WorldWideScience

Sample records for vibration sensing device

  1. Non-linear optical crystal vibration sensing device

    Energy Technology Data Exchange (ETDEWEB)

    Kalibjian, R.

    1992-12-31

    The report describes a non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam . The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal.

  2. Non-linear optical crystal vibration sensing device

    Science.gov (United States)

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  3. Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206...DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Vibrational Sensing in Marine Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  4. Occupant traffic estimation through structural vibration sensing

    Science.gov (United States)

    Pan, Shijia; Mirshekari, Mostafa; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The number of people passing through different indoor areas is useful in various smart structure applications, including occupancy-based building energy/space management, marketing research, security, etc. Existing approaches to estimate occupant traffic include vision-, sound-, and radio-based (mobile) sensing methods, which have placement limitations (e.g., requirement of line-of-sight, quiet environment, carrying a device all the time). Such limitations make these direct sensing approaches difficult to deploy and maintain. An indirect approach using geophones to measure floor vibration induced by footsteps can be utilized. However, the main challenge lies in distinguishing multiple simultaneous walkers by developing features that can effectively represent the number of mixed signals and characterize the selected features under different traffic conditions. This paper presents a method to monitor multiple persons. Once the vibration signals are obtained, features are extracted to describe the overlapping vibration signals induced by multiple footsteps, which are used for occupancy traffic estimation. In particular, we focus on analysis of the efficiency and limitations of the four selected key features when used for estimating various traffic conditions. We characterize these features with signals collected from controlled impulse load tests as well as from multiple people walking through a real-world sensing area. In our experiments, the system achieves the mean estimation error of +/-0.2 people for different occupant traffic conditions (from one to four) using k-nearest neighbor classifier.

  5. A close inspection and vibration sensing aerial robot for steel structures with an EPM-based landing device

    Science.gov (United States)

    Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako

    2017-04-01

    This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.

  6. Electrical Sensing Devices.

    Science.gov (United States)

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This unit of instruction on electrical sensing devices is designed especially for use with freshman vocational agriculture students. A unit plan discusses the general aims and goals, lesson titles, student and teacher activities, and references. The unit consists of four lessons. A lesson plan for each lesson provides these components: need;…

  7. Carbon for sensing devices

    CERN Document Server

    Tagliaferro, Alberto

    2015-01-01

    This book reveals why carbon is playing such an increasingly prominent role as a sensing material. The various steps that transform a raw material in a sensing device are thoroughly presented and critically discussed.  The authors deal with all aspects of carbon-based sensors, starting from the various hybridization and allotropes of carbon, with specific focus on micro and nanosized carbons (e.g., carbon nanotubes, graphene) and their growth processes. The discussion then moves to the role of functionalization and the different routes to achieve it. Finally, a number of sensing applications in various fields are presented, highlighting the connection with the basic properties of the various carbon allotropes.  Readers will benefit from this book’s bottom-up approach, which starts from the local bonding in carbon solids and ends with sensing applications, linking the local hybridization of carbon atoms and its modification by functionalization to specific device performance. This book is a must-have in th...

  8. Remote optical stethoscope and optomyography sensing device

    Science.gov (United States)

    Golberg, Mark; Polani, Sagi; Ozana, Nisan; Beiderman, Yevgeny; Garcia, Javier; Ruiz-Rivas Onses, Joaquin; Sanz Sabater, Martin; Shatsky, Max; Zalevsky, Zeev

    2017-02-01

    In this paper we present the usage of photonic remote laser based device for sensing nano-vibrations for detection of muscle contraction and fatigue, eye movements and in-vivo estimation of glucose concentration. The same concept is also used to realize a remote optical stethoscope. The advantage of doing the measurements from a distance is in preventing passage of infections as in the case of optical stethoscope or in the capability to monitor e.g. sleep quality without disturbing the patient. The remote monitoring of glucose concentration in the blood stream and the capability to perform opto-myography for the Messer muscles (chewing) is very useful for nutrition and weight control. The optical configuration for sensing the nano-vibrations is based upon analyzing the statistics of the secondary speckle patterns reflected from various tissues along the body of the subjects. Experimental results present the preliminary capability of the proposed configuration for the above mentioned applications.

  9. Emitted vibration measurement device and method

    Science.gov (United States)

    Gisler, G. L.

    1986-10-01

    This invention is directed to a method and apparatus for measuring emitted vibrational forces produced by a reaction wheel assembly due to imbalances, misalignment, bearing defects and the like. The apparatus includes a low mass carriage supported on a large mass base. The carriage is in the form of an octagonal frame having an opening which is adapted for receiving the reaction wheel assembly supported thereon by means of a mounting ring. The carriage is supported on the base by means of air bearings which support the carriage in a generally frictionless manner when supplied with compressed air from a source. A plurality of carriage brackets and a plurality of base blocks provided for physical coupling of the base and carriage. The sensing axes of the load cells are arranged generally parallel to the base and connected between the base and carriage such that all of the vibrational forces emitted by the reaction wheel assembly are effectively transmitted through the sensing axes of the load cells. In this manner, a highly reliable and accurate measurment of the vibrational forces of the reaction wheel assembly can be had. The output signals from the load cells are subjected to a dynamical analyzer which analyzes and identifies the rotor and spin bearing components which are causing the vibrational forces.

  10. Liquid-level sensing device

    Science.gov (United States)

    Goldfuss, G.T.

    1975-09-16

    This invention relates to a device for sensing the level of a liquid while preventing the deposition and accumulation of materials on the exterior surfaces thereof. Two dissimilar metal wires are enclosed within an electrical insulating material, the wires being joined together at one end to form a thermocouple junction outside the insulating material. Heating means is disposed within the electrical insulating material and maintains the device at a temperature substantially greater than that of the environment surrounding the device, the heating means being electrically insulated from the two dissimilar thermocouple wires. In addition, a metal sheath surrounds and contacts both the electrical insulating material and the thermocouple junction. Electrical connections are provided for connecting the heating means with a power source and for connecting the thermocouple wires with a device for sensing the electrical potential across the thermocouple junction. (auth)

  11. Device for side induction sensing

    Energy Technology Data Exchange (ETDEWEB)

    Bilibin, S.I.; Byalyy, Yu.V.; Malyshev, D.A.; Orlov, V.N.; Ovchinnikov, A.Ye.; Plyusnin, N.I.

    1982-01-01

    The device can be used to determine geophysical parameters of the beds at the zone of penetration of the drilling mud filtrate. Improvement in information content of sensing is attained by increasing the quantity of induction probes formed by the coils, and improvement in sensing accuracy by conducting measurements on one fixed part with time separation of the signals from different induction probes. The system of separation of the measurable signals is done in the form of a group of commutators and a block of cyclic control of commutation. The controlling outlets of it are connected to the controllable inlets of the commutators and the inlet of the remote measurement system for transmission of information to the surface.

  12. Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.

    Science.gov (United States)

    Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda

    2017-04-13

    Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.

  13. VIBRATION SENSORS AND MICROELECTROMECHANICAL SYSTEM FOR MOBILE DEVICES SUCH AS ANALOGS, FOR EVALUATION OF VIBRATION OF ROTARY MACHINES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The paper carried out a comparison of vibration sensors used to measure the vibration condition units with gas turbine engines, with motion sensors, microelectromechanical systems used in modern mobile devices (for example, devices on the platform "Android". It provides opinions on the possibility of assessment of vibration, using sensors of mobile devices.

  14. AASERT Supplement to Vibrational Sensing in Marine Invertebrates

    Science.gov (United States)

    1997-09-30

    Invertebrates 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...VIBRATIONAL SENSING IN MARINE INVERTEBRATES Peter A. Jumars School of Oceanography University of Washington Box 357940 Seattle, WA 98195-7940 (206) 543

  15. Wireless Module for Sensing Superficial Vibrations of Soils

    Directory of Open Access Journals (Sweden)

    Marlon R. Fulla

    2013-11-01

    Full Text Available In the present work, the feasibility of implementing the XBee technology in wireless accelerometric sensors (WAS development for sensing of elastic waves on soils surface is analyzed. The incidence of distance and obstacles between a coordinator and end-device pair in their radio link by examining the number of packets received successfully was verified. Additionally, it was investigated the influence of the transmission rate over the sampling frequency of signals associated to mechanical vibrations from a testing ground by measuring the effective sampling periods of the "A / D Conversion - Transmission" process. The data reception errors introduced by the channel attenuation and the presence of obstacles, impose severe restrictions on the maximum allowable distance between the communication modules. The transmission rate features provided by XBee technology in association with the A / D time sampling of the microcontroller, allow to carry out recordings to a maximum sampling frequency of 1 kHz , useful for real-time applications where seismic signals are into the spectral range 0 to 500 Hz. In order to increase the sampling frequency of the sensor for prospection applications with signals with bandwidths greater than 500 Hz , it was successfully tested a prototype that uses a fast external memory for storing data, which significantly improves the sampling signal allowing to retake XBee technology due to its excellent low consumption features.

  16. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  17. Gas sensing with acoustic devices

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.J.; Frye, G.C. [Sandia National Labs., Albuquerque, NM (United States); Spates, J.J. [Ktech Corp., Albuquerque, NM (United States); Butler, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    A survey is made of acoustic devices that are suitable as gas and vapor sensors. This survey focuses on attributes such as operating frequency, mass sensitivity, quality factor (Q), and their ability to be fabricated on a semiconductor substrate to allow integration with electronic circuitry. The treatment of the device surface with chemically-sensitive films to detect species of interest is discussed. Strategies for improving discrimination are described, including sensor arrays and species concentration and separation schemes. The advantages and disadvantages of integrating sensors with microelectronics are considered, along with the effect on sensitivity of scaling acoustic gas sensors to smaller size.

  18. Microfluidic ion-sensing devices.

    Science.gov (United States)

    Johnson, R Daniel; Gavalas, Vasilis G; Daunert, Sylvia; Bachas, Leonidas G

    2008-04-14

    Quantitative determinations of ions in a variety of media have been performed traditionally via one of three approaches: optical instrumental methods (e.g., atomic absorption, and inductively-coupled plasma-optical emission or mass spectrometry), "wet" methods, or ion-selective sensors. Each of the approaches, though, possesses limitations including: power/reagent consumption and lack of portability for instrumental techniques; laborious sample-treatment steps for wet methods; and lack of selectivity and sensitivity with sensors when employed with complex samples. Microfluidic device have emerged as a solution to some of these challenges associated with ion analysis. Such systems can integrate multiple sample handling, calibration, and detection steps ("lab-on-a-chip" concept) into a footprint amenable to portability, while requiring small amounts of sample and power. Furthermore, devices can be constructed for multi-analyte detection, either through multiple parallel fluidic architectures or by using arrays of detection elements. This paper reviews recent progress in the development of total-analysis systems for ionic species. Fabrication techniques and various fluid-handling operations are discussed briefly, followed by a number of more mature strategies for microfluidic ion analysis. A variety of approaches expected to comprise the next generation of devices are also presented.

  19. Microfluidic ion-sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R. Daniel [Department of Chemistry, Murray State University, Murray, KY 42071-3346 (United States)], E-mail: daniel.johnson@murraystate.edu; Gavalas, Vasilis G.; Daunert, Sylvia [Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States); Bachas, Leonidas G. [Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055 (United States)], E-mail: bachas@uky.edu

    2008-04-14

    Quantitative determinations of ions in a variety of media have been performed traditionally via one of three approaches: optical instrumental methods (e.g., atomic absorption, and inductively-coupled plasma-optical emission or mass spectrometry), 'wet' methods, or ion-selective sensors. Each of the approaches, though, possesses limitations including: power/reagent consumption and lack of portability for instrumental techniques; laborious sample-treatment steps for wet methods; and lack of selectivity and sensitivity with sensors when employed with complex samples. Microfluidic device have emerged as a solution to some of these challenges associated with ion analysis. Such systems can integrate multiple sample handling, calibration, and detection steps ('lab-on-a-chip' concept) into a footprint amenable to portability, while requiring small amounts of sample and power. Furthermore, devices can be constructed for multi-analyte detection, either through multiple parallel fluidic architectures or by using arrays of detection elements. This paper reviews recent progress in the development of total-analysis systems for ionic species. Fabrication techniques and various fluid-handling operations are discussed briefly, followed by a number of more mature strategies for microfluidic ion analysis. A variety of approaches expected to comprise the next generation of devices are also presented.

  20. A MEMS Energy Harvesting Device for Vibration with Low Acceleration

    DEFF Research Database (Denmark)

    Triches, Marco; Wang, Fei; Crovetto, Andrea

    2012-01-01

    We propose a polymer electret based energy harvesting device in order to extract energy from vibration sources with low acceleration. With MEMS technology, a silicon structure is fabricated which can resonate in 2D directions. Thanks to the excellent mechanical properties of the silicon material...

  1. Nanoplasmonic and Microfluidic Devices for Biological Sensing

    KAUST Repository

    Perozziello, G.

    2017-02-16

    In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.

  2. Vibration-based monitoring and diagnostics using compressive sensing

    Science.gov (United States)

    Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.

    2017-04-01

    Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.

  3. Scaling Techniques for Combustion Device Random Vibration Predictions

    Science.gov (United States)

    Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.

    2016-01-01

    This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.

  4. Vibration measurement on large structures by microwave remote sensing

    Science.gov (United States)

    Gentile, Carmelo

    2012-06-01

    Recent advances in radar techniques and systems have led to the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. In the first part of the paper, the main techniques adopted in microwave remote sensing are described, so that advantages and potential issues of these techniques are addressed and discussed. Subsequently, the results of past and recent tests of full-scale structures are presented, in order to demonstrate the reliability and accuracy of microwave remote sensing; furthermore, the simplicity of use of the radar technology is exemplified in practical cases, where the access with conventional techniques is uneasy or even hazardous, such as the stay cables of cable-stayed bridges.

  5. Rotor position and vibration control for aerospace flywheel energy storage devices and other vibration based devices

    Science.gov (United States)

    Alexander, B. X. S.

    Flywheel energy storage has distinct advantages over conventional energy storage methods such as electrochemical batteries. Because the energy density of a flywheel rotor increases quadratically with its speed, the foremost goal in flywheel design is to achieve sustainable high speeds of the rotor. Many issues exist with the flywheel rotor operation at high and varying speeds. A prominent problem is synchronous rotor vibration, which can drastically limit the sustainable rotor speed. In a set of projects, the novel Active Disturbance Rejection Control (ADRC) is applied to various problems of flywheel rotor operation. These applications include rotor levitation, steady state rotation at high speeds and accelerating operation. Several models such as the lumped mass model and distributed three-mass models have been analyzed. In each of these applications, the ADRC has been extended to cope with disturbance, noise, and control effort optimization; it also has been compared to various industry-standard controllers such as PID and PD/observer, and is proven to be superior. The control performance of the PID controller and the PD/observer currently used at NASA Glenn has been improved by as much as an order of magnitude. Due to the universality of the second order system, the results obtained in the rotor vibration problem can be straightforwardly extended to other vibrational systems, particularly, the MEMS gyroscope. Potential uses of a new nonlinear controller, which inherits the ease of use of the traditional PID, are also discussed.

  6. Vibration sense and sympathetic vasoconstrictor activity in patients with occlusive arterial disease

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Henriksen, O; Parm, Martin Lehnsbo

    1983-01-01

    of vibration sense, abnormal vasoconstrictor function was found. In three of these patients, the abnormal response most likely could be ascribed to impaired function of the vascular smooth muscle cells. Neither in diabetics nor in non-diabetics could an abnormal vibration sense be taken as evidence for loss...

  7. Deviations of frequency and the mode of vibration of commercially available whole-body vibration training devices.

    Science.gov (United States)

    Kaeding, T S

    2015-06-01

    Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.

  8. Vibration Signaling in Mobile Devices for Emergency Alerting: A Study with Deaf Evaluators

    Science.gov (United States)

    Harkins, Judith; Tucker, Paula E.; Williams, Norman; Sauro, Jeff

    2010-01-01

    In the United States, a nationwide Commercial Mobile Alert Service (CMAS) is being planned to alert cellular mobile device subscribers to emergencies occurring near the location of the mobile device. The plan specifies a unique audio attention signal as well as a unique vibration attention signal (for mobile devices set to vibrate) to identify…

  9. Reviving Vibration Energy Harvesting and Self-Powered Sensing by a Triboelectric Nanogenerator

    KAUST Repository

    Chen, Jun

    2017-10-10

    Vibration energy harvesting and sensing is a traditional and growing research field in which various working mechanisms and designs have been developed for an improved performance. Relying on a coupling effect of contact electrification and electrostatic induction, in the past 5 years, triboelectric nanogenerator (TENG) has been applied as a fundamentally new technology to revive the field of vibration energy harvesting and self-powered sensing, especially for low-frequency vibrations such as human motion, automobile, machine, and bridge vibrations. The demonstrated instantaneous energy conversion efficiency of ∼70% and a total efficiency up to 85% distinguished TENG from traditional techniques. In this article, both TENG-enabled vibration energy harvesting and self-powered active sensing are comprehensively reviewed. Moving toward future development, problems pressing for solutions and onward research directions are also posed to deliver a coherent picture.

  10. Distributed vibration sensing on optical fibre: field testing in borehole seismic applications

    Science.gov (United States)

    Frignet, B.; Hartog, A. H.; Mackie, D.; Kotov, O. I.; Liokumovich, L. B.

    2014-05-01

    We describe the measurement of seismic waves in a borehole using distributed vibration sensing conveyed on wireline cable. The optical measurement is compared directly with the results of a multi-level borehole seismic survey with conventional electrical accelerometers.

  11. Analytical design method of a device for ultrasonic elliptical vibration cutting.

    Science.gov (United States)

    Huang, Weihai; Yu, Deping; Zhang, Min; Ye, Fengfei; Yao, Jin

    2017-02-01

    Ultrasonic elliptical vibration cutting (UEVC) is effective in ultraprecision diamond cutting of hard-brittle materials and ferrous metals. However, its design is quite empirical and tedious. This paper proposes an analytical design method for developing the UEVC device which works at the Flexural-Flexural complex-mode to generate the elliptical vibration. For such UEVC device, the resonant frequencies of the two flexural vibrations are required to be the same. In addition, the nodal points of the two flexural vibrations should be coincident so that the device can be clamped without affecting the vibrations. Based on the proposed analytical design method, an UEVC device was first designed. Modal analysis of the designed UEVC device was performed by using the finite element method, which shows that the resonant frequencies coincide well with the targeted ones. Then a prototype UEVC device was fabricated, and its vibration characteristics were measured by an impedance analyzer and a laser displacement sensor. Experimental results indicate that the designed UEVC device can generate elliptical vibration with the resonant frequencies closed to the target ones. In addition, the vibration trajectory can be precisely tuned by adjusting the phase difference and the amplitude of the applied voltage. Simulation and experimental results validated the effectiveness of the analytical design method.

  12. Absorbance Based Light Emitting Diode Optical Sensors and Sensing Devices.

    Science.gov (United States)

    O'Toole, Martina; Diamond, Dermot

    2008-04-07

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements.

  13. VibeComm: Radio-Free Wireless Communication for Smart Devices Using Vibration

    Directory of Open Access Journals (Sweden)

    Inhwan Hwang

    2014-11-01

    Full Text Available This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  14. VibeComm: radio-free wireless communication for smart devices using vibration.

    Science.gov (United States)

    Hwang, Inhwan; Cho, Jungchan; Oh, Songhwai

    2014-11-10

    This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  15. Micro-optical fiber devices used with modal domain sensing

    OpenAIRE

    Flax, Amy

    1988-01-01

    In order to develop more compact optical fiber sensing systems, modal filtering can be performed in-line by using micro-optical devices. Two such devices are a laterally offset few-moded optical fiber mechanical splice and a modal conversion optical fiber coupler. A third device, the air-gap splice used with multimode fibers, can examine the modal content of an optical fiber. A basic theoretical understanding on how these devices operate is reviewed. A splice loss calculation f...

  16. Prognostic and Remaining Life Prediction of Electronic Device under Vibration Condition Based on CPSD of MPI

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2016-01-01

    Full Text Available Prognostic of electronic device under vibration condition can help to get information to assist in condition-based maintenance and reduce life-cycle cost. A prognostic and remaining life prediction method for electronic devices under random vibration condition is proposed. Vibration response is measured and monitored with acceleration sensor and OMA parameters, including vibration resonance frequency, especially first-order resonance frequency, and damping ratio is calculated with cross-power spectrum density (CPSD method and modal parameter identification (MPI algorithm. Steinberg vibration fatigue model which considers transmissibility factor is used to predict the remaining life of electronic component. Case study with a test board is carried out and remaining life is predicted. Results show that with this method the vibration response characteristic can be monitored and predicted.

  17. Innovative Ge Quantum Dot Functional Sensing/Metrology Devices

    Science.gov (United States)

    2015-05-20

    Final 3. DATES COVERED (From - To) 20140507 - 20150506 4. TITLE AND SUBTITLE Innovative Ge Quantum Dot Functional Sensing/ Metrology ...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Motivation to employ QDs for primary sensing and metrology devices is strong in light of peculiar...optical and thermal properties of QDs that has opened up access to wide-ranging applications in logics, computing, photonics, and metrology

  18. Bioanalytical devices: Technological leap for sweat sensing

    Science.gov (United States)

    Heikenfeld, Jason

    2016-01-01

    Sweat analysis is an ideal method for continuously tracking a person's physiological state, but developing devices for this is difficult. A wearable sweat monitor that measures several biomarkers is a breakthrough. See Letter p.509

  19. Molecular vibration-sensing component in human olfaction.

    Directory of Open Access Journals (Sweden)

    Simon Gane

    Full Text Available Whether olfaction recognizes odorants by their shape, their molecular vibrations, or both remains an open and controversial question. A convenient way to address it is to test for odor character differences between deuterated and undeuterated odorant isotopomers, since these have identical ground-state conformations but different vibrational modes. In a previous paper (Franco et al. (2011 Proc Natl Acad Sci USA 108:9, 3797-802 we showed that fruit flies can recognize the presence of deuterium in odorants by a vibrational mechanism. Here we address the question of whether humans too can distinguish deuterated and undeuterated odorants. A previous report (Keller and Vosshall (2004 Nat Neurosci 7:4, 337-8 indicated that naive subjects are incapable of distinguishing acetophenone and d-8 acetophenone. Here we confirm and extend those results to trained subjects and gas-chromatography [GC]-pure odorants. However, we also show that subjects easily distinguish deuterated and undeuterated musk odorants purified to GC-pure standard. These results are consistent with a vibrational component in human olfaction.

  20. Agglomeration of powders with a new-coupled vibration-compaction device

    Science.gov (United States)

    Serris, Eric; Desplat, Olivier; Valfort, Olivier; Grosseau, Phillipe

    2017-06-01

    Inorganic powder recycling should be a crucial process for the "smart factories" in the future. A complex three-phase system (bauxite mixed with ordinary Portland cement and water) with a new-coupled vibration-compaction device is studied. The compressive stress of compacts seems to be improved by using this device at low compaction pressure leaving the other characteristics unchanged. The tomographic study of macroscopic porosities shows differences in the pores repartitions inside vibrated and untreated compacts. Classic porosity repartition is shown in the classic compacted bauxite compacts whereas in the vibrated-compacted bauxite exhibits inhomogeneities. Despite this, we find these results quite promising for further investigations.

  1. Active Vibration Control of a Microactuator for the Hard Disk Drive Using Self-Sensing Actuation

    Directory of Open Access Journals (Sweden)

    Minoru Sasaki

    2012-01-01

    Full Text Available This paper presents the self-sensing control of a microactuator for hard disk drives. The microactuator uses a PZT actuator pair installed on the suspension assembly. The self-sensing microactuator forms a combined sensing and actuation mechanism. Direct velocity feedback and positive position feedback are used in this paper. Our experimental results show that both strategies are effective in suppressing vibrational modes and successfully demonstrate the feasibility of using a self-sensing actuator on an HDD suspension assembly.

  2. Ultrasensitive biochemical sensing device and method of sensing analytes

    Science.gov (United States)

    Pinchuk, Anatoliy

    2017-06-06

    Systems and methods biochemically sense a concentration of a ligand using a sensor having a substrate having a metallic nanoparticle array formed onto a surface of the substrate. A light source is incident on the surface. A matrix is deposited over the nanoparticle array and contains a protein adapted to binding the ligand. A detector detects s-polarized and p-polarized light from the reflective surface. Spacing of nanoparticles in the array and wavelength of light are selected such that plasmon resonance occurs with an isotropic point such that -s and -p polarizations of the incident light result in substantially identical surface Plasmon resonance, wherein binding of the ligand to the protein shifts the resonance such that differences between the -S and -P polarizations give in a signal indicative of presence of the ligand.

  3. Optical sensing: recognition elements and devices

    Science.gov (United States)

    Gauglitz, Guenter G.

    2012-09-01

    The requirements in chemical and biochemical sensing with respect to recognition elements, avoiding non-specific interactions, and high loading of the surface for detection of low concentrations as well as optimized detection systems are discussed. Among the many detection principles the optical techniques are classified. Methods using labeled compounds like Total Internal Reflection Fluorescence (TIRF) and direct optical methods like micro reflectometry or refractometry are discussed in comparison. Reflectometric Interference Spectroscopy (RIfS) is presented as a robust simple method for biosensing. As applications, trace analysis of endocrine disruptors in water, hormones in food, detection of viruses and bacteria in food and clinical diagnostics are discussed.

  4. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  5. System and method for evaluating wind flow fields using remote sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  6. Silicon Nanowire‐Based Devices for Gas-Phase Sensing

    Directory of Open Access Journals (Sweden)

    Anping Cao

    2013-12-01

    Full Text Available Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of studies on sensing gases and vapors using SiNW-based devices is increasing. This review gives an overview of selected research papers related to the application of electrical SiNW-based devices in the gas phase that have been reported over the past 10 years. Special attention is given to surface modification strategies and the sensing principles involved. In addition, future steps and technological challenges in this field are addressed.

  7. Dual pitch plasmonic devices for polarization enhanced colour based sensing

    Science.gov (United States)

    Langley, D.; Balaur, E.; Sadatnajafi, C.; Abbey, B.

    2016-12-01

    Plasmonic devices provide a unique sensitivity to changes in the permittivity of the immediate, near-surface environment. In this work we explore the use of dual pitch plasmonic devices combined with microfluidics for polarization enhanced colour sensing of a chemicals' refractive index. We demonstrate that the use of cross-shaped apertures can produce polarization tunable color based sensing in the optical regime and show that the spectral variations as a function of the incident polarization can be decomposed into contributions from the two orthogonal modes that characterize the dual pitch plasmonic device. Finally we demonstrate that the use of the full colour spectrum in the visible range in combination with polarization control enables sensing `by-eye' of refractive index changes below 1 × 10-3 RIU.

  8. Self-powered wireless vibration-sensing system for machining monitoring

    Science.gov (United States)

    Chung, Tien-Kan; Lee, Hao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2013-04-01

    In this paper, we demonstrate an attachable energy-harvester-powered wireless vibration-sensing module for milling-process monitoring. The system consists of an electromagnetic energy harvester, MEMS accelerometer, and wireless module. The harvester consisting of an inductance and magnets utilizes the electromagnetic-induction approach to harvest the mechanical energy from the milling process and subsequently convert the mechanical energy to an electrical energy. Furthermore, through an energy-storage/rectification circuit, the harvested energy is capable of steadily powering both the accelerometer and wireless module. Through integrating the harvester, accelerometer, and wireless module, a self-powered wireless vibration-sensing system is achieved. The test result of the system monitoring the milling process shows the system successfully senses the vibration produced from the milling and subsequently transmits the vibration signals to the terminal computer. Through analyzing the vibration data received by the terminal computer, we establish a criterion for reconstructing the status, condition, and operating-sequence of the milling process. The reconstructed status precisely matches the real status of the milling process. That is, the system is capable of demonstrating a real-time monitoring of the milling process.

  9. Vibration Mitigation without Dissipative Devices: First Large-Scale Testing of a State Switched Inducer

    Directory of Open Access Journals (Sweden)

    Daniel Tirelli

    2014-01-01

    Full Text Available A new passive device for mitigating cable vibrations is proposed and its efficiency is assessed on 45-meter long taut cables through a series of free and forced vibration tests. It consists of a unilateral spring attached perpendicularly to the cable near the anchorage. Because of its ability to change the cable dynamic behaviour through intermittent activation, the device has been called state switched inducer (SSI. The cable behaviour is shown to be deeply modified by the SSI: the forced vibration response is anharmonicc and substantially reduced in amplitude whereas the free vibration decay is largely sped up through a beating phenomenon. The vibration mitigation effect is mainly due to the activation and coupling of various vibration modes, as evidenced in the response spectra of the equipped cable. This first large-scale experimental campaign shows that the SSI outperforms classical passive devices, thus paving the way to a new kind of low-cost vibration mitigation systems which do not rely on dissipation.

  10. Device Control Using Gestures Sensed from EMG

    Science.gov (United States)

    Wheeler, Kevin R.

    2003-01-01

    In this paper we present neuro-electric interfaces for virtual device control. The examples presented rely upon sampling Electromyogram data from a participants forearm. This data is then fed into pattern recognition software that has been trained to distinguish gestures from a given gesture set. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard.

  11. Inertial sensing microelectromechanical (MEM) safe-arm device

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Wooden, Susan M [Sandia Park, NM

    2009-05-12

    Microelectromechanical (MEM) safe-arm devices comprise a substrate upon which a sense mass, that can contain an energetic material, is constrained to move along a pathway defined by a track disposed on the surface of the substrate. The pathway has a first end comprising a "safe" position and a second end comprising an "armed" position, whereat the second end the sense mass can be aligned proximal to energetic materials comprising the explosive train, within an explosive component. The sense mass can be confined in the safe position by a first latch, operable to release the sense mass by an acceleration acting in a direction substantially normal to the surface of the substrate. A second acceleration, acting in a direction substantially parallel to the surface of the substrate, can cause the sense mass to traverse the pathway from the safe position to the armed position.

  12. Absorbance based light emitting diode optical sensors and sensing devices

    OpenAIRE

    Dermot Diamond; Martina O’Toole

    2008-01-01

    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied i...

  13. Optofluidic devices for biomolecule sensing and multiplexing

    Science.gov (United States)

    Ozcelik, Damla

    Optofluidics which integrates photonics and microfluidics, has led to highly compact, sensitive and adaptable biomedical sensors. Optofluidic biosensors based on liquid-core anti-resonant reflecting optical waveguides (LC-ARROWs), have proven to be a highly sensitive, portable, and reconfigurable platform for fluorescence spectroscopy and detection of single biomolecules such as proteins, nucleic acids, and virus particles. However, continued improvements in sensitivity remain a major goal as we approach the ultimate limit of detecting individual bio-particles labeled by single or few fluorophores. Additionally, the ability to simultaneously detect and identify multiple biological particles or biomarkers is one of the key requirements for molecular diagnostic tests. The compactness and adaptability of these platforms can further be advanced by introducing tunability, integrating off-chip components, designing reconfigurable and customizable devices, which makes these platforms very good candidates for many different applications. The goal of this thesis was to introduce new elements in these LC-ARROW optofluidics platforms that provide major enhancements in their functionality, making them more sensitive, compact, customizable and multiplexed. First, a novel integrated tunable spectral filter that achieves effective elimination of background noise on the ARROW platform was demonstrated. A unique dual liquid-core design enabled the independent multi-wavelength tuning of the spectral filter by adjusting the refractive index and chemical properties of the liquid. In order to enhance the detection sensitivity of the platform, Y-splitter waveguides were integrated to create multiple excitation spots for each target molecule. A powerful signal processing algorithm was used to analyze the data to improve the signal-to-noise ratio (SNR) of the collected data. Next, the design, optimization and characterization of the Y-splitter waveguides are presented; and single

  14. A New Vibration Absorber Design for Under-Chassis Device of a High-Speed Train

    Directory of Open Access Journals (Sweden)

    Yu Sun

    2017-01-01

    Full Text Available To realize the separation of vertical and lateral stiffness of the under-chassis device, a new type of vibration absorber is designed by using the negative stiffness of the disc spring in parallel with the rubber component. To solve its transmission characteristics, harmonic transfer method was used. A rigid-flexible coupling multibody dynamic model of a high-speed train with an elastic car body is established, and the vertical and lateral optimal stiffness of the under-chassis device are calculated. The Sperling index and acceleration PSD of the vehicle with the new vibration absorber and the vehicle with traditional rubber absorber are compared and analyzed. The results show that, with the new vibration absorber, vehicle’s running stability and vibration of the car body are more effective than the vehicle with the traditional rubber absorber.

  15. Experimental verification of a novel MEMS multi-modal vibration energy harvester for ultra-low power remote sensing nodes

    Science.gov (United States)

    Iannacci, J.; Sordo, G.; Serra, E.; Kucera, M.; Schmid, U.

    2015-05-01

    In this work, we discuss the verification and preliminary experimental characterization of a MEMS-based vibration Energy Harvester (EH) design. The device, named Four-Leaf Clover (FLC), is based on a circular-shaped mechanical resonator with four petal-like mass-spring cascaded systems. This solution introduces several mechanical Degrees of Freedom (DOFs), and therefore enables multiple resonant modes and deformation shapes in the vibrations frequency range of interest. The target is to realize a wideband multi-modal EH-MEMS device, that overcomes the typical narrowband working characteristics of standard cantilevered EHs, by ensuring flexible and adaptable power source to ultra-low power electronics for integrated remote sensing nodes (e.g. Wireless Sensor Networks - WSNs) in the Internet of Things (IoT) scenario, aiming to self-powered and energy autonomous smart systems. Finite Element Method simulations of the FLC EH-MEMS show the presence of several resonant modes for vibrations up to 4-5 kHz, and level of converted power up to a few μW at resonance and in closed-loop conditions (i.e. with resistive load). On the other hand, the first experimental tests of FLC fabricated samples, conducted with a Laser Doppler Vibrometer (LDV), proved the presence of several resonant modes, and allowed to validate the accuracy of the FEM modeling method. Such a good accordance holds validity for what concerns the coupled field behavior of the FLC EH-MEMS, as well. Both measurements and simulations performed at 190 Hz (i.e. out of resonance) showed the generation of power in the range of nW (Root Mean Square - RMS values). Further steps of this work will include the experimental characterization in a full range of vibrations, aiming to prove the whole functionality of the FLC EH-MEMS proposed design concept.

  16. Silicon nanowire-based devices for gas-phase sensing

    NARCIS (Netherlands)

    Cao, A.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2013-01-01

    Since their introduction in 2001, SiNW-based sensor devices have attracted considerable interest as a general platform for ultra-sensitive, electrical detection of biological and chemical species. Most studies focus on detecting, sensing and monitoring analytes in aqueous solution, but the number of

  17. Method of defining rational parameters for excavator buckets vibrating devices in order to reduce soil adhesion

    Science.gov (United States)

    Zenkov, S. A.

    2017-10-01

    The article describes the method of defining rational parameters for excavator buckets vibrating devices in order to reduce soil adhesion under various operating conditions. The method includes limits formation, calculating geometric parameters of curved mold concentrator for excavator buckets with magnetostriction vibration exciters; calculating parameters of acoustic influence equipment; calculating power demand of equipment, defining adhesive forces of soil to buckets with given values of external factors; defining equipment operation mode (turn-on frequency, exposure time). Suggested method enables one to define required parameters of vibrating equipment to excavator buckets during the design phase.

  18. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  19. Using consumer electronic devices to estimate whole-body vibration exposure.

    Science.gov (United States)

    Wolfgang, Rebecca; Burgess-Limerick, Robin

    2014-01-01

    The cost and complexity of commercially available devices for measuring whole-body vibration is a barrier to the systematic collection of the information required to manage this hazard at workplaces. The potential for a consumer electronic device to be used to estimate whole-body vibration was assessed by use of an accelerometer calibrator, and by collecting 42 simultaneous pairs of measurements from a fifth-generation iPod Touch and one of two gold standard vibration measurement devices (Svantech SV111 [Svantech, Warsaw, Poland] or Brüel & Kjær 4447 [Brüel & Kjær Sound & Vibration Measurement A/S, Nærum, Denmark]) while driving light vehicles on a variety of different roadway surfaces. While sampling rate limitations make the accelerometer data collected from the iPod Touch unsuitable for frequency analysis, the vibration amplitudes recorded are sufficiently accurate (errors less than 0.1 m/s(2)) to assist workplaces manage whole-body vibration exposures.

  20. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  1. The Design of Vibration Sensing System Used for the Internet of Things

    Science.gov (United States)

    Ji, Wei; Ma, Xuejie

    2016-06-01

    A vibration sensing system used for the Internet of Things is presented in this paper. Using the distributed feedback fiber lasers (DFB-FL) collects external sound signals and digital phase generated carrier (PGC) method realizes wavelength demodulation. The platform is designed based on an open architecture and B/S (Browser/Server) technology which makes it an ideal platform to be operated under a network environment. The sensing system is no power supply and could be monitored anytime and anywhere which is the requirement of Internet of things.

  2. Agglomeration of powders with a new-coupled vibration-compaction device

    Directory of Open Access Journals (Sweden)

    Serris Eric

    2017-01-01

    Full Text Available Inorganic powder recycling should be a crucial process for the “smart factories” in the future. A complex three-phase system (bauxite mixed with ordinary Portland cement and water with a new-coupled vibration-compaction device is studied. The compressive stress of compacts seems to be improved by using this device at low compaction pressure leaving the other characteristics unchanged. The tomographic study of macroscopic porosities shows differences in the pores repartitions inside vibrated and untreated compacts. Classic porosity repartition is shown in the classic compacted bauxite compacts whereas in the vibrated-compacted bauxite exhibits inhomogeneities. Despite this, we find these results quite promising for further investigations.

  3. Nanopore Device for Reversible Ion and Molecule Sensing or Migration

    Science.gov (United States)

    Pourmand, Nader (Inventor); Vilozny, Boaz (Inventor); Actis, Paolo (Inventor); Seger, R. Adam (Inventor); Singaram, Bakthan (Inventor)

    2015-01-01

    Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.

  4. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    materials; it provides mechanical support but it also reduces the power output. In our device we replace the support material with another layer of the piezoelectric material. With the absence of an inactive mechanical support all stresses induced by vibrations will be harvested by the active piezoelectric...

  5. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    . It provides mechanical support but it also reduces the power output. Our device replaces the support with another layer of the piezoelectric material, and with the absence of an inactive mechanical support all of the stresses induced by the vibrations will be harvested by the active piezoelectric elements....

  6. Optical quasi-distributed simultaneous vibration and temperature sensing in stator bars of a 370-MVA electric generator

    Science.gov (United States)

    Dreyer, Uilian José; Vagner da Silva, Erlon; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2017-08-01

    In this paper, we propose a new multiparametric optical fiber transducer applied to an electric generator of 370 MVA. The optical transducer has three multiplexed FBGs in the same optical fiber as the sensing element. The FBG sensors can simultaneously measure both the temperature and vibration independently of the other multiplexed FBGs. The installation in the power plant was performed using six transducers and it was obtained 23 hours of simultaneous vibration and temperature measurement. All the FBGs used to monitor generator vibration were able to monitor the frequency of mechanical and electromagnetic vibrations, which were measured at 2 Hz and 120 Hz, respectively. During the measurement, the machine was turned off due to a failure and all the FBGs sensed temperature changes, as well as frequency vibration changes. The largest temperature difference measured between the FBGs during the test is approximately 2°C.

  7. Smart materials: strain sensing and stress determination by means of nanotube sensing systems, composites, and devices

    Science.gov (United States)

    Barrera, Enrique V. (Inventor); Nagarajaiah, Satish (Inventor); Dharap, Prasad (Inventor); Zhiling, Li (Inventor); Kim, Jong Dae (Inventor)

    2010-01-01

    The present invention is directed toward devices comprising carbon nanotubes that are capable of detecting displacement, impact, stress, and/or strain in materials, methods of making such devices, methods for sensing/detecting/monitoring displacement, impact, stress, and/or strain via carbon nanotubes, and various applications for such methods and devices. The devices and methods of the present invention all rely on mechanically-induced electronic perturbations within the carbon nanotubes to detect and quantify such stress/strain. Such detection and quantification can rely on techniques which include, but are not limited to, electrical conductivity/conductance and/or resistivity/resistance detection/measurements, thermal conductivity detection/measurements, electroluminescence detection/measurements, photoluminescence detection/measurements, and combinations thereof. All such techniques rely on an understanding of how such properties change in response to mechanical stress and/or strain.

  8. Wide Bandgap Semiconductor Nanowires for Electronic, Photonic and Sensing Devices

    Science.gov (United States)

    2012-01-05

    vapor deposition ( CVD ) using gold thin films as catalyst on a Si wafer with an insulating SiO2 layer. The structural characterization of the as-grown...advantages in improved carrier confinement over their thin film counterparts. The bandgap of the ZnO may be increased by addition of Mg. Results: We...variety of wide bandgap nanowires using GaN and ZnO and made functional devices from them for sensing,electronics and photonics.These included a very

  9. Integration of metal oxide nanowires in flexible gas sensing devices.

    Science.gov (United States)

    Comini, Elisabetta

    2013-08-15

    Metal oxide nanowires are very promising active materials for different applications, especially in the field of gas sensors. Advances in fabrication technologies now allow the preparation of nanowires on flexible substrates, expanding the potential market of the resulting sensors. The critical steps for the large-scale preparation of reliable sensing devices are the elimination of high temperatures processes and the stretchability of the entire final device, including the active material. Direct growth on flexible substrates and post-growth procedures have been successfully used for the preparation of gas sensors. The paper will summarize the procedures used for the preparation of flexible and wearable gas sensors prototypes with an overlook of the challenges and the future perspectives concerning this field.

  10. Electrochemical structure-switching sensing using nanoplasmonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Patskovsky, Sergiy; Dallaire, Anne-Marie; Blanchard-Dionne, Andre-Pierre; Meunier, Michel [Department of Engineering Physics, Laser Processing and Plasmonics Laboratory, Polytechnique, Montreal, Station Centre-ville, QC (Canada); Vallee-Belisle, Alexis [Laboratory of Biosensors and Nanomachines, Departement de Chimie, Universite de Montreal, QC (Canada)

    2015-12-15

    In this article, the implementation of electrochemical plasmonic nanostructures functionalized with DNA-based structure-switching sensors is presented. eNanoSPR devices with open and microfluidic measurement cells are developed on the base of nanohole arrays in 100 nm gold film and applied for combined microscopic and electrochemical surface plasmon (eSPR) visualization. eSPR voltammograms and spectroscopy are performed using planar three electrode schematic with plasmonic nanostructure operated as working electrode. Limit of detection of eNanoSPR devices for oligonucleotide hybridization is estimated in the low nanomolar and applications for structure-switching electro-plasmonic sensing in complex liquids are discussed. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Design and Performance Testing of a Novel Three-Dimensional Elliptical Vibration Turning Device

    Directory of Open Access Journals (Sweden)

    Jieqiong Lin

    2017-10-01

    Full Text Available A novel three-dimensional (3D elliptical vibration turning device which is on the basis of the leaf-spring-flexure-hinges-based (LSFH-based double parallel four-bar linkages (DPFLMs has been proposed. In order to evaluate the performance of the developed 3D elliptical vibration cutting generator (EVCG, the off-line tests were carried out to investigate the stroke, dynamic performance, resolution, tracking accuracy and hysteresis along the three vibration axes. Experimental results indicate that the maximum stroke of three vibration axes can reach up to 26 μm. The working bandwidth can reach up to 1889 Hz. The resolution and hysteresis tests show that the developed 3D EVCG has a good tracking accuracy, relative high resolution and low hysteresis, which is appropriate for micro/nano machining. Kinematical modeling is carried out to investigate the tool vibration trajectory. Experimental results shown that the simulation results agree well with the experimental one, which indicate that the developed 3D EVCG can be used as an option for micro/nano machining.

  12. A New Vibration Measurement Procedure for On-Line Quality Control of Electronic Devices

    Directory of Open Access Journals (Sweden)

    Gian Marco Revel

    2002-01-01

    Full Text Available In this paper the problem of experimentally testing the mechanical reliability of electronic components for quality control is approached. In general, many tests are performed on electronic devices (personal computers, power supply units, lamps, etc., according to the relevant international standards (IEC, in order to verify their resistance to shock and vibrations, but these are mainly “go no-go” experiments, performed on few samples taken from the production batches.

  13. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    Directory of Open Access Journals (Sweden)

    I-Ju Teng

    2011-08-01

    Full Text Available The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD. The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3.

  14. Vibrot, a simple device for the conversion of vibration into rotation mediated by friction: preliminary evaluation.

    Directory of Open Access Journals (Sweden)

    Ernesto Altshuler

    Full Text Available While "vibrational noise" induced by rotating components of machinery is a common problem constantly faced by engineers, the controlled conversion of translational into rotational motion or vice-versa is a desirable goal in many scenarios ranging from internal combustion engines to ultrasonic motors. In this work, we describe the underlying physics after isolating a single degree of freedom, focusing on devices that convert a vibration along the vertical axis into a rotation around this axis. A typical Vibrot (as we label these devices consists of a rigid body with three or more cantilevered elastic legs attached to its bottom at an angle. We show that these legs are capable of transforming vibration into rotation by a "ratchet effect", which is caused by the anisotropic stick-slip-flight motion of the leg tips against the ground. Drawing an analogy with the Froude number used to classify the locomotion dynamics of legged animals, we discuss the walking regime of these robots. We are able to control the rotation frequency of the Vibrot by manipulating the shaking amplitude, frequency or waveform. Furthermore, we have been able to excite Vibrots with acoustic waves, which allows speculating about the possibility of reducing the size of the devices so they can perform tasks into the human body, excited by ultrasound waves from the outside.

  15. A Review of Hybrid Fiber-Optic Distributed Simultaneous Vibration and Temperature Sensing Technology and Its Geophysical Applications

    Directory of Open Access Journals (Sweden)

    Khalid Miah

    2017-11-01

    Full Text Available Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS and distributed temperature sensing (DTS systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.

  16. Effects of whole-body vibration training on different devices on bone mineral density.

    Science.gov (United States)

    Von Stengel, Simon; Kemmler, Wolfgang; Bebenek, Michael; Engelke, Klaus; Kalender, Willi A

    2011-06-01

    Whole-body vibration (WBV) is a new nonpharmacological approach to counteract osteoporosis. However, the specific vibration protocol to most effectively reduce osteoporotic risk has not been reported. In the ELVIS II (Erlangen Longitudinal Vibration Study II) trial, we determined the effect of different WBV devices on bone mineral density (BMD) and neuromuscular performance. A total of 108 postmenopausal women (65.8 ± 3.5 yr) were randomly allocated to 1) rotational vibration training (RVT), i.e., 12.5 Hz, 12 mm, three sessions per week, for 15 min, including dynamic squat exercises; 2) vertical vibration training (VVT), i.e., 35 Hz, 1.7 mm, as above; and 3) a wellness control group (CG), i.e., two blocks of 10 low-intensity gymnastics sessions. BMD was measured at the hip and lumbar spine at baseline and after 12 months of training using dual-energy x-ray absorptiomety. Maximum isometric leg extension strength and leg power were determined using force plates. A BMD gain at the lumbar spine was observed in both vibration VT groups (RVT = +0.7% ± 2.2%, VVT = +0.5% ± 2.0%), which was significant compared with the CG value (-0.4% ± 2.0%) for RVT (P = 0.04) and borderline nonsignificant for VVT (P = 0.08). In the neck region, no significant treatment effect occurred. Neck BMD values tended to increase in both VT groups (RVT = +0.3% ± 2.7%, VVT = +1.1% ± 3.4%) and remained stable in CG (-0.0% ± 2.1%).Both VT groups gained maximum leg strength (RVT = +27% ± 22%, VVT = +24% ± 34%) compared with CG (+6% ± 20%, P = 0.000), whereas power measurements did not reach the level of significance (P = 0.1). WBV training is effective for reducing the risk for osteoporosis by increasing lumbar BMD and leg strength.

  17. Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing

    Directory of Open Access Journals (Sweden)

    Toshiaki Natsuki

    2017-01-01

    Full Text Available In this study, the vibrational properties of single- and double-layer graphene sheets (GSs with attached nanoparticles are analyzed based on the nonlocal elasticity theory. The potential applications of atomic-scale mass sensing are presented using GSs with simply supported boundary condition. The frequency equation for GSs with an attached nanoparticle is derived to investigate the vibration frequency of the GSs under thermal environment. Using the proposed model, the relationship between the frequency shifts of graphene-based mass sensor and the attached nanoparticles is obtained. The nonlocal effect and the temperature dependence on the variation of frequency shifts with the attached nanomass and the positions on the GS are investigated and discussed in detail. The obtained results show that the nanomass can be easily detected by using GS resonator which provides a highly sensitive nanomechanical element in sensor systems. The vibrational frequency shift of GS increases with increasing the temperature dependence. The double-layer GSs (DLGSs have higher sensitivity than the single-layer GSs (SLGSs due to high frequency shifts.

  18. Estimation of Subjective Difficulty and Psychological Stress by Ambient Sensing of Desk Panel Vibrations

    Science.gov (United States)

    Hamaguchi, Nana; Yamamoto, Keiko; Iwai, Daisuke; Sato, Kosuke

    We investigate ambient sensing techniques that recognize writer's psychological states by measuring vibrations of handwriting on a desk panel using a piezoelectric contact sensor attached to its underside. In particular, we describe a technique for estimating the subjective difficulty of a question for a student as the ratio of the time duration of thinking to the total amount of time spent on the question. Through experiments, we confirm that our technique correctly recognizes whether or not a person writes something down on paper by measured vibration data at the accuracy of over 80 %, and that the order of computed subjective difficulties of three questions is coincident with that reported by the subject in 60 % of experiments. We also propose a technique to estimate a writer's psychological stress by using the standard deviation of the spectrum of the measured vibration. Results of a proof-of-concept experiment show that the proposed technique correctly estimates whether or not the subject feels stress at least 90 % of the time.

  19. Thin film materials and devices for resistive temperature sensing applications

    Science.gov (United States)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically

  20. Development of nonresonant elliptical vibration cutting device based on parallel piezoelectric actuator

    Directory of Open Access Journals (Sweden)

    Lin Jieqiong

    2017-03-01

    Full Text Available Because of its unique intermittent cutting and friction reversal characteristics, elliptical vibration cutting (EVC has become the most promising method for machining of otherwise difficult-to-machine materials in recent years. However, some problems remain in the research towards development of EVC devices. In this paper, with the intention of solving the existing problems of EVC devices, a nonresonant-type EVC device that is driven by two parallel piezoelectric stacks is developed. After the principle of the device is introduced, the stiffness of the EVC device is calculated, and device simulations and experimental evaluations are performed. In addition, the performance of the EVC device is also tested. The experimental results show that the maximum strokes of the two directional mechanisms operating along the X- and Z-axes can reach 16.78 μm and 15.35 μm, respectively, and the motion resolutions in the X-axis and Z-axis directions both reach approximately 50 nm. Finally, a curved surface cutting experiment is carried out to verify the performance of the developed device.

  1. Development of nonresonant elliptical vibration cutting device based on parallel piezoelectric actuator

    Science.gov (United States)

    Jieqiong, Lin; Jinguo, Han; Mingming, Lu; Yan, Gu; Wenhui, Zhu

    2017-03-01

    Because of its unique intermittent cutting and friction reversal characteristics, elliptical vibration cutting (EVC) has become the most promising method for machining of otherwise difficult-to-machine materials in recent years. However, some problems remain in the research towards development of EVC devices. In this paper, with the intention of solving the existing problems of EVC devices, a nonresonant-type EVC device that is driven by two parallel piezoelectric stacks is developed. After the principle of the device is introduced, the stiffness of the EVC device is calculated, and device simulations and experimental evaluations are performed. In addition, the performance of the EVC device is also tested. The experimental results show that the maximum strokes of the two directional mechanisms operating along the X- and Z-axes can reach 16.78 μm and 15.35 μm, respectively, and the motion resolutions in the X-axis and Z-axis directions both reach approximately 50 nm. Finally, a curved surface cutting experiment is carried out to verify the performance of the developed device.

  2. Robust vibration control at critical resonant modes using indirect-driven self-sensing actuation in mechatronic systems.

    Science.gov (United States)

    Hong, Fan; Pang, Chee Khiang

    2012-11-01

    This paper presents an improved indirect-driven self-sensing actuation circuit for robust vibration control of piezoelectrically-actuated flexible structures in mechatronic systems. The circuit acts as a high-pass filter and provides better self-sensing strain signals with wider sensing bandwidth and higher signal-to-noise ratio. An adaptive non-model-based control is used to compensate for the structural vibrations using the strain signals from the circuit. The proposed scheme is implemented in a PZT-actuated suspension of a commercial dual-stage hard disk drive. Experimental results show improvements of 50% and 75% in the vibration suppression at 5.4kHz and 21kHz respectively, compared to the conventional PI control. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  3. The co-design of interface sensing and tailoring of ultra-thin film with ultrasonic vibration-assisted AFM system

    Science.gov (United States)

    Shi, Jialin; Liu, Lianqing; Li, Guangyong

    2016-06-01

    Ultra-thin films (e.g., graphene, MoS2, and black phosphorus) have shown amazing performance in a variety of applications. The tailoring or machining of these ultra-thin films is often the preliminary step to manufacturing them into functional devices. Atomic force microscopy (AFM) is a flexible, high-efficiency and low-cost tailoring or machining tool with the advantages of high resolution and precision. However, the current AFM-based tailoring methods are often set up as an open loop regarding the machined depth and state. Thus, because of a lack of real-time feedback, an inappropriate applied force leads to over-cutting or under-cutting, which limits the performance of the manufactured devices. In this study, we propose a real-time tailoring and sensing method based on an ultrasonic vibration-assisted (USV-assisted) AFM system to solve the above problems. With the proposed method, the machined depth and state can be sensed in real time by detecting the phase value of the vibrating cantilever. To characterize and gain insight into the phase responses of the cantilever to the machined depth and sample material, a theoretical dynamic model of a cantilever-film vibrating system is introduced to model the machining process, and a sensing theory of machined depth and state is developed based on a USV-assisted AFM system. The experimental results verify the feasibility and effectiveness of the proposed method, which in turn lay the foundation for a closed-loop tailoring control strategy for ultra-thin films.

  4. Vibrating membrane devices deliver aerosols more efficient than standard devices: a study in a neonatal upper airway model.

    Science.gov (United States)

    Tiemersma, Sybrich; Minocchieri, Stefan; van Lingen, Richard A; Nelle, Mathias; Devadason, Sunalene G

    2013-10-01

    Aerosol therapy in preterm infants is challenging, as a very small proportion of the drug deposits in the lungs. Our aim was to compare efficiency of standard devices with newer, more efficient aerosol delivery devices. Using salbutamol as a drug marker, we studied two prototypes of the investigational eFlow(®) nebulizer for babies (PARI Pharma GmbH), a jet nebulizer (Intersurgical(®) Cirrus(®)), and a pressurized metered dose inhaler (pMDI; GSK) with a detergent-coated holding chamber (AeroChamber(®) MV) in the premature infant nose throat-model (PrINT-model) of a 32-week preterm infant (1,750 g). A filter or an impactor was placed below the infant model's "trachea" to capture the drug dose or particle size, respectively, that would have been deposited in the lung. Lung dose (percentage of nominal dose) was 1.5%, 6.8%, and 18.0-20.6% for the jet nebulizer, pMDI-holding chamber, and investigational eFlow nebulizers, respectively (pmodel significantly lowered lung dose (pmodel and device residue (pmodel for infant aerosol inhalation, we confirmed low lung dose using jet nebulizers and pMDI-holding chambers, whereas newer, more specialized vibrating membrane devices, designed specifically for use in preterm infants, deliver up to 20 times more drug to the infant's lung.

  5. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.

    Science.gov (United States)

    Ratilal, Purnima; Andrews, Mark; Donabed, Ninos; Galinde, Ameya; Rappaport, Carey; Fenneman, Douglas

    2007-02-01

    An analytic model is developed for the time-dependent ultrasound field reflected off a randomly rough vibrating surface for a continuously scanning ultrasound vibrometer system in bistatic configuration. Kirchhoff's approximation to Green's theorem is applied to model the three-dimensional scattering interaction of the ultrasound wave field with the vibrating rough surface. The model incorporates the beam patterns of both the transmitting and receiving ultrasound transducers and the statistical properties of the rough surface. Two methods are applied to the ultrasound system for estimating displacement and velocity amplitudes of an oscillating surface: incoherent Doppler shift spectra and coherent interferometry. Motion of the vibrometer over the randomly rough surface leads to time-dependent scattering noise that causes a randomization of the received signal spectrum. Simulations with the model indicate that surface displacement and velocity estimation are highly dependent upon the scan velocity and projected wavelength of the ultrasound vibrometer relative to the roughness height standard deviation and correlation length scales of the rough surface. The model is applied to determine limiting scan speeds for ultrasound vibrometer measuring ground displacements arising from acoustic or seismic excitation to be used in acoustic landmine confirmation sensing.

  6. Micro-scale piezoelectric vibration energy harvesting: From fixed-frequency to adaptable-frequency devices

    Science.gov (United States)

    Miller, Lindsay Margaret

    Wireless sensor networks (WSNs) have the potential to transform engineering infrastructure, manufacturing, and building controls by allowing condition monitoring, asset tracking, demand response, and other intelligent feedback systems. A wireless sensor node consists of a power supply, sensor(s), power conditioning circuitry, radio transmitter and/or receiver, and a micro controller. Such sensor nodes are used for collecting and communicating data regarding the state of a machine, system, or process. The increasing demand for better ways to power wireless devices and increase operation time on a single battery charge drives an interest in energy harvesting research. Today, wireless sensor nodes are typically powered by a standard single-charge battery, which becomes depleted within a relatively short timeframe depending on the application. This introduces tremendous labor costs associated with battery replacement, especially when there are thousands of nodes in a network, the nodes are remotely located, or widely-distributed. Piezoelectric vibration energy harvesting presents a potential solution to the problems associated with too-short battery life and high maintenance requirements, especially in industrial environments where vibrations are ubiquitous. Energy harvester designs typically use the harvester to trickle charge a rechargeable energy storage device rather than directly powering the electronics with the harvested energy. This allows a buffer between the energy harvester supply and the load where energy can be stored in a "tank". Therefore, the harvester does not need to produce the full required power at every instant to successfully power the node. In general, there are tens of microwatts of power available to be harvested from ambient vibrations using micro scale devices and tens of milliwatts available from ambient vibrations using meso scale devices. Given that the power requirements of wireless sensor nodes range from several microwatts to about one

  7. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 1. Design of nanocomposite film-based plasmonic device for gas sensing ... A theoretical simulation study incorporating the use of admittance loci design methodology in SPR-based sensing device using gold-tungsten trioxide (Au-WO3−) nanocomposite ...

  8. In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection

    Science.gov (United States)

    Evans, III, Boyd McCutchen; Thundat, Thomas G.; Komistek, Richard D.; Dennis, Douglas A.; Mahfouz, Mohamed

    2006-08-29

    A device for providing in vivo diagnostics of loads, wear, and infection in orthopedic implants having at least one load sensor associated with the implant, at least one temperature sensor associated with the implant, at least one vibration sensor associated with the implant, and at least one signal processing device operatively coupled with the sensors. The signal processing device is operable to receive the output signal from the sensors and transmit a signal corresponding with the output signal.

  9. Novel High Temperature Materials for In-Situ Sensing Devices

    Energy Technology Data Exchange (ETDEWEB)

    Florian Solzbacher; Anil Virkar; Loren Rieth; Srinivasan Kannan; Xiaoxin Chen; Hannwelm Steinebach

    2009-12-31

    The overriding goal of this project was to develop gas sensor materials and systems compatible with operation at temperatures from 500 to 700 C. Gas sensors operating at these temperatures would be compatible with placement in fossil-energy exhaust streams close to the combustion chamber, and therefore have advantages for process regulation, and feedback for emissions controls. The three thrusts of our work included investigating thin film gas sensor materials based on metal oxide materials and electroceramic materials, and also development of microhotplate devices to support the gas sensing films. The metal oxide materials NiO, In{sub 2}O{sub 3}, and Ga{sub 2}O{sub 3} were investigated for their sensitivity to H{sub 2}, NO{sub x}, and CO{sub 2}, respectively, at high temperatures (T > 500 C), where the sensing properties of these materials have received little attention. New ground was broken in achieving excellent gas sensor responses (>10) for temperatures up to 600 C for NiO and In{sub 2}O{sub 3} materials. The gas sensitivity of these materials was decreasing as temperatures increased above 500 C, which indicates that achieving strong sensitivities with these materials at very high temperatures (T {ge} 650 C) will be a further challenge. The sensitivity, selectivity, stability, and reliability of these materials were investigated across a wide range of deposition conditions, temperatures, film thickness, as using surface active promoter materials. We also proposed to study the electroceramic materials BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} and BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} for their ability to detect H{sub 2}O and H{sub 2}S, respectively. This report focuses on the properties and gas sensing characteristics of BaZr{sub (1-x)}Y{sub x}O{sub (3-x/2)} (Y-doped BaZrO{sub 3}), as significant difficulties were encounter in generating BaCe{sub (2-x)}Ca{sub x}S{sub (4-x/2)} sensors. Significant new results were achieved for Y-doped BaZrO{sub 3}, including

  10. Analysis of vibration characteristics of opening device for deepwater robot cabin door and study of its structural optimization design

    Science.gov (United States)

    Zeng, Baoping; Liu, Jipeng; Zhang, Yu; Gong, Yajun; Hu, Sanbao

    2017-12-01

    Deepwater robots are important devices for human to explore the sea, which is being under development towards intellectualization, multitasking, long-endurance and large depth along with the development of science and technology. As far as a deep-water robot is concerned, its mechanical systems is an important subsystem because not only it influences the instrument measuring precision and shorten the service life of cabin devices but also its overlarge vibration and noise lead to disadvantageous effects to marine life within the operational area. Therefore, vibration characteristics shall be key factor for the deep-water robot system design. The sample collection and recycling system of some certain deepwater robot in a mechanism for opening the underwater cabin door for external operation and recycling test equipment is focused in this study. For improving vibration characteristics of locations of the cabin door during opening processes, a vibration model was established to the opening system; and the structural optimization design was carried out to its important structures by utilizing the multi-objective shape optimization and topology optimization method based on analysis of the system vibration. Analysis of characteristics of exciting forces causing vibration was first carried out, which include characteristics of dynamic loads within the hinge clearances and due to friction effects and the fluid dynamic exciting forces during processes of opening the cabin door. Moreover, vibration acceleration responses for a few important locations of the devices for opening the cabin cover were deduced by utilizing the modal synthesis method so that its rigidity and modal frequency may be one primary factor influencing the system vibration performances based on analysis of weighted acceleration responses. Thus, optimization design was carried out to the cabin cover by utilizing the multi-objective topology optimization method to perform reduction of weighted accelerations

  11. Vibration monitoring of long bridges and their expansion joints and seismic devices

    Directory of Open Access Journals (Sweden)

    Islami Kleidi

    2015-01-01

    Full Text Available This paper presents a number of recently installed Structural Health Monitoring (SHM systems: a on a 2km double suspension bridge; b on a long railway viaduct that has experienced cracking; and c on a steel arch bridge in a seismically active area. Damage detection techniques have been applied based on high-frequency measurements of vibrations, pressure and strain, enabling a proper understanding of the structures’ behaviour to be gained. The diverse range of applications presented, designed in collaboration with structure owners and design engineers, includes damage detection on expansion joints of suspension bridges, crack analysis and correlation with accelerations of high-speed trains, and high-frequency performance monitoring of seismic devices. These case studies, based on both static and dynamic approaches, demonstrate the usefulness and ease of use of such systems, and the enormous gains in efficiency they offer.

  12. Design and Experimental Characterization of a Vibration Energy Harvesting Device for Rotational Systems

    Directory of Open Access Journals (Sweden)

    Lutao Yan

    2013-01-01

    Full Text Available This paper presents a new vibration based electromagnetic power generator to transfer energy from stationary to rotating equipment, which can be a new attempt to substitute slip ring in rotational systems. The natural frequencies and modes are simulated in order to have a maximum and steady power output from the device. Parameters such as piezoelectric disk location and relative motion direction of the magnet are theoretically and experimentally analyzed. The results show that the position that is close to the fixed end of the cantilever and the relative motion along the long side gives higher power output. Moreover, the capability of the energy harvester to extract power from lower energy environment is experimentally validated. The voltage and power output are measured at different excitation frequencies.

  13. Photo-vibrational sensing of trace chemicals and explosives by long-distance differential laser Doppler vibrometer

    Science.gov (United States)

    Fu, Yu; Liu, Huan; Hu, Qi; Xie, Jiecheng

    2017-05-01

    Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. Normally high-sensitive microphone or PZT sensor is used to detect the signal in photoacoustic cell. In recent years, laser Doppler vibrometer (LDV) is proposed to remote-sense photoacoustic signal on various substrates. It is a highsensitivity sensor with a displacement resolution of laser (QCL) at their absorbance peak. A home-developed differential LDV at 1550nm wavelength is applied to detect the vibration signal at 100m. A differential configuration is applied to minimize the environment factors, such as environment noise and vibration, air turbulence, etc. and increase the detection sensitivity. The photo-vibrational signal of chemicals and explosives on different substrates are detected. The results show the potential of the proposed technique on detection of trace chemicals and explosives at long standoff distance.

  14. Update On Professionalism And Standards For Infrared Sensing Devices

    Science.gov (United States)

    Kantsios, Andronicos G.; Courville, George E.

    1984-03-01

    Infrared sensing may seem a relatively new scientific discipline but in reality the existence of infrared was noted as early as 1800 when Sir William Herschel wrote on the subject. He discovered the "invisible rays" as he called them while developing filters for protecting his eyes while observing the sun. Herschel described this effect in 1801 in two papers. The term "infrared" was not coined until the 1880's. The author of the term is not known but in Latin infra means below or beneath, possibly implying beneath the red. Using a prism and a sensitive mercury - in glass thermometer, William Herschel measured the radiation from fires, candles, and kitchen stoves demonstrating a detector able to measure radiation in this infrared region and raising questions about the connection between light and heat. In 1840, Herschel's son John developed a radiation detection process based on the differential evaporation of a thin film of oil to form a "heat picture." This process was improved by Czerny in 1929 and is still in use today as the "evaporagraph." In 1843 Becquerel found that certain materials phosphoresced when exposed to infrared radiation. During the 1880's several highly sensitive new detectors were developed most notable being the Langley bolometer. In 1901 Langley and Abbot reported the use of a bolometer that could detect the heat from a cow at a distance of 1/4 mile. Case in 1917 developed the thallous sulfide detector, the first use of the photoconductive effect in the infrared. Development continued in detector technology especially by the Germans during World War II. Following the war the efforts were on,radiometry. During the 1950's non-military applications for these devices grew rapidly'. Now, point radiometry is an established quantitative technology with thousands of units in place for remote temperature measurement and control. The instruments are calibrated for temperature with appropriate scale, emittance correction, voltage output, and internal

  15. Analysis of the detection materials as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations

    Science.gov (United States)

    Nedoma, Jan; Fajkus, Marcel; Martinek, Radek; Zboril, Ondrej; Bednarek, Lukas; Novak, Martin; Witas, Karel; Vasinek, Vladimir

    2017-05-01

    Fiber-optic sensors (FOS), today among the most widespread measuring sensors and during various types of measuring, are irreplaceable. Among the distinctive features include immunity to electromagnetic interference, passivity regarding power supply and high sensitivity. One of the representatives FOS is the interferometric sensors working on the principle of interference of light. Authors of this article focused on the analysis of the detection material as resonant pads for attaching the measuring arm of the interferometer when sensing mechanical vibrations (low frequencies). A typical example is the use of interferometer sensors in automobile traffic while sensing a vibration response from the roadway while passing the cars. For analysis was used sensor with Mach-Zehnder interferometer. Defined were different detection materials about different size and thickness. We analyzed the influence on the sensitivity (amplitude response) of the interferometer. Based on the results we have defined the best material for sensing mechanical vibrations. The signal was processed by applications created in LabView development environment. The results were verified by repeated testing in laboratory conditions.

  16. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  17. Sensing and Classifying Impairments of GPS Reception on Mobile Devices

    DEFF Research Database (Denmark)

    Blunck, Henrik; Kjærgaard, Mikkel Baun; Toftegaard, Thomas Skjødeberg

    2011-01-01

    Positioning using GPS receivers is a primary sensing modality in many areas of pervasive computing. However, previous work has not considered how people’s body impacts the availability and accuracy of GPS positioning and for means to sense such impacts. We present results that the GPS performance...... signal statistics. To help both users as well as application systems in understanding and mitigating body and environment-induced effects, we propose a method for sensing the current sources of GPS reception impairment in terms of body, urban and indoor conditions. We present results that show...... degradation on modern smart phones for different hand grip styles and body placements can cause signal strength drops as high as 10-16 dB and double the positioning error. Furthermore, existing phone applications designed to help users identify sources of GPS performance impairment are restricted to show raw...

  18. Fabrication and performance of pressure-sensing device consisting of electret film and organic semiconductor

    Science.gov (United States)

    Kodzasa, Takehito; Nobeshima, Daiki; Kuribara, Kazunori; Uemura, Sei; Yoshida, Manabu

    2017-04-01

    We propose a new concept of a pressure-sensitive device that consists of an organic electret film and an organic semiconductor. This device exhibits high sensitivity and selectivity against various types of pressure. The sensing mechanism of this device originates from a modulation of the electric conductivity of the organic semiconductor film induced by the interaction between the semiconductor film and the charged electret film placed face to face. It is expected that a complicated sensor array will be fabricated by using a roll-to-roll manufacturing system, because this device can be prepared by an all-printing and simple lamination process without high-level positional adjustment for printing processes. This also shows that this device with a simple structure is suitable for application to a highly flexible device array sheet for an Internet of Things (IoT) or wearable sensing system.

  19. Paper as a platform for sensing applications and other devices: a review.

    Science.gov (United States)

    Mahadeva, Suresha K; Walus, Konrad; Stoeber, Boris

    2015-04-29

    Paper is a ubiquitous material that has various applications in day to day life. A sheet of paper is produced by pressing moist wood cellulose fibers together. Paper offers unique properties: paper allows passive liquid transport, it is compatible with many chemical and biochemical moieties, it exhibits piezoelectricity, and it is biodegradable. Hence, paper is an attractive low-cost functional material for sensing devices. In recent years, researchers in the field of science and engineering have witnessed an exponential growth in the number of research contributions that focus on the development of cost-effective and scalable fabrication methods and new applications of paper-based devices. In this review article, we highlight recent advances in the development of paper-based sensing devices in the areas of electronics, energy storage, strain sensing, microfluidic devices, and biosensing, including piezoelectric paper. Additionally, this review includes current limitations of paper-based sensing devices and points out issues that have limited the commercialization of some of the paper-based sensing devices.

  20. Direct Nanoscale Sensing of the Internal Electric Field in Operating Semiconductor Devices Using Single Electron Spins.

    Science.gov (United States)

    Iwasaki, Takayuki; Naruki, Wataru; Tahara, Kosuke; Makino, Toshiharu; Kato, Hiromitsu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Hatano, Mutsuko

    2017-02-28

    The electric field inside semiconductor devices is a key physical parameter that determines the properties of the devices. However, techniques based on scanning probe microscopy are limited to sensing at the surface only. Here, we demonstrate the direct sensing of the internal electric field in diamond power devices using single nitrogen-vacancy (NV) centers. The NV center embedded inside the device acts as a nanoscale electric field sensor. We fabricated vertical diamond p-i-n diodes containing the single NV centers. By performing optically detected magnetic resonance measurements under reverse-biased conditions with an applied voltage of up to 150 V, we found a large splitting in the magnetic resonance frequencies. This indicated that the NV center senses the transverse electric field in the space-charge region formed in the i-layer. The experimentally obtained electric field values are in good agreement with those calculated by a device simulator. Furthermore, we demonstrate the sensing of the electric field in different directions by utilizing NV centers with different N-V axes. This direct and quantitative sensing method using an electron spin in a wide-band-gap material provides a way to monitor the electric field in operating semiconductor devices.

  1. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response

    Science.gov (United States)

    Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping

    2017-01-01

    A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.

  2. A low cycle fatigue test device for micro-cantilevers based on self-excited vibration principle.

    Science.gov (United States)

    Qi, Mingjing; Liu, Zhiwei; Yan, Xiaojun

    2014-10-01

    This paper reports a low-cycle fatigue test device for micro-cantilevers, which are widely used in micro scale structures. The working principle of the device is based on the phenomenon that a micro-cantilever can be set into self-excited vibration between two electrodes under DC voltage. Compared with previous devices, this simple device can produce large strain amplitude on non-notched specimens, and allows a batch of specimens to be tested simultaneously. Forty-two micro-cantilever specimens were tested and their fatigue fracture surfaces exhibit typical low cycle fatigue characteristics. As such, the device is very attractive for future fatigue investigation for micro scale structures.

  3. Analysis of the Suppression Device as Vortex Induced Vibration (VIV Reducer on Free Span using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Dwi Priyanta

    2016-12-01

    Full Text Available Subsea pipeline is a transportation infrastructure of oil and gas as an alternative for ship tanker. The uneven topography surface of the sea floor resulting the pipe undergoes free span. The free span is a condition endured by the pipe where the pipe position has  distance or gap with the seabed supported by two pivot. The free span is at risk of experiencing a vibration caused by the presence of dynamic load that is current and the wave. The vibration that occurs is the impact of the presence of the phenomenon of Vortex Induced Vibration (VIV. The Phenomenon Of VIV occur on a cylindrical component caused by ocean currents, causing the occurrence of vibration by the movement of fluid on the pipe so that it raises the vortex at the rear of the direction of oncoming flow. One way to dampen or reduce the impact of VIV is by adding suppresion device. VIV suppression device is a tool that is installed on the pipeline on offshore piping installationcthat serves to dampen or reduce the impact of VIV. One of the simulations used to know the characteristics of a fluid is to use (CFD Computational Fluid Dynamic. With the addition of suppression device can add the rest of the operating time on a free span of affected VIV, on the condition of free span critical exposed VIV (Vortex Induced Vibration value has a life time on plain pipe 44.21 years, on pipe with 53.09 years and Fairing on the pipe with the Helical strike 52.95 year.

  4. Monitoring elbow isometric contraction by novel wearable fabric sensing device

    Science.gov (United States)

    Wang, Xi; Tao, Xiaoming; So, Raymond C. H.; Shu, Lin; Yang, Bao; Li, Ying

    2016-12-01

    Fabric-based wearable technology is highly desirable in sports, as it is light, flexible, soft, and comfortable with little interference to normal sport activities. It can provide accurate information on the in situ deformation of muscles in a continuous and wireless manner. During elbow flexion in isometric contraction, upper arm circumference increases with the contraction of elbow flexors, and it is possible to monitor the muscles’ contraction by limb circumferential strains. This paper presents a new wireless wearable anthropometric monitoring device made from fabric strain sensors for the human upper arm. The materials, structural design and calibration of the device are presented. Using an isokinetic testing system (Biodex3®) and the fabric monitoring device simultaneously, in situ measurements were carried out on elbow flexors in isometric contraction mode with ten subjects for a set of positions. Correlations between the measured values of limb circumferential strain and normalized torque were examined, and a linear relationship was found during isometric contraction. The average correlation coefficient between them is 0.938 ± 0.050. This wearable anthropometric device thus provides a useful index, the limb circumferential strain, for upper arm muscle contraction in isometric mode.

  5. Sensing and detoxification devices in public building spaces

    DEFF Research Database (Denmark)

    Traberg-Borup, Steen; Gunnarsen, Lars Bo; Afshari, Alireza

    2008-01-01

    This paper describes commonly used ventilation principles and where sensig and detoxification devices could be integrated in public buidings in an effort to warn and protect citizens against surprise attacks by toxic agents. The release of toxic agents may be outdoors, in a single indoor spot...

  6. Chemical and biological sensing using tuning forks

    Science.gov (United States)

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  7. Optofluidic devices and methods for sensing single particles

    Science.gov (United States)

    Fernandez-Cuesta, Irene; Cabrini, Stefano

    2017-11-28

    This disclosure provides systems, methods, and apparatus related to optofluidic devices. In one aspect, an optofluidic device includes a substrate, a first nanostructure, a second nanostructure, and a cover. A channel having cross-sectional dimensions of less than about 100 nanometers is defined in a surface of the substrate. The first nanostructure is disposed on the substrate on a first side of the channel and proximate the channel. The second nanostructure is disposed on the substrate on a second side of the channel and proximate the channel. The first and the second nanostructures are disposed on a line that passes across the channel. The cover is disposed on the surface of the substrate.

  8. Thin Film Materials and Devices for Resistive Temperature Sensing Applications

    Science.gov (United States)

    2015-05-21

    is based on the phenomenon known as the Seebeck effect . Named after the T. Seebeck who first observed this effect , he noted that there is a current...this effect is known as the thermal electromotive force. A device which uses the Seebeck effect for the measurement of temperature is known as a...21 Figure 2-7. Graph showing the effect of total deposition pressure on TCR and resistivity of deposited pm-Ge:H thin films

  9. Hydrogenated - Metal Oxide Nanohybrids: AN Inventiveness Plinth for Sensing Devices

    Science.gov (United States)

    Baraneedharan, P.; Ramaprabhu, S.

    Graphene- a two dimensional sheet of sp2 hybridized carbon atoms has been considered as promising materials in sensor design for detection of target molecule. Charge carriers in graphene obey linear dispersion relation and it behaves like mass less relativistic particles which act as base for enhanced electron transport. Thus the electrons move ballistically without scattering giving higher mobility even at room temperature. Further, the presence of oxygen containing functional group and crystal defects assisted via hydrogenation process take vital part in electrochemical adsorption of electro active species and catalyses the same. Though issues with selectivity, stability and sensitivity are limited for several nanostructured metal oxides sensing, the hybrid system started its effective role in design of sensing platform. Thus considering the potential important of hydrogenated graphene -metal oxide systems, a nanohybrid system is developed and its structural, morphological and optical properties were understood using respective characterization tool. Further, the prepared hybrid nanosystem used as a platform for bimolecule detection, where the sensor exhibits higher range of sensitivity and selectivity.

  10. Love-Mode MEMS Devices for Sensing Applications in Liquids

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2016-01-01

    Full Text Available Love-wave-based MEMS devices are theoretically investigated in their potential role as a promising technological platform for the development of acoustic-wave-based sensors for liquid environments. Both single- and bi-layered structures have been investigated and the velocity dispersion curves were calculated for different layer thicknesses, crystallographic orientations, material types and electrical boundary conditions. High velocity materials have been investigated too, enabling device miniaturization, power consumption reduction and integration with the conditioning electronic circuits. The electroacoustic coupling coefficient dispersion curves of the first four Love modes are calculated for four dispersive coupling configurations based on a c-axis tilted ZnO layer on wz-BN substrate. The gravimetric sensitivity of four Love modes travelling at a common velocity of 9318 m/s along different layer thicknesses, and of three Love modes travelling at different velocity along a fixed ZnO layer thickness, are calculated in order to design enhanced-performance sensors. The phase velocity shift and attenuation due to the presence of a viscous liquid contacting the device surface are calculated for different thicknesses of a c-axis inclined ZnO layer onto BN half-space.

  11. Acoustic Devices for Particle and Cell Manipulation and Sensing

    Directory of Open Access Journals (Sweden)

    Yongqiang Qiu

    2014-08-01

    Full Text Available An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.

  12. Streamlining machine learning in mobile devices for remote sensing

    Science.gov (United States)

    Coronel, Andrei D.; Estuar, Ma. Regina E.; Garcia, Kyle Kristopher P.; Dela Cruz, Bon Lemuel T.; Torrijos, Jose Emmanuel; Lim, Hadrian Paulo M.; Abu, Patricia Angela R.; Victorino, John Noel C.

    2017-09-01

    Mobile devices have been at the forefront of Intelligent Farming because of its ubiquitous nature. Applications on precision farming have been developed on smartphones to allow small farms to monitor environmental parameters surrounding crops. Mobile devices are used for most of these applications, collecting data to be sent to the cloud for storage, analysis, modeling and visualization. However, with the issue of weak and intermittent connectivity in geographically challenged areas of the Philippines, the solution is to provide analysis on the phone itself. Given this, the farmer gets a real time response after data submission. Though Machine Learning is promising, hardware constraints in mobile devices limit the computational capabilities, making model development on the phone restricted and challenging. This study discusses the development of a Machine Learning based mobile application using OpenCV libraries. The objective is to enable the detection of Fusarium oxysporum cubense (Foc) in juvenile and asymptomatic bananas using images of plant parts and microscopic samples as input. Image datasets of attached, unattached, dorsal, and ventral views of leaves were acquired through sampling protocols. Images of raw and stained specimens from soil surrounding the plant, and sap from the plant resulted to stained and unstained samples respectively. Segmentation and feature extraction techniques were applied to all images. Initial findings show no significant differences among the different feature extraction techniques. For differentiating infected from non-infected leaves, KNN yields highest average accuracy, as opposed to Naive Bayes and SVM. For microscopic images using MSER feature extraction, KNN has been tested as having a better accuracy than SVM or Naive-Bayes.

  13. Approach for a smart device for active vibration suppression as an add-on for robot-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Perner, Marcus; Krombholz, Christian; Monner, Hans Peter [Institute of Composite Structures and Adaptive Systems, Braunschweig (Germany)

    2014-11-15

    Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.

  14. Intelligent Balanced Device and its Sensing System for Beam Pumping Units

    Directory of Open Access Journals (Sweden)

    Hangxin WEI

    2014-11-01

    Full Text Available In order to save the energy of the beam pumping unit, the intelligent balanced device was developed. The device can adjust the position of the balanced-block automatically by the single chip microcomputer controller, and the fuzzy PD control algorithm was used to control the servo motor of the device. Since some signals should be inputted into the intelligent balanced device to calculate the balanced index of the pumping unit, the signals sensing system were designed. The sensing system includes the electric current sensor and voltage sensor of the main motor, the displacement sensor and the force sensor of the horse head. The sensing network has three layers: slave station, relay station and master station. The data transmission between them is based on ZigBee and GPRS method which can adapt the environment of the oil field. The results of application show that the intelligent balanced device and its sensing system can have the effect of reducing the power consumption, working reliability and communication efficiently.

  15. UV plasmonic device for sensing ethanol and acetone

    Science.gov (United States)

    Honda, Mitsuhiro; Ichikawa, Yo; Rozhin, Alex G.; Kulinich, Sergei A.

    2018-01-01

    In the present study, we demonstrate efficient detection of volatile organic vapors with improved sensitivity, exploiting the localized surface plasmon resonance of indium nanograins in the UV range (UV-LSPR). The sensitivity of deep-UV-LSPR measurements toward ethanol was observed to be 0.004 nm/ppm, which is 10 times higher than that of a previously reported visible-LSPR device based on Ag nanoprisms [Sensors 11, 8643 (2011)]. Although practical issues such as improving detection limits are still remaining, the results of the present study suggest that the new approach based on UV-LSPR may open new avenues to the detection of organic molecules in solid, liquid, and gas phases using plasmonic sensors.

  16. Hydrothermal growth of titania nanowires for SAW device sensing area

    Science.gov (United States)

    Rosydi Zakaria, Mohd; Ayub, Sh. Nadzirah S.; Hafiz Ismail, Mohd; Johari, Shazlina; Hashim, Uda

    2017-11-01

    Synthesis of titania or titanium dioxide (TiO2) is attracted to energy and environmental applications. Here, the growth of nanostructure TiO2 nanowires on Si (100) substrates by using the two-step method. Different seed layers of TiO2 were deposited by spin coating and annealing, followed by the growth of TiO2 nanowires by using the hydrothermal method. The sol-gel technique was used in preparing the TiO2 solution for the thin film deposition purpose. Acetic acid, hydrochloric acid and tris (2-aminoethyl) amine were used as a stabilizer to synthesize three different TiO2 seed layers. The aim of this study was to understand the role of polycrystalline size on thin film towards the diameter of nanowires grown as a sensing area in Surface Acoustic Wave (SAW) Biosensor. The morphology and structure of the thin film and TiO2 nanowires were characterized using X-Ray diffraction (XRD), scanning electron microscope (SEM), field emission scanning electron microscope (FESEM) and atomic force microscopy (AFM).

  17. Harvesting vibrational energy due to intermodal systems via nano coated piezo electric devices.

    Science.gov (United States)

    2015-12-01

    Vibrational energy resulting from intermodal transport systems can be recovered through the use of energy harvesting system consisting of PZT piezo electric material as the primary energy harvesting component. The ability of traditional PZT piezo ele...

  18. ER fluid applications to vibration control devices and an adaptive neural-net controller

    Science.gov (United States)

    Morishita, Shin; Ura, Tamaki

    1993-07-01

    Four applications of electrorheological (ER) fluid to vibration control actuators and an adaptive neural-net control system suitable for the controller of ER actuators are described: a shock absorber system for automobiles, a squeeze film damper bearing for rotational machines, a dynamic damper for multidegree-of-freedom structures, and a vibration isolator. An adaptive neural-net control system composed of a forward model network for structural identification and a controller network is introduced for the control system of these ER actuators. As an example study of intelligent vibration control systems, an experiment was performed in which the ER dynamic damper was attached to a beam structure and controlled by the present neural-net controller so that the vibration in several modes of the beam was reduced with a single dynamic damper.

  19. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    NARCIS (Netherlands)

    Eker, B.; Yilmaz, M.D.; Schlautmann, Stefan; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2011-01-01

    A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax

  20. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching...

  1. Pixel-Level and Robust Vibration Source Sensing in High-Frame-Rate Video Analysis

    Directory of Open Access Journals (Sweden)

    Mingjun Jiang

    2016-11-01

    Full Text Available We investigate the effect of appearance variations on the detectability of vibration feature extraction with pixel-level digital filters for high-frame-rate videos. In particular, we consider robust vibrating object tracking, which is clearly different from conventional appearance-based object tracking with spatial pattern recognition in a high-quality image region of a certain size. For 512 × 512 videos of a rotating fan located at different positions and orientations and captured at 2000 frames per second with different lens settings, we verify how many pixels are extracted as vibrating regions with pixel-level digital filters. The effectiveness of dynamics-based vibration features is demonstrated by examining the robustness against changes in aperture size and the focal condition of the camera lens, the apparent size and orientation of the object being tracked, and its rotational frequency, as well as complexities and movements of background scenes. Tracking experiments for a flying multicopter with rotating propellers are also described to verify the robustness of localization under complex imaging conditions in outside scenarios.

  2. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Science.gov (United States)

    Sasaki, S.; Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T.; Kawai, N.; Yasui, K.

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  3. Origami microfluidic paper-analytical-devices (omPAD) for sensing and diagnostics.

    Science.gov (United States)

    Punjiya, Meera; Chung Hee Moon; Yu Chen; Sonkusale, Sameer

    2016-08-01

    Recent research activities in the area of low-cost sensing and diagnostics that are realized on cellulosic paper substrate are presented. First a three-dimensional origami paper-based analytical device (omPAD) with multiple electrochemical sensors, an integrated sample reservoir and tight integration with a custom CMOS potentiostat is presented. Second, an optical sensor array with built-in microfluidic channel for sample delivery is presented. The sensors are fabricated using a combination of wax printing and screen-printing using a solution based approach in ambient conditions without the need for expensive fabrication equipment or a cleanroom. Readout is based on using existing consumer grade electronic devices like flatbed scanner (for optical sensor) or custom designed CMOS potentiostat (for electrochemical sensors). Together the 3D paper-based analytical device with integrated sensor, microfluidics and portable readout instrumentation demonstrates a low-cost, self-contained system suitable for sensing and point-of-care diagnostics.

  4. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    Directory of Open Access Journals (Sweden)

    Randy L. Vander Wal

    2009-09-01

    Full Text Available A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC, controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems.

  5. Monitoring Vibration of A Model of Rotating Machine

    Directory of Open Access Journals (Sweden)

    Arko Djajadi

    2012-03-01

    Full Text Available Mechanical movement or motion of a rotating machine normally causes additional vibration. A vibration sensing device must be added to constantly monitor vibration level of the system having a rotating machine, since the vibration frequency and amplitude cannot be measured quantitatively by only sight or touch. If the vibration signals from the machine have a lot of noise, there are possibilities that the rotating machine has defects that can lead to failure. In this experimental research project, a vibration structure is constructed in a scaled model to simulate vibration and to monitor system performance in term of vibration level in case of rotation with balanced and unbalanced condition. In this scaled model, the output signal of the vibration sensor is processed in a microcontroller and then transferred to a computer via a serial communication medium, and plotted on the screen with data plotter software developed using C language. The signal waveform of the vibration is displayed to allow further analysis of the vibration. Vibration level monitor can be set in the microcontroller to allow shutdown of the rotating machine in case of excessive vibration to protect the rotating machine from further damage. Experiment results show the agreement with theory that unbalance condition on a rotating machine can lead to larger vibration amplitude compared to balance condition. Adding and reducing the mass for balancing can be performed to obtain lower vibration level. 

  6. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  7. Wireless sensing and vibration control with increased redundancy and robustness design.

    Science.gov (United States)

    Li, Peng; Li, Luyu; Song, Gangbing; Yu, Yan

    2014-11-01

    Control systems with long distance sensor and actuator wiring have the problem of high system cost and increased sensor noise. Wireless sensor network (WSN)-based control systems are an alternative solution involving lower setup and maintenance costs and reduced sensor noise. However, WSN-based control systems also encounter problems such as possible data loss, irregular sampling periods (due to the uncertainty of the wireless channel), and the possibility of sensor breakdown (due to the increased complexity of the overall control system). In this paper, a wireless microcontroller-based control system is designed and implemented to wirelessly perform vibration control. The wireless microcontroller-based system is quite different from regular control systems due to its limited speed and computational power. Hardware, software, and control algorithm design are described in detail to demonstrate this prototype. Model and system state compensation is used in the wireless control system to solve the problems of data loss and sensor breakdown. A positive position feedback controller is used as the control law for the task of active vibration suppression. Both wired and wireless controllers are implemented. The results show that the WSN-based control system can be successfully used to suppress the vibration and produces resilient results in the presence of sensor failure.

  8. Novel Developments of Mobile Sensing Based on the Integration of Microfluidic Devices and Smartphone

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-01-01

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS2) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS2 offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS2 in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS2 enables applications to remote infield testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS2 by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field. PMID:26899264

  9. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones.

    Science.gov (United States)

    Yang, Ke; Peretz-Soroka, Hagit; Liu, Yong; Lin, Francis

    2016-03-21

    Portable electronic devices and wireless communication systems enable a broad range of applications such as environmental and food safety monitoring, personalized medicine and healthcare management. Particularly, hybrid smartphone and microfluidic devices provide an integrated solution for the new generation of mobile sensing applications. Such mobile sensing based on microfluidic devices (broadly defined) and smartphones (MS(2)) offers a mobile laboratory for performing a wide range of bio-chemical detection and analysis functions such as water and food quality analysis, routine health tests and disease diagnosis. MS(2) offers significant advantages over traditional platforms in terms of test speed and control, low cost, mobility, ease-of-operation and data management. These improvements put MS(2) in a promising position in the fields of interdisciplinary basic and applied research. In particular, MS(2) enables applications to remote in-field testing, homecare, and healthcare in low-resource areas. The marriage of smartphones and microfluidic devices offers a powerful on-chip operating platform to enable various bio-chemical tests, remote sensing, data analysis and management in a mobile fashion. The implications of such integration are beyond telecommunication and microfluidic-related research and technology development. In this review, we will first provide the general background of microfluidic-based sensing, smartphone-based sensing, and their integration. Then, we will focus on several key application areas of MS(2) by systematically reviewing the important literature in each area. We will conclude by discussing our perspectives on the opportunities, issues and future directions of this emerging novel field.

  10. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring

    Science.gov (United States)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao

    2017-09-01

    High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.

  11. Feature extraction and identification in distributed optical-fiber vibration sensing system for oil pipeline safety monitoring

    Science.gov (United States)

    Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao

    2017-12-01

    High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.

  12. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides.

    Science.gov (United States)

    Keiderling, Timothy A

    2017-10-04

    Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site-specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini-review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. © 2017 Wiley Periodicals, Inc.

  13. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration.

    Science.gov (United States)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong

    2015-01-01

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid's dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10-400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer's reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam's mechanical properties.

  14. Sensing of fluid viscoelasticity from piezoelectric actuation of cantilever flexural vibration

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeongwon; Jeong, Seongbin; Kim, Seung Joon; Park, Junhong, E-mail: parkj@hanyang.ac.kr [Department of Mechanical Convergence Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-01-15

    An experimental method is proposed to measure the rheological properties of fluids. The effects of fluids on the vibration actuated by piezoelectric patches were analyzed and used in measuring viscoelastic properties. Fluid-structure interactions induced changes in the beam vibration properties and frequency-dependent variations of the complex wavenumber of the beam structure were used in monitoring these changes. To account for the effects of fluid-structure interaction, fluids were modelled as a simple viscoelastic support at one end of the beam. The measured properties were the fluid’s dynamic shear modulus and loss tangent. Using the proposed method, the rheological properties of various non-Newtonian fluids were measured. The frequency range for which reliable viscoelasticity results could be obtained was 10–400 Hz. Viscosity standard fluids were tested to verify the accuracy of the proposed method, and the results agreed well with the manufacturer’s reported values. The simple proposed laboratory setup for measurements was flexible so that the frequency ranges of data acquisition were adjustable by changing the beam’s mechanical properties.

  15. A Framework for Occupancy Tracking in a Building via Structural Dynamics Sensing of Footstep Vibrations

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Poston

    2017-11-01

    Full Text Available Counting the number of occupants in building areas over time—occupancy tracking—provides valuable information for responding to emergencies, optimizing thermal conditions or managing personnel. This capability is distinct from tracking individual building occupants as they move within a building, has lower complexity than conventional tracking algorithms require, and avoids privacy concerns that tracking individuals may pose. The approach proposed here is a novel combination of data analytics applied to measurements from a building’s structural dynamics sensors (e.g., accelerometers or geophones. Specifically, measurements of footstep-generated structural waves provide evidence of occupancy in a building area. These footstep vibrations can be distinguished from other vibrations, and, once identified, the footsteps can be located. These locations, in turn, form the starting point of estimating occupancy in an area. In order to provide a meaningful occupancy count, however, it is first necessary to associate discrete footsteps with individuals. The proposed framework incorporates a tractable algorithm for this association task. The proposed algorithms operate online, updating occupancy count over time as new footsteps are detected. Experiments with measurements from a public building illustrate the operation of the proposed framework. This approach offers an advantage over others based on conventional technologies by avoiding the cost of a separate sensor system devoted to occupancy tracking.

  16. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch

    Directory of Open Access Journals (Sweden)

    Yi-Chun Du

    2016-06-01

    Full Text Available Hemodialysis (HD is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  17. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.

    Science.gov (United States)

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-06-09

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  18. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    Directory of Open Access Journals (Sweden)

    Tien-Wei Shyr

    2014-02-01

    Full Text Available In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements.

  19. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements

    Science.gov (United States)

    Shyr, Tien-Wei; Shie, Jing-Wen; Jiang, Chang-Han; Li, Jung-Jen

    2014-01-01

    In this work a wearable gesture sensing device consisting of a textile strain sensor, using elastic conductive webbing, was designed for monitoring the flexion angle of elbow and knee movements. The elastic conductive webbing shows a linear response of resistance to the flexion angle. The wearable gesture sensing device was calibrated and then the flexion angle-resistance equation was established using an assembled gesture sensing apparatus with a variable resistor and a protractor. The proposed device successfully monitored the flexion angle during elbow and knee movements. PMID:24577526

  20. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.

    Science.gov (United States)

    Grosu, Victor; Grosu, Svetlana; Vanderborght, Bram; Lefeber, Dirk; Rodriguez-Guerrero, Carlos

    2017-06-05

    Human-robot interaction sensing is a compulsory feature in modern robotic systems where direct contact or close collaboration is desired. Rehabilitation and assistive robotics are fields where interaction forces are required for both safety and increased control performance of the device with a more comfortable experience for the user. In order to provide an efficient interaction feedback between the user and rehabilitation device, high performance sensing units are demanded. This work introduces a novel design of a multi-axis force sensor dedicated for measuring pelvis interaction forces in a rehabilitation exoskeleton device. The sensor is conceived such that it has different sensitivity characteristics for the three axes of interest having also movable parts in order to allow free rotations and limit crosstalk errors. Integrated sensor electronics make it easy to acquire and process data for a real-time distributed system architecture. Two of the developed sensors are integrated and tested in a complex gait rehabilitation device for safe and compliant control.

  1. Optimization design of a Lamb wave device for density sensing of nonviscous liquid.

    Science.gov (United States)

    Chen, Zhijun; Li, Lianger; Shi, Wenkang; Guo, Huawei

    2007-10-01

    A Lamb wave device composed of a piezoelectric plate loaded with a nonviscous liquid layer is presented. The relation between the Lamb wave phase velocity and the liquid density can be used for liquid density sensing. In this paper, utilizing the partial wave theory, the concept of effective permittivity is introduced to analyze the Lamb wave's excitation and the phase velocity calculation under a certain liquid density. The interface between the Lamb wave device and the liquid layer is metallized to eliminate the influence of liquid electrical properties when sensing liquid density. Based on the theory model, the phase difference measurement method is adopted to study the device's sensitivity to liquid density. In order to achieve high sensitivity to liquid density with sufficient excitation efficiency of Lamb wave, the optimal parameters of the Lamb wave device including plate thickness and cut orientation are obtained by numerical calculation. The experimental results are found to be in agreement with the theoretical simulations, verifying the validity of the theory model and the practicability of the optimization design.

  2. Mid-infrared materials and devices on a Si platform for optical sensing.

    Science.gov (United States)

    Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M

    2014-02-01

    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors.

  3. Ambient vibration monitoring of slender structures by microwave interferometer remote sensing

    Science.gov (United States)

    Gikas, Vassilis

    2012-11-01

    This paper examines the potential of microwave radar interferometry for monitoring the dynamic behaviour of large civil engineering works. It provides an overview of the method, its principles of operation with particular emphasis given on the IBIS-S system. Two areas of application are considered and the results of the analyses are presented and discussed. The first experimental study involves the monitoring of the dynamic response of a tall power plant chimney due to wind load. The second example examines the dynamic behaviour of a long cable-stayed bridge. In this case, the focus is placed on the effects that individual traffic events impose on the vibration response of the main span of the bridge deck and the bridge pylons. Analysis of the results provides detailed displacement time-histories and the dominant frequencies observed at the top of the chimney and along the bridge deck and the top of the towers. Also, cross-comparisons and discussions with the results obtained at the same structures using different sensor configurations are provided.

  4. Physiologically Modulating Videogames or Simulations which Use Motion-Sensing Input Devices

    Science.gov (United States)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Blanson, Nina Marie (Inventor)

    2017-01-01

    New types of controllers allow a player to make inputs to a video game or simulation by moving the entire controller itself or by gesturing or by moving the player's body in whole or in part. This capability is typically accomplished using a wireless input device having accelerometers, gyroscopes, and a camera. The present invention exploits these wireless motion-sensing technologies to modulate the player's movement inputs to the videogame based upon physiological signals. Such biofeedback-modulated video games train valuable mental skills beyond eye-hand coordination. These psychophysiological training technologies enhance personal improvement, not just the diversion, of the user.

  5. Distributed acoustic and vibration sensing via optical fractional Fourier transform reflectometry.

    Science.gov (United States)

    Shiloh, Lihi; Eyal, Avishay

    2015-02-23

    Distributed acoustic sensing has been traditionally implemented using optical reflectometry. Here we describe an alternative to the common interrogation approaches. According to the new method the frequency of the source is varied sinusoidally with time. For a sufficiently high scan frequency there is a position along the fiber,  z(0), for which the roundtrip time is half the scan period. Back-reflections from this point will generate a linear chirp at the receiver output. The Fractional Fourier Transform (FrFT) is used to analyze the receiver output and yields the reflection profile at z(0) and its vicinity. The method, which enables high spatial resolution at long distances with high scan rates, is demonstrated by detecting deliberate perturbations in the Rayleigh backscatter profile at the end of a 20km fiber with a scanning frequency of ~2.5kHz. The spatial resolution at this range and scan-rate is characterized by a measurement of the backscatter profile from a FBG's-array and is found to be ~2.8m.

  6. Flexible Polymer Device Based on Parylene-C with Memory and Temperature Sensing Functionalities

    Directory of Open Access Journals (Sweden)

    Min Lin

    2017-07-01

    Full Text Available Polychloro-para-xylylene (parylene-C is a flexible and transparent polymer material which has excellent chemical stability and high biocompatibility. Here we demonstrate a polymer device based on single-component parylene-C with memory and temperature sensing functionalities. The device shows stable bipolar resistive switching behavior, remarkable storage window (>104, and low operation voltages, exhibiting great potential for flexible resistive random-access memory (RRAM applications. The I-V curves and conductive atomic force microscopy (CAFM results verify the metallic filamentary-type switching mechanism based on the formation and dissolution of a metal bridge related to the redox reaction of the active metal electrode. In addition, due to the metallic properties of the low-resistance state (LRS in the polymer device, the resistance in the LRS exhibits a nearly linear relationship at the temperature regime between 25 °C and 100 °C. With a temperature coefficient of resistance (TCR of 2.136 × 10−3/°C, the device is also promising for the flexible temperature sensor applications.

  7. A fully automated colorimetric sensing device using smartphone for biomolecular quantification

    Science.gov (United States)

    Dutta, Sibasish; Nath, Pabitra

    2017-03-01

    In the present work, the use of smartphone for colorimetric quantification of biomolecules has been demonstrated. As a proof-of-concept, BSA protein and carbohydrate have been used as biomolecular sample. BSA protein and carbohydrate at different concentrations have been treated with Lowry's reagent and Anthrone's reagent respectively . The change in color of the reagent-treated samples at different concentrations have been recorded with the camera of a smartphone in combination with a custom designed optomechanical hardware attachment. This change in color of the reagent-treated samples has been correlated with color channels of two different color models namely RGB (Red Green Blue) and HSV (Hue Saturation and Value) model. In addition to that, the change in color intensity has also been correlated with the grayscale value for each of the imaged sample. A custom designed android app has been developed to quantify the bimolecular concentration and display the result in the phone itself. The obtained results have been compared with that of standard spectrophotometer usually considered for the purpose and highly reliable data have been obtained with the designed sensor. The device is robust, portable and low cost as compared to its commercially available counterparts. The data obtained from the sensor can be transmitted to anywhere in the world through the existing cellular network. It is envisioned that the designed sensing device would find wide range of applications in the field of analytical and bioanalytical sensing research.

  8. A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water

    Directory of Open Access Journals (Sweden)

    Xinyan Zhao

    2013-12-01

    Full Text Available A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+, zinc (Zn2+, potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety.

  9. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ruby Ghosh; Reza Loloee; Roger Tobin

    2008-09-30

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device, Pt/SiO{sub 2}/SiC that can detect hydrogen-containing species in chemically reactive, high temperature (600 C) environments. We demonstrate that the device can be used as a hydrogen monitor in syngas applications of common interferants as well as sulfur and water vapor. These measurements were made in the Catalyst Screening Unit at NETL, Morgantown under atmospheric conditions. The sensor response to hydrogen gas at 350 C is 240 mV/decade, this is significantly higher than the device response to room temperature gas or that predicted from vacuum chamber studies. The enhanced catalytic activity of the platinum sensing film under energy plant operating conditions was investigated via AFM, x-ray diffraction, TEM and x-ray photoelectron spectroscopy. Our characterization indicated that exposure to high temperature gases significantly modifies the morphology of the Pt catalytic film and the Pt/SiO{sub 2} interfacial region, which we tentatively attribute to the enhanced hydrogen sensitivity of the sensing film. A model for the hydrogen/oxygen response of the SiC device under atmospheric conditions was developed. It is based on two independent phenomena: a chemically induced shift in the metal-semiconductor work function difference and the passivation/creation of charged states at the SiO{sub 2}-SiC interface. The optimum operating set point for the SiC sensor with respect to response time and long term reliability was determined to be close to mid-gap. Ultrahigh vacuum (UHV) techniques were used to investigate the effects of sulfur contamination on the Pt gate. Exposure to hydrogen sulfide, even in the presence of hydrogen or oxygen at partial pressures of 20-600 times greater than the H2S level, rapidly coated the gate with a monolayer of sulfur. Although

  10. Analysis and Modelling towards Hybrid Piezo-Electromagnetic Vibrating Energy Harvesting Devices

    Science.gov (United States)

    Reuschel, Torsten; Salehian, Armaghan

    2011-11-01

    The efficiency of mobile electrical devices increased over the last years. Self-supply by harvesting ambient energy became a possibility of reducing operational costs by ruling out the need of battery replacement. Many energy harvesting devices employ cantilever configurations with base excitation to increase the effective displacement. The proposed design extends this design with an electromagnetic harvesting device (EMH) placed at its tip. It features an alternating stack of magnets with opposing poles and discs of highly permeable material. The composite cylinder is encircled by coils. This EMH design has successfully been employed for ocean wave harvesting and vehicle suspension systems. Its efficiency with respect to mass and energy output is compared to a previously published design using a single magnet placed at the tip moving within a coil. There exists proof that combining readily available technologies into a so-called coupled or hybrid design can increase the efficiency in comparison to respective stand-alone designs. Once the model for the proposed design is derived and evaluated, it is extended by a cantilevered excitation. Piezoelectric layers for hybrid harvesting may be included in future research.

  11. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations.

    Science.gov (United States)

    Lu, Ganhua; Park, Sungjin; Yu, Kehan; Ruoff, Rodney S; Ocola, Leonidas E; Rosenmann, Daniel; Chen, Junhong

    2011-02-22

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO(2) in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  12. Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, G.; Park, S.; Ruoff, R. S.; Ocola, L. E.; Chen, J. (Center for Nanoscale Materials); (Univ. of Wisconsin); (Univ. of Texas)

    2011-01-01

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO{sub 2} in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  13. Toward practical gas sensing with highly reduced graphene oxide : a new signal processing method to circumvent run-to-run and device-to-device variations.

    Energy Technology Data Exchange (ETDEWEB)

    Ocola, L. E.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J.; Univ. of Wisconsin at Milwaukee; Univ. of Texas at Austin

    2011-01-04

    Graphene is worth evaluating for chemical sensing and biosensing due to its outstanding physical and chemical properties. We first report on the fabrication and characterization of gas sensors using a back-gated field-effect transistor platform with chemically reduced graphene oxide (R-GO) as the conducting channel. These sensors exhibited a 360% increase in response when exposed to 100 ppm NO{sub 2} in air, compared with thermally reduced graphene oxide sensors we reported earlier. We then present a new method of signal processing/data interpretation that addresses (i) sensing devices with long recovery periods (such as required for sensing gases with these R-GO sensors) as well as (ii) device-to-device variations. A theoretical analysis is used to illuminate the importance of using the new signal processing method when the sensing device suffers from slow recovery and non-negligible contact resistance. We suggest that the work reported here (including the sensor signal processing method and the inherent simplicity of device fabrication) is a significant step toward the real-world application of graphene-based chemical sensors.

  14. Development of a paper-based carbon nanotube sensing microfluidic device for biological detection.

    Science.gov (United States)

    Yang, Shih-I; Lei, Kin Fong; Tsai, Shiao-Wen; Hsu, Hsiao-Ting

    2013-01-01

    Carbon nanotube (CNT) has been utilized for the biological detection due to its extremely sensitive to biological molecules. A paper-based CNT sensing microfluidic device has been developed for the detection of protein, i.e., biotin-avidin, binding. We have developed a fabrication method that allows controlled deposition of bundled CNTs with well-defined dimensions to form sensors on paper. Then, polydimethyl siloxane (PDMS) was used to pattern the hydrophobic boundary on paper to form the reaction sites. The proposed fabrication method is based on vacuum filtration process with a metal mask covering on a filter paper for the definition of the dimension of sensor. The length, width, and thickness of the CNT-based sensors are readily controlled by the metal mask and the weight of the CNT powder used during the filtration process, respectively. Homogeneous deposition of CNTs with well-defined dimensions can be achieved. The CNT-based sensor on paper has been demonstrated on the detection of the protein binding. Biotin was first immobilized on the CNT's sidewall and avidin suspended solution was applied to the site. The result of the biotin-avidin binding was measured by the resistance change of the sensor, which is a label-free detection method. It showed the CNT is sensitive to the biological molecules and the proposed paper-based CNT sensing device is a possible candidate for point-of-care biosensors. Thus, electrical bio-assays on paper-based microfluidics can be realized to develop low cost, sensitive, and specific diagnostic devices.

  15. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2018-01-01

    Full Text Available Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode. Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  16. Sensing Performance Analysis on Quartz Tuning Fork-Probe at the High Order Vibration Mode for Multi-Frequency Scanning Probe Microscopy.

    Science.gov (United States)

    Zhang, Xiaofei; Gao, Fengli; Li, Xide

    2018-01-24

    Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.

  17. Performance and acceptability of a combined device for insulin infusion and glucose sensing in the home setting

    DEFF Research Database (Denmark)

    Nørgaard, K.; Shin, J.; Welsh, J. B.

    2015-01-01

    The use of sensor-augmented insulin pump (SAP) therapy is increasing. Currently, glucose sensors and insulin infusion cannulas are inserted separately. A new device, MiniMed Duo, combines sensing and infusion capabilities on the same platform and is intended to simplify device insertion and site...... connected to insulin pumps over 15 days (3 days/device) and test capillary blood glucose (SMBG) 7 times/day. The primary endpoint was the percentage of sensor-SMBG paired values within 20% of one another. Subject experiences were assessed via questionnaires. Overall, 74.8% of sensor-SMBG paired values were...... management. We evaluated the device's performance with respect to insulin delivery and glucose sensing, and its acceptability with patients. Forty-five patients (mean +/- SD age, 45.5 +/- 10.9 years, 48% female) with type 1 diabetes and previous use of SAP participated. Each subject was to wear 5 devices...

  18. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  19. Arch-Shaped triboelectric nanogenerator as a facile device for water-wave vibrational energy

    Science.gov (United States)

    Ko, Young Joon; Kim, Hyun Soo; Jung, Jong Hoon

    2017-11-01

    We report an arch-shaped triboelectric nanogenerator (A-TENG) as for a simple and effective water-wave energy harvesting device. The A-TENG consists of arch-shaped polyethylene terephthalate (PET) polymer film and flat Al metal electrode. Especially, the arch-shape of PET provides an inherent restoring force after the contact with Al; which significantly reduces the weight and volume of the TENG. For a mild mechanical impact of water waves with an amplitude of 5 cm and frequency of 1 Hz, the single A-TENG unit generates an open-circuit voltage of 8 V and closedcircuit current of 200 nA. In addition, two A-TENG units connected in parallel generate almost double the voltage and current. These results imply that the scaled-up A-TENG units could be used at water-breakers in coastal areas for effective harvesting of ocean wave mechanical energy.

  20. A Novel Wireless and Temperature-Compensated SAW Vibration Sensor

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2014-11-01

    Full Text Available A novel wireless and passive surface acoustic wave (SAW based temperature-compensated vibration sensor utilizing a flexible Y-cut quartz cantilever beam with a relatively substantial proof mass and two one-port resonators is developed. One resonator acts as the sensing device adjacent to the clamped end for maximum strain sensitivity, and the other one is used as the reference located on clamped end for temperature compensation for vibration sensor through the differential approach. Vibration directed to the proof mass flex the cantilever, inducing relative changes in the acoustic propagation characteristics of the SAW travelling along the sensing device, and generated output signal varies in frequency as a function of vibration.  A theoretical mode using the Rayleigh method was established to determine the optimal dimensions of the cantilever beam. Coupling of Modes (COM model was used to extract the optimal design parameters of the SAW devices prior to fabrication. The performance of the developed SAW sensor attached to an antenna towards applied vibration was evaluated wirelessly by using the precise vibration table, programmable incubator chamber, and reader unit.  High vibration sensitivity of ~10.4 kHz/g, good temperature stability, and excellent linearity were observed in the wireless measurements.

  1. Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode

    Directory of Open Access Journals (Sweden)

    Jianxiong Zhu

    2017-04-01

    Full Text Available We reported a two dimensional self-powered proximity sensor based on nanoparticles polytetrafluoroethylene (PTFE electrostatic induction electret using separation electrode. The structural pattern was carefully designed for identifying the specific position on the horizontal plane. When the separation electrode is motioned above the sensor, the induced charges on electrodes will change based on the coupling effect of the electret film. Experiment results showed that the proximity sensor works well with the velocity 0.05 m/s. We also found that the prototype have a good stability even with a huge uncontrolled perturbation on the Y direction. Our work could be a significant step forward in self-powered proximity sensing technology, with a wide range of potential applications in touchpad, robotics, and safety-monitoring device.

  2. Proximity sensing of electrostatic induction electret nanoparticles device using separation electrode

    Science.gov (United States)

    Zhu, Jianxiong; Huang, Run; Zhu, Hua

    2017-04-01

    We reported a two dimensional self-powered proximity sensor based on nanoparticles polytetrafluoroethylene (PTFE) electrostatic induction electret using separation electrode. The structural pattern was carefully designed for identifying the specific position on the horizontal plane. When the separation electrode is motioned above the sensor, the induced charges on electrodes will change based on the coupling effect of the electret film. Experiment results showed that the proximity sensor works well with the velocity 0.05 m/s. We also found that the prototype have a good stability even with a huge uncontrolled perturbation on the Y direction. Our work could be a significant step forward in self-powered proximity sensing technology, with a wide range of potential applications in touchpad, robotics, and safety-monitoring device.

  3. Individual hollow and mesoporous aero-graphitic microtube based devices for gas sensing applications

    Science.gov (United States)

    Lupan, Oleg; Postica, Vasile; Marx, Janik; Mecklenburg, Matthias; Mishra, Yogendra K.; Schulte, Karl; Fiedler, Bodo; Adelung, Rainer

    2017-06-01

    In this work, individual hollow and mesoporous graphitic microtubes were integrated into electronic devices using a FIB/SEM system and were investigated as gas and vapor sensors by applying different bias voltages (in the range of 10 mV-1 V). By increasing the bias voltage, a slight current enhancement is observed, which is mainly attributed to the self-heating effect. A different behavior of ammonia NH3 vapor sensing by increasing the applied bias voltage for hollow and mesoporous microtubes with diameters down to 300 nm is reported. In the case of the hollow microtube, an increase in the response was observed, while a reverse effect has been noticed for the mesoporous microtube. It might be explained on the basis of the higher specific surface area (SSA) of the mesoporous microtube compared to the hollow one. Thus, at room temperature when the surface chemical reaction rate (k) prevails on the gas diffusion rate (DK) the structures with a larger SSA possess a higher response. By increasing the bias voltage, i.e., the overall temperature of the structure, DK becomes a limiting step in the gas response. Therefore, at higher bias voltages the larger pores will facilitate an enhanced gas diffusion, i.e., a higher gas response. The present study demonstrates the importance of the material porosity towards gas sensing applications.

  4. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    Directory of Open Access Journals (Sweden)

    Jurriaan Huskens

    2011-10-01

    Full Text Available A supramolecular platform based on self-assembled monolayers (SAMs has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detection. A Eu(III-EDTA complex was bound to β-cyclodextrin monolayers via orthogonal supramolecular host-guest interactions. The self-assembly of the Eu(III-EDTA conjugate and naphthalene β-diketone as an antenna resulted in the formation of a highly luminescent lanthanide complex on the microchannel surface. Detection of different phosphate anions and aromatic carboxylic acids was demonstrated by monitoring the decrease in red emission following displacement of the antenna by the analyte. Among these analytes, adenosine triphosphate (ATP and pyrophosphate, as well as dipicolinic acid (DPA which is a biomarker for anthrax, showed a strong response. Parallel fabrication of five sensing SAMs in a single multichannel chip was performed, as a first demonstration of phosphate and carboxylic acid screening in a multiplexed format that allows a general detection platform for both analyte systems in a single test run with µM and nM detection sensitivity for ATP and DPA, respectively.

  5. Method and System for Physiologically Modulating Videogames and Simulations which Use Gesture and Body Image Sensing Control Input Devices

    Science.gov (United States)

    Pope, Alan T. (Inventor); Stephens, Chad L. (Inventor); Habowski, Tyler (Inventor)

    2017-01-01

    Method for physiologically modulating videogames and simulations includes utilizing input from a motion-sensing video game system and input from a physiological signal acquisition device. The inputs from the physiological signal sensors are utilized to change the response of a user's avatar to inputs from the motion-sensing sensors. The motion-sensing system comprises a 3D sensor system having full-body 3D motion capture of a user's body. This arrangement encourages health-enhancing physiological self-regulation skills or therapeutic amplification of healthful physiological characteristics. The system provides increased motivation for users to utilize biofeedback as may be desired for treatment of various conditions.

  6. The Sensing Properties of Single Y-Doped SnO2 Nanobelt Device to Acetone.

    Science.gov (United States)

    Li, Xinmin; Liu, Yingkai; Li, Shuanghui; Huang, Jieqing; Wu, Yuemei; Yu, Dapeng

    2016-12-01

    Pure SnO2 and Y-doped SnO2 nanobelts were prepared by thermal evaporation at 1350 °C in the presence of Ar carrier gas (30 sccm). The samples were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersion spectrometer (EDS), X-ray photoelectron spectrometer (XPS), UV-Vis absorption spectroscopy, Raman spectroscopy, and Fourier transform infrared spectrum (FTIR). The sensing properties of the devices based on a single SnO2 nanobelt and Y-doped SnO2 nanobelt were explored to acetone, ethanol, and ethanediol. It reveals that the sensitivity of single Y-doped SnO2 nanobelt device is 11.4 to 100 ppm of acetone at 210 °C, which is the highest response among the three tested VOC gases. Y(3+) ions improve the sensitivity of SnO2 sensor and have an influence on the optical properties of Y-doped SnO2 nanobelts.

  7. Design Procedure and Fabrication of Reproducible Silicon Vernier Devices for High-Performance Refractive Index Sensing.

    Science.gov (United States)

    Troia, Benedetto; Khokhar, Ali Z; Nedeljkovic, Milos; Reynolds, Scott A; Hu, Youfang; Mashanovich, Goran Z; Passaro, Vittorio M N

    2015-06-10

    In this paper, we propose a generalized procedure for the design of integrated Vernier devices for high performance chemical and biochemical sensing. In particular, we demonstrate the accurate control of the most critical design and fabrication parameters of silicon-on-insulator cascade-coupled racetrack resonators operating in the second regime of the Vernier effect, around 1.55 μm. The experimental implementation of our design strategies has allowed a rigorous and reliable investigation of the influence of racetrack resonator and directional coupler dimensions as well as of waveguide process variability on the operation of Vernier devices. Figures of merit of our Vernier architectures have been measured experimentally, evidencing a high reproducibility and a very good agreement with the theoretical predictions, as also confirmed by relative errors even lower than 1%. Finally, a Vernier gain as high as 30.3, average insertion loss of 2.1 dB and extinction ratio up to 30 dB have been achieved.

  8. Recovery from Cogwheel Rigidity and Akinesia and Improvement in Vibration Sense and Olfactory Perception following Removal of an Epoxy-Oleic Acid DNA Adduct

    Directory of Open Access Journals (Sweden)

    Jean A. Monro

    2017-01-01

    Full Text Available The epoxy fatty acid cis-12,13-epoxy-oleic acid, which acts as a DNA adduct, may be generated during long-term storage of many seed oils, including those used in cooking, with frying oils and fried foods being a major source in the modern human diet. Removal of this epoxy fatty acid from the locus of the N-formyl peptide receptors was associated with recovery from cogwheel rigidity and akinesia as well as with improvement in vibration sense and olfactory perception.

  9. 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones

    Science.gov (United States)

    Comina, G.; Suska, A.; Filippini, D.

    2017-02-01

    Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques. Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components. Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.

  10. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    Science.gov (United States)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  11. Evaluation and Analysis of Physical Properties of Nanomaterials for Highly Sensitive Mechanical Sensing Devices

    Science.gov (United States)

    Sugiyama, Susumu; Toriyama, Toshiyuki; Nakamura, Koichi; Dao, Dzung Viet

    This technical note is a review of the contract research at Ritsumeikan University for the “Highly Integrated, Complex MEMS Production Technology Development” Project (“Fine MEMS” Project) sponsored by New Energy and Industrial Technology Development Organization (NEDO). Our research focuses on characterization of physical properties of nanoscale microelectronic materials and carbon nanotube (CNT) to elucidate new effects for potential applications in advanced micro/nano electromechanical devices, and consists of two main parts. The first part deals with experimental evaluation of mechanical, thermal, and electrical properties of tungsten silicide (WSi) and CNT thin films. We have clarified that the WSi film will be promising as a structural material for high-performance capacitive micro accelerometer. In the second part, piezoresistive effect of single crystal silicon nanostructures has been theoretically and experimentally investigated. The p-type ultra-thin silicon nanowire (SiNW), in particular oriented SiNW, will be a good piezoresistor with a giant longitudinal piezoresistance coefficient. We have carried out the research in cooperation with Hitachi, Ltd. and National Institute of Advanced Industrial Science and Technology (AIST), and these cooperative relationships have greatly contributed to the advancement of the research and development. Achievements in the contract research are very promising and significant for mechanical sensing applications.

  12. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Directory of Open Access Journals (Sweden)

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  13. In situ fabrication of a microfluidic device for immobilised metal affinity sensing.

    Science.gov (United States)

    Deshpande, Abhishek G; Darton, Nicholas J; Yunus, Kamran; Fisher, Adrian C; Slater, Nigel K H

    2012-05-15

    In this work a novel microfluidic device was constructed in situ containing the smallest microscopic co-polymeric immobilised metal affinity (IMA) adsorbent yet documented. This device has for the first time allowed the microlitre scale chromatographic assay of histidine-tagged proteins in a biological sample. To enable this approach, rather than using a high capacity commercial packed bed column which requires large sample volumes and would be susceptible to occlusion by cell debris, a microgram capacity co-polymeric chromatographic substrate suitable for analytical applications was fabricated within a microfluidic channel. This porous co-polymeric IMA micro-chromatographic element, only 27μl in volume, was assessed for the analytical capture of two different histidine-tagged recombinant fusion proteins. The micro-chromatographic adsorber was fabricated in situ by photo-polymerising an iminodiacetic acid (IDA) functionalised polymer matrix around a template of fused 100μm diameter NH(4)Cl particles entirely within the microfluidic channel and then etching away the salt with water to form a network of interconnected voids. The surface of the micro-chromatographic adsorber was chemically functionalised with a chelating agent and loaded with Cu(2+) ions. FTIR and NMR analysis verified the presence of the chelating agent on the adsorbent surface and its Cu(2+) ion binding capacity was determined to be 2.4μmol Cu(2+) (ml of adsorbent)(-1). Micro-scale equilibrium adsorption studies using the two different histidine-tagged proteins, LacI-His(6)-GFP and α-Synuclein-His(8)-YFP, were carried out and the protein binding capacity of the adsorbent was determined to be 0.370 and 0.802mg(g of adsorbent)(-1), respectively. The dynamic binding capacity was determined at four different flow rates and found to be comparable to the equilibrium binding capacity at low flow rates. The sensing platform was also used to adsorb LacI-His(6)-GFP protein from crude cell lysate. During

  14. A novel bending fatigue test device based on self-excited vibration principle and its application to superelastic Nitinol microwire study

    Science.gov (United States)

    Leng, Jiaming; Yan, Xiaojun; Zhang, Xiaoyong; Qi, Mingjing; Liu, Zhiwei; Huang, Dawei

    2017-10-01

    Most Nitinol-alloy-based biomedical devices are usually manufactured from straight drawn microwires or microbeams. Fatigue due to cyclic bending is interpreted as the primary failure mechanism in these devices. However, the bending fatigue performance of a Nitinol microwire is rarely studied because of the lack of test devices. Therefore, we firstly establish a bending fatigue test device based on the self-excited vibration principle. Then, we further improve and experimentally verify the device in three aspects to enlarge the strain amplitude: electrode distance optimization, electrode placement angle optimization and local stiffness enhancement. Based on these improvements, the strain amplitude is increased to 6%, successfully meeting the requirements of Nitinol microwire bending fatigue tests. Using the improved test device, a group of superelastic Nitinol (55.8% Ni-44.2% Ti) microwires with a diameter of 50.8 μm are tested. The test results show that the fatigue strain limit for the chosen life (1 × 106 cycles) is around 1.9%, and the inflexion appears at a strain amplitude of 2.3%. SEM observation shows the typical features of low-cycle and high-cycle fatigue on the fracture surfaces.

  15. Enhancement of Optical Adaptive Sensing by Using a Dual-Stage Seesaw-Swivel Actuator with a Tunable Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Po-Chien Chou

    2011-05-01

    Full Text Available Technological obstacles to the use of rotary-type swing arm actuators to actuate optical pickup modules in small-form-factor (SFF disk drives stem from a hinge’s skewed actuation, subsequently inducing off-axis aberrations and deteriorating optical quality. This work describes a dual-stage seesaw-swivel actuator for optical pickup actuation. A triple-layered bimorph bender made of piezoelectric materials (PZTs is connected to the suspension of the pickup head, while the tunable vibration absorber (TVA unit is mounted on the seesaw swing arm to offer a balanced force to reduce vibrations in a focusing direction. Both PZT and TVA are designed to satisfy stable focusing operation operational requirements and compensate for the tilt angle or deformation of a disc. Finally, simulation results verify the performance of the dual-stage seesaw-swivel actuator, along with experimental procedures and parametric design optimization confirming the effectiveness of the proposed system.

  16. Concurrent communication and sensing in cognitive radio devices: challenges and an enabling solution

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Tatomirescu, Alexandru

    2014-01-01

    Cognitive Radios (CRs) need to continuously monitor the availability of unoccupied spectrum. Prior work on spectrum sensing mainly focused on time-slotted schemes where sensing and communication take place on different time periods in the same frequency. This however leads to a) limited CR...... spatial filter that selectively nulls the transmit signal in the sensing direction. By doing so, a wideband isolation level of 60 dB is obtained by the antenna system. Finally, by following the spatial filtering stage with active power cancellation in the radio-frequency stage and in the baseband stage...

  17. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  18. Graphene nano-devices and nano-composites for structural, thermal and sensing applications

    Science.gov (United States)

    Yavari, Fazel

    In this dissertation we have developed graphene-based nano-devices for applications in integrated circuits and gas sensors; as well as graphene-based nano-composites for applications in structures and thermal management. First, we have studied the bandgap of graphene for semiconductor applications. Graphene as a zero-bandgap material cannot be used in the semiconductor industry unless an effective method is developed to open the bandgap in this material. We have demonstrated that a bandgap of 0.206 eV can be opened in graphene by adsorption of water vapor molecules on its surface. Water molecules break the molecular symmetries of graphene resulting in a significant bandgap opening. We also illustrate that the lack of bandgap in graphene can be used to our advantage by making sensors that are able to detect low concentrations of gas molecules mixed in air. We have shown that 1-2 layers of graphene synthesized by chemical vapor deposition enables detection of trace amounts of NO 2 and NH3 in air at room temperature and atmospheric pressure. The gas species are detected by monitoring changes in electrical resistance of the graphene film due to gas adsorption. The sensor response time is inversely proportional to the gas concentration. Heating the film expels chemisorbed molecules from the graphene surface enabling reversible operation. The detection limits of ~100 parts-per-billion (ppb) for NO2 and ~500 ppb for NH3 obtained using this device are markedly superior to commercially available NO2 and NH3 detectors. This sensor is fabricated using individual graphene sheets that are exquisitely sensitive to the chemical environment. However, the fabrication and operation of devices that use individual nanostructures for sensing is complex, expensive and suffers from poor reliability due to contamination and large variability from sample-to-sample. To overcome these problems we have developed a gas sensor based on a porous 3D network of graphene sheets called graphene foam

  19. Liquid Crystal-on-Organic Field-Effect Transistor Sensory Devices for Perceptive Sensing of Ultralow Intensity Gas Flow Touch

    Science.gov (United States)

    Seo, Jooyeok; Park, Soohyeong; Nam, Sungho; Kim, Hwajeong; Kim, Youngkyoo

    2013-08-01

    We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules. Upon applying low intensity nitrogen gas flows, the drain current was sensitively increased depending on the intensity and time of nitrogen flows. The present LC-on-OFET devices could detect extremely low level nitrogen flows (0.7 sccm-11 μl/s), which could not be felt by human skins, thanks to a synergy effect between collective behavior of LC molecules and charge-sensitive channel layer of OFET. The similar sensation was also achieved using the LC-on-OFET devices with a polymer film skin, suggesting viable practical applications of the present LC-on-OFET sensory devices.

  20. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-01-01

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing. PMID:27854322

  1. Methods and Research for Multi-Component Cutting Force Sensing Devices and Approaches in Machining.

    Science.gov (United States)

    Liang, Qiaokang; Zhang, Dan; Wu, Wanneng; Zou, Kunlin

    2016-11-16

    Multi-component cutting force sensing systems in manufacturing processes applied to cutting tools are gradually becoming the most significant monitoring indicator. Their signals have been extensively applied to evaluate the machinability of workpiece materials, predict cutter breakage, estimate cutting tool wear, control machine tool chatter, determine stable machining parameters, and improve surface finish. Robust and effective sensing systems with capability of monitoring the cutting force in machine operations in real time are crucial for realizing the full potential of cutting capabilities of computer numerically controlled (CNC) tools. The main objective of this paper is to present a brief review of the existing achievements in the field of multi-component cutting force sensing systems in modern manufacturing.

  2. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)

    2011-06-15

    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting

    Science.gov (United States)

    Jia, Yu; Du, Sijun; Seshia, Ashwin A.

    2016-01-01

    This paper contends to be the first to report the experimental observation of up to 28 orders of parametric resonance, which has thus far only been envisioned in the theoretical realm. While theory has long predicted the onset of n orders of parametric resonance, previously reported experimental observations have been limited up to about the first 5 orders. This is due to the rapid narrowing nature of the frequency bandwidth of the higher instability intervals, making practical accessibility increasingly more difficult. Here, the authors have experimentally confirmed up to 28 orders of parametric resonance in a micromachined membrane resonator when electrically undamped. While the implication of this finding spans across the vibration dynamics and transducer application spectrum, the particular significance of this work is to broaden the accumulative operational frequency bandwidth of vibration energy harvesting for enabling self-powered microsystems. Up to 5 orders were recorded when driven at 1.0 g of acceleration across a matched load of 70 kΩ. With a natural frequency of 980 Hz, the fundamental mode direct resonance had a −3 dB bandwidth of 55 Hz, in contrast to the 314 Hz for the first order parametric resonance; furthermore, the half power bands of all 5 orders accumulated to 478 Hz. PMID:27445205

  4. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PEDOT: PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  5. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices.

    Science.gov (United States)

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-12-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic "substrate vibration-assisted drop casting" (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few similar reports by others, confirm that imposing ultrasonic vibration on the substrate can simply convert the uncontrollable drop casting method into a controllable coating technique. Therefore, the SVADC may be used to fabricate an array of emerging thin-film solar cells, such as polymer, perovskite, and quantum-dot solar cells, as well as other small thin-film devices, in a roll-to-roll and automated fabrication process. The preliminary results demonstrate a ten-fold increase in electrical conductivity of PSS made by SVADC compared with the film made by conventional drop casting. Also, simple planar perovskite solar cells made here using SVADC show promising performance with an efficiency of over 3 % for a simple structure without performing process optimization or using expensive materials and treatments.

  6. Silicon Micromachined Sensor for Broadband Vibration Analysis

    Science.gov (United States)

    Gutierrez, Adolfo; Edmans, Daniel; Cormeau, Chris; Seidler, Gernot; Deangelis, Dave; Maby, Edward

    1995-01-01

    The development of a family of silicon based integrated vibration sensors capable of sensing mechanical resonances over a broad range of frequencies with minimal signal processing requirements is presented. Two basic general embodiments of the concept were designed and fabricated. The first design was structured around an array of cantilever beams and fabricated using the ARPA sponsored multi-user MEMS processing system (MUMPS) process at the Microelectronics Center of North Carolina (MCNC). As part of the design process for this first sensor, a comprehensive finite elements analysis of the resonant modes and stress distribution was performed using PATRAN. The dependence of strain distribution and resonant frequency response as a function of Young's modulus in the Poly-Si structural material was studied. Analytical models were also studied. In-house experimental characterization using optical interferometry techniques were performed under controlled low pressure conditions. A second design, intended to operate in a non-resonant mode and capable of broadband frequency response, was proposed and developed around the concept of a cantilever beam integrated with a feedback control loop to produce a null mode vibration sensor. A proprietary process was used to integrat a metal-oxide semiconductor (MOS) sensing device, with actuators and a cantilever beam, as part of a compatible process. Both devices, once incorporated as part of multifunction data acquisition and telemetry systems will constitute a useful system for NASA launch vibration monitoring operations. Satellite and other space structures can benefit from the sensor for mechanical condition monitoring functions.

  7. In-line Sensing of Sodium Ascorbate Using a Poly(ferrocenylsilane)-coated Microfluidic Device

    NARCIS (Netherlands)

    Kieviet, B.D.; Dos Ramos, Lionel; Hempenius, Mark A.; Duvigneau, Joost; Schön, Peter Manfred; Vancso, Gyula J.

    2016-01-01

    Poly(ferrocenylsilane) (PFS) is a redox-active polymer that can be utilized in a variety of applications, such as sensing, nanoparticle foundries or dual-responsive hydrogels, due to the fact that it can be partially or completely oxidized, reversibly, by (electro)chemical means. In this research,

  8. Vicariates of the Eye: Blindness, Sense Substitution, and Writing Devices in the Nineteenth Century

    DEFF Research Database (Denmark)

    Olsén, Jan-Eric

    2013-01-01

    This essay asks how teachers and pedagogues of the blind regarded the relation between blindness and sense substitution in the latter half of the nineteenth century. The essay provides and account of the concept of Sinnesvikariat and compares its inner sensorial implications with the adaptation o...

  9. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  10. Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Directory of Open Access Journals (Sweden)

    Bingfeng Ju

    2011-03-01

    Full Text Available In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations.

  11. Integrated cable vibration control system using wireless sensors

    Science.gov (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  12. The structure of sensor organic polymeric solids deposited on surfaces of interest for sensing devices

    CERN Document Server

    Lemon, P

    2001-01-01

    For many years, electrochemically deposited polypyrrole has found application in a host of technologically significant areas. Popular applications include use in rechargeable batteries, electrochromic displays and artificial muscles. However, perhaps the most significant application of polypyrrole is as a gas sensing material. The relatively low selectivity of polypyrrole has led to it seldom being used as a 'stand alone' sensor; the ease by which the properties of polypyrrole may be subtly modified during electrochemical deposition (resulting in subtly different sensor responses) makes it ideally suited for incorporation into sensing 'arrays'. The level of understanding concerning the growth dynamics and structural characteristics of electrochemically deposited polypyrrole was poor prior to the commencement of the work presented; this thesis describes research undertaken in order to elucidate the properties of this material. As variation of the dopant group used during electrochemical deposition has been sho...

  13. Electrical Characterization and Hydrogen Peroxide Sensing Properties of Gold/Nafion:Polypyrrole/MWCNTs Electrochemical Devices

    Science.gov (United States)

    Scandurra, Graziella; Arena, Antonella; Ciofi, Carmine; Saitta, Gaetano

    2013-01-01

    Electrochemical devices using as substrates copier grade transparency sheets are developed by using ion conducting Nafion: polypyrrole mixtures, deposited between gold bottom electrodes and upper electrodes based on Multi Walled Carbon Nanotubes (MWCNTs). The electrical properties of the Nafion:polypyrrole blends and of the gold/Nafion:polypyrrole/MWCNTs devices are investigated under dry conditions and in deionized water by means of frequency dependent impedance measurements and time domain electrical characterization. According to current-voltage measurements carried out in deionized water, the steady state current forms cycles characterized by redox peaks, the intensity and position of which reversibly change in response to H2O2, with a lower detection limit in the micromolar range. The sensitivity that is obtained is comparable with that of other electrochemical sensors that however, unlike our devices, require supporting electrolytes. PMID:23529125

  14. New version of a laboratory impact device for firmness sensing of fruits.

    OpenAIRE

    Diezma, B.; Flores, L; Diez, J.; Ruiz-Altisent, Margarita; Barreiro Elorza, Pilar; Marañon, A.

    2000-01-01

    Results of previous studies conducted by different researchers have shown that impact techniques can be used to evaluate firmness (Delwiche et al., 1989; Delwiche et al.;1996; Jaren et al., 1992; Ruiz Altisent et al., 1996). To impact the fruit with a small spherical impactor of known mass and radius of curvature and measure the acceleration of the impactor is a technique described by Chen et al. (1985) and used by several researchers for sensing fruit firmness (Jaren et al., 1992; Correa et ...

  15. Towards intrinsic MoS{sub 2} devices for high performance arsenite sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng, E-mail: pengli@mail.tsinghua.edu.cn, E-mail: dzzhang@upc.edu.cn [Department of Precision Instruments, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China); Zhang, Dongzhi, E-mail: pengli@mail.tsinghua.edu.cn, E-mail: dzzhang@upc.edu.cn; Sun, Yan' e; Chang, Hongyan; Liu, Jingjing; Yin, Nailiang [College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580 (China)

    2016-08-08

    Molybdenum disulphide (MoS{sub 2}) is one of the most attractive two dimensional materials other than graphene, and the exceptional properties make it a promising candidate for bio/chemical sensing. Nevertheless, intrinsic properties and sensing performances of MoS{sub 2} are easily masked by the presence of the Schottky barrier (SB) at source/drain electrodes, and its impact on MoS{sub 2} sensors remains unclear. Here, we systematically investigated the influence of the SB on MoS{sub 2} sensors, revealing the sensing mechanism of intrinsic MoS{sub 2}. By utilizing a small work function metal, Ti, to reduce the SB, excellent electrical properties of this 2D material were yielded with 2–3 times enhanced sensitivity. We experimentally demonstrated that the sensitivity of MoS{sub 2} is superior to that of graphene. Intrinsic MoS{sub 2} was able to realize rapid detection of arsenite down to 0.1 ppb without the influence of large SB, which is two-fold lower than the World Health Organization (WHO) tolerance level and better than the detection limit of recently reported arsenite sensors. Additionally, accurately discriminating target molecules is a great challenge for sensors based on 2D materials. This work demonstrates MoS{sub 2} sensors encapsulated with ionophore film which only allows certain types of molecules to selectively permeate through it. As a result, multiplex ion detection with superb selectivity was realized. Our results show prominent advantages of intrinsic MoS{sub 2} as a sensing material.

  16. Compressive power spectrum sensing for vibration-based output-only system identification of structural systems in the presence of noise

    Science.gov (United States)

    Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis

    2015-05-01

    Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.

  17. Printable on-chip micro battery for disposal bio-sensing device

    Science.gov (United States)

    Tsukamoto, Takashiro; Tanaka, Shuji

    2015-12-01

    This paper reports an on-chip micro battery which can be fabricated on a CMOS chip. The battery consists of screen-printed Mg and AgCl films. An open circuit voltage of 1.58 V, the maximum power of 1.4 mW and a total stored energy of 400 mJ were obtained from anode and cathode electrodes of about 3 × 3 mm2. Demonstration devices self-powered by the on-chip battery worked in a 0.14 M NaCl solution, and digital data transmission from the devices using optical and electrical field methods were confirmed.

  18. 33 CFR 159.103 - Vibration test.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vibration test. 159.103 Section...) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.103 Vibration test. The device... subjected to a sinusoidal vibration for a period of 12 hours, 4 hours in each of the x, y, and z planes, at...

  19. Carbon nanotube-based sensing devices for human Arginase-1 detection

    Directory of Open Access Journals (Sweden)

    S. Baldo

    2016-03-01

    Full Text Available A new carbon nanotube-based device for detection of Arginase 1 (ARG-1 was produced. Multi-walled carbon nanotubes (MWCNTs were deposited between electrodes by dielectrophoresis (DEP in an accurate and reproducible way. This deposition method has the advantages of low cost and room temperature conditions and therefore, can be used on different kinds of substrates (silicon, glass, plastics allowing for large scale production of chemical or biological sensors. Scanning electrical microscope (SEM and electrical characterization have been performed on the biosensors before and after protein exposure. The devices were tested in the present work for the detection of ARG-1. They show high sensitivity and reproducibility, and can be easily and suitably modified to detect other proteins.

  20. CyARM: Haptic Sensing Device for Spatial Localization on Basis of Exploration by Arms

    Directory of Open Access Journals (Sweden)

    Junichi Akita

    2009-01-01

    Full Text Available We introduce a new type of perception aid device based on user's exploration action, which is named as CyARM (acronym of “Cyber Arm”. The user holds this device in her/his arm, the extension of the arm is controlled by tension in wires, which are attached to her/his body according to the distance to the object. This user interface has unique characteristics that give users the illusion of an imaginary arm that extends to existing objects. The implementations of CyARM and our two experiments to investigate the efficiency and effectiveness of CyARM are described. The results show that we could confirm that CyARM can be used to recognize the presence of an object in front of the user and to measure the relative distance to the object.

  1. Integration of Biological Specificity with Solid-State Devices for Selective Chemical Sensing

    Science.gov (United States)

    2016-01-29

    uconn.edu I. Introduction & Overview Chemical sensors have potential to be valuable tools to counter improvised explosive devices (lEDs) and defeat bomb ...non- intrusive way that helps find and track sources of raw materials used in bomb making. For this to be practical, it is necessary that sensors be...chemical interactions including hydrogen bonding (H-bonding), dipolarity, polarizability, and dispersion. Selectivity for analytes originates from

  2. Thickness controlled sol-gel silica films for plasmonic bio-sensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Figus, Cristiana, E-mail: cristiana.figus@dsf.unica.it; Quochi, Francesco, E-mail: cristiana.figus@dsf.unica.it; Artizzu, Flavia, E-mail: cristiana.figus@dsf.unica.it; Saba, Michele, E-mail: cristiana.figus@dsf.unica.it; Marongiu, Daniela, E-mail: cristiana.figus@dsf.unica.it; Mura, Andrea; Bongiovanni, Giovanni [Dipartimento di Fisica - University of Cagliari, S.P. Km 0.7, I-09042 Monserrato (Canada) (Italy); Floris, Francesco; Marabelli, Franco; Patrini, Maddalena; Fornasari, Lucia [Dipartimento di Fisica - University of Pavia, Via Agostino Bassi 6, I-27100 Pavia (PV) (Italy); Pellacani, Paola; Valsesia, Andrea [Plasmore S.r.l. -Via Grazia Deledda 4, I-21020 Ranco (Vatican City State, Holy See) (Italy)

    2014-10-21

    Plasmonics has recently received considerable interest due to its potentiality in many fields as well as in nanobio-technology applications. In this regard, various strategies are required for modifying the surfaces of plasmonic nanostructures and to control their optical properties in view of interesting application such as bio-sensing, We report a simple method for depositing silica layers of controlled thickness on planar plasmonic structures. Tetraethoxysilane (TEOS) was used as silica precursor. The control of the silica layer thickness was obtained by optimizing the sol-gel method and dip-coating technique, in particular by properly tuning different parameters such as pH, solvent concentration, and withdrawal speed. The resulting films were characterized via atomic force microscopy (AFM), Fourier-transform (FT) spectroscopy, and spectroscopic ellipsometry (SE). Furthermore, by performing the analysis of surface plasmon resonances before and after the coating of the nanostructures, it was observed that the position of the resonance structures could be properly shifted by finely controlling the silica layer thickness. The effect of silica coating was assessed also in view of sensing applications, due to important advantages, such as surface protection of the plasmonic structure.

  3. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ruby N. Ghosh; Peter Tobias; Roger G. Tobin

    2004-10-01

    A sensor based on the wide bandgap semiconductor, silicon carbide (SiC), has been developed for the detection of combustion products in power plant environments. The sensor is a catalytic gate field effect device that can detect hydrogen containing species in chemically reactive, high temperature environments. For these capacitive sensors we have determined that the optimum sensor operating point in terms of sensor lifetime and response time is at midgap. Detailed measurements of the oxide leakage current as a function of temperature were performed to investigate the high temperature reliability of the devices. In addition, robust metallization and electrical contacting techniques have been developed for device operation at elevated temperatures. To characterize the time response of the sensor responses in the millisecond range, a conceptually new apparatus has been built. Using laser induced fluorescence imaging techniques we have shown that the gas underneath the sensor can be completely exchanged with a time constant under 1 millisecond. Ultrahigh vacuum studies of the surface chemistry of the platinum gate have shown that sensor deactivation by adsorbed sulfur is a possible problem. Investigations on the chemical removal of sulfur by catalytic oxidation or reduction are continuing.

  4. Determination of the transient vibrations of a rigid rotor attenuated by a semiactive magnetorheological damping device by means of computational modelling

    Directory of Open Access Journals (Sweden)

    Zapoměl J.

    2013-12-01

    Full Text Available Unbalance is the principal source of increase of time varying forces transmitted between the rotor and its stationary part. Their magnitudes can be considerably reduced if the rotor is flexibly suspended and if the damping devices are added to the support elements. Their damping effect must be high for low rotor velocities and small for velocities approximately higher than the critical one to minimize the transmitted forces and the vibrations amplitude. This implies to achieve maximum efficiency of the damping elements, their damping effect has to be adaptable to the current operating conditions. Such technological solution is offered by application of a squeeze film magnetorheological damper. Its hybrid variant consisting of two damping units (one controllable in a serial arrangement is investigated in this paper. The damping takes place in two concentric lubricating films formed by normal and magnetorheological oils. The damper is equipped with an electric coil generating magnetic flux passing through the layer of the magnetorheological fluid. As resistance against its flow depends on magnetic induction, changing magnitude of the applied current enables to control the damping force. In the computational model, the rotor is considered to be absolutely rigid, unbalanced and the damping elements are represented by force couplings. The goal of the analysis is to study influence of the investigated magnetorheological damper on behaviour of a rigid rotor during different transient regimes. A special attention is focused on passing the rotor through the critical speed and on planning the dependence of the applied current on speed of the rotor rotation to achieve the optimum compromise between minimizing the transmitted forces and maximum attenuation of the rotor vibrations.

  5. A smart dynamic vibration absorber for suppressing the vibration of a string supported by flexible beams

    Science.gov (United States)

    Nambu, Yohsuke; Yamamoto, Shota; Chiba, Masakatsu

    2014-02-01

    This study aims to effectively and robustly suppress the vibration of tension-stabilized structures (TSSs) using a smart dynamic vibration absorber (DVA). In recent years, a strong need has emerged for high-precision and high-functionality space structural systems for realizing advanced space missions. TSSs have attracted attention in this regard as large yet lightweight structural systems with high storage efficiency. A fundamental issue in the application of TSSs is vibration control of strings, of which TSSs are predominantly composed. In particular, the suppression of microvibrations is difficult because the deformation is almost perpendicular to the direction of vibration. A DVA is an effective device for suppressing microvibrations. However, the damping performance is sensitive to changes in dynamic properties. Furthermore, aging degradation and temperature dependence negatively affect DVA performance. This study aimed to develop a smart, active DVA with self-sensing actuation to improve robustness. A small cantilever with a piezoelectric transducer was utilized as a smart DVA. Numerical simulations and experiments showed that a passive DVA and the smart DVA suppressed vibrations but that the smart DVA showed improved effectiveness and robustness.

  6. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat.

    Science.gov (United States)

    Koh, Ahyeon; Kang, Daeshik; Xue, Yeguang; Lee, Seungmin; Pielak, Rafal M; Kim, Jeonghyun; Hwang, Taehwan; Min, Seunghwan; Banks, Anthony; Bastien, Philippe; Manco, Megan C; Wang, Liang; Ammann, Kaitlyn R; Jang, Kyung-In; Won, Phillip; Han, Seungyong; Ghaffari, Roozbeh; Paik, Ungyu; Slepian, Marvin J; Balooch, Guive; Huang, Yonggang; Rogers, John A

    2016-11-23

    Capabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose, and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH, and concentration of chloride and lactate. Copyright © 2016, American Association for the Advancement of Science.

  7. Temperature sensing in E.M.D. environment with periodically poled lithium niobate devices

    Science.gov (United States)

    Margheri, G.; Del Rosso, T.; Trigari, S.; Sottini, S.; Grando, D.; D'Orazio, A.; De Sario, M.; Petruzzelli, V.; Prudenzano, F.

    2006-04-01

    A temperature sensor immune to electromagnetic noise is designed and fabricated. The sensor key element is a periodically poled lithium niobate (PPLN) substrate. PPLN allows a direct and efficient frequency conversion of lightwave through the quasi-phase matching (QPM) of the pump radiation propagating at the fundamental and second harmonic wavelengths. For these devices, the efficiency of second harmonic generation (SHG) depends on the QPM condition, and it strongly changes with respect to the wavelength and the temperature. The effect of temperature variation on the SHG in periodically poled lithium niobate annealed proton exchange (APE) channel waveguides (WG) is theoretically modeled via a home-made computer code and experimentally validated via a suitable measurement set-up. A lot of simulations have been performed to test the temperature sensor feasibility and to identify its optimal configuration. Another sensor configuration made by two waveguides with suitable gratings of inverted ferroelectric domains is designed and refined, too. For an optimised PPLN-WG device, which could be fabricated through electric field poling and annealed proton exchange or titanium diffusion, a sensitivity S≡0.03μW/°C for the temperature range equal to 100 °C is demonstrated by using an input power at a fundamental wavelength equal to 40 mW. Similar evaluations and measurements, performed on bulk substrates, allowed us to design a layout of a sensor particularly suited for rugged in-field applications.

  8. A prototype wireless inertial-sensing device for measuring toe clearance.

    Science.gov (United States)

    Lai, Daniel T H; Charry, E; Begg, R; Palaniswami, M

    2008-01-01

    Tripping and slipping are serious health concerns for the elderly because they result in life threatening injuries i.e., fractures and high medical costs. Our recent work in detection of tripping gait patterns has demonstrated that minimum toe clearance (MTC) is a sensitive falls risk predictor. MTC measurement has previously been done in gait laboratories and on treadmills which potentially imposes controlled walking conditions. In this paper, we describe a prototype design of a wireless device for monitoring vertical toe clearance. The sensors consists of a tri-axis accelerometer and dual-axis gyroscope connected to Crossbow sensor motes for wireless data transmission. Sensor data are transmitted to a laptop and displayed on a Matlab graphic user interface (GUI). We have performed zero base and treadmill experiments to investigate sensor performance to environmental variations and compared the calculated toe clearance against measurements made by an Optotrak motion system. It was found that device outputs were approximately independent of small ambient temperature variations, had a reliable range of 20m indoors and 50m outdoors and a maximum transmission rate of 20 packets/s. Toe clearance measurements were found to follow the Optotrak measurement trend but could be improved further by dealing with double integration errors and improving data transmission rates.

  9. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review.

    Science.gov (United States)

    Green, Nathaniel S; Norton, Michael L

    2015-01-01

    Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bi-Module Sensing Device to In Situ Quantitatively Detect Hydrogen Peroxide Released from Migrating Tumor Cells

    Science.gov (United States)

    Yu, Ling; Tian, YunLi; Gao, AnXiu; Shi, ZhuanZhuan; Liu, YingShuai; Li, ChangMing

    2015-01-01

    Cell migration is one of the key cell functions in physiological and pathological processes, especially in tumor metastasis. However, it is not feasible to monitor the important biochemical molecules produced during cell migrations in situ by conventional cell migration assays. Herein, for the first time a device containing both electrochemical sensing and trans-well cell migration modules was fabricated to sensitively quantify biochemical molecules released from the cell migration process in situ. The fully assembled device with a multi-wall carbon nanotube/graphene/MnO2 nanocomposite functionalized electrode was able to successfully characterize hydrogen peroxide (H2O2) production from melanoma A375 cells, larynx carcinoma HEp-2 cells and liver cancer Hep G2 under serum established chemotaxis. The maximum concentration of H2O2 produced from A375, HEp-2 and Hep G2 in chemotaxis was 130±1.3 nM, 70±0.7 nM and 63±0.7 nM, respectively. While the time required reaching the summit of H2O2 production was 3.0, 4.0 and 1.5 h for A375, HEp-2 and Hep G2, respectively. By staining the polycarbonate micropore membrane disassembled from the device, we found that the average migration rate of the A375, HEp-2 and Hep G2 cells were 98±6%, 38±4% and 32 ±3%, respectively. The novel bi-module cell migration platform enables in situ investigation of cell secretion and cell function simultaneously, highlighting its potential for characterizing cell motility through monitoring H2O2 production on rare samples and for identifying underlying mechanisms of cell migration. PMID:26035641

  11. Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging

    Science.gov (United States)

    Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.

    2016-03-01

    Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.

  12. Characterization Of Industrial And Background Aerosols In The RhÔne-alpes Region Using Laser Remote Sensing Device.

    Science.gov (United States)

    Geffroy, S.; Rairoux, P.; Mondelain, D.; Boutou, V.; Wolf, J.-P.; Frejafon, E.

    Lack of reliable database on aerosol emission and dispersion is one of the main rea- sons for the incertitude of the impact of aerosol on the climate change. International statements and policies requested improvement on the global and on the regional scale. This new project is related to the characterisation of the spatial and time distribution of the aerosols in the Rhône-Alpes region. Actually, aerosols monitoring is mainly performed at ground level in this region and only few studies have been performed on the 3D distribution of urban aerosols (soot) using remote sensing laser device. The Rhône-Alpes region is representative for the regional impact of industry and traffic emission and also for the long-range transport of pollution over the East part of the Alps. The environmental situation of the region in term of sources and localization is especially dominated by: heavy traffic with several motorways (A6 from Paris, A7 to Marseille - both downtown - and A43 to the Alps and Italy) and industrial pollu- tion in particular for Lyon (refinery and several chemistry plants) and Saint Etienne agglomerations, which have a direct impact on the local air quality and also on the regional and national scale. Characterization of the aerosol load and dispersion in this region will be achieved applying two schemes. The first one will be related to the 3D quantitative characterization of diffuse aerosol emission in the industrial areas. Mon- itoring will be performed using a UV-infrared lidar remote sensing device. Emission cadastre elaboration and microphysical characterisation of the emission will be estab- lished. Direct access to several aerosol distribution modes will be used to describe the aerosol population dynamic: sedimentation, transport and aggregation. Studies on the direct impact of the emission on the region will be achieved coupling the 3D and ground level monitoring with dispersion model. The second scheme will be related to the long term remote sensing of

  13. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Green, Nathaniel S.; Norton, Michael L., E-mail: norton@marshall.edu

    2015-01-01

    Highlights: • The interaction of DNA, including DNA nanostructures, and graphene is reviewed. • Comparison of DNA graphene field-effect transistor (GFET) with other detection methods. • Discussion of challenges present in the detection mechanism of GFETs. • Use of DNA aptamer GFET sensors for the detection of small molecules and proteins. - Abstract: Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.

  14. Smart Woven Fabrics With Portable And Wearable Vibrating Electronics

    Directory of Open Access Journals (Sweden)

    Özdemir Hakan

    2015-06-01

    Full Text Available The portable and wearable instrumented fabrics capable of measuring biothermal variable is essential for drivers, especially long-distance drivers. Here we report on portable and wearable devices that are able to read the temperature of human body within the woven fabric. The sensory function of the fabric is achieved by temperature sensors, soldered on conductive threads coated with cotton. The presence of stainless steel wires gives these materials conductive properties, enabling the detection of human body temperature and transmitting the signal form sensors to the motors on the fabric. When body temperature decreases, hardware/software platforms send a signal to the vibration motors in order to stimulate the driver. The ‘smart woven fabric’-sensing architecture can be divided into two parts: a textile platform, where portable and wearable devices acquire thermal signals, and hardware/software platforms, to which a sensor sends the acquired data, which send the signals to the vibration motors.

  15. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... with experiment, and simulations show the feasibility of controlling shaft vibration through this active device....

  16. Influence of Pt Gate Electrode Thickness on the Hydrogen Gas Sensing Characteristics of Pt/In2O3/SiC Hetero-Junction Devices

    Directory of Open Access Journals (Sweden)

    S. Kandasamy

    2007-09-01

    Full Text Available Hetero-junction Pt/In2O3/SiC devices with different Pt thickness (30, 50 and 90nm were fabricated and their hydrogen gas sensing characteristics have been studied. Pt and In2O3 thin films were deposited by laser ablation. The hydrogen sensitivity was found to increase with decreasing Pt electrode thickness. For devices with Pt thickness of 30 nm, the sensitivity gradually increased with increasing temperature and reached a maximum of 390 mV for 1% hydrogen in air at 530°C. Atomic force microscopy (AFM analysis revealed a decrease in Pt grain size and surface roughness for increasing Pt thickness. The relationship between the gas sensing performance and the Pt film thickness and surface morphology is discussed.

  17. Interinstrument comparison of remote-sensing devices and a new method for calculating on-road nitrogen oxides emissions and validation of vehicle-specific power.

    Science.gov (United States)

    Rushton, Christopher E; Tate, James E; Shepherd, Simon P; Carslaw, David C

    2018-02-01

    Emissions of nitrogen oxides (NOx) by vehicles in real driving environments are only partially understood. This has been brought to the attention of the world with recent revelations of the cheating of the type of approval tests exposed in the dieselgate scandal. Remote-sensing devices offer investigators an opportunity to directly measure in situ real driving emissions of tens of thousands of vehicles. Remote-sensing NO 2 measurements are not as widely available as would be desirable. The aim of this study is to improve the ability of investigators to estimate the NO 2 emissions and to improve the confidence of the total NOx results calculated from standard remote-sensing device (RSD) measurements. The accuracy of the RSD speed and acceleration module was also validated using state-of-the-art onboard global positioning system (GPS) tracking. Two RSDs used in roadside vehicle emissions surveys were tested side by side under off-carriageway conditions away from transient pollution sources to ascertain the consistency of their measurements. The speed correlation was consistent across the range of measurements at 95% confidence and the acceleration correlation was consistent at 95% confidence intervals for all but the most extreme acceleration cases. VSP was consistent at 95% confidence across all measurements except for those at VSP ≥ 15 kW t -1 , which show a small underestimate. The controlled distribution gas nitric oxide measurements follow a normal distribution with 2σ equal to 18.9% of the mean, compared to 15% observed during factory calibration indicative of additional error introduced into the system. Systematic errors of +84 ppm were observed but within the tolerance of the control gas. Interinstrument correlation was performed, with the relationship between the FEAT and the RSD4600 being linear with a gradient of 0.93 and an R 2 of 0.85, indicating good correlation. A new method to calculate NOx emissions using fractional NO 2 combined with NO

  18. Double-Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradient-Coated Thread for Multidimensional Flexible Pressure-Sensing Devices

    KAUST Repository

    Tai, Yanlong

    2016-03-17

    Fiber-based, flexible pressure-sensing systems have attracted attention recently due to their promising application as electronic skins. Here, a new kind of flexible pressure-sensing device based on a polydimethylsiloxane membrane instrumented with double-twisted smart threads (DTSTs) is reported. DTSTs are made of two conductive threads obtained by coating cotton threads with carbon nanotubes. One thread is coated with a homogeneous thickness of single-walled carbon nanotubes (SWCNTs) to detect the intensity of an applied load and the other is coated with a graded thickness of SWCNTs to identify the position of the load along the thread. The mechanism and capacity of DTSTs to accurately sense an applied load are systematically analyzed. Results demonstrate that the fabricated 1D, 2D, and 3D sensing devices can be used to predict both the intensity and the position of an applied load. The sensors feature high sensitivity (between ≈0.1% and 1.56% kPa) and tunable resolution, good cycling resilience (>104 cycles), and a short response time (minimum 2.5 Hz). The presented strategy is a viable alternative for the design of simple, low-cost pressure sensors.

  19. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment – A Comparison with Terrestrial Laser Scanning Data

    Science.gov (United States)

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants’ cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development. PMID:27073917

  20. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    Directory of Open Access Journals (Sweden)

    Sabrina Marx

    Full Text Available The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM derived from PS and TLS data is 10.45 cm (GPS devices and 14.69 cm (smartphones. Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development.

  1. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    Science.gov (United States)

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development.

  2. Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating.

    Science.gov (United States)

    Lin, Ru-Zheng; Cheng, Kuang-Yang; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2017-11-22

    This paper describes a novel method, using device-localized Joule heating (JH) in a plasma enhanced atomic layer deposition (PEALD) system, for the selective deposition of platinum (Pt) and zinc oxide (ZnO) in the n- regions of n+/n-/n+ polysilicon nanobelts (SNBs). COMSOL simulations were adopted to estimate device temperature distribution. However, during ALD process, the resistance of SNB device decreased gradually and reached to minima after 20 min JH. As a result, thermal decomposition of precursors occurred during PEALD process. Selective deposition in the n- region was dominated by CVD instead of ALD. Selective deposition of Pt and ZnO films has been achieved and characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy.

  3. The origins of vibration theory

    Science.gov (United States)

    Dimarogonas, A. D.

    1990-07-01

    The Ionian School of natural philosophy introduced the scientific method of dealing with natural phenomena and the rigorous proofs for abstract propositions. Vibration theory was initiated by the Pythagoreans in the fifth century BC, in association with the theory of music and the theory of acoustics. They observed the natural frequency of vibrating systems and proved that it is a system property and that it does not depend on the excitation. Pythagoreans determined the fundamental natural frequencies of several simple systems, such as vibrating strings, pipes, vessels and circular plates. Aristoteles and the Peripatetic School founded mechanics and developed a fundamental understanding of statics and dynamics. In Alexandrian times there were substantial engineering developments in the field of vibration. The pendulum as a vibration, and probably time, measuring device was known in antiquity, and was further developed by the end of the first millennium AD.

  4. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  5. Sensing at the nanoscale

    Science.gov (United States)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    properties are an important indicator for sensing. In search of a better understanding of these systems Zhang et al from Southern Illinois University inspect the role of Joule heating, exothermal reactions and heat dissipation in gas sensing using nanowires [7]. The mechanisms behind electrical chemical sensors are also further scrutinized in a kinetics study by Joan Ramon Morante from the University of Barcelona in Spain. 'In spite of the growing commercial success many basic issues remain still open and under discussion limiting the broad use of this technology,' he explains. He discusses surface chemical reaction kinetics and the experimental results for different representative gas molecules to gain an insight into the chemical to electrical transduction mechanisms taking place [8]. Perhaps one of the most persistent targets in sensing research is increasing the sensitivity. Gauging environmental health issues around the commercial use of nanomaterials places high demands on low-level detection and spurred a collaboration of researchers in the UK, Croatia and Canada to look into the use of particle-impact voltammetry for detecting nanoparticles in environmental media [9]. At the University of Illinois Urbana-Champaign in the US, researchers have applied wave transform analysis techniques to the oscillations of an atomic force microscopy cantilever and tailored a time-frequency-domain filter to identify the region of highest vibrational energy [10]. The approach allows them to improve the signal to noise ratio by a factor 32 on current high-performance devices. In addition, researchers in Korea report how doping NiO nanofibres can improve the sensitivity to a number of gases, including ethanol, where the response was enhanced by as much as a factor of 217.86 [11]. Biomedicine is one of the largest industries for the application of nanotechnology in sensing. Demonstrating the state of the art, researchers in China use silicon wafers decorated with gold nanoparticles for

  6. Method and apparatus for vibrating a substrate during material formation

    Science.gov (United States)

    Bailey, Jeffrey A [Richland, WA; Roger, Johnson N [Richland, WA; John, Munley T [Benton City, WA; Walter, Park R [Benton City, WA

    2008-10-21

    A method and apparatus for affecting the properties of a material include vibrating the material during its formation (i.e., "surface sifting"). The method includes the steps of providing a material formation device and applying a plurality of vibrations to the material during formation, which vibrations are oscillations having dissimilar, non-harmonic frequencies and at least two different directions. The apparatus includes a plurality of vibration sources that impart vibrations to the material.

  7. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah Alam, Md. [Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204 (Bangladesh); Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Mohammed, Waleed S., E-mail: waleed.m@bu.ac.th [Center of Research in Optoelectronics, Communication and Control System (BU-CROCCS), School of Engineering, Bangkok University, Pathumthani 12120 (Thailand); Dutta, Joydeep, E-mail: dutta@squ.edu.om [Center of Excellence in Nanotechnology, Asian Institute of Technology, 12120 Pathumthani (Thailand); Chair in Nanotechnology, Water Research Center, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman)

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  8. Ultrasonic Substrate Vibration-Assisted Drop Casting (SVADC) for the Fabrication of Photovoltaic Solar Cell Arrays and Thin-Film Devices

    OpenAIRE

    Eslamian, Morteza; Zabihi, Fatemeh

    2015-01-01

    A simple, low-cost, versatile, and potentially scalable casting method is proposed for the fabrication of micro- and nano-thin films, herein termed as ultrasonic ?substrate vibration-assisted drop casting? (SVADC). The impingement of a solution drop onto a substrate in a simple process called drop casting, usually results in spreading of the liquid solution and the formation of a non-uniform thin solid film after solvent evaporation. Our previous and current supporting results, as well as few...

  9. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  10. A novel vibration sensor based on phase grating interferometry

    Science.gov (United States)

    Li, Qian; Liu, Xiaojun; Zhao, Li; Lei, Zili; Lu, Zhen; Guo, Lei

    2017-05-01

    Vibration sensors with high accuracy and reliability are needed urgently for vibration measurement. In this paper a vibration sensor with nanometer resolution is developed. This sensor is based on the principle of phase grating interference for displacement measurement and spatial polarization phase-shift interference technology, and photoelectric counting and A/D signal subdivision are adopted for vibration data output. A vibration measurement system consisting of vibration actuator and displacement adjusting device has been designed to test the vibration sensor. The high resolution and high reliability of the sensor are verified through a series of comparison experiments with Doppler interferometer.

  11. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2015-12-08

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  12. Low cost subpixel method for vibration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ferrer, Belen [Department of Civil Engineering, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Espinosa, Julian; Perez, Jorge; Acevedo, Pablo; Mas, David [Inst. of Physics Applied to the Sciences and Technologies, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain); Roig, Ana B. [Department of Optics, Univ. Alicante P.O. Box, 99, 03080 Alicante (Spain)

    2014-05-27

    Traditional vibration measurement methods are based on devices that acquire local data by direct contact (accelerometers, GPS) or by laser beams (Doppler vibrometers). Our proposal uses video processing to obtain the vibration frequency directly from the scene, without the need of auxiliary targets or devices. Our video-vibrometer can obtain the vibration frequency at any point in the scene and can be implemented with low-cost devices, such as commercial cameras. Here we present the underlying theory and some experiments that support our technique.

  13. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices

    Directory of Open Access Journals (Sweden)

    Bingtuan Gao

    2014-11-01

    Full Text Available Feasible real-time swing angle measurement is significant to improve the efficiency and safety of industrial crane systems. This paper presents a wireless microelectromechanical system (MEMS-based swing angle measurement system. The system consists of two attitude heading reference system (AHRS sensing units with a wireless communication function, which are mounted on the hook (or payload and the jib (or base of the crane, respectively. With a combination of a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, the standard extended Kalman filter (EKF is used to estimate the desired orientation of the payload and the base. Wireless ZigBee communication is employed to transmit the orientation of the payload to the sensing unit mounted on the base, which measures the orientation of the base. Because several physical parameters from the payload to the base can be acquired from the original crane control system, the swing angles of the payload can be calculated based on the two measured orientation parameters together with the known physical parameters. Experiments were performed to show the feasibility and effectiveness of the proposed swing angle measurement system.

  14. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  15. Research and development of energy harvesting from vibrations and human motions (Conference Presentation)

    Science.gov (United States)

    Liao, Wei-Hsin

    2017-04-01

    Most of the ambient energy, which was regarded useless in the past, now is under the spotlight. With the rapid developments on low power electronics, future personal mobile devices and remote sensing systems might become self-powered by scavenging energy in different forms from their surroundings. Kinetic energy is one of the promising energy forms in our living environment, e.g., human motions and vibrations. We have proposed an energy flow to clarify the functions of piezoelectric energy harvesting, dissipation, and their effects on the structural damping of vibrating structures. Impedance modeling and analysis were performed. We have designed an improved self-powered switching interface for piezoelectric energy harvesting circuits. With electromagnetic transduction, we also proposed a knee-mounted energy harvester that could convert the mechanical power from knee joints into electricity during walking. On the other hand, we have developed magnetorheological (MR) fluid devices with multiple functions, including rotary actuators and linear dampers. Multifunctional rotary actuator was designed to integrate motor/generator part and MR fluids into a single device. The actuator could function as motor, generator, clutch and brake, with compact size and good energy efficiency. In addition, novel self-sensing MR dampers with power generation, so as to integrate the dynamic sensing, controllable damping and power generation functions, were developed and investigated. Prototypes were fabricated and tested. The developed actuators were promising for various applications. In this paper, related research in energy harvesting done at The Chinese University of Hong Kong and key results will be presented.

  16. Devices for hearing loss

    Science.gov (United States)

    ... or a vibration. Assistive Listening Devices Many sounds, mixing together in a room, can make it harder ... bring the sound from your TV, radio, or music player directly to your inner ear. Many listening ...

  17. Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia

    Science.gov (United States)

    Bertuna, Angela; Faglia, Guido; Ferroni, Matteo; Kaur, Navpreet; Munasinghe Arachchige, Hashitha M. M.; Sberveglieri, Giorgio; Comini, Elisabetta

    2017-01-01

    Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (n-type In2O3, ZnO), vapor liquid solid (n-type SnO2 and p-type NiO) and thermal evaporation and oxidation (n-type ZnO, WO3 and p-type CuO) methods. For each material we’ve assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO2 nanowires were effective in DMMP detection, ZnO nanowires in NO2, acetone and ethanol detection, WO3 for ammonia and CuO for ozone. PMID:28468310

  18. Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia

    Directory of Open Access Journals (Sweden)

    Angela Bertuna

    2017-05-01

    Full Text Available Metal oxide 1D nanowires are probably the most promising structures to develop cheap stable and selective chemical sensors. The purpose of this contribution is to review almost two-decades of research activity at the Sensor Lab Brescia on their preparation during by vapor solid (n-type In2O3, ZnO, vapor liquid solid (n-type SnO2 and p-type NiO and thermal evaporation and oxidation (n-type ZnO, WO3 and p-type CuO methods. For each material we’ve assessed the chemical sensing performance in relation to the preparation conditions and established a rank in the detection of environmental and industrial pollutants: SnO2 nanowires were effective in DMMP detection, ZnO nanowires in NO2, acetone and ethanol detection, WO3 for ammonia and CuO for ozone.

  19. 47 CFR 10.530 - Common vibration cadence.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Common vibration cadence. 10.530 Section 10.530... § 10.530 Common vibration cadence. A Participating CMS Provider and equipment manufacturers may only market devices for public use under part 10 that include a vibration cadence capability that meets the...

  20. Evaluation of mobile micro-sensing devices for GPS-based personal exposure monitoring of heat and particulate matter - a matter of context

    Science.gov (United States)

    Ueberham, Maximilian; Schlink, Uwe; Weiland, Ulrike

    2017-04-01

    The application of mobile micro-sensing devices (MSDs) for human health and personal exposure monitoring (PEM) is an emerging topic of interest in urban air quality research. In the context of climate change, urban population growth and related anthropogenic activities, an increase is expected for the intensity of citizens' exposure to heat and particulate matter (PM). Therefore more focus on the small-scale perspective of spatio-temporal distribution of air quality parameters is important to complement fixed-monitoring site data. Mobile sensors for PEM are useful for both, the investigation of the local distribution of air quality and the personal exposure profiles of individuals moving within their activity spaces. An evaluation of MSDs' accuracy is crucial, before their sophisticated application in measurement campaigns. To detect variations of exposure at small scales, it is even more important to consider the accuracy of Global Positioning System (GPS) devices within different urban structure types (USTs). We present an assessment of the performance of GPS-based MSDs under indoor laboratory conditions and outdoor testing within different USTs. The aim was to evaluate the accuracy of several GPS devices and MSDs for heat and PM 2.5 in relation to reliable standard sensing devices as part of a PhD-project. The performance parameters are summary measures (mean value, standard deviation), correlation (Pearson r), difference measures (mean bias error, mean absolute error, index of agreement) and Bland-Altman plots. The MSDs have been tested in a climate chamber under constant temperature and relative humidity. For temperature MSDs reaction time was tested because of its relevance to detect temperature variations during mobile measurements. For interpretation of the results we considered the MSDs design and technology (e.g. passive vs. active ventilation). GPS-devices have been tested within low/high dense urban residential areas and low/high dense urban green areas

  1. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  2. History of bioresponse to vibration in the Acoustical Society of America

    Science.gov (United States)

    Weisenberger, Janet M.

    2003-04-01

    Human response to vibratory stimulation of the skin surface has long been considered an aspect of the sense of touch; however, the debate over whether vibration was one aspect of pressure sensation, as espoused by von Frey in the late 1800s, or a separate sense, as argued by Katz (1925), focused attention on this mode of stimulation. Experimental investigations from the 1920s to the 1960s by Knudsen, Geldard, Sherrick, Verrillo, Mountcastle, and others provided basic data on vibrotactile perception and the neural transduction of vibratory stimulation. Within the Acoustical Society of America, work on bioresponse to vibration has included not only basic investigations of vibrotactile perception and physiology, but also studies of the loss of sensitivity resulting from intense hand-arm vibration induced by occupational use of chainsaws and jackhammers, studies of human response to whole-body vibration, and evaluations of the utility of vibrotactile devices for communication of speech to hearing-impaired persons. Contributions in each of these areas, as well as future research directions, are discussed.

  3. [Senses and meanings of health socialized by cultural devices: readings of the warning images on cigarettes packs].

    Science.gov (United States)

    Renovato, Rogério Dias; Bagnato, Maria Helena Salgado; Missio, Lourdes; Murback, Silvana Elisa Sauaia Lopes; da Cruz, Lúcia Pedroso; Bassinello, Greicelene Aparecida Hespanhol

    2009-10-01

    This article analyzes the images publicized on cigarettes packs that are part of the strategies from the Ministry of Health to combat the tabagism and available from the Cancer National Institute. These images bring the official speech of specialists and build narratives, understood such as truths, based on scientific knowledge. We have supported our thesis on theoretical referential of Cultural Studies, since its reflections help to understand that the subjectiveness is social and culturally built by different speeches and devices. We do not deny what is represented, but we establish dialogues with other possibilities of readings that can be present at these devices.We understand the propagated images as cultural pedagogies that behave as texts to be read, building up representations that can be assumed as true effect, and attributes to the citizen the necessity of constant control of its action. Reassuring the biomedicine and the health institutions, an onedimensional vision is propagated disregarding the complexity of this problem. We understand that the cultural pedagogies are part of competition territories, where the directions and meanings can be re-prepared producing hybrid identities that build up its own identity origins over this tangle of power relations.

  4. Damage monitoring and impact detection using optical fiber vibration sensors

    Science.gov (United States)

    Yang, Y. C.; Han, K. S.

    2002-06-01

    Intensity-based optical fiber vibrations sensors (OFVSs) are used in damage monitoring of fiber-reinforced plastics, in vibration sensing, and location of impacts. OFVSs were constructed by placing two cleaved fiber ends in a capillary tube. This sensor is able to monitor structural vibrations. For vibration sensing, the optical fiber sensor was mounted on the carbon fiber reinforced composite beam, and its response was investigated for free and forced vibration. For locating impact points, four OFVSs were placed at chosen positions and the different arrival times of impact-generated vibration signals were recorded. The impact location can be determined from these time delays. Indentation and tensile tests were performed with the measurement of the optical signal and acoustic emission (AE). The OFVSs accurately detected both free and forced vibration signals. Accurate locations of impact were determined on an acrylate plate. It was found that damage information, comparable in quality to AE data, could be obtained from the OFVS signals.

  5. Accuracy-energy configurable sensor processor and IoT device for long-term activity monitoring in rare-event sensing applications.

    Science.gov (United States)

    Park, Daejin; Cho, Jeonghun

    2014-01-01

    A specially designed sensor processor used as a main processor in IoT (internet-of-thing) device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG). Using an event signal processing unit (EPU) as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio-) based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  6. Accuracy-Energy Configurable Sensor Processor and IoT Device for Long-Term Activity Monitoring in Rare-Event Sensing Applications

    Directory of Open Access Journals (Sweden)

    Daejin Park

    2014-01-01

    Full Text Available A specially designed sensor processor used as a main processor in IoT (internet-of-thing device for the rare-event sensing applications is proposed. The IoT device including the proposed sensor processor performs the event-driven sensor data processing based on an accuracy-energy configurable event-quantization in architectural level. The received sensor signal is converted into a sequence of atomic events, which is extracted by the signal-to-atomic-event generator (AEG. Using an event signal processing unit (EPU as an accelerator, the extracted atomic events are analyzed to build the final event. Instead of the sampled raw data transmission via internet, the proposed method delays the communication with a host system until a semantic pattern of the signal is identified as a final event. The proposed processor is implemented on a single chip, which is tightly coupled in bus connection level with a microcontroller using a 0.18 μm CMOS embedded-flash process. For experimental results, we evaluated the proposed sensor processor by using an IR- (infrared radio- based signal reflection and sensor signal acquisition system. We successfully demonstrated that the expected power consumption is in the range of 20% to 50% compared to the result of the basement in case of allowing 10% accuracy error.

  7. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  8. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  9. Driving an Active Vibration Balancer to Minimize Vibrations at the Fundamental and Harmonic Frequencies

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.

  10. Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device

    Directory of Open Access Journals (Sweden)

    Tzu-Hsuan Lin

    2014-01-01

    Full Text Available This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI- based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  11. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    Science.gov (United States)

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    Science.gov (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  13. Investigation of an energy harvesting MR damper in a vibration control system

    Science.gov (United States)

    Sapiński, Bogdan; Rosół, Maciej; Węgrzynowski, Marcin

    2016-12-01

    In this paper the authors investigate the performance of an energy harvesting MR damper (EH-MRD) employed in a semi-active vibration control system (SVCS) and used in a single DOF mechanical structure configuration. Main components of the newly proposed SCVS include the MR damper and an electromagnetic vibration energy harvester based on the Faraday’s law (EVEH) that converts vibration energy into electrical energy and delivers electrical power supplying the MR damper. The main objective of the study is to indicate that the SVCS, controlled by the specially designed embedded system, is feasible and presents good performance at the present stage of the research. The work describes investigation the unique features of the EH-MRD, i.e. its self-powering and self-sensing capabilities. Two cases were considered and the testing was done accordingly. In the case 1, only the self-powered capability was investigated. It was found out that harvested energy is sufficient to power the EH-MRD damper and to adjust it to structural vibration. The results confirmed the adequacy of the SVCS and demonstrated a significant reduction of the resonance peak. In the case 2, both the self-powering and self-sensing capabilities were investigated. Due to the self-sensing capability, the SCVS does not require any sensor. It appeared that thus harvested energy is sufficient to power the EH-MRD and enables self-sensing action since the signal of voltage induced by EVEH agrees with the relative velocity signal across the device. Similar to case 1, the resonance peak is significantly reduced.

  14. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  15. Stroboscopic shearography for vibration analysis

    Science.gov (United States)

    Steinchen, Wolfgang; Kupfer, Gerhard; Maeckel, Peter; Voessing, Frank

    1999-09-01

    Digital Shearography, a laser interferometric technique in conjunction with the digital image processing, has the potential for vibration analysis due to its simple optical system and insensitivity against small rigid body motions. This paper will focus on its recent developments for vibration analysis and for nondestructive testing (NDT) by dynamic (harmonical) excitation. With the introduction of real time observation using automatically refreshing reference frame, both small and large rigid body motions are greatly suppressed. The development of a smaller and more mobile measuring device in conjunction with a user guided comfortable program Shearwin enables the digital shearography to be applied easily as an industrial online testing tool.

  16. Function generator for synthesizing complex vibration mode patterns

    Science.gov (United States)

    Naumann, E. C.; Hagood, G. J., Jr. (Inventor)

    1973-01-01

    A simple highly flexible device for synthesizing complex vibration mode patterns is described. These mode patterns can be used to identify vibration mode data. This device sums selected sine and cosine functions and then plots the sum against a linear function.

  17. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  18. Modeling Displacement Measurement using Vibration Transducers

    Directory of Open Access Journals (Sweden)

    AGOSTON Katalin

    2014-05-01

    Full Text Available This paper presents some aspects regarding to small displacement measurement using vibration transducers. Mechanical faults, usages, slackness’s, cause different noises and vibrations with different amplitude and frequency against the normal sound and movement of the equipment. The vibration transducers, accelerometers and microphone are used for noise and/or sound and vibration detection with fault detection purpose. The output signal of the vibration transducers or accelerometers is an acceleration signal and can be converted to either velocity or displacement, depending on the preferred measurement parameter. Displacement characteristics are used to indicate when the machine condition has changed. There are many problems using accelerometers to measure position or displacement. It is important to determine displacement over time. To determinate the movement from acceleration a double integration is needed. A transfer function and Simulink model was determinate for accelerometers with capacitive sensing element. Using these models the displacement was reproduced by low frequency input.

  19. Optical fiber macro-bend seismic sensor for real-time vibration monitoring in harsh industrial environment

    Science.gov (United States)

    Poczęsny, T.; Prokopczuk, K.; Makowski, P. L.; Domański, A. W.

    2011-05-01

    Condition monitoring of electromechanical equipment for heavy industry places special requirements on the environmental sensors' construction. Widely available electronic devices can easily suffer from the electromagnetic interference or may pose fire hazard. An important category of dedicated sensing devices emerged during the expansion of fiber optic technology in the last few decades. In this paper, contributing in the basic research in the field, a novel kind of intrinsic intensity fiber optic vibration sensor is proposed. We present a fiber loop based opto-mechanical transducer utilized in two configurations: the inertial sensor system working as accelerometer and a distributed vibration sensor. The complete mathematical model for the latter type configuration has been introduced, as well as some results of preliminary experimental tests on both sensor concepts have been presented.

  20. Senses made for Stealth

    DEFF Research Database (Denmark)

    Mirtschin, Peter; Redsted Rasmussen, Arne; Weinstein, Scott

    2017-01-01

    Australia’s terrestrial snake species have acute senses designed for a cryptic, limbless life in the undergrowth. Sea snakes, on the other hand, have developed specialised scale sensilla that help them detect even slight vibrations underwater. From ‘air-tasting’ tongues, to jawbones that ‘hear...

  1. Mechanical vibration to electrical energy converter

    Science.gov (United States)

    Kellogg, Rick Allen [Tijeras, NM; Brotz, Jay Kristoffer [Albuquerque, NM

    2009-03-03

    Electromechanical devices that generate an electrical signal in response to an external source of mechanical vibrations can operate as a sensor of vibrations and as an energy harvester for converting mechanical vibration to electrical energy. The devices incorporate a magnet that is movable through a gap in a ferromagnetic circuit, wherein a coil is wound around a portion of the ferromagnetic circuit. A flexible coupling is used to attach the magnet to a frame for providing alignment of the magnet as it moves or oscillates through the gap in the ferromagnetic circuit. The motion of the magnet can be constrained to occur within a substantially linear range of magnetostatic force that develops due to the motion of the magnet. The devices can have ferromagnetic circuits with multiple arms, an array of magnets having alternating polarity and, encompass micro-electromechanical (MEM) devices.

  2. Wide band gap materials and devices for NO{sub x}, H{sub 2} and O{sub 2} gas sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Majdeddin

    2008-01-22

    response to deuterium D{sub 2}, NO{sub x}, and O{sub 2} of metal-oxide-semiconductor (MOS) and metal-metal oxide-oxide-semiconductor (MMOOS) structures with rhodium (Rh) gate were investigated in dependence on the operating temperature and gas partial pressures was investigated in chapter 3. The response of the sensor was measured as a shift in the capacitance-voltage (C-V) curve along the voltage axis. Positive and negative flat-band voltage shifts up to 1 V were observed for oxidizing and reducing gases, respectively. Depending on the type of insulator that is chosen, differences in the sensitivity of the sensor were observed. In chapter 4: The performance of SiC-based field effect transistors (FETs) with different gate materials (mixture of metal oxides: indium oxide and tin oxide (In{sub x}Sn{sub y}O{sub z}), indium oxide and vanadium oxide (In{sub x}V{sub y}O{sub z}), as well as mixtures of metal oxides with metal additives) were investigated as NO{sub x}, O{sub 2}, and D{sub 2} gas detectors. The response to these gases was investigated in dependence on the operating temperature and gas partial pressures. The composition and microstructure of the sensing gate electrode are the key parameters that influence the sensing mechanism, and hence key performance parameters: sensitivity, selectivity, and response time. By choosing the appropriate temperature and catalyst material (gate material), devices that are significantly sensitive to certain gases may be realized. In addition, the temperature of maximum response varies dependent on the gas species being measured. This information, along with a careful choice of catalyst (gate material) can be used to enhance device selectivity. In chapter 5: Polycrystalline and nano-structured In{sub 2}O{sub 3} thin films were investigated with the aim to obtain information about their NO{sub x} and O{sub 2} gas sensing properties. The response to these gases was investigated in dependence on the operating temperature and gas partial

  3. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  4. Wireless alerting system using vibration for vehicles dashboard

    Science.gov (United States)

    Raj, Sweta; Rai, Shweta; Magaramagara, Wilbert; Sivacoumar, R.

    2017-11-01

    This paper aims at improving the engine life of any vehicle through a continuous measurement and monitoring of vital engine operational parameters and providing an effective alerting to drivers for any abnormality. Vehicles currently are using audio and visible alerting signals through alarms and light as a warning to the driver but these are not effective in noisy environments and during daylight. Through the use of the sense of feeling a driver can be alerted effectively. The need to no other vehicle parameter needs to be aided through the mobile display (phone).Thus a system is designed and implements to measure engine temperature, RPM, Oil level and Coolant level using appropriate sensors and a wireless communication (Bluetooth) is established to actuate a portable vibration control device and to read the different vehicle sensor readings through an android application for display and diagnosis.

  5. Stabilization for the vibrations modeled by the 'standard linear model ...

    Indian Academy of Sciences (India)

    Abstract. We study the stabilization of vibrations of a flexible structure modeled by the 'standard linear model' of viscoelasticity in a bounded domain in Rn with a smooth boundary. We prove that amplitude of the vibrations remains bounded in the sense of a suitable norm in a space X, defined explicitly in (22) subject to a ...

  6. Sensing temperature.

    Science.gov (United States)

    Sengupta, Piali; Garrity, Paul

    2013-04-22

    Temperature is an omnipresent physical variable reflecting the rotational, vibrational and translational motion of matter, what Richard Feynman called the "jiggling" of atoms. Temperature varies across space and time, and this variation has dramatic effects on the physiology of living cells. It changes the rate and nature of chemical reactions, and it alters the configuration of the atoms that make up nucleic acids, proteins, lipids and other biomolecules, significantly affecting their activity. While life may have started in a "warm little pond", as Charles Darwin mused, the organisms that surround us today have only made it this far by devising sophisticated systems for sensing and responding to variations in temperature, and by using these systems in ways that allow them to persist and thrive in the face of thermal fluctuation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and accelerometers

    Science.gov (United States)

    Ozer, Ekin; Feng, Dongming; Feng, Maria Q.

    2017-10-01

    State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.

  8. Vibration properties of and power harvested by a system of electromagnetic vibration energy harvesters that have electrical dynamics

    Science.gov (United States)

    Cooley, Christopher G.

    2017-09-01

    This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.

  9. Enhanced damping for bridge cables using a self-sensing MR damper

    Science.gov (United States)

    Chen, Z. H.; Lam, K. H.; Ni, Y. Q.

    2016-08-01

    This paper investigates enhanced damping for protecting bridge stay cables from excessive vibration using a newly developed self-sensing magnetorheological (MR) damper. The semi-active control strategy for effectively operating the self-sensing MR damper is formulated based on the linear-quadratic-Gaussian (LQG) control by further considering a collocated control configuration, limited measurements and nonlinear damper dynamics. Due to its attractive feature of sensing-while-damping, the self-sensing MR damper facilitates the collocated control. On the other hand, only the sensor measurements from the self-sensing device are employed in the feedback control. The nonlinear dynamics of the self-sensing MR damper, represented by a validated Bayesian NARX network technique, are further accommodated in the control formulation to compensate for its nonlinearities. Numerical and experimental investigations are conducted on stay cables equipped with the self-sensing MR damper operated in passive and semi-active control modes. The results verify that the collocated self-sensing MR damper facilitates smart damping for inclined cables employing energy-dissipative LQG control with only force and displacement measurements at the damper. It is also demonstrated that the synthesis of nonlinear damper dynamics in the LQG control enhances damping force tracking efficiently, explores the features of the self-sensing MR damper, and achieves better control performance over the passive MR damping control and the Heaviside step function-based LQG control that ignores the damper dynamics.

  10. Modelling of resonant MEMS magnetic field sensor with electromagnetic induction sensing

    Science.gov (United States)

    Liu, Song; Xu, Huaying; Xu, Dehui; Xiong, Bin

    2017-06-01

    This paper presents an analytical model of resonant MEMS magnetic field sensor with electromagnetic induction sensing. The resonant structure vibrates in square extensional (SE) mode. By analyzing the vibration amplitude and quality factor of the resonant structure, the magnetic field sensitivity as a function of device structure parameters and encapsulation pressure is established. The developed analytical model has been verified by comparing calculated results with experiment results and the deviation between them is only 10.25%, which shows the feasibility of the proposed device model. The model can provide theoretical guidance for further design optimization of the sensor. Moreover, a quantitative study of the magnetic field sensitivity is conducted with respect to the structure parameters and encapsulation pressure based on the proposed model.

  11. Studying and Modeling Vibration Transducers and Accelerometers

    Directory of Open Access Journals (Sweden)

    Katalin Ágoston

    2010-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Piezoelectric sensing elements are often used in accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and how can be modeled with an electronic circuit. The transfer functions of the electronic circuit models are studied in Matlab and the results are presented. It will be presented the influence of the seismic mass on the accelerometer’s working frequency domain.

  12. Smart Sensor for Analyzing Train Vibration in WCR Zone

    Directory of Open Access Journals (Sweden)

    Alka DUBEY

    2009-09-01

    Full Text Available In the present paper a smart vibration sensor is developed for railway electric engine WAP-7. Which is a self-sensation device equipped with recording and wireless communication interface. One programmed microcontroller 89C52 is used, which record vibration of trains with real time into memory. There is certain limit of vibrations, which is acceptable by track. Beyond this limit track can be damaged and may result major casualty. Smart sensor indicate the level of current vibration with its ideal value for prevention of excessive vibration it starts buzz ring. The work is highly applicable to the high speed trains. The high level vibration cause serious accidents due to the vibration.

  13. Package security recorder of vibration

    Science.gov (United States)

    Wang, Xiao-na; Hu, Jin-liang; Song, Shi-de

    2013-08-01

    This paper introduces a new kind of electronic product — Package Security Recorder of Vibration. It utilizes STC89C54RD+ LQFP-44 MCU as its main controller. At the same time, it also utilizes Freescale MMA845A 3-Axis 8-bit/12-bit Digital Accelerometer and Maxim DS1302 Trickle Charge Timekeeping Chip. It utilizes the MCU to read the value of the accelerometer and the value of the timekeeping chip, and records the data into the inner E2PROM of MCU. The whole device achieves measuring, reading and recording the time of the vibration and the intensity of the vibration. When we need the data, we can read them out. The data can be used in analyzing the condition of the cargo when it transported. The device can be applied to monitor the security of package. It solves the problem of responsibility affirming, when the valuable cargo are damaged while it transported. It offers powerful safeguard for the package. It's very value for application.

  14. Nanotechnology - Enabled Sensing

    Science.gov (United States)

    2009-05-07

    for public release ; distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...Ultimately, such sensing systems will become ubiquitous and an integral part of buildings, cars, textiles , and point-of-care medical devices...analytes, or for concentration of vapor or liquid analytes prior to sensing. Porous nanoscale materials could also be used as nanoscale bioreactors

  15. Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR

    Science.gov (United States)

    Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya

    2017-07-01

    All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.

  16. How Does It Feel Like? An Exploratory Study of a Prototype System to Convey Emotion through Haptic Wearable Devices

    Directory of Open Access Journals (Sweden)

    Antonella Mazzoni

    2015-08-01

    Full Text Available This paper reports on the design and implementation of a portable, hands-free, wearable haptic device that maps the emotions evoked by the music in a movie into vibrations, with the aim that hearing-impaired audience can get a sense of the emotional content carried by the music in specific movie scenes, and therefore feel (hear the music through the sense of touch. A study of the use of the technology is reported which found that high arousal and high valence were reliably conveyed through haptic patterns with high intensity and high frequency, whereas haptic patterns with low intensity and low frequency conveyed low arousal and low valence.

  17. VibroCav : Hydrodynamic Vibration and Cavitation Technology

    NARCIS (Netherlands)

    Bakker, T.W.

    2012-01-01

    Vibration and cavitation can be generated in many ways and serve many useful purposes. This study describes physical aspects of useful vibration and cavitation for a broad spectrum of applications at atmospheric or elevated pressures. After a review of available devices, hydrodynamic

  18. Vibrational coupling in plasmonic molecules.

    Science.gov (United States)

    Yi, Chongyue; Dongare, Pratiksha D; Su, Man-Nung; Wang, Wenxiao; Chakraborty, Debadi; Wen, Fangfang; Chang, Wei-Shun; Sader, John E; Nordlander, Peter; Halas, Naomi J; Link, Stephan

    2017-10-31

    Plasmon hybridization theory, inspired by molecular orbital theory, has been extremely successful in describing the near-field coupling in clusters of plasmonic nanoparticles, also known as plasmonic molecules. However, the vibrational modes of plasmonic molecules have been virtually unexplored. By designing precisely configured plasmonic molecules of varying complexity and probing them at the individual plasmonic molecule level, intramolecular coupling of acoustic modes, mediated by the underlying substrate, is observed. The strength of this coupling can be manipulated through the configuration of the plasmonic molecules. Surprisingly, classical continuum elastic theory fails to account for the experimental trends, which are well described by a simple coupled oscillator picture that assumes the vibrational coupling is mediated by coherent phonons with low energies. These findings provide a route to the systematic optical control of the gigahertz response of metallic nanostructures, opening the door to new optomechanical device strategies. Published under the PNAS license.

  19. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  20. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  1. Simple shearing interferometer suitable for vibration measurements

    Science.gov (United States)

    Mihaylova, Emilia M.; Whelan, Maurice P.; Toal, Vincent

    2004-06-01

    Recently there has been an increasing interest in the application of shearography for modal analysis of vibrating objects. New interferometric systems, which are simple and flexible are of interest for engineering and industrial applications. An electronic speckle pattern shearing interferometer (ESPSI) with a very simple shearing device is used for study of vibrations. The shearing device consists of two partially reflective glass plates. The reflection coefficients of the coatings are 0.3 and 0.7 respectively. The distance between the two glass plates controls the size of the shear. The versatility of this simple shearing interferometer is shown. It is demonstrated that the ESPSI system can be used for vibration measurements and phase-shifting implemented for fringe analysis. The results obtained are promising for future applications of the system for modal analysis.

  2. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  3. Innovative nanostructures for highly sensitive vibrational biosensing (Conference Presentation)

    Science.gov (United States)

    Popp, Juergen; Mayerhöfer, Thomas; Cialla-May, Dana; Weber, Karina; Huebner, Uwe

    2016-03-01

    Employing vibrational spectroscopy (IR-absorption and Raman spectroscopy) allows for the labelfree detection of molecular specific fingerprints of inorganic, organic and biological substances. The sensitivity of vibrational spectroscopy can be improved by several orders of magnitude via the application of plasmonic active surfaces. Within this contribution we will discuss two such approaches, namely surface enhanced Raman spectroscopy (SERS) as well as surface enhanced IR absorption (SEIRA). It will be shown that SERS using metal colloids as SERS active substrate in combination with a microfluidic lab-on-a-chip (LOC) device enables high throughput and reproducible measurements with highest sensitivity and specificity. The application of such a LOC-SERS approach for therapeutic drug monitoring (e.g. quantitative detection of antibiotics in a urine matrix) will be presented. Furthermore, we will introduce innovative bottom-up strategies to prepare SERS-active nanostructures coated with a lipophilic sensor layer as one-time use SERS substrates for specific food analysis (e.g. quantitative detection of toxic food colorants). The second part of this contribution presents a slit array metamaterial perfect absorber for IR sensing applications consisting of a dielectric layer sandwiched between two metallic layers of which the upper layer is perforated with a periodic array of slits. Light-matter interaction is greatly amplified in the slits, where also the analyte is concentrated, as the surface of the substrate is covered by a thin silica layer. Thus, already small concentrations of analytes down to a monolayer can be detected by refractive index sensing and identified by their spectral fingerprints with a standard mid-infrared lab spectrometer.

  4. Piezoelectric bimorph cantilever for vibration-producing-hydrogen.

    Science.gov (United States)

    Zhang, Jun; Wu, Zheng; Jia, Yanmin; Kan, Junwu; Cheng, Guangming

    2012-12-27

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  5. A New Shape Memory Alloy Based Smart Encoder for Sensing of Direction and Angular Motion

    Directory of Open Access Journals (Sweden)

    Bishakh BHATTACHARYA

    2011-07-01

    Full Text Available This paper presents a novel technique for sensing direction, angle and velocity from rotation of shafts using simple Shape Memory Alloy (SMA based micro-switches. Due to electro-mechanical coupling of SMA wires reflected in controlled force generation capacity, the SMA based devices can provide better alternatives for traditional relays, solenoid valves and opto-coupler isolators. The control algorithm involved in this sensing technique, reads the switch status for shaft rotation and sense the angular displacement thereafter. One of the advantages, this new sensor offers is its inherent robustness to vibration in the host platform. Experiments are carried out under vibrating conditions and obtained results are compared with conventional optical incremental encoder. The result shows that SMA based angle encoder works efficiently and gives more accurate results under disturbance while optical encoders are quite sensitive to similar platform vibration. Due to its compactness and lightweight, this concept of SMA wire based angle sensor is envisaged to be suitable for structural health monitoring applications where discrete angle information is needed at low RPM.

  6. Improved vibration sensor based on a biconical tapered singlemode fiber, using in-fiber Mach-Zehnder interferometer

    Science.gov (United States)

    Wonko, R.; Moś, J. E.; Stasiewicz, K. A.; Jaroszewicz, L. R.

    2017-05-01

    Optical fiber vibration sensors are an appropriate alternative for piezoelectric devices, which are electromagnetic sensitive to the external conditions. Most of the vibration sensors demonstrated in previous publications resist to different interferometers or Bragg's gratings. Such sensors require a long time of stabilization of an optical signal, because they are vulnerable to undesirable disturbance. In majority, time response of an optical sensor should be instantaneous, therefore we have proposed an in- line vibration sensing passive element based on a tapered fiber. Micrometer sized optical fiber tapers are attractive for many optical areas due to changes process of boundary conditions. Such phenomena allow for a sensitive detection of the modulation phase. Our experiment shows that a singlemode, adiabatic tapered fiber enables detecting an acoustic vibration. In this study, we report on Mach- Zehnder (MZ) interferometer as a vibration sensor which was composed of two 50/50 couplers at 1550 nm. In the reference arm we used a 4 meter singlemode optical fiber (SMF28), while in the arm under test we placed tapered optical fibers attached to a metal plate, put directly on speaker. Researches carried out on different tapered fibers which diameter of a taper waist was in the range from 5 μm to 25 μm, and each taper was characterized by optical losses less than 0,5 dB. The measured phase changes were over a frequency from 100 Hz to 1 kHz and an amplitude in the range from 100 mVpp to 1 Vpp. Although on account of a limited space we have showed only the results for 100 Hz. Nevertheless, experimental results show that this sensing system has a wide frequency response range from a few hertz to one of kilohertz, however for some conditions, a standard optical fiber showed better result.

  7. Forced Vibrations of a Cantilever Beam

    Science.gov (United States)

    Repetto, C. E.; Roatta, A.; Welti, R. J.

    2012-01-01

    The theoretical and experimental solutions for vibrations of a vertical-oriented, prismatic, thin cantilever beam are studied. The beam orientation is "downwards", i.e. the clamped end is above the free end, and it is subjected to a transverse movement at a selected frequency. Both the behaviour of the device driver and the beam's weak-damping…

  8. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  9. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  10. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  11. In vitro thrombogenesis study in the Gyro C1E3 for vibration assessment.

    Science.gov (United States)

    Nakazawa, T; Tayama, E; Takami, Y; Glueck, J; Nosé, Y

    1997-07-01

    To clarify the correlation between vibration and thrombus formation in a centrifugal blood pump, a preliminary simulated thrombus study was conducted for possible detection of thrombus formation inside a pump. Additional in vitro thrombogenesis studies were performed to confirm the results of the preliminary study. The primary data acquisition equipment included an accelerometer (Isotron PE accelerometer, Endevco, San Juan Capistrano, CA, U.S.A.), digitizing oscilloscope (TDS 420, Tektronic, Inc., MA, U.S.A.), and pivot bearing centrifugal pumps. The accelerometer was mounted to the top of the pump casing to sense radial and axial accelerations. For the preliminary study, a piece of Silastic was adhered to each of the 3 common areas of thrombus formation inside the pump. The results provided baseline information to speculate on the possibility of detecting thrombus formation by vibration signal changes. For the next studies, fresh bovine blood was harvested under sterile conditions and with strict avoidance of air contact, adding 1.0 U/ml of heparin. The sterilized test circuit consisted of 3/8 inch tubing (Tygon) and a soft reservoir. During the operating time, the activated clotting time (ACT) was maintained between 150 to 300 s using protamin. A restrictor on the outflow tube maintained the flow rates at about 4.5 L/min. The pumps ran continuously for 6 h. Possible blood clot formation inside the pump was monitored by observing the vibration signal from the device for 6 h. These studies revealed that it was possible to distinguish between an impeller that did not form thrombus and ones that formed fibrogenous thrombus using vibration signal assessment. Vibration assessment is worthwhile as a thrombus monitoring tool for a centrifugal blood pump.

  12. Cutaneous Feedback of Fingertip Deformation and Vibration for Palpation in Robotic Surgery.

    Science.gov (United States)

    Pacchierotti, Claudio; Prattichizzo, Domenico; Kuchenbecker, Katherine J

    2016-02-01

    Despite its expected clinical benefits, current teleoperated surgical robots do not provide the surgeon with haptic feedback largely because grounded forces can destabilize the system's closed-loop controller. This paper presents an alternative approach that enables the surgeon to feel fingertip contact deformations and vibrations while guaranteeing the teleoperator's stability. We implemented our cutaneous feedback solution on an Intuitive Surgical da Vinci Standard robot by mounting a SynTouch BioTac tactile sensor to the distal end of a surgical instrument and a custom cutaneous display to the corresponding master controller. As the user probes the remote environment, the contact deformations, dc pressure, and ac pressure (vibrations) sensed by the BioTac are directly mapped to input commands for the cutaneous device's motors using a model-free algorithm based on look-up tables. The cutaneous display continually moves, tilts, and vibrates a flat plate at the operator's fingertip to optimally reproduce the tactile sensations experienced by the BioTac. We tested the proposed approach by having eighteen subjects use the augmented da Vinci robot to palpate a heart model with no haptic feedback, only deformation feedback, and deformation plus vibration feedback. Fingertip deformation feedback significantly improved palpation performance by reducing the task completion time, the pressure exerted on the heart model, and the subject's absolute error in detecting the orientation of the embedded plastic stick. Vibration feedback significantly improved palpation performance only for the seven subjects who dragged the BioTac across the model, rather than pressing straight into it.

  13. Time-varying output performances of piezoelectric vibration energy harvesting under nonstationary random vibrations

    Science.gov (United States)

    Yoon, Heonjun; Kim, Miso; Park, Choon-Su; Youn, Byeng D.

    2018-01-01

    Piezoelectric vibration energy harvesting (PVEH) has received much attention as a potential solution that could ultimately realize self-powered wireless sensor networks. Since most ambient vibrations in nature are inherently random and nonstationary, the output performances of PVEH devices also randomly change with time. However, little attention has been paid to investigating the randomly time-varying electroelastic behaviors of PVEH systems both analytically and experimentally. The objective of this study is thus to make a step forward towards a deep understanding of the time-varying performances of PVEH devices under nonstationary random vibrations. Two typical cases of nonstationary random vibration signals are considered: (1) randomly-varying amplitude (amplitude modulation; AM) and (2) randomly-varying amplitude with randomly-varying instantaneous frequency (amplitude and frequency modulation; AM-FM). In both cases, this study pursues well-balanced correlations of analytical predictions and experimental observations to deduce the relationships between the time-varying output performances of the PVEH device and two primary input parameters, such as a central frequency and an external electrical resistance. We introduce three correlation metrics to quantitatively compare analytical prediction and experimental observation, including the normalized root mean square error, the correlation coefficient, and the weighted integrated factor. Analytical predictions are in an excellent agreement with experimental observations both mechanically and electrically. This study provides insightful guidelines for designing PVEH devices to reliably generate electric power under nonstationary random vibrations.

  14. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  15. Vibration diagnostics instrumentation for ILC

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, A.

    2007-06-15

    The future e{sup -}e{sup +} 500 GeV International Linear Collider will rely on unprecedented nanometer scale particle beam size at the interaction point, in order to achieve the design luminosity. Tight tolerances on static and dynamic alignment of the accelerator cavities and optical components are demanded to transport and focus the high energy electron and positron beams with reasonable position jitter and low emittance. A brief review of techniques and devices evaluated and developed so far for the vibration diagnostics of the machine is presented in this paper. (orig.)

  16. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-01-01

    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  17. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. The Vibration of a Linear Carbon Chain in Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Dongqing Ding

    2017-04-01

    Full Text Available An explicit solution for the vibration of a carbon chain inside carbon nanotubes (CNTs was obtained using continuum modeling of the van der Waals (vdW interactions between them. The effect of the initial tensile force and the amplitude of the carbon chain as well as the radii of the CNTs on the vibration frequency were analyzed in detail, respectively. Our analytical results show that the vibration frequency of the carbon chain in a (5,5 CNT could be around two orders of magnitude higher than that of an independent carbon chain without initial tensile force. For a given CNT radius, the vibration frequency nonlinearly increases with increasing amplitude and initial tensile force. The obtained analytical cohesive energy and vibration frequency are reasonable by comparison of present molecular dynamics (MD simulations. These findings will be a great help towards understanding the vibration property of a nanowire in nanotubes, and designing nanoelectromechanical devices.

  19. Microelectromechanical acceleration-sensing apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  20. Desert ants learn vibration and magnetic landmarks.

    Directory of Open Access Journals (Sweden)

    Cornelia Buehlmann

    Full Text Available The desert ants Cataglyphis navigate not only by path integration but also by using visual and olfactory landmarks to pinpoint the nest entrance. Here we show that Cataglyphis noda can additionally use magnetic and vibrational landmarks as nest-defining cues. The magnetic field may typically provide directional rather than positional information, and vibrational signals so far have been shown to be involved in social behavior. Thus it remains questionable if magnetic and vibration landmarks are usually provided by the ants' habitat as nest-defining cues. However, our results point to the flexibility of the ants' navigational system, which even makes use of cues that are probably most often sensed in a different context.

  1. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer.

    Science.gov (United States)

    Chen, Qingming; Jin, Chao; Bao, Yuan; Li, Zhaohui; Li, Jianping; Lu, Chao; Yang, Liang; Li, Guifang

    2014-02-10

    We propose and experimentally demonstrate a novel ultra-long range and sensitive distributed fiber vibration sensor. Only one unidirectional Mach-Zehnder interferometer (MZI) is employed in this scheme as the sensing element. In this sensor structure, we utilize chromatic dispersion-induced walk-off effect between the vibration signals sensed by two distributed feedback (DFB) lasers at different wavelengths to locate the vibration position. Vibration signals with frequencies up to 9 MHz can be detected and the spatial resolution of 31 m is achieved over 320 km of the standard single mode fiber. Monitoring multiple vibration sources can also be realized using this scheme.

  2. Radial Shock Wave Devices Generate Cavitation.

    Science.gov (United States)

    Császár, Nikolaus B M; Angstman, Nicholas B; Milz, Stefan; Sprecher, Christoph M; Kobel, Philippe; Farhat, Mohamed; Furia, John P; Schmitz, Christoph

    2015-01-01

    Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland) and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA). To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans) worms. FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device. The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices. Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical practice.

  3. Radial Shock Wave Devices Generate Cavitation.

    Directory of Open Access Journals (Sweden)

    Nikolaus B M Császár

    Full Text Available Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues.We used laser fiber optic probe hydrophone (FOPH measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical Systems, Nyon, Switzerland; D-Actor 200; Storz Medical, Tägerwillen, Switzerland and a vibrating massage device (Vibracare; G5/General Physiotherapy, Inc., Earth City, MO, USA. To assert potential bioeffects of these treatment modalities we investigated the influence of rESWT and vibrating massage devices on locomotion ability of Caenorhabditis elegans (C. elegans worms.FOPH measurements demonstrated that both rESWT devices generated acoustic waves with comparable pressure and energy flux density. Furthermore, both rESWT devices generated cavitation as evidenced by high-speed imaging and caused mechanical damage on the surface of x-ray film. The vibrating massage device did not show any of these characteristics. Moreover, locomotion ability of C. elegans was statistically significantly impaired after exposure to radial extracorporeal shock waves but was unaffected after exposure of worms to the vibrating massage device.The results of the present study indicate that both energy signature and bioeffects of rESWT devices are fundamentally different from those of vibrating massage devices.Prior ESWT studies have shown that tissues treated with sufficient quantities of acoustic sound waves undergo cavitation build-up, mechanotransduction, and ultimately, a biological alteration that "kick-starts" the healing response. Due to their different treatment indications and contra-indications rESWT devices cannot be equated to vibrating massage devices and should be used with due caution in clinical

  4. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications.

    Science.gov (United States)

    Li, Mo; Tang, H X; Roukes, M L

    2007-02-01

    Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies (VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise-limited displacement sensitivity of 39 fm Hz(-1/2). Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10(-18) g).

  5. Assistive Device For Visually Impaired People By Using Ultrasonic Sensors

    Directory of Open Access Journals (Sweden)

    Hninn Nandar Aye

    2015-08-01

    Full Text Available The visually impaired people need some aid to walk and move safety in their surroundings. The ordinary people cannot know how hard it is to live and move in daily life for the blindness the visually impaired people and the old person who has poor vision. Although the sighted people cannot help the blindness to regain the eyesight the visually impaired one can try to make easier the daily routine by using the assistive device that can detect the obstacles near the blindness and the visually impaired people and warn the alert to the users before accidence. This assistive device like walking stick contains ultrasonic sensors PIC microcontroller Peripheral Interface Controller LDR vibrator servo motor buzzer and LED. Ultrasonic sensors are used for sensing and detecting the obstacles near the user to avoid the dangerous condition. Vibrator and buzzer are used for providing the alert to know that the obstacle is near. Servo motor is used for turning the wheel easily without effort. LDR and LED is used for lighting in low light room and at night to know the ordinary or sighted people where the walking stick is so this assistive device will be safe from the other peoples hit.

  6. A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation

    Science.gov (United States)

    Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.

    2017-03-01

    Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial

  7. Distributed Fiber-Optic Sensors for Vibration Detection

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-01-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications. PMID:27472334

  8. Distributed Fiber-Optic Sensors for Vibration Detection.

    Science.gov (United States)

    Liu, Xin; Jin, Baoquan; Bai, Qing; Wang, Yu; Wang, Dong; Wang, Yuncai

    2016-07-26

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach-Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  9. Distributed Fiber-Optic Sensors for Vibration Detection

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. Optical parameters such as light intensity, phase, polarization state, or light frequency will change when external vibration is applied on the sensing fiber. In this paper, various technologies of distributed fiber-optic vibration sensing are reviewed, from interferometric sensing technology, such as Sagnac, Mach–Zehnder, and Michelson, to backscattering-based sensing technology, such as phase-sensitive optical time domain reflectometer, polarization-optical time domain reflectometer, optical frequency domain reflectometer, as well as some combinations of interferometric and backscattering-based techniques. Their operation principles are presented and recent research efforts are also included. Finally, the applications of distributed fiber-optic vibration sensors are summarized, which mainly include structural health monitoring and perimeter security, etc. Overall, distributed fiber-optic vibration sensors possess the advantages of large-scale monitoring, good concealment, excellent flexibility, and immunity to electromagnetic interference, and thus show considerable potential for a variety of practical applications.

  10. Model Indepedent Vibration Control

    OpenAIRE

    Yuan, Jing

    2010-01-01

    A NMIFC system is proposed for broadband vibration control. It has two important features. Feature F1 is that the NMIFC is stable without introducing any invasive effects, such as probing signals or controller perturbations, into the vibration system; feature F2 is

  11. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  12. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 2nd edition of this textbook on linear stochastic vibration...

  13. Hydroelastic Vibrations of Ships

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Folsø, Rasmus

    2002-01-01

    A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...

  14. Gearbox vibration diagnostic analyzer

    Science.gov (United States)

    1992-01-01

    This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.

  15. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  16. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  17. Plasmonic nanoantenna array with single-chip integrated metal-organic framework for infrared absorption gas sensing (Conference Presentation)

    Science.gov (United States)

    Chong, Xinyuan; Kim, Ki-Joong; Li, Erwen; Zhang, Yujing; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2017-03-01

    Surface-enhanced infrared absorption (SEIRA) is a spectroscopic technique used to identify molecular fingerprints by resonant detection of infrared vibrational modes through coupling with the plasmonic modes of metallic nanostructures. Many reported works have demonstrated its capability to enhance the infrared absorption of solid or liquid samples. However, this technique has not been successfully applied to gas sensing yet due to the short light-matter interaction length and intrinsically weak absorption of gas compared to solid or liquid materials. Usually, IR gas sensing is conducted in a gas cell with a long absorption path. In the paper, we propose an integrated photonic device to expand the application of SEIRA to gas sensing by combining metal-organic framework (MOF) ZIF-8 (zeolitic imidazole framework) with plasmonic nanoantenna array. The device consists of an Au nanopatch array on sapphire substrate and is covered by a thin layer of MOF material. The MOF thin film, which is a new class of highly nanoporous material, serves as a gas absorber to selectively adsorb and concentrate CO2 from ambient environment into the thin layer, which has a high spatial overlap with the high intensity optical field of the plasmonic nanopatch antenna array. Namely, we can effectively increase the gas molecule concentration at the hot-spots for the SEIRA device. The experimentally demonstrated peak IR enhancement factor of the device for carbon dioxide sensing is over 1,100 times.

  18. Studying accelerometers with capacitive sensing elements

    Directory of Open Access Journals (Sweden)

    Ágoston Katalin

    2011-12-01

    Full Text Available This paper presents types and operating mode of vibration sensors. Differential capacitor sensing elements are often used in integrated accelerometers. It will be investigate the structure and transfer function of the seismic mass type sensing element. The article presents how the piezoelectric sensing element works and compares with capacitor sensing element and how can be modeled with an electronic circuit and Simulink models. The transfer functions of the capacitor sensing element models are studied in Matlab and the results are presented.

  19. Simultaneous vibration and high-speed microscopy to study mechanotransduction in living cells

    Science.gov (United States)

    Holdsworth, David W.; Nikolov, Hristo N.; Au, Jen; Beaucage, Kim; Kishimoto, Jessica; Dixon, S. Jeffrey

    2012-03-01

    Cells exhibit the ability to sense and respond to local mechanical stimuli, leading to changes in function. This capability, referred to as mechanotransduction, is essential to normal tissue function, but the exact mechanisms by which cells sense local forces (strain, shear, compression and vibration) remain unclear. Recent studies in small animals and humans indicate that the frequency of cyclic mechanical stimuli is important, with physiological responses observed for stimuli ranging between 1 and 90 Hz. To better understand the cellular and molecular mechanisms underlying mechanotransduction, it will be important to observe cells in real time, using optical microscopy during high-frequency mechanical stimulation. We have developed a motion-control platform that can produce sinusoidal vibration of live cells during simultaneous high-speed microscopy and fluorimetry, at frequencies up to 100 Hz with peak acceleration up to 9.8 m s-2. The platform is driven by a voice coil and acceleration is measured with an accelerometer (Dytran 7521A1). The motion waveform was verified by high-speed imaging, using a digital camera (Casio EX-F1) operating at 1200 frames s-1 attached to an inverted microscope (Nikon Diaphot). When operating at 45 Hz and 2.94 m s-2 peak acceleration, the observed motion waveform exhibited sinusoidal behaviour, with measured peak-to-peak amplitude of 72 μm. Cultured osteoblast-like cells (UMR-106) were subjected to 2.94 m s-2 vibration at 45 Hz and remained attached and viable. This device provides - for the first time - the capability to mechanically stimulate living cells while simultaneously observing responses with optical microscopy.

  20. Novel design of a self powered and self sensing magneto-rheological damper

    Science.gov (United States)

    Meftahul Ferdaus, Mohammad; Rashid, M. M.; Bhuiyan, M. M. I.; Muthalif, Asan Gani Bin Abdul; Hasan, M. R.

    2013-12-01

    Magneto-rheological (MR) dampers are semi-active control devices and use MR fluids. Magneto-rheological dampers have successful applications in mechatronics engineering, civil engineering and numerous areas of engineering. At present, traditional MR damper systems, require a isolated power supply and dynamic sensor. This paper presents the achievability and accuracy of a self- powered and self-sensing magneto-rheological damper using harvested energy from the vibration and shock environment in which it is deployed and another important part of this paper is the increased yield stress of the Magneto rheological Fluids. Magneto rheological fluids using replacement of glass beads for Magnetic Particles to surge yield stress is implemented here. Clearly this shows better result on yield stress, viscosity, and settling rate. Also permanent magnet generator (PMG) is designed and attached to a MR damper. For evaluating the self-powered MR damper's vibration mitigating capacity, an Engine Mount System using the MR damper is simulated. The ideal stiffness of the PMG for the Engine Mount System (EMS) is calculated by numerical study. The vibration mitigating performance of the EMS employing the self-powered & self sensing MR damper is theoretically calculated and evaluated in the frequency domain.

  1. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  2. Vibrational dephasing in matter-wave interferometers

    Science.gov (United States)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.

    2017-03-01

    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  3. Nanoscale piezoelectric vibration energy harvester design

    Directory of Open Access Journals (Sweden)

    Hamid Reza Foruzande

    2017-09-01

    Full Text Available Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton’s principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  4. Implementation of a self-sensing piezoelectric actuator for vibro-acoustic active control

    Science.gov (United States)

    Pelletier, Anik; Micheau, Philippe; Berry, Alain

    2014-04-01

    Significant reduction of airplane interior noise may be obtained by active structural acoustic control (ASAC) of fuselage panels. This requires to accurately measure the vibrations of the aircraft panels while injecting anti-vibrations. Co-located piezoelectric sensors and actuators, spatially distributed on the structure, are an interesting avenue since they can lead to the implementation of distributed virtual impedances. When the same piezoelectric device is used to simultaneously measure and actuate, it is called a self-sensing piezoelectric actuator (SSPA). When a SSPA is submitted to a voltage, the measured current is the sum of the electric current due to the capacitive effect of the transducer plus the mechanical current induced by the strain of the structure. The latter is an order of magnitude smaller than the total current measured. Provided the measured current is digitized with sufficient accuracy, adequate numerical processing can subtract the capacitive current from the total measured current. A similar processing can also be used to subtract from the sensor information, near-field vibrations induced by the collocated actuator. Hence, information related to the global, vibrational flexural modes of the plate is extracted without complicated electronics. The numerical method of current separation has been programmed and validated with MATLAB/SimulinkR® and implemented on Speedgoat hardware. A shunt resistor is used to measure the current simultaneously with the voltage measurement. Strain-induced current has been successfully extracted from SSPA signal with this method. Numerical simulations show good agreement with experimental data.

  5. A STUDY OF CONDITION MONITORING IN WATER PIPE USING VIBRATION SENSOR

    OpenAIRE

    角田, 裕紀; KAKUTA, Hironori

    2013-01-01

    This paper describes a study of condition monitoring in water pipe using vibration sensor. The vibration sensor composed of condenser microphone is placed at water pipe. This sensor picks up vibration by water flow. We estimate of flow rate from the output voltage waveform. It is high cost that any conventional flowmeter which use at outside pipe such as ultrasonic flowmeter. We develop a lower cost system and make measurement of flow rate in water pipe easier. The validity of sensing pipe vi...

  6. Piezoelectric nonlinear vibration focusing on the second-harmonic vibration mode.

    Science.gov (United States)

    Ozaki, Ryohei; Liu, Yaoyang; Hosaka, Hiroshi; Morita, Takeshi

    2018-01-01

    Resonant piezoelectric devices are driven under high power condition. In such condition, a nonlinear piezoelectric vibration becomes apparent and this nonlinearity should be taken into account in the design procedure using the finite elemental method (FEM). The purpose of this study is to introduce the nonlinear parameter to the FEM and to establish the method for measuring the nonlinear parameter through evaluating a nonlinear model for a piezoelectric vibration. In a previous study about the nonlinear piezoelectric vibration, the third term was mainly focused on because the third mode vibration affects the fundamental vibration in the case of a simple bar-type transducer. On the other hand, we considered the second nonlinear parameter of the compliance to the piezoelectric constitutive equation. We observed that this parameter affects the vibration amplitude with each position and the velocity at the tip of the transducer with a double frequency at resonant. It was confirmed that two measured nonlinear parameters based on these two relationships were almost same. From these values, we concluded that the proposed model is reasonable. Copyright © 2017. Published by Elsevier B.V.

  7. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    Science.gov (United States)

    Segerink, F. B.; Korterik, J. P.; Offerhaus, H. L.

    2011-06-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in our case, low noise accelerometers), a data acquisition system, and processing software. Background noise excitation from the floor has the additional advantage that any non-linearity in the suspension system relevant to the actual vibration amplitudes will be taken into account. Measurement time is typically a few minutes, depending on the amount of background noise. The (coherent) transfer of the vibrations in the floor to the platform, as well as the (non-coherent) acoustical noise pick-up by the platform are measured. Since we use calibrated sensors, the absolute value of the vibration levels is established and can be expressed in vibration criterion curves. Transfer measurements are shown and discussed for two pneumatic isolated optical tables, a spring suspension system, and a simple foam suspension system.

  8. Magnetostrictively actuated control flaps for vibration reduction in helicopter rotors

    Energy Technology Data Exchange (ETDEWEB)

    Millott, T.; Friedmann, P.P. [Univ. of California, Los Angeles, CA (United States). Mechanical, Aerospace and Nuclear Engineering Dept.

    1994-12-31

    High vibration levels can impose constraints on helicopter operations and hinder passenger acceptance. Vibration reduction using blade root pitch control introduces a significant power penalty and may adversely affect the airworthiness of the flight control system. Comparable levels of vibration reduction can be achieved using considerably less power through an actively controlled trailing edge flap mounted on the blade. Such a device would have no effect on helicopter airworthiness since it is controlled by a loop separate from the primary flight control system which utilizes the swashplate. Control flap actuation using the magnetostrictive material Terfenol-D is studied in this paper by designing a minimum weight actuator, subject to a set of actuation and stress constraints. The resulting device is capable of producing vibration reduction in excess of 90% at cruise conditions.

  9. Structural Stability and Vibration

    DEFF Research Database (Denmark)

    Wiggers, Sine Leergaard; Pedersen, Pauli

    This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author at the Uni......This book offers an integrated introduction to the topic of stability and vibration. Strikingly, it describes stability as a function of boundary conditions and eigenfrequency as a function of both boundary conditions and column force. Based on a post graduate course held by the author...... and their derivation, thus stimulating them to write interactive and dynamic programs to analyze instability and vibrational modes....

  10. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  11. Automatic monitoring of vibration welding equipment

    Science.gov (United States)

    Spicer, John Patrick; Chakraborty, Debejyo; Wincek, Michael Anthony; Wang, Hui; Abell, Jeffrey A; Bracey, Jennifer; Cai, Wayne W

    2014-10-14

    A vibration welding system includes vibration welding equipment having a welding horn and anvil, a host device, a check station, and a robot. The robot moves the horn and anvil via an arm to the check station. Sensors, e.g., temperature sensors, are positioned with respect to the welding equipment. Additional sensors are positioned with respect to the check station, including a pressure-sensitive array. The host device, which monitors a condition of the welding equipment, measures signals via the sensors positioned with respect to the welding equipment when the horn is actively forming a weld. The robot moves the horn and anvil to the check station, activates the check station sensors at the check station, and determines a condition of the welding equipment by processing the received signals. Acoustic, force, temperature, displacement, amplitude, and/or attitude/gyroscopic sensors may be used.

  12. Optical and Structural Properties of Multi-wall-carbon-nanotube-modified ZnO Synthesized at Varying Substrate Temperatures for Highly Efficient Light Sensing Devices

    Directory of Open Access Journals (Sweden)

    Valentine Saasa

    2015-12-01

    Full Text Available Structural, optical and light detection properties on carbon-nanotube-modified ZnO thin films grown at various temperatures from room to 1173 K are investigated. The optical band gap values calculated from reflectivity data show a hump at a critical temperature range of 873-1073 K. Similar trends in surface roughness as well as crystallite size of the films are observed. These changes have been attributed to structural change from wurzite hexagonal to cubic carbon modified ZnO as also validated by x-ray diffraction, RBS and PIXE of these layers. UV and visible light detection properties show similar trends. It is demonstrated that the present films can sense both UV and visible light to a maximum response efficiency of 66 % which is much higher than the last reported efficiency 10 %. This high response is given predominantly by cubic crystallite rather than the wurzite hexagonal composites.

  13. Temperature Measurement and Monitoring Devices

    Science.gov (United States)

    1988-08-01

    feasibility based on potential usefulness in clinical medicine ’ias explored. All information herein wasn obtained from literature rrv’iew only. No...measurements, applications for temperature measuring devices, and description of several modern body temperature monitoring devices (techniques). Finally...gynecology, drug therapy, and ophthalmology. TEMPERATURE SENSING DEVICES Hippocrates is believed to be the first person Lo associate body temperature as

  14. Vibration Analysis and the Accelerometer

    Science.gov (United States)

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  15. Assessment of the vibration on the foam legged and sheet metal-legged passenger seat

    Directory of Open Access Journals (Sweden)

    L. Dahil

    2015-10-01

    Full Text Available In this study, it was aim ed to decrease the vibration reaching to passenger from the legs of vehicle seats. In order to determine the levels of vibrations reaching at passengers, a test pad placed under the passenger seat was used, and HVM100 device was used for digitizing the information obtained. By transferring the vibration data to system by using HVM100 device, the acceleration graphics were prepared with Blaze software. As a result, it was determined that the acceleration values of seat legs made of foam material were lower than that of seat legs made of 2 mm thick sheet metal, so they damped the vibration better.

  16. Studying Sensing-Based Systems

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2013-01-01

    Recent sensing-based systems involve a multitude of users, devices, and places. These types of systems challenge existing approaches for conducting valid system evaluations. Here, the author discusses such evaluation challenges and revisits existing system evaluation methodologies....

  17. Vibrations and Stability

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    About this textbook An ideal text for students that ties together classical and modern topics of advanced vibration analysis in an interesting and lucid manner. It provides students with a background in elementary vibrations with the tools necessary for understanding and analyzing more complex...... dynamical phenomena that can be encountered in engineering and scientific practice. It progresses steadily from linear vibration theory over various levels of nonlinearity to bifurcation analysis, global dynamics and chaotic vibrations. It trains the student to analyze simple models, recognize nonlinear...... phenomena and work with advanced tools such as perturbation analysis and bifurcation analysis. Explaining theory in terms of relevant examples from real systems, this book is user-friendly and meets the increasing interest in non-linear dynamics in mechanical/structural engineering and applied mathematics...

  18. Experimental Research on the Influence of Vibration on Knee Mobility

    Directory of Open Access Journals (Sweden)

    Radu Panaitescu-Liess

    2013-09-01

    Full Text Available Besides hand - arm system, the vibration can enter in the human body through the feet, too. In these case - when the subject was in a standing position and the vibrations have a vertical component - longer exposures may cause disease of joints, lower extremity and serious disorders of the cerebral blood vessels, internal organs and circulatory system. This paper focused on the influence of vibration on knee mobility. We used a MediTouch system which consists of a motion capture device (an ergonomic leg brace and a dedicated software.

  19. Optomechanics for Inertial Sensing

    Science.gov (United States)

    Hutchison, David Neil

    Inertial MEMS (accelerometers and gyroscopes) is a rapidly-growing billion dollar industry. At the heart of these devices is a displacement sensor. Since its commercialization in the 1980s, the core technology has not changed (viz., capacitive displacement readout of mass-on-springs), for almost all commercially-available inertial MEMS. However, recent developments in integrated optomechanics when combined with recent low-cost on-chip lasers and detectors may enable high-SNR on-chip displacement sensing. Such devices represent a new paradigm in on-chip inertial MEMS sensors, but have yet to be considered in detail in the literature. In this dissertation we quantitatively investigate several optomechanical displacement sensing schemes, both theoretically and experimentally, and discuss the merits of each approach. These schemes include: cavity deformation sensing, cavity evanescent field displacement sensing (both waveguide or nearby absorber moving), and two-cavity gap sensing. Beyond simply investigating different sensing schemes, we find that reinventing the traditional displacement-sensing element has the effect of reinventing the entire system. For example the driving circuitry may be simpler and/or lower-power than traditional inertial MEMS driving circuitry, the noise sources are fundamentally different and are limited by different mechanisms, the footprint and cost drivers may be completely reimagined, etc. Although we have not yet integrated the devices reported here with on-chip lasers and detectors, we show experimental results and modeling for our non-integrated devices, discuss the noise sources to be expected in an integrated device, and survey some on-chip laser/detector noise figures from the literature. Using such noise figures and the measured optomechanical sensitivities, we show that our measured devices when operated as accelerometers could easily achieve sub-microg[square root of] Hz total noise, and thus potentially exceed typical

  20. Application of Sub-Micrometer Vibrations to Mitigate Bacterial Adhesion

    Directory of Open Access Journals (Sweden)

    Will R. Paces

    2014-03-01

    Full Text Available As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. Magnetoelastic materials possess unique magnetostrictive property that can convert a magnetic field stimulus into a mechanical deformation. In vitro experiments demonstrated that vibrational loads generated by the magnetoelastic materials significantly reduced the number of adherent bacteria on samples exposed to Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus suspensions. These experiments demonstrate that vibrational loads from magnetoelastic materials can be used as a post-deployment activated means to deter bacterial adhesion and device infection.

  1. Vibrationally Assisted Electron Transfer Mechanism of Olfaction: Myth or Reality?

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Chang, Po-Yao; Schulten, Klaus

    2012-01-01

    Smell is a vital sense for animals. The mainstream explanation of smell is based on recognition of the odorant molecules through characteristics of their surface, e.g., shape, but certain experiments suggest that such recognition is complemented by recognition of vibrational modes. According to t...

  2. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Schiphorst, F.B.A.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  3. Vibrating and shaking soliton pairs in dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Akhmediev, N. [Optical Sciences Group, Research School of Physical Sciences and Engineering, the Australian National University, Canberra ACT 0200 (Australia); Soto-Crespo, J.M. [Instituto de Optica, C.S.I.C., Serrano 121, 28006 Madrid (Spain)]. E-mail: iodsc09@io.cfmac.csic.es; Grelu, Ph. [Laboratoire de Physique de l' Universite de Bourgogne, UMR CNRS 5027, Faculte des Sciences Mirande, Avenue Savary BP 47870, 21078 Dijon Cedex (France)

    2007-05-07

    We show that two-soliton solutions in nonlinear dissipative systems can exist in various forms. As with single solitons, they can be stationary, periodic or chaotic. In particular, we find new types of vibrating and shaking soliton pairs. Each type of pair is stable in the sense that the bound state exists in the same form indefinitely.

  4. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection.

    Science.gov (United States)

    Luo, Dong; Ibrahim, Zainah; Ma, Jianxun; Ismail, Zubaidah; Iseley, David Thomas

    2016-12-16

    In this study, tapered polymer fiber sensors (TPFSs) have been employed to detect the vibration of a reinforced concrete beam (RC beam). The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM) system in civil engineering.

  5. Tapered Polymer Fiber Sensors for Reinforced Concrete Beam Vibration Detection

    Directory of Open Access Journals (Sweden)

    Dong Luo

    2016-12-01

    Full Text Available In this study, tapered polymer fiber sensors (TPFSs have been employed to detect the vibration of a reinforced concrete beam (RC beam. The sensing principle was based on transmission modes theory. The natural frequency of an RC beam was theoretically analyzed. Experiments were carried out with sensors mounted on the surface or embedded in the RC beam. Vibration detection results agreed well with Kistler accelerometers. The experimental results found that both the accelerometer and TPFS detected the natural frequency function of a vibrated RC beam well. The mode shapes of the RC beam were also found by using the TPFSs. The proposed vibration detection method provides a cost-comparable solution for a structural health monitoring (SHM system in civil engineering.

  6. 10th International Conference on Vibration Problems

    CERN Document Server

    Horáček, Jaromír; Okrouhlík, Miloslav; Marvalová, Bohdana; Verhulst, Ferdinand; Sawicki, Jerzy; Vibration Problems ICOVP 2011

    2011-01-01

    This volume presents the Proceedings of the 10th International Conference on Vibration Problems, September 5-8, 2011, Prague, Czech Republic. Since they started in 1990 the ICOVP conferences have matured into a reference platform reflecting the state-of-the-art of dynamics in the broadest sense, bringing together scientists from different backgrounds who are actively working on vibration-related problems in theoretical, experimental and applied dynamics, thus facilitating a lively exchange of ideas, methods and results. Dynamics as a scientific discipline draws inspiration from a large variety of engineering areas, such as Mechanical and Civil Engineering, Aero and Space Technology, Wind and Earthquake Engineering and Transport and Building Machinery. Moreover, the basic research in dynamics nowadays includes many fields of theoretical physics and various interdisciplinary subject areas. ICOVP 2011 covers all branches of dynamics and offers the most up-to-date results and developments in a high-quality select...

  7. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  8. Advanced Superconducting Materials and Device Concepts

    National Research Council Canada - National Science Library

    Beasley, M

    2001-01-01

    .... These include the conducting magnetic oxide strontium ruthenate relevant to high-temperature Josephson devices, the doped magnetic oxide lanthanum manganate relevant to magnetic sensing, and scanning...

  9. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity...

  10. Harvesting vibrational energy with liquid-bridged electrodes: thermodynamics in mechanically and electrically driven RC-circuits

    NARCIS (Netherlands)

    Janssen, Mathijs; Werkhoven, Ben; Van Roij, René

    2016-01-01

    We theoretically study a vibrating pair of parallel electrodes bridged by a (deformed) liquid droplet, which is a recently developed microfluidic device to harvest vibrational energy. The device can operate with various liquids, including liquid metals, electrolytes, as well as ionic liquids. We

  11. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    Directory of Open Access Journals (Sweden)

    Guangming Cheng

    2012-12-01

    Full Text Available A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or traffic vibration in the environment.

  12. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. The Vibration Ring. Phase 1; [Seedling Fund

    Science.gov (United States)

    Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.

    2014-01-01

    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.

  14. Vibrational spectroscopy of resveratrol

    Science.gov (United States)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  15. Bumblebee vibration activated foraging

    OpenAIRE

    Su, Dan Kuan-Nien

    2009-01-01

    The ability use vibrational signals to activate nestmate foraging is found in the highly social bees, stingless bees and honey bees, and has been hypothesized to exist in the closely related, primitively eusocial bumble bees. We provide the first strong and direct evidence that this is correct. Inside the nest, bumble bee foragers produce brief bursts of vibration (foraging activation pulses) at 594.5 Hz for 63±26 ms (velocityRMS=0.46±0.02mm/s, forceRMS=0.8±0.2 mN. Production of these vibrati...

  16. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  17. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  18. Compressed Sensing for Chemistry

    Science.gov (United States)

    Sanders, Jacob Nathan

    Many chemical applications, from spectroscopy to quantum chemistry, involve measuring or computing a large amount of data, and then compressing this data to retain the most chemically-relevant information. In contrast, compressed sensing is an emergent technique that makes it possible to measure or compute an amount of data that is roughly proportional to its information content. In particular, compressed sensing enables the recovery of a sparse quantity of information from significantly undersampled data by solving an ℓ 1-optimization problem. This thesis represents the application of compressed sensing to problems in chemistry. The first half of this thesis is about spectroscopy. Compressed sensing is used to accelerate the computation of vibrational and electronic spectra from real-time time-dependent density functional theory simulations. Using compressed sensing as a drop-in replacement for the discrete Fourier transform, well-resolved frequency spectra are obtained at one-fifth the typical simulation time and computational cost. The technique is generalized to multiple dimensions and applied to two-dimensional absorption spectroscopy using experimental data collected on atomic rubidium vapor. Finally, a related technique known as super-resolution is applied to open quantum systems to obtain realistic models of a protein environment, in the form of atomistic spectral densities, at lower computational cost. The second half of this thesis deals with matrices in quantum chemistry. It presents a new use of compressed sensing for more efficient matrix recovery whenever the calculation of individual matrix elements is the computational bottleneck. The technique is applied to the computation of the second-derivative Hessian matrices in electronic structure calculations to obtain the vibrational modes and frequencies of molecules. When applied to anthracene, this technique results in a threefold speed-up, with greater speed-ups possible for larger molecules. The

  19. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p.

  20. Heterogeneous Dynamics of Coupled Vibrations

    NARCIS (Netherlands)

    Cringus, Dan; Jansen, Thomas I. C.; Pshenichnikov, Maxim S.; Schoenlein, RW; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    Frequency-dependent dynamics of coupled stretch vibrations of a water molecule are revealed by 2D IR correlation spectroscopy. These are caused by non-Gaussian fluctuations of the environment around the individual OH stretch vibrations.

  1. Noninvasive monitoring of vocal fold vertical vibration using the acoustic Doppler effect.

    Science.gov (United States)

    Tao, Chao; Jiang, Jack J; Wu, Dan; Liu, Xiaojun; Chodara, Ann

    2012-11-01

    To validate a proposed method of noninvasively monitoring vocal fold vertical vibration through utilization of the acoustic Doppler effect and the waveguide property of the vocal tract. Validation case-control study. In this device, an ultrasound beam is generated and directed into the mouth. The vocal tract, acting as a natural waveguide, guides the ultrasound beam toward the vibrating vocal folds. The vertical velocity of vocal fold vibration is then recovered from the Doppler frequency of the reflected ultrasound. One subject (age 32, male) was studied and measurements were taken under three modes of vocal fold vibration: breathing (no vibration), whispering (irregular vibration), and normal phonation (regular vibration). The peak-to-peak amplitude of the measured velocity of vocal fold vertical vibration was about 0.16 m/s, and the fundamental frequency was 172 Hz; the extracted velocity information showed a reasonable waveform and value in comparison with the previous studies. In all three modes of phonation, the Doppler frequencies derived from the reflected ultrasound corresponded with the vertical velocity of vocal fold vibration as expected. The proposed method can accurately represent the characteristics of different phonation modes such as no phonation, whisper and normal phonation. The proposed device could be used in daily monitoring and assessment of vocal function and vocal fold vibration. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    of heat exchanger tube banks are typical examples. Recently, flow-induced vibration has been studied extensively for several reasons. First, with the use of high-strength materials, structures become more slender and more susceptible to vibration. Second, the development of advanced nuclear power reactors requires high-velocity fluid flowing through components, which can cause detrimental vibrations. Third, the dynamic interaction of structure and fluid is one of the most fascinating problems in engineering mechanics. The increasing study is evidenced by many conferences directed to this subject and numerous publications, including reviews and books. In a broad sense, flow-induced vibration encompasses all topics on the dynamic responses of structures submerged in fluid, containing fluid, or subjected to external flow. In this report, discussions focus on circular cylindrical structures with emphasis on nuclear reactor system components.

  3. Dynamical response of multi-walled carbon nanotube resonators based on continuum mechanics modeling for mass sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myungseok; Olshevskiy, Alexander; Kim, Chang-Wan [Konkuk University, Seoul (Korea, Republic of); Eom, Kilho [Sungkyunkwan University, Suwon (Korea, Republic of); Gwak, Kwanwoong [Sejong University, Seoul (Korea, Republic of); Dai, Mai Duc [Ho Chi Minh City University of Technology and Education, Ho Chi Minh (Viet Nam)

    2017-05-15

    Carbon nanotube (CNT) has recently received much attention due to its excellent electromechanical properties, indicating that CNT can be employed for development of Nanoelectromechanical system (NEMS) such as nanomechanical resonators. For effective design of CNT-based resonators, it is required to accurately predict the vibration behavior of CNT resonators as well as their frequency response to mass adsorption. In this work, we have studied the vibrational behavior of Multi-walled CNT (MWCNT) resonators by using a continuum mechanics modeling that was implemented in Finite element method (FEM). In particular, we consider a transversely isotropic hollow cylinder solid model with Finite element (FE) implementation for modeling the vibration behavior of Multi-walled CNT (MWCNT) resonators. It is shown that our continuum mechanics model provides the resonant frequencies of various MWCNTs being comparable to those obtained from experiments. Moreover, we have investigated the frequency response of MWCNT resonators to mass adsorption by using our continuum model with FE implementation. Our study sheds light on our continuum mechanics model that is useful in predicting not only the vibration behavior of MWCNT resonators but also their sensing performance for further effective design of MWCNT- based NEMS devices.

  4. Vibration Control of Novel Passive Multi-joints Rotational Friction Dampers

    DEFF Research Database (Denmark)

    Mualla, Imad H.; Koss, Holger

    2017-01-01

    This work presents a novel passive friction damper for vibration control of structures. The device is designed to dissipate input energy and protect buildings, especially large and tall buildings from structural and non-structural damage during moderate and severe vibration caused by earthquakes...

  5. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  6. Exploring Perception of Vibrations from Rail: An Interview Study.

    Science.gov (United States)

    Maclachlan, Laura; Waye, Kerstin Persson; Pedersen, Eja

    2017-10-26

    Rail transport is an environmentally responsible approach and traffic is expected to increase in the coming decades. Little is known about the implications for quality of life of populations living close to railways. This study explores the way in which vibrations from rail are perceived and described by these populations. The study took place in the Västra Götaland and Värmland regions of Sweden. A qualitative study approach was undertaken using semi-structured interviews within a framework of predetermined questions in participants' homes. A 26.3% response rate was achieved and 17 participants were interviewed. The experience of vibrations was described in tangible terms through different senses. Important emerging themes included habituation to and acceptance of vibrations, worry about property damage, worry about family members and general safety. Participants did not reflect on health effects, however, chronic exposure to vibrations through multimodal senses in individual living environments may reduce the possibility for restoration in the home. Lack of empowerment to reduce exposure to vibrations was important. This may alter individual coping strategies, as taking actions to avoid the stressor is not possible. The adoption of other strategies, such as avoidance, may negatively affect an individual's ability to cope with the stressor and their health.

  7. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  8. Complex Materials and Devices

    Science.gov (United States)

    2013-03-07

    Disruptive Basic Research Areas” – Metamaterials and Plasmonics – Quantum Information Science – Cognitive Neuroscience – Nanoscience and...Sayir, Fuller) Bio-Sensing of Magnetic Fields (Larkin, Bradshaw, Curcic, DeLong 2D Materials & Devices Beyond Graphene (Hwang, Pomrenke, Harrison

  9. Composite Struts Would Damp Vibrations

    Science.gov (United States)

    Dolgin, Benjamin P.

    1991-01-01

    New design of composite-material (fiber/matrix laminate) struts increases damping of longitudinal vibrations without decreasing longitudinal stiffness or increasing weight significantly. Plies with opposing chevron patterns of fibers convert longitudinal vibrational stresses into shear stresses in intermediate viscoelastic layer, which dissipate vibrational energy. Composite strut stronger than aluminum strut of same weight and stiffness.

  10. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  11. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  12. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    The vibrating string problem is the source of much mathematicsand physics. This article describes Lagrange's formulationof a discretised version of the problem and its solution.This is also the first instance of an eigenvalue problem. Author Affiliations. Rajendra Bhatia1. Ashoka University, Rai, Haryana 131 029, India.

  13. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  14. Vibration Sensitive Keystroke Analysis

    NARCIS (Netherlands)

    Lopatka, M.; Peetz, M.-H.; van Erp, M.; Stehouwer, H.; van Zaanen, M.

    2009-01-01

    We present a novel method for performing non-invasive biometric analysis on habitual keystroke patterns using a vibration-based feature space. With the increasing availability of 3-D accelerometer chips in laptop computers, conventional methods using time vectors may be augmented using a distinct

  15. Study of nanostructure and ethanol vapor sensing performance of WO3 thin films deposited by e-beam evaporation method under different deposition angles: application in breath analysis devices

    Science.gov (United States)

    Amani, E.; Khojier, K.; Zoriasatain, S.

    2018-01-01

    This paper studies the effect of deposition angle on the crystallographic structure, surface morphology, porosity and subsequently ethanol vapor sensing performance of e-beam-evaporated WO3 thin films. The WO3 thin films were deposited by e-beam evaporation technique on SiO2/Si substrates under different deposition angles (0°, 30°, and 60°) and then post-annealed at 500 °C with a flow of oxygen for 4 h. Crystallographic structure and surface morphology of the samples were checked using X-ray diffraction method and atomic force microscopy, respectively. Physical adsorption isotherm was also used to measure the porosity and effective surface area of the samples. The electrical response of the samples was studied to different concentrations of ethanol vapor (10-50 ppm) at the temperature range of 140-260 °C and relative humidity of 80%. The results reveal that the WO3 thin film deposited under 30° angle shows more sensitivity to ethanol vapor than the other samples prepared in this work due to the more crystallinity, porosity, and effective surface area. The investigations also show that the sample deposited at 30° can be a good candidate as a breath analysis device at the operating temperature of 240 °C because of its high response, low detection limit, and reliability at high relative humidity.

  16. Vibrationally assisted electron transfer mechanism of olfaction: myth or reality?

    Science.gov (United States)

    Solov'yov, Ilia A; Chang, Po-Yao; Schulten, Klaus

    2012-10-28

    Smell is a vital sense for animals. The mainstream explanation of smell is based on recognition of the odorant molecules through characteristics of their surface, e.g., shape, but certain experiments suggest that such recognition is complemented by recognition of vibrational modes. According to this suggestion an olfactory receptor is activated by electron transfer assisted through odorant vibrational excitation. The hundreds to thousands of different olfactory receptors in an animal recognize odorants over a discriminant landscape with surface properties and vibrational frequencies as the two major dimensions. In the present paper we introduce the vibrationally assisted mechanism of olfaction and demonstrate for several odorants that, indeed, a strong enhancement of an electron tunneling rate due to odorant vibrations can arise. We discuss in this regard the influence of odorant deuteration and explain, thereby, recent experiments performed on Drosophila melanogaster. Our demonstration is based on known physical properties of biological electron transfer and on ab initio calculations on odorants carried out for the purpose of the present study. We identify a range of physical characteristics which olfactory receptors and odorants must obey for the vibrationally assisted electron transfer mechanism to function. We argue that the stated characteristics are feasible for realistic olfactory receptors, noting, though, that the receptor structure presently is still unknown, but can be studied through homology modeling.

  17. An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC

    Science.gov (United States)

    Torres, Erick Omar

    Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz

  18. Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen

    OpenAIRE

    Guangming Cheng; Yanmin Jia; Junwu Kan; Zheng Wu; Jun Zhang

    2012-01-01

    A device composed of a piezoelectric bimorph cantilever and a water electrolysis device was fabricated to realize piezoelectrochemical hydrogen production. The obvious output of the hydrogen and oxygen through application of a mechanical vibration of ~0.07 N and ~46.2 Hz was observed. This method provides a cost-effective, recyclable, environment-friendly and simple way to directly split water for hydrogen fuels by scavenging mechanical waste energy forms such as noise or tr...

  19. Optical fiber rotation sensing

    CERN Document Server

    Burns, William K; Kelley, Paul

    1993-01-01

    Optical Fiber Rotation Sensing is the first book devoted to Interferometric Fiber Optic Gyros (IFOG). This book provides a complete overview of IFOGs, beginning with a historical review of IFOG development and including a fundamental exposition of basic principles, a discussion of devices and components, and concluding with industry reports on state-of-the-art activity. With several chapters contributed by principal developers of this solid-state device, the result is an authoritative work which will serve as the resource for researchers, students, and users of IFOGs.* * State-of-t

  20. Polymer-based disposable microneedle array with insertion assisted by vibrating motion

    OpenAIRE

    Lee, F.-W.; Hung, W.-H.; Ma, C.-W.; Yang, Y.-J.

    2016-01-01

    This work presents a disposable polymer-based microneedle array that carries out insertions by mimicking the vibrating motion of a mosquito's proboscis. The proposed device, which comprises a 10:1 high-aspect-ratio parylene microneedle array and a chamber structure, was monolithically realized using a novel fabrication process. The vibrating motion of the microneedles was generated using a piezoelectric actuator. This device can be potentially applied to extract and colle...

  1. On Modal Parameter Estimates from Ambient Vibration Tests

    DEFF Research Database (Denmark)

    Agneni, A.; Brincker, Rune; Coppotelli, B.

    2004-01-01

    Modal parameter estimates from ambient vibration testing are turning into the preferred technique when one is interested in systems under actual loadings and operational conditions. Moreover, with this approach, expensive devices to excite the structure are not needed, since it can be adequately...

  2. Animal Communications Through Seismic Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Peggy (University of Tulsa)

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  3. Experimental evaluation of a miniature MR device for a wide range of human perceivable haptic sensations

    Science.gov (United States)

    Yang, Tae-Heon; Koo, Jeong-Hoi

    2017-12-01

    Humans can experience a realistic and vivid haptic sensations by the sense of touch. In order to have a fully immersive haptic experience, both kinaesthetic and vibrotactile information must be presented to human users. Currently, little haptic research has been performed on small haptic actuators that can covey both vibrotactile feedback based on the frequency of vibrations up to the human-perceivable limit and multiple levels of kinaesthetic feedback rapidly. Therefore, this study intends to design a miniature haptic device based on MR fluid and experimentally evaluate its ability to convey vibrotactile feedback up to 300 Hz along with kinaesthetic feedback. After constructing a prototype device, a series of testing was performed to evaluate its performance of the prototype using an experimental setup, consisting of a precision dynamic mechanical analyzer and an accelerometer. The kinaesthetic testing results show that the prototype device can provide the force rate up to 89% at 5 V (360 mA), which can be discretized into multiple levels of ‘just noticeable difference’ force rate, indicating that the device can convey a wide range of kinaesthetic sensations. To evaluate the high frequency vibrotactile feedback performance of the device, its acceleration responses were measured and processed using the FFT analysis. The results indicate that the device can convey high frequency vibrotactile sensations up to 300 Hz with the sufficiently large intensity of accelerations that human can feel.

  4. Topological material layout in plates for vibration suppression and wave propagation control

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard

    2009-01-01

    plate theory coupled with analytical sensitivity analysis using the adjoint method and an iterative design update procedure based on a mathematical programming tool. We demonstrate the capability of the method by designing bi-material plates that, when subjected to harmonic excitation, either......We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...... effectively suppress the overall vibration level or alternatively transport energy in predefined paths in the plates, including the realization of a ring wave device....

  5. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  6. Azobenzene compound-based photomechanical actuator devices

    Science.gov (United States)

    Ye, Xianjun; Kuzyk, Mark G.

    2012-10-01

    It has been shown that the chromophore disperse red 1 azobenzene (DR1) when doped into poly(methyl methacrylate) (PMMA) optical fiber can be used to make an optical cantilever in which an asymmetrically propagating beam at 633nm causes the fiber to bend. The fast response process is purported to be due to elongation of the material as molecules change between cis and trans isomers. In our work, UV light of 350nm will be used to investigate trans to cis somerization, which should induce contraction. Short fiber segments in a three-contactpoint geometry will be used to control the position and tilt of silver- or aluminum-coated coverslips that together with microscope glass slides as the substrate make optically-actuated beam-controlling mounts and Fabry-Perot interferometers. A Michelson interferometer is used to measure the length change of the fiber actuator. Azodye doped liquid crystal (LC) elastomers have been demonstrated to have a photomechanical effect that is at least ten times bigger than thermoplastic-based polymer fiber. However, the optical quality of thermoplastics are much better, enabling the cascading of devices in series. We will report on visible and UV laser-actuation of LC elastomer and polymer device structures using a quadrant photodetector to record the beam deflection caused by the shape change of the material, which will allow for dynamical measurements of the mechanisms. All measurements will be calibrated against a piezoelectric crystal actuator. Photomechanical devices provide an inexpensive but versatile, small-form factor, vibration free and high precision solution to optomechanics, sensing, positioning and other space applications.

  7. Vibration Attenuation of Plate Using Multiple Vibration Absorbers

    Directory of Open Access Journals (Sweden)

    Zaman Izzuddin

    2014-07-01

    Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.

  8. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  9. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.

    1994-07-01

    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  10. Radial Shock Wave Devices Generate Cavitation

    OpenAIRE

    Nikolaus B M Császár; Angstman, Nicholas B.; Stefan Milz; Sprecher, Christoph M.; Philippe Kobel; Mohamed Farhat; Furia, John P.; Christoph Schmitz

    2015-01-01

    Background Conflicting reports in the literature have raised the question whether radial extracorporeal shock wave therapy (rESWT) devices and vibrating massage devices have similar energy signatures and, hence, cause similar bioeffects in treated tissues. Methods and Findings We used laser fiber optic probe hydrophone (FOPH) measurements, high-speed imaging and x-ray film analysis to compare fundamental elements of the energy signatures of two rESWT devices (Swiss DolorClast; Electro Medical...

  11. Granular Media-Based Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara

    2013-01-01

    and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring

  12. Pickin’ up good vibrations

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    In preparation for the civil engineering work on the HL-LHC, vibration measurements were carried out at the LHC’s Point 1 last month. These measurements will help evaluate how civil engineering work could impact the beam, and will provide crucial details about the site’s geological make-up before construction begins.   A seismic truck at Point 1 generated wave-like vibrations measured by EN/MME. From carrying out R&D to produce state-of-the-art magnets to developing innovative, robust materials capable of withstanding beam impact, the HL-LHC is a multi-faceted project involving many groups and teams across CERN’s departments. It was in this framework that the project management mandated CERN's Mechanical and Materials Engineering (EN/MME) group to measure the propagation of vibrations around Point 1. Their question: can civil engineering work for the HL-LHC – the bulk of which is scheduled for LS2 – begin while the LHC is running? Alth...

  13. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  14. Gap junctional communication in osteocytes is amplified by low intensity vibrations in vitro.

    Directory of Open Access Journals (Sweden)

    Gunes Uzer

    Full Text Available The physical mechanism by which cells sense high-frequency mechanical signals of small magnitude is unknown. During exposure to vibrations, cell populations within a bone are subjected not only to acceleratory motions but also to fluid shear as a result of fluid-cell interactions. We explored displacements of the cell nucleus during exposure to vibrations with a finite element (FE model and tested in vitro whether vibrations can affect osteocyte communication independent of fluid shear. Osteocyte like MLO-Y4 cells were subjected to vibrations at acceleration magnitudes of 0.15 g and 1 g and frequencies of 30 Hz and 100 Hz. Gap junctional intracellular communication (GJIC in response to these four individual vibration regimes was investigated. The FE model demonstrated that vibration induced dynamic accelerations caused larger relative nuclear displacement than fluid shear. Across the four regimes, vibrations significantly increased GJIC between osteocytes by 25%. Enhanced GJIC was independent of vibration induced fluid shear; there were no differences in GJIC between the four different vibration regimes even though differences in fluid shear generated by the four regimes varied 23-fold. Vibration induced increases in GJIC were not associated with altered connexin 43 (Cx43 mRNA or protein levels, but were dependent on Akt activation. Combined, the in silico and in vitro experiments suggest that externally applied vibrations caused nuclear motions and that large differences in fluid shear did not influence nuclear motion (<1% or GJIC, perhaps indicating that vibration induced nuclear motions may directly increase GJIC. Whether the increase in GJIC is instrumental in modulating anabolic and anti-catabolic processes associated with the application of vibrations remains to be determined.

  15. DESIGN OF VIBRATION AND NOISE CONTROL SYSTEM FOR FLEXIBLE STRUCTURES

    Directory of Open Access Journals (Sweden)

    В. Макаренко

    2012-04-01

    Full Text Available In the article the control system is created, which is able to reduce steady-state vibration response of thinwalled flexible structure in the wide band of low frequencies. It is supposed, that the flexible structure is subject to external harmonic force with variable frequencies, and parameters of that force are available for the usage by the control system. The control system is based on pattern search algorithm and suggestion about the dependence of signal, which is formed by the control system, from the steady-state vibration response of the flexible structure. Developed software allows to use pattern search algorithm as the control system for plate vibration in real-time. The influence on control system operation of signal delay of executive device of compensating path and transition process after the change of control signal parameters is done by the usage of the additional idle time. During idle time the control signal is supported. It has parameters that have taken place before the beginning of idle mode. Step reset option for resuming of search after the long-term steady-state vibration of flexible structure do not derange control system operation, because step change take place only after polling cycle termination. The efficiency of proposed system is illustrated experimentally on the example of clamped plate. Experimental results analysis showed the necessity of multiple compensating devices application for vibration reduction in wide frequency range.

  16. A Novel Control System Design for Vibrational MEMS Gyroscopes

    Directory of Open Access Journals (Sweden)

    Qing Zheng

    2007-04-01

    Full Text Available There are two major control problems associated with vibrational MEMS gyroscopes: to control two vibrating axes (or modes of the gyroscope, and to estimate a time-varying rotation rate. This paper demonstrates how a novel active disturbance rejection control addresses these problems in the presence of the mismatch of natural frequencies between two axes, mechanical-thermal noises, Quadrature errors, and parameter variations. A demodulation approach based on the estimated dynamics of the system by an extended state observer is used to estimate the rotation rate. The simulation results on a Z-axis MEMS gyroscope show that the controller is very effective by driving the output of the drive axis to a desired trajectory, forcing the vibration of the sense axis to zero for a force-to-rebalance operation and precisely estimating the rotation rate.

  17. Optimization of the impact multi-mass vibration absorbers

    Directory of Open Access Journals (Sweden)

    Ivan Kernytskyy

    2017-09-01

    Full Text Available The problem of attaching dynamic vibration absorber (DVA to a discrete multi-degree-of-freedom or continuous structure has been outlined in many papers and monographs. An impact damping system can overcome some limitations by impact as the damping medium and impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA with the several of the impact masses. Such originally designed absorbers reduce vibration selectively in maximum vibration mode without introducing vibration in other modes. An impact damper is a passive control device which takes the form of a freely moving mass, constrained by stops attached to the structure under control, i.e. the primary structure. The damping results from the exchange of momentum during impacts between the mass and the stops as the structure vibrates. The paper contemplates the provision of the impact multi-mass DVA’s with masses collisions for additional damping. For some cases of DVA optimization such a design seems more effective than conventional multi-mass DVA with independent mass moving. A technique is developed to give the optimal DVA’s for the elimination of excessive vibration in harmonic stochastic and impact loaded systems.

  18. Design of vibration sensor based on fiber Bragg grating

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong

    2017-12-01

    Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.

  19. Data mining mobile devices

    CERN Document Server

    Mena, Jesus

    2013-01-01

    With today's consumers spending more time on their mobiles than on their PCs, new methods of empirical stochastic modeling have emerged that can provide marketers with detailed information about the products, content, and services their customers desire.Data Mining Mobile Devices defines the collection of machine-sensed environmental data pertaining to human social behavior. It explains how the integration of data mining and machine learning can enable the modeling of conversation context, proximity sensing, and geospatial location throughout large communities of mobile users

  20. Piezoelectric devices for generating low power

    Science.gov (United States)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  1. Piezoelectric Structures and Low Power Generation Devices

    Directory of Open Access Journals (Sweden)

    Irinela CHILIBON

    2016-10-01

    Full Text Available A short overview of different piezoelectric structures and devices for generating renewable electricity under mechanical actions is presented. A vibrating piezoelectric device differs from a typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. Several techniques have been developed to extract energy from the environment. Generally, “vibration energy” could be converted into electrical energy by three techniques: electrostatic charge, magnetic fields and piezoelectric. Mechanical resonance frequency of piezoelectric bimorph transducers depends on geometric size (length, width, and thickness of each layer, and the piezoelectric coefficients of the piezoelectric material. Manufacturing processes and intended applications of several energy harvesting devices are presented.

  2. VIBRATION ISOLATION SYSTEM PROBABILITY ANALYSIS

    Directory of Open Access Journals (Sweden)

    Smirnov Vladimir Alexandrovich

    2012-10-01

    Full Text Available The article deals with the probability analysis for a vibration isolation system of high-precision equipment, which is extremely sensitive to low-frequency oscillations even of submicron amplitude. The external sources of low-frequency vibrations may include the natural city background or internal low-frequency sources inside buildings (pedestrian activity, HVAC. Taking Gauss distribution into account, the author estimates the probability of the relative displacement of the isolated mass being still lower than the vibration criteria. This problem is being solved in the three dimensional space, evolved by the system parameters, including damping and natural frequency. According to this probability distribution, the chance of exceeding the vibration criteria for a vibration isolation system is evaluated. Optimal system parameters - damping and natural frequency - are being developed, thus the possibility of exceeding vibration criteria VC-E and VC-D is assumed to be less than 0.04.

  3. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  4. Upper limb vibration prototype with sports and rehabilitation applications: development, evaluation and preliminary study.

    Science.gov (United States)

    Pujari, Amit Narahar; Neilson, Richard D; Aphale, Sumeet S; Cardinale, Marco

    2017-02-01

    Vibration stimulation as an exercise intervention has been studied increasingly for its potential benefits and applications in sports and rehabilitation. Vibratory exercise devices should be capable of generating highly precise and repeatable vibrations and should be capable of generating a range of vibration amplitudes and frequencies in order to provide different training protocols. Many devices used to exercise the upper body provide limited variations to exercise regimes mostly due to the fact that only vibration frequency can be controlled. The authors present an upper limb vibration exercise device with a novel actuator system and design which attempts to address these limitations. Preliminary results show that this device is capable of generating highly precise and repeatable vibrations with independent control over amplitude and frequency. Furthermore, the results also show that this solution provides a higher neuromuscular stimulation (i.e. electromyography activity) when compared with a control condition. The portability of this device is an advantage, and though in its current configuration it may not be suitable for applications requiring higher amplitude levels the technology is scalable.

  5. Electrostatic MEMS vibration energy harvester for HVAC applications

    Science.gov (United States)

    Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.

    2015-12-01

    This paper reports on an electrostatic MEMS vibration energy harvester with gapclosing interdigitated electrodes, designed for and tested on HVAC air ducts. The device is fabricated on SOI wafers using a custom microfabrication process. A dual-level physical stopper system is implemented in order to control the minimum gap between the electrodes and maximize the power output. It utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls, which defines the absolute minimum gap and provides electrical insulation. The fabricated device was first tested on a vibration shaker to characterize its resonant behavior. The device exhibits spring hardening behavior due to impacts with the stoppers and spring softening behavior with increasing voltage bias. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mgRMS and a primary frequency of 60 Hz with a PSD of 7.15·10-2 g2/Hz. The peak power measured is 12nW (0.6 nW RMS) with a PSD of 6.9·10-11 W/Hz at 240 Hz (four times of the primary frequency of 60 Hz), which is the highest output reported for similar vibration conditions and biasing voltages.

  6. Compact integrated piezoelectric vibration control package

    Science.gov (United States)

    Spangler, Ronald L., Jr.; Russo, Farla M.; Palombo, Daniel A.

    1997-06-01

    Using recent advances in small, surface-mount electronics, coupled with proprietary packaging techniques, ACX has developed the SmartPackTM. The design and realization of this self-contained, active piezoelectric control device are described in this paper. The SmartPack uses a local control architecture, consisting of two parallel, analog, positive position feedback (PPF) filters, along with nearly collocated piezo strain sensors and actuators, to control multiple structural vibration modes. A key issue is the management of waste heat from the power electronics required to drive the piezo actuators. This issue is addressed through thermal/electrical modeling of the packaged amplifier. The effectiveness of the device is demonstrated through multi-mode active damping on a 24 inch square plate.

  7. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  8. Lattice Vibrations in Chlorobenzenes:

    DEFF Research Database (Denmark)

    Reynolds, P. A.; Kjems, Jørgen; White, J. W.

    1974-01-01

    Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... was applied in order to correct for anharmonic effects. Calculations based on the atom‐atom model for van der Waals' interaction and on general potential parameters for the aromatic compounds agree reasonably well with the experimental observations. There is no substantial improvement in fit obtained either...

  9. Piezoelectric actuators in the active vibration control system of journal bearings

    Science.gov (United States)

    Tůma, J.; Šimek, J.; Mahdal, M.; Pawlenka, M.; Wagnerova, R.

    2017-07-01

    The advantage of journal hydrodynamic bearings is high radial load capacity and operation at high speeds. The disadvantage is the excitation of vibrations, called an oil whirl, after crossing a certain threshold of the rotational speed. The mentioned vibrations can be suppressed using the system of the active vibration control with piezoactuators which move the bearing bushing. The motion of the bearing bushing is controlled by a feedback controller, which responds to the change in position of the bearing journal which is sensed by a pair of capacitive sensors. Two stacked linear piezoactuators are used to actuate the position of the bearing journal. This new bearing enables not only to damp vibrations but also serves to maintain the desired bearing journal position with an accuracy of micrometers. The paper will focus on the effect of active vibration control on the performance characteristics of the journal bearing.

  10. Device and method for measuring biomarkers

    NARCIS (Netherlands)

    Wiedemair, Justyna; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    The invention relates to a device for the measurement of hydrogen peroxide and optionally other biomarkers in a gaseous mixture, and in particular to a microfabricated device. The device comprises hydrogen peroxide capturing means and an electromechanical sensor comprising a sensing element in

  11. Device and method for measuring biomarkers

    NARCIS (Netherlands)

    Wiedemair, Justyna; Olthuis, Wouter; van den Berg, Albert

    2012-01-01

    The invention relates to a device for the measurement of hydrogen peroxide and optionally other biomarkers in a gaseous mixture, and in particular to a microfabricated device. The device comprises hydrogen peroxide capturing means and an electromechanical sensor comprising a sensing element in

  12. Quantum dynamics of vibrational excitations and vibrational charge ...

    Indian Academy of Sciences (India)

    Quantum dynamics of vibrational excitations and vibrational charge transfer processes in H+ + O2 collisions at collision energy 23 eV ... The Fritz Haber Research Centre and The Department of Physical Chemisry, Hebrew University of Jerusalem, Jerusalem, Israel 91904; Department of Chemistry, Indian Institute of ...

  13. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  14. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  15. Sense and non-sense

    Science.gov (United States)

    Boezer, Gordon L.; Hines, Charles W.; Balko, Bohdan

    2002-07-01

    There exists a broad and going range of combinations of sensing technologies, targets, applications and possessors. Threats derived from such combinations are unbounded by the cultural processes and moral expectations of the US or of other companion societies. The need to sense various phenomena in the face of these realities is astoundingly broad and diverse. Fortunately, the potential combinations of sensing technologies, computational power and adaptability of national security officials can be tailored to meet these challenges. Threat possibilities will drive national security community members toward new paradigms.

  16. Some problems of control of dynamical conditions of technological vibrating machines

    Science.gov (United States)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  17. Vibrations and Stability: Solved Problems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003.......Worked out solutions for exercise problems in J. J. Thomsen 'Vibrations and Stability: Advanced Theory, Analysis, and Tools', Springer, Berlin - Heidelberg, 2003....

  18. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  19. Differentially Private Distributed Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.

    2016-12-11

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could be maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.

  20. A Biological Model for Directional Sensing of Seismic Vibration

    Science.gov (United States)

    2002-02-25

    Report Number Sponsoring/ Monitoring Agency Name(s) and Address(es) Department of the Army, CECOM RDEC Night Vision & Electronic Sensors Directorate AMSEL...stereo microphone techniques. J. Audio Eng. Soc. 42:435-453. Henry, C. S. 1994. Singing and cryptic speciation in insects. Trends Ecol. Evol. 9:388...Mechanically coupled ears for directional hearing in the parasitoid fly O. ochracea. J. Acoustical Soc. America 98:2059-2070. Miles, R. N

  1. Surface morphology effects in a vibration based triboelectric energy harvester

    Science.gov (United States)

    Nafari, A.; Sodano, H. A.

    2018-01-01

    Despite the abundance of ambient mechanical energy in our environment, it is often neglected and left unused. However, recent studies have demonstrated that mechanical vibrations can be harvested and used to power small wireless electronic devices, such as micro electromechanical sensors (MEMS) and actuators. Most commonly, these energy harvesters convert vibration into electrical energy by utilizing piezoelectric, electromagnetic or electrostatic effects. Recently, triboelectric based energy harvesters have shown to be among the simplest and most cost-effective techniques for scavenging mechanical energy. The basis of triboelectric energy harvesters is the periodic contact and separation of two surfaces with opposite triboelectric properties which results in induced charge flow through an external load. Here, a vibration driven triboelectric nanogenerator (TENG) is fabricated and the effect of micro/nano scale surface modification is studied. The TENG produces electrical energy on the basis of periodic out-of-plane charge separation between gold and polydimethylsiloxane (PDMS) with opposite triboelectric charge polarities. By introducing micro/nano scale surface modifications to the PDMS and gold, the TENG’s power output is further enhanced. This work demonstrates that the morphology of the surfaces in a TENG device is important and by increasing the effective surface area through micro/nano scale modification, the power output of the device can increase by 118%. Moreover, it is shown that unlike many TENGs proposed in the literature, the fabricated device has a high RMS open circuit voltage and short circuit current and can perform for an extended period of time.

  2. Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    DEFF Research Database (Denmark)

    Yahiaoui, Riad; Strikwerda, Andrew C.; Jepsen, Peter Uhd

    2016-01-01

    We have designed, fabricated, and experimentally verified a highly sensitive plasmonic sensing device in the terahertz frequency range. For a proof of concept of the sensing phenomenon, we have chosen the so-called fishnet structure based on circular hole array insensitive to the polarization of ...

  3. MAMMUT: mirror vibration metrology for VLTI

    Science.gov (United States)

    Spaleniak, Izabela; Giessler, Frank; Geiss, Reinhard; Minardi, Stefano; Pertsch, Thomas; Neuhaeuser, Ralph; Becker, Martin; Rothhardt, Manfred; Delplancke, Françoise; Richichi, Andrea; Ménardi, Serge; Schmid, Christian

    2010-07-01

    MAMMUT (Mirror vibrAtion Metrolology systeM for the Unit Telescope) is an ESO funded feasibility project for the development of a fiber interferometer prototype designed for optical path laser-metrology along the optical train of the Unit Telescopes (UT) of the Very Large Telescope Interferometer (VLTI). Fast mechanical vibrations originating in the VLTI cause fast variations of the optical path difference between two arms of the stellar interferometer, thus reducing the contrast of measured interference fringes. MAMMUT aims at monitoring in real time the optical path variations inside the Coudé train of the UT, for active control purposes. MAMMUT features a 250-meter-long optical fiber which can be used to deliver and inject a laser beam at 1353 nm into the UT. The injected beam can be dropped from the telescope in the Coudé room and interfered with a phase reference, provided by the second 250-meter-long arm of the fiber interferometer. The optical path variations are measured by means of an active homodyne scheme. Coherence between the beam at the injection point and the phase reference is provided by active fiber stabilization, made possible by the implementation of an internal metrology channel in MAMMUT. Here we present the initial laboratory performance results of the MAMMUT prototype, which will be able to sense optical path variations of +/- 5 μm with sub-10 nm precision within a bandwidth of at least 100 Hz.

  4. Nanomaterials in glucose sensing

    CERN Document Server

    Burugapalli, Krishna

    2013-01-01

    The smartness of nano-materials is attributed to their nanoscale and subsequently unique physicochemical properties and their use in glucose sensing has been aimed at improving performance, reducing cost and miniaturizing the sensor and its associated instrumentation. So far, portable (handheld) glucose analysers were introduced for hospital wards, emergency rooms and physicians' offices; single-use strip systems achieved nanolitre sampling for painless and accurate home glucose monitoring; advanced continuous monitoring devices having 2 to 7 days operating life are in clinical and home use; and continued research efforts are being made to develop and introduce increasingly advanced glucose monitoring systems for health as well as food, biotechnology, cell and tissue culture industries. Nanomaterials have touched every aspect of biosensor design and this chapter reviews their role in the development of advanced technologies for glucose sensing, and especially for diabetes. Research shows that overall, nanomat...

  5. Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth.

    Science.gov (United States)

    Han, D; Kedzierski, Mark A

    2017-01-01

    Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°-80°), the vibration displacement (10 µm-50 µm), the vibration frequency (5 Hz-25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described.

  6. Sensory Integration during Vibration of Postural Muscle Tendons When Pointing to a Memorized Target.

    Science.gov (United States)

    Teasdale, Normand; Furmanek, Mariusz P; Germain Robitaille, Mathieu; de Oliveira, Fabio Carlos Lucas; Simoneau, Martin

    2016-01-01

    Vibrating ankle muscles in freely standing persons elicits a spatially oriented postural response. For instance, vibrating the Achilles tendons induces a backward displacement of the body while vibrating the tibialis anterior muscle tendons induces a forward displacement. These displacements have been called vibration induced falling (VIF) responses and they presumably are automatic. Because of the long delay between the onset of the vibration and the onset of the VIF (about 700 ms), and the widespread cortical activation following vibration, there is a possibility that the sensory signals available before the VIF can be used by the central nervous system to plan a hand pointing action. This study examined this suggestion. Ten healthy young participants stood on a force platform and initially were trained to point with and without vision to a target located in front of them. Then, they were exposed to conditions with vibration of the Achilles tendons or tibialis anterior muscle tendons and pointed at the target without vision. The vibration stopped between each trial. Trials with vision (without vibration) were given every five trials to maintain an accurate perception of the target's spatial location. Ankle vibrations did not have an effect on the position of the center of foot pressure (COP) before the onset of the pointing actions. Furthermore, reaction and movement times of the pointing actions were unaffected by the vibration. The hypotheses were that if proprioceptive information evoked by ankle vibrations alters the planning of a pointing action, the amplitude of the movement should scale according to the muscle tendons that are vibrated. For Achilles tendon vibration, participants undershot the target indicating the planning of the pointing action was influenced by the vibration-evoked proprioceptive information (forward displacement of the body). When the tibialis anterior were vibrated (backward displacement of the body), however, shorter movements were

  7. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  8. Tissue vibration in prolonged running.

    Science.gov (United States)

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-04

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  10. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  11. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  12. Study on the tool wear of 3-D elliptical vibration cutting

    Directory of Open Access Journals (Sweden)

    J. Lin

    2017-07-01

    Full Text Available As always, the rapid wear of tools was one of the key factors limiting the precise turning of difficult-to-machine materials with diamond tool. 3-D elliptical vibration cutting has inherited many advantages of elliptical vibration cutting, such as the intermittent cutting property and friction reverse property. However, studies on the tool wear of three-dimensional elliptical vibration cutting has not been reported yet. The formation principle of 3-D cutting elliptical trajectory was analysed and a prediction model of tool wear was established in the present work. Besides, a self-developed three-dimensional elliptical vibration device was employed to conduct turning experiment. Compared with the proposed model, the experimental results showed a great agreement with the proposed prediction model. This work may provide a reference for the further optimization of the 3-D elliptical vibration cutting parameters.

  13. Molecular vibrations the theory of infrared and Raman vibrational spectra

    CERN Document Server

    Wilson, E Bright; Cross, Paul C

    1980-01-01

    Pedagogical classic and essential reference focuses on mathematics of detailed vibrational analyses of polyatomic molecules, advancing from application of wave mechanics to potential functions and methods of solving secular determinant.

  14. Shock reliability enhancement for MEMS vibration energy harvesters with nonlinear air damping as a soft stopper

    Science.gov (United States)

    Chen, Shao-Tuan; Du, Sijun; Arroyo, Emmanuelle; Jia, Yu; Seshia, Ashwin

    2017-10-01

    This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.

  15. Piezoelectric Cylindrical Design for Harvesting Energy in Multi-Directional Vibration Source

    Science.gov (United States)

    Nguyen, M. S.; Ng, S. H.; Kim, P.; Yoon, Y. J.

    2017-08-01

    Vibration Energy Harvester (VEH) has attracted a great attention recently both in academia and industry. One of the most challenging issues in VEH is the possibility to harvest vibration energy in multiple directions. In fact, Conventional VEH (CVEH) using cantilever beam’s structure may possibly become inefficient for the application under multi-directional vibration sources. To overcome this shortcoming of CVEH, this paper proposes a novel design of piezoelectric cylindrical energy harvester (PCEH) which is using patches of piezoelectric material attached to the surface of a cylindrical structure. The Finite Element Method (FEM) analysis using COMSOL Multiphysics software package showed that PCEH has a great potential for the applicability of VEH in the multi-directional vibrating applications such as wearable devices and biomedical devices.

  16. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  17. Inelastic Kondo-Andreev tunneling in a vibrating quantum dot

    Science.gov (United States)

    Cao, Zhan; Fang, Tie-Feng; Sun, Qing-Feng; Luo, Hong-Gang

    2017-03-01

    Phonon-assisted electronic tunneling through a vibrating quantum dot embedded between normal and superconducting leads is studied in the Kondo regime. In such a hybrid device, with the bias applied to the normal lead, we find a series of Kondo sidebands separated by half a phonon energy in the differential conductance, which are distinct from the phonon-assisted sidebands previously observed in conventional Andreev tunneling and in systems with only normal leads. These Kondo sidebands originate from the Kondo-Andreev cooperative cotunneling mediated by phonons, which exhibit an interesting Kondo transport behavior due to the interplay of the Kondo effect, the Andreev tunneling, and the mechanical vibrations. Our result could be observed in a recent experiment setup [J. Gramich et al., Phys. Rev. Lett. 115, 216801 (2015), 10.1103/PhysRevLett.115.216801], provided that their carbon nanotube device reaches the Kondo regime at low temperatures.

  18. Remote Sensing

    Indian Academy of Sciences (India)

    observed that all bodies at temperatures above zero degrees absolute emit electromagnetic radiation at different wavelengths, as per Planck's law. 2. B(A, T) = 2hc ..... International co-operation of nations in evolving integrated global observa- tion for disaster studies is getting in place. Evolution of Remote Sensing in India.

  19. Report on achievements of research and development of a technology to apply human senses to measurements in fiscal 1993. 1. Outline; 1993 nendo ningen kankaku keisoku oyo gijutsu no kenkyu kaihatsu. 1. Soron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This paper outlines the development of a technology to apply human senses to measurements in fiscal 1993. Using the period from fiscal 1990 through 1994 as the first term, development is made for physiological effect measurement on a technology to measure in a simplified manner the physiological changes as brainwave and pupil reactions and induction potential caused by external stimulation. For the simulated environment presenting technology, devices and systems are structured that can generate and control collectively such externally stimulated environments as heat, sound, vibration, light beam, scent, scenery, and constituting materials. The technology to investigate correlation among the externally stimulated environments, physiological effects, and sense volume establishes a testing technology to acquire efficiently the statistical correlation data. Achievements obtained by fiscal 1993 may be summarized as follows: a non-contact non-invasion measuring device was fabricated on a trial basis to identify quantitatively the sense volume attributed from external stimulation, and the device was given experiment, evaluation and improvement; with regard to the simulated environment presentation, partially detailed design, fabrication and experiment were performed on a device that can effectively present the subjects with such environments as sound and space; and in the correlation investigation technology, the basic experiments have resulted in a simulator to evaluate correlation among stress, fatigue and arousal, and correlation between spatial environment and visual information. (NEDO)

  20. 14 CFR 33.63 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.63 Section 33.63 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.63 Vibration. Each engine... because of vibration and without imparting excessive vibration forces to the aircraft structure. ...

  1. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.83 Section 33.83... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine must undergo vibration surveys to establish that the vibration characteristics of those components that...

  2. 14 CFR 33.33 - Vibration.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration. 33.33 Section 33.33 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.33 Vibration. The... vibration and without imparting excessive vibration forces to the aircraft structure. ...

  3. 14 CFR 33.43 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vibration test. 33.43 Section 33.43... STANDARDS: AIRCRAFT ENGINES Block Tests; Reciprocating Aircraft Engines § 33.43 Vibration test. (a) Each engine must undergo a vibration survey to establish the torsional and bending vibration characteristics...

  4. 49 CFR 178.819 - Vibration test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Vibration test. 178.819 Section 178.819... Testing of IBCs § 178.819 Vibration test. (a) General. The vibration test must be conducted for the... vibration test. (b) Test method. (1) A sample IBC, selected at random, must be filled and closed as for...

  5. Rectangular Parallelepiped Vibration in Plane Strain State

    OpenAIRE

    Hanckowiak, Jerzy

    2004-01-01

    In this paper we present a vibration spectrum of a homogenous parallelepiped (HP) under the action of volume and surface forces resulting from the exponent displacements entering the Fourier transforms. Vibration under the action of axial surface tractions and the free vibration are described separately. A relationship between the high frequency vibration and boundary conditions (BC) is also considered.

  6. A Novel Slope Method for Measurement of Fluid Density with a Micro-cantilever under Flexural and Torsional Vibrations.

    Science.gov (United States)

    Zhao, Libo; Hu, Yingjie; Hebibul, Rahman; Ding, Jianjun; Wang, Tongdong; Xu, Tingzhong; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde

    2016-09-11

    A novel method, which was called a slope method, has been proposed to measure fluid density by the micro-cantilever sensing chip. The theoretical formulas of the slope method were discussed and established when the micro-cantilever sensing chip was under flexural and torsional vibrations. The slope was calculated based on the fitted curve between the excitation and output voltages of sensing chip under the nonresonant status. This measuring method need not sweep frequency to find the accurate resonant frequency. Therefore, the fluid density was measured easily based on the calculated slope. In addition, the micro-cantilver was drived by double sided excitation and free end excitation to oscillate under flexural and torsional vibrations, respectively. The corresponding experiments were carried out to measure the fluid density by the slope method. The measurement results were also analyzed when the sensing chip was under flexural and torsional nonresonant vibrations separately. The measurement accuracies under these vibrations were all better than 1.5%, and the density measuring sensitivity under torsional nonresonant vibration was about two times higher than that under flexural nonresonant vibration.

  7. Using Car Vibration Data for Road Prominency Identification

    OpenAIRE

    Bratarčuks, S; Dubovska, R

    2014-01-01

    Research is devoted to the problem of computer recognition of vibrations that car receives while moving by the road. Roads’ roughness, holes cause additional mechanical load on a car and may lead to its damage. For timely reaction of road service on roads’ impairments is necessary to create geographical information system that allows gathering operative data about the condition of roads. During the era of mobile devices this data can be gathered by traffic participants. Ways of gathering data...

  8. Topology optimization of vibration and wave propagation problems

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    2007-01-01

    The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....

  9. Towards sensing behavior using the Kinect

    NARCIS (Netherlands)

    van Teijlingen, Wouter; van den Broek, Egon; Könemann, Reinier; Schavemaker, John G.M.; Spink, A.J.; Grieco, F; Krips, O.E.; Loijens, L.W.S.; Noldus, L.P.J.J.; Zimmerman, P.H.

    2012-01-01

    A method is proposed to validate Microsoft’s Kinect as a device and, hence, to enable low fidelity, unobtrusive, robust sensing of behavior. The Xsens MVN suit is proposed as the measurements’ ground truth. An overarching framework is introduced that facilitates a mapping of both devices upon each

  10. Piezoelectric Vibration Energy Harvesting Device Combined with Damper

    Directory of Open Access Journals (Sweden)

    Hung-I Lu

    2014-05-01

    Full Text Available Piezoelectricity is a type of material that enables mechanical energy and electrical energy to be interchangeable, which can be divided into positive piezoelectric effect and inverse piezoelectric effect. The positive piezoelectric effect is that the electric dipole moment of material generates changes when the piezoelectric material is subjected to pressure, resulting in electrical energy. Conversely, the inverse piezoelectric effect is the process of electrical energy converted into mechanical energy.

  11. Signal generation and analysis for a vibration measuring device

    OpenAIRE

    Valtueña Clos, Albert

    2013-01-01

    Projecte realitzat en el marc d’un programa de mobilitat amb la Technische Universität Dresden [ANGLÈS] Simulation in C++ of the generation of an input signal and the study of the output signal for estimating the transfer function of the stirrup (bone located on the middle ear) [CASTELLÀ] Simulación en C++ de la generación de un señal de entrada y el estudio del señal de salida para estimar la función de transferencia del estribo (hueso del oído medio) [CATALÀ] Simulació en C++ de la...

  12. Gas sensing with vertical functionalized InAs nanowire arrays

    NARCIS (Netherlands)

    Offermans, P.; Crego-Calama, M.; Brongersma, S.H.

    2010-01-01

    Nanowires show great promise for use in next generation (bio-)chemical sensing devices because of their high surface to volume ratio enabling efficient modulation of their current by charges or dipoles present at the surface. Here, we present a gas sensing device based on vertical InAs nanowire

  13. Software Defined Doppler Radar as a Contactless Multipurpose Microwave Sensor for Vibrations Monitoring

    Directory of Open Access Journals (Sweden)

    Antonio Raffo

    2017-01-01

    Full Text Available A vibration sensor based on the use of a Software-Defined Radio (SDR platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.

  14. Software Defined Doppler Radar as a Contactless Multipurpose Microwave Sensor for Vibrations Monitoring.

    Science.gov (United States)

    Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe

    2017-01-08

    A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach.

  15. Adaptive Semiactive Cable Vibration Control: A Frequency Domain Perspective

    Directory of Open Access Journals (Sweden)

    Z. H. Chen

    2017-01-01

    Full Text Available An adaptive solution to semiactive control of cable vibration is formulated by extending the linear quadratic Gaussian (LQG control from time domain to frequency domain. Frequency shaping is introduced via the frequency dependent weights in the cost function to address the control effectiveness and robustness. The Hilbert-Huang transform (HHT technique is further synthesized for online tuning of the controller gain adaptively to track the cable vibration evolution, which also obviates the iterative optimal gain selection for the trade-off between control performance and energy in the conventional time domain LQG (T-LQG control. The developed adaptive frequency-shaped LQG (AF-LQG control is realized by collocated self-sensing magnetorheological (MR dampers considering the nonlinear damper dynamics for force tracking control. Performance of the AF-LQG control is numerically validated on a bridge cable transversely attached with a self-sensing MR damper. The results demonstrate the adaptivity in gain tuning of the AF-LQG control to target for the dominant cable mode for vibration energy dissipation, as well as its enhanced control efficacy over the optimal passive MR damping control and the T-LQG control for different excitation modes and damper locations.

  16. A new isolator for vibration control

    Science.gov (United States)

    Behrooz, Majid; Sutrisno, Joko; Wang, Xiaojie; Fyda, Robert; Fuchs, Alan; Gordaninejad, Faramarz

    2011-03-01

    This study presents the feasibility of a new variable stiffness and damping isolator (VSDI) in an integrated vibratory system. The integrated system comprised of two VSDIs, a connecting plate and a mass. The proposed VSDI consists of a traditional steel-rubber vibration absorber, as the passive element, and a magneto-rheological elastomer (MRE), with a controllable (or variable) stiffness and damping, as the semi-active element. MREs' stiffness and damping properties can be altered by a magnetic field. Dynamic testing on this integrated system has been performed to investigate the effectiveness of the VSDIs for vibration control. Experimental results show significant shift in natural frequency, when activating the VSDIs. Transmissibility and natural frequency of the integrated system are obtained from properties of single device. The experimental and predicted results show good agreement between the values of the natural frequency of the system at both off and on states. However, system damping predictions are different from experimental results. This might be due to unforeseen effects of pre-stressed MREs and nonlinear material properties.

  17. Comparison of different ultrasonic vibration modes for post removal.

    Science.gov (United States)

    Braga, Neilor Mateus Antunes; Silva, Juliana Monteiro da; Carvalho-Júnior, Jacy Ribeiro de; Ferreira, Raquel Conceição; Saquy, Paulo César; Brito-Júnior, Manoel

    2012-01-01

    This in vitro study compared different ultrasonic vibration modes for intraradicular cast post removal. The crowns of 24 maxillary canines were removed, the roots were embedded in acrylic resin blocks, and the canals were treated endodontically. The post holes were prepared and root canal impressions were taken with self-cured resin acrylic. After casting, the posts were cemented with zinc phosphate cement. The samples were randomly distributed into 3 groups (n=8): G1: no ultrasonic vibration (control); G2: tip of the ultrasonic device positioned perpendicularly to core surface and close to the incisal edge; and G3: tip of the ultrasonic device positioned perpendicularly to core surface at cervical region, close to the line of cementation. An Enac OE-5 ultrasound unit with an ST-09 tip was used. All samples were submitted to the tensile test using an universal testing machine at a crosshead speed of 1 mm/min. Data were subjected to one-way ANOVA and Tukey's post-hoc tests (α=0.05). Mean values of the load to dislodge the posts (MPa) were: G1 = 4.6 (± 1.4) A; G2 = 2.8 (± 0.9) B, and G3= 0.9 (± 0.3) C. Therefore, the ultrasonic vibration applied with the tip of device close to the core's cervical area showed higher ability to reduce the retention of cast post to root canal.

  18. Vibrational Damping of Composite Materials

    OpenAIRE

    Biggerstaff, Janet M.

    2006-01-01

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss facto...

  19. Vibration Theory, Vol. 1B

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Nielsen, Søren R. K.

    The present collection of MATLAB exercises has been published as a supplement to the textbook, Svingningsteori, Bind 1 and the collection of exercises in Vibration theory, Vol. 1A, Solved Problems. Throughout the exercise references are made to these books. The purpose of the MATLAB exercises...... is to give a better understanding of the physical problems in linear vibration theory and to surpress the mathematical analysis used to solve the problems. For this purpose the MATLAB environment is excellent....

  20. Harmonic vibrations of multispan beams

    DEFF Research Database (Denmark)

    Dyrbye, Claes

    1996-01-01

    Free and forced harmonic vibrations of multispan beams are determined by a method which implies 1 equation regardless of the configuration. The necessary formulas are given in the paper. For beams with simple supports and the same length of all (n) spans, there is a rather big difference between...... the n´th and the (n+1)´th eigenfrequency. The reason for this phenomenon is explained.Keywords: Vibrations, Eigenfrequencies, Beams....

  1. Smart accelerometer. [vibration damage detection

    Science.gov (United States)

    Bozeman, Richard J., Jr. (Inventor)

    1994-01-01

    The invention discloses methods and apparatus for detecting vibrations from machines which indicate an impending malfunction for the purpose of preventing additional damage and allowing for an orderly shutdown or a change in mode of operation. The method and apparatus is especially suited for reliable operation in providing thruster control data concerning unstable vibration in an electrical environment which is typically noisy and in which unrecognized ground loops may exist.

  2. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  3. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  4. Spectrum Sensing for Cognitive Radio Based on Multiple Antennas

    DEFF Research Database (Denmark)

    Nguyen, Huan Cong; De Carvalho, Elisabeth; Prasad, Ramjee

    2012-01-01

    Spectrum sensing is a key component for enabling the cognitive radio paradigm. In this paper, we propose a novel totally-blind spectrum sensing technique for cognitive radio device equipped with multiple antennas, namely the Space Frequency Cross Product Sensing (SFCPS) algorithm. Existing...

  5. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  6. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  7. Vibrational modes of nanolines

    Science.gov (United States)

    Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.

    2008-04-01

    Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.

  8. Real-time multimodal sensing in nano/bio environment

    Science.gov (United States)

    Song, Bo

    As a sensing device in nano-scale, scanning probe microscopy (SPM) is a powerful tool for exploring nano world. Nevertheless two fundamental problems tackle the development and application of SPM based imaging and measurement: slow imaging/measurement speed and inaccuracy of motion or position control. Usually, SPM imaging/properties measuring speed is too slow to capture a dynamic observation on sample surface. In addition, Both SPM imaging and properties measurement always experience positioning inaccuracy problems caused by hysteresis and creep of the piezo scanner. This dissertation will try to solve these issues and proposed a SPM based real-time multimodal sensing system which can be used in nano/bio environment. First, a compressive sensing based video rate fast SPM imaging system is shown as an efficient method to dynamically capture the sample surface change with the imaging speed 1.5 frame/s with the scan size of 500 nm * 500 nm. Besides topography imaging, a new additional modal of SPM: vibration mode, will be introduced, and it is developed by us to investigate the subsurface mechanical properties of the elastic sample such as cells and bacteria. A followed up study of enzymatic hydrolysis will demonstrate the ability of in situ observation of single molecule event using video rate SPM. After that we will introduce another modal of this SPM sensing system: accurate electrical properties measurement. In this electrical properties measurement mode, a compressive feedbacks based non-vector space control approach is proposed in order to improve the accuracy of SPM based nanomanipulations. Instead of sensors, the local images are used as both the input and feedback of a non-vector space closed-loop controller. A followed up study will also be introduced to shown the important role of non-vector space control in the study of conductivity distribution of multi-wall carbon nanotubes. At the end of this dissertation, some future work will be also proposed to

  9. Tactile sensing means for prosthetic limbs

    Science.gov (United States)

    Scott, W. L. (Inventor)

    1973-01-01

    An improved prosthetic device characterized by a frame and a socket for mounting on the stump of a truncated human appendage is described. Flexible digits extend from the distal end and transducers located within the digits act as sensing devices for detecting tactile stimuli. The transducers are connected through a power circuit with a slave unit supported by a strap and fixed to the stump. The tactile stimuli detected at the sensing devices are reproduced and applied to the skin of the appendage in order to stimulate the sensory organs located therein.

  10. Whispering gallery resonators for optical sensing

    Science.gov (United States)

    Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle

    2017-04-01

    In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.

  11. Measuring Spatial Vibration Using Continuous Laser Scanning

    Directory of Open Access Journals (Sweden)

    Izhak Bucher

    2000-01-01

    Full Text Available This paper presents a method, which allows one to use a single point laser vibrometer as a continuous sensor measuring along a line or a 2D surface. The mathematical background of the curve-fitting procedure and the necessary signal processing allowing one to extract the amplitude of sinusoidal vibration are discussed. In the current work, use has been made with an ordinary laser interferometer equipped with glavanometer-based x, y mirros. This system is not designed for continuous scanning therefore some effort needs to be spent in order to overcome the dynamical characteristics of this system. The potential of such an instrument, as demonstrated in this work, may encourage the development of mechanically better scanning devices.

  12. System for automatic recording of vibration parameters

    Science.gov (United States)

    Fedorov, B. I.

    1984-02-01

    A system for automatically recording vibration parameters consists of 20 accelerometer channels with signal transducers followed by low-pass filters, and one frequency-to-voltage conversion channel. A voltmeter is connected to each channel through a commutator switch and so is a timer which feeds the voltmeter readings to a transcriber for printout and alphanumeric documentation. The printer is also connected to the commutator switch through a device which matches recorded data with the corresponding pickup channel. This SAR-21 system was designed with maximum use of series produced components. Its measurement ranges are 0-600 m/sq acceleration and 20 to 2500 Hz frequency. The recording time is 0.04 s for any one parameter and the error of the system does not exceed + or - 2%.

  13. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  14. Ultra-low vibration linear stirling cryogenic refrigerator for sub-nano resolution microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2008-04-01

    Wide use of so called "dry-cooling" technology, eventually replacing the LN2 cooling approach in high-resolution instrumentation, such as Scanning Electronic Microscopes, Helium Ion Microscopes, Superconductive Quantum Interference Devices, etc., motivates further quieting of appropriate cryogenic refrigerators. Linear Stirling cryogenic refrigerators are known to be a major source of harmful vibration export compromising the overall performance of vibration-sensitive equipment. The dual-piston approach to a design of a linear compressor yields inherently low vibration export and, therefore, is widely accepted across the industry. However, the residual vibration disturbance originated even from the technological tolerances, natural wear and contamination cannot be completely eliminated. Moreover, a vibration disturbance produced by a pneumatically driven cold head is much more powerful as compared to this of a compressor. The authors successfully redesigned the existing Ricor model K535 Stirling cryogenic refrigerator for use in vibration-sensitive electronic microscopy, where the image resolution is specified in angstroms. The objective was achieved by passive mechanical counterbalancing of the expander portion of the refrigerator, in a combination with an active two-axis control of residual vibrations, relying on National Instruments CompactRIO hardware, incorporating a real-time processor and reconfigurable FPGA for reliable stand-alone embedded application, developed using LabVIEW graphical programming tools. The attainable performance of the Ultra-Low Vibration linear Stirling cryogenic refrigerator RICOR model K535-ULV was evaluated through the full-scale experimentation.

  15. Analysis of muscle fatigue induced by isometric vibration exercise at varying frequencies.

    Science.gov (United States)

    Mischi, M; Rabotti, C; Cardinale, M

    2012-01-01

    An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training device is used to perform vibration exercise at varying frequency and force, therefore enabling the analysis of the relationship between vibration frequency and muscle fatigue. Fatigue is estimated by maximum voluntary contraction measurement, as well as by EMG mean-frequency and conduction-velocity analysis. Seven volunteers performed five isometric contractions of the biceps brachii with a load consisting of a baseline of 80% of their maximum voluntary contraction (MVC), with no vibration and with a superimposed 20, 30, 40, and 50 Hz vibrational force of 40 N. Myoelectric and mechanical fatigue were estimated by EMG analysis and by assessment of the MVC decay, respectively. A dedicated motion artifact canceler, making use of accelerometry, is proposed to enable accurate EMG analysis. Use of this canceler leads to better interpolation of myoelectric fatigue trends and to better correlation between mechanical and myoelectric fatigue. In general, our results suggest vibration at 30 Hz to be the most fatiguing exercise. These results contribute to the analysis of vibration exercise and motivate further research aiming at improved training protocols.

  16. Measuring ultra-sonic in-plane vibrations with the scanning confocal heterodyne interferometer

    Science.gov (United States)

    Rembe, C.; Ur-Rehman, F.; Heimes, F.; Boedecker, S.; Dräbenstedt, A.

    2010-05-01

    The advanced progress in miniaturization technologies of mechanical systems and structures has led to a growing demand of measurement tools for three-dimensional vibrations at ultra-high frequencies. Particularly radio-frequency, micro-electro-mechanical (RF-MEM) technology is a planar technology and, thus, the resonating structures are much larger in lateral dimensions compared to the height. Consequently, most ultra-high-frequency devices have larger inplane vibration amplitudes than out-of-plane amplitudes. Recently, we have presented a heterodyne interferometer for vibration frequencies up to 1.2 GHz. In this paper we demonstrate a new method to extract broad-bandwidth spectra of in-plane vibrations with our new heterodyne interferometer. To accomplish this goal we have combined heterodyne interferometry, scanning vibrometry, edge-knife technique, amplitude demodulation, and digital-image processing. With our experimental setup we can realize in-plane vibration measurements up to 600 MHz. We will also show our first measurements of a broad-bandwidth, in-plane vibration around 200 MHz. Our in-plane and out-of-plane vibration measurements are phase-correlated and, therefore, our technique is suitable for broad-bandwidth, full-3D vibration measurements of ultrasonic microdevices.

  17. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  18. Computing Device Applications of Group IV Nanoparticle Spectroscopy

    Science.gov (United States)

    2013-04-01

    periodicity is carried across the scan as part of the instrument response. Finally, a scheme to ascertain nanoparticle mass from vibrational resonance...observed commonly for oxidized silicon surfaces (the substantiating phenomenon for most MOSFET devices), and also for hydrogen passivated silicon...reliable devices based on such structures assumes, as with modern MOSFET characteristics, emergence of schemes to suppress undesired carrier

  19. Mobile Devices in the Classroom

    Science.gov (United States)

    Schachter, Ron

    2009-01-01

    As cell phones--with ever-expanding possibilities of texting, Web browsing, and game playing--have multiplied in recent years among teenagers and even preteens, so have the concerns of teachers and administrators about the distractions these devices can cause. A survey of students and parents earlier this year by the group Common Sense Media found…

  20. Optimal ossicular site for maximal vibration transmissions to coupled transducers.

    Science.gov (United States)

    Chung, Juyong; Song, Won Joon; Sim, Jae Hoon; Kim, Wandoo; Oh, Seung-Ha

    2013-07-01

    Totally implantable middle-ear prosthetic devices, such as the Esteem system (Envoy Medical Corporation), detect vibrational motion of the middle-ear ossicles rather than acoustic stimulation to the eardrum. This eliminates the need for a subcutaneous microphone, which is susceptible to interference by ambient noises. Study of the vibrational characteristics of the human ossicles provides valuable information for determining the site of maximum ossicular motion that would be optimal for attachment of the sensor portion of the prosthesis. In this study, vibrational responses at seven locations on the middle-ear ossicles (i.e., the malleus head, 4 different points on the incus body, middle of the incus long process, tip of the incus long process) in human temporal bones (n = 6) were measured using a laser Doppler vibrometer. The measurements were repeated after separating the incudostapedial joint (ISJ). Measured displacement at each location was normalized with the sound pressure level near the tympanic membrane (TM) for representation in the form of a displacement transfer function (DTF). The normalized squared sum of the DTFs (NSSDTF) was then calculated as a measure of vibration motion through a specific frequency range at the considered sites. The relatively large NSSDTF was observed at the sites on the superior part of the malleus head (MH), on the lateral part of the incus body (IBL), and on the superior part of the incus body near the incudomalleal joint (IBS1) for the frequency ranges of 1-4 kHz and 1-9 kHz, regardless of the condition of the ISJ. This indicates that maximum vibrational motion of the middle-ear is deliverable to the piezoelectric transducer of totally implantable devices through these sites. This article is part of a special issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Vibration control of a cable-stayed bridge using electromagnetic induction based sensor integrated MR dampers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Won [University of Western Ontario, London (Canada); Koo, Jeong Hoi [Miami University, Oxford (United States); Jo, Ji Seong [POSCO, Seongnam (Korea, Republic of)

    2007-06-15

    This paper presents a novel electromagnetic induction (EMI) system integrated in magneto rheological (MR) dampers: The added EMI system converts reciprocal motions of MR damper into electiral energy (electromotive force or emf) according to the Faraday's law of electromagnetic induction. Maximum energy dissipation algorithm (MEDA) is employed to regulate the MR dampers because it strives to simplify a complex design process by employing the Lyapunov's direct approach. The emf signal, produced from the EMI, provides the necessary measurement information (i.e., realtive velocity across the damper) for the MEDA controller. Thus, the EMI acts as a sensor in the proposed MR-EMI system. In order to evaluate the performance and robustness of the MR-EMI sensor system with the MEDA control, this study performed an extensive simulation study using the first generation benchmark cable-stayed bridge. Moreover, it compared the performance and the robustness of proposed system with those of Clipped-Optimal Control (COC) and Sliding Mode Control (SMC), which were previously studied for the benchmark cable-stayed bridge. The results show that the MR-EMI system reduced the vibrations of the bridge structure more than those of COC and SMC and show more robust performance than that of SMC. These results suggest that EMIs can be used cost-effective sensing devices for MR damper control systems without compromising the performance of them.

  2. Tactile perception of skin and skin cream by friction induced vibrations.

    Science.gov (United States)

    Ding, Shuyang; Bhushan, Bharat

    2016-11-01

    Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluation of hand-arm vibration reducing effect of anti-vibration glove

    OpenAIRE

    樹野, 淳也; 前田, 節雄; 横田, 和樹; 平, 雄一郎

    2015-01-01

    Many kinds of the anti-vibration glove have been developed for reducing hand-arm vibration during the operation with vibration tools. International standard ISO 10819 evaluates the physical effect of gloves' vibration transmissibility but not evaluates the physiological effect of human hands. Thus, in this paper, we proposed the evaluation using the temporary threshold shift of vibrotactile perception threshold to evaluate the hand-arm vibration reducing effect of anti-vibration glove. We per...

  4. Ergonomic Evaluation of Vibrations of a Rototiller with New Blade

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-10-01

    represents a significant contribution of the combustion engine in vibration of the examined rototiller. Meanwhile, contribution of the engine in the total measured vibration was more than 50% at different rotational speeds and different directions. The minimum engine contribution was measured equal to 56.39% in z-direction at 155 rpm, whereas the maximum engine contribution was observed equal to 79.5%, in x-direction and rotational speed of 215 rpm. These results indicate the importance of selecting a proper combustion engine for reducing the rototiller vibration. It should be noted that the contribution of the engine in total vibration reached its minimum value at the speed related to the maximum generated torque, i.e., 185 rpm of the rotor speed. This result indicates that using the combustion engine in its optimum speed reduces the entire device vibration in the vertical direction. By increasing the rotational speed of the blades in the y-direction, engine contribution in device vibration showed different trends in compare to the other directions. The most value was equal to 74.25% which was obtained at the rotation speed of 185 rpm. By increasing blade rotational speed from 155 rpm to 215 rpm, the engine contribution in device vibration in the z direction and the total acceleration steadily increased. Conclusions With growing mechanization and entering various types of machines to the farm, importance of considerations to human health is also increased, especially in working with rotational machines. Therefore, the current study was undertaken with the specific attention to the rototillers operational vibration at the handle/hand interface. Results of the conducted experiments showed that vibration of the examined rototiller depends more on the operation of the mounted combustion engine, rather than the soil working blades. Therefore, it is suggested to select a higher quality engine with less vibration or isolate the engine from chassis by a damper (such as a compressed

  5. Neonatal head and torso vibration exposure during inter-hospital transfer.

    Science.gov (United States)

    Blaxter, Laurence; Yeo, Mildrid; McNally, Donal; Crowe, John; Henry, Caroline; Hill, Sarah; Mansfield, Neil; Leslie, Andrew; Sharkey, Don

    2017-02-01

    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is [Formula: see text]. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes.

  6. Field Investigations On the Lateral Vibration Features Of Prestressed Concrete Stress Ribbon Footbridges

    Directory of Open Access Journals (Sweden)

    Fukada Saiji

    2015-01-01

    Full Text Available The prestressed concrete (PC stress ribbon footbridge is a type of suspension bridge without towers, which has been applied in Japan and all over the world for years in light of its low construction cost and aesthetic merit. It generally consists of the precast concrete slabs with embedded cables. However, the walking-induced lateral vibration trouble of the Millennium Bridge in London in 2000 gave a lesson to the engineers that the lateral vibration feature must be taken into consideration for the footbridge vibration evaluation. In this sense, the field investigations on the lateral vibration features of 14 pre-stressed concrete stress ribbon footbridge in Japan was carried out by artificial impact and damping free vibration tests. According to the investigations, the larger the bridge span, the lower the frequencies of lateral-related vibration modes. In addition, based on the damping-free vibration field tests, there was a tendency toward the damping constant degradation when bridge span became larger.

  7. 21 CFR 870.4340 - Cardiopulmonary bypass level sensing monitor and/or control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass level sensing monitor and... Devices § 870.4340 Cardiopulmonary bypass level sensing monitor and/or control. (a) Identification. A cardiopulmonary bypass level sensing monitor and/or control is a device used to monitor and/or control the level...

  8. 47 CFR 15.717 - TVBDs that rely on spectrum sensing.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false TVBDs that rely on spectrum sensing. 15.717... Television Band Devices § 15.717 TVBDs that rely on spectrum sensing. (a) Parties may submit applications for certification of TVBDs that rely solely on spectrum sensing to identify available channels. Devices authorized...

  9. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  10. CSI sensing and control: Analytical and experimental results

    Science.gov (United States)

    Junkins, J. L.; Pollock, T. C.; Rahman, Z. H.

    1989-01-01

    Recent work on structural identification and large-angle maneuvers with vibration suppression was presented. The recent work has sought to balance structural and controls analysis activities by involving the analysts directly in the validation and experimental aspects of the research. Some new sensing, actuation, system identification, and control concepts were successfully implemented. An overview of these results is given.

  11. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  12. Hall devices improve electric motor efficiency

    Science.gov (United States)

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  13. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  14. Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array.

    Science.gov (United States)

    Chen, Cheng-Kuang; Chang, Ming-Hsuan; Wu, Hsieh-Ting; Lee, Yao-Chang; Yen, Ta-Jen

    2014-10-15

    In this study, we report a multiband plasmonic-antenna array that bridges optical biosensing and intracellular bioimaging without requiring a labeling process or coupler. First, a compact plasmonic-antenna array is designed exhibiting a bandwidth of several octaves for use in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing. Second, a single-element plasmonic antenna can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing the refractive index contrast. Finally, using the fabricated plasmonic-antenna array yielded reliable intracellular observation was demonstrated from the vibrational signatures and intracellular refractive index contrast requiring neither labeling nor a coupler. These unique features enable the plasmonic-antenna array to function in a label-free manner, facilitating bio-sensing and imaging development. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Bioelectronic Sensors and Devices

    Science.gov (United States)

    Reed, Mark

    Nanoscale electronic devices have recently enabled the ability to controllably probe biological systems, from the molecular to the cellular level, opening up new applications and understanding of biological function and response. This talk reviews some of the advances in the field, ranging from diagnostic and therapeutic applications, to cellular manipulation and response, to the emulation of biological response. In diagnostics, integrated nanodevice biosensors compatible with CMOS technology have achieved unprecedented sensitivity, enabling a wide range of label-free biochemical and macromolecule sensing applications down to femtomolar concentrations. These systems have demonstrated integrated assays of biomarkers at clinically important concentrations for both diagnostics and as a quantitative tool for drug design and discovery. Cellular level response can also be observed, including immune response function and dynamics. Finally, the field is beginning to create devices that emulate function, and the demonstration of a solid state artificial ion channel will be discussed.

  16. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    Science.gov (United States)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  17. Balancing Vibrations at Harmonic Frequencies by Injecting Harmonic Balancing Signals into the Armature of a Linear Motor/Alternator Coupled to a Stirling Machine

    Science.gov (United States)

    Holliday, Ezekiel S. (Inventor)

    2014-01-01

    Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.

  18. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal......Wireless communication is omnipresent today, but this development has led to frequency spectrum becoming a limited resource. Furthermore, wireless devices become more and more energy-limited, due to the demand for continual wireless communication of higher and higher amounts of information...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...

  19. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  20. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.