and cooling water. A computer-based data acquisition and control system will be provided. The estimated costs for the design and construction of this facility are included. 2 refs., 15 figs.

  14. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin


    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  15. Imaging performance comparison between CMOS and sCMOS detectors in a vibration test on large areas using digital holographic interferometry (United States)

    Flores-Morenoa, J. M.; Torre I., Manuel H. De la; Aguayo, Daniel D.; Fernando Mendoza, S.


    A comparison of the interferometric imaging performance of two different cameras during a vibration study is presented. One of the cameras has a high speed CMOS sensor and the second one uses a high resolution (scientific) sCMOS sensor. This comparison is based on the interferometric response as a merit parameter of these sensors which is not a conventional procedure. Even when the current standard for image quality is on the signal to noise ratio calculations, an interferometric test to evaluate the fringe pattern visibility is equivalent to the contrast to noise ratio value. An out of plane digital holographic interferometer is used to test each camera once at the time with the same experimental conditions. The object under study is a metallically framed table with a Formica cover with an observable area of 1.1 m2. The sample is deformed by means of a controlled vibration induced by a tip ended linear step motor. Results from each camera are presented as the retrieved optical phase during the vibration. Finally, some conclusions based on the post processed images are presented suggesting a smoother optical phase obtained with the sCMOS camera.

  16. Calculation and analysis of the harmonic vibrational frequencies in molecules at extreme pressure: Methodology and diborane as a test case (United States)

    Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.


    We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.

  17. Design of a new adaptive fuzzy controller and its application to vibration control of a vehicle seat installed with an MR damper (United States)

    Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok


    This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.

  18. Graphical Tests for Power Comparison of Competing Designs. (United States)

    Hofmann, H; Follett, L; Majumder, M; Cook, D


    Lineups have been established as tools for visual testing similar to standard statistical inference tests, allowing us to evaluate the validity of graphical findings in an objective manner. In simulation studies lineups have been shown as being efficient: the power of visual tests is comparable to classical tests while being much less stringent in terms of distributional assumptions made. This makes lineups versatile, yet powerful, tools in situations where conditions for regular statistical tests are not or cannot be met. In this paper we introduce lineups as a tool for evaluating the power of competing graphical designs. We highlight some of the theoretical properties and then show results from two studies evaluating competing designs: both studies are designed to go to the limits of our perceptual abilities to highlight differences between designs. We use both accuracy and speed of evaluation as measures of a successful design. The first study compares the choice of coordinate system: polar versus cartesian coordinates. The results show strong support in favor of cartesian coordinates in finding fast and accurate answers to spotting patterns. The second study is aimed at finding shift differences between distributions. Both studies are motivated by data problems that we have recently encountered, and explore using simulated data to evaluate the plot designs under controlled conditions. Amazon Mechanical Turk (MTurk) is used to conduct the studies. The lineups provide an effective mechanism for objectively evaluating plot designs.

  19. The Danish SAR system: design and initial tests

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Christensen, Erik Lintz; Skou, Niels


    In January 1986, the design of a high-resolution airborne C -band synthetic aperture radar (SAR) started at the Electromagnetics Institute of the Technical University of Denmark. The initial system test flights took place in November and December 1989. The authors describe the design of the system...

  20. Designing and testing the representative samplers for sampling a ...

    African Journals Online (AJOL)

    establishing the optimum mesh of grind for the various ores, to achieve effective separation of the cobalt minerals from those of copper. This prompted the designing and testing of representative samplers for sampling the milling circuit at Nkana Concentrator. In the design of the samplers, use was made of the Gy's formula to ...

  1. Design, fabrication and testing of elliptical crystal bender for the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    design of the beam-line has been completed based on the working principle that a single crystal bent in ... In the present communication, the design, development and testing of an indigenous crys- tal bender has been .... Software simulation of crystal bending has been done by finite element modelling and analysis using ...

  2. Design, fabrication, testing and packaging of a silicon ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 38; Issue 2. Design, fabrication, testing and packaging of a silicon micromachined radio frequency microelectromechanical series (RF MEMS) switch. M S Giridhar Ashwini ... The design of the device is based on stiffness equations derived from first principles. Displacement of the actuator ...

  3. Design, Construction and Testing of a Dry Sand Sieving Machine ...

    African Journals Online (AJOL)

    This paper reports on the design, construction and Testing of a dry sand sieving machine. The sample to be sieved is uniformly graded. The coefficient of uniformity is 1.11, thus the machine design does not sieve larger particles such as gravel. The slip calculated is 36% which enabled the proper configuration of the V-belt.

  4. Design, construction and testing of a base driven static inverter ...

    African Journals Online (AJOL)

    Based on the active circuit of a 50Hz astable multivibrator, a base driven static inverter has been designed, constructed and tested. Design is able to convert small amounts of dc current to their amplified ac equivalents. A conversion of 12V dc input to the usual domestic range of 220-240V ac is also derivable from the ...

  5. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory


    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  6. The test-negative design for estimating influenza vaccine effectiveness. (United States)

    Jackson, Michael L; Nelson, Jennifer C


    The test-negative design has emerged in recent years as the preferred method for estimating influenza vaccine effectiveness (VE) in observational studies. However, the methodologic basis of this design has not been formally developed. In this paper we develop the rationale and underlying assumptions of the test-negative study. Under the test-negative design for influenza VE, study subjects are all persons who seek care for an acute respiratory illness (ARI). All subjects are tested for influenza infection. Influenza VE is estimated from the ratio of the odds of vaccination among subjects testing positive for influenza to the odds of vaccination among subjects testing negative. With the assumptions that (a) the distribution of non-influenza causes of ARI does not vary by influenza vaccination status, and (b) VE does not vary by health care-seeking behavior, the VE estimate from the sample can generalized to the full source population that gave rise to the study sample. Based on our derivation of this design, we show that test-negative studies of influenza VE can produce biased VE estimates if they include persons seeking care for ARI when influenza is not circulating or do not adjust for calendar time. The test-negative design is less susceptible to bias due to misclassification of infection and to confounding by health care-seeking behavior, relative to traditional case-control or cohort studies. The cost of the test-negative design is the additional, difficult-to-test assumptions that incidence of non-influenza respiratory infections is similar between vaccinated and unvaccinated groups within any stratum of care-seeking behavior, and that influenza VE does not vary across care-seeking strata. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A1 EOS Instrument, (S/N 202) Qualification Level Vibration Tests of August/September 1998, (S/O 565632, OC-417) Plus Addendum A (United States)

    Heffer, R.


    The purpose of this report is to present a qualification level vibration testing performed on the S/N 202, EOS AMSU-A1 Instrument was vibration tested to qualification levels per the Ref. 1 shop order. The instrument withstood the 8 g sine sweep test, the 7.5 Grms random vibration test, and the 18.75 g sine burst test in each of the three orthogonal axes. Some loss of transmissibility, however, is seen in the lower reflector after Z-axis random vibration. The test sequence was not without incidence. Failure of Channel 7 in the Limited Performance Test (LPT) performed after completion of the 1 st (X-axis) axis vibration sequence, required replacement of the DRO and subsequent re-testing of the instrument. The post-vibration comprehensive performance test (CPT) was successfully run after completion of the three axes of vibration with the replacement component installed in the instrument. Passing the CPT signified the successful completion of the S/N 202 A1 qualification vibration testing.

  8. Optimal testlet pool assembly for multistage testing designs

    NARCIS (Netherlands)

    Ariel, A.; Veldkamp, Bernard P.; Breithaupt, Krista


    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the

  9. The design of a postgraduate test of academic literacy ...

    African Journals Online (AJOL)

    As a consideration in the design of a test of academic literacy, the face validity of such a test is determined by its perceived suitability and usefulness in addressing the literacy requirements of specific academic contexts. This article focuses on one such a literacy context: that of postgraduate academic literacy at a South ...

  10. Design and Test Space Exploration of Transport-Triggered Architectures

    NARCIS (Netherlands)

    Zivkovic, V.; Tangelder, R.J.W.T.; Kerkhoff, Hans G.


    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The

  11. NASA reliability preferred practices for design and test (United States)


    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  12. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery Engineer’s Guidebook for Planning, Design and Troubleshooting

    CERN Document Server

    Dörfler, Peter; Coutu, André


    Since the 1970’s, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the inter­disciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects.   Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed  and quantitative data is provided on  normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitatio...

  13. 49 CFR 178.608 - Vibration standard. (United States)


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration standard. 178.608 Section 178.608... Testing of Non-bulk Packagings and Packages § 178.608 Vibration standard. (a) Each packaging must be capable of withstanding, without rupture or leakage, the vibration test procedure outlined in this section...


    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern


    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. As a result of the lower than expected performance of the MR damper noted last quarter, several additional tests were conducted. These dealt with possible causes of the lack of dynamic range observed in the testing: additional damping from the oil in the Belleville springs; changes in properties of the MR fluid; and, residual magnetization of the valve components. Of these, only the last was found to be significant. By using a laboratory demagnetization apparatus between runs, a dynamic range of 10:1 was achieved for the damper, more than adequate to produce the needed improvements in drilling. Additional modeling was also performed to identify a method of increasing the magnetic field in the damper. As a result of the above, several changes were made in the design. Additional circuitry was added to demagnetize the valve as the field is lowered. The valve was located to above the Belleville springs to reduce the load placed upon it and offer a greater range of materials for its construction. In addition, to further increase the field strength, the coils were relocated from the mandrel to the outer housing. At the end of the quarter, the redesign was complete and new parts were on order. The project is approximately three months behind schedule at this time.

  15. The Use of Test Method Characteristics in the Content Analysis and Design of EFL Proficiency Tests. (United States)

    Bachman, Lyle F.; And Others


    Discusses the value of content considerations in the design of language tests and the implications of the findings of various investigations of content analysis. The article argues that content analysis can be viewed as the application of a model of test design to a particular measurement instrument, using judgments of trained analysts. (26…

  16. Design, fabrication and testing of the Pegasus composite payload fairing (United States)

    Barth, James R.; Davis, Fred L.; Edwards, Colby W.; Gillit, C. B.; Itchkawich, Thomas J.

    Hercules has successfully designed, fabricated and tested a composite payload fairing for the Pegasus air-launched space booster. The design features include an aluminum honeycomb core with graphite/epoxy skins for the cylindrical and ogive sections of the fairing and a monocoque graphite/epoxy nose cap. The fairing is designed to hinge at the aft end and separate along two (2) axial joints. The structure is fabricated to nearly net shape using a unique process which includes co-curing the joints and honeycomb core to the graphite/epoxy skins in one operation. This process minimizes the amount of secondary machining and bonding operations required to achieve the final configuration. The payload fairing was tested by applying static and dynamic loads to the structure. Separation testing was also performed to verify system performance. Data obtained from the first operational flight indicate the payload fairing performed as designed and two satellites were successfully deployed.

  17. Clinical evaluation of hand-arm-vibration syndrome in shipyard workers: sensitivity and specificity as compared to Stockholm classification and vibrometry testing. (United States)

    Kent, D C; Allen, R; Bureau, P; Cherniack, M; Hans, J; Robinson, M


    The hand-arm-vibration syndrome (HAVS) is a complex entity composed of circulatory, sensory, and motor disturbances, as well as associated musculoskeletal components. This study was performed to find a diagnostic testing modality with sufficient sensitivity, specificity, and predictive value to be utilized as a screening test for this disorder in a working population. A full range of testing modalities was utilized in the shipyard medical department. In addition, a clinical diagnosis of vascular and sensorineural disease was established in the workers by a combination of plethysmography, vibrometry, two point discrimination, and monofilament testing in an independent occupational medicine clinic. No one test modality met the requirements for such a definitive diagnostic test. Rather, a range of modalities was required to reach any acceptable level of predictive value, with sufficient degrees of specificity and sensitivity.

  18. Consensus on Intermediate Scale Salt Field Test Design

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L; Mills, Melissa Marie; Matteo, Edward N


    This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.

  19. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall


    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  20. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling (United States)

    Xie, Qin; Andrews, Stephen


    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  1. Vibrational Diver (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef


    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  2. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data (United States)

    Vlahopoulos, Nickolas


    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  3. Design and Testing for a New Thermosyphon Irradiation Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) requires most materials and all fuel experiments to be placed in a pressure containment vessel to ensure that internal contaminants such as fission products cannot be released into the primary coolant. It also requires that all experiments be capable of withstanding various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. These requirements are intended to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant, and by reducing heat loads to the HFIR primary coolant, thus ensuring that no boiling can occur. A proposed design for materials irradiation would remove these limitations by providing the required primary containment with an internal cooling flow. This would allow for experiments to be irradiated without concern for coolant contamination (e.g., from cladding failure of advanced fuel pins) or for specimen heat load. This report describes a new materials irradiation experiment design that uses a thermosyphon cooling system to allow experimental materials direct access to a liquid coolant. The new design also increases the range of conditions that can be tested in HFIR. This design will provide a unique capability to validate the performance of current and advanced fuels and materials. Because of limited supporting data for this kind of irradiation vehicle, a test program was initiated to obtain operating data that can be used to (1) qualify the vehicle for operation in HFIR and (2) validate computer models used to perform design- and safety-basis calculations. This report also describes the test facility and experimental data, and it provides a comparison of the experimental data to computer simulations. A total of 51 tests have been completed: four tests with pure steam, 12 tests with argon, and 35 tests with helium. A total

  4. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas


    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  5. Vibration Durability Testing of Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion 18,650 Battery Cells


    Hooper, James Michael; Marco, James; Chouchelamane, Gael H.; Lyness, Christopher


    Electric vehicle (EV) manufacturers are employing cylindrical format cells in the construction of the vehicles’ battery systems. There is evidence to suggest that both the academic and industrial communities have evaluated cell degradation due to vibration and other forms of mechanical loading. The primary motivation is often the need to satisfy the minimum requirements for safety certification. However, there is limited research that quantifies the durability of the battery and in particular...

  6. Design of a test facility for probe calibration

    Directory of Open Access Journals (Sweden)

    Šimák Jan


    Full Text Available A possibility to easily calibrate probes for flow field measurements is always welcome. From this reason, a design of a test facility for probe calibration was made. The probes will be calibrated in a free jet of known properties, which is created by an exchangeable nozzle to cover a wide range of Mach numbers up to Mach 2. The most important is to create a homogeneous flow across the test section. This is accomplished by a precise design of the nozzles carried out by numerical tools. The convergent nozzle part is common for all subsonic flow regimes while the divergent part (forming a de Laval nozzle is suited for a specific supersonic Mach number. These parts are designed using the method of characteristics. Numerical simulations performed by a CFD code show a feasibility and quality of the proposed test facility.

  7. The design and manufacture of the catalyst test equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. H.; Song, I. T. [Korea Atomic Energy Research Institute, Taejeon (Korea)


    The object of this report is to design and manufacture of the catalyst test equipment for removing tritium(H3) included in heavy water for the heavy water reactor. The design conditions of the reactor with the test equipment are summarized as follows 1) Flow rate : 336 l/min. 2) Pressure : 1.15kg/cm{sup 2}. 3) Maximum Temperature : 80 deg C. The test equipment is composed of the water jacket reactor, water equilibrator, heaters, condensers, tanks and pumps. As well as, it is composed of the water, hydrogen, helium, vacuum, emergency operation and control systems. This report will be used important data for the design and manufacture of the equipment for removing tritium. 30 tabs. (Author)

  8. Proceedings of Design, Automation and Test in Europe (DATE07)

    DEFF Research Database (Denmark)

    Welcome to the DATE 07 Conference Proceedings. DATE combines the world’s leading electronic systems design conference and Europe's leading international exhibition for electronic design, automation and test, from system level hardware and software implementation right down to integrated circuit...... an international conference. DATE is now the world’s premier event in electronic system design. The submissions have been reviewed by the more than 600 members of the Technical Programme Committee. After a thorough review and selection process (with an average of 4.6 reviews per paper), finally 208 papers were......) to the integrated circuit level. In addition, for the third year a special embedded software track is offered to allow for the increasing importance of software in embedded systems. Compared with previous years, submissions in design, test and embedded software have grown significantly, showing a clear trend toward...

  9. Space Launch System, Core Stage, Structural Test Design and Implementation (United States)

    Shaughnessy, Ray


    As part of the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, engineers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama are working to design, develop and implement the SLS Core Stage structural testing. The SLS will have the capability to return humans to the Moon and beyond and its first launch is scheduled for December of 2017. The SLS Core Stage consist of five major elements; Forward Skirt, Liquid Oxygen (LOX) tank, Intertank (IT), Liquid Hydrogen (LH2) tank and the Engine Section (ES). Structural Test Articles (STA) for each of these elements are being designed and produced by Boeing at Michoud Assembly Facility located in New Orleans, La. The structural test for the Core Stage STAs (LH2, LOX, IT and ES) are to be conducted by the MSFC Test Laboratory. Additionally, the MSFC Test Laboratory manages the Structural Test Equipment (STE) design and development to support the STAs. It was decided early (April 2012) in the project life that the LH2 and LOX tank STAs would require new test stands and the Engine Section and Intertank would be tested in existing facilities. This decision impacted schedules immediately because the new facilities would require Construction of Facilities (C of F) funds that require congressional approval and long lead times. The Engine Section and Intertank structural test are to be conducted in existing facilities which will limit lead times required to support the first launch of SLS. With a SLS launch date of December, 2017 Boeing had a need date for testing to be complete by September of 2017 to support flight certification requirements. The test facilities were required to be ready by October of 2016 to support test article delivery. The race was on to get the stands ready before Test Article delivery and meet the test complete date of September 2017. This paper documents the past and current design and development phases and the supporting processes, tools, and

  10. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J


    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  11. Task based displays - rationale, design, user test and assessment

    Energy Technology Data Exchange (ETDEWEB)

    Foerdestroemmen, Nils


    The report summarizes the work that has been done on task-based displays within the Halden Reactor Project in the period 1998-2003. The development work on task-based displays was initiated in 1998, and the prototype design was reported in 1999. In 2001, four realised task displays were exposed to a user test, and the display design and user test results were reported in 2002. During 2003, the previous work was reviewed, summarised and assessed. The work presented in this report forms the basis for the future planned work on task-based displays. (Author)

  12. Design verification and cold-flow modeling test report

    Energy Technology Data Exchange (ETDEWEB)


    This report presents a compilation of the following three test reports prepared by TRW for Alaska Industrial Development and Export Authority (AIDEA) as part of the Healy Clean Coal Project, Phase 1 Design of the TRW Combustor and Auxiliary Systems, which is co-sponsored by the Department of Energy under the Clean Coal Technology 3 Program: (1) Design Verification Test Report, dated April 1993, (2) Combustor Cold Flow Model Report, dated August 28, 1992, (3) Coal Feed System Cold Flow Model Report, October 28, 1992. In this compilation, these three reports are included in one volume consisting of three parts, and TRW proprietary information has been excluded.

  13. Conceptual design study of a scyllac fusion test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I. (comp.)


    The report describes a conceptual design study of a fusion test reactor based on the Scyllac toroidal theta-pinch approach to fusion. It is not the first attempt to describe the physics and technology required for demonstrating scientific feasibility of the approach, but it is the most complete design in the sense that the physics necessary to achieve the device goals is extrapolated from experimentally tested MHD theories of toroidal systems,and it uses technological systems whose engineering performance has been carefully calculated to ensure that they meet the machine requirements.

  14. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, M J; Preache, M M


    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  15. Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haipeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cheng, Guangfeng [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Clemens, William [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Davis, G [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Macha, Kurt [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Overton, Roland [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Spell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)


    After the electromagnetic design and the mechanical design of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.

  16. Design of Pump as Turbine Experimental Test Facility

    Directory of Open Access Journals (Sweden)

    Zariatin D. L.


    Full Text Available This paper presents the design process of experimental test facility for pump as turbine hydropower system. Three design possibilities that related to the PAT condition of operation was developed and analyzed by using CFD Software. It is found that the First Variant with a straight flow to the PAT will produce higher velocity, which is needed to generate more rotation of the shaft generator, in order to generate more electric power. The strength of PAT construction was analyzed by using FEM software. It was found that the maximum stress is 6 MPa and can be concluded that the construction is appropriate to the design requirement.

  17. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI


    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  18. HyRAM Testing Strategy and Quality Design Elements.

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, John Thomas


    Strategy document and tentative schedule for testing of HyRAM, a software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. Because proposed and existing features in HyRAM that support testing are important factors in this discussion, relevant design considerations of HyRAM are also discussed. However, t his document does not cover all of HyRAM desig n, nor is the full HyRAM software development schedule included.

  19. Drive-train dynamics technology - State-of-the-art and design of a test facility for advanced development (United States)

    Badgley, R. H.; Fleming, D. P.; Smalley, A. J.


    A program for the development and verification of drive-train dynamic technology is described along with its basis and the results expected from it. A central feature of this program is a drive-train test facility designed for the testing and development of advanced drive-train components, including shaft systems, dampers, and couplings. Previous efforts in designing flexible dynamic drive-train systems are reviewed, and the present state of the art is briefly summarized. The design of the test facility is discussed with major attention given to the formulation of the test-rig concept, dynamic scaling of model shafts, and the specification of design parameters. Specific efforts envisioned for the test facility are briefly noted, including evaluations of supercritical test shafts, stability thresholds for various sources and types of instabilities that can exist in shaft systems, effects of structural flexibility on the dynamic performance of dampers, and methods for vibration control in two-level and three-level flexible shaft systems.

  20. Experimental analysis of thread movement in bolted connections due to vibrations (United States)

    Ramsey, G. ED; Jenkins, Robert C.


    This is the final report of research project NAS8-39131 #33 sponsored by NASA's George C. Marshall Space Flight Center (MSFC) and carried out by the Civil Engineering Department of Auburn University (Auburn, Alabama) and personnel of MSFC. The objective of this study was to identify the main design parameters contributing to the loosening of bolts due to vibration and to identify their relative importance and degree of contribution to bolt loosening. Vibration testing was conducted on a shaketable with a controlled-random input in the dynamic testing laboratory of the Structural Test Division of MSFC. Test specimens which contained one test bolt were vibrated for a fixed amount of time and a percentage of pre-load loss was measured. Each specimen tested implemented some combination of eleven design parameters as dictated by the design of experiment methodology employed. The eleven design parameters were: bolt size (diameter), lubrication on bolt, hole tolerance, initial pre-load, nut locking device, grip length, thread pitch, lubrication between mating materials, class of fit, joint configuration, and mass of configuration. These parameters were chosen for this experiment because they are believed to be the design parameters having the greatest impact on bolt loosening. Two values of each design parameter were used and each combination of parameters tested was subjected to two different directions of vibration and two different g-levels of vibration. One replication was made for each test to gain some indication of experimental error and repeatability and to give some degree of statistical credibility to the data, resulting in a total of 96 tests being performed. The results of the investigation indicated that nut locking devices, joint configuration, fastener size, and mass of configuration were significant in bolt loosening due to vibration. The results of this test can be utilized to further research the complex problem of bolt loosening due to vibration.

  1. Effect of shelf aging on vibration transmissibility of anti-vibration gloves. (United States)

    Shibata, Nobuyuki


    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 years of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves.

  2. Design Of Computer Based Test Using The Unified Modeling Language (United States)

    Tedyyana, Agus; Danuri; Lidyawati


    The Admission selection of Politeknik Negeri Bengkalis through interest and talent search (PMDK), Joint Selection of admission test for state Polytechnics (SB-UMPN) and Independent (UM-Polbeng) were conducted by using paper-based Test (PBT). Paper Based Test model has some weaknesses. They are wasting too much paper, the leaking of the questios to the public, and data manipulation of the test result. This reasearch was Aimed to create a Computer-based Test (CBT) models by using Unified Modeling Language (UML) the which consists of Use Case diagrams, Activity diagram and sequence diagrams. During the designing process of the application, it is important to pay attention on the process of giving the password for the test questions before they were shown through encryption and description process. RSA cryptography algorithm was used in this process. Then, the questions shown in the questions banks were randomized by using the Fisher-Yates Shuffle method. The network architecture used in Computer Based test application was a client-server network models and Local Area Network (LAN). The result of the design was the Computer Based Test application for admission to the selection of Politeknik Negeri Bengkalis.

  3. Adaptive transmission disequilibrium test for family trio design. (United States)

    Yuan, Min; Tian, Xin; Zheng, Gang; Yang, Yaning


    The transmission disequilibrium test (TDT) is a standard method to detect association using family trio design. It is optimal for an additive genetic model. Other TDT-type tests optimal for recessive and dominant models have also been developed. Association tests using family data, including the TDT-type statistics, have been unified to a class of more comprehensive and flexable family-based association tests (FBAT). TDT-type tests have high efficiency when the genetic model is known or correctly specified, but may lose power if the model is mis-specified. Hence tests that are robust to genetic model mis-specification yet efficient are preferred. Constrained likelihood ratio test (CLRT) and MAX-type test have been shown to be efficiency robust. In this paper we propose a new efficiency robust procedure, referred to as adaptive TDT (aTDT). It uses the Hardy-Weinberg disequilibrium coefficient to identify the potential genetic model underlying the data and then applies the TDT-type test (or FBAT for general applications) corresponding to the selected model. Simulation demonstrates that aTDT is efficiency robust to model mis-specifications and generally outperforms the MAX test and CLRT in terms of power. We also show that aTDT has power close to, but much more robust, than the optimal TDT-type test based on a single genetic model. Applications to real and simulated data from Genetic Analysis Workshop (GAW) illustrate the use of our adaptive TDT.

  4. Testing the ability of a proposed geotechnical based method to evaluate the liquefaction potential analysis subjected to earthquake vibrations (United States)

    Abbaszadeh Shahri, A.; Behzadafshar, K.; Esfandiyari, B.; Rajablou, R.


    During the earthquakes a number of earth dams have had severe damages or suffered major displacements as a result of liquefaction, thus modeling by computer codes can provide a reliable tool to predict the response of the dam foundation against earthquakes. These modeling can be used in the design of new dams or safety assessments of existing ones. In this paper, on base of the field and laboratory tests and by combination of several software packages a seismic geotechnical based analysis procedure is proposed and verified by comparison with computer model tests, field and laboratory experiences. Verification or validation of the analyses relies to ability of the applied computer codes. By use of Silakhor earthquake (2006, Ms 6.1) and in order to check the efficiency of the proposed framework, the procedure is applied to the Korzan earth dam of Iran which is located in Hamedan Province to analyze and estimate the liquefaction and safety factor. Design and development of a computer code by authors which named as “Abbas Converter” with graphical user interface which operates as logic connecter function that can computes and models the soil profiles is the critical point of this study and the results are confirm and proved the ability of the generated computer code on evaluation of soil behavior under the earthquake excitations. Also this code can make and render facilitate this study more than previous have done, and take over the encountered problem.

  5. Unbalance Compensation of a Full Scale Test Rig Designed for HTR-10GT: A Frequency-Domain Approach Based on Iterative Learning Control

    Directory of Open Access Journals (Sweden)

    Ying He


    Full Text Available Unbalance vibrations are crucial problems in heavy rotational machinery, especially for the systems with high operation speed, like turbine machinery. For the program of 10 MW High Temperature gas-cooled Reactor with direct Gas-Turbine cycle (HTR-10GT, the rated operation speed of the turbine system is 15000 RPM which is beyond the second bending frequency. In that case, even a small residual mass will lead to large unbalance vibrations. Thus, it is of great significance to study balancing methods for the system. As the turbine rotor is designed to be suspended by active magnetic bearings (AMBs, unbalance compensation could be achieved by adequate control strategies. In the paper, unbalance compensation for the Multi-Input and Multi-Output (MIMO active magnetic bearing (AMB system using frequency-domain iterative learning control (ILC is analyzed. Based on the analysis, an ILC controller for unbalance compensation of the full scale test rig, which is designed for the rotor and AMBs in HTR-10GT, is designed. Simulation results are reported which show the efficiency of the ILC controller for attenuating the unbalance vibration of the full scale test rig. This research can offer valuable design criterion for unbalance compensation of the turbine machinery in HTR-10GT.

  6. In-Space Engine (ISE-100) Development - Design Verification Test (United States)

    Trinh, Huu P.; Popp, Chris; Bullard, Brad


    In the past decade, NASA has formulated science mission concepts with an anticipation of landing spacecraft on the lunar surface, meteoroids, and other planets. Advancing thruster technology for spacecraft propulsion systems has been considered for maximizing science payload. Starting in 2010, development of In-Space Engine (designated as ISE-100) has been carried out. ISE-100 thruster is designed based on heritage Missile Defense Agency (MDA) technology aimed for a lightweight and efficient system in terms volume and packaging. It runs with a hypergolic bi-propellant system: MON-25 (nitrogen tetroxide, N2O4, with 25% of nitric oxide, NO) and MMH (monomethylhydrazine, CH6N2) for NASA spacecraft applications. The utilization of this propellant system will provide a propulsion system capable of operating at wide range of temperatures, from 50 C (122 F) down to -30 C (-22 F) to drastically reduce heater power. The thruster is designed to deliver 100 lb(sub f) of thrust with the capability of a pulse mode operation for a wide range of mission duty cycles (MDCs). Two thrusters were fabricated. As part of the engine development, this test campaign is dedicated for the design verification of the thruster. This presentation will report the efforts of the design verification hot-fire test program of the ISE-100 thruster in collaboration between NASA Marshall Space Flight Center (MSFC) and Aerojet Rocketdyne (AR) test teams. The hot-fire tests were conducted at Advance Mobile Propulsion Test (AMPT) facility in Durango, Colorado, from May 13 to June 10, 2016. This presentation will also provide a summary of key points from the test results.

  7. Design and Testing of Improved Spacesuit Shielding Components

    Energy Technology Data Exchange (ETDEWEB)

    Ware, J.; Ferl, J.; Wilson, J.W.; Clowdsley, M.S.; DeAngelis, G.; Tweed, J.; Zeitlin, C.J.


    In prior studies of the current Shuttle Spacesuit (SSA), where basic fabric lay-ups were tested for shielding capabilities, it was found that the fabric portions of the suit give far less protection than previously estimated due to porosity and non-uniformity of fabric and LCVG components. In addition, overall material transmission properties were less than optimum. A number of alternate approaches are being tested to provide more uniform coverage and to use more efficient materials. We will discuss in this paper, recent testing of new material lay-ups/configurations for possible use in future spacesuit designs.

  8. Design-for-test and test optimization techniques for TSV-based 3D stacked ICs

    CERN Document Server

    Noia, Brandon


    This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects.  The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain.  Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization.  Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.   • Provides a comprehensive guide to the challenges and solutions for the testing of TSV-based 3D stacked ICs; • Includes in-depth explanation of key test and design-for-test technologies, emerging standards, and test- architecture and test-schedule optimizations; • Encompasses all aspects of test as related to 3D ICs, including pre-bond and post-bond test as well as the test optimizatio...

  9. Mathematical-programming approaches to test item pool design

    NARCIS (Netherlands)

    Veldkamp, Bernard P.; van der Linden, Willem J.; Ariel, A.


    This paper presents an approach to item pool design that has the potential to improve on the quality of current item pools in educational and psychological testing andhence to increase both measurement precision and validity. The approach consists of the application of mathematical programming

  10. Engineering Design, construction and testing of an optical device for ...

    African Journals Online (AJOL)

    This study reports the design, construction and testing of an optical device to determine the fertility of poultry egg at early age. The device consists of optical components such as condenser lens, objective lens, eyepiece lens and a source of light, all encased in a wooden frame. It has a total length of about 1m and produces ...

  11. Design of a quadrotor flight test stand for system identification

    CSIR Research Space (South Africa)

    Beharie, MM


    Full Text Available This paper presents the design, development and construction of a flight test stand for a quadrotor UAV. As opposed to alternate forms of UAV, the power plant in the case of the quadrotor serves a dual purpose of control and propulsion. Since...

  12. Designing a test of neutrinos as dark matter candidates

    CERN Multimedia

    Marquit, Mirandu


    One of the biggest mysteries of the universe deals with questions of dark matter. There are several experiments and models being designed all over the world to try and determine what would make good dark matter candidates. And with the Large Hadron Collider (LHC) at CERN in Switzerland, some of these experiments may be ready for testing.

  13. Continuous-Flow Biochips: Technology, Physical Design Methods and Testing

    DEFF Research Database (Denmark)

    Pop, Paul; Araci, Ismail Emre; Chakrabarty, Krishnendu


    This article is a tutorial on continuous-flow biochips where the basic building blocks are microchannels, and microvalves, and by combining them, more complex units such as mixers, switches, and multiplexers can be built. It also presents the state of the art in flow-based biochip technology and ...... and emerging research challenges in the areas of physical design and testing techniques....

  14. The Parameters Optimizing Design of Double Suspension Arm Torsion Bar in the Electric Sight-Seeing Car by Random Vibration Analyzing Method

    Directory of Open Access Journals (Sweden)

    Shui-Ting Zhou


    Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.

  15. NEPSTP Propulsion Module Design and Flight Test Plans (United States)

    Herbert, Gregg A.; Day, Michael


    The Nuclear Electric Propulsion Space Test Program (NEPSTP) is a Ballistic Missile Defense Organization (BMDO) sponsored technology demonstration of a Russian space nuclear reactor and an international complement of xenon electric thrusters. The mission is described along with some of the design accomplishments to date. The spacecraft description includes discussions on the spacecraft bus and the propulsion module which supports the experimental electric thrusters. A discussion on the basic structural, thermal and electronic designs of the propulsion module is included. The baseline thruster set is presented highlighting the Russian, U.S. and UK participation. Ground and flight test plans for the electric thrusters are described and several of the key thruster/spacecraft integration and operational issues are addressed. The NEPSTP reached a preliminary design level in all significant areas in 1993. The unique opportunities for scientific and engineering demonstration of EP technologies and for international collaboration on a major space program are elaborated.

  16. Design of a Hyperbaric Chamber for Pressure Testing

    Directory of Open Access Journals (Sweden)

    Mohamad Sazali Shahmir Fikhri bin


    Full Text Available A hyperbaric chamber is an application of a pressure vessel to test the integrity of components and equipments subjected to high pressure. The chamber comprises of several main parts such as a shell, heads, instrumentation attachments, threaded fasteners and support. This paper describes the design of hyperbaric chamber for pressure testing that compiles to the ASME Boiler and Pressure Vessel code. The design approach adopted is the “design by formula” method. A structural analysis of the hyperbaric chamber with a cylindrical shell and a vertical orientation, based on an operating pressure of 34.5 MPa, was done. The analysis of the stress distribution shows that the normalized principal stresses acting on the chamber are within the yield envelop based on the maximum distortional energy criteria.

  17. Runtime reconfiguration in networked embedded systems design and testing practices

    CERN Document Server

    Exarchakos, George


    This book focuses on the design and testing of large-scale, distributed signal processing systems, with a special emphasis on systems architecture, tooling and best practices. Architecture modeling, model checking, model-based evaluation and model-based design optimization occupy central roles. Target systems with resource constraints on processing, communication or energy supply require non-trivial methodologies to model their non-functional requirements, such as timeliness, robustness, lifetime and “evolution” capacity. Besides the theoretical foundations of the methodology, an engineering process and toolchain are described. Real-world cases illustrate the theory and practice tested by the authors in the course of the European project ARTEMIS DEMANES. The book can be used as a “cookbook” for designers and practitioners working with complex embedded systems like sensor networks for the structural integrity monitoring of steel bridges, and distributed micro-climate control systems for greenhouses and...

  18. RTOL: design and implementation of an network equipment testing tool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.Y.; Kim, H.J.; Kim, B.S.; Park, K.H.; An, S.S [Korea University, Seoul (Korea, Republic of); Choi, H.S.; Yu, S.H. [Samsung Electronics, Suwon (Korea, Republic of)


    As the infrastructure of information communication network becomes larger and more complicated, many network equipment are being developed. To verify the reliability of such equipment, many test methods have been proposed. But those require a lot of cost and efforts. In this paper, we designed and implemented a test tool, called RTOL(Router Testing command Language system), to verify the functions of network equipment, especially router. RTOL can be used to test OSPF, Appletalk, DecNet, as well as IP and supports the functions of SNMP manager. By using the virtual router functions of RTOL, we can operate many virtual routers with only one router. Finally, we present test results of specific routers by using RTOL. (author). 17 refs., 8 figs., 5 tabs.

  19. Canadian Health Measures Survey pre-test: design, methods, results. (United States)

    Tremblay, Mark; Langlois, Renée; Bryan, Shirley; Esliger, Dale; Patterson, Julienne


    The Canadian Health Measures Survey (CHMS) pre-test was conducted to provide information about the challenges and costs associated with administering a physical health measures survey in Canada. To achieve the specific objectives of the pre-test, protocols were developed and tested, and methods for household interviewing and clinic testing were designed and revised. The cost, logistics and suitability of using fixed sites for the CHMS were assessed. Although data collection, transfer and storage procedures are complex, the pre-test experience confirmed Statistics Canada's ability to conduct a direct health measures survey and the willingness of Canadians to participate in such a health survey. Many operational and logistical procedures worked well and, with minor modifications, are being employed in the main survey. Fixed sites were problematic, and survey costs were higher than expected.

  20. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.


    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  1. Tritium Systems Test Assembly: design for major device fabrication review

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.L.; Sherman, R.H.


    This document has been prepared for the Major Device Fabrication Review for the Tritium Systems Test Assembly (TSTA). The TSTA is dedicated to the development, demonstration, and interfacing of technologies related to the deuterium-tritium fuel cycle for fusion reactor systems. The principal objectives for TSTA are: (a) demonstrate the fuel cycle for fusion reactor systems; (b) develop test and qualify equipment for tritium service in the fusion program; (c) develop and test environmental and personnel protective systems; (d) evaluate long-term reliability of components; (e) demonstrate long-term safe handling of tritium with no major releases or incidents; and (f) investigate and evaluate the response of the fuel cycle and environmental packages to normal, off-normal, and emergency situations. This document presents the current status of a conceptual design and cost estimate for TSTA. The total cost to design, construct, and operate TSTA through FY-1981 is estimated to be approximately $12.2 M.

  2. Documentation of Stainless Steel Lithium Circuit Test Section Design. Suppl (United States)

    Godfroy, Thomas J. (Compiler); Martin, James J.


    The Early Flight Fission-Test Facilities (EFF-TF) team was tasked by Naval Reactors Prime Contract Team (NRPCT) to design, fabricate, and test an actively pumped lithium (Li) flow circuit. This Li circuit takes advantage of work in progress at the EFF TF on a stainless steel sodium/potassium (NaK) circuit. The effort involved modifying the original stainless steel NaK circuit such that it could be operated with Li in place of NaK. This new design considered freeze/thaw issues and required the addition of an expansion tank and expansion/extrusion volumes in the circuit plumbing. Instrumentation has been specified for Li and circuit heaters have been placed throughout the design to ensure adequate operational temperatures and no uncontrolled freezing of the Li. All major components have been designed and fabricated prior to circuit redesign for Li and were not modified. Basic circuit components include: reactor segment, Li to gas heat exchanger, electromagnetic liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. The reactor segment, based on a Los Alamos National Laboratory 100-kW design study with 120 fuel pins, is the only prototypic component in the circuit. However, due to earlier funding constraints, a 37-pin partial-array of the core, including the central three rings of fuel pins (pin and flow path dimensions are the same as those in the full design), was selected for fabrication and test. This Technical Publication summarizes the design and integration of the pumped liquid metal Li flow circuit as of May 1, 2005. This supplement contains drawings, analysis, and calculations

  3. Performance and Safety Tests on Samsung 18650 Li-ion Cells: Two Cell Designs (United States)

    Deng, Yi; Jeevarajan, Judith; Rehm, Raymond; Bragg, Bobby; Zhang, Wenlin


    In order to meet the applications for space shuttle in future, two types of Samsung cells, with capacity 1800 mAh and 2000 mAh, have been investigated. The studies focused on: (1) Performance tests: completed 250 cycles at various combinations of charge/discharge C rates and discharge capacity measurements at various temperatures; and (2) Safety tests: overcharge and overdischarge, heat abuse, short circuit, internal and external short, and vibration, vacuum, and drop tests

  4. Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test (United States)

    Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi


    An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.

  5. Precision measurements and test of molecular theory in highly-excited vibrational states of H$_2$ $(v=11)$

    CERN Document Server

    Trivikram, T Madhu; Wcisło, P; Ubachs, W; Salumbides, E J


    Accurate $EF{}^1\\Sigma^+_g-X{}^1\\Sigma^+_g$ transition energies in molecular hydrogen were determined for transitions originating from levels with highly-excited vibrational quantum number, $v=11$, in the ground electronic state. Doppler-free two-photon spectroscopy was applied on vibrationally excited H$_2^*$, produced via the photodissociation of H$_2$S, yielding transition frequencies with accuracies of $45$ MHz or $0.0015$ cm$^{-1}$. An important improvement is the enhanced detection efficiency by resonant excitation to autoionizing $7p\\pi$ electronic Rydberg states, resulting in narrow transitions due to reduced ac-Stark effects. Using known $EF$ level energies, the level energies of $X(v=11, J=1,3-5)$ states are derived with accuracies of typically 0.002 cm$^{-1}$. These experimental values are in excellent agreement with, and are more accurate than the results obtained from the most advanced ab initio molecular theory calculations including relativistic and QED contributions.

  6. A new design of a test platform for testing multiple partial discharge sources

    NARCIS (Netherlands)

    Rodrigo Mor, A. R.; Castro Heredia, L.C.; Harmsen, Daniel A.; Muñoz Muñoz, F.A.

    Partial discharge (PD) measurements are an effective tool for insulation assessment of high-voltage (HV) equipment widely used in both HV laboratories and in field tests. This paper presents the design of a test platform for electrical detection of partial discharges that contribute to the

  7. Design and Build an Adapter for Hearing Protector Test

    Directory of Open Access Journals (Sweden)

    Rostam Golmohammadi


    Full Text Available Introduction: To determine the effectiveness of hearing protective devices that lack the technical information are one of the major challenges of occupational health experts to judge the impact of this exposure on reducing the level of occupational exposure to noise. The aim of this study was to design a built a hearing test adapter and expriment it to determine the reduction rate of earmuffs and earplugs. Methods: Technical information in real environments and glass industries were Hamadan kitchen garden and guards to ensure exceptional performance test results were compared with computational methods. Results: The results of the testing of Personal hearing protection compared with the results in real industry environment and octave-band method, have shown good regrassions average operating transmission losses. Results showed that the average noise reduction between measured and calculations method for earmuffs 9.3, 8.8 dB and 9.3, 11.2 dB for earplugs respectively. Comparison of the tests, did not show significant differences between the results in tow methods (P>0.05. Conclusion: The results of the testing designed Adaptor for some hearing protectors showed that the valid tool for used to reduction rate teste of earmuffs and earplugs

  8. Space shuttle orbiter windshield system design and test (United States)

    Hayashida, K.; Suppanz, M. J.


    The development and testing of primary structural elements that are necessary to design a windshield system for the space shuttle orbiter are summarized. The elements include the outer (heat shield) panes, the inner pressure panes, the seals for both panes, and components of both window frames. One test article representing a pressure pane, including frames and seals, was tested under two sets of conditions. One set represented 100 mission cycles with temperature and pressure typical of those exerted on the innermost pane of the three-pane window system, and the second set represented 100 mission cycles with temperature and pressure typical of those exerted on a middle pane. A second test article representing an outer (heat sheild) pane was tested to conditions of 120 entry cycles, which equates to 100 entry cycles plus sufficient fatigue on the pane to account for 100 boost cycles. All elements of the design survived the test conditions in good condition. Window system for the shuttle orbiter vehicle.

  9. Design of Refractory Metal Life Test Heat Pipe and Calorimeter (United States)

    Martin, J. J.; Reid, R. S.; Bragg-Sitton, S. M.


    Heat pipe life tests have seldom been conducted on a systematic basis. Typically, one or more heat pipes are built and tested for an extended period at a single temperature with simple condenser loading. Results are often reported describing the wall material, working fluid, test temperature, test duration, and occasionally the nature of any failure. Important information such as design details, processing procedures, material assay, power throughput, and radial power density are usually not mentioned. We propose to develop methods to generate carefully controlled data that conclusively establish heat pipe operating life with material-fluid combinations capable of extended operation. The test approach detailed in this Technical Publication will use 16 Mo-44.5%Re alloy/sodium heat pipe units that have an approximate12-in length and 5/8-in diameter. Two specific test series have been identified: (1) Long-term corrosion rates based on ASTM-G-68-80 (G-series) and (2) corrosion trends in a cross-correlation sequence at various temperatures and mass fluences based on a Fisher multifactor design (F-series). Evaluation of the heat pipe hardware will be performed in test chambers purged with an inert purified gas (helium or helium/argon mixture) at low pressure (10-100 torr) to provide thermal coupling between the heat pipe condenser and calorimeter. The final pressure will be selected to minimize the potential for voltage breakdown between the heat pipe and radio frequency (RF) induction coil (RF heating is currently the planned method of powering the heat pipes). The proposed calorimeter is constructed from a copper alloy and relies on a laminar flow water-coolant channel design to absorb and transport energy

  10. Magnetic circuit modifications in resonant vibration harvesters (United States)

    Szabo, Zoltan; Fiala, Pavel; Dohnal, Premysl


    The paper discusses the conclusions obtained from a research centered on a vibration-powered milli- or micro generator (MG) operating as a harvester to yield the maximum amount of energy transferred by the vibration of an independent system. The investigation expands on the results proposed within papers that theoretically define the properties characterizing the basic configurations of a generator based on applied Faraday's law of induction. We compared two basic principles of circuit closing in a magnetic circuit that, fully or partially, utilizes a ferromagnetic material, and a large number of generator design solutions were examined and tested. In the given context, the article brings a compact survey of the rules facilitating energy transformation and the designing of harvesters.

  11. Vibrating minds

    CERN Document Server


    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  12. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)


    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  13. The J-2X Oxidizer Turbopump - Design, Development, and Test (United States)

    Brozowski, Laura A.; Beatty, D. Preston; Shinguchi, Brian H.; Marsh, Matthew W.


    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the Design, Development, Test, and Evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety-four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine which was a design upgrade of the flight proven J-2 engine used to put American astronauts on the moon. This paper will discuss the design trades and analyses performed to achieve the required uprated Oxidizer Turbopump performance; structural margins and rotordynamic margins; incorporate updated materials and fabrication capability; and reflect lessons learned from legacy and existing Liquid Rocket Propulsion Engine turbomachinery. These engineering design, analysis, fabrication and assembly activities support the Oxidizer Turbopump readiness for J-2X engine test in 2011.

  14. A statistical design for testing apomictic diversification through linkage analysis. (United States)

    Zeng, Yanru; Hou, Wei; Song, Shuang; Feng, Sisi; Shen, Lin; Xia, Guohua; Wu, Rongling


    The capacity of apomixis to generate maternal clones through seed reproduction has made it a useful characteristic for the fixation of heterosis in plant breeding. It has been observed that apomixis displays pronounced intra- and interspecific diversification, but the genetic mechanisms underlying this diversification remains elusive, obstructing the exploitation of this phenomenon in practical breeding programs. By capitalizing on molecular information in mapping populations, we describe and assess a statistical design that deploys linkage analysis to estimate and test the pattern and extent of apomictic differences at various levels from genotypes to species. The design is based on two reciprocal crosses between two individuals each chosen from a hermaphrodite or monoecious species. A multinomial distribution likelihood is constructed by combining marker information from two crosses. The EM algorithm is implemented to estimate the rate of apomixis and test its difference between two plant populations or species as the parents. The design is validated by computer simulation. A real data analysis of two reciprocal crosses between hickory (Carya cathayensis) and pecan (C. illinoensis) demonstrates the utilization and usefulness of the design in practice. The design provides a tool to address fundamental and applied questions related to the evolution and breeding of apomixis.

  15. Journal: Efficient Hydrologic Tracer-Test Design for Tracer ... (United States)

    Hydrological tracer testing is the most reliable diagnostic technique available for the determination of basic hydraulic and geometric parameters necessary for establishing operative solute-transport processes. Tracer-test design can be difficult because of a lack of prior knowledge of the basic hydraulic and geometric parameters desired and the appropriate tracer mass to release. A new efficient hydrologic tracer-test design (EHTD) methodology has been developed to facilitate the design of tracer tests by root determination of the one-dimensional advection-dispersion equation (ADE) using a preset average tracer concentration which provides a theoretical basis for an estimate of necessary tracer mass. The method uses basic measured field parameters (e.g., discharge, distance, cross-sectional area) that are combined in functional relatipnships that descrive solute-transport processes related to flow velocity and time of travel. These initial estimates for time of travel and velocity are then applied to a hypothetical continuous stirred tank reactor (CSTR) as an analog for the hydrological-flow system to develop initial estimates for tracer concentration, tracer mass, and axial dispersion. Application of the predicted tracer mass with the hydraulic and geometric parameters in the ADE allows for an approximation of initial sample-collection time and subsequent sample-collection frequency where a maximum of 65 samples were determined to be necessary for descri

  16. Vibration Analysis of a Residential Building

    Directory of Open Access Journals (Sweden)

    Sampaio Regina Augusta


    Full Text Available The aim of this paper is to present the results of a study regarding vibration problems in a 17 storey residential building during pile driving in its vicinity. The structural design of the building was checked according to the Brazilian standards NBR6118 and NBR6123, and using commercial finite element software. An experimental analysis was also carried out using low frequency piezo-accelerometers attached to the building structure. Structure vibrations were recorded under ambient conditions. Four monitoring tests were performed on different days. The objective of the first monitoring test was an experimental modal analysis. To obtain de modal parameters, data was processed in the commercial software ARTEMIS employing two methods: the Stochastic Subspace Identification and the Frequency Domain Decomposition. Human comfort was investigated considering the International Standard ISO 2631. The Portuguese standard, NP2074, was also used as a reference, since it aims to limit the adverse effects of vibrations in structures caused by pile driving in the vicinity of the structure. The carried out experimental tests have shown that, according to ISO2301, the measure vibration levels are above the acceptance limits. However, velocity peaks are below the limits established by NP2074. It was concluded that, although the structure has adequate capacity to resist internal forces according to normative criteria, it has low horizontal stiffness, which could be verified by observing the vibration frequencies and mode shapes obtained with the finite element models, and its similarity with the experimental results. Thus, the analyses indicate the occurrence of discomfort by the residents.

  17. Analysis of potential helicopter vibration reduction concepts (United States)

    Landgrebe, A. J.; Davis, M. W.


    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  18. System design description for GCFR-core flow test loop

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, W.R.; Grindell, A.G.


    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  19. Design and Test of Portable Hyperspectral Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Chunbo Zou


    Full Text Available We design and implement a portable hyperspectral imaging spectrometer, which has high spectral resolution, high spatial resolution, small volume, and low weight. The flight test has been conducted, and the hyperspectral images are acquired successfully. To achieve high performance, small volume, and regular appearance, an improved Dyson structure is designed and used in the hyperspectral imaging spectrometer. The hyperspectral imaging spectrometer is suitable for the small platform such as CubeSat and UAV (unmanned aerial vehicle, and it is also convenient to use for hyperspectral imaging acquiring in the laboratory and the field.

  20. Custom Unit Pump Design and Testing for the EVA PLSS (United States)

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis


    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the pre-flight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion , and restart capability under both ambient and vacuum conditions. The pump operated between 40 and 240 lbm/hr flowrate, 35 to 100 F