WorldWideScience

Sample records for vibration response predictions

  1. Acceleration response spectrum for prediction of structural vibration due to individual bouncing

    Science.gov (United States)

    Chen, Jun; Wang, Lei; Racic, Vitomir; Lou, Jiayue

    2016-08-01

    This study is designed to develop an acceleration response spectrum that can be used in vibration serviceability assessment of civil engineering structures, such as floors and grandstands those are dynamically excited by individual bouncing. The spectrum is derived from numerical simulations and statistical analysis of acceleration responses of a single degree of freedom system with variable natural frequency and damping under a large number of experimentally measured individual bouncing loads. Its mathematical representation is fit for fast yet reliable application in design practice and is comprised of three equations that describe three distinct frequency regions observed in the actual data: the first resonant plateau (2-3.5 Hz), the second resonant plateau (4-7 Hz) and a descension region (7-15 Hz). Finally, this paper verifies the proposed response spectrum approach to predict structural vibration by direct comparison against numerical simulations and experimental results.

  2. Prediction of Acoustically Induced Random Vibration Response of Satellite Equipments with Proposed Asymptotic Apparent Mass

    Science.gov (United States)

    Ando, Shigemasa; Shi, Qinzhong

    Acoustically induced random vibration of satellite equipment mounted on honeycomb panels is a critical design consideration in satellite equipment development. Prediction of this random vibration is performed in the early stage of satellite design to specify the design limit value of random vibration excitation for satellite equipment. Various prediction methods for response prediction using Statistical Energy Analysis (SEA) have been developed: (i) NASA Lewis method, (ii) point-mass impedance method, and (iii) area-coupling impedance method. However, the first method has limited accuracy for heavy and concentrated equipment, the second one often overestimates, and the third one requires a detailed parameter. A new method combining the asymptotic apparent mass of specific equipment with NASA Lewis method is proposed herein. This proposed method takes the elastic behavior of satellite equipment rather than a rigid mass. The acoustic excitation experiments for nine real satellites (404 equipments in all) were conducted to compare existing methods to the proposed method statistically. Results show that the proposed method provides the most accurate prediction in the important frequency range.

  3. A novel scheme for the discrete prediction of high-frequency vibration response: Discrete singular convolution-mode superposition approach

    Science.gov (United States)

    Seçgin, Abdullah; Saide Sarıgül, A.

    2009-03-01

    This study introduces a novel scheme for the discrete high-frequency forced vibration analysis based on discrete singular convolution (DSC) and mode superposition (MS) approaches. The accuracy of the DSC-MS is validated for thin beams and plates by comparing with available analytical solutions. The performance of the DSC-MS is evaluated by predicting spatial distribution and discrete frequency spectra of the vibration response of thin plates with two different boundary conditions. The frequency spectra of the time-harmonic excitation forces are in the form of ideal and band-limited white noise so that the natural modes in the frequency band are provoked. The solution exposes high-frequency response behaviour definitely. Therefore, it is hoped with this paper to contribute the studies on the treatment of uncertainties in the high-frequency design applications.

  4. Improved Predictions for Geotechnical Vibrations

    OpenAIRE

    Macijauskas, Darius

    2015-01-01

    In urban areas where the infrastructure is dense and construction of new structures is near existing and sensitive buildings, frequently vibrations, caused by human activities, occur. Generated waves in the soil may adversely affect surrounding buildings. These vibrations have to be predicted a priori by using currently available knowledge of the soil dynamics. Current research, conducted by Deltares research institute, showed that the reliability of methods for prediction of m...

  5. Vibration response of misaligned rotors

    Science.gov (United States)

    Patel, Tejas H.; Darpe, Ashish K.

    2009-08-01

    Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.

  6. Dynamical response of vibrating ferromagnets

    CERN Document Server

    Gaganidze, E; Ziese, M

    2000-01-01

    The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...

  7. Prediction Models of Free-Field Vibrations from Railway Traffic

    DEFF Research Database (Denmark)

    Malmborg, Jens; Persson, Kent; Persson, Peter

    2017-01-01

    and railways close to where people work and live. Annoyance from traffic-induced vibrations and noise is expected to be a growing issue. To predict the level of vibration and noise in buildings caused by railway and road traffic, calculation models are needed. In the present paper, a simplified prediction...... model is briefly described. This prediction model is based on the assumption that the ground and railway embankment can be described in an axisymmetric model, to provide the transfer functions between the track and the free-field. In the paper, the error that arise by assuming axisymmetric response...... is studied by comparing the response in a three-dimensional finite-element model. Transfer functions at several positions in the free-field are compared....

  8. Prognostic and Remaining Life Prediction of Electronic Device under Vibration Condition Based on CPSD of MPI

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2016-01-01

    Full Text Available Prognostic of electronic device under vibration condition can help to get information to assist in condition-based maintenance and reduce life-cycle cost. A prognostic and remaining life prediction method for electronic devices under random vibration condition is proposed. Vibration response is measured and monitored with acceleration sensor and OMA parameters, including vibration resonance frequency, especially first-order resonance frequency, and damping ratio is calculated with cross-power spectrum density (CPSD method and modal parameter identification (MPI algorithm. Steinberg vibration fatigue model which considers transmissibility factor is used to predict the remaining life of electronic component. Case study with a test board is carried out and remaining life is predicted. Results show that with this method the vibration response characteristic can be monitored and predicted.

  9. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  10. Physiology responses of Rhesus monkeys to vibration

    Science.gov (United States)

    Hajebrahimi, Zahra; Ebrahimi, Mohammad; Alidoust, Leila; Arabian Hosseinabadi, Maedeh

    Vibration is one of the important environmental factors in space vehicles that it can induce severe physiological responses in most of the body systems such as cardiovascular, respiratory, skeletal, endocrine, and etc. This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV), electrocardiograms (ECG) and respiratory rate in Rhesus monkeys. Methods: two groups of rhesus monkey (n=16 in each group) was selected as control and intervention groups. Monkeys were held in a sitting position within a specific fixture. The animals of this experiment were vibrated on a table which oscillated right and left with sinusoidal motion. Frequency and acceleration for intervention group were between the range of 1 to 2000 Hz and +0.5 to +3 G during 36 weeks (one per week for 15 min), respectively. All of the animals passed the clinical evaluation (echocardiography, sonography, radiography and blood analysis test) before vibration test and were considered healthy and these tests repeated during and at the end of experiments. Results and discussions: Our results showed that heart and respiratory rates increased significantly in response to increased frequency from 1 to 60 Hz (p <0.05) directly with the +G level reaching a maximum (3G) within a seconds compare to controls. There were no significant differences in heart and respiratory rate from 60 t0 2000 Hz among studied groups. All monkeys passed vibration experiment successfully without any arrhythmic symptoms due to electrocardiography analysis. Conclusion: Our results indicate that vibration in low frequency can effect respiratory and cardiovascular function in rhesus monkey. Keywords: Vibration, rhesus monkey, heart rate, respiratory rate

  11. Prediction Models of Free-Field Vibrations from Railway Traffic

    DEFF Research Database (Denmark)

    Malmborg, Jens; Persson, Kent; Persson, Peter

    2017-01-01

    and railways close to where people work and live. Annoyance from traffic-induced vibrations and noise is expected to be a growing issue. To predict the level of vibration and noise in buildings caused by railway and road traffic, calculation models are needed. In the present paper, a simplified prediction...

  12. Strategy for predicting railway-induced vibrations in buildings

    DEFF Research Database (Denmark)

    Persson, Peter; Persson, Kent; Andersen, Lars Vabbersgaard

    2016-01-01

    for the residents. It is necessary, even at an early stage of planning, to assess the extent of the vibrations and state requirements for the building in order to avoid costly changes at later stages. Ground vibration induced by railway traffic is studied in the paper. The aim is to develop a strategy...... for predicting vibrations in nearby buildings in an early stage of the building process. The strategy is based on that there is a fairly good knowledge of the properties of the ground and that some on-site vibration measurements are made. By combining these with finite-element analysis, the vibration level...... a strategy for predicting railway-induced vibrations....

  13. A new scaling algorithm for predicting vibrational spectra of ...

    Indian Academy of Sciences (India)

    Administrator

    FL = Λ. Keywords. Vibrational spectra; force constants; scaling algorithms; ab initio; DFT calculations. 1. Introduction. Theoretical prediction of vibrational spectra of polyatomic molecules has been the goal for a long time. 1–7. The recent advances in ab initio and density functional methods (DFT) met considerable success.

  14. Prediction of induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Thomsen, K.; Aagaard Madsen, H. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The main results from recent research in stall induced vibrations are presented. The focus is on the edgewise blade vibrations, which during the last decade have turned out to be a potential threat against the stable operation of stall regulated wind turbines and a fact, which must be dealt with by the designer. The basic physical explanation for the phenomenon and examples of design precaution, which can be taken, are presented. (au)

  15. Nonlinear frequency response analysis of structural vibrations

    Science.gov (United States)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  16. Vibrational response analysis of tires using a three-dimensional flexible ring-based model

    Science.gov (United States)

    Matsubara, Masami; Tajiri, Daiki; Ise, Tomohiko; Kawamura, Shozo

    2017-11-01

    Tire vibration characteristics influence noise, vibration, and harshness. Hence, there have been many investigations of the dynamic responses of tires. In this paper, we present new formulations for the prediction of tire tread vibrations below 150 Hz using a three-dimensional flexible ring-based model. The ring represents the tread including the belt, and the springs represent the tire sidewall stiffness. The equations of motion for lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests. Unlike most studies of flexible ring models, which mainly discussed radial and circumferential vibration, this study presents steady response functions concerning not only radial and circumferential but also lateral vibration using the three-dimensional flexible ring-based model. The results of impact tests described confirm the theoretical findings. The results show reasonable agreement with the predictions.

  17. Integrated predictive maintenance program vibration and lube oil analysis: Part I - history and the vibration program

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, H.

    1996-12-01

    This paper is the first of two papers which describe the Predictive Maintenance Program for rotating machines at the Palo Verde Nuclear Generating Station. The organization has recently been restructured and significant benefits have been realized by the interaction, or {open_quotes}synergy{close_quotes} between the Vibration Program and the Lube Oil Analysis Program. This paper starts with the oldest part of the program - the Vibration Program and discusses the evolution of the program to its current state. The {open_quotes}Vibration{close_quotes} view of the combined program is then presented.

  18. Predicting footbridge vibrations using a probability-based approach

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2017-01-01

    to modeling the action of a pedestrian. The paper employs a probability-based approach to modeling the action of a pedestrian by considering randomness in the behavior of the pedestrian crossing the footbridge. The paper describes the approach and studies implications (sensitivity) of selected decisions made......Vibrations in footbridges may be problematic as excessive vibrations may occur as a result of actions of pedestrians. Design-stage predictions of levels of footbridge vibration to the action of a pedestrian are useful and have been employed for many years based on a deterministic approach...

  19. Prediction of vibration level in tunnel blasting; Tonneru kusshin happa ni yotte reiki sareru shindo no reberu yosoku ho

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, A. [Kumamoto Industries Univ, Kumamoto (Japan); Yamamoto, M. [Asahi Chemical Industry Co. Ltd., Tokyo (Japan); Inaba, C. [Nishimatsu Construction Co. Ltd., Kanagawa (Japan); Kaneko, K. [Hokkaido Univ (Japan)

    1997-08-01

    For avoiding the generation of public hazard due to ground vibration causes by blasting in tunneling, it is important to devise a blasting method for ensuring the level of the ground vibration caused thereby under a limit, and an exact predication of ground vibration before blasting is desirable. In this study, the characteristics of the ground vibration caused by tunnel blasting are analyzed, and a summary of amplitude spectra calculating method is described. A theoretical analysis method for predicting the vibration level is proposed based on spectrum-multiplicative method. Vibration caused by multistage blasting in tunneling is most strong and deemed as important. When observing the process of elastic wave motion caused by multistage blasting being measured, the process can be divided into three element processes in frequency area as vibration source spectrum, transmission attenuation spectrum and frequency response function vibrating test, and, with the multiplication of them, the amplitude spectra at an observation portion can be estimated. 12 refs., 12 figs.

  20. Reliability of vibration predictions in civil engineering applications

    NARCIS (Netherlands)

    Wit, M.S. de; Waarts, P.H.; Hölscher, P.; Stuit, H.G.

    2003-01-01

    The reliability of vibration predictions distinguishes itself from other reliability problems be-cause of the highly non-linear behavior of the underlying models. Over the last two years, a combination of four institutes in the Netherlands has studied the reliability in this type of predictions. For

  1. Pedestrian induced vertical vibrations: Response to running using the Response Spectrum Method

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos

    2010-01-01

    Footbridges are increasingly prone to vibrations and designers are generally unable to predict pedestrian-induced vertical vibrations. Many aspects of human loading are infact not properly taken into account for in the load models employed by the international codes of practice, such as the rando...... into account variations in the structural characteristics, crowd morphology and return period. The correction factors, together with the reference acceleration, are used to determine the final response of the footbridge, for a given probability of load occurrence.......Footbridges are increasingly prone to vibrations and designers are generally unable to predict pedestrian-induced vertical vibrations. Many aspects of human loading are infact not properly taken into account for in the load models employed by the international codes of practice......, such as the randomness of crowds travelling across the footbridge. Moreover, the codes, for most of the part, do not deal with pedestrian loading other than walking, even though running and jumping can often produce larger loads and vibration amplitudes. In this paper, an investigation inot the response of footbridges...

  2. Scaling Techniques for Combustion Device Random Vibration Predictions

    Science.gov (United States)

    Kenny, R. J.; Ferebee, R. C.; Duvall, L. D.

    2016-01-01

    This work presents compares scaling techniques that can be used for prediction of combustion device component random vibration levels with excitation due to the internal combustion dynamics. Acceleration and unsteady dynamic pressure data from multiple component test programs are compared and normalized per the two scaling approaches reviewed. Two scaling technique are reviewed and compared against the collected component test data. The first technique is an existing approach developed by Barrett, and the second technique is an updated approach new to this work. Results from utilizing both techniques are presented and recommendations about future component random vibration prediction approaches are given.

  3. Vertical Footbridge Vibrations: The Response Spectrum Methodology

    DEFF Research Database (Denmark)

    Georgakis, Christos; Ingólfsson, Einar Thór

    2008-01-01

    In this paper, a novel, accurate and readily codifiable methodology for the prediction of vertical footbridge response is presented. The methodology is based on the well-established response spectrum approach used in the majority of the world’s current seismic design codes of practice. The concept...... of a universally applicable reference response spectrum is introduced, from which the pedestrian-induced vertical response of any footbridge may be determined, based on a defined “event” and the probability of occurrence of that event. A series of Monte Carlo simulations are undertaken for the development...... of a reference response spectrum. The simulations use known statistical data for pedestrian and population walking characteristics to generate loads for a 50m long simply-supported bridge, with a fixed level of damping and a mean pedestrian flow rate of 1 pedestrian / sec. The response obtained from...

  4. Studies of wood pallet response to forced vibration

    OpenAIRE

    Lauer, Ira Edwin

    1991-01-01

    Wood pallets serve as interfaces between packaged products and transport vehicles. vertical vibrations are transmitted through pallets into unit-loads. Pallet response to forced vibration affects forces experienced by products. A study was conducted to determine how pallet design influenced the resonant response of a uniformly distributed case goods unit-load. other studies were conducted to develop a pallet section model to emulate the response of three stringer wood ...

  5. On vortex shedding and prediction of vortex-induced vibrations of circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Halse, Karl Henning

    1997-12-31

    In offshore installations, many crucial components can be classified as slender marine structures: risers, mooring lines, umbilicals and cables, pipelines. This thesis studies the vortex shedding phenomenon and the problem of predicting vortex-induced vibrations of such structures. As the development of hydrocarbons move to deeper waters, the importance of accurately predicting the vortex-induced response has increased and so the need for proper response prediction methods is large. This work presents an extensive review of existing research publications about vortex shedding from circular cylinders and the vortex-induced vibrations of cylinders and the different numerical approaches to modelling the fluid flow. The response predictions from different methods are found to disagree, both in response shapes and in vibration amplitudes. This work presents a prediction method that uses a fully three-dimensional structural finite element model integrated with a laminar two-dimensional Navier-Stokes solution modelling the fluid flow. This solution is used to study the flow both around a fixed cylinder and in a flexibly mounted one-degree-of-freedom system. It is found that the vortex-shedding process (in the low Reynolds number regime) is well described by the computer program, and that the vortex-induced vibration of the flexibly mounted section do reflect the typical dynamic characteristics of lock-in oscillations. However, the exact behaviour of the experimental results found in the literature was not reproduced. The response of the three-dimensional structural model is larger than the expected difference between a mode shape and a flexibly mounted section. This is due to the use of independent hydrodynamic sections along the cylinder. The predicted response is not unrealistic, and the method is considered a powerful tool. 221 refs., 138 figs., 36 tabs.

  6. Visual Stimulation Facilitates Penile Responses to Vibration in Men with and without Erectile Disorder.

    Science.gov (United States)

    Janssen, Erick; And Others

    1994-01-01

    Compared reflexogenic and psychogenic penile responses in men with and without erectile disorder. Hypothesized that men with psychogenic dysfunction respond minimally to vibrotactile stimulation. As predicted, responses were different in the vibration condition. Interpretations are provided in terms of attention and appraisal. (BF)

  7. Does more sophisticated modeling reduce model uncertainty? A case study on vibration predictions

    NARCIS (Netherlands)

    Waarts, P.H.; Wit, M.S. de

    2004-01-01

    In this paper, the reliability of vibration predictions in civil engineering is quantified. Emphasis is laid on the vibration predictions for road- and rail traffic and vibrations from building activities such as (sheet)pile driving. Several kinds of prediction techniques were investigated: expert

  8. Vibration Response Characteristics of the Cross Tunnel Structure

    Directory of Open Access Journals (Sweden)

    Jinxing Lai

    2016-01-01

    Full Text Available It is well known that the tunnel structure will lose its function under the long-term repeated function of the vibration effect. A prime example is the Xi’an cross tunnel structure (CTS of Metro Line 2 and the Yongningmen tunnel, where the vibration response of the tunnel vehicle load and metro train load to the structure of shield tunnel was analyzed by applying the three-dimensional (3D dynamic finite element model. The effect of the train running was simulated by applying the time-history curves of vibration force of the track induced by wheel axles, using the fitted formulas for vehicle and train vibration load. The characteristics and the spreading rules of vibration response of metro tunnel structure were researched from the perspectives of acceleration, velocity, displacement, and stress. It was found that vehicle load only affects the metro tunnel within 14 m from the centre, and the influence decreases gradually from vault to spandrel, haunch, and springing. The high-speed driving effect of the train can be divided into the close period, the rising period, the stable period, the declining period, and the leaving period. The stress at haunch should be carefully considered. The research results presented for this case study provide theoretical support for the safety of vibration response of Metro Line 2 structure.

  9. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    Science.gov (United States)

    Miyamoto, Ayaho; Yabe, Akito

    2011-07-01

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the "substructure method" employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  10. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Ayaho [Graduate School of Science and Engineering, Yamaguchi University, Ube (Japan); Yabe, Akito, E-mail: miya818@yamaguchi-u.ac.jp, E-mail: nagai@kke.co.jp [Seismic Engineering Department, KOZO KEIKAKU Engineering Inc. Tokyo (Japan)

    2011-07-19

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the 'substructure method' employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  11. Analytical design and evaluation of an active control system for helicopter vibration reduction and gust response alleviation

    Science.gov (United States)

    Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.

    1980-01-01

    An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.

  12. Correlation of finite element free vibration predictions using random vibration test data. M.S. Thesis - Cleveland State Univ.

    Science.gov (United States)

    Chambers, Jeffrey A.

    1994-01-01

    Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.

  13. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  14. A study of modelling simplifications in ground vibration predictions for railway traffic at grade

    Science.gov (United States)

    Germonpré, M.; Degrande, G.; Lombaert, G.

    2017-10-01

    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  15. Prediction of flap response.

    Science.gov (United States)

    Potgieter, Frederik J; Roberts, Cynthia; Cox, Ian G; Mahmoud, Ashraf M; Herderick, Edward E; Roetz, Marlize; Steenkamp, Wouter

    2005-01-01

    To find predictors of the induced biomechanical and optical effects of lamellar flap creation on the cornea. Optimed Eye and Laser Clinic, Pretoria, South Africa, and the Department of Ophthalmology and Biomedical Engineering Center, The Ohio State University, Columbus, Ohio, and Bausch & Lomb Vision Research Laboratory, Rochester, New York, USA. This prospective study monitored the refractive, wavefront aberration, and corneal topographic changes in 29 eyes of 15 patients for 3 months after the creation of a corneal lamellar flap. The main outcome measures for statistical analysis were refraction, total corneal thickness, residual corneal bed thickness, horizontal white-to-white corneal diameter, horizontal flap diameter, topography data, and wavefront data. Statistically significant changes were seen in the autorefraction mode. Wavefront data showed significant change in 4 Zernike modes-90/180-degree astigmatism, vertical coma, horizontal coma, and spherical aberration. The topography data indicated the corneal biomechanical response was significantly predicted by stromal bed thickness in the early follow-up period and by total corneal pachymetry and flap diameter in a 2-parameter statistical model in the late follow-up period. Uncomplicated lamellar flap creation is responsible for systematic changes in corneal topography and induction of higher-order optical aberrations. Predictors of this response include stromal bed thickness, flap diameter, and total corneal pachymetry.

  16. Influence study of flow separation on the nozzle vibration response

    Directory of Open Access Journals (Sweden)

    Geng Li

    2016-06-01

    Full Text Available In the present paper, the vibration response difference of the upper stage nozzle with higher expansion ratio between ground and altitude simulation hot-firing test is analyzed. It indicates that the acceleration response of the nozzle under ground hot-firing test is much higher than that of the altitude condition. In order to find the essential reason, the experimental and numerical simulation studies of the flow separation are developed by using the test engine nozzle. The experimental data show that the nozzle internal flow occurred flow separation and the divergence cone internal wall pressure pulsation increased significantly downstream from the separation location. The numerical simulation and experimental results indicate that the increase of internal wall pressure and turbulence pulsating pressure are the substantial reason of vibration response increasing aggravatingly during the ground firing test.

  17. Parameter definition using vibration prediction software leads to significant drilling performance improvements

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, Dalmo; Hanley, Chris Hanley; Fonseca, Isaac; Santos, Juliana [National Oilwell Varco, Houston TX (United States); Leite, Daltro J.; Borella, Augusto; Gozzi, Danilo [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The understanding and mitigation of downhole vibration has been a heavily researched subject in the oil industry as it results in more expensive drilling operations, as vibrations significantly diminish the amount of effective drilling energy available to the bit and generate forces that can push the bit or the Bottom Hole Assembly (BHA) off its concentric axis of rotation, producing high magnitude impacts with the borehole wall. In order to drill ahead, a sufficient amount of energy must be supplied by the rig to overcome the resistance of the drilling system, including the reactive torque of the system, drag forces, fluid pressure losses and energy dissipated by downhole vibrations, then providing the bit with the energy required to fail the rock. If the drill string enters resonant modes of vibration, not only does it decreases the amount of available energy to drill, but increases the potential for catastrophic downhole equipment and drilling bit failures. In this sense, the mitigation of downhole vibrations will result in faster, smoother, and cheaper drilling operations. A software tool using Finite Element Analysis (FEA) has been developed to provide better understanding of downhole vibration phenomena in drilling environments. The software tool calculates the response of the drilling system at various input conditions, based on the design of the wellbore along with the geometry of the Bottom Hole Assembly (BHA) and the drill string. It identifies where undesired levels of resonant vibration will be driven by certain combinations of specific drilling parameters, and also which combinations of drilling parameters will result in lower levels of vibration, so the least shocks, the highest penetration rate and the lowest cost per foot can be achieved. With the growing performance of personal computers, complex software systems modeling the drilling vibrations using FEA has been accessible to a wider audience of field users, further complimenting with real time

  18. Vibration reduction in helicopters using active control of structural response (ACSR) with improved aerodynamic modeling

    Science.gov (United States)

    Cribbs, Richard Clay

    This dissertation describes the development of a coupled rotor/flexible fuselage aeroelastic response model including rotor/fuselage aerodynamic interactions. This model is used to investigate fuselage vibrations and their suppression using active control of structural response (ACSR). The fuselage, modeled by a three dimensional structural dynamic finite element model, is combined with a flexible, four-bladed, hingeless rotor. Each rotor blade is structurally modeled as an isotropic Euler-Bernoulli beam with coupled flap-lag-torsional dynamics assuming moderate deflections. A free wake model is incorporated into the aeroelastic response model and is validated against previous studies. Two and three dimensional sources model the fuselage aerodynamics. Direct aerodynamic influences of the rotor and wake on the fuselage are calculated by integrating pressures over the surface of the fuselage. The fuselage distorts the wake and influences the air velocities at the rotor which alters the aerodynamic loading. This produces fully coupled rotor/fuselage aerodynamic interactions. The influence of the aerodynamic refinements on vibrations is studied in detail. Results indicate that a free wake model and the inclusion of fuselage aerodynamic effects on the rotor and wake are necessary for vibration prediction at all forward speeds. The direct influence of rotor and wake aerodynamics on the fuselage plays a minor role in vibrations. Accelerations with the improved aerodynamic model are significantly greater than uniform inflow results. The influence of vertical separation between the rotor and fuselage on vibrations is also studied. An ACSR control algorithm is developed that preferentially reduces accelerations at selected airframe locations of importance. Vibration reduction studies are carried out using this improved control algorithm and a basic algorithm studied previously at UCLA. Both ACSR methods markedly reduce acceleration amplitudes with no impact on the rotor

  19. Human responses to wave slamming vibration on a polar supply and research vessel.

    Science.gov (United States)

    Omer, H; Bekker, A

    2018-02-01

    A polar supply and research vessel is pre-disposed to wave slamming which has caused complaints among crew and researchers regarding interference with sleep, equipment use and research activities. The present work undertook to survey passenger claims of sleep interference, disturbed motor tasks and equipment damage as a result of wave slamming during normal operations of this vessel. The hypothesis was investigated that whole-body vibration metrics from ISO 2631-1 are potentially suitable for the prediction of human slamming complaints. Full-scale acceleration measurements were performed and wave slamming events were subsequently identified from the human weighted acceleration time histories. A daily diary survey was also conducted to gather the human response. The vibration caused by wave slamming was found to be strongly correlated with sleep disturbances and activity interference. Sleep and equipment use were found to be the most affected parameters by slamming. Daily vibration dose values were determined by accumulating the vibration as a result of slamming over 24 h periods. This metric accounted for increased magnitudes and frequency of slamming incidents and proved to be the best metric to represent human responses to slamming vibration. The greatest percentage of activities affected by slamming related to sleep regardless of daily cumulative VDV magnitude. More than 50% of the recorded responses related to sleep when the daily cumulative VDV ranged between 8.0 m/s1.75-10.0 m/s1.75. The peak vertical vibration levels recorded on the vessel reach magnitudes which are associated with sleep disturbance in environments where acoustic noise is present. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Responses of Multiple Nonlinear Tuned Vibration Absorbers under Harmonic Excitation

    Science.gov (United States)

    Alsuwaiyan, Abdullah S.

    2017-05-01

    In this paper, a system consisting of multiple perfectly tuned identical translational vibration absorbers, having both hardening and softening springs, attached to a main mass under harmonic excitation is considered. The existence of absorbers’ synchronous and non-synchronous responses is checked. The method of averaging is employed to reach to the averaged autonomous equations of motion that describe the dynamics of the absorbers. A graphical method is then employed to check the existence of different responses of the absorbers. It is found that for absorbers with hardening springs, only one synchronous response of the absorbers occurs and no other responses take place. However, for the case of absorbers with softening springs, other responses were found to exist. These include multi-valued synchronous responses and a jump instability. These findings are in agreement with those of another study by the author where a similar system was considered using different approach.

  1. The application of SEAT values for predicting how compliant seats with backrests influence vibration discomfort.

    Science.gov (United States)

    Basri, Bazil; Griffin, Michael J

    2014-11-01

    The extent to which a seat can provide useful attenuation of vehicle vibration depends on three factors: the characteristics of the vehicle motion, the vibration transmissibility of the seat, and the sensitivity of the body to vibration. The 'seat effective amplitude transmissibility' (i.e., SEAT value) reflects how these three factors vary with the frequency and the direction of vibration so as to predict the vibration isolation efficiency of a seat. The SEAT value is mostly used to select seat cushions or seat suspensions based on the transmission of vertical vibration to the principal supporting surface of a seat. This study investigated the accuracy of SEAT values in predicting how seats with backrests influence the discomfort caused by multiple-input vibration. Twelve male subjects participated in a four-part experiment to determine equivalent comfort contours, the relative discomfort, the location of discomfort, and seat transmissibility with three foam seats and a rigid reference seat at 14 frequencies of vibration in the range 1-20 Hz at magnitudes of vibration from 0.2 to 1.6 ms(-2) r.m.s. The 'measured seat dynamic discomfort' (MSDD) was calculated for each foam seat from the ratio of the vibration acceleration required to cause similar discomfort with the foam seat and with the rigid reference seat. Using the frequency weightings in current standards, the SEAT values of each seat were calculated from the ratio of overall ride values with the foam seat to the overall ride values with the rigid reference seat, and compared to the corresponding MSDD at each frequency. The SEAT values provided good predictions of how the foam seats increased vibration discomfort at frequencies around the 4-Hz resonance but reduced vibration discomfort at frequencies greater than about 6.3 Hz, with discrepancies explained by a known limitation of the frequency weightings. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Clark, Stewart J.

    2007-01-01

    We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...

  3. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. T...

  4. Theoretical Prediction of Vibrational Circular Dichroism of Hexoses in Linear Form

    Science.gov (United States)

    1992-06-01

    D. Zeroka, G. R. Famini , J. 0. Jensen, A. H. Carrieri, and C. F. Chabalowski, Theoreti- cal Prediction of Vibrational Circular Dichroism Spectra...Jensen, A. H. Carrieri, G. R. Famini , and C. F. Chabalowski, Theoreti- cal Prediction of Vibrational Circular Dichroism Spectra of Sugars, Summer 1990 U.S...1983), Chapter 3. 15. J. M. Leonard and G. R. Famini , A User’s Guide to the Molecular Modelling, Analysis, Display System (MMADS)", 2" ed., CRDEC-TR

  5. PREDICTION THE EVOLUTION OF TEMPERATURE AND VIBRATIONS ON SPINDLE USING ARTIFICIAL NEURAL NETWORKS AND FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Daniel Petru GHENCEA

    2016-05-01

    Full Text Available Simulation spindle behavior in terms of temperature and vibration at higher speeds is more economical and more secure (avoid undesirable mechanical events than testing practice. Testing practice has an important role in finalizing the product but throughout the course of prototype testing is more advantageous economic development simulation parameters based on data sets collected to dangerous speeds. In this paper we present an analysis mode hybrid (artificial neural networks - fuzzy logic on prediction the evolution of temperatures and vibrations at higher speeds for which no measurements were made. The main advantage of the method is the simultaneous prediction of the dynamics of temperature and vibration levels.

  6. Application of vibration response technique for the firmness evaluation of pear fruit during storage.

    Science.gov (United States)

    Oveisi, Z; Minaei, S; Rafiee, S; Eyvani, A; Borghei, A

    2014-11-01

    Storage conditions of pear affect its subsequent softening process and shelf life. Measurements of firmness have traditionally been carried out according to the Magness Taylor (MT) procedure; using a texture analyzer or penetrometer in reference texture tests. In this study, a non-destructive method using Laser Doppler vibrometer (LDV) technology was used to estimate texture firmness of pears. This technique was employed to detect responses to imposed vibration of intact fruit using a shaker. Vibration transmitted through the fruit to the upper surface was measured by LDV. A fast Fourier transform algorithm was used to process response signals and the desired results were extracted. Multiple Linear Regression models using fruit density and four parameters obtained from modal tests showed better correlation (R(2) = 0.803) with maximum force in Magness Taylor test compared to the models that used only modal parameters (R(2) = 0.798). The best polynomial regression models for pear firmness were based on elasticity index (EI) and damping ratio (η) with R(2) = 0.71 and R(2) = 0.64, respectively. This study shows the capability of the LDV technique and the vibration response data for predicting ripeness and modeling pear firmness and the significant advantage for commercially classifying of pears based on consumer demands.

  7. Prediction of Milk Quality Parameters Using Vibrational Spectroscopy and Chemometrics

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae

    Vibrational spectroscopic techniques are widely used throughout all stages of food production. The analysis of raw materials, real-time process control, and end-product quality evaluation are all crucial steps in food production. In order to increase production throughput there is a need for speed...

  8. Prediction of Vibration Transmission within Periodic Bar Structures

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Andersen, Lars Vabbersgaard; Sorokin, Sergey

    2012-01-01

    The present analysis focuses on vibration transmission within semi-infinite bar structure. The bar is consisting of two different materials in a periodic manner. A periodic bar model is generated using two various methods: The Finite Element method (FEM) and a Floquet theory approach. A parameter...

  9. Predicting vibration-induced displacement for a resonant friction slider

    DEFF Research Database (Denmark)

    Fidlin, A.; Thomsen, Jon Juel

    2001-01-01

    A mathematical model is set up to quantify vibration-induced motions of a slider, sandwiched between friction layers with different coefficients of friction, and equipped with an imbedded resonator that oscillates at high frequency and small amplitude. This model is highly nonlinear, involving no...

  10. Improved Models for Prediction of Locally Intense Aeroacoustic Loads and Vibration Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA Engineering, Inc. proposes an STTR program to develop innovative tools and methods that will significantly improve the accuracy of random vibration response...

  11. Using Long-Short-Term-Memory Recurrent Neural Networks to Predict Aviation Engine Vibrations

    Science.gov (United States)

    ElSaid, AbdElRahman Ahmed

    This thesis examines building viable Recurrent Neural Networks (RNN) using Long Short Term Memory (LSTM) neurons to predict aircraft engine vibrations. The different networks are trained on a large database of flight data records obtained from an airline containing flights that suffered from excessive vibration. RNNs can provide a more generalizable and robust method for prediction over analytical calculations of engine vibration, as analytical calculations must be solved iteratively based on specific empirical engine parameters, and this database contains multiple types of engines. Further, LSTM RNNs provide a "memory" of the contribution of previous time series data which can further improve predictions of future vibration values. LSTM RNNs were used over traditional RNNs, as those suffer from vanishing/exploding gradients when trained with back propagation. The study managed to predict vibration values for 1, 5, 10, and 20 seconds in the future, with 2.84% 3.3%, 5.51% and 10.19% mean absolute error, respectively. These neural networks provide a promising means for the future development of warning systems so that suitable actions can be taken before the occurrence of excess vibration to avoid unfavorable situations during flight.

  12. The Effect of Single-Level Disc Degeneration on Dynamic Response of the Whole Lumbar Spine to Vertical Vibration.

    Science.gov (United States)

    Guo, Li-Xin; Fan, Wei

    2017-09-01

    The objective of this study was to investigate the effect of single-level disc degeneration on dynamic response of the whole lumbar spine to vertical whole body vibration that is typically present when driving vehicles. Ligamentous finite element models of the lumbar L1-S1 motion segment in different grades of degeneration (healthy, mild, and moderate) at the L4-L5 level were developed with consideration of changing disc height and material properties of the nucleus pulpous. All models were loaded with a compressive follower preload of 400 N and a sinusoidal vertical vibration load of ±40 N. After transient dynamic analyses, computational results for the 3 models in terms of disc bulge, von-Mises stress in annulus ground substance, and nucleus pressure were plotted as a function of time and compared. All the predicted results showed a cyclic response with time. At the degenerated L4-L5 disc level, as degeneration progressed, maximum value of the predicted response showed a decrease in disc bulge and von-Mises stress in annulus ground substance but a slight increase in nucleus pressure, and their vibration amplitudes were all decreased. At the adjacent levels of the degenerated disc, there was a slight decrease in maximum value and vibration amplitude of these predicted responses with the degeneration. The results indicated that single-level disc degeneration can alter vibration characteristics of the whole lumbar spine especially for the degenerated disc level, and increasing the degeneration did not deteriorate the effect of vertical vibration on the spine. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Method for Vibration Response Simulation and Sensor Placement Optimization of a Machine Tool Spindle System with a Bearing Defect

    Directory of Open Access Journals (Sweden)

    Hongrui Cao

    2012-06-01

    Full Text Available Bearing defects are one of the most important mechanical sources for vibration and noise generation in machine tool spindles. In this study, an integrated finite element (FE model is proposed to predict the vibration responses of a spindle bearing system with localized bearing defects and then the sensor placement for better detection of bearing faults is optimized. A nonlinear bearing model is developed based on Jones’ bearing theory, while the drawbar, shaft and housing are modeled as Timoshenko’s beam. The bearing model is then integrated into the FE model of drawbar/shaft/housing by assembling equations of motion. The Newmark time integration method is used to solve the vibration responses numerically. The FE model of the spindle-bearing system was verified by conducting dynamic tests. Then, the localized bearing defects were modeled and vibration responses generated by the outer ring defect were simulated as an illustration. The optimization scheme of the sensor placement was carried out on the test spindle. The results proved that, the optimal sensor placement depends on the vibration modes under different boundary conditions and the transfer path between the excitation and the response.

  14. Identification of the best DFT functionals for a reliable prediction of lignin vibrational properties

    DEFF Research Database (Denmark)

    Barsberg, Soren

    2015-01-01

    for a comprehensive study of the quality of available theoretical methods in relation to the task of predicting lignin vibrational properties. The present study examined more than 50 functionals for prediction of IR vibrations of an appropriate lignin model. Based on a basis set incompleteness study, the pc-2 basis...... set was used. B98, X3LYP and B97-1 were the overall best-performing functionals, and “fingerprint” band positions were predicted by single-factor scaling of harmonic frequencies to an average error of ±3 cm−1 by optimized scaling factors of 1.017, 1.021 and 1.016, respectively. Their performance using......Lignin is the most abundant aromatic plant polymer on earth. Useful information on its structure and interactions is gained by vibrational spectroscopy and relies on the quality of band assignments. B3LYP predictions were recently shown to support band assignments. Further progress calls...

  15. A New Approach for Reliability Life Prediction of Rail Vehicle Axle by Considering Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Meral Bayraktar

    2014-01-01

    Full Text Available The effect of vibration on the axle has been considered. Vibration measurements at different speeds have been performed on the axle of a running rail vehicle to figure out displacement, acceleration, time, and frequency response. Based on the experimental works, equivalent stress has been used to find out life of the axles for 90% and 10% reliability. Calculated life values of the rail vehicle axle have been compared with the real life data and it is found that the life of a vehicle axle taking into account the vibration effects is in good agreement with the real life of the axle.

  16. Vibration Analysis and Time Series Prediction for Wind Turbine Gearbox Prognostics

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2013-01-01

    Full Text Available Premature failure of a gearbox in a wind turbine poses a high risk of increasing the operational and maintenance costs and decreasing the profit margins. Prognostics and health management (PHM techniques are widely used to access the current health condition of the gearbox and project it in future to predict premature failures. This paper proposes such techniques for predicting gearbox health condition index extracted from the vibration signals emanating from the gearbox. The progression of the monitoring index is predicted using two different prediction techniques, adaptive neuro-fuzzy inference system (ANFIS and nonlinear autoregressive model with exogenous inputs (NARX. The proposed prediction techniques are evaluated through sun-spot data-set and applied on vibration based health related monitoring index calculated through psychoacoustic phenomenon. A comparison is given for their prediction accuracy. The results are helpful in understanding the relationship of machine conditions, the corresponding indicating features, the level of damage/degradation, and their progression.

  17. Sound Radiation and Vibration of Composite Panels Excited by Turbulent Flow: Analytical Prediction and Analysis

    Directory of Open Access Journals (Sweden)

    Joana Rocha

    2014-01-01

    structures, in parts where aluminum panels were traditionally being used. An original mathematical framework is presented for the prediction of noise and vibration for composite panels. Results show the effect of panel size, thickness of core, and thickness of face layers on the predictions. Smaller composite panels generally produced lower levels of sound and vibration than longer and wider composite panels. Compared with isotropic panels, the composite panels analyzed generated lower noise levels, although it was observed that noise level was amplified at certain frequencies.

  18. Free vibration and dynamic response analysis of spinning structures

    Science.gov (United States)

    1986-01-01

    The proposed effort involved development of numerical procedures for efficient solution of free vibration problems of spinning structures. An eigenproblem solution procedure, based on a Lanczos method employing complex arithmetic, was successfully developed. This task involved formulation of the numerical procedure, FORTRAN coding of the algorithm, checking and debugging of software, and implementation of the routine in the STARS program. A graphics package for the E/S PS 300 as well as for the Tektronix terminals was successfully generated and consists of the following special capabilities: (1) a dynamic response plot for the stresses and displacements as functions of time; and (2) a menu driven command module enabling input of data on an interactive basis. Finally, the STARS analysis capability was further improved by implementing the dynamic response analysis package that provides information on nodal deformations and element stresses as a function of time. A number of test cases were run utilizing the currently developed algorithm implemented in the STARS program and such results indicate that the newly generated solution technique is significantly more efficient than other existing similar procedures.

  19. Visual stimulation facilitates penile responses to vibration in men with and without erectile disorder

    NARCIS (Netherlands)

    Janssen, E.; Everaerd, W.; van Lunsen, R. H.; Oerlemans, S.

    1994-01-01

    This study compared reflexogenic and psychogenic penile responses in men with and without erectile disorder. It was hypothesized that men with psychogenic erectile dysfunction respond minimally to vibrotactile stimulation. An enhancement of penile responses was expected when vibration was combined

  20. Predicting response to epigenetic therapy

    DEFF Research Database (Denmark)

    Treppendahl, Marianne B; Sommer Kristensen, Lasse; Grønbæk, Kirsten

    2014-01-01

    of good pretreatment predictors of response is of great value. Many clinical parameters and molecular targets have been tested in preclinical and clinical studies with varying results, leaving room for optimization. Here we provide an overview of markers that may predict the efficacy of FDA- and EMA...

  1. Phase influence of combined rotational and transverse vibrations on the structural response

    Science.gov (United States)

    Habtour, Ed; Sridharan, Raman; Dasgupta, Abhijit; Robeson, Mark; Vantadori, Sabrina

    2018-02-01

    The planar dynamic response of a cantilever metallic beam structure under combined harmonic base excitations (consisting of in-plane transverse and rotation about the out-of-plane transverse axis) was investigated experimentally. The important effect of the phase angle between the two simultaneous biaxial excitations on the beam tip displacement was demonstrated. The experiments were performed using a unique six degree-of-freedom (6-DoF) electrodynamic shaker with high control accuracy. The results showed that the beam tip displacement at the first flexural mode was amplified when the phase angle between the rotational and translational base excitations was increased. The beam nonlinear stiffness, on the other hand, simultaneously: (i) decreased due to fatigue damage accumulation, and (ii) increased due to an increase in the phase angle. The results were compared to the uniaxial excitation technique, where the principle of superposition was applied (mathematical addition of the structural response for each uniaxial excitation). The principle of superposition was shown to overestimate the structural response for low phase angles. Thus, the application of the superposition vibration testing as a substitute for multiaxial vibration testing may lead to over-conservatism and erroneous dynamic and reliability predictions.

  2. Neuromuscular response of the trunk to inertial based sudden perturbations following whole body vibration exposure.

    Science.gov (United States)

    MacIntyre, Danielle; Cort, Joel A

    2014-12-01

    The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  4. Prediction and mitigation analysis of ground vibration caused by running high-speed trains on rigid-frame viaducts

    Science.gov (United States)

    Sun, Liangming; Xie, Weiping; He, Xingwen; Hayashikawa, Toshiro

    2016-03-01

    In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The highspeed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.

  5. Regarding "A new method for predicting nonlinear structural vibrations induced by ground impact loading" [Journal of Sound and Vibration, 331/9 (2012) 2129-2140

    Science.gov (United States)

    Cartmell, Matthew P.

    2016-09-01

    The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.

  6. Effect of Vibration on Pain Response to Heel Lance: A Pilot Randomized Control Trial.

    Science.gov (United States)

    McGinnis, Kate; Murray, Eileen; Cherven, Brooke; McCracken, Courtney; Travers, Curtis

    2016-12-01

    Applied mechanical vibration in pediatric and adult populations has been shown to be an effective analgesic for acute and chronic pain, including needle pain. Studies among the neonatal population are lacking. According to the Gate Control Theory, it is expected that applied mechanical vibration will have a summative effect with standard nonpharmacologic pain control strategies, reducing behavioral and physiologic pain responses to heel lancing. To determine the safety and efficacy of mechanical vibration for relief of heel lance pain among neonates. In this parallel design randomized controlled trial, eligible enrolled term or term-corrected neonates (n = 56) in a level IV neonatal intensive care unit were randomized to receive either sucrose and swaddling or sucrose, swaddling, and vibration for heel lance analgesia. Vibration was applied using a handheld battery-powered vibrator (Norco MiniVibrator, Hz = 92) to the lateral aspect of the lower leg along the sural dermatome throughout the heel lance procedure. Neonatal Pain, Agitation, and Sedation Scale (N-PASS) scores, heart rate, and oxygen saturations were collected at defined intervals surrounding heel lancing. Infants in the vibration group (n = 30) had significantly lower N-PASS scores and more stable heart rates during heel stick (P = .006, P = .037) and 2 minutes after heel lance (P = .002, P = .016) than those in the nonvibration group. There were no adverse behavioral or physiologic responses to applied vibration in the sample. Applied mechanical vibration is a safe and effective method for managing heel lance pain. This pilot study suggests that mechanical vibration warrants further exploration as a nonpharmacologic pain management tool among the neonatal population.

  7. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  8. Response to Tendon Vibration Questions the Underlying Rationale of Proprioceptive Training.

    Science.gov (United States)

    Lubetzky, Anat Vilnai; McCoy, Sarah Westcott; Price, Robert; Kartin, Deborah

    2017-02-01

    Proprioceptive training on compliant surfaces is used to rehabilitate and prevent ankle sprains. The ability to improve proprioceptive function via such training has been questioned. Achilles tendon vibration is used in motor-control research as a form of proprioceptive stimulus. Using measures of postural steadiness with nonlinear measures to elucidate control mechanisms, tendon vibration can be applied to investigate the underlying rationale of proprioceptive training. To test whether the effect of vibration on young adults' postural control depended on the support surface. Descriptive laboratory study. Research laboratory. Thirty healthy adults and 10 adults with chronic ankle instability (CAI; age range = 18-40 years). With eyes open, participants stood in bilateral stance on a rigid plate (floor), memory foam, and a Both Sides Up (BOSU) ball covering a force platform. We applied bilateral Achilles tendon vibration for the middle 20 seconds in a series of 60-second trials and analyzed participants' responses from previbration to vibration (pre-vib) and from vibration to postvibration (vib-post). We calculated anterior-posterior excursion of the center of pressure and complexity index derived from the area under multiscale entropy curves. The excursion response to vibration differed by surface, as indicated by a significant interaction of P proprioceptive training may not be occurring. Different balance-training paradigms to target proprioception, including tendon vibration, should be explored.

  9. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  10. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration.

    Science.gov (United States)

    Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy

    2017-05-01

    Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and

  11. Influence of dynamic soil-structure interaction on building response to ground vibration

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2014-01-01

    must be used. In this regard it is often assumed that a no significant back coupling from the building to the ground exists. Thus, a model with free-field vibrations from the ground provides input at the base of the building model. The aim of the present paper is to examine whether—and to which extent......Vibration from traffic and pile driving are an increasing problem in densely populated areas. To assess vibration levels in new or existing buildings near construction sites, roads or railways in the design phase, valid models for prediction of wave transmission via the ground and into a building...

  12. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis

    KAUST Repository

    Zhang, Yue

    2015-01-01

    This paper investigates the wind-induced vibration of the CAARC standard tall building model, via unsteady Computational Fluid Dynamics (CFD) and a structural modal analysis. In this numerical procedure, the natural unsteady wind in the atmospheric boundary layer is modeled with an artificial inflow turbulence generation method. Then, the turbulent flow is simulated by the second mode of a Zonal Detached-Eddy Simulation, and a conservative quadrature-projection scheme is adopted to transfer unsteady loads from fluid to structural nodes. The aerodynamic damping that represents the fluid-structure interaction mechanism is determined by empirical functions extracted from wind tunnel experiments. Eventually, the flow solutions and the structural responses in terms of mean and root mean square quantities are compared with experimental measurements, over a wide range of reduced velocities. The significance of turbulent inflow conditions and aeroelastic effects is highlighted. The current methodology provides predictions of good accuracy and can be considered as a preliminary design tool to evaluate the unsteady wind effects on tall buildings.

  13. AN ENHANCED EQUATION FOR VIBRATION PREDICTION OF NEW TYPES OF SHIPS

    Directory of Open Access Journals (Sweden)

    Valer Cergol

    2015-09-01

    Full Text Available AA simplified approach developed to evaluate the vibration levels of complex structures such as passenger and similar ships with large shell and deck openings and extended superstructures is here presented. The final objective is to give an useful tool to ship designers, to establish since the first design stage the dynamic response of the ship with sufficient precision. This approach is based on the assumption that the ship hull can be represented as a non uniform section beam. The propeller excitations in terms of pressure pulses and shaft line moments and forces are introduced. To take into account this exciting source in the early design stage a statistical formula for dynamic excitation of propeller was developed. Furthermore the superimposition of local effects has been performed with the use of an analytical formula. The local effect due to the different space topologies such as cabins, public spaces, technical and machinery areas has been taken into account. The transversal beams, longitudinal girders, stiffeners and pillars as supported structural elements are considered in the vibration local response. The reliability of the results obtained using the formula has been improved with more precise results obtained by FEM analysis. The calculated vibration response has been verified and compared to vibration measurements performed on board of ships.

  14. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  15. An advanced tube wear and fatigue workstation to predict flow induced vibrations of steam generator tubes; Un outil de prediction de l`usure et de la fatigue des tubes de generateurs de vapeur soumis a des vibrations sous ecoulement

    Energy Technology Data Exchange (ETDEWEB)

    Gay, N. [Electricite de France (EDF), 78 - Chatou (France); Baratte, C. [Electricite de France (EDF), 69 - Villeurbanne (France); Flesch, B. [Electricite de France (EDF), 75 - Paris (France)

    1997-12-31

    Flow induced tube vibration damage is a major concern for designers and operators of nuclear power plant steam generators (SG). The operating flow-induced vibrational behaviour has to be estimated accurately to allow a precise evaluation of the new safety margins in order to optimize the maintenance policy. For this purpose, an industrial `Tube Wear and Fatigue Workstation`, called `GEVIBUS Workstation` and based on an advanced methodology for predictive analysis of flow-induced vibration of tube bundles subject to cross-flow has been developed at Electricite de France. The GEVIBUS Workstation is an interactive processor linking modules as: thermalhydraulic computation, parametric finite element builder, interface between finite element model, thermalhydraulic code and vibratory response computations, refining modelling of fluid-elastic and random forces, linear and non-linear dynamic response and the coupled fluid-structure system, evaluation of tube damage due to fatigue and wear, graphical outputs. Two practical applications are also presented in the paper; the first simulation refers to an experimental set-up consisting of a straight tube bundle subject to water cross-flow, while the second one deals with an industrial configuration which has been observed in some operating steam generators i.e., top tube support plate degradation. In the first case the GEVIBUS predictions in terms of tube displacement time histories and phase planes have been found in very good agreement with experiment. In the second application the GEVIBUS computation showed that a tube with localized degradation is much more stable than a tube located in an extended degradation zone. Important conclusions are also drawn concerning maintenance. (author). 28 refs.

  16. Vibration-Induced Motor Responses of Infants With and Without Myelomeningocele

    Science.gov (United States)

    Teulier, Caroline; Smith, Beth A.; Kim, Byungji; Beutler, Benjamin D.; Martin, Bernard J.; Ulrich, Beverly D.

    2012-01-01

    Background The severity of myelomeningocele (MMC) stems both from a loss of neurons due to neural tube defect and a loss of function in viable neurons due to reduced movement experience during the first year after birth. In young infants with MMC, the challenge is to reinforce excitability and voluntary control of all available neurons. Muscle vibration paired with voluntary movement may increase motoneuron excitability and contribute to improvements in neural organization, responsiveness, and control. Objectives This study examined whether infants with or without MMC respond to vibration by altering their step or stance behavior when supported upright on a treadmill. Design This was a cross-sectional study. Methods Twenty-four 2- to 10-month-old infants, 12 with typical development (TD) and 12 with MMC (lumbar and sacral lesions), were tested. Infants were supported upright with their feet in contact with a stationary or moving treadmill during 30-second trials. Rhythmic alternating vibrations were applied to the right and left rectus femoris muscles, the lateral gastrocnemius muscle, or the sole of the foot. Two cameras and behavior coding were used to determine step count, step type, and motor response to vibration onset. Results Step count decreased and swing duration increased in infants with TD during vibration of the sole of the foot on a moving treadmill (FT-M trials). Across all groups the percentage of single steps increased during vibration of the lateral gastrocnemius muscle on a moving treadmill. Infants with MMC and younger infants with TD responded to onset of vibration with leg straightening during rectus femoris muscle stimulation and by stepping during FT-M trials more often than older infants with TD. Conclusions Vibration seems a viable option for increasing motor responsiveness in infants with MMC. Follow-up studies are needed to identify optimal methods of administering vibration to maximize step and stance behavior in infants. PMID:22228610

  17. Finite element based model predictive control for active vibration suppression of a one-link flexible manipulator.

    Science.gov (United States)

    Dubay, Rickey; Hassan, Marwan; Li, Chunying; Charest, Meaghan

    2014-09-01

    This paper presents a unique approach for active vibration control of a one-link flexible manipulator. The method combines a finite element model of the manipulator and an advanced model predictive controller to suppress vibration at its tip. This hybrid methodology improves significantly over the standard application of a predictive controller for vibration control. The finite element model used in place of standard modelling in the control algorithm provides a more accurate prediction of dynamic behavior, resulting in enhanced control. Closed loop control experiments were performed using the flexible manipulator, instrumented with strain gauges and piezoelectric actuators. In all instances, experimental and simulation results demonstrate that the finite element based predictive controller provides improved active vibration suppression in comparison with using a standard predictive control strategy. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Predictions of Si-H/sub n/ stretching vibrations on atmospheric contamination of hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, E.

    1986-07-01

    Among the ir spectral changes occurring in a-Si:H exposed to ambient atmosphere is the change in magnitude of the Si-H/sub n/ stretching region. While this change is correlated with the extent of oxidation, no frequency shifts occur until the material is heavily oxidized. Inductive effects, previously used to correlate all known Si-H/sub n/ stretching vibrations in monomers and in a-Si:H, are used to predict the behavior of these vibrations on contamination with adjacent carbon- and oxygen-containing species. The predicted peaks all fall at the Si-H, Si-H/sub 2/ and Si-H/sub 3/ stretching frequencies except at high oxygen contents; there, the experimental red shifts are predicted. The relative lack of influence of carbon-containing species on these vibrations is shown to be due to its inductive effect, almost identical in sign and magnitude to that of the pristine silicon structure. 2 tabs., 39 refs.

  19. Contact area affects frequency-dependent responses to vibration in the peripheral vascular and sensorineural systems.

    Science.gov (United States)

    Krajnak, Kristine; Miller, G R; Waugh, Stacey

    2018-01-01

    Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.

  20. Prediction of absolute infrared intensities for the fundamental vibrations of H2O2

    Science.gov (United States)

    Rogers, J. D.; Hillman, J. J.

    1981-01-01

    Absolute infrared intensities are predicted for the vibrational bands of gas-phase H2O2 by the use of a hydrogen atomic polar tensor transferred from the hydroxyl hydrogen atom of CH3OH. These predicted intensities are compared with intensities predicted by the use of a hydrogen atomic polar tensor transferred from H2O. The predicted relative intensities agree well with published spectra of gas-phase H2O2, and the predicted absolute intensities are expected to be accurate to within at least a factor of two. Among the vibrational degrees of freedom, the antisymmetric O-H bending mode nu(6) is found to be the strongest with a calculated intensity of 60.5 km/mole. The torsional band, a consequence of hindered rotation, is found to be the most intense fundamental with a predicted intensity of 120 km/mole. These results are compared with the recent absolute intensity determinations for the nu(6) band.

  1. Chaotic Vibration Prediction of a Free-Floating Flexible Redundant Space Manipulator

    Directory of Open Access Journals (Sweden)

    Congqing Wang

    2016-01-01

    Full Text Available The dynamic model of a planar free-floating flexible redundant space manipulator with three joints is derived by the assumed modes method, Lagrange principle, and momentum conservation. According to minimal joint torque’s optimization (MJTO, the state equations of the dynamic model for the free-floating redundant space manipulator are described. The PD control using the tracking position error and velocity error in the manipulator is introduced. Then, the chaotic dynamic behavior of the manipulator is analyzed by chaotic numerical methods, in which time series, phase plane portrait, Poincaré map, and Lyapunov exponents are used to analyze the chaotic behavior of the manipulator. Under certain conditions for the joint torque optimization and initial values, chaotic vibration motion of the space manipulator can be observed. The chaotic time series prediction scheme for the space manipulator is presented based on the theory of phase space reconstruction under Takens’ embedding theorem. The trajectories of phase space can be reconstructed in embedding space, which are equivalent to the original space manipulator in dynamics. The one-step prediction model for the chaotic time series and the chaotic vibration was established by using support vector regression (SVR prediction model with RBF kernel function. It has been proved that the SVR prediction model has a good performance of prediction. The experimental results show the effectiveness of the presented method.

  2. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    Science.gov (United States)

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  3. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2013-11-01

    Full Text Available The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking into account sub-model parameters such as type of the train-railway system, typical geotechnical conditions of the ground and the sensitivity of the nearby buildings, the analysis is carried out over the entire system using the dynamic finite element method in the time domain. This subdivision of the model is a powerful tool that allows to consider different alternatives of sub-models with different characteristics, and thus to determine any critical excessive vibration impact. Based on semi-empirical analytical results obtained from presented models, the present work assesses and predicts characteristics of traffic-induced vibrations as a function of time duration, intensity and vehicle speed, as well as their influence on buildings at different levels.

  4. Response of a flexible filament in a flowing soap film subject to a forced vibration

    Science.gov (United States)

    Jia, Laibing; Xiao, Qing; Wu, Haijun; Wu, Yanfeng; Yin, Xiezhen

    2015-01-01

    The interactions between flexible plates and fluids are important physical phenomena. A flag in wind is one of the most simplified and classical models for studying the problem. In this paper, we investigated the response of a flag in flow with an externally forced vibration by using flexible filaments and soap film. Experiments show that for a filament that is either in oscillation or stationary, the external forced vibration leads to its oscillation. A synchronization phenomenon occurs in the experiments. A small perturbation leads to a large response of flapping amplitude in response. The insight provided here is helpful to the applications in the flow control, energy harvesting, and bionic propulsion areas.

  5. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  6. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear.

    Science.gov (United States)

    Peacock, John; Pintelon, Rik; Dirckx, Joris

    2015-10-01

    Using laser vibrometry and a stimulation and signal analysis method based on multisines, we have measured the response and the nonlinearities in the vibration of the rabbit middle ear at the level of the umbo and the stapes. With our method, we were able to detect and quantify nonlinearities starting at sound pressure levels of 93-dB SPL. The current results show that no significant additional nonlinearity is generated as the vibration signal is passed through the middle ear chain. Nonlinearities are most prominent in the lower frequencies (125 Hz to 1 kHz), where their level is about 40 dB below the vibration response. The level of nonlinearities rises with a factor of nearly 2 as a function of sound pressure level, indicating that they may become important at very high sound pressure levels such as those used in high-power hearing aids.

  7. Analysis of non-linear response of the human body to vertical whole-body vibration.

    Science.gov (United States)

    Tarabini, Marco; Solbiati, Stefano; Moschioni, Giovanni; Saggin, Bortolino; Scaccabarozzi, Diego

    2014-01-01

    The human response to vibration is typically studied using linear estimators of the frequency response function, although different literature works evidenced the presence of non-linear effects in whole-body vibration response. This paper analyses the apparent mass of standing subjects using the conditioned response techniques in order to understand the causes of the non-linear behaviour. The conditioned apparent masses were derived considering models of increasing complexity. The multiple coherence function was used as a figure of merit for the comparison between the linear and the non-linear models. The apparent mass of eight male subjects was studied in six configurations (combinations of three vibration magnitudes and two postures). The contribution of the non-linear terms was negligible and was endorsed to the change of modal parameters during the test. Since the effect of the inter-subject variability was larger than that due to the increase in vibration magnitude, the biodynamic response should be more meaningfully modelled using a linear estimator with uncertainty rather than looking for a non-linear modelling.

  8. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)

    2017-04-15

    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  9. Prediction of the Vibroacoustic Response of the Equipment Mounted on the Infrared Space Telescope "SPICA"

    Science.gov (United States)

    Akagi, Hiroki; Ando, Shigemasa; Shi, Qinzhong; Yamawaki, Toshiko

    2014-06-01

    The infrared space telescope "SPICA" (Space Infrared Telescope for Cosmology and Astrophysics) is a structurally-complex spacecraft, which requires the less conservative prediction of the random vibration at interface in order to reduce the over-margin issue for designing the strength on critical structure of optical instrument in the early stage of development, and to relieve the risk of overweight designing. This paper proposes Combination of FEA and SEA Methods to predict the vibroacoustic response of the equipment mounted on SPICA, and less conservative specification of the random vibration environments. Furthermore, a method of force-limiting to notch the specification over a certain frequency range during designing and a random vibration test is shown. Force-limiting specification is calculated using a simplified approach by multiplying the article's apparent mass to the equivalent of vibroacoustic response at interface.

  10. Human annoyance, acceptability and concern as responses to vibration from the construction of Light Rapid Transit lines in residential environments

    Energy Technology Data Exchange (ETDEWEB)

    Wong-McSweeney, D., E-mail: D.B.C.WongMcSweeney@salford.ac.uk [Acoustics Research Centre, University of Salford, Salford M5 4TW (United Kingdom); Woodcock, J.S.; Peris, E.; Waddington, D.C.; Moorhouse, A.T. [Acoustics Research Centre, University of Salford, Salford M5 4TW (United Kingdom); Redel-Macías, M.D. [Dep. Rural Engineering Campus de Rabanales, University of Córdoba, Córdoba (Spain)

    2016-10-15

    The aim of this paper is to investigate the use of different self-reported measures for assessing the human response to environmental vibration from the construction of an urban LRT (Light Rapid Transit) system. The human response to environmental stressors such as vibration and noise is often expressed in terms of exposure–response relationships that describe annoyance as a function of the magnitude of the vibration. These relationships are often the basis of noise and vibration policy and the setting of limit values. This paper examines measures other than annoyance by expressing exposure–response relationships for vibration in terms of self-reported concern about property damage and acceptability. The exposure–response relationships for concern about property damage and for acceptability are then compared with those for annoyance. It is shown that concern about property damage occurs at vibration levels well below those where there is any risk of damage. Earlier research indicated that concern for damage is an important moderator of the annoyance induced. Acceptability, on the other hand, might be influenced by both annoyance and concern, as well as by other considerations. It is concluded that exposure–response relationships expressing acceptability as a function of vibration exposure could usefully complement existing relationships for annoyance in future policy decisions regarding environmental vibration. The results presented in this paper are derived from data collected through a socio-vibration survey (N = 321) conducted for the construction of an urban LRT in the United Kingdom. - Highlights: • The human response to construction vibration is assessed in residential environments. • Exposure–response relationships are generated based on survey and semi-empirical vibration estimation. • Annoyance, concern and acceptability are compared as response measures. • Concern and acceptability are viable measures complementing annoyance.

  11. CargoVibes: human response to vibration due to freight rail traffic

    NARCIS (Netherlands)

    Waddington, D.; Woodcock, J.; Smith, M.G.; Janssen, S.A.; Persson Waye, K.

    2015-01-01

    The aim of this paper is to present an overview of the research concerning human response to vibration conducted in the EU FP7 CargoVibes project. The European Union-funded project CargoVibes involved 10 partners from 8 nations and ran from April 2011 to April 2014. The project was concerned with

  12. DETERMINING THE RESPONSE IN CASE OF VIBRATIONS OF STRAIGHT BARS WITH RANDOM EXCITATIONS

    Directory of Open Access Journals (Sweden)

    Monica BALDEA

    2012-05-01

    Full Text Available By applying the finite element calculus to the study of bar vibrations, one obtains a system of linear diferential equations. One carries out the determination of the response to random stimulations by calculating the statistical terms as a function of the statistical terms of the stimulation

  13. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  14. An Analytical Solution for Predicting the Vibration-Fatigue-Life in Bimodal Random Processes

    Directory of Open Access Journals (Sweden)

    Chaoshuai Han

    2017-01-01

    Full Text Available Predicting the vibration-fatigue-life of engineering structures subjected to random loading is a critical issue for. Frequency methods are generally adopted to deal with this problem. This paper focuses on bimodal spectra methods, including Jiao-Moan method, Fu-Cebon method, and Modified Fu-Cebon method. It has been proven that these three methods can give acceptable fatigue damage results. However, these three bimodal methods do not have analytical solutions. Jiao-Moan method uses an approximate solution, Fu-Cebon method, and Modified Fu-Cebon method needed to be calculated by numerical integration which is obviously not convenient in engineering application. Thus, an analytical solution for predicting the vibration-fatigue-life in bimodal spectra is developed. The accuracy of the analytical solution is compared with numerical integration. The results show that a very good agreement between an analytical solution and numerical integration can be obtained. Finally, case study in offshore structures is conducted and a bandwidth correction factor is computed through using the proposed analytical solution.

  15. Vertical footbridge vibrations: Towards an improved and codifiable response evaluation

    DEFF Research Database (Denmark)

    Ingólfsson, Einar Thór; Georgakis, Christos; Jönsson, Jeppe

    2007-01-01

    An improved and codifiable footbridge response evaluation is presented herewith, in which peak vertical accelerations are provided as a function of load return period in the form of response spectra. To achieve this, a series of Monte Carlo simulations are employed to generate vertical loads indu...

  16. Stochastic Response of Energy Balanced Model for Vortex-Induced Vibration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Krenk, S.

    of lightly damped structures are found on two branches, with the highest amplification branch on the low-frequency branch. The effect free wind turbulence is to destabilize the vibrations on the high amplification branch, thereby reducing the oscillation amplitude. The effect is most pronounced for very......A double oscillator model for vortex-induced oscillations of structural elements based on exact power exchange between fluid and structure, recently proposed by authors, is extended to include the effect of the turbulent component of the wind. In non-turbulent flow vortex-induced vibrations...... lightly damped structures. The character of the structural vibrations changes with increasing turbulence and damping from nearly regular harmonic oscillation to typical narrow-banded stochastic response, closely resembling observed behaviour in experiments and full-scale structures....

  17. Different fatigue-resistant leg muscles and EMG response during whole-body vibration.

    Science.gov (United States)

    Simsek, Deniz

    2017-12-01

    The purpose of this study was to determine the effects of static whole-body vibration (WBV) on the Electromyograhic (EMG) responses of leg muscles, which are fatigue-resistant in different manner. The study population was divided into two groups according to the values obtained by the Fatigue Index [Group I: Less Fatigue Resistant (LFR), n=11; Group II: More Fatigue Resistant (MFR), n=11]. The repeated electromyographic (EMG) activities of four leg muscles were analyzed the following determinants: (1) frequency (30 Hz, 35 Hz and 40 Hz); (2) stance position (static squat position); (3) amplitude (2 mm and 4 mm) and (4) knee flexion angle (120°), (5) vertical vibration platform. Vibration data were analyzed using Minitab 16 (Minitab Ltd, State College, PA, USA). The significance level was set at pfatigue (pvibration exercise and can serve to guide the development of training programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Measurement of flexoelectric response in polyvinylidene fluoride films for piezoelectric vibration energy harvesters

    Science.gov (United States)

    Choi, Seung-Bok; Kim, Gi-Woo

    2017-02-01

    This study presents an investigation on the measurement of flexoelectric response in β-phase polyvinylidene fluoride (PVDF) films attached on cantilever beam-based flexible piezoelectric vibration energy harvesters (PVEHs). The flexoelectric response associated with negative strain gradients was simulated through harmonic response analysis by using the finite element method (FEM). The polarization frequency response functions (FRFs) modified by direct flexoelectric effect of PVDF films was experimentally validated by multi-mode FRFs. From quantitative comparisons between experimental observations and simulated estimation of FRFs, it is demonstrated that the direct flexoelectric response can be observed in PVDF films attached on PVEHs.

  19. Predicting responses from Rasch measures.

    Science.gov (United States)

    Linacre, John M

    2010-01-01

    There is a growing family of Rasch models for polytomous observations. Selecting a suitable model for an existing dataset, estimating its parameters and evaluating its fit is now routine. Problems arise when the model parameters are to be estimated from the current data, but used to predict future data. In particular, ambiguities in the nature of the current data, or overfit of the model to the current dataset, may mean that better fit to the current data may lead to worse fit to future data. The predictive power of several Rasch and Rasch-related models are discussed in the context of the Netflix Prize. Rasch-related models are proposed based on Singular Value Decomposition (SVD) and Boltzmann Machines.

  20. Prediction and measurements of vibrations from a railway track lying on a peaty ground

    Science.gov (United States)

    Picoux, B.; Rotinat, R.; Regoin, J. P.; Le Houédec, D.

    2003-10-01

    This paper introduces a two-dimensional model for the response of the ground surface due to vibrations generated by a railway traffic. A semi-analytical wave propagation model is introduced which is subjected to a set of harmonic moving loads and based on a calculation method of the dynamic stiffness matrix of the ground. In order to model a complete railway system, the effect of a simple track model is taken into account including rails, sleepers and ballast especially designed for the study of low vibration frequencies. The priority has been given to a simple formulation based on the principle of spatial Fourier transforms compatible with good numerical efficiency and yet providing quick solutions. In addition, in situ measurements for a soft soil near a railway track were carried out and will be used to validate the numerical implementation. The numerical and experimental results constitute a significant body of useful data to, on the one hand, characterize the response of the environment of tracks and, on the other hand, appreciate the importance of the speed and weight on the behaviour of the structure.

  1. An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters

    Science.gov (United States)

    Harne, R. L.; Zhang, Chunlin; Li, Bing; Wang, K. W.

    2016-07-01

    Impulsive energies are abundant throughout the natural and built environments, for instance as stimulated by wind gusts, foot-steps, or vehicle-road interactions. In the interest of maximizing the sustainability of society's technological developments, one idea is to capture these high-amplitude and abrupt energies and convert them into usable electrical power such as for sensors which otherwise rely on less sustainable power supplies. In this spirit, the considerable sensitivity to impulse-type events previously uncovered for bistable oscillators has motivated recent experimental and numerical studies on the power generation performance of bistable vibration energy harvesters. To lead to an effective and efficient predictive tool and design guide, this research develops a new analytical approach to estimate the electroelastic response and power generation of a bistable energy harvester when excited by an impulse. Comparison with values determined by direct simulation of the governing equations shows that the analytically predicted net converted energies are very accurate for a wide range of impulse strengths. Extensive experimental investigations are undertaken to validate the analytical approach and it is seen that the predicted estimates of the impulsive energy conversion are in excellent agreement with the measurements, and the detailed structural dynamics are correctly reproduced. As a result, the analytical approach represents a significant leap forward in the understanding of how to effectively leverage bistable structures as energy harvesting devices and introduces new means to elucidate the transient and far-from-equilibrium dynamics of nonlinear systems more generally.

  2. Empirical improvements for estimating earthquake response spectra with random‐vibration theory

    Science.gov (United States)

    Boore, David; Thompson, Eric M.

    2012-01-01

    The stochastic method of ground‐motion simulation is often used in combination with the random‐vibration theory to directly compute ground‐motion intensity measures, thereby bypassing the more computationally intensive time‐domain simulations. Key to the application of random‐vibration theory to simulate response spectra is determining the duration (Drms) used in computing the root‐mean‐square oscillator response. Boore and Joyner (1984) originally proposed an equation for Drms , which was improved upon by Liu and Pezeshk (1999). Though these equations are both substantial improvements over using the duration of the ground‐motion excitation for Drms , we document systematic differences between the ground‐motion intensity measures derived from the random‐vibration and time‐domain methods for both of these Drms equations. These differences are generally less than 10% for most magnitudes, distances, and periods of engineering interest. Given the systematic nature of the differences, however, we feel that improved equations are warranted. We empirically derive new equations from time‐domain simulations for eastern and western North America seismological models. The new equations improve the random‐vibration simulations over a wide range of magnitudes, distances, and oscillator periods.

  3. An Efficient Approach for Determining Forced Vibration Response Amplitudes of a MDOF System with Various Attachments

    Directory of Open Access Journals (Sweden)

    J.S. Wu

    2012-01-01

    of the same vibrating system are calculated by using a relationship between |Y(x|t and |Y(x|s obtained from the single-degree-of-freedom (SDOF vibrating system. It is noted that, near resonance (i.e., we/w≈ 1.0, the entire MDOF system (with natural frequency w will vibrate synchronously in a certain mode and can be modeled by a SDOF system. Finally, the conventional finite element method (FEM incorporated with the Newmark's direct integration method is also used to determine the "total" response amplitudes |Y(x|t of the same forced vibrating system from the time histories of dynamic responses at each specified exciting frequency we. It has been found that the numerical results of the presented approach are in good agreement with those of FEM, this confirms the reliability of the presented theory. Because the CPU time required by the presented approach is less than 1% of that required by the conventional FEM, the presented approach should be an efficient technique for the title problem.

  4. State Space Formulation of Nonlinear Vibration Responses Collected from a Dynamic Rotor-Bearing System: An Extension of Bearing Diagnostics to Bearing Prognostics

    Directory of Open Access Journals (Sweden)

    Peter W. Tse

    2017-02-01

    Full Text Available Bearings are widely used in various industries to support rotating shafts. Their failures accelerate failures of other adjacent components and may cause unexpected machine breakdowns. In recent years, nonlinear vibration responses collected from a dynamic rotor-bearing system have been widely analyzed for bearing diagnostics. Numerous methods have been proposed to identify different bearing faults. However, these methods are unable to predict the future health conditions of bearings. To extend bearing diagnostics to bearing prognostics, this paper reports the design of a state space formulation of nonlinear vibration responses collected from a dynamic rotor-bearing system in order to intelligently predict bearing remaining useful life (RUL. Firstly, analyses of nonlinear vibration responses were conducted to construct a bearing health indicator (BHI so as to assess the current bearing health condition. Secondly, a state space model of the BHI was developed to mathematically track the health evolution of the BHI. Thirdly, unscented particle filtering was used to predict bearing RUL. Lastly, a new bearing acceleration life testing setup was designed to collect natural bearing degradation data, which were used to validate the effectiveness of the proposed bearing prognostic method. Results show that the prediction accuracy of the proposed bearing prognostic method is promising and the proposed bearing prognostic method is able to reflect future bearing health conditions.

  5. Circus, software for computation of flow induced vibrations in piping system. General purpose; Code circus, logiciel pour la prediction des vibrations sous ecoulement. Une presentation generale

    Energy Technology Data Exchange (ETDEWEB)

    Seligmann, D.

    1996-11-01

    This paper is a presentation of the code CIRCUS version 2. CIRCUS deals with the hydraulic, acoustic and vibratory behaviour of piping systems under acoustic loads. CIRCUS first computes permanent mean-flow, and associated acoustic loads. It then determines the acoustic and vibration response along the piping system. The CIRCUS software is used at EDF to check the design of piping system and to investigate solutions in case of damage or troubleshooting. (author). 10 refs.

  6. The effect of surface wave propagation on neural responses to vibration in primate glabrous skin.

    Directory of Open Access Journals (Sweden)

    Louise R Manfredi

    Full Text Available Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.

  7. Response of the Cardiovascular System to Vibration and Combined Stresses

    Science.gov (United States)

    1981-11-01

    characteristics are obtained from the analysis of pressure, flow and heart volume responses to low freuency, siuoia aceleaio (0.owing- 0.5pa+ 2jz ...APPENDIX A RESEARCH TEAM Investigators C. F. Knapp, Ph.D. Department of Mechanical Engineering , Wenner-Gren Biomedical Engineering Laboratory D. Randall...Ph.D. Department of Physiology and Biophysics J. Evans, M.S. Wenner-Gren Biomedical Engineering Laboratory B. Kelley, Ph.D. Department of Mechanical

  8. Prediction des vibrations eoliennes d'un systeme conducteur-amortisseur avec une methode temporelle non lineaire

    Science.gov (United States)

    Langlois, Sebastien

    Les vibrations eoliennes sont la cause principale de bris de conducteurs en fatigue des lignes aeriennes de transport d'energie electrique. Ces vibrations sont dues a des detachements tourbillonnaires produits dans le sillage du conducteur. Une methode commune de reduction des vibrations est l'ajout d'amortisseurs de vibrations pres des pinces de suspension. Contrairement aux essais en ligne experimentale, la modelisation numerique permet d'evaluer rapidement et a faible cout la performance d'un amortisseur de vibration sur une portee de ligne aerienne. La technologie la plus frequemment utilisee fait appel au principe de balance d'energie (PBE) en evaluant le niveau de vibrations pour lequel la puissance injectee par le vent est egale a la puissance dissipee par le conducteur et l'amortisseur. Les methodes actuelles pour la prediction des vibrations reposent sur des hypotheses simplificatrices quant a la modelisation de l'interaction conducteur-amortisseur. Une approche prometteuse pour la prediction des vibrations est l'utilisation d'un modele numerique temporel non lineaire qui permet de mieux representer la masse, la geometrie, la rigidite et l'amortissement du systeme. L'objectif principal de ce projet de recherche est de developper un modele numerique avec integration temporelle directe d'un conducteur et d'un amortisseur en vibration permettant de reproduire le comportement dynamique du systeme pour la gamme de frequence et d'amplitude typique des vibrations eoliennes des conducteurs. Un modele par elements finis d'un conducteur seul en vibration resolu par integration temporelle directe a d'abord ete developpe en considerant une rigidite de flexion variable. Comme une rigidite de flexion constante et egale a 50% de la rigidite de flexion maximale theorique ( EImax) est jugee adequate pour la modelisation du conducteur, c'est cette valeur qui a ete utilisee pour la suite du projet. Ensuite, des modeles non-lineaires pour deux types d'amortisseur de

  9. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Directory of Open Access Journals (Sweden)

    Elie-Jacques Fares

    Full Text Available There is increasing recognition about the importance of enhancing energy expenditure (EE for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS. Whole-body vibration (WBV increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF and EE, nor if WBV influences respiratory quotient (RQ, and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz.EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz. Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest, separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest at 40 Hz, separated by 5 min seated rest.Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001. However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration.No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS.

  10. Tendon vibration attenuates superficial venous vessel response of the resting limb during static arm exercise

    Directory of Open Access Journals (Sweden)

    Ooue Anna

    2012-11-01

    Full Text Available Abstract Background The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Methods Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB and without (EX vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE in overall and exercising muscle were measured. The cross-sectional area (CSAvein and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein was calculated using both variables. Results Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P P vein in the resting limb at EX decreased during exercise from baseline (P vein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P vein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Conclusion Diminished central command induced by tendon

  11. Application of Concrete Segment Panels for Reduction of Torsional Vibration Responses of Girder Bridges

    Directory of Open Access Journals (Sweden)

    Kwark Jong-Won

    2015-01-01

    Full Text Available The dynamic flexural behaviour of railway bridges is influenced by the torsional behaviour, and the flexural response tends to be amplified as the flexural natural frequency (the 1st vibrational mode and torsional frequency (the 2nd vibrational mode are adjoining. To avoid this phenomenon, the installation of concrete segment panels was considered for the reinforcement of torsional stiffness by connecting bottom flanges between girders. This alternative can increase the torsional stiffness by providing the restraint in torsional vibration and reduce the influence of torsional behaviour on the amplification of flexural responses. This study investigates the effect of the concrete segment panels on the control of torsional dynamic responses and on the increment of torsional frequency. The excitation tests on a full-size bridge specimen with 30 m span length were conducted with respect to the installation length of concrete panels up to 7 m from each ends. The results show that the installation of concrete segment panel augments the torsional frequency up to 22 % while the flexural frequency keeps its original value. It is concluded that the dynamic behaviour of girder bridges can be controlled by the adjustment of installation length of concrete panels, thereby reducing the torsional responses.

  12. Vibration responses of the organ of Corti and the tectorial membrane to electrical stimulation.

    Science.gov (United States)

    Nowotny, Manuela; Gummer, Anthony W

    2011-12-01

    Coupling of somatic electromechanical force from the outer hair cells (OHCs) into the organ of Corti is investigated by measuring transverse vibration patterns of the organ of Cori and tectorial membrane (TM) in response to intracochlear electrical stimulation. Measurement places at the organ of Corti extend from the inner sulcus cells to Hensen's cells and at the lower (and upper) surface of the TM from the inner sulcus to the OHC region. These locations are in the neighborhood of where electromechanical force is coupled into (1) the mechanoelectrical transducers of the stereocilia and (2) fluids of the organ of Corti. Experiments are conducted in the first, second, and third cochlear turns of an in vitro preparation of the adult guinea pig cochlea. Vibration measurements are made at functionally relevant stimulus frequencies (0.48-68 kHz) and response amplitudes (sound processing in the cochlea are discussed based on these phase relationships. © 2011 Acoustical Society of America

  13. Tendon vibration attenuates superficial venous vessel response of the resting limb during static arm exercise.

    Science.gov (United States)

    Ooue, Anna; Sato, Kohei; Hirasawa, Ai; Sadamoto, Tomoko

    2012-11-07

    The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.

  14. Application of vibration response technique for the firmness evaluation of pear fruit during storage

    OpenAIRE

    Oveisi, Z.; Minaei, S.; Rafiee , S; Eyvani, A.; Borghei, A.

    2012-01-01

    Storage conditions of pear affect its subsequent softening process and shelf life. Measurements of firmness have traditionally been carried out according to the Magness Taylor (MT) procedure; using a texture analyzer or penetrometer in reference texture tests. In this study, a non-destructive method using Laser Doppler vibrometer (LDV) technology was used to estimate texture firmness of pears. This technique was employed to detect responses to imposed vibration of intact fruit using a shaker....

  15. Prediction of treatment response to adalimumab

    DEFF Research Database (Denmark)

    Krintel, S. B.; Dehlendorff, C.; Hetland, M. L.

    2016-01-01

    At least 30% of patients with rheumatoid arthritis (RA) do not respond to biologic agents, which emphasizes the need of predictive biomarkers. We aimed to identify microRNAs (miRNAs) predictive of response to adalimumab in 180 treatment-naïve RA patients enrolled in the OPtimized treatment algori...... of low expression of miR-22 and high expression of miR-886.3p was associated with EULAR good response. Future studies to assess the utility of these miRNAs as predictive biomarkers are needed.The Pharmacogenomics Journal advance online publication, 5 May 2015; doi:10.1038/tpj.2015.30....

  16. Vibration and acoustic response of an orthotropic composite laminated plate in a hygroscopic environment.

    Science.gov (United States)

    Zhao, Xin; Geng, Qian; Li, Yueming

    2013-03-01

    This paper is a study of the vibration and acoustic response characteristics of orthotropic laminated composite plate with simple supported boundary conditions excited by a harmonic concentrated force in a hygroscopic environment. First the natural vibration of the plate with the in-plane forces induced by hygroscopic stress is obtained analytically. Secondly, the sound pressure distribution of the plate at the far field is obtained using the Rayleigh integral. Furthermore, the sound radiation efficiency is deduced. Third, different ratios of elastic modulus in material principal directions are set to research the effects of increasing stiffness of the orthotropic plate on the vibration and acoustic radiation characteristics. Finally, to verify the theoretical solution, numerical simulations are also carried out with commercial finite software. It is found that the natural frequencies decrease with the increase of the moisture content and the first two order modes interconvert at high moisture content. The dynamic response and sound pressure level float to lower frequencies with elevated moisture content. Acoustic radiation efficiency generally floats to the low frequencies and decreases with an increase of moisture content. The dynamic and acoustic responses reduce and the coincidence frequency decreases with the enhanced stiffness.

  17. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design

    Science.gov (United States)

    Harrison, Phil; LaVerde, Bruce; Teague, David

    2009-01-01

    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  18. Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

    Directory of Open Access Journals (Sweden)

    Ateeb Ahmad Khan

    Full Text Available Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has been chosen. Modified rule of mixture (MROM is used to calculate the young's modulus and rule of mixture (ROM is used to calculate density and poisson's ratio of FGM beam at any point. The MATLAB code based on 1D FE zigzag theory for FGM elastic beams is developed. A 2D FE model for the same elastic FGM beam has been developed using ABAQUS software. An 8-node biquadratic plane stress quadrilateral type element is used for modeling in ABAQUS. Three different end conditions namely simply-supported, cantilever and clamped- clamped are considered. The deflection, normal stress and shear stress has been reported for various models used. Eigen Value problem using subspace iteration method is solved to obtain un-damped natural frequencies and the corresponding mode shapes. The results predicted by the 1D FE model have been compared with the 2D FE results and the results present in open literature. This proves the correctness of the model. Finally, mode shapes have also been plotted for various FGM systems.

  19. Cardiopulmonary response during whole-body vibration training in patients with severe COPD

    Directory of Open Access Journals (Sweden)

    Rainer Gloeckl

    2017-03-01

    Full Text Available Several studies in patients with chronic obstructive pulmonary disease (COPD have shown that whole-body vibration training (WBVT has beneficial effects on exercise capacity. However, the acute cardiopulmonary demand during WBVT remains unknown and was therefore investigated in this study. Ten patients with severe COPD (forced expiratory volume in 1 s: 38±8% predicted were examined on two consecutive days. On day one, symptom-limited cardiopulmonary exercise testing was performed on a cycle ergometer. The next day, six bouts of repeated squat exercises were performed in random order for one, two or three minutes either with or without WBVT while metabolic demands were simultaneously measured. Squat exercises with or without WBVT induced comparable ventilatory efficiency (minute ventilation (VE/carbon dioxide production (V′CO2: 38.0±4.4 with WBVT versus 37.4±4.1 without, p=0.236. Oxygen uptake after 3 min of squat exercises increased from 339±40 mL·min−1 to 1060±160 mL·min−1 with WBVT and 988±124 mL min−1 without WBV (p=0.093. However, there were no significant differences between squat exercises with and without WBVT in oxygen saturation (90±4% versus 90±4%, p=0.068, heart rate (109±13 bpm versus 110±15 bpm, p=0.513 or dyspnoea (Borg scale 5±2 versus 5±2, p=0.279. Combining squat exercises with WBVT induced a similar cardiopulmonary response in patients with severe COPD compared to squat exercises without WBVT. Bearing in mind the small sample size, WBVT might be a feasible and safe exercise modality even in patients with severe COPD.

  20. Hormonal and neuromuscular responses to mechanical vibration applied to upper extremity muscles.

    Directory of Open Access Journals (Sweden)

    Riccardo Di Giminiani

    Full Text Available OBJECTIVE: To investigate the acute residual hormonal and neuromuscular responses exhibited following a single session of mechanical vibration applied to the upper extremities among different acceleration loads. METHODS: Thirty male students were randomly assigned to a high vibration group (HVG, a low vibration group (LVG, or a control group (CG. A randomized double-blind, controlled-parallel study design was employed. The measurements and interventions were performed at the Laboratory of Biomechanics of the University of L'Aquila. The HVG and LVG participants were exposed to a series of 20 trials ×10 s of synchronous whole-body vibration (WBV with a 10-s pause between each trial and a 4-min pause after the first 10 trials. The CG participants assumed an isometric push-up position without WBV. The outcome measures were growth hormone (GH, testosterone, maximal voluntary isometric contraction during bench-press, maximal voluntary isometric contraction during handgrip, and electromyography root-mean-square (EMGrms muscle activity (pectoralis major [PM], triceps brachii [TB], anterior deltoid [DE], and flexor carpi radialis [FCR]. RESULTS: The GH increased significantly over time only in the HVG (P = 0.003. Additionally, the testosterone levels changed significantly over time in the LVG (P = 0.011 and the HVG (P = 0.001. MVC during bench press decreased significantly in the LVG (P = 0.001 and the HVG (P = 0.002. In the HVG, the EMGrms decreased significantly in the TB (P = 0.006 muscle. In the LVG, the EMGrms decreased significantly in the DE (P = 0.009 and FCR (P = 0.006 muscles. CONCLUSION: Synchronous WBV acutely increased GH and testosterone serum concentrations and decreased the MVC and their respective maximal EMGrms activities, which indicated a possible central fatigue effect. Interestingly, only the GH response was dependent on the acceleration with respect to the subjects' responsiveness.

  1. Energy Expenditure and Substrate Oxidation in Response to Side-Alternating Whole Body Vibration across Three Commonly-Used Vibration Frequencies.

    Science.gov (United States)

    Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G; Miles-Chan, Jennifer L

    2016-01-01

    There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, pvibration. No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS).

  2. Prediction of high-frequency vibration transmission across coupled, periodic ribbed plates by incorporating tunneling mechanisms.

    Science.gov (United States)

    Yin, Jianfei; Hopkins, Carl

    2013-04-01

    Prediction of structure-borne sound transmission on built-up structures at audio frequencies is well-suited to Statistical Energy Analysis (SEA) although the inclusion of periodic ribbed plates presents challenges. This paper considers an approach using Advanced SEA (ASEA) that can incorporate tunneling mechanisms within a statistical approach. The coupled plates used for the investigation form an L-junction comprising a periodic ribbed plate with symmetric ribs and an isotropic homogeneous plate. Experimental SEA (ESEA) is carried out with input data from Finite Element Methods (FEM). This indicates that indirect coupling is significant at high frequencies where bays on the periodic ribbed plate can be treated as individual subsystems. SEA using coupling loss factors from wave theory leads to significant underestimates in the energy of the bays when the isotropic homogeneous plate is excited. This is due to the absence of tunneling mechanisms in the SEA model. In contrast, ASEA shows close agreement with FEM and laboratory measurements. The errors incurred with SEA rapidly increase as the bays become more distant from the source subsystem. ASEA provides significantly more accurate predictions by accounting for the spatial filtering that leads to non-diffuse vibration fields on these more distant bays.

  3. Elastic response of the atomic nucleus in gauge space: Giant Pairing Vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Bortignon, P.F. [University of Milan, Department of Physics, Milan (Italy); INFN Sez. di Milano, Milan (Italy); Broglia, R.A. [University of Milan, Department of Physics, Milan (Italy); University of Copenhagen, The Niels Bohr Institute, Copenhagen (Denmark)

    2016-09-15

    Due to quantal fluctuations, the ground state of a closed shell system A{sub 0} can become virtually excited in a state made out of the ground state of the neighbour nucleus vertical stroke gs(A{sub 0}+2) right angle (vertical stroke gs(A{sub 0}-2) right angle) and of two uncorrelated holes (particles) below (above) the Fermi surface. These J{sup π} = 0{sup +} pairing vibrational states have been extensively studied with two-nucleon transfer reactions. Away from closed shells, these modes eventually condense, leading to nuclear superfluidity and thus to pairing rotational bands with excitation energies much smaller than ℎω{sub 0}, the energy separation between major shells. Pairing vibrations are the plastic response of the nucleus in gauge space, in a similar way in which low-lying quadrupole vibrations, i.e. surface vibrations with energies much smaller than ℎω{sub 0} whose eventual condensation leads to quadrupole deformed nuclei, provide an example of the plastic nuclear response in 3D space. While much is known, in particular concerning its damping, regarding the counterpart of quadrupole plastic modes, i.e. regarding the giant quadrupole resonances (GQR), J{sup π} = 2{sup +} elastic response of the nucleus with energies of the order of ℎω{sub 0}, little is known regarding this subject concerning pairing modes (giant pairing vibrations, GPV). Consequently, the recently reported observation of L = 0 resonances, populated in the reactions {sup 12}C({sup 18}O,{sup 16}O){sup 14}C and {sup 13}C({sup 18}O,{sup 16}O){sup 15}C and lying at an excitation energy of the order of ℎω{sub 0}, likely constitutes the starting point of a new field of research, that of the study of the elastic response of nuclei in gauge space. Not only that, but also the fact that the GPV have likely been serendipitously observed in these light nuclei when it has failed to show up in more propitious nuclei like Pb, provides unexpected and fundamental insight into the relation

  4. Modeling “unilateral” response in the cross-ties of a cable network: Deterministic vibration

    Science.gov (United States)

    Giaccu, Gian Felice; Caracoglia, Luca; Barbiellini, Bernardo

    2014-09-01

    Cross-ties are employed as passive devices for the mitigation of stay-cable vibrations, exhibited on cable-stayed bridges under wind and wind-rain excitation. Large-amplitude oscillation can result in damage to the cables or perceived discomfort to bridge users. The “cable-cross-ties system” derived by connecting two or more stays by transverse cross-ties is often referred to as an “in-plane cable network”. Linear modeling of network dynamics has been available for some time. This framework, however, cannot be used to detect incipient failure in the restrainers due to slackening or snapping. A new model is proposed in this paper to analyze the effects of a complete loss in the pre-tensioning force imparted to the cross-ties, which leads to the “unilateral” free-vibration response of the network (i.e., a cross-tie with linear-elastic internal force in tension and partially inactive in compression). Deterministic free vibrations of a three-cable network are investigated by using the “equivalent linearization method”. A performance coefficient is introduced to monitor the relative reduction in the average (apparent) stiffness of the connector during free vibration response (“mode by mode”), exhibiting unilateral behavior. A reduction of fifty percent in the apparent stiffness was observed in the cross-tie when the pre-tensioning force is small in comparison with the tension force in the stay. This coefficient may be used as a damage indicator for the selection of the initial pre-tensioning force in the cross-ties needed to avoid slackening.

  5. Maximum mistuning amplification of the forced response vibration of turbomachinery rotors in the presence of aerodynamic damping

    Science.gov (United States)

    Martel, Carlos; Sánchez-Álvarez, J. J.

    2017-06-01

    Mistuning can dangerously increase the vibration amplitude of the forced response of a turbomachinery rotor. In the case of damping coming from aerodynamic effects the situation is more complicated because the magnitude of the damping changes for the different travelling wave modes of the system. This damping variability modifies the effect of mistuning, and it can even result in a reduction of the mistuned forced response amplitude below that of the tuned case (this is not possible in the usual case of constant material damping). In this paper the Asymptotic Mistuning Model (AMM) methodology is used to analyze this situation. The AMM is a reduced order model that is systematically derived from the mistuned bladed disk full model using a perturbative procedure based on the small size of the mistuning and the damping. The AMM allows to derive a very simple expression for an upper bound of the maximum amplification factor of the vibration amplitude that the system can experience (an extension of the well known Whitehead 1966 result to include the effect of non-uniform aerodamping). This new upper bound gives information on the mechanisms involved in the amplification/reduction of the mistuned response: (i) the number of modes participating in the response, and (ii) the ratio between the aerodamping of the directly forced mode and that of the of the rest of the modes. A FEM of a mistuned bladed disk is also used to verify the AMM predictions for several different forcing configurations, and both results show a very good quantitative agreement.

  6. Response predictions using the observed autocorrelation function

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; H. Brodtkorb, Astrid; Jensen, Jørgen Juncher

    2018-01-01

    This article studies a procedure that facilitates short-time, deterministic predictions of the wave-induced motion of a marine vessel, where it is understood that the future motion of the vessel is calculated ahead of time. Such predictions are valuable to assist in the execution of many marine......-induced response in study. Thus, predicted (future) values ahead of time for a given time history recording are computed through a mathematical combination of the sample autocorrelation function and previous measurements recorded just prior to the moment of action. Importantly, the procedure does not need input...

  7. Prediction of flow induced sound and vibration of periodically stiffened plates.

    Science.gov (United States)

    Maxit, Laurent; Denis, Vivien

    2013-01-01

    Stiffened structures excited by the turbulent boundary layer (TBL) occur very frequently in engineering applications; for instance, in the wings of airplanes or the pressure hulls of submarines. To improve knowledge of the interaction between stiffened structures and TBL, this paper deals with the modeling of infinite periodically stiffened plates excited by TBL. The mathematical formulation of the problem is well-established in the literature. The originality of the present work relies on the use of a wavenumber-point reciprocity technique for evaluating the response of the plate to convected harmonic pressure waves. It follows a methodology for estimating the vibro-acoustic response of the plate excited by the TBL from the wall pressure spectrum and its displacements in the wavenumber space due to point excitations located at the receiving positions. The computing process can be reduced to the numerical integration of an analytical expression in the case of a periodically stiffened plate. An application to a naval test case highlights the effect of Bloch-Floquet waves on the vibrations of the plate and its radiated pressure in the fluid.

  8. Reactive oxygen species regulatory mechanisms associated with rapid response of MC3T3-E1 cells for vibration stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; Gan, Xueqi; Zhu, Zhuoli; Yang, Yang; He, Yuting; Yu, Haiyang, E-mail: yhyang6812@scu.edu.cn

    2016-02-12

    Although many previous studies have shown that refractory period-dependent memory effect of vibration stress is anabolic for skeletal homeostasis, little is known about the rapid response of osteoblasts simply derived from vibration itself. In view of the potential role of reactive oxygen species (ROS) in mediating differentiated activity of osteoblasts, whether and how ROS regulates the rapid effect of vibration deserve to be demonstrated. Our findings indicated that MC3T3-E1 cells underwent decreased gene expression of Runx2, Col-I and ALP and impaired ALP activity accompanied by increased mitochondrial fission immediately after vibration loading. Moreover, we also revealed the involvement of ERK-Drp1 signal transduction in ROS regulatory mechanisms responsible for the rapid effect of vibration stress. - Highlights: • ROS contributed to the rapid response of MC3T3-E1 cells for vibration stress. • Imbalance of mitochondrial dynamics were linked to the LMHFV-derived rapid response. • The role of ERK-Drp1 signal pathway in the LMHFV-derived osteoblast rapid response.

  9. Unbalance Response Prediction for Accelerating Rotors With Load-Dependent Nonlinear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Sawicki, Jaezy T.; Poplawski, J. V.

    2005-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. Previous papers have explored the transient effect of suddenly applied imbalance and the steady-state unbalance response, using bearing forces calculated by the rolling-element bearing analysis code COBRA-AHS. The present work considers the acceleration of a rotor through one or more critical speeds. The rotordynamic analysis showed that for rapid acceleration rates the maximum response amplitude may be considerably less than predicted by steady-state analysis. Above the critical speed, transient vibration at the rotor natural frequency occurs, similar to that predicted for a Jeffcott rotor with constant-stiffness bearings. A moderate amount of damping will markedly reduce the vibration amplitude, but this damping is not inherent in ball bearings.

  10. Vibration response comparison of twisted shrouded blades using different impact models

    Science.gov (United States)

    Xie, Fangtao; Ma, Hui; Cui, Can; Wen, Bangchun

    2017-06-01

    On the basis of our previous work (Ma et al., 2016, Journal of Sound and Vibration, 378, 92-108) [36], an improved analytical model (IAM) of a rotating twisted shrouded blade with stagger angle simulated by flexible beam with a tip-mass is established based on Timoshenko beam theory, whose effectiveness is verified using finite element (FE) method. The effects of different parameters such as shroud gaps, contact stiffness, stagger angles and twist angels on the vibration responses of the shrouded blades are analyzed using two different impact models where the adjacent two shrouded blades are simulated by massless springs in impact model 1 (IM1) and those are simulated by Timoshenko beam in impact model 2 (IM2). The results indicate that two impact models agree well under some cases such as big shroud gaps and small contact stiffness due to the small vibration effects of adjacent blades, but not vice versa under the condition of small shroud gaps and big contact stiffness. As for IM2, the resonance appears because the limitation of the adjacent blades is weakened due to their inertia effects, however, the resonance does not appear because of the strong limitation of the springs used to simulate adjacent blades for IM1. With the increase of stagger angles and twist angles, the first-order resonance rotational speed increases due to the increase of the dynamic stiffness under no-impact condition, and the rotational speeds of starting impact and ending impact rise under the impact condition.

  11. Simulation of Transient Nonlinear Friction-Induced Vibrations Using Complex Interface Modes: Application to the Prediction of Squeal Events

    Directory of Open Access Journals (Sweden)

    J.-J. Sinou

    2017-01-01

    Full Text Available During the past decades, the problem of friction-induced vibration and noise has been the subject of a huge amount of works. Various numerical simulations with finite elements models have been largely investigated to predict squeal events. Although a nonlinear analysis is more predictive than Complex Eigenvalues Analysis, one of the main drawbacks of the time analysis is the need of large computational efforts. In view of the complexity of the subject, this approach appears still computationally too expensive to be used in industry for finite element models. In this study, the potential of a new reduced model based on a double modal synthesis (i.e., a classical modal reduction via Craig and Bampton plus a condensation at the frictional interface based on complex modes for the prediction of self-excited vibrations of brake squeal is discussed. The effectiveness of the proposed modal reduction is tested on a finite element model of a simplified brake system. It will be shown that numerical results of times analysis by applying the proposed reduction correlate well with those of the nonlinear analysis based on a reference model, hence demonstrating the potential of using adapted modal reductions to predict the squeal propensity and to estimate self-excited vibrations and noise.

  12. Harnessing data structure for recovery of randomly missing structural vibration responses time history: Sparse representation versus low-rank structure

    Science.gov (United States)

    Yang, Yongchao; Nagarajaiah, Satish

    2016-06-01

    Randomly missing data of structural vibration responses time history often occurs in structural dynamics and health monitoring. For example, structural vibration responses are often corrupted by outliers or erroneous measurements due to sensor malfunction; in wireless sensing platforms, data loss during wireless communication is a common issue. Besides, to alleviate the wireless data sampling or communication burden, certain accounts of data are often discarded during sampling or before transmission. In these and other applications, recovery of the randomly missing structural vibration responses from the available, incomplete data, is essential for system identification and structural health monitoring; it is an ill-posed inverse problem, however. This paper explicitly harnesses the data structure itself-of the structural vibration responses-to address this (inverse) problem. What is relevant is an empirical, but often practically true, observation, that is, typically there are only few modes active in the structural vibration responses; hence a sparse representation (in frequency domain) of the single-channel data vector, or, a low-rank structure (by singular value decomposition) of the multi-channel data matrix. Exploiting such prior knowledge of data structure (intra-channel sparse or inter-channel low-rank), the new theories of ℓ1-minimization sparse recovery and nuclear-norm-minimization low-rank matrix completion enable recovery of the randomly missing or corrupted structural vibration response data. The performance of these two alternatives, in terms of recovery accuracy and computational time under different data missing rates, is investigated on a few structural vibration response data sets-the seismic responses of the super high-rise Canton Tower and the structural health monitoring accelerations of a real large-scale cable-stayed bridge. Encouraging results are obtained and the applicability and limitation of the presented methods are discussed.

  13. Predicting and measuring fluid responsiveness with echocardiography

    Directory of Open Access Journals (Sweden)

    Ashley Miller

    2016-06-01

    Full Text Available Echocardiography is ideally suited to guide fluid resuscitation in critically ill patients. It can be used to assess fluid responsiveness by looking at the left ventricle, aortic outflow, inferior vena cava and right ventricle. Static measurements and dynamic variables based on heart–lung interactions all combine to predict and measure fluid responsiveness and assess response to intravenous fluid esuscitation. Thorough knowledge of these variables, the physiology behind them and the pitfalls in their use allows the echocardiographer to confidently assess these patients and in combination with clinical judgement manage them appropriately.

  14. Both Inter- and Intramolecular Coupling of O-H Groups Determine the Vibrational Response of the Water/Air Interface

    CERN Document Server

    Schaefer, Jan; Nagata, Yuki; Bonn, Mischa

    2016-01-01

    Vibrational coupling is relevant not only for dissipation of excess energy after chemical reactions but also for elucidating molecular structure and dynamics. It is particularly important for OH stretch vibrational spectra of water, for which it is known that in bulk both intra- and intermolecular coupling alter the intensity and line shape of the spectra. In contrast with bulk, the unified picture of the inter/intra-molecular coupling of OH groups at the water-air interface has been lacking. Here, combining sum-frequency generation experiments and simulation for isotopically diluted water and alcohols, we unveil effects of inter- and intramolecular coupling on the vibrational spectra of interfacial water. Our results show that both inter- and intramolecular coupling contribute to the OH stretch vibrational response of the neat H2O surface, with intramolecular coupling generating a double-peak feature, while the intermolecular coupling induces a significant red shift in the OH stretch response.

  15. Response characteristics of vibration-sensitive neurons in the midbrain of the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1989-01-01

    of best frequencies (BF's) was bimodal with peaks at 10 and 100 Hz and the thresholds ranged from 0.02 to 1.28 cm/s2 at the BF. Twenty-three neurons showed phasic-tonic and 11 neurons phasic responses. The dynamic range of seismic intensity for most neurons was 20-30 dB. In contrast to the sharp phase...... response characteristics expressed by inhibition of their spontaneous activity by vibration or by bi- and trimodal sensory sensitivities. In conclusion, the vibration sensitive cells in the midbrain of the grassfrog can encode the frequency, intensity, onset and cessation of vibration stimuli. Seismic...... stimuli probably play a role in communication and detection of predators and the vibration-sensitive midbrain neurons may be involved in the central processing of such behaviorally significant stimuli....

  16. Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam

    OpenAIRE

    Khan, Ateeb Ahmad; Naushad Alam, M.; Rahman, Najeeb ur; Wajid, Mustafa

    2016-01-01

    Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM) beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT) with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has ...

  17. Monitoring vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Tiryaki, B. [Hacettepe University (Turkey). Dept. of Mining Engineering

    2003-12-01

    The paper examines the prediction and optimisation of machine vibrations in longwall shearers. Underground studies were carried out at the Middle Anatolian Lignite Mine, between 1993 and 1997. Several shearer drums with different pick lacing arrangements were designed and tested on double-ended ranging longwall shearers employed at the mine. A computer program called the Vibration Analysis Program (VAP) was developed for analysing machine vibrations in longwall shearers. Shearer drums that were tested underground, as well as some provided by leading manufacturers, were analyzed using these programs. The results of the experiments and computer analyses are given in the article. 4 refs., 9 figs.

  18. Solar Ultraviolet Magnetograph Investigation (SUMI) Component Responses to Payload Vibration Testing

    Science.gov (United States)

    Hunt, Ronald A.

    2011-01-01

    Vibration testing of SUMI was performed at both the experiment and payload levels. No accelerometers were installed inside the experiment during testing, but it is certain that component responses were very high. The environments experienced by optical and electronic components in these tests is an area of ongoing concern. The analysis supporting this presentation included a detailed finite element model of the SUMI experiment section, the dynamic response of which, correlated well with accelerometer measurements from the testing of the experimental section at Marshall Space Flight Center. The relatively short timeframe available to complete the task and the limited design information available was a limitation on the level of detail possible for the non-experiment portion of the model. However, since the locations of interest are buried in the experimental section of the model, the calculated responses should be enlightening both for the development of test criteria and for guidance in design.

  19. Enhancement of response of a bistable VCSEL to modulated orthogonal optical feedback by vibrational resonance.

    Science.gov (United States)

    Chizhevsky, V N

    2012-11-01

    It is experimentally demonstrated that the response of a bistable vertical-cavity surface-emitting laser at a selected polarization to the effect of the modulated optical feedback at the orthogonal polarization can be considerably enhanced by the additional periodic current modulation via vibrational resonance. It shows up as a nonmonotonic dependence of the response at the frequency of the modulated optical feedback as a function of the amplitude of the current modulation. In such conditions the laser response can be amplified more than 80 times for a weak optical feedback. At the optimal amplitude of the current modulation a complete synchronization of optical switchings between polarization states with modulated optical feedback is observed. The effect of asymmetry of a bistable quasi-potential is also experimentally demonstrated.

  20. Prediction Models for Dynamic Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Saima; Frincu, Marc; Chelmis, Charalampos; Noor, Muhammad; Simmhan, Yogesh; Prasanna, Viktor K.

    2015-11-02

    As Smart Grids move closer to dynamic curtailment programs, Demand Response (DR) events will become necessary not only on fixed time intervals and weekdays predetermined by static policies, but also during changing decision periods and weekends to react to real-time demand signals. Unique challenges arise in this context vis-a-vis demand prediction and curtailment estimation and the transformation of such tasks into an automated, efficient dynamic demand response (D2R) process. While existing work has concentrated on increasing the accuracy of prediction models for DR, there is a lack of studies for prediction models for D2R, which we address in this paper. Our first contribution is the formal definition of D2R, and the description of its challenges and requirements. Our second contribution is a feasibility analysis of very-short-term prediction of electricity consumption for D2R over a diverse, large-scale dataset that includes both small residential customers and large buildings. Our third, and major contribution is a set of insights into the predictability of electricity consumption in the context of D2R. Specifically, we focus on prediction models that can operate at a very small data granularity (here 15-min intervals), for both weekdays and weekends - all conditions that characterize scenarios for D2R. We find that short-term time series and simple averaging models used by Independent Service Operators and utilities achieve superior prediction accuracy. We also observe that workdays are more predictable than weekends and holiday. Also, smaller customers have large variation in consumption and are less predictable than larger buildings. Key implications of our findings are that better models are required for small customers and for non-workdays, both of which are critical for D2R. Also, prediction models require just few days’ worth of data indicating that small amounts of

  1. Hand-arm vibration syndrome and dose-response relation for vibration induced white finger among quarry drillers and stonecarvers. Italian Study Group on Physical Hazards in the Stone Industry.

    Science.gov (United States)

    Bovenzi, M

    1994-09-01

    To investigate the occurrence of disorders associated with the hand arm vibration syndrome in a large population of stone workers in Italy. The dose-response relation for vibration induced white finger (VWF) was also studied. The study population consisted of 570 quarry drillers and stonecarvers exposed to vibration and 258 control stone workers who performed only manual activity. Each subject was interviewed with health and workplace assessment questionnaires. Sensorineural and VWF disorders were staged according to the Stockholm workshop scales. Vibration was measured on a representative sample of percussive and rotary tools. The 8 h energy equivalent frequency weighted acceleration (A (8)) and lifetime vibration doses were calculated for each of the exposed stone workers. Sensorineural and musculoskeletal symptoms occurred more frequently in the workers exposed to vibration than in the controls, but trend statistics did not show a linear exposure-response relation for these disorders. The prevalence of VWF was found to be 30.2% in the entire group exposed to vibration. Raynaud's phenomenon was discovered in 4.3% of the controls. VWF was strongly associated with exposure to vibration and a monotonic dose-response relation was found. According to the exposure data of this study, the expected percentage of stone workers affected with VWF tends to increase roughly in proportion to the square root of A(8) (for a particular exposure period) or in proportion to the square root of the duration of exposure (for a constant magnitude of vibration). Even although limited to a specific work situation, the dose-response relation for VWF estimated in this study suggests a time dependency such that halving the years of exposure allows a doubling of the energy equivalent vibration. According to these findings, the vibration exposure levels currently under discussion within the European Community seem to represent reasonable exposure limits for the protection of workers against

  2. Discussion of "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140

    Science.gov (United States)

    Svinkin, Mark R.

    2016-12-01

    The authors suggested a hybrid method for modeling the time history of structural vibrations triggered by impact dynamic loads from construction equipment and blasting, and they stated, "In this work, a hybrid method has been proposed to calculate the theoretical seismograms of structural vibrations. The word "hybrid" denotes a combination of field measurements and computer simulations. Then, based on nonlinear system theory, a novel method is proposed to predict the signal induced by impact loading".

  3. City dweller responses to multiple stressors intruding into their homes: noise, light, odour, and vibration.

    Science.gov (United States)

    Pedersen, Eja

    2015-03-18

    Urban densification increases exposure to noise, light, odour, and vibration in urban dwellings. Exposure from combined environmental stressors intruding into the home could increase the risk of adverse effects on wellbeing, even when the exposure is at a relatively low level. This study assesses the prevalence of annoyance with a combination of potential environmental stressors common in urban areas and the association with wellbeing. A questionnaire was sent by mail to residents in five areas in Halmstad (Sweden) with similar socioeconomic and housing characteristics but different exposure (response rate 56%; n=385). Of the respondents, 50% were annoyed to some degree by at least one of the suggested stressors, most commonly by noise and vibration from local traffic. Structural equation modelling showed that annoyance led to lowered quality of life via the mediating construct residential satisfaction, which in turn was influenced by place attachment and perceived restoration possibilities in the dwelling. Stress had a negative impact on quality of life, but was not directly correlated to annoyance. Stress was however correlated with sensitivity. The findings suggest that dose-response relationships for environmental stressors should be studied in a broader context of environmental and individual factors. Also relatively low levels of exposure should be mitigated, especially if several stressors are present.

  4. On the seismic response of instable rock slopes based on ambient vibration recordings

    Science.gov (United States)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2017-09-01

    Rock slope failures can lead to huge human and economic loss depending on their size and exact location. Reasonable hazard mitigation requires thorough understanding of the underlying slope driving mechanisms and its rock mass properties. Measurements of seismic ambient vibrations could improve the characterization and detection of rock instabilities since there is a link between seismic response and internal structure of the unstable rock mass. An unstable slope near the village Gondo has been investigated. The unstable part shows strongly amplified ground motion with respect to the stable part of the rock slope. The amplification values reach maximum factors of 70. The seismic response on the instable part is highly directional and polarized. Re-measurements have been taken 1 year later showing exactly the same results as the original measurements. Neither the amplified frequencies nor the amplification values have changed. Therefore, ambient vibration measurements are repeatable and stay the same, if the rock mass has not undergone any significant change in structure or volume, respectively. Additionally, four new points have been measured during the re-measuring campaign in order to better map the border of the instability.[Figure not available: see fulltext.

  5. Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm

    Science.gov (United States)

    Samareh, Hossein; Khoshrou, Seyed Hassan; Shahriar, Kourosh; Ebadzadeh, Mohammad Mehdi; Eslami, Mohammad

    2017-09-01

    When particle's wave velocity resulting from mining blasts exceeds a certain level, then the intensity of produced vibrations incur damages to the structures around the blasting regions. Development of mathematical models for predicting the peak particle velocity (PPV) based on the properties of the wave emission environment is an appropriate method for better designing of blasting parameters, since the probability of incurred damages can considerably be mitigated by controlling the intensity of vibrations at the building sites. In this research, first out of 11 blasting and geo-mechanical parameters of rock masses, four parameters which had the greatest influence on the vibrational wave velocities were specified using regression analysis. Thereafter, some models were developed for predicting the PPV by nonlinear regression analysis (NLRA) and artificial neural network (ANN) with correlation coefficients of 0.854 and 0.662, respectively. Afterward, the coefficients associated with the parameters in the NLRA model were optimized using optimization particle swarm-genetic algorithm. The values of PPV were estimated for 18 testing dataset in order to evaluate the accuracy of the prediction and performance of the developed models. By calculating statistical indices for the test recorded maps, it was found that the optimized model can predict the PPV with a lower error than the other two models. Furthermore, considering the correlation coefficient (0.75) between the values of the PPV measured and predicted by the optimized nonlinear model, it was found that this model possesses a more desirable performance for predicting the PPV than the other two models.

  6. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  7. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  8. Towards the prediction of hullspringing response

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena

    2010-01-01

    theories have been compared for an example ship. Further, the hydrodynamic pressure solution obtained by the radiation-diffraction panel method program has been employed by a hydroelastic strip theory in order to obtain the vertical wave excitation force on the hull. The influence of the diffraction wave......Research on wave induced vibration in ocean going ships has been undergoing the revival during the recent years. The increased flexibility in hulls owes to increase in ship size, primarily the ship length. Springing vibration is induced by unsteady pressure field on the hull and it decays slowly...... due to low structural damping and the recursive wave excitation. Due to its large number of cycles springing vibration may represent a fatigue problem in different ship forms – e.g. full form ships in ballast condition, ultra large containerships, fast passenger ships. Springing was a subject to many...

  9. Effects of tension on vortex-induced vibration (VIV) responses of a long tensioned cylinder in uniform flows

    Science.gov (United States)

    Kang, Ling; Ge, Fei; Wu, Xiaodong; Hong, Youshi

    2017-02-01

    The effects of tension on vortex-induced vibration (VIV) responses for a tension-dominated long cylinder with an aspect ratio of 550 in uniform flows are experimentally investigated in this paper. The results show that elevated tension suppresses fluctuations of maximum displacement with respect to flow velocity and makes chaotic VIV more likely to appear. With respect to periodic VIV, if elevated tension is applied, the dominant vibration frequency in the in-line (IL) direction will switch from a fundamental vibration frequency to twice the value of the fundamental vibration frequency, which results in a ratio of the dominant vibration frequency in the IL direction to that in the cross-flow direction of 2.0. The suppression of the elevated tension in the fluctuation of the maximum displacement causes the axial tension to become an active control parameter for the VIV maximum displacement of a tension-dominated long riser or tether of an engineering structure in deep oceans. However, the axial tension must be optimized before being used since the high dominant vibration frequency due to the elevated tension may unfavorably affect the fatigue life of the riser or tether.

  10. Clinical predictive factors of pathologic tumor response

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chi Hwan; Kim, Won Dong; Lee, Sang Jeon; Park, Woo Yoon [Chungbuk National University College of Medicine, Cheongju (Korea, Republic of)

    2012-09-15

    The aim of this study was to identify clinical predictive factors for tumor response after preoperative chemoradiotherapy (CRT) in rectal cancer. The study involved 51 patients who underwent preoperative CRT followed by surgery between January 2005 and February 2012. Radiotherapy was delivered to the whole pelvis at a dose of 45 Gy in 25 fractions, followed by a boost of 5.4 Gy in 3 fractions to the primary tumor with 5 fractions per week. Three different chemotherapy regimens were used. Tumor responses to preoperative CRT were assessed in terms of tumor downstaging and pathologic complete response (ypCR). Statistical analyses were performed to identify clinical factors associated with pathologic tumor response. Tumor downstaging was observed in 28 patients (54.9%), whereas ypCR was observed in 6 patients (11.8%). Multivariate analysis found that predictors of downstaging was pretreatment relative lymphocyte count (p = 0.023) and that none of clinical factors was significantly associated with ypCR. Pretreatment relative lymphocyte count (%) has a significant impact on the pathologic tumor response (tumor downstaging) after preoperative CRT for locally advanced rectal cancer. Enhancement of lymphocyte-mediated immune reactions may improve the effect of preoperative CRT for rectal cancer.

  11. Predicting health risks of exposure to whole body vibration in the urban taxi drivers

    Directory of Open Access Journals (Sweden)

    Keykaous Azrah

    2016-09-01

    Full Text Available Introduction: Limited studies have been done to evaluate the whole-body vibration (WBV exposure experienced by Taxi drivers. Therefore, the aim of this study was to evaluate the exposure to whole body vibration and repeated shocks in urban taxi drivers and also to compare different methods of evaluation in this job environment. Material and Method: Measurement and evaluation process were conducted in accordance with procedure of the ISO 2631-1 and ISO 2631-5 standards. The measurements were done by SVAN 958 Sound and Vibration Analyzer and using tri-axial accelerometer centered on the contact surface between the seat and the driver in 9 taxis.   Result: The measurements done according to ISO 2631-1 method showed greater risk compared to Daily Equivalent Static Compression Dose, Sed, presented in ISO 2631-5. Calculated daily exposure durations for exposure action level in root-mean square, vibration dose value, and daily equivalent static compressive stress methods were 4.55, 3.54 and 31.70 hours, respectively. Conclusion: The large differences in estimated exposure durations of action limits and permissible limits resulted by different methods reflect the inconsistency of the selected evaluation methods. Therefore, future research is necessary to amend the limits presented in the standard.

  12. Vertical footbridge vibrations: details regarding and experimental validation of the response spectrum methodology

    DEFF Research Database (Denmark)

    Ingólfsson, Einar Thór; Georgakis, Christos; Svendsen, Martin Nymann

    2008-01-01

    seismic design codes of practice. A basic outline of the methodology is given, followed by a detailed examination of the bridge-specific parameters that are applied to adjust the response obtained from a universal reference design spectrum. The bridge-specific parameters take into account key variations......In this paper, details regarding and the experimental validation of the “response spectrum” methodology for the determination of vertical footbridge response are presented. The methodology is inspired by the well-established response spectrum approach used in the majority of the world’s current...... footbridge, are presented. An accurate representation of the random crowd loading during the experiments is created through video-footage and used to theoretically predict the vertical bridge response following the response spectrum methodology. The predictions verify the effectiveness of the methodology...

  13. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts.

    Science.gov (United States)

    Cloak, Ross; Lane, Andrew; Wyon, Matthew

    2016-03-01

    Acute whole body vibration (WBV) is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m). Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement) or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP) of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p amateur players. A significant difference (p amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players. Key pointsAcute WBV improves knee extensor peak isometric force output and PAP amongst professional and not amateur soccer playersProfessional players perceived acute WBV as more beneficial to performance than amateur playersIsometric strength,vibration intensity and duration appear to influence results

  14. Vibration and Acoustic Response of Rectangular Sandwich Plate under Thermal Environment

    Directory of Open Access Journals (Sweden)

    Yuan Liu

    2013-01-01

    Full Text Available In this paper, we focus on the vibration and acoustic response of a rectangular sandwich plate which is subjected to a concentrated harmonic force under thermal environment. The critical buckling temperature is obtained to decide the thermal load. The natural frequencies and modes as well as dynamic responses are acquired by using the analytical formulations based on equivalent non-classical theory, in which the effects of shear deformation and rotational inertia are taken into account. The rise of thermal load decreases the natural frequencies and moves response peaks to the low-frequency range. The specific features of sandwich plates with different formations are discussed subsequently. As the thickness ratio of facing to core increases, the natural frequencies are enlarged, and the response peaks float to the high-frequency region. Raising the Young's modulus of the core can cause the similar trends. The accuracy of the theoretical method is verified by comparing its results with those computed by the FEM/BEM.

  15. Prediction of psilocybin response in healthy volunteers.

    Science.gov (United States)

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.

  16. Prediction of psilocybin response in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Erich Studerus

    Full Text Available Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables. However, little is known about the order of importance of these variables and their effect sizes in comparison to drug dose. Hence, this study investigated the effects of 24 predictor variables, including age, sex, education, personality traits, drug pre-experience, mental state before drug intake, experimental setting, and drug dose on the acute response to psilocybin. The analysis was based on the pooled data of 23 controlled experimental studies involving 409 psilocybin administrations to 261 healthy volunteers. Multiple linear mixed effects models were fitted for each of 15 response variables. Although drug dose was clearly the most important predictor for all measured response variables, several non-pharmacological variables significantly contributed to the effects of psilocybin. Specifically, having a high score in the personality trait of Absorption, being in an emotionally excitable and active state immediately before drug intake, and having experienced few psychological problems in past weeks were most strongly associated with pleasant and mystical-type experiences, whereas high Emotional Excitability, low age, and an experimental setting involving positron emission tomography most strongly predicted unpleasant and/or anxious reactions to psilocybin. The results confirm that non-pharmacological variables play an important role in the effects of psilocybin.

  17. Low back pain in drivers exposed to whole body vibration: analysis of a dose-response pattern

    NARCIS (Netherlands)

    Tiemessen, I. J. H.; Hulshof, C. T. J.; Frings-Dresen, M. H. W.

    2008-01-01

    Analysis of a dose-response pattern between exposure to whole body vibration (WBV) and low back pain (LBP) in a group of drivers. This study assessed individual factors, work-related risk factors, various LBP outcome measures and LBP disability in a group of drivers (n = 571) approached at baseline

  18. Posterior superior temporal sulcus responses predict perceived pleasantness of skin stroking

    Directory of Open Access Journals (Sweden)

    Monika Davidovic

    2016-09-01

    Full Text Available Love and affection is expressed through a range of physically intimate gestures, including caresses. Recent studies suggest that posterior temporal lobe areas typically associated with visual processing of social cues also respond to interpersonal touch. Here, we asked whether these areas are selective to caress-like skin stroking. We collected functional magnetic resonance imaging (fMRI data from 23 healthy participants and compared brain responses to skin stroking and vibration. We did not find any significant differences between stroking and vibration in the posterior temporal lobe; however, right posterior superior temporal sulcus (pSTS responses predicted healthy participant's perceived pleasantness of skin stroking, but not vibration. These findings link right pSTS responses to individual variability in perceived pleasantness of caress-like tactile stimuli. We speculate that the right pSTS may play a role in the translation of tactile stimuli into positively valenced, socially relevant interpersonal touch and that this system may be affected in disorders associated with impaired attachment.

  19. Predicting Whole Body Vibration Exposure from Occupational Quad Bike Use in Farmers

    OpenAIRE

    Clay, Lynne; Milosavljevic, Stephan; Trask, Catherine

    2015-01-01

    Whole body vibration (WBV) exposure is recognised as a risk factor to the high prevalence of spinal musculoskeletal disorders (MSDs) experienced by farmers. The purpose of this study was to identify self-reported predictors that could be used to develop statistical models for WBV exposure (expressed as A8rms and VDV) in farmers operating agricultural quad bikes. Data were collected in the field from 130 farmers. Linear mixed effects modeling was used to determine the models of best fit. The p...

  20. Vibration Response Imaging: evaluation of rater agreement in healthy subjects and subjects with pneumonia

    Directory of Open Access Journals (Sweden)

    Makris Demosthenes

    2010-03-01

    Full Text Available Abstract Background We evaluated pulmonologists variability in the interpretation of Vibration response imaging (VRI obtained from healthy subjects and patients hospitalized for community acquired pneumonia. Methods The present is a prospective study conducted in a tertiary university hospital. Twenty healthy subjects and twenty three pneumonia cases were included in this study. Six pulmonologists blindly analyzed images of normal subjects and pneumonia cases and evaluated different aspects of VRI images related to the quality of data aquisition, synchronization of the progression of breath sound distribution and agreement between the maximal energy frame (MEF of VRI (which is the maximal geographical area of lung vibrations produced at maximal inspiration and chest radiography. For qualitative assessment of VRI images, the raters' evaluations were analyzed by degree of consistency and agreement. Results The average value for overall identical evaluations of twelve features of the VRI image evaluation, ranged from 87% to 95% per rater (94% to 97% in control cases and from 79% to 93% per rater in pneumonia cases. Inter-rater median (IQR agreement was 91% (82-96. The level of agreement according to VRI feature evaluated was in most cases over 80%; intra-class correlation (ICC obtained by using a model of subject/rater for the averaged features was overall 0.86 (0.92 in normal and 0.73 in pneumonia cases. Conclusions Our findings suggest good agreement in the interpretation of VRI data between different raters. In this respect, VRI might be helpful as a radiation free diagnostic tool for the management of pneumonia.

  1. Determining the optimal whole-body vibration dose-response relationship for muscle performance.

    Science.gov (United States)

    Da Silva-Grigoletto, Marzo E; De Hoyo, Moisés; Sañudo, Borja; Carrasco, Luis; García-Manso, Juan M

    2011-12-01

    Da Silva-Grigoletto, ME, de Hoyo, M, Sañudo, B, Corrales, L, and García-Manso, JM. Determining the optimal whole-body vibration dose-response relationship for muscle performance. J Strength Cond Res 25(12): 3326-3333, 2011-The aim of this investigation was twofold: first, to determine the optimal duration of a single whole-body vibration (WBV) exposure (phase 1) and second to find out the ideal number of sets per intervention to maximize muscle performance (phase 2). All participants were young (age: 19.4 ± 1.6 years), healthy, physically active men. In both studies, a 30-Hz frequency and a 4-mm peak-to-peak displacement were used. In phase 1, subjects (n = 30) underwent 3 sets of different durations (30, 60, and 90 seconds), whereas in phase 2, subjects (n = 27) underwent 3 interventions where the duration remained fixed at 60 seconds, and the number of sets performed (3, 6, or 9) was modified. The recovery time between sets was set at 2 minutes. In all interventions, each set consisted of 1 isometric repetition in a squat position with knees flexed at 100°. Before and after each session, jump height (countermovement jump [CMJ] and squat jump [SJ]) and power output in half squat (90° knee flexion) were assessed. In phase 1, an improvement in jump ability and power output was observed after the 30- and 60-second intervention (p effect for the program of 6 sets (p < 0.05). In conclusion, a WBV intervention consisting of six 60-second sets produces improved muscle performance measured by SJ, CMJ, and power output.

  2. Using frequency response functions to manage image degradation from equipment vibration in the Daniel K. Inouye Solar Telescope

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.

  3. An on-road shock and vibration response test series utilizing worst case and statistical analysis techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cap, J.S. [Sandia National Labs., Albuquerque, NM (US). Mechanical and Thermal Environments Dept.

    1997-11-01

    Defining the maximum expected shock and vibration responses for an on-road truck transportation environment is strongly dependent on the amount of response data that can be obtained. One common test scheme consists of measuring response data over a relatively short prescribed road course and then reviewing that data to obtain the maximum response levels. The more mathematically rigorous alternative is to collect an unbiased ensemble of response data during a long road trip. This paper compares data gathered both ways during a recent on-road certification test for a tractor trailer van being designed by Sandia.

  4. Shock vibration and damage responses of primary auxiliary buildings from aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Shup [Korea Atomic Energy Research Institute, 1045 Daeduk-daero, Dukjin-dong, Yuseong-gu, Daejeon 305-303 (Korea, Republic of); Department of Civil and Environmental Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Hahm, Daegi [Korea Atomic Energy Research Institute, 1045 Daeduk-daero, Dukjin-dong, Yuseong-gu, Daejeon 305-303 (Korea, Republic of); Park, Taehyo, E-mail: cepark@hanyang.ac.kr [Department of Civil and Environmental Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2016-12-15

    Highlights: • Aircraft impact analyses of PABs were performed using both the force-time history method and missile-target interaction method. • The jet fuel was considered by using the added mass modeling method and SPH method, respectively. • The FRS and the structural integrity of the external wall of the PABs against an aircraft impact were analyzed. - Abstract: Safety assessments on nuclear power plants (NPPs) subjected to an aircraft impact (AI) caused by terrorists are pivotal focuses for amelioration of present. To date, most studies have mainly focused on structure responses and the integrity of the containment building at a nuclear island (NI) subjected to AI. However, the safety assessment of internal equipment and components by shock vibration as well as the structure damage induced by AI are also important. In this study, aircraft impact analyses (AIA) of primary auxiliary buildings (PABs) were carried out using both the force–time history method and the missile–target interaction method. For the AIA, the jet fuel was taken into account by using the added mass modeling method and the smooth particles hydrodynamics (SPH) method, respectively. In addition, the floor response spectra (FRS) and the structural integrity of the external wall of the PAB against an AI were analyzed. Finally, the difference in the FRS at the location of the components on both sides of the bay was analyzed.

  5. Analytical Modeling of a Ball Screw Feed Drive for Vibration Prediction of Feeding Carriage of a Spindle

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2016-01-01

    Full Text Available An analytical modeling approach for ball screw feed drives is proposed to predict the dynamic behavior of the feeding carriage of a spindle. Mainly considering the rigidity of linear guide modules, a ball-screw-feeding spindle is modeled by a mass-spring system. The contact stiffness of rolling interfaces in linear guide modules is accurately calculated according to the Hertzian theory. Next, a mathematical model is derived using the Lagrange method. The presented model is verified by conducting modal experiments. It is found that the simulated results correspond closely with the experimental data. In order to show the applicability of the proposed mathematical model, parameter-dependent dynamics of the feeding carriage of the spindle is investigated. The work will contribute to the vibration prediction of spindles.

  6. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    Science.gov (United States)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  7. Direct quantum mechanical/molecular mechanical simulations of two-dimensional vibrational responses: N-methylacetamide in water

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jonggu; Cho, Minhaeng, E-mail: mcho@korea.ac.k [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2010-06-15

    Multidimensional infrared (IR) spectroscopy has emerged as a viable tool to study molecular structure and dynamics in condensed phases, and the third-order vibrational response function is the central quantity underlying various nonlinear IR spectroscopic techniques, such as pump-probe, photon echo and two-dimensional (2D) IR spectroscopy. In this paper, a new computational method is presented that calculates this nonlinear response function in the classical limit from a series of classical molecular dynamics (MD) simulations, employing a quantum mechanical/molecular mechanical (QM/MM) force field. The method relies on the stability matrix formalism where the dipole-dipole quantum mechanical commutators appearing in the exact quantum response function are replaced by the corresponding Poisson brackets. We present the formulation and computational algorithm of the method for both the classical and the QM/MM force fields and apply it to the 2D IR spectroscopy of carbon monoxide (CO) and N-methylacetamide (NMA), each solvated in a water cluster. The conventional classical force field with harmonic bond potentials is shown to be incapable of producing a reliable 2D IR signal because intramolecular vibrational anharmonicity, essential to the production of the nonlinear signal, is absent in such a model. The QM/MM force field, on the other hand, produces distinct 2D spectra for the NMA and CO systems with clear vertical splitting and cross peaks, reflecting the vibrational anharmonicities and the vibrational couplings between the underlying vibrational modes, respectively. In the NMA spectrum, the coupling between the amide I and II modes is also well reproduced. While attaining the converged spectrum is found to be challenging with this method, with an adequate amount of computing it can be straightforwardly applied to new systems containing multiple chromophores with little modeling effort, and therefore it would be useful in understanding the multimode 2D IR spectrum

  8. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range.

    Science.gov (United States)

    Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A; Holka, Filip; Szalay, Péter G

    2013-10-07

    An accurate description of the complicated shape of the potential energy surface (PES) and that of the highly excited vibration states is of crucial importance for various unsolved issues in the spectroscopy and dynamics of ozone and remains a challenge for the theory. In this work a new analytical representation is proposed for the PES of the ground electronic state of the ozone molecule in the range covering the main potential well and the transition state towards the dissociation. This model accounts for particular features specific to the ozone PES for large variations of nuclear displacements along the minimum energy path. The impact of the shape of the PES near the transition state (existence of the "reef structure") on vibration energy levels was studied for the first time. The major purpose of this work was to provide accurate theoretical predictions for ozone vibrational band centres at the energy range near the dissociation threshold, which would be helpful for understanding the very complicated high-resolution spectra and its analyses currently in progress. Extended ab initio electronic structure calculations were carried out enabling the determination of the parameters of a minimum energy path PES model resulting in a new set of theoretical vibrational levels of ozone. A comparison with recent high-resolution spectroscopic data on the vibrational levels gives the root-mean-square deviations below 1 cm(-1) for ozone band centres up to 90% of the dissociation energy. New ab initio vibrational predictions represent a significant improvement with respect to all previously available calculations.

  9. Resting state functional connectivity predicts neurofeedback response

    Directory of Open Access Journals (Sweden)

    Dustin eScheinost

    2014-09-01

    Full Text Available Tailoring treatments to the specific needs and biology of individual patients – personalized medicine – requires delineation of reliable predictors of response. Unfortunately, these have been slow to emerge, especially in neuropsychiatric disorders. We have recently described a real-time functional magnetic resonance imaging (rt-fMRI neurofeedback protocol that can reduce contamination-related anxiety, a prominent symptom of many cases of obsessive-compulsive disorder (OCD. Individual response to this intervention is variable. Here we used patterns of brain functional connectivity, as measured by baseline resting-state fMRI (rs-fMRI, to predict improvements in contamination anxiety after neurofeedback training. Activity of a region of the orbitofrontal cortex (OFC and anterior prefrontal cortex, Brodmann area (BA 10, associated with contamination anxiety in each subject was measured in real time and presented as a neurofeedback signal, permitting subjects to learn to modulate this target brain region. We have previously reported both enhanced OFC/BA 10 control and improved anxiety in a group of subclinically anxious subjects after neurofeedback. Five individuals with contamination-related OCD who underwent the same protocol also showed improved clinical symptomatology. In both groups, these behavioral improvements were strongly correlated with baseline whole-brain connectivity in the OFC/BA 10, computed from rs-fMRI collected several days prior to neurofeedback training. These pilot data suggest that rs-fMRI can be used to identify individuals likely to benefit from rt-fMRI neurofeedback training to control contamination anxiety.

  10. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    Science.gov (United States)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current

  11. Comparative investigation of vibration and current monitoring for prediction of mechanical and electrical faults in induction motor based on multiclass-support vector machine algorithms

    Science.gov (United States)

    Gangsar, Purushottam; Tiwari, Rajiv

    2017-09-01

    This paper presents an investigation of vibration and current monitoring for effective fault prediction in induction motor (IM) by using multiclass support vector machine (MSVM) algorithms. Failures of IM may occur due to propagation of a mechanical or electrical fault. Hence, for timely detection of these faults, the vibration as well as current signals was acquired after multiple experiments of varying speeds and external torques from an experimental test rig. Here, total ten different fault conditions that frequently encountered in IM (four mechanical fault, five electrical fault conditions and one no defect condition) have been considered. In the case of stator winding fault, and phase unbalance and single phasing fault, different level of severity were also considered for the prediction. In this study, the identification has been performed of the mechanical and electrical faults, individually and collectively. Fault predictions have been performed using vibration signal alone, current signal alone and vibration-current signal concurrently. The one-versus-one MSVM has been trained at various operating conditions of IM using the radial basis function (RBF) kernel and tested for same conditions, which gives the result in the form of percentage fault prediction. The prediction performance is investigated for the wide range of RBF kernel parameter, i.e. gamma, and selected the best result for one optimal value of gamma for each case. Fault predictions has been performed and investigated for the wide range of operational speeds of the IM as well as external torques on the IM.

  12. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  13. Effects of Vibration and G-Loading on Heart Rate, Breathing Rate, and Response Time

    Science.gov (United States)

    Godinez, Angelica; Ayzenberg, Ruthie; Liston, Dorian B.; Stone, Leland S.

    2013-01-01

    Aerospace and applied environments commonly expose pilots and astronauts to G-loading and vibration, alone and in combination, with well-known sensorimotor (Cohen, 1970) and performance consequences (Adelstein et al., 2008). Physiological variables such as heart rate (HR) and breathing rate (BR) have been shown to increase with G-loading (Yajima et al., 1994) and vibration (e.g. Guignard, 1965, 1985) alone. To examine the effects of G-loading and vibration, alone and in combination, we measured heart rate and breathing rate under aerospace-relevant conditions (G-loads of 1 Gx and 3.8 Gx; vibration of 0.5 gx at 8, 12, and 16 Hz).

  14. Time-domain seismic response function retrieval from ambient vibration of dams

    Science.gov (United States)

    Kuroda, S.

    2016-12-01

    The existing seismometers installed at the dams for irrigation have recorded many seismic records during huge earthquake events, especially in Japan. Those are useful for analysis to understand how dams behaved during earthquake. Those records are valuable as the evidence not only to show the behavior of dams caused by but also to retrieve the index to reflect the dynamic property of the dams. Considering this point, we have applied the concept of seismic interferometry and its method to seismic records of the dams to estimate their properties of seismic wave propagation and the dynamic properties of those structures. This shows the applicability of seismic interferometry for small vibration records of existing seismometer of dams, like small earthquake records, whose maximum acceleration are less than 1cm/s2, or ambient noise. Based on the analysis for the waveform of acceleration during more than 10hours, we can retrieve the waveforms of time domain response similar to the one extracted from the seismic record of earthquake events, whose maximum acceleration is more than 2cm/s2, from small earthquake records and even from ambient noise only. This fact shows the proposed method might be applicable more frequently, if we applied it not only earthquake records but also the small records which has been considered to be trivial ones. Though we must verify the applicability of this method to the other many dams, this method might be expected to be more useful in an area where the earthquake frequency is very small, or at a dam site where the seismometer has been installed recently and obtained little or not enough seismic records yet. We will also discuss on reliability of results comparing the response obtained from records of eathquake events and seismic sensors array observation.

  15. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts

    Directory of Open Access Journals (Sweden)

    Ross Cloak, Andrew Lane, Matthew Wyon

    2016-03-01

    Full Text Available Acute whole body vibration (WBV is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m. Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p < 0.01, Partial Eta2 = 0.22 in peak knee isometric force following acute WBV with no significant differences among amateur players. A significant difference (p < 0.01, Partial Eta2 = 0.16 in PAP amongst professional players following acute WBVT was also reported. No significant differences amongst amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p < 0.01, Partial Eta2 = 0.27 compared to amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players.

  16. Influence of vibrational treatment on thermomechanical response of material under conditions identical to friction stir welding

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, Ivan S., E-mail: ivkon@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Konovalenko, Igor S., E-mail: igkon@ispms.tsc.ru; Kolubaev, Evgeniy A., E-mail: eak@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Dmitriev, Andrey I., E-mail: dmitr@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Psakhie, Sergey G., E-mail: sp@ms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics model was constructed to describe material loading on the atomic scale by the mode identical to friction stir welding. It was shown that additional vibration applied to the tool during the loading mode provides specified intensity values and continuous thermomechanical action during welding. An increase in additional vibration intensity causes an increase both in the force acting on the workpiece from the rotating tool and in temperature within the welded area.

  17. Muscular responses appear to be associated with existence of kinesthetic perception during combination of tendon co-vibration and motor imagery.

    Science.gov (United States)

    Shibata, Eriko; Kaneko, Fuminari; Katayose, Masaki

    2017-11-01

    The afferent inputs from peripheral sensory receptors and efferent signals from the central nervous system that underlie intentional movement can contribute to kinesthetic perception. Previous studies have revealed that tendon vibration to wrist muscles elicits an excitatory response-known as the antagonist vibratory response-in muscles antagonistic to the vibrated muscles. Therefore, the present study aimed to further investigate the effect of tendon vibration combined with motor imagery on kinesthetic perception and muscular activation. Two vibrators were applied to the tendons of the left flexor carpi radialis and extensor carpi radialis. When the vibration frequency was the same between flexors and extensors, no participant perceived movement and no muscle activity was induced. When participants imagined flexing their wrists during tendon vibration, the velocity of perceptual flexion movement increased. Furthermore, muscle activity of the flexor increased only during motor imagery. These results demonstrate that kinesthetic perception can be induced during the combination of motor imagery and co-vibration, even with no experience of kinesthetic perception from an afferent input with co-vibration at the same frequency. Although motor responses were observed during combined co-vibration and motor imagery, no such motor responses were recorded during either co-vibration alone or motor imagery alone, suggesting that muscular responses during the combined condition are associated with kinesthetic perception. Thus, the present findings indicate that kinesthetic perception is influenced by the interaction between afferent input from muscle spindles and the efferent signals that underlie intentional movement. We propose that the physiological behavior resulting from kinesthetic perception affects the process of modifying agonist muscle activity, which will be investigated in a future study.

  18. Personality predicts brain responses to cognitive demands.

    Science.gov (United States)

    Kumari, Veena; ffytche, Dominic H; Williams, Steven C R; Gray, Jeffrey A

    2004-11-24

    Eysenck (1981) proposed that the personality dimension of introversion- extraversion (E) reflects individual differences in a cortical arousal system modulated by reticulothalamic- cortical pathways: it is chronically more active in introverts relative to extraverts and influences cognitive performance in interaction with task parameters. A circuit with connections to this system, including the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate (AC) cortex, has been identified in studies applying functional magnetic resonance imaging (fMRI) to a broad range of cognitive tasks. We examined the influence of E, assessed with the Eysenck Personality Questionnaire-Revised (Eysenck and Eysenck, 1991), in fMRI activity during an "n-back" task involving four memory loads (0-, 1-, 2-, and 3-back) and a rest condition in healthy men. To confirm the specificity of E effects, we also examined the effects of neuroticism and psychoticism (P) scores. We observed that, as predicted by Eysenck's model, the higher the E score, the greater the change in fMRI signal from rest to the 3-back condition in the DLPFC and AC. In addition, E scores were negatively associated with resting fMRI signals in the thalamus and Broca's area extending to Wernicke's area, supporting the hypothesized (negative) relationship between E and resting arousal. P scores negatively correlated with resting fMRI signal in the globus pallidus-putamen, extending previous findings of a negative relationship of schizotypy to striatal activity seen with older neuroimaging modalities to fMRI. These observations suggest that individual differences affect brain responses during cognitive activity and at rest and provide evidence for the hypothesized neurobiological basis of personality.

  19. Thermomechanical responses of nonlinear torsional vibration with NiTi shape memory alloy - Alternative stable states and their jumps

    Science.gov (United States)

    Xia, Minglu; Sun, Qingping

    2017-05-01

    The dynamic response of nonlinear torsional vibration system with phase transformable NiTi Shape Memory Alloy (SMA) wire is investigated by experiment in this paper. The thermomechanical responses of the NiTi wire as a softening nonlinear damping spring in the torsional vibration system are measured by synchronized acquisition of rotational angle and temperature under external excitation. Frequency Response Curves (FRCs) at fixed excitation amplitude and Amplitude Response Curves (ARCs) at fixed frequency are obtained in the frequency and amplitude domains respectively. It is found that, as the deformation of NiTi wire goes into the softening nonlinear phase transition region, the smooth and stable dynamic responses along one branch of FRC or ARC will gradually enter into metastable region and eventually become unstable and drastically switch to a new contrasting alternative stable state along the other branch. The jump phenomenon between the alternative stable states on the lower and upper branches of the FRC or ARC and the hysteresis between the jump-up and jump-down are identified by experiments. In addition, the effects of external disturbance (both magnitude and direction) on triggering the jumps between the alternative stable states along the two metastable branches are examined in the time domain. The stability of the nonlinear dynamic response is analyzed by the Duffing oscillator model and interpreted via the stability landscape. For the first time, we directly reveal the alternative stable states and jump phenomena of thermomechanical responses by experiments in the frequency, amplitude and time domains. The results not only show the important roles of phase transition nonlinearity in bringing multiple equilibrium states and their fast switches, but also provide a solid experimental base for the identification of metastable regions as well as further management of the undesired dynamic responses of vibration system where NiTi is used as a nonlinear

  20. Response predictions using the observed autocorrelation function

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; H. Brodtkorb, Astrid; Jensen, Jørgen Juncher

    2017-01-01

    operations (crane lifts, helicopter landings, etc.), as a specic prediction can be used to inform whether it is safe, or not, to carry out the particular operation within the nearest time horizon. The examined prediction procedure relies on observations of the correlation structure of the wave...

  1. A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response

    Science.gov (United States)

    Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping

    2017-01-01

    A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.

  2. Three-Dimensional Vibration Isolator for Suppressing High-Frequency Responses for Sage III Contamination Monitoring Package (CMP)

    Science.gov (United States)

    Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination

  3. An observation on the variance of a predicted response in ...

    African Journals Online (AJOL)

    In studying individual parameters and the predicted response in regression analysis, three important properties are usually distinguished. These are bias, variance and mean-square error. The choice of a predicted response has to be made on a balance of these properties and computational simplicity. To avoid over fitting, ...

  4. Modeling the Dynamic Response of a Carbon-Fiber-Reinforced Plate at Resonant Vibrations Considering the Internal Friction in the Material and the External Aerodynamic Damping

    Science.gov (United States)

    Paimushin, V. N.; Firsov, V. A.; Shishkin, V. M.

    2017-09-01

    The frequency dependence for the dynamic elastic modulus of a Porcher 3692 CFRP at frequencies to 112.5 Hz is obtained from an experimental study on damped flexural vibrations of vertical cantilevered test specimens. A finite-element technique is developed for modeling the dynamic response of a long cantilevered carbon-fiber-plastic plate at resonant flexural vibrations according to the first vibration mode with account of internal damping, aerodynamic drag forces, and the frequency-dependent dynamic elastic modulus of the material. The damping properties of the plate are determined by the logarithmic decrement, which depends on the vibration amplitude of its free edge. Numerical experiments were carried out, which confirmed the accuracy of the technique. It is shown that the logarithmic decrement of the plate in the range of medium and high vibration amplitudes depends mainly on the aerodynamic drag forces.

  5. Modelling of unsteady airfoil aerodynamics for the prediction of blade standstill vibrations

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    that further investigations are needed and that caution should be taken when applying engineering models in connection with aeroelastic simulations. Nonetheless, the results of the 2D CFD, 3D CFD and the engineering models indicate that the associated aerodynamic damping may be higher than that predicted...

  6. Vibration response of piezoelectric microcantilever as ultrasmall mass sensor in liquid environment.

    Science.gov (United States)

    Karimpour, Masoud; Ghaderi, Reza; Raeiszadeh, Farhad

    2017-10-01

    The present study aims to analyze the vibrating behavior of a piezoelectric microcantilever (MC) as a mass nanosensor. The vibrating behavior of the MC as well as its sensitivity as a mass nanosensor are investigated and compared in both air and liquid environments. To this end, Euler-Bernoulli theory was used to model the vibrating behavior of piezoelectric MC with added mass at its free end. Frequency analysis was conducted by considering geometric discontinuities and taking added mass into account. The effect of liquid environment applied to the MC (as hydrodynamic forces) was based on a string of spheres model. Since changes in resonance frequency are used as the measurement parameter in mass sensors, changes in resonance frequency during absorption of nanoparticles was selected as the main parameter to be investigated in this study. Ultimately, with the aim to achieve optimal geometric dimensions for the piezoelectric MC, sensitivity analysis was additionally performed in order to increase the frequency sensitivity. According to the results, frequency sensitivity of the piezoelectric MC decreased in liquid environment compared to air environments. Moreover, increases in fluid density and viscosity caused a decreased frequency sensitivity. Simulation results indicate that the second vibrating mode in air and liquid environments is the appropriate operating mode for this type of MC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. On the seismic response of instable rock slopes based on ambient vibration recordings

    Czech Academy of Sciences Publication Activity Database

    Kleinbrod, U.; Burjánek, Jan; Fäh, D.

    2017-01-01

    Roč. 69, September (2017), č. článku 126. ISSN 1880-5981 Institutional support: RVO:67985530 Keywords : ambient vibration s * instable rock slopes * site amplification Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.243, year: 2016

  8. The Effect of Vibration on Postural Response of Down Syndrome Individuals on the Seesaw

    Science.gov (United States)

    Carvalho, Regiane Luz; Almeida, Gil Lucio

    2009-01-01

    In order to better understand the role of proprioception in postural adjustments on unstable surfaces, we analyzed the effect of vibration on the pattern of muscle activity and joint displacements (ankle, knee and hip) of eight intellectually normal participants (control group-CG) and eight individuals with Down syndrome (DS) while balancing on…

  9. Application of HPEM to investigate the response and stability of nonlinear problems in vibration

    DEFF Research Database (Denmark)

    Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.

    2010-01-01

    In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved ...

  10. Characterisation of the human-seat coupling in response to vibration.

    Science.gov (United States)

    Kim, Eunyeong; Fard, Mohammad; Kato, Kazuhito

    2017-08-01

    Characterising the coupling between the occupant and vehicle seat is necessary to understand the transmission of vehicle seat vibration to the human body. In this study, the vibration characteristics of the human body coupled with a vehicle seat were identified in frequencies up to 100 Hz. Transmissibilities of three volunteers seated on two different vehicle seats were measured under multi-axial random vibration excitation. The results revealed that the human-seat system vibration was dominated by the human body and foam below 10 Hz. Major coupling between the human body and the vehicle seat-structure was observed in the frequency range of 10-60 Hz. There was local coupling of the system dominated by local resonances of seat frame and seat surface above 60 Hz. Moreover, the transmissibility measured on the seat surface between the human and seat foam is suggested to be a good method of capturing human-seat system resonances rather than that measured on the human body in high frequencies above 10 Hz.Practitioner Summary: The coupling characteristics of the combined human body and vehicle seat system has not yet been fully understood in frequencies of 0.5-100 Hz. This study shows the human-seat system has distinctive dynamic coupling characteristics in three different frequency regions: below 10 Hz, 10-60 Hz, and above 60 Hz.

  11. Extreme wave and wind response predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Olsen, Anders S.; Mansour, Alaa E.

    2011-01-01

    The aim of the paper is to advocate effective stochastic procedures, based on the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), for extreme value predictions related to wave and wind-induced loads.Due to the efficient optimization procedures implemented in standard FORM...

  12. Effect of whole-body vibration training on body composition, exercise performance and biochemical responses in middle-aged mice.

    Science.gov (United States)

    Lin, Ching-I; Huang, Wen-Ching; Chen, Wen-Chyuan; Kan, Nai-Wen; Wei, Li; Chiu, Yen-Shuo; Huang, Chi-Chang

    2015-09-01

    Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential benefits of WBV on aging-associated changes in body composition, exercise performance, and fatigue are currently unclear. The objective of the study is to investigate the beneficial effects of WBV training on body composition, exercise performance, and physical fatigue-related and biochemical responses in middle-aged mice. In total, 24 male C57BL/6 mice aged 15 months old were randomly divided into 3 groups (n=8 per group): sedentary control (SC), relatively low-frequency WBV (5.6 Hz, 2 mm, 0.13 g) (LV), and relatively high-frequency WBV (13 Hz, 2 mm, 0.68 g) (HV). Mice in the LV and HV groups were placed inside a vibration platform and vibrated at different frequencies and fixed amplitude (2 mm) for 15 min, 5 days/week for 4 weeks. Exercise performance, core temperature and anti-fatigue function were evaluated by forelimb grip strength and levels of serum lactate, ammonia, glucose, and creatine kinase (CK) after a 15-min swimming exercise, as were changes in body composition and biochemical variables at the end of the experiment. Relative muscle and brown adipose tissue weight (%) was significantly higher for the HV than SC mice, but relative liver weight (%) was lower. On trend analysis, WBV increased grip strength, aerobic endurance and core temperature in mice. As well, serum lactate, ammonia and CK levels were dose-dependently decreased with vibration frequency after the swimming test. Fasting serum levels of albumin and total protein were increased and serum levels of alkaline phosphatase and creatinine decreased dose-dependently with vibration frequency. Moreover, WBV training improved the age-related abnormal morphology of skeletal muscle, liver and kidney tissues. Therefore, it could improve exercise performance and

  13. Reconstruction of Input Excitation Acting on Vibration Isolation System

    Directory of Open Access Journals (Sweden)

    Pan Zhou

    2016-01-01

    Full Text Available Vibration isolation systems are widely employed in automotive, marine, aerospace, and other engineering fields. Accurate input forces are of great significance for mechanical design, vibration prediction, and structure modification and optimization. One-stage vibration isolation system including engine, vibration isolators, and flexible supporting structure is modeled theoretically in this paper. Input excitation acting on the vibration isolation system is reconstructed using dynamic responses measured on engine and supporting structure under in-suit condition. The reconstructed forces reveal that dynamic responses on rigid body are likely to provide more accurate estimation results. Moreover, in order to improve the accuracy of excitation reconstructed by dynamic responses on flexible supporting structure, auto/cross-power spectral density function is utilized to reduce measurement noise.

  14. Prediction of psilocybin response in healthy volunteers

    National Research Council Canada - National Science Library

    Studerus, Erich; Gamma, Alex; Kometer, Michael; Vollenweider, Franz X

    2012-01-01

    Responses to hallucinogenic drugs, such as psilocybin, are believed to be critically dependent on the user's personality, current mood state, drug pre-experiences, expectancies, and social and environmental variables...

  15. Slot Machine Response Frequency Predicts Pathological Gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Rømer Thomsen, Kristine; Møller, Arne

    2013-01-01

    Slot machines are among the most addictive forms of gambling, and pathological gambling slot machine players represent the largest group of treatment seekers, accounting for 35% to 93% of the population. Pathological gambling sufferers have significantly higher response frequency (games / time......) on slot machines compared with non-problem gamblers, which may suggest increased reinforcement of the gambling behavior in pathological gambling. However, to date it is unknown whether or not the increased response frequency in pathological gambling is associated with symptom severity of the disorder....... This study tested the hypothesis that response frequency is associated with symptom severity in pathological gambling. We tested response frequency among twenty-two pathological gambling sufferers and twenty-one non-problem gamblers on a commercially available slot machine, and screened for pathological...

  16. Predicting the health risks related to whole-body vibration and shock: a comparison of alternative assessment methods for high-acceleration events in vehicles.

    Science.gov (United States)

    Rantaharju, Taneli; Mansfield, Neil J; Ala-Hiiro, Jussi M; Gunston, Thomas P

    2015-01-01

    In this paper, alternative assessment methods for whole-body vibration and shocks are compared by means of 70 vibration samples measured from 13 work vehicles, deliberately selected to represent periods containing shocks. Five methodologies (ISO 2631-1:1997, BS 6841:1987, ISO 2631-5:2004, DIN SPEC 45697:2012 and one specified by Gunston [2011], 'G-method') were applied to the vibration samples. In order to compare different evaluation metrics, limiting exposures were determined by calculating times to reach the upper limit thresholds given in the methods. Over 10-fold shorter times to exposure thresholds were obtained for the tri-axial VDV (BS 6841) than for the dominant r.m.s. (ISO 2631-1) when exposures were of high magnitude or contained substantial shocks. Under these exposure conditions, the sixth power approaches (ISO 2631-5, DIN SPEC, G-method) are more stringent than a fourth power VDV method. The r.m.s. method may lead to misleading outcomes especially if a lengthy measurement includes a small number of severe impacts. In conclusion, methodologies produce different evaluations of the vibration severity depending on the exposure characteristics, and the correct method must be selected. Health risks related to whole-body vibration and high acceleration events may be predicted by means of several different methods. This study compares five such methods giving emphasis on their applicability in the presence of shocks. The results showed significant discrepancies between the risk assessments, especially for the most extreme exposures.

  17. STUDY& VIBRATION ANALYSISIN ELASTIC CRACKED BEAM BY FEM & ANSYS

    OpenAIRE

    PriyankaTiwari*1, Nikhilesh N Singh2 & Dr. Prabhat Kumar Sinha3

    2017-01-01

    In the current research, the natural frequency of a beam with a crack, is investigated numerically by finite part methodology victimization analysis software system ANSYS APDL 15.0. In this research” Vibration Analysis of Elastic Cracked Beam” the response characteristics of a beam is predicted for both intact and cracked beams. In addition to that the response characteristics for different crack depth were studied. Crack depth and location were main parameters for vibration analysis. So it b...

  18. EMG and Heart Rate Responses Decline within 5 Days of Daily Whole-Body Vibration Training with Squatting

    Science.gov (United States)

    Rosenberger, André; Liphardt, Anna-Maria; Bargmann, Arne; Müller, Klaus; Beck, Luis; Mester, Joachim; Zange, Jochen

    2014-01-01

    In this study, we examined the acute effects of a 5-day daily whole-body vibration (WBV) training on electromyography (EMG) responses of the m. rectus femoris and m. gastrocnemius lateralis, heart rate (HR, continuously recorded), and blood lactate levels. The purpose of the study was to investigate the adaptation of muscle activity, heart rate and blood lactate levels during 5 days of daily training. Two groups of healthy male subjects performed either squat exercises with vibration at 20 Hz on a side alternating platform (SE+V, n = 20, age  = 31.9±7.5 yrs., height  = 178.8±6.2 cm, body mass  = 79.2±11.4 kg) or squat exercises alone (SE, n = 21, age  = 28.4±7.3 years, height  = 178.9±7.4 cm, body mass  = 77.2±9.7 kg). On training day 1, EMG amplitudes of the m. rectus femoris were significantly higher (P<0.05) during SE+V than during SE. However, this difference was no longer statistically significant on training days 3 and 5. The heart rate (HR) response was significantly higher (P<0.05) during SE+V than during SE on all training days, but showed a constant decline throughout the training days. On training day 1, blood lactate increased significantly more after SE+V than after SE (P<0.05). On the following training days, this difference became much smaller but remained significantly different. The specific physiological responses to WBV were largest on the initial training day and most of them declined during subsequent training days, showing a rapid neuromuscular and cardiovascular adaptation to the vibration stimulus. PMID:24905721

  19. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    Science.gov (United States)

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18 Hz, with a constant amplitude of 0.4 g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4 Hz for both the lumbar (1.55 ± 0.34) and thoracic (1.49 ± 0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2 Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4 Hz for the Z-direction and 2-3 Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such

  20. Analytical predictions for vibration phase shifts along fluid-conveying pipes due to Coriolis forces and imperfections

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Dahl, Jonas

    2010-01-01

    Resonant vibrations of a fluid-conveying pipe are investigated, with special consideration to axial shifts in vibration phase accompanying fluid flow and various imperfections. This is relevant for understanding elastic wave propagation in general, and for the design and trouble-shooting of phase...

  1. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  2. Analysis the dynamic response of earth dam in free vibration and forced by introducing the effect of the interaction dam foundation

    Directory of Open Access Journals (Sweden)

    Malika Boumaiza

    2018-01-01

    Full Text Available The present study concerns the analysis of the dynamic response of earth dam, in free and forced vibration (under the effect of earthquake using the finite element method. The analysis is carried out at the end of dam construction without filling. The behavior of the dam materials and the foundation is linear elastic. In free vibration, to better understand the effect of the dam foundation interaction, we will take into account different site conditions and see their influence on the free vibration characteristics of the dam. In forced vibration, to study the seismic response of the dam, the system is subjected to the acceleration of the Boumerdes earthquake of May 21, 2003 recorded at the station n ° 2 of the dam of Kaddara in the base, with a parametric study taking into account the influence of the main parameters such as the mechanical properties of the soil: rigidity, density.

  3. Literature survey on anti-vibration gloves

    CSIR Research Space (South Africa)

    Sampson, E

    2003-08-01

    Full Text Available ............................................................................................................... 1 2. HAND ARM VIBRATION SYNDROME (HAVS).......................................................... 2 2.1 Hand-arm vibration................................................. Error! Bookmark not defined. 2.2 Human Response to vibration...

  4. Method to characterize the vibrational response of a beetle type scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Behler, S.; Rose, M.K.; Ogletree, D.F.; Salmeron, M. [Materials Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-01-01

    We describe a method for analyzing the external vibrations and intrinsic mechanical resonances affecting scanning probe microscopes by using the microscope as an accelerometer. We show that clear correlations can be established between the frequencies of mechanical vibrational modes and the frequencies of peaks in the tunnel current noise power spectrum. When this method is applied to our {open_quotes}beetle{close_quotes} type scanning tunneling microscope (STM), we find unexpected low frequency {open_quotes}rattling resonances{close_quotes} in the 500{endash}1700 Hz range that depend on the exact lateral position of the STM, in addition to the expected mechanical resonances of the STM above 4 kHz which are in good agreement with theoretical estimates. We believe that these rattling resonances may be a general problem for scanning probe microscopes that use some type of kinetic motion for coarse positioning. {copyright} {ital 1997 American Institute of Physics.}

  5. The response characteristics of vibration-sensitive saccular fibers in the grassfrog, Rana temporaria

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, J; Jørgensen, M B

    1988-01-01

    . The phase angles preferred by the fibers at 10 Hz were bimodally distributed with the two peaks about 180 degrees apart. This finding probably reflects the morphological observation that the saccular macula contains two oppositely oriented hair-cell populations. The results also indicate that the actual...... motion of the otolith relative to the macula is complex. No behavioral role of a vibration receptor has been demonstrated in the grassfrog.(ABSTRACT TRUNCATED AT 250 WORDS)...

  6. Collaboratively Adaptive Vibration Sensing System for High-fidelity Monitoring of Structural Responses Induced by Pedestrians

    Directory of Open Access Journals (Sweden)

    Shijia Pan

    2017-05-01

    Full Text Available This paper presents a collaboratively adaptive vibration monitoring system that captures high-fidelity structural vibration signals induced by pedestrians. These signals can be used for various human activities’ monitoring by inferring information about the impact sources, such as pedestrian footsteps, door opening and closing, and dragging objects. Such applications often require high-fidelity (high resolution and low distortion signals. Traditionally, expensive high resolution and high dynamic range sensors are adopted to ensure sufficient resolution. However, for sensing systems that use low-cost sensing devices, the resolution and dynamic range are often limited; hence this type of sensing methods is not well explored ubiquitously. We propose a low-cost sensing system that utilizes (1 a heuristic model of the investigating excitations and (2 shared information through networked devices to adapt hardware configurations and obtain high-fidelity structural vibration signals. To further explain the system, we use indoor pedestrian footstep sensing through ambient structural vibration as an example to demonstrate the system performance. We evaluate the application with three metrics that measure the signal quality from different aspects: the sufficient resolution rate to present signal resolution improvement without clipping, the clipping rate to measure the distortion of the footstep signal, and the signal magnitude to quantify the detailed resolution of the detected footstep signal. In experiments conducted in a school building, our system demonstrated up to 2× increase on the sufficient resolution rate and 2× less error rate when used to locate the pedestrians as they walk along the hallway, compared to a fixed sensing setting.

  7. Recent Development of the Empirical Basis for Prediction of Vortex Induced Vibrations

    Directory of Open Access Journals (Sweden)

    Carl M. Larsen

    2016-02-01

    Full Text Available This paper describes the research activity related to VIV that has taken place at NTNU and MARINTEK in Trondheim during the last years. The overall aim of the work has been increased understanding of the VIV phenomenon and to improve the empirical basis for prediction of VIV. The work has included experiments with flexible beams in sheared and uniform flow and forced motions of short, rigid cylinders. Key results in terms of hydrodynamic coefficients and analysis procedures have been implemented in the computer program VIVANA, which has resulted in new analysis options and improved hydrodynamic coefficients. Some examples of results are presented, but the main focus of the paper is to give an overview of the work and point out how the new results can be used in order to improve VIV analyses.

  8. Field Response Prediction: Framing the problem.

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Palmer, Belkis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    Predicting the performance of radiation detection systems at field sites based on measured performance acquired under controlled conditions at test locations, e.g., the Nevada National Security Site (NNSS), remains an unsolved and standing issue within DNDO’s testing methodology. Detector performance can be defined in terms of the system’s ability to detect and/or identify a given source or set of sources, and depends on the signal generated by the detector for the given measurement configuration (i.e., source strength, distance, time, surrounding materials, etc.) and on the quality of the detection algorithm. Detector performance is usually evaluated in the performance and operational testing phases, where the measurement configurations are selected to represent radiation source and background configurations of interest to security applications.

  9. Pre-treatment amygdala volume predicts electroconvulsive therapy response

    NARCIS (Netherlands)

    ten Doesschate, Freek; van Eijndhoven, Philip; Tendolkar, Indira; van Wingen, Guido A.; van Waarde, Jeroen A.

    2014-01-01

    Electroconvulsive therapy (ECT) is an effective treatment for patients with severe depression. Knowledge on factors predicting therapeutic response may help to identify patients who will benefit most from the intervention. Based on the neuroplasticity hypothesis, volumes of the amygdala and

  10. Exaggerated haemodynamic and neural responses to involuntary contractions induced by whole-body vibration in normotensive obese versus lean women.

    Science.gov (United States)

    Dipla, Konstantina; Kousoula, Dimitra; Zafeiridis, Andreas; Karatrantou, Konstantina; Nikolaidis, Michalis G; Kyparos, Antonios; Gerodimos, Vassilis; Vrabas, Ioannis S

    2016-06-01

    What is the central question of this study? In obesity, the exaggerated blood pressure response to voluntary exercise is linked to hypertension, yet the mechanisms are not fully elucidated. We examined whether involuntary contractions elicit greater haemodynamic responses and altered neural control of blood pressure in normotensive obese versus lean women. What is the main finding and its importance? During involuntary contractions induced by whole-body vibration, there were augmented blood pressure and spontaneous baroreflex responses in obese compared with lean women. This finding is suggestive of an overactive mechanoreflex in the exercise-induced hypertensive response in obesity. Passive contractions did not elicit differential heart rate responses in obese compared with lean women, implying other mechanisms for the blunted heart rate response reported during voluntary exercise in obesity. In obesity, the exaggerated blood pressure (BP) response to exercise is linked to hypertension, yet the mechanisms are not fully elucidated. In this study, we examined whether involuntary mechanical oscillations, induced by whole-body vibration (WBV), elicit greater haemodynamic responses and altered neural control of BP in obese versus lean women. Twenty-two normotensive, premenopausal women (12 lean and 10 obese) randomly underwent a passive WBV (25 Hz) and a control protocol (similar posture without WVB). Beat-by-beat BP, heart rate, stroke volume, systemic vascular resistance, cardiac output, parasympathetic output (evaluated by heart rate variability) and spontaneous baroreceptor sensitivity (sBRS) were assessed. We found that during WBV, obese women exhibited an augmented systolic BP response compared with lean women that was correlated with body fat percentage (r = 0.77; P obese versus lean women, associated with a greater stroke volume index in obese women. Involuntary contractions did not elicit a differential magnitude of responses in heart rate, heart rate

  11. Radiation response prediction of single mode fibers

    Science.gov (United States)

    Friebele, E. J.; Askins, Charles G.; Brambani, Louise A.; Dorsey, Kenneth L.; Griscom, David L.; Gingerich, Michael E.; Harrington, Calvin C.; Shaw, Cathy M.; Tsai, Tsung-Ein; Paek, Un-Chul

    1988-03-01

    Fiber optic transmission systems, because of their extraordinary channel capacity and decreasing cost, are rapidly becoming the preferred terrestrial transmission media of the nation's long distance, inter-city telecommunications infrastructure. Since the commercial telephone network forms the foundation for emergency communication in the event of a national crisis or emergency, additional requirements are placed on the fibers and components being installed. One of the most stressing environments for the fiber consists of fallout subsequent to a nuclear attack. The susceptibility of some of types of commercially available fiber optic cable to optical darkening (and hence increased signal loss) from exposure to ionizing radiation raises serious questions about the survivability of such systems in the reconstitution phase of a nuclear conflict. There is a large body of knowledge available on the effects of gamma radiation on the older multimode fiber cables. However, there are critically important knowledge gaps with respect to the newer single mode cables which are employed in the inter-city fiber transmission links being installed today. This document is a final report of a two year program funded by NCS at NRL, which was the first systematic study of the interrelationship of fiber fabrication parameters and radiation-induced loss. A rudimentary regression model was developed for predicting the loss induced by a fallout exposure at -35 C.

  12. Experimentally validated structural vibration frequencies’ prediction from frictional temperature signatures using numerical simulation: A case of laced cantilever beam-like structures

    Directory of Open Access Journals (Sweden)

    Stephen M Talai

    2016-12-01

    Full Text Available This article pertains to the prediction of structural vibration frequencies from frictional temperature evolution through numerical simulation. To achieve this, a finite element analysis was carried on AISI 304 steel cantilever beam-like structures coupled with a lacing wire using the commercial software ABAQUS/CAE. The coupled temperature–displacement transient analysis simulated the frictional thermal generation. Furthermore, an experimental analysis was carried out with infrared cameras capturing the interfacial thermal images while the beams were subjected to forced excitation, thus validating the finite element analysis results. The analysed vibration frequencies using a MATLAB fast Fourier transform algorithm confirmed the validity of its prediction from the frictional temperature time domain waveform. This finding has a great significance to the mechanical and aerospace engineering communities for the effective structural health monitoring of dynamic structures online using infrared thermography, thus reducing the downtime and maintenance cost, leading to increased efficiency.

  13. Deterministic Predictions of Vessel Responses Based on Past Measurements

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam; Jensen, Jørgen Juncher

    2017-01-01

    The paper deals with a prediction procedure from which global wave-induced responses can be deterministically predicted a short time, 10-50 s, ahead of current time. The procedure relies on the autocorrelation function and takes into account prior measurements only; i.e. knowledge about wave cond...

  14. Model Predictive Control based on Finite Impulse Response Models

    DEFF Research Database (Denmark)

    Prasath, Guru; Jørgensen, John Bagterp

    2008-01-01

    We develop a regularized l2 finite impulse response (FIR) predictive controller with input and input-rate constraints. Feedback is based on a simple constant output disturbance filter. The performance of the predictive controller in the face of plant-model mismatch is investigated by simulations...

  15. Dynamic Responses and Vibration Control of the Transmission Tower-Line System: A State-of-the-Art Review

    Science.gov (United States)

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers. PMID:25105161

  16. Dynamic responses and vibration control of the transmission tower-line system: a state-of-the-art review.

    Science.gov (United States)

    Chen, Bo; Guo, Wei-hua; Li, Peng-yun; Xie, Wen-ping

    2014-01-01

    This paper presented an overview on the dynamic analysis and control of the transmission tower-line system in the past forty years. The challenges and future developing trends in the dynamic analysis and mitigation of the transmission tower-line system under dynamic excitations are also put forward. It also reviews the analytical models and approaches of the transmission tower, transmission lines, and transmission tower-line systems, respectively, which contain the theoretical model, finite element (FE) model and the equivalent model; shows the advances in wind responses of the transmission tower-line system, which contains the dynamic effects under common wind loading, tornado, downburst, and typhoon; and discusses the dynamic responses under earthquake and ice loads, respectively. The vibration control of the transmission tower-line system is also reviewed, which includes the magnetorheological dampers, friction dampers, tuned mass dampers, and pounding tuned mass dampers.

  17. Pressure integration technique for predicting wind-induced response in high-rise buildings

    Directory of Open Access Journals (Sweden)

    Aly Mousaad Aly

    2013-12-01

    Full Text Available This paper presents a procedure for response prediction in high-rise buildings under wind loads. The procedure is illustrated in an application example of a tall building exposed to both cross-wind and along-wind loads. The responses of the building in the lateral directions combined with torsion are estimated simultaneously. Results show good agreement with recent design standards; however, the proposed procedure has the advantages of accounting for complex mode shapes, non-uniform mass distribution, and interference effects from the surrounding. In addition, the technique allows for the contribution of higher modes. For accurate estimation of the acceleration response, it is important to consider not only the first two lateral vibrational modes, but also higher modes. Ignoring the contribution of higher modes may lead to underestimation of the acceleration response; on the other hand, it could result in overestimation of the displacement response. Furthermore, the procedure presented in this study can help decision makers, involved in a tall building design/retrofit to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, damping enhancement, and/or materials change, with an objective to improve the resiliency and the serviceability under extreme wind actions.

  18. Early prediction of blonanserin response in Japanese patients with schizophrenia.

    Science.gov (United States)

    Kishi, Taro; Matsuda, Yuki; Fujita, Kiyoshi; Iwata, Nakao

    2014-01-01

    Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia in Japan and Korea. The present study aimed to examine early prediction of blonanserin in patients with schizophrenia. An 8-week, prospective, single-arm, flexible-dose clinical trial of blonanserin in patients with schizophrenia was conducted under real-world conditions. The inclusion criteria were antipsychotic naïve, and first-episode schizophrenia patients or schizophrenia patients with no consumption of any antipsychotic medication for more than 4 weeks before enrollment in this study. The positive predictive value, negative predictive value, sensitivity, specificity, and predictive power were calculated for the response status at week 4 to predict the subsequent response at week 8. Thirty-seven patients were recruited (56.8% of them had first-episode schizophrenia), and 28 (75.7%) completed the trial. At week 8, blonanserin was associated with a significant improvement in the Positive and Negative Syndrome Scale (PANSS) total score (Pblonanserin response at week 4 could predict the later response at week 8.

  19. Fatigue-induced changes in tonic vibration response (TVR) in humans: relationships between electromyographic and biochemical events.

    Science.gov (United States)

    Brerro-Saby, Christelle; Delliaux, Stéphane; Steinberg, Jean Guillaume; Jammes, Yves

    2008-11-01

    Fatigue-induced changes in the proprioceptive reflex loop were explored in humans by using the tonic electromyographic (EMG) response to vibration (TVR) and relating it to lactic acidosis (LA) and oxidative stress. TVR was measured in flexor digitorum superficialis before and after sustained or intermittent handgrip at maximal voluntary contraction (MVC). TVR variations were compared with the changes in EMG power spectrum preceding contractile fatigue, the Hoffman reflex (H-reflex), and plasma concentrations of LA and thiobarbituric acid reactive substances (TBARS). After both sustained and intermittent handgrips, TVR amplitude first declined then increased, independently from the changes in EMG power spectrum and H-reflex. TVR depression and facilitation were respectively concomitant with increases in LA and TBARS. The TVR depression was proportional to the increased LA level. The origin of TVR changes after muscle fatigue is questioned because the relationship between TVR depression and LA accumulation might be temporal, not causal, and changes in muscle stiffness were not explored.

  20. a Comparison of Evaluations and Assessments Obtained Using Alternative Standards for Predicting the Hazards of Whole-Body Vibration and Repeated Shocks

    Science.gov (United States)

    Lewis, C. H.; Griffin, M. J.

    1998-08-01

    There are three current standards that might be used to assess the vibration and shock transmitted by a vehicle seat with respect to possible effects on human health: ISO 2631/1 (1985), BS 6841 (1987) and ISO 2631-1 (1997). Evaluations have been performed on the seat accelerations measured in nine different transport environments (bus, car, mobile crane, fork-lift truck, tank, ambulance, power boat, inflatable boat, mountain bike) in conditions that might be considered severe. For each environment, limiting daily exposure durations were estimated by comparing the frequency weighted root mean square (i.e., r.m.s.) accelerations and the vibration dose values (i.e.,VDV), calculated according to each standard with the relevant exposure limits, action level and health guidance caution zones. Very different estimates of the limiting daily exposure duration can be obtained using the methods described in the three standards. Differences were observed due to variations in the shapes of the frequency weightings, the phase responses of the frequency weighting filters, the method of combining multi-axis vibration, the averaging method, and the assessment method. With the evaluated motions, differences in the shapes of the weighting filters results in up to about 31% difference in r.m.s. acceleration between the “old” and the “new” ISO standard and up to about 14% difference between BS 6841 and the “new” ISO 2631. There were correspondingly greater differences in the estimates of safe daily exposure durations. With three of the more severe motions there was a difference of more than 250% between estimated safe daily exposure durations based on r.m.s. acceleration and those based on fourth power vibration dose values. The vibration dose values provided the more cautious assessments of the limiting daily exposure duration.

  1. Prediction and control of neural responses to pulsatile electrical stimulation

    Science.gov (United States)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  2. Posterior Predictive Model Checking for Multidimensionality in Item Response Theory

    Science.gov (United States)

    Levy, Roy; Mislevy, Robert J.; Sinharay, Sandip

    2009-01-01

    If data exhibit multidimensionality, key conditional independence assumptions of unidimensional models do not hold. The current work pursues posterior predictive model checking, a flexible family of model-checking procedures, as a tool for criticizing models due to unaccounted for dimensions in the context of item response theory. Factors…

  3. Predicting responsiveness to intervention in dyslexia using dynamic assessment

    NARCIS (Netherlands)

    Aravena, S.; Tijms, J.; Snellings, P.; van der Molen, M.W.

    In the current study we examined the value of a dynamic test for predicting responsiveness to reading intervention for children diagnosedwith dyslexia. The test consisted of a 20-minute training aimed at learning eight basic letter–speech sound correspondences within an artificial orthography,

  4. Prediction of Clinical Response in Children Taking Methylphenidate.

    Science.gov (United States)

    Aman, Michael G.; Turbott, Sarah H.

    1991-01-01

    Twenty-six children (ages 5-12) with attention deficit hyperactivity disorder were tested before and after treatment with methylphenidate. Few performance tests predicted clinical response to medication. Chronological age and performance on a memory distraction task and the Graduated Holes Task were moderately correlated with clinical outcome.…

  5. Drug response prediction in high-risk multiple myeloma

    DEFF Research Database (Denmark)

    Vangsted, A J; Helm-Petersen, S; Cowland, J B

    2018-01-01

    A Drug Response Prediction (DRP) score was developed based on gene expression profiling (GEP) from cell lines and tumor samples. Twenty percent of high-risk patients by GEP70 treated in Total Therapy 2 and 3A have a progression-free survival (PFS) of more than 10years. We used available GEP data ...

  6. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  7. Prenatal Cortisol Exposure Predicts Infant Cortisol Response to Acute Stress

    Science.gov (United States)

    O’Connor, Thomas G; Bergman, Kristin; Sarkar, Pampa; Glover, Vivette

    2012-01-01

    Summary Experimental animal findings suggest that early stress and glucocorticoid exposure may program the function of the Hypothalamic-pituitary-adrenal (HPA) axis in the offspring. The extension of these findings to human development is not yet clear. A prospective longitudinal study was conducted on 125 mothers and their normally developing children. Amniotic fluid was obtained at, on average, 17.2 weeks gestation; infant behavior and cortisol response to a separation-reunion stress was assessed at 17 months. Amniotic fluid cortisol predicted infant cortisol response to separation-reunion stress: infants who were exposed to higher levels of cortisol in utero showed higher pre-stress cortisol values and blunted response to stress exposure. The association was independent of prenatal, obstetric, and socioeconomic factors and child-parent attachment. The findings provide some of the strongest data in humans that HPA axis functioning in the child may be predicted from prenatal cortisol exposure. PMID:22315044

  8. Early prediction of blonanserin response in Japanese patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Kishi T

    2014-09-01

    Full Text Available Taro Kishi,1 Yuki Matsuda,1 Kiyoshi Fujita,2,3 Nakao Iwata1 1Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; 2Department of Psychiatry, Okehazama Hospital, Toyoake, Aichi, Japan; 3The Neuroscience Research Center, Toyoake, Aichi, Japan Background: Blonanserin is a second-generation antipsychotic used for the treatment of schizophrenia in Japan and Korea. The present study aimed to examine early prediction of blonanserin in patients with schizophrenia. Methods: An 8-week, prospective, single-arm, flexible-dose clinical trial of blonanserin in patients with schizophrenia was conducted under real-world conditions. The inclusion criteria were antipsychotic naïve, and first-episode schizophrenia patients or schizophrenia patients with no consumption of any antipsychotic medication for more than 4 weeks before enrollment in this study. The positive predictive value, negative predictive value, sensitivity, specificity, and predictive power were calculated for the response status at week 4 to predict the subsequent response at week 8.Results: Thirty-seven patients were recruited (56.8% of them had first-episode schizophrenia, and 28 (75.7% completed the trial. At week 8, blonanserin was associated with a significant improvement in the Positive and Negative Syndrome Scale (PANSS total score (P<0.0001 and in positive (P<0.0001, negative (P<0.0001, and general subscale scores (P<0.0001. In terms of percentage improvement of PANSS total scores from baseline to week 8, 64.9% of patients showed a ≥20% reduction in the PANSS total score and 48.6% showed a ≥30% reduction. However, 8.1% of patients experienced at least one adverse event. Using the 20% reduction in the PANSS total score at week 4 as a definition of an early response, the negative predictive values for later responses (ie, reductions of ≥30 and ≥40 in the PANSS total scores were 88.9% and 94.1%, respectively. The specificities were 80.0% and

  9. Analyzing the vibrational response of an AFM cantilever in liquid with the consideration of tip mass by comparing the hydrodynamic and contact repulsive force models in higher modes

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-04-01

    This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural

  10. Metabolic response at repeat PET/CT predicts pathological response to neoadjuvant chemotherapy in oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, R.S. [Oxford Cancer and Haematology Centre, Department of Oncology, Oxford (United Kingdom); Oxford Cancer and Haematology Centre, Department of Oesophagogastric Surgery, Oxford (United Kingdom); NIHR Biomedical Research Centre, Oxford (United Kingdom); Middleton, M.R. [Oxford Cancer and Haematology Centre, Department of Oncology, Oxford (United Kingdom); NIHR Biomedical Research Centre, Oxford (United Kingdom); Blesing, C.; Patel, K.; Warner, N. [Oxford Cancer and Haematology Centre, Department of Oncology, Oxford (United Kingdom); Marshall, R.E.K.; Maynard, N.D. [Oxford Cancer and Haematology Centre, Department of Oesophagogastric Surgery, Oxford (United Kingdom); Bradley, K.M. [Oxford Cancer and Haematology Centre, Department of Radiology, Oxford (United Kingdom); Gleeson, F.V. [Oxford Cancer and Haematology Centre, Department of Radiology, Oxford (United Kingdom); NIHR Biomedical Research Centre, Oxford (United Kingdom)

    2012-09-15

    Reports have suggested that a reduction in tumour 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET) examination during or after neoadjuvant chemotherapy may predict pathological response in oesophageal cancer. Our aim was to determine whether metabolic response predicts pathological response to a standardised neoadjuvant chemotherapy regimen within a prospective clinical trial. Consecutive patients staged with potentially curable oesophageal cancer who underwent treatment within a non-randomised clinical trial were included. A standardised chemotherapy regimen (two cycles of oxaliplatin and 5-fluorouracil) was used. PET/CT was performed before chemotherapy and repeated 24-28 days after the start of cycle 2. Forty-eight subjects were included: mean age 65 years; 37 male. Using the median percentage reduction in SUV{sub max} (42%) to define metabolic response, pathological response was seen in 71% of metabolic responders (17/24) compared with 33% of non-responders (8/24; P = 0.009, sensitivity 68%, specificity 70%). Pathological response was seen in 81% of subjects with a complete metabolic response (13/16) compared with 38% of those with a less than complete response (12/32; P = 0.0042, sensitivity 52%, specificity 87%). There was no significant histology-based effect. There was a significant association between metabolic response and pathological response; however, accuracy in predicting pathological response was relatively low. (orig.)

  11. Road condition evaluation using the vibration response of ordinary vehicles and synchronously recorded movies

    Science.gov (United States)

    Nagayama, Tomonori; Miyajima, Akira; Kimura, Shunya; Shimada, Yuuki; Fujino, Yozo

    2013-04-01

    Frequent and quantitative assessment of road condition is important as the maintenance of the road infrastructure needs to be performed with a limited budget. Vehicle Intelligent Monitoring System (VIMS) has been developed to estimate an index of road ride comfort (International Roughness Index; IRI) by obtaining the acceleration responses of ordinary vehicles together with GPS position data. VIMS converts the vertical acceleration of the measurement vehicle to acceleration RMS of the sprung mass of the standard Quarter Car model, and then to IRI using an approximate expression. By driving over a hump of a known profile and comparing the responses with Quarter Car simulation responses, a variety of vehicles can be calibrated; a non-linear quarter car model equivalent to the vehicle is identified. By performing numerical simulation using the nonlinear vehicle model, the difference in driving speed can also be calibrated. The measurement results can be exported to maps to comprehend road condition in a geographical view and to other data base systems. In addition, smartphones which can record motions, GPS data, and movies synchronously are utilized to improve VIMS. Because practical installation locations of smartphones are limited and because angular velocity responses are less subjective to difference in installation locations, VIMS is extended to utilize the pitching angular velocity. Furthermore, high frequency components of acceleration responses are analyzed to distinguish local pavement damages or joints from rough road sections. The examination of synchronously recorded movies confirmed the capability to distinguish the local conditions.

  12. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    Science.gov (United States)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  13. Mechanical vibration and shock analysis, sinusoidal vibration

    CERN Document Server

    Lalanne, Christian

    2014-01-01

    Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m

  14. An ANN-based approach to predict blast-induced ground vibration of Gol-E-Gohar iron ore mine, Iran

    Directory of Open Access Journals (Sweden)

    Mahdi Saadat

    2014-02-01

    Full Text Available Blast-induced ground vibration is one of the inevitable outcomes of blasting in mining projects and may cause substantial damage to rock mass as well as nearby structures and human beings. In this paper, an attempt has been made to present an application of artificial neural network (ANN to predict the blast-induced ground vibration of the Gol-E-Gohar (GEG iron mine, Iran. A four-layer feed-forward back propagation multi-layer perceptron (MLP was used and trained with Levenberg–Marquardt algorithm. To construct ANN models, the maximum charge per delay, distance from blasting face to monitoring point, stemming and hole depth were taken as inputs, whereas peak particle velocity (PPV was considered as an output parameter. A database consisting of 69 data sets recorded at strategic and vulnerable locations of GEG iron mine was used to train and test the generalization capability of ANN models. Coefficient of determination (R2 and mean square error (MSE were chosen as the indicators of the performance of the networks. A network with architecture 4-11-5-1 and R2 of 0.957 and MSE of 0.000722 was found to be optimum. To demonstrate the supremacy of ANN approach, the same 69 data sets were used for the prediction of PPV with four common empirical models as well as multiple linear regression (MLR analysis. The results revealed that the proposed ANN approach performs better than empirical and MLR models.

  15. Mistuned Vibration of Radial Inflow Turbine Impeller

    Science.gov (United States)

    Hattori, Hiroaki; Unno, Masaru; Hayashi, Masazumi

    This paper is concerned with the numerical prediction of impeller blade vibration due to excitation by the wake of nozzle guide vanes in turbochargers. This problem is particularly important as turbochargers are used in a broad range of operation conditions, leading to some unavoidable resonant frequencies. In the paper, first the unsteady pressure distributions on the rotor blades are analyzed and structural response analysis is performed for the excitation component with largest contribution to pressure fluctuation. In a parametric survey, pressure expansion ratio and inlet flow temperature are varied in order to investigate the impact on vibration response. Unsteady CFD+FEM prediction well explains the qualitative trends that appeared in experimental survey. The result also points out that a fluctuation in natural frequency among the blades of only a few percent may cause large magnification factors. Finally, adjustment of disk thickness is suggested as a measure to reduce the magnification factor and its effectiveness demonstrated numerically as well as experimentally.

  16. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    Science.gov (United States)

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-01-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement. PMID:27376303

  17. Predicting aquifer response time for application in catchment modeling.

    Science.gov (United States)

    Walker, Glen R; Gilfedder, Mat; Dawes, Warrick R; Rassam, David W

    2015-01-01

    It is well established that changes in catchment land use can lead to significant impacts on water resources. Where land-use changes increase evapotranspiration there is a resultant decrease in groundwater recharge, which in turn decreases groundwater discharge to streams. The response time of changes in groundwater discharge to a change in recharge is a key aspect of predicting impacts of land-use change on catchment water yield. Predicting these impacts across the large catchments relevant to water resource planning can require the estimation of groundwater response times from hundreds of aquifers. At this scale, detailed site-specific measured data are often absent, and available spatial data are limited. While numerical models can be applied, there is little advantage if there are no detailed data to parameterize them. Simple analytical methods are useful in this situation, as they allow the variability in groundwater response to be incorporated into catchment hydrological models, with minimal modeling overhead. This paper describes an analytical model which has been developed to capture some of the features of real, sloping aquifer systems. The derived groundwater response timescale can be used to parameterize a groundwater discharge function, allowing groundwater response to be predicted in relation to different broad catchment characteristics at a level of complexity which matches the available data. The results from the analytical model are compared to published field data and numerical model results, and provide an approach with broad application to inform water resource planning in other large, data-scarce catchments. © 2014, CommonWealth of Australia. Groundwater © 2014, National Ground Water Association.

  18. Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus

    DEFF Research Database (Denmark)

    Pena, Michelle J; Heinzel, Andreas; Rossing, Peter

    2016-01-01

    BACKGROUND: Individual patients show a large variability in albuminuria response to angiotensin receptor blockers (ARB). Identifying novel biomarkers that predict ARB response may help tailor therapy. We aimed to discover and validate a serum metabolite classifier that predicts albuminuria response...

  19. An experimental study of changes in the impulse response of a wood plate that is subject to vibrational stimulus

    Science.gov (United States)

    Grogan, Jared; Braunstein, Michael; Piacsek, Andrew

    2003-04-01

    It is a well-known dictum among players of stringed instruments that the tone of a new instrument improves with playing and that a fine instrument needs to be played if it is to maintain its optimum sound quality. This process is sometimes referred to as ``playing in'' an instrument. There is scant mention in the scientific literature, however, of a quantitative analysis of this phenomenon. As a first step in rigorously testing this hypothesis, measurements were made of tap tones of rectangular pieces of thin spruce before and after they were subjected to vibrational stimulus. Four spruce rectangles (20x28 cm) were cut from a single sheet obtained from a luthier supplier; three of these were stimulated at different amplitudes, while the fourth was a control plate. The stimulus (provided by a harmonically driven guitar string connected to the plate via a bridge) lasted approximately 10 weeks, during which time tap tones of all four plates were periodically recorded. Spectrograms of the tap tones are compared among the plates and over time. A preliminary analysis of the data does not reveal any significant changes in the acoustic response of the plates.

  20. Gene-expression profiling to predict responsiveness to immunotherapy.

    Science.gov (United States)

    Jamieson, N B; Maker, A V

    2017-03-01

    Recent clinical successes with immunotherapy have resulted in expanding indications for cancer therapy. To enhance antitumor immune responses, and to better choose specific strategies matched to patient and tumor characteristics, genomic-driven precision immunotherapy will be necessary. Herein, we explore the role that tumor gene-expression profiling (GEP) may have in the prediction of an immunotherapeutic response. Genetic markers associated with response to immunotherapy are addressed as they pertain to the tumor genomic landscape, the extent of DNA damage, tumor mutational load and tumor-specific neoantigens. Furthermore, genetic markers associated with resistance to checkpoint blockade and relapse are reviewed. Finally, the utility of GEP to identify new tumor types for immunotherapy and implications for combinatorial strategies are summarized.

  1. Development of agent based model for predicting emergency response time

    Directory of Open Access Journals (Sweden)

    Mainak Bandyopadhyay

    2016-09-01

    Full Text Available Determining the time to reach any incident location by an emergency service is a very important aspect for emergency management. In most of the developing countries road network is considered as a main infrastructure for transporting emergency services. Therefore in order to predict the response time consideration must be given to the characteristics of road segments and driving behaviour of emergency vehicle drivers. In this paper real time driving data by Fire emergency service of Allahabad city is collected using GPS logger HOLUX M1000C. The spatial trajectories collected from GPS logger are analysed in GIS along with road network, population density and landuse data to determine the driver's route deciding behaviour. Based on the integrated analysis the Fire Emergency Vehicle Agent is designed. The Agent based model is simulated to determine the response time which is subsequently compared with the real response time.

  2. Free Vibration of Uncertain Unsymmetrically Laminated Beams

    Science.gov (United States)

    Kapania, Rakesh K.; Goyal, Vijay K.

    2001-01-01

    Monte Carlo Simulation and Stochastic FEA are used to predict randomness in the free vibration response of thin unsymmetrically laminated beams. For the present study, it is assumed that randomness in the response is only caused by uncertainties in the ply orientations. The ply orientations may become random or uncertain during the manufacturing process. A new 16-dof beam element, based on the first-order shear deformation beam theory, is used to study the stochastic nature of the natural frequencies. Using variational principles, the element stiffness matrix and mass matrix are obtained through analytical integration. Using a random sequence a large data set is generated, containing possible random ply-orientations. This data is assumed to be symmetric. The stochastic-based finite element model for free vibrations predicts the relation between the randomness in fundamental natural frequencies and the randomness in ply-orientation. The sensitivity derivatives are calculated numerically through an exact formulation. The squared fundamental natural frequencies are expressed in terms of deterministic and probabilistic quantities, allowing to determine how sensitive they are to variations in ply angles. The predicted mean-valued fundamental natural frequency squared and the variance of the present model are in good agreement with Monte Carlo Simulation. Results, also, show that variations between plus or minus 5 degrees in ply-angles can affect free vibration response of unsymmetrically and symmetrically laminated beams.

  3. Clinical predictive factors of sildenafil response: a penile hemodynamic study.

    Science.gov (United States)

    Elhanbly, S M; Elkholy, A A-M; Alghobary, M; Abou Al-Ghar, M

    2015-03-01

    Phosphodiestrase-5 inhibitors are an important line of treatment for erectile dysfunction (ED). To detect the clinical and hemodynamic predictors of sildenafil response, we conducted this study on 124 Egyptian men with ED. All patients were evaluated by thorough history and clinical assessment with measurement of the abridged international index of erectile function-5 (IIEF-5) score. All patients were then subjected to intracavernosal injection (ICI) of trimix and pharmaco-penile duplex ultrasonography (PPDU). Patients were then classified into sildenafil responders and non-responders after six consecutive doses of 100 mg sildenafil. On doing the binary logistic stepwise regression analysis, only ED duration, IIEF-5 score, and response to ICI were the significant independent predictors of sildenafil response. These three parameters together correctly predicted the sildenafil response by 81.5% (p value <0.001). With the receiver operator characteristic curve analysis, the cut-off value of ED duration was 2.5 years and it was 14 for the IIEF-5 score. These findings indicate that ED duration, the IIEF-5 score and response to ICI are more significant predictors of sildenafil response than the more expensive and time-consuming PPDU testing. © 2015 American Society of Andrology and European Academy of Andrology.

  4. Analytical Harmonic Vibrational Frequencies for the Green Fluorescent Protein Computed with ONIOM: Chromophore Mode Character and Its Response to Environment.

    Science.gov (United States)

    Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J

    2014-02-11

    A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.

  5. Predicting response to antimicrobial therapy in children with acute sinusitis

    Science.gov (United States)

    Shaikh, Nader; Wald, Ellen R.; Jeong, Jong H.; Kurs-Lasky, Marcia; Bowen, A’Delbert; Flom, Lynda L.; Hoberman, Alejandro

    2014-01-01

    Objective To determine prognostic factors that independently predict response to antimicrobial therapy in children with acute sinusitis. Study design 206 children meeting a priori clinical criteria for acute sinusitis who were given antimicrobial therapy by their primary care provider were included. The severity of symptoms in the 8 to 12 days after treatment was initiated was followed using a validated scale. We examined the univariate and multivariate association between factors present at the time of diagnosis (symptoms, signs, nasopharyngeal culture result, radiograph results) and time to resolution of symptoms. This study was conducted 8 to 10 years after 7-valent pneumococcal conjugate vaccination was introduced, but before introduction of the 13-valent pneumococcal conjugate vaccination. Results Children with proven nasopharyngeal colonization with Streptococcus pneumoniae improved more rapidly (6.5 vs. 8.5 median days to symptom resolution) than those who were not colonized with S. pneumoniae. Age and radiograph findings did not predict time to symptom resolution. Conclusions In children with acute sinusitis, proven nasopharyngeal colonization with S. pneumoniae at presentation independently predicted time to symptom resolution. Future randomized, placebo-controlled trials could investigate the usefulness of testing for the presence of nasopharyngeal pathogens as a predictor of response to treatment. PMID:24367985

  6. Predicting response to antimicrobial therapy in children with acute sinusitis.

    Science.gov (United States)

    Shaikh, Nader; Wald, Ellen R; Jeong, Jong H; Kurs-Lasky, Marcia; Bowen, A'delbert; Flom, Lynda L; Hoberman, Alejandro

    2014-03-01

    To determine prognostic factors that independently predict response to antimicrobial therapy in children with acute sinusitis. A total of 206 children meeting a priori clinical criteria for acute sinusitis who were prescribed antimicrobial therapy by their primary care provider were included. The severity of symptoms in the 8-12 days after treatment was initiated was followed with the use of a validated scale. We examined the univariate and multivariate association between factors present at the time of diagnosis (symptoms, signs, nasopharyngeal culture result, radiograph results) and time to resolution of symptoms. This study was conducted 8-10 years after the 7-valent pneumococcal conjugate vaccination was introduced but before introduction of the 13-valent pneumococcal conjugate vaccination. Children with proven nasopharyngeal colonization with Streptococcus pneumoniae improved more rapidly (6.5 vs 8.5 median days to symptom resolution) than those who were not colonized with S pneumoniae. Age and radiograph findings did not predict time to symptom resolution. In children with acute sinusitis, proven nasopharyngeal colonization with S pneumoniae at presentation independently predicted time to symptom resolution. Future randomized, placebo-controlled trials could investigate the usefulness of testing for the presence of nasopharyngeal pathogens as a predictor of response to treatment. Copyright © 2014 Mosby, Inc. All rights reserved.

  7. Demonstrating the Effect of Particle Impact Dampers on the Random Vibration Response and Fatigue Life of Printed Wiring Assemblies

    Science.gov (United States)

    Knight, Brent; Montgomery, Randall; Geist, David; Hunt, Ron; LaVerde, Bruce; Towner, Robert

    2013-01-01

    In a recent experimental study, small Particle Impact Dampers (PID) were bonded directly to the surface of printed circuit board (PCB) or printed wiring assemblies (PWA), reducing the random vibration response and increasing the fatigue life. This study provides data verifying practicality of this approach. The measured peak strain and acceleration response of the fundamental out of plane bending mode was significantly attenuated by adding a PID device. Attenuation of this mode is most relevant to the fatigue life of a PWA because the local relative displacements between the board and the supported components, which ultimately cause fatigue failures of the electrical leads of the board-mounted components are dominated by this mode. Applying PID damping at the board-level of assembly provides mitigation with a very small mass impact, especially as compared to isolation at an avionics box or shelf level of assembly. When compared with other mitigation techniques at the PWA level (board thickness, stiffeners, constrained layer damping), a compact PID device has the additional advantage of not needing to be an integral part of the design. A PID can simply be bonded to heritage or commercial off the shelf (COTS) hardware to facilitate its use in environments beyond which it was originally qualified. Finite element analysis and test results show that the beneficial effect is not localized and that the attenuation is not due to the simple addition of mass. No significant, detrimental reduction in frequency was observed. Side-by-side life testing of damped and un-damped boards at two different thicknesses (0.070" and 0.090") has shown that the addition of a PID was much more significant to the fatigue life than increasing the thickness. High speed video, accelerometer, and strain measurements have been collected to correlate with analytical results.

  8. Probabilistic analysis of mean-response along-wind induced vibrations on wind turbine towers using wireless network data sensors

    Science.gov (United States)

    Velazquez, Antonio; Swartz, Raymond A.

    2011-04-01

    Wind turbine systems are attracting considerable attention due to concerns regarding global energy consumption as well as sustainability. Advances in wind turbine technology promote the tendency to improve efficiency in the structure that support and produce this renewable power source, tending toward more slender and larger towers, larger gear boxes, and larger, lighter blades. The structural design optimization process must account for uncertainties and nonlinear effects (such as wind-induced vibrations, unmeasured disturbances, and material and geometric variabilities). In this study, a probabilistic monitoring approach is developed that measures the response of the turbine tower to stochastic loading, estimates peak demand, and structural resistance (in terms of serviceability). The proposed monitoring system can provide a real-time estimate of the probability of exceedance of design serviceability conditions based on data collected in-situ. Special attention is paid to wind and aerodynamic characteristics that are intrinsically present (although sometimes neglected in health monitoring analysis) and derived from observations or experiments. In particular, little attention has been devoted to buffeting, usually non-catastrophic but directly impacting the serviceability of the operating wind turbine. As a result, modal-based analysis methods for the study and derivation of flutter instability, and buffeting response, have been successfully applied to the assessment of the susceptibility of high-rise slender structures, including wind turbine towers. A detailed finite element model has been developed to generate data (calibrated to published experimental and analytical results). Risk assessment is performed for the effects of along wind forces in a framework of quantitative risk analysis. Both structural resistance and wind load demands were considered probabilistic with the latter assessed by dynamic analyses.

  9. The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling

    Science.gov (United States)

    Valentin, J.; Capron, A.; Jongmans, D.; Baillet, L.; Bottelin, P.; Donze, F.; Larose, E.; Mangeney, A.

    2017-02-01

    Seismic noise measurements (ambient vibrations) have been increasingly used in rock slope stability assessment for both investigation and monitoring purposes. Recent studies made on gravitational hazard revealed significant spectral amplification at given frequencies and polarization of the wave-field in the direction of maximum rock slope displacement. Different properties (resonance frequencies, polarization and spectral ratio amplitudes) can be derived from the spectral analysis of the seismic noise to characterize unstable rock masses. The objective here is to identify the dynamic parameters that could be used to gain information on prone-to-fall rock columns' geometry. To do so, the dynamic response of prone-to-fall columns to seismic noise has been studied on two different sites exhibiting cliff-like geometry. Dynamic parameters (main resonance frequency and spectral ratio amplitudes) that could characterize the column decoupling were extracted from seismic noise and their variations were studied taking into account the external environmental parameter fluctuations. Based on this analysis, a two-dimensional numerical model has been set up to assess the influence of the rear vertical fractures identified on both sites on the rock column motion response. Although a simple relation was found between spectral ratio amplitudes and the rock column slenderness, it turned out that the resonance frequency is more stable than the spectral ratio amplitudes to characterize this column decoupling, provided that the elastic properties of the column can be estimated. The study also revealed the effect of additional remote fractures on the dynamic parameters, which in turn could be used for detecting the presence of such discontinuities.

  10. A preliminary investigation into optimising the response of vibrating systems used for ultrasonic cutting

    Science.gov (United States)

    Lim, F. C. N.; Cartmell, M. P.; Cardoni, A.; Lucas, M.

    2004-05-01

    The coupling of two non-linear oscillators is investigated, each with opposing non-linear overhang characteristics in the frequency domain as a result of positive and negative cubic stiffness. This leads to the definition of a two-degree-of-freedom Duffing oscillator in which such non-linear effects can be neutralised under certain dynamic conditions. The physical motivation for this system stems from applications in ultrasonic cutting in which an exciter drives a tuned blade. The exciter and the blade are both strongly non-linear, with features strongly reminiscent of positive and negative cubic effects. It is shown by means of approximate analysis that in the case of simple idealised coupled oscillator models a practically useful mitigating effect on the overall non-linear response of the system is observed when one of the cubic stiffnesses is varied. Experimentally, it has also been demonstrated that coupling of ultrasonic components with different non-linear characteristics can strongly influence the performance of the system and that the general behaviour of the hypothetical theoretical model is indeed borne out in practice.

  11. Predictive factors for response to Lamivudine in chronic hepatitis B

    Directory of Open Access Journals (Sweden)

    SILVA Luiz Caetano da

    2000-01-01

    Full Text Available BACKGROUND: Lamivudine has been shown to be an efficient drug for chronic hepatitis B (CHB treatment. AIM: To investigate predictive factors of response, using a quantitative method with high sensitivity. METHODS: We carried out a prospective trial of lamivudine in 35 patients with CHB and evidence for viral replication, regardless to their HBeAg status. Lamivudine was given for 12 months at 300 mg daily and 150 mg thereafter. Response was considered when DNA was undetectable by PCR after 6 months of treatment. Viral replication was monitored by end-point dilution PCR. Mutation associated with resistance to lamivudine was detected by DNA sequencing in non-responder patients. RESULTS: Response was observed in 23/35 patients (65.7% but only in 5/15 (33.3% HBeAg positive patients. Only three pre-treatment variables were associated to low response: HBeAg (p = 0.006, high viral load (DNA-VHB > 3 x 10(6 copies/ml (p = 0.004 and liver HBcAg (p = 0.0028. YMDD mutations were detected in 7/11 non-responder patients. CONCLUSIONS: HBeAg positive patients with high viral load show a high risk for developing drug resistance. On the other hand, HBeAg negative patients show a good response to lamivudine even with high viremia.

  12. Can we predict the blood pressure response to renal denervation?

    Science.gov (United States)

    Fink, Gregory D; Phelps, Jeremiah T

    2017-05-01

    Renal denervation (RDN) is a new therapy used to treat drug-resistant hypertension in the clinical setting. Published human trials show substantial inter-individual variability in the blood pressure (BP) response to RDN, even when technical aspects of the treatment are standardized as much as possible between patients. Widespread acceptance of RDN for treating hypertension will require accurate identification of patients likely to respond to RDN with a fall in BP that is clinically significant in magnitude, well-maintained over time and does not cause adverse consequences. In this paper we review and evaluate clinical studies that address possible predictors of the BP response to RDN. We conclude that only one generally reliable predictor has been identified to date, namely pre-RDN BP level, although there is some evidence for a few other factors. Experimental interventions in laboratory animals provide the opportunity to explore potential predictors that are difficult to investigate in human patients. Therefore we also describe results (from our lab and others) with RDN in spontaneously hypertensive rats. Since virtually all patients receiving RDN are taking three or more antihypertensive drugs, a particular focus of our work was on how ongoing antihypertensive drug treatment might alter the BP response to RDN. We conclude that patient age (or duration of hypertension) and concomitant treatment with certain drugs can affect the blood pressure response to RDN and that this information could help predict a favorable clinical response. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Fluid responsiveness is predicted by analysis of extra systoles

    DEFF Research Database (Denmark)

    Vistisen, Simon Tilma

    .g. pulse pressure variation). Yet, the idea of a varying preload utilised in dynamic variable monitoring may be useful: The extra systolic post-ectopic beat is associated with increased preload, and I hypothesised that systolic blood pressure (SBP) at the post-ectopic beat could be analysed in relation...... to surrounding sinus beats and that the magnitude of the SBP change (DSBP) could predict fluid responsiveness. OBJECTIVES. To study the hypothesis in post-cardiac surgery patients. METHODS. Patients scheduled for a 500 ml volume expansion were observed. In the time frame, 0-30 min prior to volume expansion, ECG...

  14. Ship Vibration Design Guide

    Science.gov (United States)

    1989-07-01

    Frachtschiffen," Werft Reederie Hafen, 1925. 4-21 Noonan, E. F. "Vibration Considerations for 120,000 CM LNG Ships," NKF: Preliminary Report No. 7107, 25...Ship Response to Ice - A Second Season by C. Daley, J. W. St. John, R. Brown, J. Meyer , and I. Glen 1990 SSC-340 Ice Forces and Ship Response to Ice

  15. Response to intravenous fentanyl infusion predicts subsequent response to transdermal fentanyl.

    Science.gov (United States)

    Hayashi, Norihito; Kanai, Akifumi; Suzuki, Asaha; Nagahara, Yuki; Okamoto, Hirotsugu

    2016-04-01

    Prediction of the response to transdermal fentanyl (FENtd) before its use for chronic pain is desirable. We tested the hypothesis that the response to intravenous fentanyl infusion (FENiv) can predict the response to FENtd, including the analgesic and adverse effects. The study subjects were 70 consecutive patients with chronic pain. The response to fentanyl at 0.1 mg diluted in 50 ml of physiological saline and infused over 30 min was tested. This was followed by treatment with FENtd (Durotep MT patch 2.1 mg) at a dose of 12.5 µg/h for 2 weeks. Pain intensity before and after FENiv and 2 weeks after FENtd, and the response to treatment, were assessed by the numerical rating scale (NRS), clinical global impression-improvement scale (CGI-I), satisfaction scale (SS), and adverse effects. The NRS score decreased significantly from 7 (4-9) [median (range)] at baseline to 3 (0-8) after FENiv (p 0.04, each). The analgesic and side effects after intravenous fentanyl infusion can be used to predict the response to short-term transdermal treatment with fentanyl.

  16. Auditory brainstem responses to stop consonants predict literacy.

    Science.gov (United States)

    Neef, Nicole E; Schaadt, Gesa; Friederici, Angela D

    2017-03-01

    Precise temporal coding of speech plays a pivotal role in sound processing throughout the central auditory system, which, in turn, influences literacy acquisition. The current study tests whether an electrophysiological measure of this precision predicts literacy skills. Complex auditory brainstem responses were analysed from 62 native German-speaking children aged 11-13years. We employed the cross-phaseogram approach to compute the quality of the electrophysiological stimulus contrast [da] and [ba]. Phase shifts were expected to vary with literacy. Receiver operating curves demonstrated a feasible sensitivity and specificity of the electrophysiological measure. A multiple regression analysis resulted in a significant prediction of literacy by delta cross-phase as well as phonological awareness. A further commonality analysis separated a unique variance that was explained by the physiological measure, from a unique variance that was explained by the behavioral measure, and common effects of both. Despite multicollinearities between literacy, phonological awareness, and subcortical differentiation of stop consonants, a combined assessment of behavior and physiology strongly increases the ability to predict literacy skills. The strong link between the neurophysiological signature of sound encoding and literacy outcome suggests that the delta cross-phase could indicate the risk of dyslexia and thereby complement subjective psychometric measures for early diagnoses. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Resonance Raman and vibrational mode analysis used to predict ligand geometry for docking simulations of a water soluble porphyrin and tubulin.

    Science.gov (United States)

    McMicken, Brady; Parker, James E; Thomas, Robert J; Brancaleon, Lorenzo

    2016-09-01

    The ability to modify the conformation of a protein by controlled partial unfolding may have practical applications such as inhibiting its function or providing non-native photosensitive properties. A water-soluble porphyrin, meso-tetrakis (p-sulfonatophenyl) porphyrin (TSPP), non-covalently bound to tubulin can be used as a photosensitizer, which upon irradiation can lead to conformational changes of the protein. To fully understand the mechanism responsible for this partial unfolding and determine the amino acid residues and atoms involved, it is essential to find the most likely binding location and the configuration of the ligand and protein. Techniques typically used to analyze atomic position details, such as nuclear magnetic resonance and X-ray crystallography, require large concentrations, which are incompatible with the dilute conditions required in experiments for photoinduced mechanisms. Instead, we develop an atomistic description of the TSPP-tubulin complex using vibrational mode analysis from density functional theory calculations correlated to resonance Raman spectra of the porphyrin paired with docking simulations. Changes in the Raman peaks of the porphyrin molecule correlate with changes in its structural vibrational modes when bound to tubulin. The data allow us to construct the relative geometry of the porphyrin when bound to protein, which are then used with docking simulations to find the most likely configuration of the TSPP-tubulin complex.

  18. Music-related reward responses predict episodic memory performance.

    Science.gov (United States)

    Ferreri, Laura; Rodriguez-Fornells, Antoni

    2017-12-01

    Music represents a special type of reward involving the recruitment of the mesolimbic dopaminergic system. According to recent theories on episodic memory formation, as dopamine strengthens the synaptic potentiation produced by learning, stimuli triggering dopamine release could result in long-term memory improvements. Here, we behaviourally test whether music-related reward responses could modulate episodic memory performance. Thirty participants rated (in terms of arousal, familiarity, emotional valence, and reward) and encoded unfamiliar classical music excerpts. Twenty-four hours later, their episodic memory was tested (old/new recognition and remember/know paradigm). Results revealed an influence of music-related reward responses on memory: excerpts rated as more rewarding were significantly better recognized and remembered. Furthermore, inter-individual differences in the ability to experience musical reward, measured through the Barcelona Music Reward Questionnaire, positively predicted memory performance. Taken together, these findings shed new light on the relationship between music, reward and memory, showing for the first time that music-driven reward responses are directly implicated in higher cognitive functions and can account for individual differences in memory performance.

  19. Prediction and validation of high frequency vibration repsonses of NASA Mars Pathfinder spacecraft due to acoustic launch load using statistical energy analysis

    Science.gov (United States)

    Hwang, H. J.

    2002-01-01

    Mid and high frequency structural responses of a spacecraft during the launch condition are mainly dominated by the intense acoustic pressure field over the exterior of the launch vehicle. The prediction of structural responses due to the acoustic launch load is therefore an important analysis for engineers and scientists to correctly define various dynamics specifications of the spacecraft.

  20. Block factorization of step response model predictive control problems

    DEFF Research Database (Denmark)

    Kufoalor, D. K.M.; Frison, Gianluca; Imsland, L.

    2017-01-01

    in a traditional manner and use the computationally efficient block factorization facilities in QP solution methods. In order to solve the MPC problem efficiently, both tailored Riccati recursion and condensing algorithms are proposed and embedded into an interior-point method. The proposed algorithms were...... implemented in the HPMPC framework, and the performance is evaluated through simulation studies. The results confirm that a computationally fast controller is achieved, compared to the traditional step response MPC scheme that relies on an explicit prediction formulation. Moreover, the tailored condensing...... algorithm exhibits superior performance and produces solution times comparable to that achieved when using a condensing scheme for an equivalent (but much smaller) state-space model derived from first-principles. Implementation aspects necessary for high performance on embedded platforms are discussed...

  1. Vibrational Diver

    Science.gov (United States)

    Kozlov, Victor; Ivanova, Alevtina; Schipitsyn, Vitalii; Stambouli, Moncef

    2014-10-01

    The paper is concerned with dynamics of light solid in cavity with liquid subjected to rotational vibration in the external force field. New vibrational phenomenon - diving of a light cylinder to the cavity bottom is found. The experimental investigation of a horizontal annulus with a partition has shown that under vibration a light body situated in the upper part of the layer is displaced in a threshold manner some distance away from the boundary. In this case the body executes symmetric tangential oscillations. An increase of the vibration intensity leads to a tangential displacement of the body near the external boundary. This displacement is caused by the tangential component of the vibrational lift force, which appears as soon as the oscillations lose symmetry. In this case the trajectory of the body oscillatory motion has the form of a loop. The tangential lift force makes stable the position of the body on the inclined section of the layer and even in its lower part. A theoretical interpretation has been proposed, which explains stabilization of a quasi-equilibrium state of a light body near the cavity bottom in the framework of vibrational hydromechanics.

  2. Chaotic vibrations of heated plates

    Science.gov (United States)

    Fermen-Coker, Muge

    1998-12-01

    In recent years, the investigation of dynamical behavior of plates under thermal loads has become important due to the high temperatures reached on external skin panels of hypersonic vehicles. It has been shown by other researchers that the skin panels may encounter chaotic vibrations about their thermally buckled positions. In this research, the chaotic vibrations of simply supported plates under thermal and sinusoidal excitation is studied in order to predict the vibratory behavior of a representative class of such skin panels. A method for the development of equations of motion, that forms a foundation for further investigation of the response of elastic panels under general thermal, mechanical and aerodynamic loading and various boundary conditions, is presented and discussed. The boundaries of regular and chaotic regions of motion are defined and the sensitivity of these boundaries to changes in design parameters is explored for the purpose of developing useful design criteria. The onset of chaos is predicted through the computation of Lyapunov exponents. The sensitivity of Lyapunov exponent calculations to the choice of numerical method of integration, numerical precision and the magnitude of coefficients as functions of design variables, is discussed. The effects of thermal moment, thermal buckling, amplitude and frequency of excitation, damping, thickness and length to width ratio of panels on the onset of chaos is studied. The results of the research are presented as a contribution to the panel design of hypersonic vehicles.

  3. The evolution of predictive adaptive responses in human life history.

    Science.gov (United States)

    Nettle, Daniel; Frankenhuis, Willem E; Rickard, Ian J

    2013-09-07

    Many studies in humans have shown that adverse experience in early life is associated with accelerated reproductive timing, and there is comparative evidence for similar effects in other animals. There are two different classes of adaptive explanation for associations between early-life adversity and accelerated reproduction, both based on the idea of predictive adaptive responses (PARs). According to external PAR hypotheses, early-life adversity provides a 'weather forecast' of the environmental conditions into which the individual will mature, and it is adaptive for the individual to develop an appropriate phenotype for this anticipated environment. In internal PAR hypotheses, early-life adversity has a lasting negative impact on the individual's somatic state, such that her health is likely to fail more rapidly as she gets older, and there is an advantage to adjusting her reproductive schedule accordingly. We use a model of fluctuating environments to derive evolveability conditions for acceleration of reproductive timing in response to early-life adversity in a long-lived organism. For acceleration to evolve via the external PAR process, early-life cues must have a high degree of validity and the level of annual autocorrelation in the individual's environment must be almost perfect. For acceleration to evolve via the internal PAR process requires that early-life experience must determine a significant fraction of the variance in survival prospects in adulthood. The two processes are not mutually exclusive, and mechanisms for calibrating reproductive timing on the basis of early experience could evolve through a combination of the predictive value of early-life adversity for the later environment and its negative impact on somatic state.

  4. Neural responses to exclusion predict susceptibility to social influence.

    Science.gov (United States)

    Falk, Emily B; Cascio, Christopher N; O'Donnell, Matthew Brook; Carp, Joshua; Tinney, Francis J; Bingham, C Raymond; Shope, Jean T; Ouimet, Marie Claude; Pradhan, Anuj K; Simons-Morton, Bruce G

    2014-05-01

    Social influence is prominent across the lifespan, but sensitivity to influence is especially high during adolescence and is often associated with increased risk taking. Such risk taking can have dire consequences. For example, in American adolescents, traffic-related crashes are leading causes of nonfatal injury and death. Neural measures may be especially useful in understanding the basic mechanisms of adolescents' vulnerability to peer influence. We examined neural responses to social exclusion as potential predictors of risk taking in the presence of peers in recently licensed adolescent drivers. Risk taking was assessed in a driving simulator session occurring approximately 1 week after the neuroimaging session. Increased activity in neural systems associated with the distress of social exclusion and mentalizing during an exclusion episode predicted increased risk taking in the presence of a peer (controlling for solo risk behavior) during a driving simulator session outside the neuroimaging laboratory 1 week later. These neural measures predicted risky driving behavior above and beyond self-reports of susceptibility to peer pressure and distress during exclusion. These results address the neural bases of social influence and risk taking; contribute to our understanding of social and emotional function in the adolescent brain; and link neural activity in specific, hypothesized, regions to risk-relevant outcomes beyond the neuroimaging laboratory. Results of this investigation are discussed in terms of the mechanisms underlying risk taking in adolescents and the public health implications for adolescent driving. Copyright © 2014 Society for Adolescent Health and Medicine. All rights reserved.

  5. Aggression predicts Cortisol Awakening Response in healthy young adults

    Directory of Open Access Journals (Sweden)

    Patricia Sariñana-González

    2015-10-01

    Full Text Available It seems that aggressive behavior is negatively related to cortisol (C, but this relationship has been established considering the evening C levels. On the other hand, the relationship with the C awakening response (CAR and the influence of gender and menstrual cycle phase are not well understood. This study analyzed this relationship in 83 women (38 in the luteal and 45 in the follicular phase of their menstrual cycle and 20 men. CAR was assessed by measuring salivary free cortisol levels in samples taken immediately following awakening and 30, 45, and 60 minutes later. Additionally, participants completed a self-report of aggression. Men presented lower CAR than women in the luteal phase. Moreover, they also had higher levels of physical aggression than women, independently of their menstrual phase. Regarding the relationships between variables, in men general aggression and verbal aggression predicted the CAR. In women, verbal aggression predicted the CAR during the follicular phase, whereas anger and physical aggression were predictors during the luteal phase. Our data support the view that there is a negative relationship between C and aggressive behavior, even during the morning, this relationship being moderated by gender and menstrual cycle phase in the women. These findings may help improve our understanding of the biological mechanisms involved in violence.

  6. Use of CFD to predict trapped gas excitation as source of vibration and noise in screw compressors

    Science.gov (United States)

    Willie, James

    2017-08-01

    This paper investigates the source of noise in oil free screw compressors mounted on highway trucks and driven by a power take-off (PTO) transmission system. Trapped gas at the discharge side is suggested as possible source of the excitation of low frequency torsional resonance in these compressors that can lead to noise and vibration. Measurements and lumped mass torsional models have shown low frequency torsional resonance in the drive train of these compressors when they are mounted on trucks. This results in high torque peak at the compressor input shaft and in part to pulsating noise inside the machine. The severity of the torque peak depends on the amplitude of the input torque fluctuation from the drive (electric motor or truck engine). This in turn depends on the prop-shaft angle. However, the source of the excitation of this low torsional resonance inside the machine is unknown. Using CFD with mesh motion at every 1° rotation of the rotors, it is shown that the absence of a pressure equalizing chamber at the discharge can lead to trapped gas creation, which can lead to over-compression, over-heating of the rotors, and to high pressure pulsations at the discharge. Over-compression can lead to shock wave generation at the discharge plenum and the pulsation in pressure can lead to noise generation. In addition, if the frequency of the pressure pulsation in the low frequency range coincides with the first torsional frequency of the drive train the first torsional resonance mode can be excited.

  7. Global stabilization control of high-energy responses of a nonlinear wideband piezoelectric vibration energy harvester using a self-excitation circuit

    Science.gov (United States)

    Kitamura, Norihiko; Masuda, Arata

    2017-04-01

    This paper presents a resonance-type vibration energy harvester using a nonlinear oscillator with self-excitation circuit. The bandwidth of the resonance peak and the performance of the power generation at the resonance frequency are trade- offs for the conventional linear vibration energy harvester. A nonlinear oscillator can expand the resonance frequency band to generate larger electric power in a wider frequency range. However, it is difficult for the harmonically excited nonlinear vibration energy harvester to maintain the highest-energy response under the presence of disturbances since the nonlinear oscillator can have multiple stable steady-state solutions in the resonance band. In order to provide the global stability to the highest-energy solution, we introduce a self-excitation circuit which can destabilize other unexpected lower-energy solutions and entrain the oscillator only in the highest-energy solution. Numerical and experimental studies show that the proposed self-excitation control can provide the global stability to the highest-solution and maintain the high performance of the power generation in the widened resonance frequency band.

  8. Predictive parameters of response to desmopressin in primary nocturnal enuresis.

    Science.gov (United States)

    Van Herzeele, Charlotte; Evans, Jonathan; Eggert, Paul; Lottmann, Henri; Norgaard, Jens Peter; Vande Walle, Johan

    2015-08-01

    Many recent treatment guidelines have advocated the importance of a full noninvasive medical evaluation. To individualize treatment, special emphasis must be put on recording of the maximum voided volume (MVV) and nocturnal diuresis in a diary or frequency/volume chart. The aim of this study was to identify any possible predictive factors to desmopressin response. This study is a re-analysis of a prospective, open-label, multinational, phase-IV study evaluating ≤6 months of treatment with desmopressin tablets for children with primary nocturnal enuresis. The children were enrolled between April 2002 and December 2004 from 86 centers in four countries: UK, Canada, Germany and France. A total of 936 children were screened; 744 children aged 5-15 years participated in the study. Of these, 471 children completed the study with 6 months follow-up and recording in a frequency/volume chart. All children experienced six or more wet nights during the 14-day screening period. Exclusion criteria were: organic pathology, treatment for enuresis within the past year, previous treatment for enuresis for >4 weeks, diurnal symptoms, renal or central diabetes insipidus and the use of systemic antibiotics or other drugs known to affect desmopressin activity. The predictive value of number of wet nights a week, fluid intake, daytime voiding frequency and diuresis was investigated by performing a multinomial logistic regression. Of the demographic variables, age was the only significant predictor for response to desmopressin. Controlling for age, the significant predictive variables were: number of wet nights a week, average voided volume daytime, maximum voided volume daytime, total daytime diuresis, nocturnal diuresis (see Figure), maximum voided volume 24 h and total 24 h diuresis. More than 80% of the children had no nocturnal polyuria and a low maximum voided volume. Performing a secondary analysis is a limitation because the original study was not designed for that. A new

  9. Compact Vibration Damper

    Science.gov (United States)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  10. Man-Induced Vibrations

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Hansen, Lars Pilegaard

    1994-01-01

    concerned with spectator-induced vertical vibrations on grandstands. The idea is to use impulse response analysis and base the load description on the load impulse. If the method is feasable, it could be used in connection with the formulation of requirements in building codes. During the last two decades...... work has been done on the measurement of the exact load functions and related reponse analysis. A recent work using a spectral description has been performed by Per-Erik Erikson and includes a good literature survey. Bachmann and Ammann give a good overview of vibrations caused by human activity. Other...

  11. Analytical Modeling of a Ball Screw Feed Drive for Vibration Prediction of Feeding Carriage of a Spindle

    OpenAIRE

    Lei Zhang; Taiyong Wang; Songling Tian; Yong Wang

    2016-01-01

    An analytical modeling approach for ball screw feed drives is proposed to predict the dynamic behavior of the feeding carriage of a spindle. Mainly considering the rigidity of linear guide modules, a ball-screw-feeding spindle is modeled by a mass-spring system. The contact stiffness of rolling interfaces in linear guide modules is accurately calculated according to the Hertzian theory. Next, a mathematical model is derived using the Lagrange method. The presented model is verified by conduct...

  12. Executive Functioning at Baseline Prospectively Predicts Depression Treatment Response.

    Science.gov (United States)

    Dawson, Erica L; Caveney, Angela F; Meyers, Kortni K; Weisenbach, Sara L; Giordani, Bruno; Avery, Erich T; Schallmo, Michael-Paul; Bahadori, Armita; Bieliauskas, Linas A; Mordhorst, Matthew; Marcus, Sheila M; Kerber, Kevin; Zubieta, Jon-Kar; Langenecker, Scott A

    2017-02-09

    Existing cognitive and clinical predictors of treatment response to date are not of sufficient strength to meaningfully impact treatment decision making and are not readily employed in clinical settings. This study investigated whether clinical and cognitive markers used in a tertiary care clinic could predict response to usual treatment over a period of 4 to 6 months in a sample of 75 depressed adults. Patients (N = 384) were sequentially tested in 2 half-day clinics as part of a quality improvement project at an outpatient tertiary care center between August 2003 and September 2007; additional subjects evaluated in the clinic between 2007 and 2009 were also included. Diagnosis was according to DSM-IV-TR criteria and completed by residents and attending faculty. Test scores obtained at intake visits on a computerized neuropsychological screening battery were the Parametric Go/No-Go task and Facial Emotion Perception Task. Treatment outcome was assessed using 9-item Patient Health Questionnaire (PHQ-9) self-ratings at follow-up (n = 75). Usual treatment included psychotropic medication and psychotherapy. Decline in PHQ-9 scores was predicted on the basis of baseline PHQ-9 score and education, with neuropsychological variables entered in the second step. PHQ-9 scores declined by 46% at follow-up (56% responders). Using 2-step multiple regression, baseline PHQ-9 score (P ≤ .05) and education (P ≤ .01) were significant step 1 predictors of percent change in PHQ-9 follow-up scores. In step 2 of the model, faster processing speed with interference resolution (go reaction time) independently explained a significant amount of variance over and above variables in step 1 (12% of variance, P < .01), while other cognitive and affective skills did not. This 2-step model accounted for 28% of the variance in treatment change in PHQ-9 scores. Processing speed with interference resolution also accounted for 12% variance in treatment and follow-up attrition. Use of executive

  13. Prediction of Mass Spectral Response Factors from Predicted Chemometric Data for Druglike Molecules

    Science.gov (United States)

    Cramer, Christopher J.; Johnson, Joshua L.; Kamel, Amin M.

    2017-02-01

    A method is developed for the prediction of mass spectral ion counts of drug-like molecules using in silico calculated chemometric data. Various chemometric data, including polar and molecular surface areas, aqueous solvation free energies, and gas-phase and aqueous proton affinities were computed, and a statistically significant relationship between measured mass spectral ion counts and the combination of aqueous proton affinity and total molecular surface area was identified. In particular, through multilinear regression of ion counts on predicted chemometric data, we find that log10(MS ion counts) = -4.824 + c 1•PA + c 2•SA, where PA is the aqueous proton affinity of the molecule computed at the SMD(aq)/M06-L/MIDI!//M06-L/MIDI! level of electronic structure theory, SA is the total surface area of the molecule in its conjugate base form, and c 1 and c 2 have values of -3.912 × 10-2 mol kcal-1 and 3.682 × 10-3 Å-2. On a 66-molecule training set, this regression exhibits a multiple R value of 0.791 with p values for the intercept, c 1, and c 2 of 1.4 × 10-3, 4.3 × 10-10, and 2.5 × 10-6, respectively. Application of this regression to an 11-molecule test set provides a good correlation of prediction with experiment ( R = 0.905) albeit with a systematic underestimation of about 0.2 log units. This method may prove useful for semiquantitative analysis of drug metabolites for which MS response factors or authentic standards are not readily available.

  14. Predicting the vibroacoustic response of satellite equipment panels.

    Science.gov (United States)

    Conlon, S C; Hambric, S A

    2003-03-01

    Modern satellites are constructed of large, lightweight equipment panels that are strongly excited by acoustic pressures during launch. During design, performing vibroacoustic analyses to evaluate and ensure the integrity of the complex electronics mounted on the panels is critical. In this study the attached equipment is explicitly addressed and how its properties affect the panel responses is characterized. FEA and BEA methods are used to derive realistic parameters to input to a SEA hybrid model of a panel with multiple attachments. Specifically, conductance/modal density and radiation efficiency for nonhomogeneous panel structures with and without mass loading are computed. The validity of using the spatially averaged conductance of panels with irregular features for deriving the structure modal density is demonstrated. Maidanik's proposed method of modifying the traditional SEA input power is implemented, illustrating the importance of accounting for system internal couplings when calculating the external input power. The predictions using the SEA hybrid model agree with the measured data trends, and are found to be most sensitive to the assumed dynamic mass ratio (attachments/structure) and the attachment internal loss factor. Additional experimental and analytical investigations are recommended to better characterize dynamic masses, modal densities and loss factors.

  15. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    Science.gov (United States)

    Shongwe, M. E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often interpolated or extrapolated to give an indication of the likelihood of a certain event within a given period or interval. Under changing climatic conditions, the statistical properties of climate extremes are also changing. It is an important scientific goal to predict how the properties of extreme events change. To achieve this goal, observational and model studies aimed at revealing important features are a necessary prerequisite. Notable progress has been made in understanding mechanisms that influence climate variability and extremes in many parts of the globe including Europe. However, some of the recently observed unprecedented extremes cannot be fully explained from the already identified forcing factors. A better understanding of why these extreme events occur and their sensitivity to certain reinforcing and/or competing factors is useful. Understanding their basic form as well as their temporal variability is also vital and can contribute to global scientific efforts directed at advancing climate prediction capabilities, particularly making skilful forecasts and realistic projections of extremes. In this thesis temperature and precipitation extremes in Europe and Africa, respectively, are investigated. Emphasis is placed on the mechanisms underlying the occurrence of the extremes, their predictability and their likely response to global warming. The focus is on some selected seasons when extremes typically occur. An atmospheric energy budget analysis for the record-breaking European Autumn 2006 event has been carried out with the goal to identify the sources of energy for the extreme event. Net radiational heating is compared to surface turbulent fluxes of

  16. Avoid heat transfer equipment vibration

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathy, V.

    1987-06-01

    Tube bundles in heat exchangers, boilers, superheaters and heaters are often subject to vibration and noise problems. Vibration can lead to tube thinning and wear, resulting in tube failures. Excessive noise can be a problem to plant operating personnel. Large gas pressure drop across the equipment is also a side effect, which results in large operating costs. With the design checks presented in this paper, one can predict during design if problems associated with noise and vibration are likely to occur in petroleum refineries.

  17. The apparent mass and mechanical impedance of the hand and the transmission of vibration to the fingers, hand, and arm

    Science.gov (United States)

    Concettoni, Enrico; Griffin, Michael

    2009-08-01

    Although hand-transmitted vibration causes injury and disease, most often evident in the fingers, the biodynamic responses of the fingers, hand, and arm are not yet well understood. A method of investigating the motion of the entire finger-hand-arm system, based on the simultaneous measurement of the biodynamic response at the driving point and the transmissibility to many points on the finger-hand-arm system, is illustrated. Fourteen male subjects participated in an experiment in which they pushed down on a vertically vibrating metal plate with their right forearm pronated and their elbow bent at 90°. The apparent mass and mechanical impedance of the finger-hand-arm system were measured for each of seven different contact conditions between the plate and the fingers and hand. Simultaneously, the vibration of the fingers, hand, and arm was measured at 41 locations using a scanning laser Doppler vibrometer. Transmissibilities showed how the vibration was transmitted along the arm and allowed the construction of spectral operating deflection shapes showing the vibration pattern of the fingers, hand, and arm for each of the seven contact conditions. The vibration patterns at critical frequencies for each contact condition have been used to explain features in the driving point biodynamic responses and the vibration behaviour of the hand-arm system. Spectral operating deflection shapes for the upper limb assist the interpretation of driving point biodynamic responses and help to advance understanding required to predict, explain, and control the various effects of hand-transmitted vibration.

  18. Coupled rotor/airframe vibration analysis

    Science.gov (United States)

    Sopher, R.; Studwell, R. E.; Cassarino, S.; Kottapalli, S. B. R.

    1982-01-01

    A coupled rotor/airframe vibration analysis developed as a design tool for predicting helicopter vibrations and a research tool to quantify the effects of structural properties, aerodynamic interactions, and vibration reduction devices on vehicle vibration levels is described. The analysis consists of a base program utilizing an impedance matching technique to represent the coupled rotor/airframe dynamics of the system supported by inputs from several external programs supplying sophisticated rotor and airframe aerodynamic and structural dynamic representation. The theoretical background, computer program capabilities and limited correlation results are presented in this report. Correlation results using scale model wind tunnel results show that the analysis can adequately predict trends of vibration variations with airspeed and higher harmonic control effects. Predictions of absolute values of vibration levels were found to be very sensitive to modal characteristics and results were not representative of measured values.

  19. Vibrating minds

    CERN Document Server

    2009-01-01

    Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.

  20. Photo-electromotive-force from vibrating speckled pattern of light on photorefractive CdTe:V

    Science.gov (United States)

    Santos, T. O.; Launay, J. C.; Frejlich, J.

    2008-04-01

    We report the use of the photo-electromotive force (photo-emf) effect produced by a vibrating speckle pattern of light, generated by laser radiation at 1064nm, in the volume of a photorefractive vanadium doped CdTe crystal. This effect is used to measure the sample's photocondutivity and the vibration amplitude of the pattern of light. When the vibrations are much faster than the photorefractive material reponse time the photocurrent is independent of the response time. The theoretical model predicts a maximum value for the first temporal harmonic term of the photocurrent at a fixed value for the vibration amplitude-to-speckle size ratio. This prediction was experimentally confirmed and this maximum can be used to calibrate the setup in order to facilitate practical applications.

  1. Effects of vibration therapy on hormone response and stress in severely disabled patients: a double-blind randomized placebo-controlled clinical trial.

    Science.gov (United States)

    Seco, J; Rodríguez-Pérez, V; López-Rodríguez, A F; Torres-Unda, J; Echevarria, E; Díez-Alegre, M I; Ortega, A; Morán, P; Mendoza-Laíz, N; Abecia Inchaurregui, L C

    2015-01-01

    To assess the effects of vibration therapy (VT) on quality of life and hormone response in severely disabled patients compared with placebo. A longitudinal prospective, double-blind, randomized placebo-controlled trial, with pre and postintervention assessments. A total of 20 severely disabled individuals were recruited from a National Reference Centre in Spain: 13 (65%) men and 7 (35%) women, 45.5 ± 9.32 years of age (range 41: 22-63). We evaluated their physical stress and state anxiety. No statistically significant changes were found in the socio-psychological variables studied, while in the experimental group state anxiety decreased significantly with p < 0.01 (Z = 2.38; one-tailed p = .009) and, among the biological variables, the level of cortisol fell (p = 0.03). Short periods of exposure to low-frequency and low-amplitude local vibration are a safe and effective mechanical stimulus that can have a positive effect in terms of hormone response. VT can be considered to have an anti-stress effect. © 2013 Association of Rehabilitation Nurses.

  2. A comparative study of finite element methodologies for the prediction of torsional response of bladed rotors

    Energy Technology Data Exchange (ETDEWEB)

    Scheepers, R.; Heyns, P. S. [Dept. of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria (South Africa)

    2016-09-15

    The prevention of torsional vibration-induced fatigue damage to turbo-generators requires determining natural frequencies by either field testing or mathematical modelling. Torsional excitation methods, measurement techniques and mathematical modelling are active fields of research. However, these aspects are mostly considered in isolation and often without experimental verification. The objective of this work is to compare one dimensional (1D), full three dimensional (3D) and 3D cyclic symmetric (3DCS) Finite element (FE) methodologies for torsional vibration response. Results are compared to experimental results for a small-scale test rotor. It is concluded that 3D approaches are feasible given the current computing technology and require less simplification with potentially increased accuracy. Accuracy of 1D models may be reduced due to simplifications but faster solution times are obtained. For high levels of accuracy model updating using field test results is recommended.

  3. Wiener kernels of chinchilla auditory-nerve fibers : Verification using responses to tones, clicks, and noise and comparison with basilar-membrane vibrations

    NARCIS (Netherlands)

    Temchin, AN; Recio-Spinoso, A; van Dijk, P; Ruggero, MA

    Responses to tones, clicks, and noise were recorded from chinchilla auditory-nerve fibers (ANFs). The responses to noise were analyzed by computing the zeroth-, first-, and second-order Wiener kernels (h(0), h(1), and h(2)). The h(1) s correctly predicted the frequency tuning and phases of responses

  4. Predicting Metapopulation Responses To Conservation In Human-Dominated Landscapes

    Directory of Open Access Journals (Sweden)

    Zachary S. Ladin

    2016-10-01

    Full Text Available Loss of habitat to urbanization is a primary cause of population declines as human-dominated landscapes expand at increasing rates. Understanding how the relative effects of different conservation strategies is important to slow population declines for species in urban landscapes. We studied the wood thrush Hylocichla mustelina, a declining forest-breeding Neotropical migratory species, and umbrella species for forest-breeding songbirds, within the urbanized mid-Atlantic United States. We integrated 40 years of demographic data with contemporary metapopulation model simulations of breeding wood thrushes to predict population responses to differing conservation scenarios. We compared four conservation scenarios over a 30-year time period (2014–2044 representing A current observed state (Null, B replacing impervious surface with forest (Reforest, C reducing brown-headed cowbird Molothrus ater parasitism pressure (Cowbird removal, and D simultaneous reforesting and cowbird removal. Compared to the Null scenario, the Reforest scenario increased mean annual population trends by 54 % , the Remove cowbirds scenario increased mean annual population trends by 38 %, and the scenario combining reforestation and cowbird removal increased mean annual population trends by 98 %. Mean annual growth rates (λ per site were greater in the Reforest (λ = 0.94 and Remove cowbirds (λ = 0.92 compared to the Null (λ = 0.88 model scenarios. However, only by combining the positive effects of reforestation and cowbird removal did wood thrush populations stop declining (λ = 1.00. Our results suggest that independently replacing impervious surface with forest habitat around forest patches and removing cowbirds may slow current negative population trends. Furthermore, conservation efforts that combine reforestation and cowbird removal may potentially benefit populations of wood thrushes and other similarly forest-breeding songbird species within urbanized fragmented

  5. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program : Bell Helicopter Textron accomplishments

    Science.gov (United States)

    Cronkhite, James D.

    1993-01-01

    Accurate vibration prediction for helicopter airframes is needed to 'fly from the drawing board' without costly development testing to solve vibration problems. The principal analytical tool for vibration prediction within the U.S. helicopter industry is the NASTRAN finite element analysis. Under the NASA DAMVIBS research program, Bell conducted NASTRAN modeling, ground vibration testing, and correlations of both metallic (AH-1G) and composite (ACAP) airframes. The objectives of the program were to assess NASTRAN airframe vibration correlations, to investigate contributors to poor agreement, and to improve modeling techniques. In the past, there has been low confidence in higher frequency vibration prediction for helicopters that have multibladed rotors (three or more blades) with predominant excitation frequencies typically above 15 Hz. Bell's findings under the DAMVIBS program, discussed in this paper, included the following: (1) accuracy of finite element models (FEM) for composite and metallic airframes generally were found to be comparable; (2) more detail is needed in the FEM to improve higher frequency prediction; (3) secondary structure not normally included in the FEM can provide significant stiffening; (4) damping can significantly affect phase response at higher frequencies; and (5) future work is needed in the areas of determination of rotor-induced vibratory loads and optimization.

  6. Numerical Modelling of Rubber Vibration Isolators: identification of material parameters

    NARCIS (Netherlands)

    Beijers, C.A.J.; Noordman, Bram; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.

    2004-01-01

    Rubber vibration isolators are used for vibration isolation of engines at high frequencies. To make a good prediction regarding the characteristics of a vibration isolator in the design process, numerical models can be used. However, for a reliable prediction of the dynamic behavior of the isolator,

  7. The Use of Factorial Forecasting to Predict Public Response

    Science.gov (United States)

    Weiss, David J.

    2012-01-01

    Policies that call for members of the public to change their behavior fail if people don't change; predictions of whether the requisite changes will take place are needed prior to implementation. I propose to solve the prediction problem with Factorial Forecasting, a version of functional measurement methodology that employs group designs. Aspects…

  8. PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems

    Directory of Open Access Journals (Sweden)

    Georgina Mace

    2012-12-01

    Full Text Available The PREDICTS project (www.predicts.org.uk is a three-year NERC-funded project to model and predict at a global scale how local terrestrial diversity responds to human pressures such as land use, land cover, pollution, invasive species and infrastructure. PREDICTS is a collaboration between Imperial College London, the UNEP World Conservation Monitoring Centre, Microsoft Research Cambridge, UCL and the University of Sussex. In order to meet its aims, the project relies on extensive data describing the diversity and composition of biological communities at a local scale. Such data are collected on a vast scale through the committed efforts of field ecologists. If you have appropriate data that you would be willing to share with us, please get in touch (enquiries@predicts.org.uk. All contributions will be acknowledged appropriately and all data contributors will be included as co-authors on an open-access paper describing the database.

  9. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness

    National Research Council Canada - National Science Library

    Furman, David; Jojic, Vladimir; Kidd, Brian; Shen‐Orr, Shai; Price, Jordan; Jarrell, Justin; Tse, Tiffany; Huang, Huang; Lund, Peder; Maecker, Holden T; Utz, Paul J; Dekker, Cornelia L; Koller, Daphne; Davis, Mark M

    ... (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression...

  10. Vibration characteristics of casing string under the exciting force of an electric vibrator

    Directory of Open Access Journals (Sweden)

    Yiyong Yin

    2017-11-01

    Full Text Available Vibration cementing is a new technique that can significantly improve the bond strength of cementing interface. To popularize this technique, it is necessary to solve the key problem of how to make cementing string generate downhole radial vibration in the WOC stage. For this purpose, an electric vibrator was developed. With this vibrator, electric energy is converted into mechanical energy by means of a high-temperature motor vibration unit. The motor vibration unit rotates the eccentric block through an output shaft to generate an exciting source, which produces an axial-rotating exciting force at the bottom of the casing string. Then, the vibration characteristics of vertical well casing string under the exciting force were analyzed by using the principal coordinate analysis method, and the response model of casing string to an electric vibrator was developed. Finally, the effects of casing string length, exciting force and vibration frequency on the vibration amplitude at the lowermost of the casing string were analyzed based on a certain casing program. It is indicated that the casing string length and the square of vibration frequency are inversely proportional to the vibration amplitude at the lowermost of the casing string, and the exciting force is proportional to the vibration amplitude at the lowermost of the casing string. These research results provide a theoretical support for the application of vibration cementing technology to the cementing sites with different requirements on well depth and amplitude.

  11. Older Persons' Reasoning about Responsibility for Health: Variations and Predictions

    Science.gov (United States)

    Kjellstrom, Sofia; Ross, Sara Nora

    2011-01-01

    With many Western societies structured for adults to live longer and take responsibility for their health, it is valuable to investigate how older persons reason about this demand. Using mixed methods, this pilot studied how older persons reason about responsibility for health and their responsibility as a patient. Interviews with a small Swedish…

  12. Alkaline phosphatase predicts response in polycystic liver disease during somatostatin analogue therapy: a pooled analysis

    NARCIS (Netherlands)

    Gevers, T.J.; Nevens, F.; Torres, V.E.; Hogan, M.C.; Drenth, J.P.

    2016-01-01

    BACKGROUND & AIMS: Somatostatin analogues reduce liver volumes in polycystic liver disease. However, patients show considerable variability in treatment responses. Our aim was to identify specific patient, disease or treatment characteristics that predict response in polycystic liver disease during

  13. Experimental Research on Vibration Fatigue of CFRP and Its Influence Factors Based on Vibration Testing

    OpenAIRE

    Fan, Zhengwei; Jiang, Yu; Zhang, Shufeng; Chen, Xun

    2017-01-01

    A new research method based on vibration testing for the vibration fatigue of FRP was proposed in this paper. Through the testing on a closed-loop controlled vibration fatigue test system, the vibration fatigue phenomenon of typical carbon-fiber-reinforced plastic (CFRP) cantilevered laminate specimens was carefully studied. Moreover, a method based on the frequency response function was proposed to monitor the fatigue damage accumulation of specimens. On the basis of that, the influence fact...

  14. Wind turbine blade vibration at standstill conditions — the effect of imposing lag on the aerodynamic response of an elastically mounted airfoil

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Gaunaa, Mac

    2015-01-01

    The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering-type comput......The present study investigated physical phenomena related to stall-induced vibrations potentially existing on wind turbine blades at standstill conditions. The study considered two-dimensional airfoil sections while it omitted three-dimensional effects. In the study, a new engineering...... of gravity indicated that the stability is relatively independent of these parameters. Another parameter study involving spring constants showed that the stability of each mode is dependent only on the spring constant acting in the direction of the leading motion of the mode. An investigation....... It was also shown that only the edgewise mode is unstable in deep stall. Moreover, independent of the amount of temporal lag in the aerodynamic response of the model, the inflow-angle region in the vicinity of 180ı remains unstable in the edgewise mode. Therefore, this inflow-angle region may create stability...

  15. Ab initio prediction of the rotation-vibration spectrum of H/sub 3//sup +/ and D/sub 3//sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Carney, G.D.; Porter, R.N.

    1980-08-18

    the first few lines in the P, Q, and R branches of the rotation-vibration spectra of the equilateral-triangle molecular ions H/sub 3//sup +/ and D/sub 3//sup +/, obtained by ab initio nonperturbative calculations, are reported. Comparison with observations indicates an accuracy better than 1% was obtained for both the infrared-active fundamental vibration frequency and the equilibrium internuclear distances.

  16. Blade Vibration Measurement System

    Science.gov (United States)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  17. Evaluating the molecule-based prediction of clinical drug responses in cancer.

    Science.gov (United States)

    Ding, Zijian; Zu, Songpeng; Gu, Jin

    2016-10-01

    Molecule-based prediction of drug response is one major task of precision oncology. Recently, large-scale cancer genomic studies, such as The Cancer Genome Atlas (TCGA), provide the opportunity to evaluate the predictive utility of molecular data for clinical drug responses in multiple cancer types. Here, we first curated the drug treatment information from TCGA. Four chemotherapeutic drugs had more than 180 clinical response records. Then, we developed a computational framework to evaluate the molecule based predictions of clinical responses of the four drugs and to identify the corresponding molecular signatures. Results show that mRNA or miRNA expressions can predict drug responses significantly better than random classifiers in specific cancer types. A few signature genes are involved in drug response related pathways, such as DDB1 in DNA repair pathway and DLL4 in Notch signaling pathway. Finally, we applied the framework to predict responses across multiple cancer types and found that the prediction performances get improved for cisplatin based on miRNA expressions. Integrative analysis of clinical drug response data and molecular data offers opportunities for discovering predictive markers in cancer. This study provides a starting point to objectively evaluate the molecule-based predictions of clinical drug responses. jgu@tsinghua.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. PREDICTING MICROEVOLUTIONARY RESPONSES TO DIRECTIONAL SELECTION ON HERITABLE VARIATION.

    Science.gov (United States)

    Grant, Peter R; Grant, B Rosemary

    1995-04-01

    Microevolution of quantitative traits in the wild can be predicted from a knowledge of selection and genetic parameters. Testing the predictions requires measurement of the offspring of the selected group, a requirement that is difficult to meet. We present the results of a study of Darwin's finches on the Galápagos island of Daphne Major where this requirement is met. The study demonstrates microevolutionary consequences of natural selection. © 1995 The Society for the Study of Evolution.

  19. Evidence for active, nonlinear, negative feedback in the vibration response of the apical region of the in-vivo guinea-pig cochlea.

    Science.gov (United States)

    Zinn, C; Maier, H; Zenner, H; Gummer, A W

    2000-04-01

    The transverse vibration response of the organ of Corti near the apical end of the guinea-pig cochlea was measured in vivo. For cochleae in good physiological condition, as ascertained with threshold compound action potentials and the endocochlear potential, increasing amounts of attenuation and phase lag were found as the intensity was decreased below 80 dB SPL. These nonlinear phenomena disappeared post mortem. The data suggest that an active, nonlinear damping mechanism exists at low intensities at the apex of the cochlea. The phase nonlinearity, evident at all frequencies except at the best frequency (BF), was limited to a total phase change of 0.25 cycles, implying negative feedback of electromechanical force from the outer hair cells into a compliant organ of Corti. The amplitude nonlinearity was largest above BF, possibly due to interaction with a second vibration mode. The high-frequency flank of the amplitude response curve was shifted to lower frequencies by as much as 0.6 octave (oct) for a 50-dB reduction of sound intensity; the reduction of BF was 0.3 oct, but there was no change of relative bandwidth (Q(10 dB)). Detailed frequency responses measured at 60 dB SPL were consistent with non-dispersive, travelling-wave motion: travel time to the place of BF (400 Hz at 60 dB SPL) was 2.9 ms, Q(10 dB) was 1.0; standing-wave motion occurred above 600 Hz. Based on comparison with neural and mechanical data from the base of the cochlea, amplitudes at the apex appear to be sufficient to yield behavioural thresholds. It is concluded that active negative feedback may be a hallmark of the entire cochlea at low stimulus frequencies and that, in contrast to the base, the apex does not require active amplification.

  20. A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: The Constrained Harmonic Balance Method, with application to disc brake squeal

    Science.gov (United States)

    Coudeyras, N.; Sinou, J.-J.; Nacivet, S.

    2009-01-01

    Brake squeal noise is still an issue since it generates high warranty costs for the automotive industry and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is a common method of studying nonlinear phenomena and has been widely used by the scientific and the engineering communities for solving disc brake squeal problems. This type of analysis provides areas of stability versus instability for driven parameters, thereby making it possible to define design criteria. Nevertheless, this technique does not permit obtaining the vibrating state of the brake system and nonlinear methods have to be employed. Temporal integration is a well-known method for computing the dynamic solution but as it is time consuming, nonlinear methods such as the Harmonic Balance Method (HBM) are preferred. This paper presents a novel nonlinear method called the Constrained Harmonic Balance Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constraint-based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of the nonlinear problem that would be obtained by applying the classical HBM) and therefore focuses on predicting both the Fourier coefficients and the fundamental frequency of the stationary nonlinear system. The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal. The brake system under consideration is a reduced finite element model of a pad and a disc. Both stability and nonlinear analyses are performed and the results are compared with a classical variable order solver integration algorithm. Therefore, the objectives of the following paper are to present not only an extension of the HBM (CHBM) but also to demonstrate an application to the specific problem of disc brake squeal with extensively parametric studies that investigate the effects of the friction coefficient, piston pressure, nonlinear stiffness

  1. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  2. Chaotic vortex induced vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Sheridan, J. [Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Leontini, J. S. [Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Lo Jacono, D. [Institut de Mécanique des Fluides de Toulouse (IMFT), CNRS, UPS and Université de Toulouse, 31400 Toulouse (France)

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  3. Predicting binaural responses from monaural responses in the gerbil medial superior olive.

    Science.gov (United States)

    Plauška, Andrius; Borst, J Gerard; van der Heijden, Marcel

    2016-06-01

    Accurate sound source localization of low-frequency sounds in the horizontal plane depends critically on the comparison of arrival times at both ears. A specialized brainstem circuit containing the principal neurons of the medial superior olive (MSO) is dedicated to this comparison. MSO neurons are innervated by segregated inputs from both ears. The coincident arrival of excitatory inputs from both ears is thought to trigger action potentials, with differences in internal delays creating a unique sensitivity to interaural time differences (ITDs) for each cell. How the inputs from both ears are integrated by the MSO neurons is still debated. Using juxtacellular recordings, we tested to what extent MSO neurons from anesthetized Mongolian gerbils function as simple cross-correlators of their bilateral inputs. From the measured subthreshold responses to monaural wideband stimuli we predicted the rate-ITD functions obtained from the same MSO neuron, which have a damped oscillatory shape. The rate of the oscillations and the position of the peaks and troughs were accurately predicted. The amplitude ratio between dominant and secondary peaks of the rate-ITD function, captured in the width of its envelope, was not always exactly reproduced. This minor imperfection pointed to the methodological limitation of using a linear representation of the monaural inputs, which disregards any temporal sharpening occurring in the cochlear nucleus. The successful prediction of the major aspects of rate-ITD curves supports a simple scheme in which the ITD sensitivity of MSO neurons is realized by the coincidence detection of excitatory monaural inputs. Copyright © 2016 the American Physiological Society.

  4. Data-Interpretation Methodologies for Non-Linear Earthquake Response Predictions of Damaged Structures

    Directory of Open Access Journals (Sweden)

    Yves Reuland

    2017-07-01

    Full Text Available Seismic exposure of buildings presents difficult engineering challenges. The principles of seismic design involve structures that sustain damage and still protect inhabitants. Precise and accurate knowledge of the residual capacity of damaged structures is essential for informed decision-making regarding clearance for occupancy after major seismic events. Unless structures are permanently monitored, modal properties derived from ambient vibrations are most likely the only source of measurement data that are available. However, such measurement data are linearly elastic and limited to a low number of vibration modes. Structural identification using hysteretic behavior models that exclusively relies on linear measurement data is a complex inverse engineering task that is further complicated by modeling uncertainty. Three structural identification methodologies that involve probabilistic approaches to data interpretation are compared: error-domain model falsification, Bayesian model updating with traditional assumptions as well as modified Bayesian model updating. While noting the assumptions regarding uncertainty definitions, the accuracy and robustness of identification and subsequent predictions are compared. A case study demonstrates limits on non-linear parameter identification performance and identification of potentially wrong prediction ranges for inappropriate model uncertainty distributions.

  5. Novel transformation-based response prediction of shear building ...

    Indian Academy of Sciences (India)

    Present paper uses powerful technique of interval neural network (INN) to simulate and estimate structural response of multi-storey shear buildings subject to earthquake motion. The INN is first trained for a real earthquake data, viz., the ground acceleration as input and the numerically generated responses of different ...

  6. Impaired neural response to negative prediction errors in cocaine addiction.

    Science.gov (United States)

    Parvaz, Muhammad A; Konova, Anna B; Proudfit, Greg H; Dunning, Jonathan P; Malaker, Pias; Moeller, Scott J; Maloney, Tom; Alia-Klein, Nelly; Goldstein, Rita Z

    2015-02-04

    Learning can be guided by unexpected success or failure, signaled via dopaminergic positive reward prediction error (+RPE) and negative reward-prediction error (-RPE) signals, respectively. Despite conflicting empirical evidence, RPE signaling is thought to be impaired in drug addiction. To resolve this outstanding question, we studied as a measure of RPE the feedback negativity (FN) that is sensitive to both reward and the violation of expectation. We examined FN in 25 healthy controls; 25 individuals with cocaine-use disorder (CUD) who tested positive for cocaine on the study day (CUD+), indicating cocaine use within the past 72 h; and in 25 individuals with CUD who tested negative for cocaine (CUD-). EEG was acquired while the participants performed a gambling task predicting whether they would win or lose money on each trial given three known win probabilities (25, 50, or 75%). FN was scored for the period in each trial when the actual outcome (win or loss) was revealed. A significant interaction between prediction, outcome, and group revealed that controls showed increased FN to unpredicted compared with predicted wins (i.e., intact +RPE) and decreased FN to unpredicted compared with predicted losses (i.e., intact -RPE). However, neither CUD subgroup showed FN modulation to loss (i.e., impaired -RPE), and unlike CUD+ individuals, CUD- individuals also did not show FN modulation to win (i.e., impaired +RPE). Thus, using FN, the current study directly documents -RPE deficits in CUD individuals. The mechanisms underlying -RPE signaling impairments in addiction may contribute to the disadvantageous nature of excessive drug use, which can persist despite repeated unfavorable life experiences (e.g., frequent incarcerations). Copyright © 2015 the authors 0270-6474/15/351872-08$15.00/0.

  7. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  8. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    Science.gov (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  9. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  10. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, Harry K.; Geller, Anthony S.; R. Kee (CSM); S. Allu (ORNL)

    2017-03-01

    The objective of this project was to Address root cause and implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  11. Can brain responses to movie trailers predict success?

    NARCIS (Netherlands)

    M.A.S. Boksem (Maarten)

    2015-01-01

    textabstractDecades of research have shown that much of our mental processing occurs at the subconscious level, including the decisions we make as consumers. These subconscious processes explain why we so often fail to accurately predict our own future choices. Often what we think we want has

  12. Surrogate decision makers' responses to physicians' predictions of medical futility.

    Science.gov (United States)

    Zier, Lucas S; Burack, Jeffrey H; Micco, Guy; Chipman, Anne K; Frank, James A; White, Douglas B

    2009-07-01

    Although physicians sometimes use the futility rationale to limit the use of life-sustaining treatments, little is known about how surrogate decision makers view this rationale. We sought to determine the attitudes of surrogates of patients who are critically ill toward whether physicians can predict futility and whether these attitudes predict surrogates' willingness to discontinue life support when faced with predictions of futility. This multicenter, mixed qualitative and quantitative study took place at three hospitals in California from 2006 to 2007. We conducted semistructured interviews with surrogate decision makers for 50 patients who were critically ill and incapacitated that addressed their beliefs about medical futility and inductively developed an organizing framework to describe these beliefs. We used a hypothetical scenario with a modified time-trade-off design to examine the relationship between a patient's prognosis and a surrogate's willingness to withdraw life support. We used a mixed-effects regression model to examine the association between surrogates' attitudes about futility and their willingness to limit life support in the face of a very poor prognosis. Validation methods included the use and integration of multiple data sources, multidisciplinary analysis, and member checking. Sixty-four percent of surrogates (n = 32; 95% confidence interval [CI], 49 to 77%) expressed doubt about the accuracy of physicians' futility predictions, 32% of surrogates (n = 16; 95% CI, 20 to 47%) elected to continue life support with a decision makers. The nature of the doubt may have implications for responding to conflicts about futility in clinical practice.

  13. Reduced-Order Models for Acoustic Response Prediction

    Science.gov (United States)

    2011-07-01

    predicted frequencies from a FEM. The first two axial natural frequencies were measured using a pair of small piezoelectric strain actuators, one...test. Displacement and velocity relative to the shaker head were measured with a Polytec Model OVF-512 Differential Fiber Optic Vibrometer . The...The vibrometer controller processes the object and reference beams to produce differential velocity and displacement. Dynamic strains were

  14. Model prediction of maize yield responses to climate change in ...

    African Journals Online (AJOL)

    Observed data of the last three decades (1971 to 2000) from several climatological stations in north-eastern Zimbabwe and outputs from several global climate models were used. The downscaled model simulations consistently predicted a warming of between 1 and 2 ºC above the baseline period (1971-2000) at most of ...

  15. Mechanistic Modeling Framework for Predicting Extreme Battery Response

    Energy Technology Data Exchange (ETDEWEB)

    Geller, Anthony S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-11-01

    The objectives of this project are to address the root cause implications of thermal runaway of Li-ion batteries by delivering a software architecture solution that can lead to the development of predictive mechanisms that are based on identification of species.

  16. Urban vibrations

    DEFF Research Database (Denmark)

    Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen

    2012-01-01

      lab   studies   in   that   we   found   a   decreased   detection   rate   in   busy   environments.   Here   we   test   with   a   much   larger   sample   and   age   range,   and   contribute   with   the   first   vibration  sensitivity  testing  outside  the  lab  in  an  urban   public...

  17. Guidelines for numerical vibration and acoustic analysis of disc brake squeal using simple models of brake systems

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.; Marburg, S.

    2013-04-01

    Brake squeal has become of increasing concern to the automotive industry but guidelines on how to confidently predict squeal propensity are yet to be established. While it is standard practice to use the complex eigenvalue analysis to predict unstable vibration modes, there have been few attempts to calculate their acoustic radiation. Here guidelines are developed for numerical vibration and acoustic analysis of brake squeal using models of simplified brake systems with friction contact by considering (1) the selection of appropriate elements, contact and mesh; (2) the extraction of surface velocities via forced response; and (3) the calculation of the acoustic response itself. Results indicate that quadratic tetrahedral elements offer the best option for meshing more realistic geometry. A mesh has to be sufficiently fine especially in the contact region to predict mesh-independent unstable vibration modes. Regarding the vibration response, only the direct, steady-state method with a pressurised pad and finite sliding formulation (allowing contact separation) should be used. Comparison of different numerical methods suggest that a obroadband fast multi-pole boundary element method with the Burton-Miller formulation would efficiently solve the acoustic radiation of a full brake system. Results also suggest that a pad lift-off can amplify the acoustic radiation similar to a horn effect. A horn effect is also observed for chamfered pads which are used in practice to reduce the number and strength of unstable vibration modes. These results highlight the importance of optimising the pad shape to reduce acoustic radiation of unstable vibration modes.

  18. Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2016-01-01

    .0009) and high expression of a HLA class II gene (2-fold increase in HLA-DQA1; OR = 1.22; 95% CI: 1.01-1.47; P = 0.04). These two genes were included in a model that is able predict response to bevacizumab combination therapy in clinical practice. When stratified for a validated prognostic index, the predictive...... model for response was significantly associated with improved overall survival. Conclusion: Two genes (low angiotensinogen and high HLA-class II expression) were predictive for bevacizumab response and were included in a predictive model for response. This model can be used in clinical practice...... for bevacizumab response in recurrent glioblastoma patients. Methods: The study included a total of 82 recurrent glioblastoma patients treated with bevacizumab combination therapy whom were both response and biomarker evaluable. Gene expression of tumor tissue was analyzed by using a customized Nano...

  19. Predicting bee community responses to land-use changes

    NARCIS (Netherlands)

    Palma, De Adriana; Abrahamczyk, Stefan; Aizen, Marcelo A.; Albrecht, Matthias; Basset, Yves; Bates, Adam; Blake, Robin J.; Boutin, Céline; Bugter, Rob; Connop, Stuart; Cruz-López, Leopoldo; Cunningham, Saul A.; Darvill, Ben; Diekötter, Tim; Dorn, Silvia; Downing, Nicola; Entling, Martin H.; Farwig, Nina; Felicioli, Antonio; Fonte, Steven J.; Fowler, Robert; Franzén, Markus; Goulson, Dave; Grass, Ingo; Hanley, Mick E.; Hendrix, Stephen D.; Herrmann, Farina; Herzog, Felix; Holzschuh, Andrea; Jauker, Birgit; Kessler, Michael; Knight, M.E.; Kruess, Andreas; Lavelle, Patrick; Féon, Le Violette; Lentini, Pia; Malone, Louise A.; Marshall, Jon; Pachón, Eliana Martínez; McFrederick, Quinn S.; Morales, Carolina L.; Mudri-Stojnic, Sonja; Nates-Parra, Guiomar; Nilsson, Sven G.; Öckinger, Erik; Osgathorpe, Lynne; Parra-H, Alejandro; Peres, Carlos A.; Persson, Anna S.; Petanidou, Theodora; Poveda, Katja; Power, Eileen F.; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Richards, Miriam H.; Roulston, Tai; Rousseau, Laurent; Sadler, Jonathan P.; Samnegård, Ulrika; Schellhorn, Nancy A.; Schüepp, Christof; Schweiger, Oliver; Smith-Pardo, Allan H.; Steffan-Dewenter, Ingolf; Stout, Jane C.; Tonietto, Rebecca K.; Tscharntke, Teja; Tylianakis, Jason M.; Verboven, Hans A.F.; Vergara, Carlos H.; Verhulst, Jort; Westphal, Catrin; Yoon, Hyung Joo; Purvis, Andy

    2016-01-01

    Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically

  20. Nuclear medicine imaging to predict response to radiotherapy: a review.

    NARCIS (Netherlands)

    Wiele, C. van de; Lahorte, C.; Oyen, W.J.G.; Boerman, O.C.; Goethals, I.; Slegers, G.; Dierckx, R.A.

    2003-01-01

    PURPOSE: To review available literature on positron emission tomography (PET) and single photon emission computerized tomography (SPECT) for the measurement of tumor metabolism, hypoxia, growth factor receptor expression, and apoptosis as predictors of response to radiotherapy. METHODS AND

  1. Development of finite element models to predict dynamic bridge response.

    Science.gov (United States)

    1997-10-01

    Dynamic response has long been recognized as one of the significant factors affecting the service life and safety of bridge structures. Even though considerable research, both analytical and experimental, has been devoted to dynamic bridge behavior, ...

  2. Fuzzy predictive filtering in nonlinear economic model predictive control for demand response

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...... filtering, is performed. The results show that the controller achieves a good performance while keeping the temperature inside the predefined comfort limits. Fuzzy predictive filtering has shown to be an effective tool which is capable of reducing the computational burden and increasing the performance...

  3. Nonlinear vibration absorption for a flexible arm via a virtual vibration absorber

    Science.gov (United States)

    Bian, Yushu; Gao, Zhihui

    2017-07-01

    A semi-active vibration absorption method is put forward to attenuate nonlinear vibration of a flexible arm based on the internal resonance. To maintain the 2:1 internal resonance condition and the desirable damping characteristic, a virtual vibration absorber is suggested. It is mathematically equivalent to a vibration absorber but its frequency and damping coefficients can be readily adjusted by simple control algorithms, thereby replacing those hard-to-implement mechanical designs. Through theoretical analyses and numerical simulations, it is proven that the internal resonance can be successfully established for the flexible arm, and the vibrational energy of flexible arm can be transferred to and dissipated by the virtual vibration absorber. Finally, experimental results are presented to validate the theoretical predictions. Since the proposed method absorbs rather than suppresses vibrational energy of the primary system, it is more convenient to reduce strong vibration than conventional active vibration suppression methods based on smart material actuators with limited energy output. Furthermore, since it aims to establish an internal vibrational energy transfer channel from the primary system to the vibration absorber rather than directly respond to external excitations, it is especially applicable for attenuating nonlinear vibration excited by unpredictable excitations.

  4. Dynamic modeling and simulation of a two-stage series-parallel vibration isolation system

    Directory of Open Access Journals (Sweden)

    Rong Guo

    2016-07-01

    Full Text Available A two-stage series-parallel vibration isolation system is already widely used in various industrial fields. However, when the researchers analyze the vibration characteristics of a mechanical system, the system is usually regarded as a single-stage one composed of two substructures. The dynamic modeling of a two-stage series-parallel vibration isolation system using frequency response function–based substructuring method has not been studied. Therefore, this article presents the source-path-receiver model and the substructure property identification model of such a system. These two models make up the transfer path model of the system. And the model is programmed by MATLAB. To verify the proposed transfer path model, a finite element model simulating a vehicle system, which is a typical two-stage series-parallel vibration isolation system, is developed. The substructure frequency response functions and system level frequency response functions can be obtained by MSC Patran/Nastran and LMS Virtual.lab based on the finite element model. Next, the system level frequency response functions are substituted into the transfer path model to predict the substructural frequency response functions and the system response of the coupled structure can then be further calculated. By comparing the predicted results and exact value, the model proves to be correct. Finally, the random noise is introduced into several relevant system level frequency response functions for error sensitivity analysis. The system level frequency response functions that are most sensitive to the random error are found. Since a two-stage series-parallel system has not been well studied, the proposed transfer path model improves the dynamic theory of the multi-stage vibration isolation system. Moreover, the validation process of the model here actually provides an example for acoustic and vibration transfer path analysis based on the proposed model. And it is worth noting that the

  5. Minimization of Surface Roughness and Tool Vibration in CNC Milling Operation

    Directory of Open Access Journals (Sweden)

    Sukhdev S. Bhogal

    2015-01-01

    Full Text Available Tool vibration and surface roughness are two important parameters which affect the quality of the component and tool life which indirectly affect the component cost. In this paper, the effect of cutting parameters on tool vibration, and surface roughness has been investigated during end milling of EN-31 tool steel. Response surface methodology (RSM has been used to develop mathematical model for predicting surface finish, tool vibration and tool wear with different combinations of cutting parameters. The experimental results show that feed rate is the most dominating parameter affecting surface finish, whereas cutting speed is the major factor effecting tool vibration. The results of mathematical model are in agreement with experimental investigations done to validate the mathematical model.

  6. Analysis of potential helicopter vibration reduction concepts

    Science.gov (United States)

    Landgrebe, A. J.; Davis, M. W.

    1985-01-01

    Results of analytical investigations to develop, understand, and evaluate potential helicopter vibration reduction concepts are presented in the following areas: identification of the fundamental sources of vibratory loads, blade design for low vibration, application of design optimization techniques, active higher harmonic control, blade appended aeromechanical devices, and the prediction of vibratory airloads. Primary sources of vibration are identified for a selected four-bladed articulated rotor operating in high speed level flight. The application of analytical design procedures and optimization techniques are shown to have the potential for establishing reduced vibration blade designs through variations in blade mass and stiffness distributions, and chordwise center-of-gravity location.

  7. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K

    2015-01-01

    The effects of the 5-HTTLPR polymorphism on neural responses to emotionally salient faces have been studied extensively, focusing on amygdala reactivity and amygdala-prefrontal interactions. Despite compelling evidence that emotional face paradigms engage a distributed network of brain regions...... resonance imaging in 76 healthy adults. We observed robust increased response to emotional faces in the amygdala, hippocampus, caudate, fusiform gyrus, superior temporal sulcus and lateral prefrontal and occipito-parietal cortices. We observed dissociation between 5-HTTLPR groups such that LA LA individuals...

  8. Three-dimensional free vibration analysis of thick laminated circular ...

    African Journals Online (AJOL)

    Dr Oke

    mechanical systems is understanding the free vibration behavior of different plate components. The dynamic response of complex engineering systems is intimately linked with plate response frequencies as well as vibration mode shapes. A thorough analysis of free vibration data is often useful in arriving at the resonant ...

  9. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    Science.gov (United States)

    Fleming, David P.; Poplawski, J. V.

    2003-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  10. Stress analysis of vibrating pipelines

    Science.gov (United States)

    Zachwieja, Janusz

    2017-03-01

    The pipelines are subject to various constraints variable in time. Those vibrations, if not monitored for amplitude and frequency, may result in both the fatigue damage in the pipeline profile at high stress concentration and the damage to the pipeline supports. If the constraint forces are known, the system response may be determined with high accuracy using analytical or numerical methods. In most cases, it may be difficult to determine the constraint parameters, since the industrial pipeline vibrations occur due to the dynamic effects of the medium in the pipeline. In that case, a vibration analysis is a suitable alternative method to determine the stress strain state in the pipeline profile. Monitoring the pipeline vibration levels involves a comparison between the measured vibration parameters and the permissible values as depicted in the graphs for a specific pipeline type. Unfortunately, in most cases, the studies relate to the petrochemical industry and thus large diameter, long and straight pipelines. For a pipeline section supported on both ends, the response in any profile at the entire section length can be determined by measuring the vibration parameters at two different profiles between the pipeline supports. For a straight pipeline section, the bending moments, variable in time, at the ends of the analysed section are a source of the pipe excitation. If a straight pipe section supported on both ends is excited by the bending moments in the support profile, the starting point for the stress analysis are the strains, determined from the Euler-Bernoulli equation. In practice, it is easier to determine the displacement using the experimental methods, since the factors causing vibrations are unknown. The industrial system pipelines, unlike the transfer pipelines, are straight sections at some points only, which makes it more difficult to formulate the equation of motion. In those cases, numerical methods can be used to determine stresses using the

  11. Error consciousness predicts physiological response to an acute psychosocial stressor in men

    NARCIS (Netherlands)

    Wu, J.; Sun, X.; Wang, L.; Zhang, L.; Fernandez, G.; Yao, Z.

    2017-01-01

    There are substantial individual differences in the response towards acute stressor. The aim of the current study was to examine how the neural activity after an error response during a non-stressful state, prospectively predicts the magnitude of physiological stress response (e.g., cortisol

  12. Incident experience predicts freezing-like responses in firefighters

    NARCIS (Netherlands)

    Ly, V. (Verena); Roijendijk, Linsey; Hazebroek, Hans; Tonnaer, Clemon; Hagenaars, Muriel A

    2017-01-01

    Freezing is a defensive response to acute stress that is associated with coping and alterations in attentional processing. However, it remains unclear whether individuals in high risk professions, who are skilled at making rapid decisions in emergency situations, show altered threat-induced

  13. Novel transformation-based response prediction of shear building ...

    Indian Academy of Sciences (India)

    Conte and Durrani (1994) gave a neural network-based approach to model the seismic response of multi-storey frame build- ings. Pandey and Barai (1995) detected damage in a bridge truss by applying ANN to numerically simulated data. A counter-propagation neural net- work (NN) to locate damage in beams and frames.

  14. Uninvolved immunoglobulins predicting hematological response in newly diagnosed AL amyloidosis.

    Science.gov (United States)

    Muchtar, Eli; Magen, Hila; Itchaki, Gilad; Cohen, Amos; Rosenfeld, Ra'ama; Shochat, Tzippy; Kornowski, Ran; Iakobishvili, Zaza; Raanani, Pia

    2016-02-01

    Immunoparesis serves as a marker for elevated risk for progression in plasma cell proliferative disorders. However, the impact of immunoparesis in AL amyloidosis has not been addressed. Immunoparesis was defined qualitatively as any decrease below the low reference levels of the uninvolved immunoglobulins and quantitatively, as the relative difference between the uninvolved immunoglobulins and the lower reference values. Forty-one newly diagnosed AL amyloidosis patients were included. Sixty-six percent of patients had a suppression of the uninvolved immunoglobulins. The median relative difference of the uninvolved immunoglobulins was 18% above the low reference levels [range (-71%)-210%]. Ninety percent of the patients were treated with novel agents-based regimens, mostly bortezomib-containing regimens. Nineteen percent of the patients did not attain response to first line treatment. Patients with relative difference of uninvolved immunoglobulins below -25% of the low reference levels were less likely to respond to first line treatment compared to patients with a relative difference of -25% and above [odds ratio for no response vs. partial response and better 30 [(95% CI 4.1-222.2), P=0.0004]. Patients who failed first line treatment were successfully salvaged with lenalidomide-based treatment. Immunoparesis, if assessed quantitatively, may serve as a predictor of response in AL amyloidosis patients treated with bortezomib-containing regimens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. MTR-18 Predictive Biomarkers Of Bevacizumab Response In Recurrent Glioblastoma Patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2015-01-01

    with the proneural GBM subtype have a survival benefit when treated with BEV in combination with standard treatment. However, no validated biomarkers able to predict BEV response have been identified and the biology reflecting a clinical BEV response is poorly understood. The primary objective of this study...... was to evaluate the predictive and prognostic value of GBM subtypes in recurrent GBM patients treated with BEV therapy. The secondary objective was to identify biomarkers able to predict response to BEV therapy in recurrent GBM patients. METHODS: A total of 90 recurrent GBM patients treated with BEV combination...... and multifocal disease. RESULTS: Molecular subtypes were not associated with response or survival. However, two independent predictive biomarkers (gene1 down-regulated and gene2 up-regulated in responders, respectively) of BEV response and survival were identified. Results will be presented....

  16. Trend modelling of wave parameters and application in onboard prediction of ship responses

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam; Jensen, J. Juncher

    2015-01-01

    This paper presents a trend analysis for prediction of sea state parameters onboard shipsduring voyages. Given those parameters, a JONSWAP model and also the transfer functions, prediction of wave induced ship responses are thus made. The procedure is tested with full-scale data of an in-service ......This paper presents a trend analysis for prediction of sea state parameters onboard shipsduring voyages. Given those parameters, a JONSWAP model and also the transfer functions, prediction of wave induced ship responses are thus made. The procedure is tested with full-scale data of an in...

  17. Site responses based on ambient vibrations and earthquake data: a case study from the meizoseismal area of the 2001 Bhuj earthquake

    Science.gov (United States)

    Natarajan, Thulasiraman; Rajendran, Kusala

    2017-03-01

    The 2001 Mw 7.6 earthquake sourced in the Kachchh rift of northwest India led to extensive damage in the city of Bhuj, located 70 km southwest of its epicenter. The building stock of this densely populated city was a mix of modern, single, and multistoried structures as well as traditional and non-engineered abodes, most of which were not designed to withstand severe shaking effects. Although there was extensive liquefaction and ground failure in the meizoseismal area, they were not observed in Bhuj, but the damage was severe here. In this study, we apply horizontal to vertical spectral ratio method to ambient vibrations (HVSR-AV) to obtain fundamental resonance frequency (f0) and H/V peak amplitude (A0) to examine if site response had any significant role in the observed damage. The patterns of H/V curves as well as spatial distributions of f0 (0.6-1.4 Hz) and A0 (1.5-4.4) suggest absence of any strong impedance contrast within the subsurface. Similar results obtained for ambient vibrations and earthquake signals suggest the efficacy of the HVSR-AV method as most useful for regions of low-level seismicity. The weathered sandstone that is generally exposed in the city represents the resonating layer whose thickness is approximately estimated as 66-155 m, based on 1D assumption. The current set of available data precludes any quantitative modeling, but our preliminary inference is that site effects were not significant during the 2001 earthquake damage observed in Bhuj.

  18. Multiple mode analysis of the self-excited vibrations of rotary drilling systems

    Science.gov (United States)

    Germay, Christophe; Denoël, Vincent; Detournay, Emmanuel

    2009-08-01

    This paper extends the analysis of the self-excitated vibrations of a drilling structure presented in an earlier paper [T. Richard, C. Germay, E. Detournay, A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits, Journal of Sound and Vibration 305 (3) (2007) 432-456] by basing the formulation of the model on a continuum representation of the drillstring rather than on a characterization of the drilling structure by a 2 degree of freedom system. The particular boundary conditions at the bit-rock interface, which according to this model are responsible for the self-excited vibrations, account for both cutting and frictional contact processes. The cutting process combined with the quasi-helical motion of the bit leads to a regenerative effect that introduces a coupling between the axial and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion. The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of the system response predicted by the discrete model are confirmed by this computational model (for example that the occurrence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the rotational speed), new features in the self-excited response of the drillstring can be detected. In particular, stick-slip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one (as sometimes observed in field operations), depending on the operating parameters.

  19. Aggression predicts Cortisol Awakening Response in healthy young adults

    OpenAIRE

    Patricia Sariñana-González; Ángel Romero-Martínez; Luis Moya-Albiol

    2015-01-01

    It seems that aggressive behavior is negatively related to cortisol (C), but this relationship has been established considering the evening C levels. On the other hand, the relationship with the C awakening response (CAR) and the influence of gender and menstrual cycle phase are not well understood. This study analyzed this relationship in 83 women (38 in the luteal and 45 in the follicular phase of their menstrual cycle) and 20 men. CAR was assessed by measuring salivary free cortisol levels...

  20. Nutritional Risk Screening Predicts Tumor Response in Lung Cancer Patients.

    Science.gov (United States)

    Illa, Petr; Tomiskova, Marcela; Skrickova, Jana

    2015-01-01

    Malnutrition in cancer patients may be associated with poor tolerance of chemotherapy and lower response rate after oncological treatment. Nutritional Risk Screening 2002 (NRS) adapted for oncological patients was used to assess the risk of undernutrition in a group of 188 patients with lung cancer. The risk was evaluated on a 6-point scale according to common signs of nutritional status (weight loss, body mass index, and dietary intake), tumor, and its treatment risk factors. A score of 3 or more (called "nutritional risk") means significant risk of malnutrition and poor outcome. Acceptable NRS score was found in 50.6%, and in 45.3% a score of 3-5 suggested the risk of malnutrition (nutritional risk). Unexpectedly, the toxicity of anticancer treatment was not significantly different between the subgroups (acceptable score vs nutritional risk). The rate of treatment response evaluated by imaging techniques was significantly higher in patients with an acceptable score compared to nutritional risk. Overall survival rate was significantly higher in cytostatically treated patients with lung cancer with an acceptable score. Nutritional risk screening is a significant predictor of tumor response in patients with lung cancer. Early detection of malnutrition is important to determine the prognosis of cancer patients as well as to plan effective supportive care.

  1. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  2. O modelo AM1 na previsão de frequências vibracionais The vibration frequencies predicted by the AM1 model

    Directory of Open Access Journals (Sweden)

    João Carlos Silva Ramos

    1999-09-01

    Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.

  3. Negative-Margin Criterion for Impact-Response Prediction

    Science.gov (United States)

    Anderson, Denton

    2006-01-01

    Some space missions require a nuclear-power source to generate electrical power to meet mission objectives. At present, the nuclear-power source is an assembly of modular heat sources called the general purpose heat source (GPHS) modules. Each module comprises graphite shells designed to protect iridium-alloy clads which serve as the primary containment shells for the radioactive, heat-producing material. In the course of launching the space vehicle to perform its mission the nuclear heat source may be exposed to severe accident environments. One particular environment is a primary impact event where individual GPHS modules impact hard surfaces at speeds in the range of 50 meters per second or more. Tests have shown that some clads may be breached in particularly severe impacts and release a small fraction of their contents. This paper presents an empirical model for predicting essential ingredients for assessing the risk associated with primary impact events. The ingredients include: clad failure probability, release fraction of clad contents, characterization of the released material in terms of particle-size distribution and a means to estimate uncertainty in the prediction process. The empirical model focuses on the deformation of the clads and their capability to withstand deformation without breaching, measured by ductility. The basic criterion used to estimate all ingredients is called ``negative margin''. The procedure for estimating risk factors entails calculation of clad distortion by, e.g. hydrocode simulation, and high-strain-rate ductility of the iridium alloy. Negative margin is a linear combination of distortion and ductility. Regression equations derived from test data are used to calculate the clad failure probability and the fractional activity release as functions of negative margin. The mass-based particle-size distribution is calculated as a function of release fraction. Cumulative uncertainty in this computing process is evaluated using

  4. Molecular and vibrational structure of thiosulfonate S-esters

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Duus, Fritz; Spanget-Larsen, Jens

    2013-01-01

    /cc-pVTZ). The vibrational spectra of 2 and 3 are sensitive to the orientation of the alkyl group attached to the sulfonylic sulfur atom. Rotamers corresponding to anti and gauche conformations are thus predicted to have distinctly different vibrational transitions in the 800–400 cm–1 region. The observed vibrational...

  5. Estimation of spinal loading in vertical vibrations by numerical simulation

    NARCIS (Netherlands)

    Verver, M.M.; Hoof, J.F.A.M. van; Oomens, C.W.J.; Wouw, N. van de; Wismans, J.S.H.M.

    2003-01-01

    Objective. This paper describes the prediction of spinal forces in car occupants during vertical vibrations using a numerical multi-body occupant model. Background. An increasing part of the population is exposed to whole body vibrations in vehicles. In literature, vertical vibrations and low back

  6. Experimental Modal Analysis on Vibrations in the Building Construction

    OpenAIRE

    成瀬, 治興; 佐野, 泰之; 北畠, 弘基

    1996-01-01

    This paper describes some results of vibration propagation characteristics of two rooms next door to each other in the actual building construction (including floor, walls, and upstairfloor) by experimental modal analysis. In addition, we investigate about vibration response of measuring points by forced response and sensitivity analysis. The results are summarized as follows. The vibration of lower modes gives larger effect to vibration propagation characteristics of building construction th...

  7. Response of dorsomedial prefrontal cortex predicts altruistic behavior.

    Science.gov (United States)

    Waytz, Adam; Zaki, Jamil; Mitchell, Jason P

    2012-05-30

    Human beings have an unusual proclivity for altruistic behavior, and recent commentators have suggested that these prosocial tendencies arise from our unique capacity to understand the minds of others (i.e., to mentalize). The current studies test this hypothesis by examining the relation between altruistic behavior and the reflexive engagement of a neural system reliably associated with mentalizing. Results indicated that activity in the dorsomedial prefrontal cortex--a region consistently involved in understanding others' mental states--predicts both monetary donations to others and time spent helping others. These findings address long-standing questions about the proximate source of human altruism by suggesting that prosocial behavior results, in part, from our broader tendency for social-cognitive thought.

  8. A comparative study of MP2, B3LYP, RHF and SCC-DFTB force fields in predicting the vibrational spectra of N-acetyl-L-alanine-N'-methyl amide: VA and VCD spectra

    DEFF Research Database (Denmark)

    Bohr, Henrik; Jalkanen, Karl J.; Elstner, M.

    1999-01-01

    Recently we have looked for spectroscopic probes for secondary structural elements in the vibrational spectra of N-acetyl-L-alanine N'-methyl amide (NALANMA), L-alanine (LA), N-acetyl-L-alanyl-L-alanine N'-methyl amide (NALALANMA) and L-alanyl-L-alanine (LALA). Our goal has been to identify...... spectroscopic probes which can be used to identify specific secondary structural elements in peptides, polypeptides and proteins. In this work we present our comparative analysis of the MP2, B3LYP, RHF and SCC-DFTB quantum force fields to predict the vibrational absorption (VA) and vibrational circular...... dichroism (VCD) spectra of NALANMA. We have utilised MP2/6-31G*, B3LYP/6-31G*, RHF/6-31G* and SCC-DFTB level theory to determine the geometries and Hessians, atomic polar tensors (APT) and atomic axial tensors (AAT) which are required for simulating the VA and VCD spectra. We have also calculated the AAT...

  9. The utility of the ASI factors in predicting response to voluntary hyperventilation among nonclinical participants.

    Science.gov (United States)

    Carter, M M; Suchday, S; Gore, K L

    2001-01-01

    Empirical research has demonstrated that the Anxiety Sensitivity Index (ASI) contains three separable factors and that ASI total scores are useful in predicting response to physiological challenge procedures. Little is known, however, of the predictive capability of the ASI factors. This study investigated the utility of the three factors of the ASI compared to ASI total scores and the STAI-T, a more general measure of trait anxiety, in predicting response to hyperventilation. As expected, the ASI total score was a significant predictor of response to hyperventilation, while the STAI-T was not. Using multiple regression, when the physical concerns factor was entered first, the social concerns and mental incapacitation factors of the ASI were not significant predictors of response to hyperventilation. Furthermore, when the physical concerns factor was entered into a regression equation followed by the remainder of the ASI items, only the physical concerns factor remained a significant predictor of response to hyperventilation. These results suggest that while response to physiological challenge procedures is predicted by ASI total scores, it may be best predicted by the physical concerns factor, and that the mental incapacitation and social concerns subscales do not play key roles in predicting response to physiological challenge procedures.

  10. Response variability in rapid automatized naming predicts reading comprehension.

    Science.gov (United States)

    Li, James J; Cutting, Laurie E; Ryan, Matthew; Zilioli, Monica; Denckla, Martha B; Mahone, E Mark

    2009-10-01

    A total of 37 children ages 8 to 14 years, screened for word-reading difficulties (23 with attention-deficit/hyperactivity disorder, ADHD; 14 controls) completed oral reading and rapid automatized naming (RAN) tests. RAN trials were segmented into pause and articulation time and intraindividual variability. There were no group differences on reading or RAN variables. Color- and letter-naming pause times and number-naming articulation time were significant predictors of reading fluency. In contrast, number and letter pause variability were predictors of comprehension. Results support analysis of subcomponents of RAN and add to literature emphasizing intraindividual variability as a marker for response preparation, which has relevance to reading comprehension.

  11. Prediction of response to interferon therapy in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Søndergaard, Helle Bach; Koch-Henriksen, N

    2014-01-01

    OBJECTIVE: Single nucleotide polymorphisms (SNPs) in the genes encoding interferon response factor (IRF)-5, IRF-8 and glypican-5 (GPC5) have been associated with disease activity in multiple sclerosis (MS) patients treated with interferon (IFN)-β. We analysed whether SNPs in the IRF5, IRF8 and GPC5...... prospectively after the initiation of their first treatment with IFN-β. RESULTS: 62% of patients experienced relapses during the first 2 years of treatment, and 32% had disability progression during the first 5 years of treatment. Patients with a pretreatment annualized relapse rate >1 had an increased risk...

  12. A priori Prediction of Neoadjuvant Chemotherapy Response and Survival in Breast Cancer Patients using Quantitative Ultrasound

    Science.gov (United States)

    Tadayyon, Hadi; Sannachi, Lakshmanan; Gangeh, Mehrdad J.; Kim, Christina; Ghandi, Sonal; Trudeau, Maureen; Pritchard, Kathleen; Tran, William T.; Slodkowska, Elzbieta; Sadeghi-Naini, Ali; Czarnota, Gregory J.

    2017-04-01

    Quantitative ultrasound (QUS) can probe tissue structure and analyze tumour characteristics. Using a 6-MHz ultrasound system, radiofrequency data were acquired from 56 locally advanced breast cancer patients prior to their neoadjuvant chemotherapy (NAC) and QUS texture features were computed from regions of interest in tumour cores and their margins as potential predictive and prognostic indicators. Breast tumour molecular features were also collected and used for analysis. A multiparametric QUS model was constructed, which demonstrated a response prediction accuracy of 88% and ability to predict patient 5-year survival rates (p = 0.01). QUS features demonstrated superior performance in comparison to molecular markers and the combination of QUS and molecular markers did not improve response prediction. This study demonstrates, for the first time, that non-invasive QUS features in the core and margin of breast tumours can indicate breast cancer response to neoadjuvant chemotherapy (NAC) and predict five-year recurrence-free survival.

  13. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  14. Improving models to predict phenological responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Andrew D. [Harvard College, Cambridge, MA (United States)

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  15. Incident experience predicts freezing-like responses in firefighters.

    Directory of Open Access Journals (Sweden)

    Verena Ly

    Full Text Available Freezing is a defensive response to acute stress that is associated with coping and alterations in attentional processing. However, it remains unclear whether individuals in high risk professions, who are skilled at making rapid decisions in emergency situations, show altered threat-induced freezing. Here we investigated the effect of incident experience in a high risk profession on freezing. Additionally, we explored whether any effect of incident experience on freezing would be different for profession-related and -unrelated threat. Forty experienced and inexperienced firefighters were presented neutral, pleasant, related-unpleasant, and unrelated-unpleasant pictures in a passive viewing task. Postural sway and heart rate were assessed to determine freezing. Both postural and heart rate data evidenced reduced freezing upon unpleasant pictures in the experienced versus the inexperienced group. Relatedness of the unpleasant pictures did not modulate these effects. These findings indicate that higher incident experience relates to decreased threat-induced freezing, at least in a passive task context. This might suggest that primary defense responses are malleable through experience. Finally, these findings demonstrate the potential of using animal to human translational approaches to investigate defensive behaviors in relation to incident experience in high risk professions and stimulate future research on the role of freezing in resilience and coping.

  16. Mood color choice helps to predict response to hypnotherapy in patients with irritable bowel syndrome

    National Research Council Canada - National Science Library

    Carruthers, Helen R; Morris, Julie; Tarrier, Nicholas; Whorwell, Peter J

    2010-01-01

    .... The use of imagery and color form an integral part of the hypnotherapeutic process and we have hypothesised that investigating color and how it relates to mood might help to predict response to treatment...

  17. Data to establish the optimal standard regimen and predicting the response to docetaxel therapy

    Directory of Open Access Journals (Sweden)

    Emad Y. Moawad

    2015-12-01

    Full Text Available This paper contains data to establish the optimal standard regimen and predicting the response to docetaxel therapy (Moawad, 2014 [1]. Docetaxel has been in use for over a decade without demonstrating data indicates a predictable response in the treatment of cancer. Data of puzzling response to docetaxel therapy was due to its cell cycle specific effect. Although several administered schedules were investigated, the relative therapeutic advantage of high versus low doses has not been identified yet. Also the antitumor target of docetaxel has not yet been identified to optimize therapy by predicting the response of patients prior to therapy to provide a protection against treatment failure. In the present paper, we demonstrate the data used to optimize docetaxel therapy and investigate the possibility of predicting for the first time the antitumor target of docetaxel.

  18. Dopamine reward prediction-error signalling: a two-component response

    Science.gov (United States)

    Schultz, Wolfram

    2017-01-01

    Environmental stimuli and objects, including rewards, are often processed sequentially in the brain. Recent work suggests that the phasic dopamine reward prediction-error response follows a similar sequential pattern. An initial brief, unselective and highly sensitive increase in activity unspecifically detects a wide range of environmental stimuli, then quickly evolves into the main response component, which reflects subjective reward value and utility. This temporal evolution allows the dopamine reward prediction-error signal to optimally combine speed and accuracy. PMID:26865020

  19. Flow-induced vibration of component cooling water heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Y.S.; Chen, S.S. (Taiwan Power Co., Taipei (Taiwan). Nuclear Engineering Dept.; Argonne National Lab., IL (USA))

    1990-01-01

    This paper presents an evaluation of flow-induced vibration problems of component cooling water heat exchangers in one of Taipower's nuclear power stations. Specifically, it describes flow-induced vibration phenomena, tests to identify the excitation mechanisms, measurement of response characteristics, analyses to predict tube response and wear, various design alterations, and modifications of the original design. Several unique features associated with the heat exchangers are demonstrated, including energy-trapping modes, existence of tube-support-plate (TSP)-inactive modes, and fluidelastic instability of TSP-active and -inactive modes. On the basis of this evaluation, the difficulties and future research needs for the evaluation of heat exchangers are identified. 11 refs., 19 figs., 3 tabs.

  20. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  1. Estimates of site response based on spectral ratio between horizontal and vertical components of ambient vibrations in the source zone of 2001 Bhuj earthquake

    Science.gov (United States)

    Natarajan, Thulasiraman; Rajendran, Kusala

    2015-02-01

    We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our H/V curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f0) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low H/V peak amplitudes (A0 = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the H/V method to study complex geological settings as Kachchh.

  2. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    DEFF Research Database (Denmark)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity ...

  3. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    NARCIS (Netherlands)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of

  4. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Science.gov (United States)

    Lawrence N. Hudson; Joseph Wunderle M.; And Others

    2016-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to...

  5. Assessment of Predictive Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Mallika Tewari

    2010-10-01

    Conclusion: Of all parameters examined, only the apoptosis-related genes (Bcl-2 and BAX seemed to exert some influence on the response to NACT, and neither by itself was sufficient to predict pCR; however, 50 patients is not sufficient to simultaneously analyse several predictive markers.

  6. Poor Response to Periodontal Treatment May Predict Future Cardiovascular Disease.

    Science.gov (United States)

    Holmlund, A; Lampa, E; Lind, L

    2017-07-01

    Periodontal disease has been associated with cardiovascular disease (CVD), but whether the response to the treatment of periodontal disease affects this association has not been investigated in any large prospective study. Periodontal data obtained at baseline and 1 y after treatment were available in 5,297 individuals with remaining teeth who were treated at a specialized clinic for periodontal disease. Poor response to treatment was defined as having >10% sites with probing pocket depth >4 mm deep and bleeding on probing at ≥20% of the sites 1 y after active treatment. Fatal/nonfatal incidence rate of CVD (composite end point of myocardial infarction, stroke, and heart failure) was obtained from the Swedish cause-of-death and hospital discharge registers. Poisson regression analysis was performed to analyze future risk of CVD. During a median follow-up of 16.8 y (89,719 person-years at risk), those individuals who did not respond well to treatment (13.8% of the sample) had an increased incidence of CVD ( n = 870) when compared with responders (23.6 vs. 15.3%, P 4 mm, and number of teeth, the incidence rate ratio for CVD among poor responders was 1.28 (95% CI, 1.07 to 1.53; P = 0.007) as opposed to good responders. The incidence rate ratio among poor responders increased to 1.39 (95% CI, 1.13 to 1.73; P = 0.002) for those with the most remaining teeth. Individuals who did not respond well to periodontal treatment had an increased risk for future CVD, indicating that successful periodontal treatment might influence progression of subclinical CVD.

  7. Fatigue failure of materials under narrow band random vibrations. I.

    Science.gov (United States)

    Huang, T. C.; Hubbard, R. B.; Lanz, R. W.

    1971-01-01

    A novel approach for the study of fatigue failure of materials under the multifactor influence of narrow band random vibrations is developed. The approach involves the conduction of an experiment in conjunction with various statistical techniques. Three factors including two statistical properties of the excitation or response are considered and varied simultaneously. A minimum of 6 tests for 3 variables is possible for a fractional f actorial design. The four coefficients of the predicting equation can be independently estimated. A look at 3 predicting equations shows the predominant effect of the root mean square stress of the first order equation.

  8. THE POTENTIAL NEURAL MECHANISMS OF ACUTE INDIRECT VIBRATION

    Directory of Open Access Journals (Sweden)

    Darryl J. Cochrane

    2011-03-01

    Full Text Available There is strong evidence to suggest that acute indirect vibration acts on muscle to enhance force, power, flexibility, balance and proprioception suggesting neural enhancement. Nevertheless, the neural mechanism(s of vibration and its potentiating effect have received little attention. One proposal suggests that spinal reflexes enhance muscle contraction through a reflex activity known as tonic vibration stretch reflex (TVR, which increases muscle activation. However, TVR is based on direct, brief, and high frequency vibration (>100 Hz which differs to indirect vibration, which is applied to the whole body or body parts at lower vibration frequency (5-45 Hz. Likewise, muscle tuning and neuromuscular aspects are other candidate mechanisms used to explain the vibration phenomenon. But there is much debate in terms of identifying which neural mechanism(s are responsible for acute vibration; due to a number of studies using various vibration testing protocols. These protocols include: different methods of application, vibration variables, training duration, exercise types and a range of population groups. Therefore, the neural mechanism of acute vibration remain equivocal, but spinal reflexes, muscle tuning and neuromuscular aspects are all viable factors that may contribute in different ways to increasing muscular performance. Additional research is encouraged to determine which neural mechanism(s and their contributions are responsible for acute vibration. Testing variables and vibration applications need to be standardised before reaching a consensus on which neural mechanism(s occur during and post-vibration

  9. Actively controlled vibration welding system and method

    Science.gov (United States)

    Cai, Wayne W.; Kang, Bongsu; Tan, Chin-An

    2013-04-02

    A vibration welding system includes a controller, welding horn, an active material element, and anvil assembly. The assembly may include an anvil body connected to a back plate and support member. The element, e.g., a piezoelectric stack or shape memory alloy, is positioned with respect to the assembly. The horn vibrates in a desirable first direction to form a weld on a work piece. The element controls any vibrations in a second direction by applying calibrated response to the anvil body in the second direction. A method for controlling undesirable vibrations in the system includes positioning the element with respect to the anvil assembly, connecting the anvil body to the support member through the back plate, vibrating the horn in a desirable first direction, and transmitting an input signal to the element to control vibration in an undesirable second direction.

  10. Baseline hepatitis B surface antigen quantitation can predict virologic response in entecavir-treated chronic hepatitis B patients

    Directory of Open Access Journals (Sweden)

    Chia-Chi Wang

    2014-11-01

    Conclusion: The baseline serum qHBsAg level can predict virologic response in entecavir-treated CHB patients. However, a significant decline in the qHBsAg level cannot predict serologic or virologic response of entecavir treatment.

  11. Can Nutritional Assessment Tools Predict Response to Nutritional Therapy?

    Science.gov (United States)

    Patel, Chirag; Omer, Endashaw; Diamond, Sarah J; McClave, Stephen A

    2016-04-01

    Traditional tools and scoring systems for nutritional assessment have focused solely on parameters of poor nutritional status in the past, in an effort to define the elusive concept of malnutrition. Such tools fail to account for the contribution of disease severity to overall nutritional risk. High nutritional risk, caused by either deterioration of nutritional status or greater disease severity (or a combination of both factors), puts the patient in a metabolic stress state characterized by adverse outcome and increased complications. Newer scoring systems for determining nutritional risk, such as the Nutric Score and the Nutritional Risk Score-2002 have created a paradigm shift connecting assessment and treatment with quality outcome measures of success. Clinicians now have the opportunity to identify high risk patients through their initial assessment, provide adequate or sufficient nutrition therapy, and expect improved patient outcomes as a result. These concepts are supported by observational and prospective interventional trials. Greater clinical experience and refinement in these scoring systems are needed in the future to optimize patient response to nutrition therapy.

  12. Habitat specialization predicts genetic response to fragmentation in tropical birds.

    Science.gov (United States)

    Khimoun, Aurélie; Eraud, Cyril; Ollivier, Anthony; Arnoux, Emilie; Rocheteau, Vincent; Bely, Marine; Lefol, Emilie; Delpuech, Martin; Carpentier, Marie-Laure; Leblond, Gilles; Levesque, Anthony; Charbonnel, Anaïs; Faivre, Bruno; Garnier, Stéphane

    2016-08-01

    Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species-specific population structure are rare. Here, we used a comparative approach on eight bird species, co-occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology. © 2016 John Wiley & Sons Ltd.

  13. Proton MRS may predict AED response in patients with TLE.

    Science.gov (United States)

    Campos, Bruno A G; Yasuda, Clarissa L; Castellano, Gabriela; Bilevicius, Elizabeth; Li, Li M; Cendes, Fernando

    2010-05-01

    To compare relative N-acetylaspartate (NAA) measurements in temporal lobe epilepsy (TLE) patients with good response to the first trial of antiepileptic drugs (AEDs) (an important prognostic factor) to TLE patients who failed the first AED monotherapy and required further AED trials with monotherapy or polytherapy. We studied 25 consecutive TLE patients who responded to first AED (responders) and 21 who did not (failure-group), as well as 27 controls. Patients were seen regularly in our Epilepsy Service and underwent electroencephalography (EEG) investigation, high-resolution magnetic resonance imaging (MRI), and single-voxel proton MR spectroscopy. Voxels were tailored to the medial temporal region on each side and involved the anterior hippocampus. Analysis of variance (ANOVA) demonstrated significant variation of NAA/creatine (NAA/Cr) values in both hippocampi, ipsilateral and contralateral to the EEG focus (p AED have significantly less evidence of neuronal and axonal damage/dysfunction compared to those who are refractory to the first AED trial.

  14. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa.

    Science.gov (United States)

    DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W

    2017-06-01

    Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.

  15. Characterization and Comparison of Vibration Transfer Paths in a Helicopter Gearbox and a Fixture Mounted Gearbox

    Science.gov (United States)

    Islam, Akm Anwarul; Dempsey, Paula J.; Feldman, Jason; Larsen, Chris

    2014-01-01

    Health monitoring of rotorcraft components, currently being performed by Health and Usage Monitoring Systems through analyses of vibration signatures of dynamic mechanical components, is very important for their safe and economic operation. HUMS analyze vibration signatures associated with faults and quantify them as condition indicators to predict component behavior. Vibration transfer paths are characterized by frequency response functions derived from the input/output relationship between applied force and dynamic response through a structure as a function of frequency. With an objective to investigate the differences in transfer paths, transfer path measurements were recorded under similar conditions in the left and right nose gearboxes of an AH-64 helicopter and in an isolated left nose gearbox in a test fixture at NASA Glenn Research Center. The test fixture enabled the application of measured torques-common during an actual operation. An impact hammer as well as commercial and lab piezo shakers, were used in conjunction with two types of commercially available accelerometers to collect the vibration response under various test conditions. The frequency response functions measured under comparable conditions of both systems were found to be consistent. Measurements made on the fixture indicated certain real-world installation and maintenance issues, such as sensor alignments, accelerometer locations and installation torques, had minimal effect. However, gear vibration transfer path dynamics appeared to be somewhat dependent on the presence of oil, and the transfer path dynamics were notably different if the force input was on the internal ring gear rather than on the external gearbox case.

  16. Remarks on a dynamical higher-order theory of laminated plates and its application in random vibration response

    Science.gov (United States)

    Cederbaum, G.; Librescu, L.; Elishakoff, I.

    1989-01-01

    This paper presents an analysis of the equations governing the dynamics of shear-deformable composite plates, without recourse to a variational procedure. It is noted that the operator associated with the governing equations is nonsymmetric; using a first-order perturbation technique, it is shown to be positive-definite. In addition, using the biorthogonality condition, the dynamic response of the plate is formulated.

  17. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  18. Predicting individual differences in response to sleep loss: application of current techniques.

    Science.gov (United States)

    Chandler, Joseph F; Arnold, Richard D; Phillips, Jeffrey B; Turnmire, Ashley E

    2013-09-01

    Fatigue's negative impact on safety represents one of the top threats to military transportation. Biomathematical models have been developed to predict the response to fatigue; however, current models do not take into account stable individual differences in fatigue susceptibility. Readiness Screening Tools (RSTs) can capture individual differences in fatigue response, but cannot predict performance long-term. The objective of this study was to combine an existing biomathematical model of fatigue with existing RST-derived measures to determine current ability to predict individual differences in fatigue response. We hypothesized that the predictive ability of the biomathematical model could be significantly improved by incorporating cognitive and oculometric measures shown to be sensitive to individual differences in fatigue response. Data on multiple cognitive and oculometric measures were collected at rested baseline and then every 3 h across 25 h of continual wakefulness. Results characterized actual fatigued performance at the group and individual levels. Actual performance was compared to predicted performance decrements over the same time period. The unique variance explained by each approach was then combined to determine if RST-derived individual difference measures added significant predictive power to the model. Addition of individual-difference sensitive RST measures to an existing fatigue model significantly increased the amount of variance in performance explained by the model from 13.8 to 35.7%. Simply leveraging RSTs' ability to capture individual differences in fatigue susceptibility can substantially improve biomathematical prediction of fatigued performance.

  19. Can personality traits predict pathological responses to audiovisual stimulation?

    Science.gov (United States)

    Yambe, Tomoyuki; Yoshizawa, Makoto; Fukudo, Shin; Fukuda, Hiroshi; Kawashima, Ryuta; Shizuka, Kazuhiko; Nanka, Shunsuke; Tanaka, Akira; Abe, Ken-ichi; Shouji, Tomonori; Hongo, Michio; Tabayashi, Kouichi; Nitta, Shin-ichi

    2003-10-01

    pathophysiological reaction to the audiovisual stimulations. As for the photo sensitive epilepsy, it was reported to be only 5-10% for all patients. Therefore, 90% or more of the cause could not be determined in patients who started a morbid response. The results in this study suggest that the autonomic function was connected to the mental tendency of the objects. By examining such directivity, it is expected that subjects, which show morbid reaction to an audiovisual stimulation, can be screened beforehand.

  20. Posterior predictive checks for conditional independence between response time and accuracy

    NARCIS (Netherlands)

    Bolsinova, Maria; Tijmstra, J.

    2016-01-01

    Conditional independence (CI) between response time and response accuracy is a fundamental assumption of many joint models for time and accuracy used in educational measurement. In this study, posterior predictive checks (PPCs) are proposed for testing this assumption. These PPCs are based on three

  1. Predicting fluid responsiveness with transthoracic echocardiography is not yet evidence based

    DEFF Research Database (Denmark)

    Wetterslev, M; Haase, N; Johansen, R R

    2013-01-01

    % CI 73-100) and an area under the receiver operating curve of 0.90 (95% CI 0.73-0.98). Only one study of TTE-based methods fulfilled the criteria for valid assessment of fluid responsiveness. Before recommending the use of TTE in predicting fluid responsiveness, proper evaluation including...

  2. Demographic and phenotypic responses of juvenile steelhead trout to spatial predictability of food resources

    Science.gov (United States)

    Matthew R. Sloat; Gordon H. Reeves

    2014-01-01

    We manipulated food inputs among patches within experimental streams to determine how variation in foraging behavior influenced demographic and phenotypic responses of juvenile steelhead trout (Oncorhynchus mykiss) to the spatial predictability of food resources. Demographic responses included compensatory adjustments in fish abundance, mean fish...

  3. Exposure-response functions for (or versus?) the prediction of annoyance in specific situations

    NARCIS (Netherlands)

    Janssen, S.A.; Vos, H.

    2012-01-01

    Based on data from many surveys, exposure-response functions have been derived to describe the average expected annoyance response at a certain noise level. These have been used to define acceptable levels of environmental noise for separate noise sources. However, the prediction of the annoyance

  4. The Predictive Adaptive Response: Modeling the Life-History Evolution of the Butterfly

    NARCIS (Netherlands)

    Heuvel, van den J.; Saastamoinen, M.; Brakefield, P.M.; Kirkwood, T.B.; Zwaan, B.J.; Shanley, D.P.

    2013-01-01

    A predictive adaptive response (PAR) is a type of developmental plasticity where the response to an environmental cue is not immediately advantageous but instead is later in life. The PAR is a way for organisms to maximize fitness in varying environments. Insects living in seasonal environments are

  5. Predictive clinical model of tumor response after chemoradiation in rectal cancer.

    Science.gov (United States)

    Santos, Marisa D; Silva, Cristina; Rocha, Anabela; Nogueira, Carlos; Castro-Poças, Fernando; Araujo, António; Matos, Eduarda; Pereira, Carina; Medeiros, Rui; Lopes, Carlos

    2017-08-29

    Survival improvement in rectal cancer treated with neoadjuvant chemoradiotherapy (nCRT) is achieved only if pathological response occurs. Mandard tumor regression grade (TRG) proved to be a valid system to measure nCRT response. The ability to predict tumor response before treatment may significantly have impact the selection of patients for nCRT in rectal cancer. The aim is to identify potential predictive pretreatment factors for Mandard response and build a clinical predictive model design. 167 patients with locally advanced rectal cancer were treated with nCRT and curative surgery. Blood cell counts in peripheral blood were analyzed. Pretreatment biopsies expression of cyclin D1, epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and protein 21 were assessed. A total of 61 single nucleotide polymorphisms were characterized using the Sequenom platform through multiplex amplification followed by mass-spectometric product separation. Surgical specimens were classified according to Mandard TRG. The patients were divided as: "good responders" (Mandard TRG1-2) and "poor responders" (Mandard TGR3-5). We examined predictive factors for Mandard response and performed statistical analysis. In univariate analysis, distance from anal verge, neutrophil lymphocyte ratio (NLR), cyclin D1, VEGF, EGFR, protein 21 and rs1810871 interleukin 10 (IL10) gene polymorphism are the pretreatment variables with predictive value for Mandard response. In multivariable analysis, NLR, cyclin D1, protein 21 and rs1800871 in IL10 gene maintain predictive value, allowing a clinical model design. It seems possible to use pretreatment expression of blood and tissue biomarkers, and build a model of tumor response prediction to neoadjuvant chemoradiation in rectal cancer.

  6. Do Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs use vibrational communication?

    Science.gov (United States)

    Chuche, Julien; Thiéry, Denis; Mazzoni, Valerio

    2011-07-01

    Small Auchenorrhyncha use substrate-borne vibrations to communicate. Although this behaviour is well known in adult leafhoppers, so far no studies have been published on nymphs. Here we checked the occurrence of vibrational communication in Scaphoideus titanus (Hemiptera: Cicadellidae) nymphs as a possible explanation of their aggregative distributions on host plants. We studied possible vibratory emissions of isolated and grouped nymphs, as well as their behavioural responses to vibration stimuli that simulated presence of conspecifics, to disturbance noise, white noise and predator spiders. None of our synthetic stimuli or pre-recorded substrate vibrations from nymphs elicited specific vibration responses and only those due to grooming or mechanical contacts of the insect with the leaf were recorded. Thus, S. titanus nymphs showed to not use species-specific vibrations neither for intra- nor interspecific communication and also did not produce alarm vibrations when facing potential predators. We conclude that their aggregative behaviour is independent from a vibrational communication.

  7. Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women.

    Science.gov (United States)

    Lupis, Sarah B; Lerman, Michelle; Wolf, Jutta M

    2014-11-01

    While previous research has suggested that anger and fear responses to stress are linked to distinct sympathetic nervous system (SNS) stress responses, little is known about how these emotions predict hypothalamus-pituitary-adrenal (HPA) axis reactivity. Further, earlier research primarily relied on retrospective self-report of emotion. The current study aimed at addressing both issues in male and female individuals by assessing the role of anger and fear in predicting heart rate and cortisol stress responses using both self-report and facial coding analysis to assess emotion responses. We exposed 32 healthy students (18 female; 19.6±1.7 yr) to an acute psychosocial stress paradigm (TSST) and measured heart rate and salivary cortisol levels throughout the protocol. Anger and fear before and after stress exposure was assessed by self-report, and video recordings of the TSST were assessed by a certified facial coder to determine emotion expression (FACS). Self-reported emotions and emotion expressions did not correlate (all p>.23). Increases in self-reported fear predicted blunted cortisol responses in men (β=0.41, p=.04). Also for men, longer durations of anger expression predicted exaggerated cortisol responses (β=0.67 p=.004), and more anger incidences predicted exaggerated cortisol and heart rate responses (β=0.51, p=.033; β=0.46, p=.066, resp.). Anger and fear did not predict SNS or HPA activity for females (all p>.23). The current differential self-report and facial coding findings support the use of multiple modes of emotion assessment. Particularly, FACS but not self-report revealed a robust anger-stress association that could have important downstream health effects for men. For women, future research may clarify the role of other emotions, such as self-conscious expressions of shame, for physiological stress responses. A better understanding of the emotion-stress link may contribute to behavioral interventions targeting health-promoting ways of

  8. Passively damped vibration welding system and method

    Science.gov (United States)

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  9. RAMAN SPECTROSCOPIC STUDY ON PREDICTION OF TREATMENT RESPONSE IN CERVICAL CANCERS

    Directory of Open Access Journals (Sweden)

    S. RUBINA

    2013-04-01

    Full Text Available Concurrent chemoradiotherapy (CCRT is the choice of treatment for locally advanced cervical cancers; however, tumors exhibit diverse response to treatment. Early prediction of tumor response leads to individualizing treatment regimen. Response evaluation criteria in solid tumors (RECIST, the current modality of tumor response assessment, is often subjective and carried out at the first visit after treatment, which is about four months. Hence, there is a need for better predictive tool for radioresponse. Optical spectroscopic techniques, sensitive to molecular alteration, are being pursued as potential diagnostic tools. Present pilot study aims to explore the fiber-optic-based Raman spectroscopy approach in prediction of tumor response to CCRT, before taking up extensive in vivo studies. Ex vivo Raman spectra were acquired from biopsies collected from 11 normal (148 spectra, 16 tumor (201 spectra and 13 complete response (151 CR spectra, one partial response (8 PR spectra and one nonresponder (8 NR spectra subjects. Data was analyzed using principal component linear discriminant analysis (PC-LDA followed by leave-one-out cross-validation (LOO-CV. Findings suggest that normal tissues can be efficiently classified from both pre- and post-treated tumor biopsies, while there is an overlap between pre- and post-CCRT tumor tissues. Spectra of CR, PR and NR tissues were subjected to principal component analysis (PCA and a tendency of classification was observed, corroborating previous studies. Thus, this study further supports the feasibility of Raman spectroscopy in prediction of tumor radioresponse and prospective noninvasive in vivo applications.

  10. Beyond local group modes in vibrational sum frequency generation.

    Science.gov (United States)

    Chase, Hilary M; Psciuk, Brian T; Strick, Benjamin L; Thomson, Regan J; Batista, Victor S; Geiger, Franz M

    2015-04-09

    We combine deuterium labeling, density functional theory calculations, and experimental vibrational sum frequency generation spectroscopy into a form of "counterfactual-enabled molecular spectroscopy" for producing reliable vibrational mode assignments in situations where local group mode approximations are insufficient for spectral interpretation and vibrational mode assignments. We demonstrate the method using trans-β-isoprene epoxydiol (trans-β-IEPOX), a first-generation product of isoprene relevant to atmospheric aerosol formation, and one of its deuterium-labeled isotopologues at the vapor/silica interface. We use our method to determine that the SFG responses that we obtain from trans-β-IEPOX are almost exclusively due to nonlocal modes involving multiple C-H groups oscillating at the same frequency as one vibrational mode. We verify our assignments using deuterium labeling and use DFT calculations to predict SFG spectra of additional isotopologues that have not yet been synthesized. Finally, we use our new insight to provide a viable alternative to molecular orientation analysis methods that rely on local mode approximations in cases where the local mode approximation is not applicable.

  11. Evaluation of damping estimates by automated Operational Modal Analysis for offshore wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Bajrić, Anela; Høgsberg, Jan Becker; Rüdinger, Finn

    2018-01-01

    Reliable predictions of the lifetime of offshore wind turbine structures are influenced by the limited knowledge concerning the inherent level of damping during downtime. Error measures and an automated procedure for covariance driven Operational Modal Analysis (OMA) techniques has been proposed...... techniques are discussed and illustrated with respect to signal noise, measurement time, vibration amplitudes and stationarity of the ambient response. The best bias-variance error trade-off of damping estimates is obtained by the COV-SSI. The proposed automated procedure is validated by real vibration...

  12. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    Science.gov (United States)

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  13. Driver Vision Based Perception-Response Time Prediction and Assistance Model on Mountain Highway Curve.

    Science.gov (United States)

    Li, Yi; Chen, Yuren

    2016-12-30

    To make driving assistance system more humanized, this study focused on the prediction and assistance of drivers' perception-response time on mountain highway curves. Field tests were conducted to collect real-time driving data and driver vision information. A driver-vision lane model quantified curve elements in drivers' vision. A multinomial log-linear model was established to predict perception-response time with traffic/road environment information, driver-vision lane model, and mechanical status (last second). A corresponding assistance model showed a positive impact on drivers' perception-response times on mountain highway curves. Model results revealed that the driver-vision lane model and visual elements did have important influence on drivers' perception-response time. Compared with roadside passive road safety infrastructure, proper visual geometry design, timely visual guidance, and visual information integrality of a curve are significant factors for drivers' perception-response time.

  14. Resting lateralized activity predicts the cortical response and appraisal of emotions: an fNIRS study.

    Science.gov (United States)

    Balconi, Michela; Grippa, Elisabetta; Vanutelli, Maria Elide

    2015-12-01

    This study explored the effect of lateralized left-right resting brain activity on prefrontal cortical responsiveness to emotional cues and on the explicit appraisal (stimulus evaluation) of emotions based on their valence. Indeed subjective responses to different emotional stimuli should be predicted by brain resting activity and should be lateralized and valence-related (positive vs negative valence). A hemodynamic measure was considered (functional near-infrared spectroscopy). Indeed hemodynamic resting activity and brain response to emotional cues were registered when subjects (N = 19) viewed emotional positive vs negative stimuli (IAPS). Lateralized index response during resting state, LI (lateralized index) during emotional processing and self-assessment manikin rating were considered. Regression analysis showed the significant predictive effect of resting activity (more left or right lateralized) on both brain response and appraisal of emotional cues based on stimuli valence. Moreover, significant effects were found as a function of valence (more right response to negative stimuli; more left response to positive stimuli) during emotion processing. Therefore, resting state may be considered a predictive marker of the successive cortical responsiveness to emotions. The significance of resting condition for emotional behavior was discussed. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Investigation of Gearbox Vibration Transmission Paths on Gear Condition Indicator Performance

    Science.gov (United States)

    Dempsey, Paula J.; Islam, AKM Anwarul; Feldman, Jason; Larsen, Chris

    2013-01-01

    Helicopter health monitoring systems use vibration signatures generated from damaged components to identify transmission faults. For damaged gears, these signatures relate to changes in dynamics due to the meshing of the damaged tooth. These signatures, referred to as condition indicators (CI), can perform differently when measured on different systems, such as a component test rig, or a full-scale transmission test stand, or an aircraft. These differences can result from dissimilarities in systems design and environment under dynamic operating conditions. The static structure can also filter the response between the vibration source and the accelerometer, when the accelerometer is installed on the housing. To assess the utility of static vibration transfer paths for predicting gear CI performance, measurements were taken on the NASA Glenn Spiral Bevel Gear Fatigue Test Rig. The vibration measurements were taken to determine the effect of torque, accelerometer location and gearbox design on accelerometer response. Measurements were taken at the housing and compared while impacting the gear set near mesh. These impacts were made at gear mesh to simulate gear meshing dynamics. Data measured on a helicopter gearbox installed in a static fixture were also compared to the test rig. The behavior of the structure under static conditions was also compared to CI values calculated under dynamic conditions. Results indicate that static vibration transfer path measurements can provide some insight into spiral bevel gear CI performance by identifying structural characteristics unique to each system that can affect specific CI response.

  16. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  17. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively.

    Science.gov (United States)

    Lahner, D; Kabon, B; Marschalek, C; Chiari, A; Pestel, G; Kaider, A; Fleischmann, E; Hetz, H

    2009-09-01

    Fluid management guided by oesophageal Doppler monitor has been reported to improve perioperative outcome. Stroke volume variation (SVV) is considered a reliable clinical predictor of fluid responsiveness. Consequently, the aim of the present trial was to evaluate the accuracy of SVV determined by arterial pulse contour (APCO) analysis, using the FloTrac/Vigileo system, to predict fluid responsiveness as measured by the oesophageal Doppler. Patients undergoing major abdominal surgery received intraoperative fluid management guided by oesophageal Doppler monitoring. Fluid boluses of 250 ml each were administered in case of a decrease in corrected flow time (FTc) to 10%. The ability of SVV to predict fluid responsiveness was assessed by calculation of the area under the receiver operating characteristic (ROC) curve. Twenty patients received 67 fluid boluses. Fifty-two of the 67 fluid boluses administered resulted in fluid responsiveness. SVV achieved an area under the ROC curve of 0.512 [confidence interval (CI) 0.32-0.70]. A cut-off point for fluid responsiveness was found for SVV > or =8.5% (sensitivity: 77%; specificity: 43%; positive predictive value: 84%; and negative predictive value: 33%). This prospective, interventional observer-blinded study demonstrates that SVV obtained by APCO, using the FloTrac/Vigileo system, is not a reliable predictor of fluid responsiveness in the setting of major abdominal surgery.

  18. Predicting Survey Responses: How and Why Semantics Shape Survey Statistics on Organizational Behaviour

    Science.gov (United States)

    Arnulf, Jan Ketil; Larsen, Kai Rune; Martinsen, Øyvind Lund; Bong, Chih How

    2014-01-01

    Some disciplines in the social sciences rely heavily on collecting survey responses to detect empirical relationships among variables. We explored whether these relationships were a priori predictable from the semantic properties of the survey items, using language processing algorithms which are now available as new research methods. Language processing algorithms were used to calculate the semantic similarity among all items in state-of-the-art surveys from Organisational Behaviour research. These surveys covered areas such as transformational leadership, work motivation and work outcomes. This information was used to explain and predict the response patterns from real subjects. Semantic algorithms explained 60–86% of the variance in the response patterns and allowed remarkably precise prediction of survey responses from humans, except in a personality test. Even the relationships between independent and their purported dependent variables were accurately predicted. This raises concern about the empirical nature of data collected through some surveys if results are already given a priori through the way subjects are being asked. Survey response patterns seem heavily determined by semantics. Language algorithms may suggest these prior to administering a survey. This study suggests that semantic algorithms are becoming new tools for the social sciences, opening perspectives on survey responses that prevalent psychometric theory cannot explain. PMID:25184672

  19. Predicting survey responses: how and why semantics shape survey statistics on organizational behaviour.

    Directory of Open Access Journals (Sweden)

    Jan Ketil Arnulf

    Full Text Available Some disciplines in the social sciences rely heavily on collecting survey responses to detect empirical relationships among variables. We explored whether these relationships were a priori predictable from the semantic properties of the survey items, using language processing algorithms which are now available as new research methods. Language processing algorithms were used to calculate the semantic similarity among all items in state-of-the-art surveys from Organisational Behaviour research. These surveys covered areas such as transformational leadership, work motivation and work outcomes. This information was used to explain and predict the response patterns from real subjects. Semantic algorithms explained 60-86% of the variance in the response patterns and allowed remarkably precise prediction of survey responses from humans, except in a personality test. Even the relationships between independent and their purported dependent variables were accurately predicted. This raises concern about the empirical nature of data collected through some surveys if results are already given a priori through the way subjects are being asked. Survey response patterns seem heavily determined by semantics. Language algorithms may suggest these prior to administering a survey. This study suggests that semantic algorithms are becoming new tools for the social sciences, opening perspectives on survey responses that prevalent psychometric theory cannot explain.

  20. Predicting survey responses: how and why semantics shape survey statistics on organizational behaviour.

    Science.gov (United States)

    Arnulf, Jan Ketil; Larsen, Kai Rune; Martinsen, Øyvind Lund; Bong, Chih How

    2014-01-01

    Some disciplines in the social sciences rely heavily on collecting survey responses to detect empirical relationships among variables. We explored whether these relationships were a priori predictable from the semantic properties of the survey items, using language processing algorithms which are now available as new research methods. Language processing algorithms were used to calculate the semantic similarity among all items in state-of-the-art surveys from Organisational Behaviour research. These surveys covered areas such as transformational leadership, work motivation and work outcomes. This information was used to explain and predict the response patterns from real subjects. Semantic algorithms explained 60-86% of the variance in the response patterns and allowed remarkably precise prediction of survey responses from humans, except in a personality test. Even the relationships between independent and their purported dependent variables were accurately predicted. This raises concern about the empirical nature of data collected through some surveys if results are already given a priori through the way subjects are being asked. Survey response patterns seem heavily determined by semantics. Language algorithms may suggest these prior to administering a survey. This study suggests that semantic algorithms are becoming new tools for the social sciences, opening perspectives on survey responses that prevalent psychometric theory cannot explain.

  1. Modeling and parameter identification of an active anti-vibration system

    Science.gov (United States)

    Beadle, Brad M.; Hurlebaus, Stefan; Stoebener, Uwe; Gaul, Lothar

    2005-05-01

    In the fields of high-resolution metrology and manufacturing, effective anti-vibration measures are required to obtain precise and repeatable results. This is particularly true when the amplitudes of ambient vibration and the dimensions of the investigated or manufactured structure are comparable, e.g. in sub-micron semiconductor chip production, holographic interferometry, confocal optical imaging, and scanning probe microscopy. In the active anti-vibration system examined, signals are acquired by extremely sensitive vibration detectors, and the vibration is reduced using a feedback controller to drive electrodynamic actuators. This paper deals with the modeling of this anti-vibration system. First, a six-degree-of-freedom rigid body model of the system is developed. The unknown parameters of the unloaded system, including actuator transduction constants, spring stiffness, damping, moments of inertia, and the location of the center of mass, are determined by comparing measured transfer functions to those calculated using the updated model. The model is then re-updated for the case of an arbitrarily loaded system. The responses predicted by the final updated model agree well with the experimental measurements, thereby giving confidence in the model and the updating procedure.

  2. A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester

    Science.gov (United States)

    Xiao, Han; Wang, Xu; John, Sabu

    2015-06-01

    In this study, a dimensionless analysis method is proposed to predict the output voltage and harvested power for a 2DOF vibration energy harvesting system. This method allows us to compare the harvesting power and efficiency of the 2DOF vibration energy harvesting system and to evaluate the harvesting system performance regardless the sizes or scales. The analysis method is a hybrid of time domain simulation and frequency response analysis approaches, which would be a useful tool for parametric study, design and optimisation of a 2DOF piezoelectric vibration energy harvester. In a case study, a quarter car suspension model with a piezoelectric material insert is chosen to be studied. The 2DOF vibration energy harvesting system could potentially be applied in a vehicle to convert waste or harmful ambient vibration energy into electrical energy for charging the battery. Especially for its application in a hybrid vehicle or an electrical vehicle, the 2DOF vibration energy harvesting system could improve charge mileage, comfort and reliability.

  3. Use of molecular markers for predicting therapy response in cancer patients.

    LENUS (Irish Health Repository)

    Duffy, Michael J

    2012-02-01

    Predictive markers are factors that are associated with upfront response or resistance to a particular therapy. Predictive markers are important in oncology as tumors of the same tissue of origin vary widely in their response to most available systemic therapies. Currently recommended oncological predictive markers include both estrogen and progesterone receptors for identifying patients with breast cancers likely to benefit from hormone therapy, HER-2 for the identification of breast cancer patients likely to benefit from trastuzumab, specific K-RAS mutations for the identification of patients with advanced colorectal cancer unlikely to benefit from either cetuximab or panitumumab and specific EGFR mutations for selecting patients with advanced non-small-cell lung cancer for treatment with tyrosine kinase inhibitors such as gefitinib and erlotinib. The availability of predictive markers should increase drug efficacy and decrease toxicity, thus leading to a more personalized approach to cancer treatment.

  4. Physiological thermal limits predict differential responses of bees to urban heat-island effects.

    Science.gov (United States)

    Hamblin, April L; Youngsteadt, Elsa; López-Uribe, Margarita M; Frank, Steven D

    2017-06-01

    Changes in community composition are an important, but hard to predict, effect of climate change. Here, we use a wild-bee study system to test the ability of critical thermal maxima (CTmax, a measure of heat tolerance) to predict community responses to urban heat-island effects in Raleigh, NC, USA. Among 15 focal species, CTmax ranged from 44.6 to 51.3°C, and was strongly predictive of population responses to urban warming across 18 study sites (r(2) = 0.44). Species with low CTmax declined the most. After phylogenetic correction, solitary species and cavity-nesting species (bumblebees) had the lowest CTmax, suggesting that these groups may be most sensitive to climate change. Community responses to urban and global warming will likely retain strong physiological signal, even after decades of warming during which time lags and interspecific interactions could modulate direct effects of temperature. © 2017 The Author(s).

  5. Spouses’ Attachment Pairings Predict Neuroendocrine, Behavioral, and Psychological Responses to Marital Conflict

    Science.gov (United States)

    Beck, Lindsey A.; Pietromonaco, Paula R.; DeBuse, Casey J.; Powers, Sally I.; Sayer, Aline G.

    2014-01-01

    This research investigated how spouses’ attachment styles jointly contributed to their stress responses. Newlywed couples discussed relationship conflicts. Salivary cortisol indexed physiological stress; observer-rated behaviors indexed behavioral stress; self-reported distress indexed psychological stress. Multilevel modeling tested predictions that couples including one anxious and one avoidant partner or two anxious partners would show distinctive stress responses. As predicted, couples with anxious wives and avoidant husbands showed physiological reactivity in anticipation of conflict: Both spouses showed sharp increases in cortisol, followed by rapid declines. These couples also showed distinctive behaviors during conflict: Anxious wives had difficulty recognizing avoidant husbands’ distress, and avoidant husbands had difficulty approaching anxious wives for support. Contrary to predictions, couples including two anxious partners did not show distinctive stress responses. Findings suggest that the fit between partners’ attachment styles can improve understanding of relationships by specifying conditions under which partners’ attachment characteristics jointly influence individual and relationship outcomes. PMID:23773048

  6. Mood color choice helps to predict response to hypnotherapy in patients with irritable bowel syndrome

    OpenAIRE

    Tarrier Nicholas; Morris Julie; Carruthers Helen R; Whorwell Peter J

    2010-01-01

    Abstract Background Approximately two thirds of patients with irritable bowel syndrome (IBS) respond well to hypnotherapy. However, it is time consuming as well as expensive to provide and therefore a way of predicting outcome would be extremely useful. The use of imagery and color form an integral part of the hypnotherapeutic process and we have hypothesised that investigating color and how it relates to mood might help to predict response to treatment. In order to undertake this study we ha...

  7. Prediction of Individual Response to Electroconvulsive Therapy via Machine Learning on Structural Magnetic Resonance Imaging Data.

    Science.gov (United States)

    Redlich, Ronny; Opel, Nils; Grotegerd, Dominik; Dohm, Katharina; Zaremba, Dario; Bürger, Christian; Münker, Sandra; Mühlmann, Lisa; Wahl, Patricia; Heindel, Walter; Arolt, Volker; Alferink, Judith; Zwanzger, Peter; Zavorotnyy, Maxim; Kugel, Harald; Dannlowski, Udo

    2016-06-01

    Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, biomarkers that accurately predict a response to ECT remain unidentified. To investigate whether certain factors identified by structural magnetic resonance imaging (MRI) techniques are able to predict ECT response. In this nonrandomized prospective study, gray matter structure was assessed twice at approximately 6 weeks apart using 3-T MRI and voxel-based morphometry. Patients were recruited through the inpatient service of the Department of Psychiatry, University of Muenster, from March 11, 2010, to March 27, 2015. Two patient groups with acute major depressive disorder were included. One group received an ECT series in addition to antidepressants (n = 24); a comparison sample was treated solely with antidepressants (n = 23). Both groups were compared with a sample of healthy control participants (n = 21). Binary pattern classification was used to predict ECT response by structural MRI that was performed before treatment. In addition, univariate analysis was conducted to predict reduction of the Hamilton Depression Rating Scale score by pretreatment gray matter volumes and to investigate ECT-related structural changes. One participant in the ECT sample was excluded from the analysis, leaving 67 participants (27 men and 40 women; mean [SD] age, 43.7 [10.6] years). The binary pattern classification yielded a successful prediction of ECT response, with accuracy rates of 78.3% (18 of 23 patients in the ECT sample) and sensitivity rates of 100% (13 of 13 who responded to ECT). Furthermore, a support vector regression yielded a significant prediction of relative reduction in the Hamilton Depression Rating Scale score. The principal findings of the univariate model indicated a positive association between pretreatment subgenual cingulate volume and individual ECT response (Montreal Neurological Institute [MNI] coordinates x = 8, y = 21, z = -18

  8. Prediction of accommodative optical response in prepresbyopic subjects using ultrasound biomicroscopy.

    Science.gov (United States)

    Ramasubramanian, Viswanathan; Glasser, Adrian

    2015-05-01

    To determine whether relatively low-resolution ultrasound biomicroscopy (UBM) can be used to predict the accommodative optical response in prepresbyopic eyes as well as in a previous study of young phakic subjects, despite lower accommodative amplitudes. College of Optometry, University of Houston, Houston, USA. Observational cross-sectional study. Static accommodative optical response was measured with infrared photorefraction and an autorefractor (WR-5100K) in subjects aged 36 to 46 years. A 35 MHz UBM device (Vumax, Sonomed Escalon) was used to image the left eye, while the right eye viewed accommodative stimuli. Custom-developed Matlab image-analysis software was used to perform automated analysis of UBM images to measure the ocular biometry parameters. The accommodative optical response was predicted from biometry parameters using linear regression, 95% confidence intervals (CIs), and 95% prediction intervals. The study evaluated 25 subjects. Per-diopter (D) accommodative changes in anterior chamber depth (ACD), lens thickness, anterior and posterior lens radii of curvature, and anterior segment length were similar to previous values from young subjects. The standard deviations (SDs) of accommodative optical response predicted from linear regressions for UBM-measured biometry parameters were ACD, 0.15 D; lens thickness, 0.25 D; anterior lens radii of curvature, 0.09 D; posterior lens radii of curvature, 0.37 D; and anterior segment length, 0.42 D. Ultrasound biomicroscopy parameters can, on average, predict accommodative optical responses with SDs of less than 0.55 D using linear regressions and 95% CIs. Ultrasound biomicroscopy can be used to visualize and quantify accommodative biometric changes and predict accommodative optical response in prepresbyopic eyes. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Response surface model predictions of emergence and response to pain in the recovery room: an evaluation of patients emerging from an isoflurane and fentanyl anesthetic

    Science.gov (United States)

    Syroid, Noah D.; Johnson, Ken B.; Pace, Nathan L.; Westenskow, Dwayne R.; Tyler, Diane; Brühschwein, Frederike; Albert, Robert W.; Roalstad, Shelly; Costy-Bennett, Samuel; Egan, Talmage D.

    2009-01-01

    Introduction Sevoflurane - remifentanil interaction models that predict responsiveness and response to painful stimuli have been evaluated in patients undergoing elective surgery. Preliminary evaluations of model predictions were found to be consistent with observations in patients anesthetized with sevoflurane, remifentanil and fentanyl. The present study explored the feasibility of adapting the predictions of sevoflurane-remifentanil interaction models to an isoflurane-fentanyl anesthetic. We hypothesized that model predictions adapted for isoflurane and fentanyl are consistent with observed patient responses and are similar to the predictions observed in our prior work with sevoflurane-remifentanil/fentanyl anesthetics. Methods Twenty-five patients scheduled for elective surgery received a fentanyl-isoflurane anesthetic. Model predictions of unresponsiveness were recorded at emergence and predictions of a response to noxious stimulus were recorded when patients first required analgesics in the recovery room. Model predictions were compared to observations with graphical and temporal analyses. Results were also compared to our prior predictions following a sevoflurane-remifentanil/fentanyl anesthetic. Results While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (≥ 99%). Following termination of the anesthetic, model predictions of responsiveness well described the actual fraction of patients observed to be responsive during emergence. Half of the patients awoke within 2 minutes of the 50% model predicted probability of unresponsiveness; 70% awoke within 4 minutes. Similarly, predictions of a response to a noxious stimulus were consistent with the number of patients who required fentanyl in the recovery room. Model predictions following an isoflurane-fentanyl anesthetic were similar to model predictions following a sevoflurane-remifentanil/fentanyl anesthetic. Discussion Results confirmed our study

  10. Bayesian Mapping Reveals That Attention Boosts Neural Responses to Predicted and Unpredicted Stimuli.

    Science.gov (United States)

    Garrido, Marta I; Rowe, Elise G; Halász, Veronika; Mattingley, Jason B

    2017-04-10

    Predictive coding posits that the human brain continually monitors the environment for regularities and detects inconsistencies. It is unclear, however, what effect attention has on expectation processes, as there have been relatively few studies and the results of these have yielded contradictory findings. Here, we employed Bayesian model comparison to adjudicate between 2 alternative computational models. The "Opposition" model states that attention boosts neural responses equally to predicted and unpredicted stimuli, whereas the "Interaction" model assumes that attentional boosting of neural signals depends on the level of predictability. We designed a novel, audiospatial attention task that orthogonally manipulated attention and prediction by playing oddball sequences in either the attended or unattended ear. We observed sensory prediction error responses, with electroencephalography, across all attentional manipulations. Crucially, posterior probability maps revealed that, overall, the Opposition model better explained scalp and source data, suggesting that attention boosts responses to predicted and unpredicted stimuli equally. Furthermore, Dynamic Causal Modeling showed that these Opposition effects were expressed in plastic changes within the mismatch negativity network. Our findings provide empirical evidence for a computational model of the opposing interplay of attention and expectation in the brain. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Weight Stigma Predicts Poorer Psychological Well-Being Through Internalized Weight Bias and Maladaptive Coping Responses.

    Science.gov (United States)

    Hayward, Lydia E; Vartanian, Lenny R; Pinkus, Rebecca T

    2018-02-10

    Weight-based stigmatization is associated with negative psychological and behavioral consequences, but individuals respond to stigma in different ways. The present study aimed to understand some of the factors that predict how one will cope with weight stigma and how different coping responses predict psychological well-being. Across four samples, 1,391 individuals who identified as having overweight or obesity completed surveys assessing the frequency of weight stigma experiences, internalized weight bias, coping responses to weight stigma, and psychological distress. Frequency of weight stigma predicted greater internalized weight bias, which predicted more frequent use of maladaptive coping responses ("disengagement coping") and less frequent use of adaptive coping responses ("reappraisal coping"), in turn predicting more depression, anxiety, and stress symptoms. The more that individuals with overweight or obesity experience weight stigma and internalize weight bias, the more they report using maladaptive coping and the less they report using adaptive coping when dealing with weight stigma. Maladaptive coping is strongly associated with poorer psychological well-being. Thus, those who experience more frequent weight stigma may be more vulnerable to psychological distress because they appear to be at greater risk of employing maladaptive coping strategies. © 2018 The Obesity Society.

  12. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E.

    2011-01-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response towards the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R2prediction = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R2prediction = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. PMID:22136715

  13. Predicting biomaterial property-dendritic cell phenotype relationships from the multivariate analysis of responses to polymethacrylates.

    Science.gov (United States)

    Kou, Peng Meng; Pallassana, Narayanan; Bowden, Rebeca; Cunningham, Barry; Joy, Abraham; Kohn, Joachim; Babensee, Julia E

    2012-02-01

    Dendritic cells (DCs) play a critical role in orchestrating the host responses to a wide variety of foreign antigens and are essential in maintaining immune tolerance. Distinct biomaterials have been shown to differentially affect the phenotype of DCs, which suggested that biomaterials may be used to modulate immune response toward the biologic component in combination products. The elucidation of biomaterial property-DC phenotype relationships is expected to inform rational design of immuno-modulatory biomaterials. In this study, DC response to a set of 12 polymethacrylates (pMAs) was assessed in terms of surface marker expression and cytokine profile. Principal component analysis (PCA) determined that surface carbon correlated with enhanced DC maturation, while surface oxygen was associated with an immature DC phenotype. Partial square linear regression, a multivariate modeling approach, was implemented and successfully predicted biomaterial-induced DC phenotype in terms of surface marker expression from biomaterial properties with R(prediction)(2) = 0.76. Furthermore, prediction of DC phenotype was effective based on only theoretical chemical composition of the bulk polymers with R(prediction)(2) = 0.80. These results demonstrated that immune cell response can be predicted from biomaterial properties, and computational models will expedite future biomaterial design and selection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  15. Systemic inflammation response index (SIRI) predicts prognosis in hepatocellular carcinoma patients

    Science.gov (United States)

    Xu, Litao; Yu, Shulin; Zhuang, Liping; Wang, Peng; Shen, Yehua; Lin, Junhua; Meng, Zhiqiang

    2017-01-01

    The systemic inflammation response index (SIRI) is a useful tool for predicting prognosis in some types of cancer. In this retrospective study, we evaluated the efficacy of SIRI in predicting overall survival in hepatocellular carcinoma (HCC) patients following local or systemic therapy. A cutoff value of 1.05 was identified for SIRI using ROC analysis in a training patient cohort. In the validation cohort, survival analysis revealed that median overall survival was longer in HCC patients with SIRI scores SIRI was associated with overall survival and was more predictive of overall survival that the AFP level or Child-Pugh score. However, SIRI and Barcelona Clinic Liver Cancer (BCLC) stage were equally effective for predicting survival. In addition, HCC patients with BCLC stage C had higher SIRI scores and poorer overall survival. SIRI also correlated with liver function parameters. Thus SIRI may be a convenient, low cost and reliable tumor marker for predicting prognosis in HCC patients. PMID:28430597

  16. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  17. On the best learning algorithm for web services response time prediction

    DEFF Research Database (Denmark)

    Madsen, Henrik; Albu, Razvan-Daniel; Popentiu-Vladicescu, Florin

    2013-01-01

    an application is. A Web service is better imagined as an application "segment," or better as a program enabler. Performance is an important quality aspect of Web services because of their distributed nature. Predicting the response of web services during their operation is very important.......In this article we will examine the effect of different learning algorithms, while training the MLP (Multilayer Perceptron) with the intention of predicting web services response time. Web services do not necessitate a user interface. This may seem contradictory to most people's concept of what...

  18. Pareto Optimization Identifies Diverse Set of Phosphorylation Signatures Predicting Response to Treatment with Dasatinib.

    Science.gov (United States)

    Klammer, Martin; Dybowski, J Nikolaj; Hoffmann, Daniel; Schaab, Christoph

    2015-01-01

    Multivariate biomarkers that can predict the effectiveness of targeted therapy in individual patients are highly desired. Previous biomarker discovery studies have largely focused on the identification of single biomarker signatures, aimed at maximizing prediction accuracy. Here, we present a different approach that identifies multiple biomarkers by simultaneously optimizing their predictive power, number of features, and proximity to the drug target in a protein-protein interaction network. To this end, we incorporated NSGA-II, a fast and elitist multi-objective optimization algorithm that is based on the principle of Pareto optimality, into the biomarker discovery workflow. The method was applied to quantitative phosphoproteome data of 19 non-small cell lung cancer (NSCLC) cell lines from a previous biomarker study. The algorithm successfully identified a total of 77 candidate biomarker signatures predicting response to treatment with dasatinib. Through filtering and similarity clustering, this set was trimmed to four final biomarker signatures, which then were validated on an independent set of breast cancer cell lines. All four candidates reached the same good prediction accuracy (83%) as the originally published biomarker. Although the newly discovered signatures were diverse in their composition and in their size, the central protein of the originally published signature - integrin β4 (ITGB4) - was also present in all four Pareto signatures, confirming its pivotal role in predicting dasatinib response in NSCLC cell lines. In summary, the method presented here allows for a robust and simultaneous identification of multiple multivariate biomarkers that are optimized for prediction performance, size, and relevance.

  19. Sleep spindles may predict response to cognitive-behavioral therapy for chronic insomnia.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Hatch, Benjamin; Salimi, Ali; Mograss, Melodee; Boucetta, Soufiane; O'Byrne, Jordan; Brandewinder, Marie; Berthomier, Christian; Gouin, Jean-Philippe

    2017-11-01

    While cognitive-behavioral therapy for insomnia constitutes the first-line treatment for chronic insomnia, only few reports have investigated how sleep architecture relates to response to this treatment. In this pilot study, we aimed to determine whether pre-treatment sleep spindle density predicts treatment response to cognitive-behavioral therapy for insomnia. Twenty-four participants with chronic primary insomnia participated in a 6-week cognitive-behavioral therapy for insomnia performed in groups of 4-6 participants. Treatment response was assessed using the Pittsburgh Sleep Quality Index and the Insomnia Severity Index measured at pre- and post-treatment, and at 3- and 12-months' follow-up assessments. Secondary outcome measures were extracted from sleep diaries over 7 days and overnight polysomnography, obtained at pre- and post-treatment. Spindle density during stage N2-N3 sleep was extracted from polysomnography at pre-treatment. Hierarchical linear modeling analysis assessed whether sleep spindle density predicted response to cognitive-behavioral therapy. After adjusting for age, sex, and education level, lower spindle density at pre-treatment predicted poorer response over the 12-month follow-up, as reflected by a smaller reduction in Pittsburgh Sleep Quality Index over time. Reduced spindle density also predicted lower improvements in sleep diary sleep efficiency and wake after sleep onset immediately after treatment. There were no significant associations between spindle density and changes in the Insomnia Severity Index or polysomnography variables over time. These preliminary results suggest that inter-individual differences in sleep spindle density in insomnia may represent an endogenous biomarker predicting responsiveness to cognitive-behavioral therapy. Insomnia with altered spindle activity might constitute an insomnia subtype characterized by a neurophysiological vulnerability to sleep disruption associated with impaired responsiveness to

  20. Dealing with feeling: Specific emotion regulation skills predict responses to stress in psychosis.

    Science.gov (United States)

    Lincoln, Tania M; Hartmann, Maike; Köther, Ulf; Moritz, Steffen

    2015-08-15

    Elevated negative affect is an established link between minor stressors and psychotic symptoms. Less clear is why people with psychosis fail to regulate distressing emotions effectively. This study tests whether subjective, psychophysiological and symptomatic responses to stress can be predicted by specific emotion regulation (ER) difficulties. Participants with psychotic disorders (n=35) and healthy controls (n=28) were assessed for ER-skills at baseline. They were then exposed to a noise versus no stressor on different days, during which self-reported stress responses, state paranoia and skin conductance levels (SCL) were assessed. Participants with psychosis showed a stronger increase in self-reported stress and SCL in response to the stressor than healthy controls. Stronger increases in self-reported stress were predicted by a reduced ability to be aware of and tolerate distressing emotions, whereas increases in SCL were predicted by a reduced ability to be aware of, tolerate, accept and modify them. Although paranoid symptoms were not significantly affected by the stressors, individual variation in paranoid responses was also predicted by a reduced ability to be aware of and tolerate emotions. Differences in stress responses in the samples were no longer significant after controlling for ER skills. Thus, interventions that improve ER-skills could reduce stress-sensitivity in psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Alleviation of Motor Impairments in Patients with Cerebral Palsy: Acute Effects of Whole-body Vibration on Stretch Reflex Response, Voluntary Muscle Activation and Mobility

    Directory of Open Access Journals (Sweden)

    Anne Krause

    2017-08-01

    Full Text Available IntroductionIndividuals suffering from cerebral palsy (CP often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP.Methods44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16–25 Hz, 1.5–3 mm. Assessment included (1 recordings of stretch reflex (SR activity of the triceps surae, (2 electromyography (EMG measurements of maximal voluntary muscle activation of lower limb muscles, and (3 neuromuscular activation during active range of motion (aROM. We recorded EMG of m. soleus (SOL, m. gastrocnemius medialis (GM, m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint.ResultsAfter WBV, (1 SOL SRs were decreased (p < 0.01 while (2 maximal voluntary activation (p < 0.05 and (3 angular excursion in the knee joint (p < 0.01 were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist–antagonist ratios during aROM was significantly enhanced (p < 0.05.DiscussionThe findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level, while the execution of voluntary movement (supraspinal level is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor

  2. Anterior cingulate volume predicts response to cognitive behavioral therapy in major depressive disorder.

    Science.gov (United States)

    Fujino, Junya; Yamasaki, Nobuyuki; Miyata, Jun; Sasaki, Hitoshi; Matsukawa, Noriko; Takemura, Ariyoshi; Tei, Shisei; Sugihara, Genichi; Aso, Toshihiko; Fukuyama, Hidenao; Takahashi, Hidehiko; Inoue, Kazuomi; Murai, Toshiya

    2015-03-15

    Cognitive behavioral therapy (CBT) is widely used to treat major depressive disorder (MDD). Although improved response prediction could facilitate the development of individualized treatment plans, few studies have investigated whether underlying brain structure is related to CBT response in MDD. Ten MDD patients who received individual CBT were studied in this study. We investigated the relationship between the regional gray matter (GM) volume and subsequent responses to CBT using voxel-based morphometry. The degree of improvement in depressive symptoms was positively correlated with GM volume in the caudal portion of the anterior cingulate cortex. The sample size was small, and the effects of medication on the results could not be excluded. Our results, although preliminary, suggest that the anterior cingulate cortex is a key structure whose volume can be used to predict responses to CBT and is thus a potential prognostic marker in MDD. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. DISIS: prediction of drug response through an iterative sure independence screening.

    Directory of Open Access Journals (Sweden)

    Yun Fang

    Full Text Available Prediction of drug response based on genomic alterations is an important task in the research of personalized medicine. Current elastic net model utilized a sure independence screening to select relevant genomic features with drug response, but it may neglect the combination effect of some marginally weak features. In this work, we applied an iterative sure independence screening scheme to select drug response relevant features from the Cancer Cell Line Encyclopedia (CCLE dataset. For each drug in CCLE, we selected up to 40 features including gene expressions, mutation and copy number alterations of cancer-related genes, and some of them are significantly strong features but showing weak marginal correlation with drug response vector. Lasso regression based on the selected features showed that our prediction accuracies are higher than those by elastic net regression for most drugs.

  4. Tunable Passive Vibration Suppressor

    Science.gov (United States)

    Boechler, Nicholas (Inventor); Dillon, Robert Peter (Inventor); Daraio, Chiara (Inventor); Davis, Gregory L. (Inventor); Shapiro, Andrew A. (Inventor); Borgonia, John Paul C. (Inventor); Kahn, Daniel Louis (Inventor)

    2016-01-01

    An apparatus and method for vibration suppression using a granular particle chain. The granular particle chain is statically compressed and the end particles of the chain are attached to a payload and vibration source. The properties of the granular particles along with the amount of static compression are chosen to provide desired filtering of vibrations.

  5. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  6. Reducing Transmitted Vibration Using Delayed Hysteretic Suspension

    Directory of Open Access Journals (Sweden)

    Lahcen Mokni

    2011-01-01

    Full Text Available Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.

  7. Assessment of vibration produced by the grinders used in the shipbuilding industry of Korea.

    Science.gov (United States)

    Park, Hee-Sok; Yim, Sang-Hyuk

    2007-04-01

    The objective of this study is to estimate the prevalence of finger blanching among the workers in a shipyard of Korea using the dose-response relationship suggested by ISO 5349. The characteristics of vibration exposure produced by six types of grinders were investigated. Vibration measurement was made under the real work conditions. Exposure time was estimated by questionnaire and direct observation. In addition, cold provocation tests were performed, and the results from the tests were compared with the estimated prevalence. As a result, 4 hour-energy-equivalent frequency-weighted accelerations of the finishing grinding (FG) and the prepainting grinding (PG) jobs were 6.23 m/s(2) and 13.39 m/s(2), respectively. The mean exposure time for holding the grinders was 4.64 h per day. Using the ISO 5349 method, it was predicted that after exposure to vibration for 10.79 yr, about a half of the FG workers could develop finger blanching. For the PG workers, the corresponding predicted latency was 5.02 yr. A discrepancy was found between the results from the ISO relationship and those from the cold provocation tests. A linear regression model was suggested employing vibration acceleration and vibration exposure time as explanatory variables for vascular dysfunction.

  8. Emotional Responses during Reading: Physiological Responses Predict Real-Time Reading Comprehension

    Science.gov (United States)

    Daley, Samantha G.; Willett, John B.; Fischer, Kurt W.

    2014-01-01

    This study investigated the relationship between emotional responses and reading performance in middle-school students. Although a large number of prior studies have investigated the relationship between emotion and reading, those studies have concentrated primarily on relatively static and distal measures of emotion. In this research, we measured…

  9. Therapygenetics: Using genetic markers to predict response to psychological treatment for mood and anxiety disorders

    OpenAIRE

    Lester, Kathryn J; Eley, Thalia C

    2013-01-01

    Abstract Considerable variation is evident in response to psychological therapies for mood and anxiety disorders. Genetic factors alongside environmental variables and gene-environment interactions are implicated in the etiology of these disorders and it is plausible that these same factors may also be important in predicting individual differences in response to psychological treatment. In this article, we review the evidence that genetic variation influences psychological treatment outcomes...

  10. Infants, mothers, and dyadic contributions to stability and prediction of social stress response at 6 months.

    Science.gov (United States)

    Provenzi, Livio; Olson, Karen L; Montirosso, Rosario; Tronick, Ed

    2016-01-01

    The study of infants' interactive style and social stress response to repeated stress exposures is of great interest for developmental and clinical psychologists. Stable maternal and dyadic behavior is critical to sustain infants' development of an adaptive social stress response, but the association between infants' interactive style and social stress response has received scant attention in previous literature. In the present article, overtime stability of infant, maternal, and dyadic behaviors was measured across 2 social stress (i.e., Face-to-Face Still-Face, FFSF) exposures, separated by 15 days. Moreover, infant, maternal, and dyadic behaviors were simultaneously assessed as predictors of infants' social stress to both FFSF exposures. Eighty-one mother-infant dyads underwent the FFSF twice, at 6 months (Exposure 1: the first social stress) and at 6 months and 15 days (Exposure 2: repeated social stress). Infant and mother behavior and dyadic synchrony were microanalytically coded. Overall, individual behavioral stability emerged between FFSF exposures. Infants' response to the first stress was predicted by infant behavior during Exposure 1 Play. Infants' response to the repeated social stress was predicted by infants' response to the first exposure to the Still-Face and by infants' behavior and dyadic synchrony during Exposure 2 Play. Findings reveal stability for individual, but not for dyadic, behavior between 2 social stress exposures at 6 months. Infants' response to repeated social stress was predicted by infants' earlier stress response, infants' own behavior in play, and dyadic synchrony. No predictive effects of maternal behavior were found. Insights for research and clinical work are discussed. (c) 2015 APA, all rights reserved).

  11. Circulating Biomarkers for Predicting Infliximab Response in Rheumatoid Arthritis: A Systematic Bioinformatics Analysis.

    Science.gov (United States)

    Huang, Qiu-Lan; Zhou, Fu-Jiang; Wu, Cheng-Bin; Xu, Chao; Qian, Wen-Ying; Fan, De-Ping; Cai, Xu-Shan

    2017-04-17

    BACKGROUND Infliximab shows good efficacy in treating refractory rheumatoid arthritis (RA). However, many patients responded poorly and related studies were inconsistent in predictive biomarkers. This study aimed to identify circulating biomarkers for predicting infliximab response in RA. MATERIAL AND METHODS Public databases of Gene Expression Omnibus (GEO) and ArrayExpress were searched for related microarray datasets, focused on the response to infliximab in RA. All peripheral blood samples were collected before infliximab treatment and gene expression profiles were measured using microarray. Differential genes associated with infliximab efficacy were analyzed. The genes recognized by half of the datasets were regarded as candidate biomarkers and validated by prospective datasets. RESULTS Eight microarray datasets were identified with 374 blood samples of RA patients, among which 191 (51.1%) were diagnosed as non-responders in the subsequent infliximab treatment. Five genes (FKBP1A, FGF12, ANO1, LRRC31, and AKR1D1) were associated with the efficacy and recognized by half of the datasets. The 5-gene model showed a good predictive power in random- and prospective-designed studies, with AUC (area under receiver operating characteristic [ROC] curve)=0.963 and 1.000, and it was also applicable at the early phase of treatment (at week 2) for predicting the response at week 14 (AUC=1.000). In the placebo group, the model failed to predict the response (AUC=0.697), indicating the model's specificity in infliximab treatment. CONCLUSIONS The model of FKBP1A, FGF12, ANO1, LRRC31, and AKR1D1 in peripheral blood is useful for efficiently predicting the response to infliximab treatment in rheumatoid arthritis.

  12. A interferência da posição corporal na transmissibilidade vibratória durante o treinamento com plataforma vibratória

    OpenAIRE

    Roberta Pires Vasconcellos; Gustavo Ricardo Schütz; Saray Giovana dos Santos

    2014-01-01

    Whole-body vibration training on vibrating platforms is widely used for physical exercise, health promotion and physical rehabilitation. The position on the platform is one of the factors responsible for the transmission of vibrations to the body segments of individuals. Therefore, the objective of this study was to compare the characteristics of vibrations transmitted to the body segments of adults between two body positions and different vibration intensities. Twenty intentionally selected ...

  13. Role of MRI in osteosarcoma for evaluation and prediction of chemotherapy response: correlation with histological necrosis

    Energy Technology Data Exchange (ETDEWEB)

    Bajpai, Jyoti; Bakhshi, Sameer [Dr. B. R. A. Institute Rotary Cancer Hospital, Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi (India); Gamnagatti, Shivanand [All India Institute of Medical Sciences, Department of Radiodiagnosis, New Delhi (India); Kumar, Rakesh; Malhotra, Arun [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Sreenivas, Vishnubhatla [All India Institute of Medical Sciences, Department of Biostatistics, New Delhi (India); Sharma, Mehar Chand; Safaya, Rajni [All India Institute of Medical Sciences, Department of Pathology, New Delhi (India); Khan, Shah Alam; Rastogi, Shishir [All India Institute of Medical Sciences, Department of Orthopedics, New Delhi (India)

    2011-04-15

    Histological necrosis, the current standard for response evaluation in osteosarcoma, is attainable after neoadjuvant chemotherapy. To establish the role of surrogate markers of response prediction and evaluation using MRI in the early phases of the disease. Thirty-one treatment-naive osteosarcoma patients received three cycles of neoadjuvant chemotherapy followed by surgery during 2006-2008. All patients underwent baseline and post-chemotherapy conventional, diffusion-weighted and dynamic contrast-enhanced MRI. Taking histological response (good response {>=}90% necrosis) as the reference standard, various parameters of MRI were compared to it. A tumor was considered ellipsoidal; volume, average tumor plane and its relative value (average tumor plane relative/body surface area) was calculated using the standard formula for ellipse. Receiver operating characteristic curves were generated to assess best threshold and predictability. After deriving thresholds for each parameter in univariable analysis, multivariable analysis was carried out. Both pre-and post-chemotherapy absolute and relative-size parameters correlated well with necrosis. Apparent diffusion coefficient did not correlate with necrosis; however, on adjusting for volume, significant correlation was found. Thus, we could derive a new parameter: diffusion per unit volume. In osteosarcoma, chemotherapy response can be predicted and evaluated by conventional and diffusion-weighted MRI early in the disease course and it correlates well with necrosis. Further, newly derived parameter diffusion per unit volume appears to be a sensitive substitute for response evaluation in osteosarcoma. (orig.)

  14. The Potential of an in Vitro Digestion Method for Predicting Glycemic Response of Foods and Meals

    Directory of Open Access Journals (Sweden)

    Konstantina Argyri

    2016-04-01

    Full Text Available Increased interest in glycemic response derives from its linkage with chronic diseases, including obesity and type 2 diabetes. Our objective was to develop an in vitro method that predicts glycemic response. We proposed a simulated gastrointestinal digestion protocol that uses the concentration of dialyzable glucose (glucose in the soluble low molecular weight fraction of digests as an index for the prediction of glycemic response. For protocol evaluation, dialyzable glucose from 30 foods or meals digested in vitro were compared with published values for their glycemic index (GI (nine foods, glycemic load (GL (16 foods and glycemic response (14 meals. The correlations were significant when comparing dialyzable glucose with GL (Spearman’s rho = 0.953, p < 0.001, GI (Spearman’s rho = 0.800, p = 0.010 and glycemic response (Spearman’s rho = 0.736, p = 0.003. These results demonstrate that despite limitations associated with in vitro approaches, the proposed protocol may be a useful tool for predicting glycemic response of foods or meals.

  15. A prediction model for the response to oral labetalol for the treatment of antenatal hypertension.

    Science.gov (United States)

    Stott, D; Bolten, M; Salman, M; Paraschiv, D; Douiri, A; Kametas, N A

    2017-02-01

    This prospective observational study aimed to identify at presentation the maternal hemodynamic and demographic variables associated with a therapeutic response to oral labetalol and to use these variables to develop a prediction model to anticipate the response to labetalol monotherapy in women with hypertension. It was set at a maternity unit in a UK teaching hospital. Maternal demographic data from 50 pregnant women, presenting with hypertension between January and August 2013, was collected and blood pressure measured with a device validated for pregnancy and pre-eclampsia. Maternal haemodynamics were assessed with a bioreactance monitor. Participants were commenced on oral labetalol, and reviewed until delivery and discharge home. Logistic regression analysis was performed to assess the prediction of response to labetalol according to the maternal demographic and hemodynamic variables. Main outcome measures were the response to labetalol monotherapy up to delivery and discharge home, defined as sustained blood pressure control labetalol monotherapy, 13 (26%) failed to achieve control with labetalol alone, of whom 9 developed severe hypertension. Multivariate logistic regression showed that heart rate, ethnicity and stroke volume index were independent predictors of the response to labetalol. The predictive accuracy of the model was 96% (95% confidence interval (CI) 86-99%). Maternal demographics and haemodynamics are potent predictors for the response to labetalol, and these parameters may guide therapy to enable effective blood pressure control and a lowering of severe hypertension rates.

  16. Serum metabolites predict response to angiotensin II receptor blockers in patients with diabetes mellitus.

    Science.gov (United States)

    Pena, Michelle J; Heinzel, Andreas; Rossing, Peter; Parving, Hans-Henrik; Dallmann, Guido; Rossing, Kasper; Andersen, Steen; Mayer, Bernd; Heerspink, Hiddo J L

    2016-07-05

    Individual patients show a large variability in albuminuria response to angiotensin receptor blockers (ARB). Identifying novel biomarkers that predict ARB response may help tailor therapy. We aimed to discover and validate a serum metabolite classifier that predicts albuminuria response to ARBs in patients with diabetes mellitus and micro- or macroalbuminuria. Liquid chromatography-tandem mass spectrometry metabolomics was performed on serum samples. Data from patients with type 2 diabetes and microalbuminuria (n = 49) treated with irbesartan 300 mg/day were used for discovery. LASSO and ridge regression were performed to develop the classifier. Improvement in albuminuria response prediction was assessed by calculating differences in R(2) between a reference model of clinical parameters and a model with clinical parameters and the classifier. The classifier was externally validated in patients with type 1 diabetes and macroalbuminuria (n = 50) treated with losartan 100 mg/day. Molecular process analysis was performed to link metabolites to molecular mechanisms contributing to ARB response. In discovery, median change in urinary albumin excretion (UAE) was -42 % [Q1-Q3: -69 to -8]. The classifier, consisting of 21 metabolites, was significantly associated with UAE response to irbesartan (p diabetes mellitus.

  17. Single-subject prediction of response inhibition behavior by event-related potentials.

    Science.gov (United States)

    Stock, Ann-Kathrin; Popescu, Florin; Neuhaus, Andres H; Beste, Christian

    2016-03-01

    Much research has been devoted to investigating response inhibition and the neuronal processes constituting this essential cognitive faculty. However, the nexus between cognitive subprocesses, behavior, and electrophysiological processes remains associative in nature. We therefore investigated whether neurophysiological correlates of inhibition subprocesses merely correlate with behavioral performance or actually provide information expedient to the prediction of behavior on a single-subject level. Tackling this question, we used different data-driven classification approaches in a sample of n = 262 healthy young subjects who completed a standard Go/Nogo task while an EEG was recorded. On the basis of median-split response inhibition performance, subjects were classified as "accurate/slow" and "less accurate/fast." Even though these behavioral group differences were associated with significant amplitude variations in classical electrophysiological correlates of response inhibition (i.e., N2 and P3), they were not predictive for group membership on a single-subject level. Instead, amplitude differences in the Go-P2 originating in the precuneus (BA7) were shown to predict group membership on a single-subject level with up to 64% accuracy. These findings strongly suggest that the behavioral outcome of response inhibition greatly depends on the amount of cognitive resources allocated to early stages of stimulus-response activation during responding. This suggests that research should focus more on early processing steps during responding when trying to understand the origin of interindividual differences in response inhibition processes. Copyright © 2016 the American Physiological Society.

  18. Two improvements on numerical simulation of 2-DOF vortex-induced vibration with low mass ratio

    Science.gov (United States)

    Kang, Zhuang; Ni, Wen-chi; Zhang, Xu; Sun, Li-ping

    2017-12-01

    Till now, there have been lots of researches on numerical simulation of vortex-induced vibration. Acceptable results have been obtained for fixed cylinders with low Reynolds number. However, for responses of 2-DOF vortex-induced vibration with low mass ratio, the accuracy is not satisfactory, especially for the maximum amplitudes. In Jauvtis and Williamson's work, the maximum amplitude of the cylinder with low mass ratio m*=2.6 can reach as large as 1.5 D to be called as the "super-upper branch", but from current literatures, few simulation results can achieve such value, even fail to capture the upper branch. Besides, it is found that the amplitude decays too fast in the lower branch with the RANS-based turbulence model. The reason is likely to be the defects of the turbulence model itself in the prediction of unsteady separated flows as well as the unreasonable setting of the numerical simulation parameters. Aiming at above issues, a modified turbulence model is proposed in this paper, and the effect of the acceleration of flow field on the response of vortex-induced vibration is studied based on OpenFOAM. By analyzing the responses of amplitude, phase and trajectory, frequency and vortex mode, it is proved that the vortex-induced vibration can be predicted accurately with the modified turbulence model under appropriate flow field acceleration.

  19. Prediction of anti-cancer drug response by kernelized multi-task learning.

    Science.gov (United States)

    Tan, Mehmet

    2016-10-01

    Chemotherapy or targeted therapy are two of the main treatment options for many types of cancer. Due to the heterogeneous nature of cancer, the success of the therapeutic agents differs among patients. In this sense, determination of chemotherapeutic response of the malign cells is essential for establishing a personalized treatment protocol and designing new drugs. With the recent technological advances in producing large amounts of pharmacogenomic data, in silico methods have become important tools to achieve this aim. Data produced by using cancer cell lines provide a test bed for machine learning algorithms that try to predict the response of cancer cells to different agents. The potential use of these algorithms in drug discovery/repositioning and personalized treatments motivated us in this study to work on predicting drug response by exploiting the recent pharmacogenomic databases. We aim to improve the prediction of drug response of cancer cell lines. We propose to use a method that employs multi-task learning to improve learning by transfer, and kernels to extract non-linear relationships to predict drug response. The method outperforms three state-of-the-art algorithms on three anti-cancer drug screen datasets. We achieved a mean squared error of 3.305 and 0.501 on two different large scale screen data sets. On a recent challenge dataset, we obtained an error of 0.556. We report the methodological comparison results as well as the performance of the proposed algorithm on each single drug. The results show that the proposed method is a strong candidate to predict drug response of cancer cell lines in silico for pre-clinical studies. The source code of the algorithm and data used can be obtained from http://mtan.etu.edu.tr/Supplementary/kMTrace/. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Performance of Remotely Controlled Mandibular Protrusion Sleep Studies for Prediction of Oral Appliance Treatment Response.

    Science.gov (United States)

    Sutherland, Kate; Ngiam, Joachim; Cistulli, Peter A

    2017-03-15

    Mandibular protrusion during sleep monitoring has been proposed as a method to predict oral appliance treatment outcome. A commercial remotely controlled mandibular protrusion (RCMP) device has become available for this purpose with predictive accuracy demonstrated in an initial study. Our aim was to validate this RCMP method for oral appliance treatment outcome prediction in a clinical sleep laboratory setting. Forty-two obstructive sleep apnea (OSA) patients (apnea-hypopnea index [AHI] > 10 events/h) were recruited to undergo a RCMP sleep study before commencing oral appliance treatment. The RCMP study was used to make a prediction of treatment "Success" or "Failure" based on a rule of ≤ 1 respiratory event per 5 min supine rapid eye movement sleep. Oral appliance treatment response was verified by polysomonography and defined as treatment AHI 30 events/h). Two participants (5%) were not able to tolerate the RCMP study. Oral appliance treatment outcome was verified in 33 participants (RCMP results: "Success" n = 10, "Failure" n = 15, "Inconclusive" n = 8). In those with a treatment outcome prediction (n = 25) the diagnostic characteristics of the RCMP test were sensitivity 81.8%, specificity 92.9%, positive predictive value 90%, and negative predictive value 86.7% (n = 3 misclassified). The RCMP device was well tolerated by patients and successfully used to perform mandibular protrusion sleep studies in our sleep laboratory. The RCMP sleep study showed good accuracy as a prediction technique for oral appliance treatment outcome, although there was a high rate of inconclusive tests.

  1. Psychological stress as a measure for treatment response prediction in idiopathic sudden hearing loss.

    Science.gov (United States)

    Roh, Daeyoung; Chao, Janet Ren; Kim, Do Hoon; Yoon, Kyung Hee; Jung, Jae Hoon; Lee, Chang Hyun; Shin, Ji-Hyeon; Kim, Min Jae; Park, Chan Hum; Lee, Jun Ho

    2017-11-01

    Early prediction of therapeutic outcomes could reduce exposure to ineffective treatments and optimize clinical outcomes. However, none of the known otologic predictors is amenable to therapeutic intervention for idiopathic sudden sensorineural hearing loss (ISSNHL). The aims of this study were to investigate psychological stress as a potential predictor to discriminate outcomes in ISSNHL. Various psychological measures were conducted including structured interview assessment tools in patients with recently diagnosed ISSNHL before initiating treatment. Using logistic regression analysis, we identified the predictors of treatment response and estimated the probability of treatment response in 50 ISSNHL patients who participated in a clinical trial. Treatment non-responders were significantly differentiated from responders by various psychological problems. The depression subscore of Modified form of Stress Response Inventory (SRI-MF) (p=0.007) and duration of hearing loss (p=0.045) significantly predicted treatment response after controlling other clinical correlates. The same predictors were identified from different treatment response measured using Siegel's criteria. The most discriminative measure for treatment response was SRI-MF depression score with an overall classification accuracy of 73%. We found depressive stress response to be the strong predictor of treatment response in patients with ISSNHL. Our results highlight the potential use of the psychiatric approach as a tool for enhancing therapeutic outcomes. Future stress intervention studies with larger number of ISSNHL patients are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  3. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Science.gov (United States)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A. A.; Maraghi, Z. Khoddami

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  4. Texture analysis on MR images helps predicting non-response to NAC in breast cancer.

    Science.gov (United States)

    Michoux, N; Van den Broeck, S; Lacoste, L; Fellah, L; Galant, C; Berlière, M; Leconte, I

    2015-08-05

    To assess the performance of a predictive model of non-response to neoadjuvant chemotherapy (NAC) in patients with breast cancer based on texture, kinetic, and BI-RADS parameters measured from dynamic MRI. Sixty-nine patients with invasive ductal carcinoma of the breast who underwent pre-treatment MRI were studied. Morphological parameters and biological markers were measured. Pathological complete response was defined as the absence of invasive and in situ cancer in breast and nodes. Pathological non-responders, partial and complete responders were identified. Dynamic imaging was performed at 1.5 T with a 3D axial T1W GRE fat-suppressed sequence. Visual texture, kinetic and BI-RADS parameters were measured in each lesion. ROC analysis and leave-one-out cross-validation were used to assess the performance of individual parameters, then the performance of multi-parametric models in predicting non-response to NAC. A model based on four pre-NAC parameters (inverse difference moment, GLN, LRHGE, wash-in) and k-means clustering as statistical classifier identified non-responders with 84 % sensitivity. BI-RADS mass/non-mass enhancement, biological markers and histological grade did not contribute significantly to the prediction. Pre-NAC texture and kinetic parameters help predicting non-benefit to NAC. Further testing including larger groups of patients with different tumor subtypes is needed to improve the generalization properties and validate the performance of the predictive model.

  5. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    Science.gov (United States)

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Impact of the rail-pad multi-discrete model upon the prediction of the rail response

    Science.gov (United States)

    Mazilu, T.; Leu, M.

    2017-08-01

    Wheel/rail vibration has many technical effects such as wear of the rolling surfaces, rolling noise, settlement of the ballast and subgrade etc. This vibration is depending on the rail pad characteristic and subsequently, it is important to have an accurate overview on the relation between the rail pad characteristic and the level of the wheel/rail vibration. To this end, much theoretical and experimental research has been developed in the past, and for the theoretical approach the track model, in general, and, particularly, the rail pad model is of crucial importance. Usually, the rail pad model is discrete model one, neglecting the length of the rail pad. This fact is questionable because the sleepers span is only 4 times the rail pad length. Using the rail pad discrete model, the rail response is overestimated when the frequency of the excitation equals the pinned-pinned resonance frequency. In this paper, a multi-discrete model for the rail pad, consisting in many Kelvin-Voigt parallel systems, is inserted into an analytical model of the track. The track model is reduced to a rail taken as infinite Timoshenko beam, discretely supported via rail pad, sleeper and ballast. The influence of the number of Kelvin-Voigt systems of the rail pad model on the rail response is analysed.

  7. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-08-31

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed.

  8. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Martin E. Cobern

    2004-10-13

    The deep hard rock drilling environment induces severe vibrations into the drillstring, which can cause reduced rates of penetration (ROP) and premature failure of the equipment. The only current means of controlling vibration under varying conditions is to change either the rotary speed or the weight-on-bit (WOB). These changes often reduce drilling efficiency. Conventional shock subs are useful in some situations, but often exacerbate the problems. The objective of this project is development of a unique system to monitor and control drilling vibrations in a ''smart'' drilling system. This system has two primary elements: (1) The first is an active vibration damper (AVD) to minimize harmful axial, lateral and torsional vibrations. The hardness of this damper will be continuously adjusted using a robust, fast-acting and reliable unique technology. (2) The second is a real-time system to monitor drillstring vibration, and related parameters. This monitor adjusts the damper according to local conditions. In some configurations, it may also send diagnostic information to the surface via real-time telemetry. The AVD is implemented in a configuration using magnetorheological (MR) fluid. By applying a current to the magnetic coils in the damper, the viscosity of the fluid can be changed rapidly, thereby altering the damping coefficient in response to the measured motion of the tool. Phase I of this program entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype. Phase I of the project was completed by the revised end date of May 31, 2004. The objectives of this phase were met, and all prerequisites for Phase II have been completed. The month of June, 2004 was primarily occupied with the writing of the Phase I Final Report, the sole deliverable of Phase I, which will be submitted in the next quarter. Redesign of the laboratory prototype and design of the downhole (Phase II) prototype was

  9. Added value of pharmacogenetic testing in predicting statin response: Results from the REGRESS trial

    NARCIS (Netherlands)

    Van Der Baan, F.H.; Knol, M.J.; Maitland-Van Der Zee, A.H.; Regieli, J.J.; Van Iperen, E.P.A.; Egberts, A.C.G.; Klungel, O.H.; Grobbee, D.E.; Jukema, J.W.

    2013-01-01

    It was investigated whether pharmacogenetic factors, both as single polymorphism and as gene-gene interactions, have an added value over non-genetic factors in predicting statin response. Five common polymorphisms were selected in apolipoprotein E, angiotensin-converting enzyme, hepatic lipase and

  10. Predicting Social Responsibility and Belonging in Urban After-School Physical Activity Programs with Underserved Children

    Science.gov (United States)

    Martin, Jeffrey J.; Byrd, Brigid; Garn, Alex; McCaughtry, Nate; Kulik, Noel; Centeio, Erin

    2016-01-01

    The purpose of this cross sectional study was to predict feelings of belonging and social responsibility based on the motivational climate perceptions and contingent self-worth of children participating in urban after-school physical activity programs. Three-hundred and four elementary school students from a major Midwestern city participated.…

  11. Pre- and post-radiotherapy MRI results as a predictive model for response in laryngeal carcinoma

    NARCIS (Netherlands)

    Ljumanovic, Redina; Langendijk, Johannes A.; Hoekstra, Otto S.; Knol, Dirk L.; Leemans, C. Rene; Castelijns, Jonas A.

    2008-01-01

    The purpose was to determine if pre-radiotherapy (RT) and/or post-radiotherapy magnetic resonance (MR) imaging can predict response in patients with laryngeal carcinoma treated with RT. Pre- and post-RT MR examinations of 80 patients were retrospectively reviewed and associated with regard to local

  12. Can a single dose response predict the effect of montelukast on exercise-induced bronchoconstriction?

    NARCIS (Netherlands)

    Kersten, Elin T. G.; Akkerman-Nijland, Anne M.; Driessen, Jean M. M.; Diamant, Zuzana; Thio, Bernard J.

    RationaleExercise-induced bronchoconstriction (EIB) can be prevented by a single dose of montelukast (MLK). The effect is variable, similar to the variable responsiveness observed after daily treatment with MLK. We hypothesized that the effect of a single MLK-dose (5 or 10mg) on EIB could predict

  13. Nonrandom Acts of Kindness: Parasympathetic and Subjective Empathic Responses to Sadness Predict Children's Prosociality

    Science.gov (United States)

    Miller, Jonas G.; Nuselovici, Jacob N.; Hastings, Paul D.

    2016-01-01

    How does empathic physiology unfold as a dynamic process, and which aspect of empathy predicts children's kindness? In response to empathy induction videos, 4- to 6-year-old children (N = 180) showed an average pattern of dynamic respiratory sinus arrhythmia (RSA) change characterized by early RSA suppression, followed by RSA recovery, and modest…

  14. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    Science.gov (United States)

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  15. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  16. Accurate Prediction and Validation of Response to Endocrine Therapy in Breast Cancer.

    Science.gov (United States)

    Turnbull, Arran K; Arthur, Laura M; Renshaw, Lorna; Larionov, Alexey A; Kay, Charlene; Dunbier, Anita K; Thomas, Jeremy S; Dowsett, Mitch; Sims, Andrew H; Dixon, J Michael

    2015-07-10

    Aromatase inhibitors (AIs) have an established role in the treatment of breast cancer. Response rates are only 50% to 70% in the neoadjuvant setting and lower in advanced disease. Accurate biomarkers are urgently needed to predict response in these settings and to determine which individuals will benefit from adjuvant AI therapy. Pretreatment and on-treatment (after 2 weeks and 3 months) biopsies were obtained from 89 postmenopausal women who had estrogen receptor-alpha positive breast cancer and were receiving neoadjuvant letrozole for transcript profiling. Dynamic clinical response was assessed with use of three-dimensional ultrasound measurements. The molecular response to letrozole was characterized and a four-gene classifier of clinical response was established (accuracy of 96%) on the basis of the level of two genes before treatment (one gene [IL6ST] was associated with immune signaling, and the other [NGFRAP1] was associated with apoptosis) and the level of two proliferation genes (ASPM, MCM4) after 2 weeks of therapy. The four-gene signature was found to be 91% accurate in a blinded, completely independent validation data set of patients treated with anastrozole. Matched 2-week on-treatment biopsies were associated with improved predictive power as compared with pretreatment biopsies alone. This signature also significantly predicted recurrence-free survival (P = .029) and breast cancer -specific survival (P = .009). We demonstrate that the test can also be performed with use of quantitative polymerase chain reaction or immunohistochemistry. A four-gene predictive model of clinical response to AIs by 2 weeks has been generated and validated. Deregulated immune and apoptotic responses before treatment and cell proliferation that is not reduced 2 weeks after initiation of treatment are functional characteristics of breast tumors that do not respond to AIs. © 2015 by American Society of Clinical Oncology.

  17. Predicting breast cancer response to neoadjuvant chemotherapy using pretreatment diffuse optical spectroscopic texture analysis.

    Science.gov (United States)

    Tran, William T; Gangeh, Mehrdad J; Sannachi, Lakshmanan; Chin, Lee; Watkins, Elyse; Bruni, Silvio G; Rastegar, Rashin Fallah; Curpen, Belinda; Trudeau, Maureen; Gandhi, Sonal; Yaffe, Martin; Slodkowska, Elzbieta; Childs, Charmaine; Sadeghi-Naini, Ali; Czarnota, Gregory J

    2017-05-09

    Diffuse optical spectroscopy (DOS) has been demonstrated capable of monitoring response to neoadjuvant chemotherapy (NAC) in locally advanced breast cancer (LABC) patients. In this study, we evaluate texture features of pretreatment DOS functional maps for predicting LABC response to NAC. Locally advanced breast cancer patients (n=37) underwent DOS breast imaging before starting NAC. Breast tissue parametric maps were constructed and texture analyses were performed based on grey-level co-occurrence matrices for feature extraction. Ground truth labels as responders (R) or non-responders (NR) were assigned to patients based on Miller-Payne pathological response criteria. The capability of DOS textural features computed on volumetric tumour data before the start of treatment (i.e., 'pretreatment') to predict patient responses to NAC was evaluated using a leave-one-out validation scheme at subject level. Data were analysed using a logistic regression, naive Bayes, and k-nearest neighbour classifiers. Data indicated that textural characteristics of pretreatment DOS parametric maps can differentiate between treatment response outcomes. The HbO2 homogeneity resulted in the highest accuracy among univariate parameters in predicting response to chemotherapy: sensitivity (%Sn) and specificity (%Sp) were 86.5% and 89.0%, respectively, and accuracy was 87.8%. The highest predictors using multivariate (binary) combination features were the Hb-contrast+HbO2-homogeneity, which resulted in a %Sn/%Sp=78.0/81.0% and an accuracy of 79.5%. This study demonstrated that the pretreatment DOS texture features can predict breast cancer response to NAC and potentially guide treatments.

  18. An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome.

    Directory of Open Access Journals (Sweden)

    Benjamin L Ebert

    2008-02-01

    Full Text Available Lenalidomide is an effective new agent for the treatment of patients with myelodysplastic syndrome (MDS, an acquired hematopoietic disorder characterized by ineffective blood cell production and a predisposition to the development of leukemia. Patients with an interstitial deletion of Chromosome 5q have a high rate of response to lenalidomide, but most MDS patients lack this deletion. Approximately 25% of patients without 5q deletions also benefit from lenalidomide therapy, but response in these patients cannot be predicted by any currently available diagnostic assays. The aim of this study was to develop a method to predict lenalidomide response in order to avoid unnecessary toxicity in patients unlikely to benefit from treatment.Using gene expression profiling, we identified a molecular signature that predicts lenalidomide response. The signature was defined in a set of 16 pretreatment bone marrow aspirates from MDS patients without 5q deletions, and validated in an independent set of 26 samples. The response signature consisted of a cohesive set of erythroid-specific genes with decreased expression in responders, suggesting that a defect in erythroid differentiation underlies lenalidomide response. Consistent with this observation, treatment with lenalidomide promoted erythroid differentiation of primary hematopoietic progenitor cells grown in vitro.These studies indicate that lenalidomide-responsive patients have a defect in erythroid differentiation, and suggest a strategy for a clinical test to predict patients most likely to respond to the drug. The experiments further suggest that the efficacy of lenalidomide, whose mechanism of action in MDS is unknown, may be due to its ability to induce erythroid differentiation.

  19. Coupled thermal, structural and vibrational analysis of a hypersonic engine for flight test

    Energy Technology Data Exchange (ETDEWEB)

    Sook-Ying, Ho [Defence Science and Technology Organisation, SA (Australia); Paull, A. [Queensland Univ., Dept. of Mechanical Engineering (Australia)

    2006-07-15

    This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scram-jet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (authors)

  20. Perspective on quantifying electron localization/delocalization, non-linear optical response and vibrational analysis of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline

    Science.gov (United States)

    Arun Sasi, B. S.; Jebin, R. P.; Suthan, T.; James, C.

    2017-10-01

    An organic nonlinear optical material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline (DMBDNA) has been grown by slow evaporation technique. Vibrational spectral analysis has been carried out using FT Raman, FT-IR and UV-Vis spectroscopic techniques. The influence of intramolecular charge transfer within the molecule has been studied on the basis of NBO analysis. Vibrational frequencies have been calculated and scaled, which has been compared with the experimental FT-IR and FT Raman spectra. The effect of electronic localization and delocalization within the molecule is conceded on the basis of electron density partitioning paradigm.

  1. Vibration analysis of cryocoolers

    Science.gov (United States)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira; Koyama, Tomohiro; Li, Rui

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas.

  2. Vibration analysis of cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Tomaru, Takayuki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki (Japan); Koyama, Tomohiro; Rui Li [Sumitomo Heavy Industries Ltd., Tokyo (Japan)

    2004-05-01

    The vibrations of Gifford-McMahon (GM) and pulse-tube (PT) cryocoolers were measured and analyzed. The vibrations of the cold-stage and cold-head were measured separately to investigate their vibration mechanisms. The measurements were performed while maintaining the thermal conditions of the cryocoolers at a steady state. We found that the vibration of the cold-head for the 4 K PT cryocooler was two orders of magnitude smaller than that of the 4 K GM cryocooler. On the other hand, the vibration of the cold-stages for both cryocoolers was of the same order of magnitude. From a spectral analysis of the vibrations and a simulation, we concluded that the vibration of the cold-stage is caused by an elastic deformation of the pulse tubes (or cylinders) due to the pressure oscillation of the working gas. (Author)

  3. Amygdala response to explicit sad face stimuli at baseline predicts antidepressant treatment response to scopolamine in major depressive disorder.

    Science.gov (United States)

    Szczepanik, Joanna; Nugent, Allison C; Drevets, Wayne C; Khanna, Ashish; Zarate, Carlos A; Furey, Maura L

    2016-08-30

    The muscarinic antagonist scopolamine produces rapid antidepressant effects in individuals with major depressive disorder (MDD). In healthy subjects, manipulation of acetyl-cholinergic transmission modulates attention in a stimulus-dependent manner. This study tested the hypothesis that baseline amygdalar activity in response to emotional stimuli correlates with antidepressant treatment response to scopolamine and could thus potentially predict treatment outcome. MDD patients and healthy controls performed an attention shifting task involving emotional faces while undergoing functional magnetic resonance imaging (fMRI). We found that blood oxygenation level dependent (BOLD) signal in the amygdala acquired while MDD patients processed sad face stimuli correlated positively with antidepressant response to scopolamine. Amygdalar response to sad faces in MDD patients who did not respond to scopolamine did not differ from that of healthy controls. This suggests that the pre-treatment task elicited amygdalar activity that may constitute a biomarker of antidepressant treatment response to scopolamine. Furthermore, in MDD patients who responded to scopolamine, we observed a post-scopolamine stimulus processing shift towards a pattern demonstrated by healthy controls, indicating a change in stimulus-dependent neural response potentially driven by attenuated cholinergic activity in the amygdala. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  5. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits.

    Science.gov (United States)

    Reinhart, Kurt O; Wilson, Gail W T; Rinella, Matthew J

    2012-07-01

    We assessed whether (1) arbuscular mycorrhizal colonization of roots (RC) and/or plant responses to arbuscular mycorrhizae (MR) vary with plant phylogeny and (2) MR and RC can be more accurately predicted with a phylogenetic predictor relative to a null model and models with plant trait and taxonomic predictors. In a previous study, MR and RC of 95 grassland species were measured. We constructed a phylogeny for these species and found it explained variation in MR and RC. Next, we used multiple regressions to identify the models that most accurately predicted plant MR. Models including either phylogenetic or phenotypic and taxonomic information similarly improved our ability to predict MR relative to a null model. Our study illustrates the complex evolutionary associations among species and constraints of using phylogenetic information, relative to plant traits, to predict how a plant species will interact with AMF. Published 2012. This article is a US Government work and is in the public domain in the USA.

  6. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  7. Does stroke volume variation predict fluid responsiveness in children: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Ling Yi

    Full Text Available Stroke volume variation (SVV is a reliable predictor of fluid responsiveness in adult patients. However, the predictive value of SVV is uncertain in pediatric patients. We performed the first systematic meta-analysis to evaluate the diagnostic value of SVV in predicting fluid responsiveness in children.PUBMED, EMBASE, and Cochrane Central Register of Controlled Trials were searched up to December 2016. Original studies assessing the diagnostic accuracy of SVV in predicting fluid responsiveness in children were considered to be eligible. A random-effects model was used to calculate pooled values of sensitivity, specificity and diagnostic odds ratio with 95% CI. The summary receiver operating characteristic curve was estimated and area under the curve was calculated. Quality of the studies was assessed with the QUADAS-2 tool.Six studies with a total of 279 fluid boluses in 224 children were included. The analysis demonstrated a pooled sensitivity of 0.68 (95% CI,0.59-0.76, pooled specificity of 0.65 (95% CI, 0.57-0.73, pooled diagnostic odds ratio of 8.24 (95% CI, 2.58-26.30, and the summary area under the summary receiver operating characteristic curve of 0.81. However, significant inter-study heterogeneity was found (p<0.05, I2 = 61.3%, likely due to small sample size and diverse study characteristics.Current evidence suggests that SVV was of diagnostic value in predicting fluid responsiveness in children under mechanical ventilation. Given the high heterogeneity of published data, further studies are needed to confirm the diagnostic accuracy of SVV in predicting fluid responsiveness in pediatric patients.

  8. Can Ki-67 Play a Role in Prediction of Breast Cancer Patients' Response to Neoadjuvant Chemotherapy?

    Directory of Open Access Journals (Sweden)

    Juhasz-Böss Ingolf

    2014-01-01

    Full Text Available Background. Currently the choice of breast cancer therapy is based on prognostic factors. The proliferation marker Ki-67 is used increasingly to determine the method of therapy. The current study analyses the predictive value of Ki-67 in foreseeing breast cancer patients’ responses to neoadjuvant chemotherapy. Methods. This study includes patients with invasive breast cancer treated between 2008 and 2013. The clinical response was assessed by correlating Ki-67 to histological examination, mammography, and ultrasonography findings. Results. The average Ki-67 value in our patients collectively (n=77 is 34.9 ± 24.6%. The average Ki-67 value is the highest with 37.4 ± 24.0% in patients with a pCR. The Ki-67 values do not differ significantly among the 3 groups: pCR versus partial pathological response versus stable disease/progress (P=0.896. However, Ki-67 values of patients with luminal, Her2 enriched, and basal-like cancers differed significantly from each other. Furthermore, within the group of luminal tumors Ki-67 values of patients with versus without pCR also differed significantly. Conclusion. Our data shows that the Ki-67 value predicts the response to neoadjuvant chemotherapy as a function of the molecular subtype, reflecting the daily routine concerning Ki-67 and its impressing potential and limitation as a predictive marker for neoadjuvant chemotherapy response.

  9. Response to anticipated reward in the nucleus accumbens predicts behavior in an independent test of honesty.

    Science.gov (United States)

    Abe, Nobuhito; Greene, Joshua D

    2014-08-06

    This study examines the cognitive and neural determinants of honesty and dishonesty. Human subjects undergoing fMRI completed a monetary incentive delay task eliciting responses to anticipated reward in the nucleus accumbens. Subjects next performed an incentivized prediction task, giving them real and repeated opportunities for dishonest gain. Subjects attempted to predict the outcomes of random computerized coin-flips and were financially rewarded for accuracy. In some trials, subjects were rewarded based on self-reported accuracy, allowing them to gain money dishonestly by lying. Dishonest behavior was indexed by improbably high levels of self-reported accuracy. Nucleus accumbens response in the first task, involving only honest rewards, accounted for ∼25% of the variance in dishonest behavior in the prediction task. Individuals showing relatively strong nucleus accumbens responses to anticipated reward also exhibited increased dorsolateral prefrontal activity (bilateral) in response to opportunities for dishonest gain. These results address two hypotheses concerning (dis)honesty. According to the "Will" hypothesis, honesty results from the active deployment of self-control. According to the "Grace" hypothesis, honesty flows more automatically. The present results suggest a reconciliation between these two hypotheses while explaining (dis)honesty in terms of more basic neural mechanisms: relatively weak responses to anticipated rewards make people morally "Graceful," but individuals who respond more strongly may resist temptation by force of Will. Copyright © 2014 the authors 0270-6474/14/3410564-09$15.00/0.

  10. Neural Reactivity to Angry Faces Predicts Treatment Response in Pediatric Anxiety.

    Science.gov (United States)

    Bunford, Nora; Kujawa, Autumn; Fitzgerald, Kate D; Swain, James E; Hanna, Gregory L; Koschmann, Elizabeth; Simpson, David; Connolly, Sucheta; Monk, Christopher S; Phan, K Luan

    2017-02-01

    Although cognitive-behavioral psychotherapy (CBT) and pharmacotherapy are evidence-based treatments for pediatric anxiety, many youth with anxiety disorders fail to respond to these treatments. Given limitations of clinical measures in predicting treatment response, identifying neural predictors is timely. In this study, 35 anxious youth (ages 7-19 years) completed an emotional face-matching task during which the late positive potential (LPP), an event-related potential (ERP) component that indexes sustained attention towards emotional stimuli, was measured. Following the ERP measurement, youth received CBT or selective serotonin reuptake inhibitor (SSRI) treatment, and the LPP was examined as a predictor of treatment response. Findings indicated that, accounting for pre-treatment anxiety severity, neural reactivity to emotional faces predicted anxiety severity post- CBT and SSRI treatment such that enhanced electrocortical response to angry faces was associated with better treatment response. An enhanced LPP to angry faces may predict treatment response insofar as it may reflect greater emotion dysregulation or less avoidance and/or enhanced engagement with environmental stimuli in general, including with treatment.

  11. Using biomarkers to predict treatment response in major depressive disorder: evidence from past and present studies.

    Science.gov (United States)

    Thase, Michael E

    2014-12-01

    Major depressive disorder (MDD) is a heterogeneous condition with a variable response to a wide range of treatments. Despite intensive efforts, no biomarker has been identified to date that can reliably predict response or non-response to any form of treatment, nor has one been identified that can be used to identify those at high risk of developing treatment-resistant depression (ie, non-response to a sequence of treatments delivered for adequate duration and intensity). This manuscript reviews some past areas of research that have proved informative, such as studies using indexes of hypercortisolism or sleep disturbance, and more recent research findings using measures of inflammation and different indicators of regional cortical activation to predict treatment response. It is concluded that, although no method has yet been demonstrated to be sufficiently accurate to be applied in clinical practice, progress has been made. It thus seems likely that--at some point in the not-too-distant future--it will be possible to prospectively identify, at least for some MDD patients, the likelihood of response or non-response to cognitive therapy or various antidepressant medications.

  12. Predictive feedback can account for biphasic responses in the lateral geniculate nucleus.

    Directory of Open Access Journals (Sweden)

    Janneke F M Jehee

    2009-05-01

    Full Text Available Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN, primary visual cortex (V1, and middle temporal area (MT. We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.

  13. Attenuation of Frontostriatal Connectivity During Reward Processing Predicts Response to Psychotherapy in Major Depressive Disorder.

    Science.gov (United States)

    Walsh, Erin; Carl, Hannah; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Smoski, Moria J; Dichter, Gabriel S

    2017-03-01

    There are few reliable predictors of response to antidepressant treatments. In the present investigation, we examined pretreatment functional brain connectivity during reward processing as a potential predictor of response to Behavioral Activation Treatment for Depression (BATD), a validated psychotherapy that promotes engagement with rewarding stimuli and reduces avoidance behaviors. Thirty-three outpatients with major depressive disorder (MDD) and 20 matched controls completed two runs of the monetary incentive delay task during functional magnetic resonance imaging after which participants with MDD received up to 15 sessions of BATD. Seed-based generalized psychophysiological interaction analyses focused on task-based connectivity across task runs, as well as the attenuation of connectivity from the first to the second run of the task. The average change in Beck Depression Inventory-II scores due to treatment was 10.54 points, a clinically meaningful response. Groups differed in seed-based functional connectivity among multiple frontostriatal regions. Hierarchical linear modeling revealed that improved treatment response to BATD was predicted by greater connectivity between the left putamen and paracingulate gyrus during reward anticipation. In addition, MDD participants with greater attenuation of connectivity between several frontostriatal seeds, and midline subcallosal cortex and left paracingulate gyrus demonstrated improved response to BATD. These findings indicate that pretreatment frontostriatal functional connectivity during reward processing is predictive of response to a psychotherapy modality that promotes improving approach-related behaviors in MDD. Furthermore, connectivity attenuation among reward-processing regions may be a particularly powerful endophenotypic predictor of response to BATD in MDD.

  14. Design and verification of a novel hollow vibrating module for laser machining.

    Science.gov (United States)

    Wang, Zhaozhao; Jang, Seungbong; Kim, EunHee; Jeon, Yongho; Lee, Soo-Hun; Lee, Moon G

    2015-04-01

    If a vibration module is added on laser machining system, the quality of surface finish and aspect ratio on metals can be significantly enhanced. In this study, a single mobility model of vibrating laser along the path of laser beam was put forward. In order to realize the desired unidirectional motion, a resonance type vibration module with optical lens was designed and manufactured. This cylindrical module was composed of curved-beam flexure elements. The cylindrical coordinate system was established to describe the relationship of a curved-beam flexure element's motion and deformation. In addition, the stiffness matrix of the curved-beam element was obtained. Finite element method and dynamical modeling were provided to analyze the resonance frequency and the displacement of the motion. The feasibility of the design was demonstrated with the help of experiments on frequency response. Experimental results show good agreement with theoretical analysis and simulation predictions.

  15. Analytical research of vibration and far-field acoustic radiation of cylindrical shell immersed at finite depth

    Directory of Open Access Journals (Sweden)

    GUO Wenjie

    2017-08-01

    Full Text Available Aiming at the current lack of analytical research concerning the cylindrical shell-flow field coupling vibration and sound radiation system under the influence of a free surface, this paper proposes an analytical method which solves the vibration response and far-field acoustic radiation of a finite cylindrical shell immersed at a finite depth. Based on the image method and Graf addition theorem, the analytical expression of the fluid velocity potential can be obtained, then combined with the energy functional of the variation method to deduce the shell-liquid coupling vibration equation, which can in turn solve the forced vibration response. The research shows that, compared with an infinite fluid, a free surface can increase at the same order of resonance frequency; but as the depth of immersion gradually increases, the mean square vibration velocity tends to become the same as that in an infinite fluid. Compared with numerical results from Nastran software, this shows that the present method is accurate and reliable, and has such advantages as a simple method and a small amount of calculation. The far-field radiated pressure can be obtained by the vibration response using the Fourier transformation and stationary phase method. The results indicate that the directivity and volatility of the far-field acoustic pressure of a cylindrical shell is similar to that of an acoustical dipole due to the free surface. However, the far-field acoustic pressure is very different from the vibration characteristics, and will not tend to an infinite fluid as the submerging depth increases. Compared with the numerical method, the method in this paper is simpler and has a higher computational efficiency. It enables the far-field acoustic radiation of an underwater cylindrical shell to be predicted quickly under the influence of external incentives and the free surface, providing guiding significance for acoustic research into the half space structure vibration

  16. Prediction of postoperative pain by preoperative pain response to heat stimulation in total knee arthroplasty

    DEFF Research Database (Denmark)

    Lunn, Troels H; Gaarn-Larsen, Lissi; Kehlet, Henrik

    2013-01-01

    : From 6-24hrs (primary), from postoperative day (POD) 1-7 (secondary), and from POD14-30 (tertiary). Two preoperative tonic heat stimuli with 47°C were used; short (5sec) and long (7min) stimulation upon which patients rated their pain response on an electronic VAS. Multivariate stepwise linear......It has been estimated that up to 54% of the variance in postoperative pain experience may be predicted with preoperative pain responses to experimental stimuli, with suprathreshold heat pain as the most consistent test modality. We aimed to explore if 2 heat test paradigms could predict...... and logistic regressions analyses were carried out including 8 potential preoperative explanatory variables (among these anxiety, depression, preoperative pain and pain catastrophizing) to assess pain response to preoperative heat pain stimulation as independent predictor for postoperative pain. 100 patients...

  17. rpartOrdinal: An R Package for Deriving a Classification Tree for Predicting an Ordinal Response

    Directory of Open Access Journals (Sweden)

    Kellie J. Archer

    2010-10-01

    Full Text Available This paper describes an R package, rpartOrdinal, that implements alternative splitting functions for fitting a classification tree when interest lies in predicting an ordinal response. This includes the generalized Gini impurity function, which was introduced as a method for predicting an ordinal response by including costs of misclassification into the impurity function, as well as an alternative ordinal impurity function due to Piccarreta (2008 that does not require the assignment of misclassification costs. The ordered twoing splitting method, which is not defined as a decrease in node impurity, is also included in the package. Since, in the ordinal response setting, misclassifying observations to adjacent categories is a less egregious error than misclassifying observations to distant categories, this package also includes a function for estimating an ordinal measure of association, the gamma statistic.

  18. Predicting Reading Growth with Event-Related Potentials: Thinking Differently about Indexing "Responsiveness"

    Science.gov (United States)

    Lemons, Christopher J; Key, Alexandra P F; Fuchs, Douglas; Yoder, Paul J; Fuchs, Lynn S; Compton, Donald L; Williams, Susan M; Bouton, Bobette

    2010-06-01

    The purpose of this study was to determine if event-related potential (ERP) data collected during three reading-related tasks (Letter Sound Matching, Nonword Rhyming, and Nonword Reading) could be used to predict short-term reading growth on a curriculum-based measure of word identification fluency over 19 weeks in a sample of 29 first-grade children. Results indicate that ERP responses to the Letter Sound Matching task were predictive of reading change and remained so after controlling for two previously validated behavioral predictors of reading, Rapid Letter Naming and Segmenting. ERP data for the other tasks were not correlated with reading change. The potential for cognitive neuroscience to enhance current methods of indexing responsiveness in a response-to-intervention (RTI) model is discussed.

  19. What predicts outcome, response, and drop-out in CBT of depressive adults? a naturalistic study.

    Science.gov (United States)

    Schindler, Amrei; Hiller, Wolfgang; Witthöft, Michael

    2013-05-01

    The efficacy of CBT for unipolar depressive disorders is well established, yet not all patients improve or tolerate treatment. To identify factors associated with symptomatic outcome, response, and drop-out in depressive patients under naturalistic CBT. 193 patients with major depression or dysthymia were tested. Sociodemographic and clinical variables were entered as predictors in hierarchical regression analyses. A higher degree of pretreatment depression, early improvement, and completion of therapy were identified as predictors for symptomatic change and response. Drop-out was predicted by concurrent personality disorder, less positive outcome expectancies, and by failure to improve early in treatment. Our results highlight the importance of early response to predict improvement in routine CBT. Attempts to refine the quality of treatment programs should focus on avoiding premature termination (drop-out) and consider motivational factors in more depth. Routinely administered standardized assessments would enhance symptom monitoring and help to identify persons at risk of not improving under therapy.

  20. Synthesising empirical results to improve predictions of post-wildfire runoff and erosion response

    Science.gov (United States)

    Shakesby, Richard A.; Moody, John A.; Martin, Deborah A.; Robichaud, Peter R.

    2016-01-01

    Advances in research into wildfire impacts on runoff and erosion have demonstrated increasing complexity of controlling factors and responses, which, combined with changing fire frequency, present challenges for modellers. We convened a conference attended by experts and practitioners in post-wildfire impacts, meteorology and related research, including modelling, to focus on priority research issues. The aim was to improve our understanding of controls and responses and the predictive capabilities of models. This conference led to the eight selected papers in this special issue. They address aspects of the distinctiveness in the controls and responses among wildfire regions, spatiotemporal rainfall variability, infiltration, runoff connectivity, debris flow formation and modelling applications. Here we summarise key findings from these papers and evaluate their contribution to improving understanding and prediction of post-wildfire runoff and erosion under changes in climate, human intervention and population pressure on wildfire-prone areas.

  1. Spatially pooled contrast responses predict neural and perceptual similarity of naturalistic image categories.

    Directory of Open Access Journals (Sweden)

    Iris I A Groen

    Full Text Available The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input. Here, we computationally estimated low-level contrast responses to computer-generated naturalistic images, and tested whether spatial pooling of these responses could predict image similarity at the neural and behavioral level. Using EEG, we show that statistics derived from pooled responses explain a large amount of variance between single-image evoked potentials (ERPs in individual subjects. Dissimilarity analysis on multi-electrode ERPs demonstrated that large differences between images in pooled response statistics are predictive of more dissimilar patterns of evoked activity, whereas images with little difference in statistics give rise to highly similar evoked activity patterns. In a separate behavioral experiment, images with large differences in statistics were judged as different categories, whereas images with little differences were confused. These findings suggest that statistics derived from low-level contrast responses can be extracted in early visual processing and can be relevant for rapid judgment of visual similarity. We compared our results with two other, well- known contrast statistics: Fourier power spectra and higher-order properties of contrast distributions (skewness and kurtosis. Interestingly, whereas these statistics allow for accurate image categorization, they do not predict ERP response patterns or behavioral categorization confusions. These converging computational, neural and behavioral results suggest that statistics of pooled contrast responses contain information that corresponds with perceived visual similarity in a rapid, low-level categorization task.

  2. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    Science.gov (United States)

    Sauder, Heather Scot

    experience for fatigue life prediction procedures. To fill in the gaps in the existing knowledge and meet the overall goal of the proposed research, the following objectives were accomplished: (a) improve the existing aeroelastic (motion- and turbulence-induced) load models to predict the response of wind turbine blade airfoils to understand its behavior in turbulent wind, (b) understand, model and predict the response of wind turbine blades in transient or gusty wind, boundary-layer wind and incoherent wind over the span of the blade, (c) understand the effects of aero-structural coupling between the along-wind, cross-wind and torsional vibrations, and finally (d) develop a computational tool using the improved time-domain load model to predict the real-time load, stress distribution and response of a given wind turbine blade during operating and parked conditions subject to a specific wind environment both in a short and long term for damage, flutter and fatigue life predictions.

  3. Transcription-based prediction of response to IFNbeta using supervised computational methods.

    Directory of Open Access Journals (Sweden)

    Sergio E Baranzini

    2005-01-01

    Full Text Available Changes in cellular functions in response to drug therapy are mediated by specific transcriptional profiles resulting from the induction or repression in the activity of a number of genes, thereby modifying the preexisting gene activity pattern of the drug-targeted cell(s. Recombinant human interferon beta (rIFNbeta is routinely used to control exacerbations in multiple sclerosis patients with only partial success, mainly because of adverse effects and a relatively large proportion of nonresponders. We applied advanced data-mining and predictive modeling tools to a longitudinal 70-gene expression dataset generated by kinetic reverse-transcription PCR from 52 multiple sclerosis patients treated with rIFNbeta to discover higher-order predictive patterns associated with treatment outcome and to define the molecular footprint that rIFNbeta engraves on peripheral blood mononuclear cells. We identified nine sets of gene triplets whose expression, when tested before the initiation of therapy, can predict the response to interferon beta with up to 86% accuracy. In addition, time-series analysis revealed potential key players involved in a good or poor response to interferon beta. Statistical testing of a random outcome class and tolerance to noise was carried out to establish the robustness of the predictive models. Large-scale kinetic reverse-transcription PCR, coupled with advanced data-mining efforts, can effectively reveal preexisting and drug-induced gene expression signatures associated with therapeutic effects.

  4. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity

    Science.gov (United States)

    Novak, Mark; Wootton, J. Timothy; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Tinker, M. Timothy

    2011-01-01

    How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (∼25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.

  5. Perseverance time of informal caregivers for people with dementia: construct validity, responsiveness and predictive validity.

    Science.gov (United States)

    Richters, Anke; Melis, René J F; van Exel, N Job; Olde Rikkert, Marcel G M; van der Marck, Marjolein A

    2017-04-04

    Informal care is essential for many people with dementia (PwD), but it often results in a considerable burden for the caregiver. The perseverance time instrument integrates the aspect of perceived burden with the caregiver's capacity to cope with the burden, in contrast to most available instruments, which measure solely the burden of caregiving. The aim of this study was to extend insight into psychometric properties of the perseverance time instrument, specifically the construct validity, responsiveness, and predictive validity, within the population of informal caregivers for PwD. Data from two studies among informal caregivers of community-dwelling PwD in the Netherlands were used. The first study included 198 caregivers from a single region in the Netherlands and lasted 1 year. The second was a cross-sectional nationwide study with 166 caregivers for PwD. Questionnaires of both studies included questions regarding demographics and informal care, perseverance time, and other informal caregiver outcomes (Caregiver Strain Index, Self-rated Burden scale, Care-related Quality of Life instrument, and visual analogue scale health scores). Construct validity and responsiveness were assessed using a hypothesis-testing approach. The predictive validity of demographic characteristics and perseverance time for living situation after 1 year (living at home, institutionalized, or deceased) was assessed with multivariable multinomial regression. All but one of the hypotheses regarding construct validity were met. Three of five hypotheses regarding responsiveness were met. Perseverance time scores at baseline were associated with living situation after 1 year (p validity of the perseverance time instrument and adds new evidence of good construct validity, responsiveness, and predictive validity. The predictive power of perseverance time scores for living situation exceeds the predictive power of other burden measures and indicates informal care as an important factor for

  6. Elevated Serum Interleukin-6 Predicts Favorable Response to Immunosuppressive Therapy in Children With Aplastic Anemia.

    Science.gov (United States)

    Lu, Shuanglong; Qiao, Xiaohong; Xie, Xiaotian

    2017-11-01

    Immunosuppressive therapy (IST) is the standard treatment for aplastic anemia (AA) children who lack a sibling donor, but the clinical response rate to IST varies. Predictors of response to IST are valuable for stratifying AA patients and making clinical decisions. The serum interleukin (IL)-6 levels of 41 AA patients were measured at the time of diagnosis and the response rate of the patients to IST was evaluated at 3, 6, and 12 months after IST. Receiver-operator characteristic (ROC) analysis was used to calculate the predictive value of initial IL-6 levels in determining response at 6 months after IST. The initial IL-6 levels were significant higher in responders than nonresponders at 6 months after IST (211.89 vs. 18.09 pg/mL; P=0.005), using 36.8 pg/mL as a threshold, there were 80% sensitivity and 81% specificity for discriminating responders and nonresponders to IST. Patients with initial high IL-6 level (>36.8 pg/mL) have favorable response rates than those with initial low IL-6 level (<36.8 pg/mL) at 3, 6, and 12 months after IST (P<0.01). High levels of IL-6 at the time of diagnosis predict a favorable response to IST in children with AA and this may be helpful for patient's stratification and clinical decisions.

  7. Use of Germline Polymorphisms in Predicting Concurrent Chemoradiotherapy Response in Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Chun [Department of Statistics and Informatics Science, Providence University, Taiwan (China); Chen, Yen-Ching [Institute of Epidemiology Preventive Medicine, College of Public Health, National Taiwan University, Taiwan (China); Research Center for Gene, Environment, and Human Health, College of Public Health, National Taiwan University, Taiwan (China); Department of Public Health, Institute of Epidemiology, National Taiwan University, Taiwan (China); Lai, Liang-Chuan [Graduate Institute of Physiology, National Taiwan University, Taiwan (China); Tsai, Mong-Hsun [Institute of Biotechnology, National Taiwan University, Taiwan (China); Chen, Shin-Kuang [National Clinical Trial and Research Center, National Taiwan University Hospital, Taiwan (China); Yang, Pei-Wen; Lee, Yung-Chie [Department of Surgery, National Taiwan University Hospital, Taiwan (China); Hsiao, Chuhsing K. [Research Center for Gene, Environment, and Human Health, College of Public Health, National Taiwan University, Taiwan (China); Department of Public Health, Institute of Epidemiology, National Taiwan University, Taiwan (China); Bioinformatics and Biostatistics Core, Research Center for Medical Excellence, National Taiwan University, Taiwan (China); Lee, Jang-Ming, E-mail: jangming@ntuh.gov.tw [Department of Surgery, National Taiwan University Hospital, Taiwan (China); Chuang, Eric Y., E-mail: chuangey@ntu.edu.tw [National Clinical Trial and Research Center, National Taiwan University Hospital, Taiwan (China); Bioinformatics and Biostatistics Core, Research Center for Medical Excellence, National Taiwan University, Taiwan (China); Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan (China)

    2012-04-01

    Purpose: To identify germline polymorphisms to predict concurrent chemoradiation therapy (CCRT) response in esophageal cancer patients. Materials and Methods: A total of 139 esophageal cancer patients treated with CCRT (cisplatin-based chemotherapy combined with 40 Gy of irradiation) and subsequent esophagectomy were recruited at the National Taiwan University Hospital between 1997 and 2008. After excluding confounding factors (i.e., females and patients aged {>=}70 years), 116 patients were enrolled to identify single nucleotide polymorphisms (SNPs) associated with specific CCRT responses. Genotyping arrays and mass spectrometry were used sequentially to determine germline polymorphisms from blood samples. These polymorphisms remain stable throughout disease progression, unlike somatic mutations from tumor tissues. Two-stage design and additive genetic models were adopted in this study. Results: From the 26 SNPs identified in the first stage, 2 SNPs were found to be significantly associated with CCRT response in the second stage. Single nucleotide polymorphism rs16863886, located between SGPP2 and FARSB on chromosome 2q36.1, was significantly associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.62-10.30) under additive models. Single nucleotide polymorphism rs4954256, located in ZRANB3 on chromosome 2q21.3, was associated with a 3.93-fold increase in pathologic complete response to CCRT (95% confidence interval 1.57-10.87). The predictive accuracy for CCRT response was 71.59% with these two SNPs combined. Conclusions: This is the first study to identify germline polymorphisms with a high accuracy for predicting CCRT response in the treatment of esophageal cancer.

  8. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

    DEFF Research Database (Denmark)

    Salo, T J; Palosuo, T; Kersebaum, K C

    2016-01-01

    Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen...... ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi...

  9. Brain responses to regular and octave-scrambled melodies: A case of predictive-coding?

    Science.gov (United States)

    Globerson, Eitan; Granot, Roni; Tal, Idan; Harpaz, Yuval; Zeev-Wolf, Maor; Golstein, Abraham

    2017-03-01

    Melody recognition is an online process of evaluating incoming information and comparing this information to an existing internal corpus, thereby reducing prediction error. The predictive-coding model postulates top-down control on sensory processing accompanying reduction in prediction error. To investigate the relevancy of this model to melody processing, the current study examined early magnetoencephalogram (MEG) auditory responses to familiar and unfamiliar melodies in 25 participants. The familiar melodies followed and primed an octave-scrambled version of the same melody. The retrograde version of theses melodies served as the unfamiliar control condition. Octave-transposed melodies were included to examine the influence of pitch representation (pitch-height/pitch-chroma representation) on brain responses to melody recognition. Results demonstrate a reduction of the M100 auditory response to familiar, as compared with unfamiliar, melodies regardless of their form of presentation (condensed vs. octave-scrambled). This trend appeared to begin after the third tone of the melody. An additional behavioral study with the same melody corpus showed a similar trend-namely, a significant difference between familiarity rating for familiar and unfamiliar melodies, beginning with the third tone of the melody. These results may indicate a top-down inhibition of early auditory responses to melodies that is influenced by pitch representation. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Consumer Factors Predicting Level of Treatment Response to Illness Management and Recovery.

    Science.gov (United States)

    White, Dominique A; McGuire, Alan B; Luther, Lauren; Anderson, Adrienne I; Phalen, Peter; McGrew, John H

    2017-09-14

    This study aims to identify consumer-level predictors of level of treatment response to illness management and recovery (IMR) to target the appropriate consumers and aid psychiatric rehabilitation settings in developing intervention adaptations. Secondary analyses from a multisite study of IMR were conducted. Self-report data from consumer participants of the parent study (n = 236) were analyzed for the current study. Consumers completed prepost surveys assessing illness management, coping, goal-related hope, social support, medication adherence, and working alliance. Correlations and multiple regression analyses were run to identify self-report variables that predicted level of treatment response to IMR. Analyses revealed that goal-related hope significantly predicted level of improved illness self-management, F(1, 164) = 10.93, p consumer-level predictors of level of treatment response have not been explored for IMR. Although 2 significant predictors were identified, study findings suggest more work is needed. Future research is needed to identify additional consumer-level factors predictive of IMR treatment response in order to identify who would benefit most from this treatment program. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. Lateral prefrontal cortex activity during cognitive control of emotion predicts response to social stress in schizophrenia

    Directory of Open Access Journals (Sweden)

    Laura M. Tully, PhD

    2014-01-01

    Full Text Available LPFC dysfunction is a well-established neural impairment in schizophrenia and is associated with worse symptoms. However, how LPFC activation influences symptoms is unclear. Previous findings in healthy individuals demonstrate that lateral prefrontal cortex (LPFC activation during cognitive control of emotional information predicts mood and behavior in response to interpersonal conflict, thus impairments in these processes may contribute to symptom exacerbation in schizophrenia. We investigated whether schizophrenia participants show LPFC deficits during cognitive control of emotional information, and whether these LPFC deficits prospectively predict changes in mood and symptoms following real-world interpersonal conflict. During fMRI, 23 individuals with schizophrenia or schizoaffective disorder and 24 healthy controls completed the Multi-Source Interference Task superimposed on neutral and negative pictures. Afterwards, schizophrenia participants completed a 21-day online daily-diary in which they rated the extent to which they experienced mood and schizophrenia-spectrum symptoms, as well as the occurrence and response to interpersonal conflict. Schizophrenia participants had lower dorsal LPFC activity (BA9 during cognitive control of task-irrelevant negative emotional information. Within schizophrenia participants, DLPFC activity during cognitive control of emotional information predicted changes in positive and negative mood on days following highly distressing interpersonal conflicts. Results have implications for understanding the specific role of LPFC in response to social stress in schizophrenia, and suggest that treatments targeting LPFC-mediated cognitive control of emotion could promote adaptive response to social stress in schizophrenia.

  12. Exploring the Limitations of Peripheral Blood Transcriptional Biomarkers in Predicting Influenza Vaccine Responsiveness

    Directory of Open Access Journals (Sweden)

    Luca Marchetti

    2017-01-01

    Full Text Available Systems biology has been recently applied to vaccinology to better understand immunological responses to the influenza vaccine. Particular attention has been paid to the identification of early signatures capable of predicting vaccine immunogenicity. Building from previous studies, we employed a recently established algorithm for signature-based clustering of expression profiles, SCUDO, to provide new insights into why blood-derived transcriptome biomarkers often fail to predict the seroresponse to the influenza virus vaccination. Specifically, preexisting immunity against one or more vaccine antigens, which was found to negatively affect the seroresponse, was identified as a confounding factor able to decouple early transcriptome from later antibody responses, resulting in the degradation of a biomarker predictive power. Finally, the broadly accepted definition of seroresponse to influenza virus vaccine, represented by the maximum response across the vaccine-targeted strains, was compared to a composite measure integrating the responses against all strains. This analysis revealed that composite measures provide a more accurate assessment of the seroresponse to multicomponent influenza vaccines.

  13. From Vivaldi to Beatles and back: predicting lateralized brain responses to music.

    Science.gov (United States)

    Alluri, Vinoo; Toiviainen, Petri; Lund, Torben E; Wallentin, Mikkel; Vuust, Peter; Nandi, Asoke K; Ristaniemi, Tapani; Brattico, Elvira

    2013-12-01

    We aimed at predicting the temporal evolution of brain activity in naturalistic music listening conditions using a combination of neuroimaging and acoustic feature extraction. Participants were scanned using functional Magnetic Resonance Imaging (fMRI) while listening to two musical medleys, including pieces from various genres with and without lyrics. Regression models were built to predict voxel-wise brain activations which were then tested in a cross-validation setting in order to evaluate the robustness of the hence created models across stimuli. To further assess the generalizability of the models we extended the cross-validation procedure by including another dataset, which comprised continuous fMRI responses of musically trained participants to an Argentinean tango. Individual models for the two musical medleys revealed that activations in several areas in the brain belonging to the auditory, limbic, and motor regions could be predicted. Notably, activations in the medial orbitofrontal region and the anterior cingulate cortex, relevant for self-referential appraisal and aesthetic judgments, could be predicted successfully. Cross-validation across musical stimuli and participant pools helped identify a region of the right superior temporal gyrus, encompassing the planum polare and the Heschl's gyrus, as the core structure that processed complex acoustic features of musical pieces from various genres, with or without lyrics. Models based on purely instrumental music were able to predict activation in the bilateral auditory cortices, parietal, somatosensory, and left hemispheric primary and supplementary motor areas. The presence of lyrics on the other hand weakened the prediction of activations in the left superior temporal gyrus. Our results suggest spontaneous emotion-related processing during naturalistic listening to music and provide supportive evidence for the hemispheric specialization for categorical sounds with realistic stimuli. We herewith introduce

  14. Mood Linked Responses in Medial Prefrontal Cortex Predict Relapse in Patients with Recurrent Unipolar Depression

    Science.gov (United States)

    Farb, Norman A. S.; Anderson, Adam K.; Bloch, Richard T.; Segal, Zindel V.

    2011-01-01

    Background Altered cognitive processing following mood challenge is associated with elevated relapse risk in remitted unipolar depressed patients, but little is known about the neural basis of this reactivity and its link to depressive relapse and prophylaxis. Methods Remitted unipolar depressed participants (n = 16) and healthy controls (n = 16) underwent functional magnetic resonance imaging (fMRI) while viewing sad and neutral film clips. Correlations were determined between emotional reactivity (neural responses to sad vs. neutral films) in remitted patients and subsequent relapse status over an 18 month follow-up period. An ROC analysis was used to determine signal cutoffs for predicting relapse. Emotional reactivity in relapse prognostic areas was compared between groups. Results Within the remitted group, relapse was predicted by medial prefrontal cortical activity (MPFC, BA 32), and contraindicated by visual cortical activity (BA 17). MPFC reactivity predicted rumination, whereas visual cortical reactivity predicted distress tolerance (acceptance). Compared to control participants, remitted depressed patients who sustained remission demonstrated a more pronounced tradeoff between MPFC and visual cortex reactivity. The difference score between MPFC and visual reactivity yielded excellent prediction of depressive relapse. Conclusions Medial prefrontal cortical reactivity to mood provocation in remitted unipolar depressed patients serves as a marker of relapse risk rather than successful emotion regulation. Enduring remission is characterized by a normalization of the MPFC to the level of healthy controls. Further, visual cortex reactivity predicts resilience against depressive relapse, indicating a prophylactic role for sensory rather than ruminative cognitive reactivity in the processing of negative emotion. PMID:21531382

  15. Vibration mode shape control by prestressing

    Science.gov (United States)

    Holnicki-Szulc, Jan; Haftka, Raphael T.

    1992-01-01

    A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.

  16. Towards personalized therapy for multiple sclerosis: prediction of individual treatment response.

    Science.gov (United States)

    Kalincik, Tomas; Manouchehrinia, Ali; Sobisek, Lukas; Jokubaitis, Vilija; Spelman, Tim; Horakova, Dana; Havrdova, Eva; Trojano, Maria; Izquierdo, Guillermo; Lugaresi, Alessandra; Girard, Marc; Prat, Alexandre; Duquette, Pierre; Grammond, Pierre; Sola, Patrizia; Hupperts, Raymond; Grand'Maison, Francois; Pucci, Eugenio; Boz, Cavit; Alroughani, Raed; Van Pesch, Vincent; Lechner-Scott, Jeannette; Terzi, Murat; Bergamaschi, Roberto; Iuliano, Gerardo; Granella, Franco; Spitaleri, Daniele; Shaygannejad, Vahid; Oreja-Guevara, Celia; Slee, Mark; Ampapa, Radek; Verheul, Freek; McCombe, Pamela; Olascoaga, Javier; Amato, Maria Pia; Vucic, Steve; Hodgkinson, Suzanne; Ramo-Tello, Cristina; Flechter, Shlomo; Cristiano, Edgardo; Rozsa, Csilla; Moore, Fraser; Luis Sanchez-Menoyo, Jose; Laura Saladino, Maria; Barnett, Michael; Hillert, Jan; Butzkueven, Helmut

    2017-09-01

    Timely initiation of effective therapy is crucial for preventing disability in multiple sclerosis; however, treatment response varies greatly among patients. Comprehensive predictive models of individual treatment response are lacking. Our aims were: (i) to develop predictive algorithms for individual treatment response using demographic, clinical and paraclinical predictors in patients with multiple sclerosis; and (ii) to evaluate accuracy, and internal and external validity of these algorithms. This study evaluated 27 demographic, clinical and paraclinical predictors of individual response to seven disease-modifying therapies in MSBase, a large global cohort study. Treatment response was analysed separately for disability progression, disability regression, relapse frequency, conversion to secondary progressive disease, change in the cumulative disease burden, and the probability of treatment discontinuation. Multivariable survival and generalized linear models were used, together with the principal component analysis to reduce model dimensionality and prevent overparameterization. Accuracy of the individual prediction was tested and its internal validity was evaluated in a separate, non-overlapping cohort. External validity was evaluated in a geographically distinct cohort, the Swedish Multiple Sclerosis Registry. In the training cohort (n = 8513), the most prominent modifiers of treatment response comprised age, disease duration, disease course, previous relapse activity, disability, predominant relapse phenotype and previous therapy. Importantly, the magnitude and direction of the associations varied among therapies and disease outcomes. Higher probability of disability progression during treatment with injectable therapies was predominantly associated with a greater disability at treatment start and the previous therapy. For fingolimod, natalizumab or mitoxantrone, it was mainly associated with lower pretreatment relapse activity. The probability of