Vibration modes and frequencies of structures
Durling, R. J.; Kvaternik, R. G.
1980-01-01
SUDAN, Substructuring in Direct Analysis, analyzes natural modes and frequencies of vibration of structural systems. Based on direct method of analysis that employs substructures methodology, program is used with structures that may be represented as equivalent system of beam, springs, and rigid bodies.
Lattice vibrational modes and their frequency shifts in semiconductor nanowires.
Yang, Li; Chou, M Y
2011-07-13
We have performed first-principles calculations to study the lattice vibrational modes and their Raman activities in silicon nanowires (SiNWs). Two types of characteristic vibrational modes are examined: high-frequency optical modes and low-frequency confined modes. Their frequencies have opposite size dependence with a red shift for the optical modes and a blue shift for the confined modes as the diameter of SiNWs decreases. In addition, our calculations show that these vibrational modes can be detected by Raman scattering measurements, providing an efficient way to estimate the size of SiNWs.
Beyond local group modes in vibrational sum frequency generation.
Chase, Hilary M; Psciuk, Brian T; Strick, Benjamin L; Thomson, Regan J; Batista, Victor S; Geiger, Franz M
2015-04-09
We combine deuterium labeling, density functional theory calculations, and experimental vibrational sum frequency generation spectroscopy into a form of "counterfactual-enabled molecular spectroscopy" for producing reliable vibrational mode assignments in situations where local group mode approximations are insufficient for spectral interpretation and vibrational mode assignments. We demonstrate the method using trans-β-isoprene epoxydiol (trans-β-IEPOX), a first-generation product of isoprene relevant to atmospheric aerosol formation, and one of its deuterium-labeled isotopologues at the vapor/silica interface. We use our method to determine that the SFG responses that we obtain from trans-β-IEPOX are almost exclusively due to nonlocal modes involving multiple C-H groups oscillating at the same frequency as one vibrational mode. We verify our assignments using deuterium labeling and use DFT calculations to predict SFG spectra of additional isotopologues that have not yet been synthesized. Finally, we use our new insight to provide a viable alternative to molecular orientation analysis methods that rely on local mode approximations in cases where the local mode approximation is not applicable.
Vibration modes of injured spine at resonant frequencies under vertical vibration.
Guo, Li-Xin; Zhang, Ming; Zhang, Yi-Min; Teo, Ee-Chon
2009-09-01
A detailed three-dimensional finite element model of the spine segment T12-Pelvis was developed to investigate dynamic characteristics of whole lumbar spine with injured cases. This study investigates the motion mechanism of the human lumbar spine and the effect of component injuries on adjacent spinal components under whole body vibration. Several investigations have analyzed the influence of injured spines on adjacent spinal components under static loadings. However, it is not clear how the spine injury affects dynamic characteristics of whole lumbar spine and adjacent components of the injured segment under vibration. The T12-Pelvis model was used to obtain the modal vibration modes of the spine at resonant frequencies. Injury conditions of the spine were simulated and tested, including denucleation and/or facetectomy with removal of capsular ligaments. The results indicate the first-order vertical resonant frequency of the intact model is 7.21 Hz. After the denucleation at L4-L5, it decreases by more than 4% compared with the intact condition. All the injured conditions including disc injury and ligament injury decrease the resonant frequency of the spine. Due to the denucleation at L4-L5 the anteroposterior displacements of the vertebrae from L2 to L5 decrease and the vertical displacements of the vertebrae from L1 to L4 increase under vibration. The denucleation also decreases the rotational deformations of the vertebrae from L1 to L5. The material property sensitivity analysis shows intervertebral discs have a dominating effect on variation of vertical resonant frequency of the spine. The denucleation may decrease cushioning effects of adjacent motion segments at the injured level under vibration. The injured condition may increase the vertical displacement amplitudes of the spine above the injured level. All the injured conditions may decrease the resonant frequency of the spine system.
Kaeding, T S
2015-06-01
Research in the field of whole body vibration (WBV) training and the use of it in practice might be hindered by the fact that WBV training devices generate and transmit frequencies and/or modes of vibration which are different to preset adjustments. This research project shall clarify how exact WBV devices apply the by manufacturer information promised preset frequency and mode of vibration. Nine professional devices for WBV training were tested by means of a tri-axial accelerometer. The accelerations of each device were recorded under different settings with a tri-axial accelerometer. Beneath the measurement of different combinations of preset frequency and amplitude the repeatability across 3 successive measurements with the same preset conditions and one measurement under loaded condition were carried out. With 3 exceptions (both Board 3000 & srt medical PRO) we did not find noteworthy divergences between preset and actual applied frequencies. In these 3 devices we found divergences near -25%. Loading the devices did not affect the applied frequency or mode of vibration. There were no important divergences measurable for the applied frequency and mode of vibration regarding repeatability. The results of our measurements cannot be generalized as we only measured one respectively at most two devices of one model in terms of a random sample. Based on these results we strongly recommend that user in practice and research should analyse their WBV training devices regarding applied frequency and mode of vibration.
Matsumura, Takeshi; Esashi, Masayoshi; Harada, Hiroshi; Tanaka, Shuji
For future mobile phones based on cognitive radio technology, a compact multi-band RF front-end architecture is strongly required and an integrated multi-band RF filter bank is a key component in it. Contour-mode resonators are receiving increased attention for a multi-band filter solution, because its resonant frequency is mainly determined by its size and shape, which are defined by lithography. However, spurious responses including flexural vibration are also excited due to its thin structure. To improve resonator performance and suppress spurious modes, visual observation with a laser probe system is very effective. In this paper, we have prototyped a mechanically-coupled disk-array filter, which consists of a Si disk and 2 disk-type resonators of higher-order wine-glass mode, and observed its vibration modes using a high-frequency laser-Doppler vibrometer (UHF-120, Polytec, Inc.). As a result, it was confirmed that higher order wine-glass mode vibration included a compound displacement, and that its out-of-plane vibration amplitude was much smaller than other flexural spurious modes. The observed vibration modes were compared with FEM (Finite Element Method) simulation results. In addition, it was also confirmed that the fabrication error, e.g. miss-alignment, induced asymmetric vibration.
Energy Technology Data Exchange (ETDEWEB)
Chase, Hilary M.; Chen, Shunli; Fu, Li; Upshur, Mary Alice; Rudshteyn, Benjamin; Thomson, Regan J.; Wang, Hong-Fei; Batista, Victor S.; Geiger, Franz M.
2017-09-01
Inferring molecular orientations from vibrational sum frequency generation (SFG) spectra is challenging in polarization combinations that result in low signal intensities, or when the local point group symmetry approximation fails. While combining experiments with density functional theory (DFT) could overcome this problem, the scope of the combined method has yet to be established. Here, we assess its feasibility of determining the distributions of molecular orientations for one monobasic ester, two epoxides and three alcohols at the vapor/fused silica interface. We find that molecular orientations of nonlocal vibrational modes cannot be determined using polarization-resolved SFG measurements alone.
Lee, Scott A; Pinnick, David A; Anderson, A
2014-12-01
High-pressure Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 295 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine will have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is found to be a diagnostic probe of the nature of the eigenvector of the vibrational modes. Stretching modes which are predominantly internal to the molecule have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular interest is paid to the low-frequency (≤150 cm(-1)) modes. Based on the pressure dependence of its logarithmic derivative, a mode near 49 cm(-1) is identified as internal mode. The other modes below 400 cm(-1) have pressure dependences of their logarithmic derivatives consistent with being either (1) modes which are mainly external, meaning that the molecules of the unit cell vibrate against each other in translational or librational motions (or linear combinations thereof), or (2) torsional or bending modes involving a large number of atoms, mainly within a molecule. The modes above 400 cm(-1) all have pressure dependences of their logarithmic derivatives consistent with being mainly internal modes.
Kwon, Oh Kuen; Hwang, Ho Jung; Park, Jungcheol
2013-12-01
We investigate tunable graphene-nanoribbon (GNR)-resonators actuated in the tangential direction, and their properties are compared to those actuated in the normal direction, via classical molecular dynamics simulations. These GNR-resonators can be tuned both by the initial strain and the gate. The relationships between the frequency-versus-gate and the initial strain in this work are in good agreement with those in previous experimental works. With increasing initial strain, the resonance frequencies are greatly upshifted, whereas the tunable ranges in frequency are greatly decreased. The tunability in the dynamic operating range decreases with increasing initial strain. For very small strains, the GNR-resonators have large dynamic operating ranges in the normal vibration mode, and for large strains, the GNR-resonators have higher operating frequencies in the tangential vibration mode. The resonance frequencies are estimated by a classical continuum model, with tension acting on the GNR-resonators consisting of both initial tension by initial strain and induced tension by gate actuating.
Yamada, Toshiki; Tominari, Yukihiro; Tanaka, Shukichi; Mizuno, Maya; Fukunaga, Kaori
2014-11-17
The terahertz and infrared frequency vibration modes of room-temperature ionic liquids with imidazolium cations and halogen anions were extensively investigated. There is an intermolecular vibrational mode between the imidazolium ring of an imidazolium cation, a halogen atomic anion with a large absorption coefficient and a broad bandwidth in the low THz frequency region (13-130 cm(-1)), the intramolecular vibrational modes of the alkyl-chain part of an imidazolium cation with a relatively small absorption coefficient in the mid THz frequency region (130-500 cm(-1)), the intramolecular skeletal vibrational modes of an imidazolium ring affected by the interaction between the imidazolium ring, and a halogen anion with a relatively large absorption coefficient in a high THz frequency region (500-670 cm(-1)). Interesting spectroscopic features on the interaction between imidazolium cations and halogen anions was also obtained from spectroscopic studies at IR frequencies (550-3300 cm(-1)). As far as the frequency of the intermolecular vibrational mode is concerned, we found the significance of the reduced mass in determining the intermolecular vibration frequency.
Directory of Open Access Journals (Sweden)
Tsen Shaw-Wei D
2006-09-01
Full Text Available Abstract Background Recently, a technique which departs radically from conventional approaches has been proposed. This novel technique utilizes biological objects such as viruses as nano-templates for the fabrication of nanostructure elements. For example, rod-shaped viruses such as the M13 phage and tobacco mosaic virus have been successfully used as biological templates for the synthesis of semiconductor and metallic nanowires. Results and discussion Low wave number (≤ 20 cm-1 acoustic vibrations of the M13 phage have been studied using Raman spectroscopy. The experimental results are compared with theoretical calculations based on an elastic continuum model and appropriate Raman selection rules derived from a bond polarizability model. The observed Raman mode has been shown to belong to one of the Raman-active axial torsion modes of the M13 phage protein coat. Conclusion It is expected that the detection and characterization of this low frequency vibrational mode can be used for applications in nanotechnology such as for monitoring the process of virus functionalization and self-assembly. For example, the differences in Raman spectra can be used to monitor the coating of virus with some other materials and nano-assembly process, such as attaching a carbon nanotube or quantum dots.
Pan, Minghao; Yang, Yongmin; Guan, Fengjiao; Hu, Haifeng; Xu, Hailong
2017-01-01
The accurate monitoring of blade vibration under operating conditions is essential in turbo-machinery testing. Blade tip timing (BTT) is a promising non-contact technique for the measurement of blade vibrations. However, the BTT sampling data are inherently under-sampled and contaminated with several measurement uncertainties. How to recover frequency spectra of blade vibrations though processing these under-sampled biased signals is a bottleneck problem. A novel method of BTT signal processing for alleviating measurement uncertainties in recovery of multi-mode blade vibration frequency spectrum is proposed in this paper. The method can be divided into four phases. First, a single measurement vector model is built by exploiting that the blade vibration signals are sparse in frequency spectra. Secondly, the uniqueness of the nonnegative sparse solution is studied to achieve the vibration frequency spectrum. Thirdly, typical sources of BTT measurement uncertainties are quantitatively analyzed. Finally, an improved vibration frequency spectra recovery method is proposed to get a guaranteed level of sparse solution when measurement results are biased. Simulations and experiments are performed to prove the feasibility of the proposed method. The most outstanding advantage is that this method can prevent the recovered multi-mode vibration spectra from being affected by BTT measurement uncertainties without increasing the probe number. PMID:28758952
Thompson, Lee M; Lasoroski, Aurélie; Champion, Paul M; Sage, J Timothy; Frisch, Michael J; van Thor, Jasper J; Bearpark, Michael J
2014-02-11
A systematic comparison of different environmental effects on the vibrational modes of the 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) chromophore using the ONIOM method allows us to model how the molecule's spectroscopic transitions are modified in the Green Fluorescent Protein (GFP). ONIOM(QM:MM) reduces the expense of normal mode calculations when computing the majority of second derivatives only at the MM level. New developments described here for the efficient solution of the CPHF equations, including contributions from electrostatic interactions with environment charges, mean that QM model systems of ∼100 atoms can be embedded within a much larger MM environment of ∼5000 atoms. The resulting vibrational normal modes, their associated frequencies, and dipole derivative vectors have been used to interpret experimental difference spectra (GFPI2-GFPA), chromophore vibrational Stark shifts, and changes in the difference between electronic and vibrational transition dipoles (mode angles) in the protein environment.
Seçgin, Abdullah; Saide Sarıgül, A.
2009-03-01
This study introduces a novel scheme for the discrete high-frequency forced vibration analysis based on discrete singular convolution (DSC) and mode superposition (MS) approaches. The accuracy of the DSC-MS is validated for thin beams and plates by comparing with available analytical solutions. The performance of the DSC-MS is evaluated by predicting spatial distribution and discrete frequency spectra of the vibration response of thin plates with two different boundary conditions. The frequency spectra of the time-harmonic excitation forces are in the form of ideal and band-limited white noise so that the natural modes in the frequency band are provoked. The solution exposes high-frequency response behaviour definitely. Therefore, it is hoped with this paper to contribute the studies on the treatment of uncertainties in the high-frequency design applications.
Vibrational modes of nanolines
Heyliger, Paul R.; Flannery, Colm M.; Johnson, Ward L.
2008-04-01
Brillouin-light-scattering spectra previously have been shown to provide information on acoustic modes of polymeric lines fabricated by nanoimprint lithography. Finite-element methods for modeling such modes are presented here. These methods provide a theoretical framework for determining elastic constants and dimensions of nanolines from measured spectra in the low gigahertz range. To make the calculations feasible for future incorporation in inversion algorithms, two approximations of the boundary conditions are employed in the calculations: the rigidity of the nanoline/substrate interface and sinusoidal variation of displacements along the nanoline length. The accuracy of these approximations is evaluated as a function of wavenumber and frequency. The great advantage of finite-element methods over other methods previously employed for nanolines is the ability to model any cross-sectional geometry. Dispersion curves and displacement patterns are calculated for modes of polymethyl methacrylate nanolines with cross-sectional dimensions of 65 nm × 140 nm and rectangular or semicircular tops. The vibrational displacements and dispersion curves are qualitatively similar for the two geometries and include a series of flexural, Rayleigh-like, and Sezawa-like modes. This paper is a contribution of the National Institute of Standards and Technology and is not subject to copyright in the United States.
Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng
2017-03-01
Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm-1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.
Chuang, Kuo-Chih; Liou, Hong-Cin; Ma, Chien-Ching
2014-06-01
Compared with piezoelectric ceramics such as lead zirconate titanate (PZT) ceramics, the low density and high compliance of the PVDF films make them a more suitable choice in modal testing, especially for detecting high-frequency modes in flexible or inflatable structures. In this work, dynamic sensing performances of PVDF films for flexible structures in modal testing are examined, with considerations including the repeatability of the impact source, the accuracy of the sensing responses, and the influences of the nodal lines on the frequency spectra of the transient responses. Two flexible plates with different boundary conditions and thickness are considered. Experimental results, compared with FEM computations or theoretical predictions, demonstrate the excellent dynamic sensing performance of the PVDF film in modal testing applications, especially for identification of high-frequency modes on flexible structures.
A second, low-frequency mode of vibration in the intact mammalian cochlea
Lukashkin, Andrei N.; Russell, Ian J.
2003-03-01
The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.
Vibration mode shape control by prestressing
Holnicki-Szulc, Jan; Haftka, Raphael T.
1992-01-01
A procedure is described for reducing vibration at sensitive locations on a structure, by induced distortions. The emphasis is placed on the excitation in a narrow frequency band, so that only a small number of vibration modes contribute to the intensity of the forced response. The procedure is demonstrated on an antenna truss example, showing that, with repeated frequencies, it is very easy to move nodal lines of one of the modes.
Skyrmion Vibration Modes within the Rational Map Ansatz
Lin, W.T.; Piette, B.
2008-01-01
We study the vibration modes of the Skyrme model within the rational map ansatz. We show that the vibrations of the radial profiles and the rational maps are decoupled and we consider explicitly the cases B=1, B=2, and B=4. We then compare our results with the vibration modes obtained numerically by Barnes et al. and show that qualitatively the rational map reproduces the vibration modes obtained numerically but that the vibration frequencies of these modes do not match very well.
Directory of Open Access Journals (Sweden)
Xiaofei Zhang
2018-01-01
Full Text Available Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode. Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.
Zhang, Xiaofei; Gao, Fengli; Li, Xide
2018-01-24
Multi-frequency scanning near-field optical microscopy, based on a quartz tuning fork-probe (QTF-p) sensor using the first two orders of in-plane bending symmetrical vibration modes, has recently been developed. This method can simultaneously achieve positional feedback (based on the 1st in-plane mode called the low mode) and detect near-field optically induced forces (based on the 2nd in-plane mode called the high mode). Particularly, the high mode sensing performance of the QTF-p is an important issue for characterizing the tip-sample interactions and achieving higher resolution microscopic imaging but the related researches are insufficient. Here, we investigate the vibration performance of QTF-p at high mode based on the experiment and finite element method. The frequency spectrum characteristics are obtained by our homemade laser Doppler vibrometer system. The effects of the properties of the connecting glue layer and the probe features on the dynamic response of the QTF-p sensor at the high mode are investigated for optimization design. Finally, compared with the low mode, an obvious improvement of quality factor, of almost 50%, is obtained at the high mode. Meanwhile, the QTF-p sensor has a high force sensing sensitivity and a large sensing range at the high mode, indicating a broad application prospect for force sensing.
Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie
2015-10-15
We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.
Directory of Open Access Journals (Sweden)
Chi Luo
2017-03-01
Full Text Available We study the dynamic behavior of a quartz crystal resonator (QCR in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left translation for increasing elastic modulus (length/radius ratio of MBs. Moreover, the frequency right (left translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one.
Fu, Li; Wang, Zhuguang; Yan, Elsa C Y
2014-09-01
We present a detailed analysis of the molecular origin of the chiral sum frequency generation (SFG) signals of proteins and peptides at interfaces in the N-H stretching vibrational region. The N-H stretching can be a probe for investigating structural and functional properties of proteins, but remains technically difficult to analyze due to the overlapping with the O-H stretching of water molecules. Chiral SFG spectroscopy offers unique tools to study the N-H stretching from proteins at interfaces without interference from the water background. However, the molecular origin of the N-H stretching signals of proteins is still unclear. This work provides a justification of the origin of chiral N-H signals by analyzing the vibrational frequencies, examining chiral SFG theory, studying proton (hydrogen/deuterium) exchange kinetics, and performing optical control experiments. The results demonstrate that the chiral N-H stretching signals at ~3300 cm(-1) originate from the amide group of the protein backbones. This chiral N-H stretching signal offers an in situ, real-time, and background-free probe for interrogating the protein structures and dynamics at interfaces at the molecular level. © 2014 Wiley Periodicals, Inc.
Relating normal vibrational modes to local vibrational modes: benzene and naphthalene.
Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter
2013-07-01
Local vibrational modes can be directly derived from normal vibrational modes using the method of Konkoli and Cremer (Int J Quant Chem 67:29, 1998). This implies the calculation of the harmonic force constant matrix F (q) (expressed in internal coordinates q) from the corresponding Cartesian force constant matrix f (x) with the help of the transformation matrix U = WB (†)(BWB (†))(-1) (B: Wilson's B-matrix). It is proven that the local vibrational modes are independent of the choice of the matrix W. However, the choice W = M (-1) (M: mass matrix) has numerical advantages with regard to the choice W = I (I: identity matrix), where the latter is frequently used in spectroscopy. The local vibrational modes can be related to the normal vibrational modes in the form of an adiabatic connection scheme (ACS) after rewriting the Wilson equation with the help of the compliance matrix. The ACSs of benzene and naphthalene based on experimental vibrational frequencies are discussed as nontrivial examples. It is demonstrated that the local-mode stretching force constants provide a quantitative measure for the C-H and C-C bond strength.
Kwac, Kijeong; Lee, Hochan; Cho, Minhaeng
2004-01-01
By carrying out molecular dynamics simulations of an N-methylacetamide (NMA) in methanol solution, the amide I mode frequency fluctuation and hydrogen bonding dynamics were theoretically investigated. Combining an extrapolation formula developed from systematic ab initio calculation studies of NMA-(CH3OH)n clusters with a classical molecular dynamics simulation method, we were able to quantitatively describe the solvatochromic vibrational frequency shift induced by the hydrogen-bonding interaction between NMA and solvent methanol. It was found that the fluctuating amide I mode frequency distribution is notably non-Gaussian and it can be decomposed into two Gaussian peaks that are associated with two distinctively different solvation structures. The ensemble-average-calculated linear response function associated with the IR absorption is found to be oscillating, which is in turn related to the doublet amide I band shape. Numerically calculated infrared absorption spectra are directly compared with experiment and the agreement was found to be excellent. By using the Onsager's regression hypothesis, the rate constants of the interconversion process between the two solvation structures were obtained. Then, the nonlinear response functions associated with two-dimensional infrared pump-probe spectroscopy were simulated. The physics behind the two-dimensional line shape and origin of the cross peaks in the time-resolved pump-probe spectra is explained and the result is compared with 2D spectra experimentally measured recently by Woutersen et al. [S. Woutersen, Y. Mu, G. Stock, and P. Hamm, Chem. Phys. 266, 137 (2001)].
Broadband vibration energy harvester utilizing three out-of-plane modes of one vibrating body
Park, Shi-Baek; Jang, Seon-Jun; Kim, In-Ho; Choi, Yong Je
2017-10-01
In this paper, we introduce the concept, design equation, and realization of a broadband electromagnetic vibrational energy harvester. The spatial vibrating system in the proposed harvester is arranged to have three out-of-plane vibration modes. We devise the design method for its three natural frequencies and accompanying modes and apply it to the broadband energy harvesting by locating three frequencies close to each other. The numerical simulation and the experimental results show that it satisfies the designated frequencies as well as the enhanced bandwidth for power generation.
DEFF Research Database (Denmark)
Mackeprang, Kasper; Kjærgaard, Henrik Grum
2017-01-01
The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded...... bimolecular complexes with donors such as alcohols, amines and acids. We have applied the modified model to a series of complexes of different hydrogen bond type and complex energy. We found that the differences between local mode (LM) and LMPT calculated fundamental XH-stretching transition wavenumbers...
Mackeprang, Kasper; Kjaergaard, Henrik G.
2017-04-01
The local mode perturbation theory (LMPT) model was developed to improve the description of hydrogen bonded XH-stretching transitions, where X is typically O or N. We present a modified version of the LMPT model to extend its application from hydrated bimolecular complexes to hydrogen bonded bimolecular complexes with donors such as alcohols, amines and acids. We have applied the modified model to a series of complexes of different hydrogen bond type and complex energy. We found that the differences between local mode (LM) and LMPT calculated fundamental XH-stretching transition wavenumbers and oscillator strengths were correlated with the strength of the hydrogen bond. Overall, we have found that the LMPT model in most cases predicts transition wavenumbers within 20 cm-1 of the experimental values.
Fundamental vibrational mode in a highly inhomogeneous star
Bastrukov, S. I.; Chang, H. -K.; Wu, E. -H.; Molodtsova, I. V.
2008-01-01
The eigenfrequency problem of fundamental vibrational mode in a highly inhomogeneous star, modeled by self-gravitating mass of viscous liquid with singular density at the center, is considered in juxtaposition with that for Kelvin fundamental mode in the liquid star model with uniform density. Particular attention is given to the difference between spectral equations for the frequency and lifetime of f-mode in the singular and homogeneous star models. The newly obtained results are discussed ...
Surface vibrational modes in disk-shaped resonators.
Dmitriev, A V; Gritsenko, D S; Mitrofanov, V P
2014-03-01
The natural frequencies and distributions of displacement components for the surface vibrational modes in thin isotropic elastic disks are calculated. In particular, the research is focused on even solutions for low-lying resonant vibrations with large angular wave numbers. Several families of modes are found which are interpreted as modified surface modes of an infinitely long cylinder and Lamb modes of a plate. The results of calculation are compared with the results of the experimental measurements of vibrational modes generated by means of resonant excitation in duraluminum disk with radius of ≈90 mm and thickness of 16 mm in the frequency range of 130-200 kHz. An excellent agreement between the calculated and measured frequencies is found. Measurements of the structure of the resonant peaks show splitting of some modes. About a half of the measured modes has splitting Δfsplit/fmode at the level of the order of 10(-5). The Q-factors of all modes measured in vacuum lie in the interval (2…3)×10(5). This value is typical for duraluminum mechanical resonators in the ultrasonic frequency range. Copyright © 2013 Elsevier B.V. All rights reserved.
The normal modes of lattice vibrations of ice XI
Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen
2016-01-01
The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm−1 and 310 cm−1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder. PMID:27375199
Hydrogen local vibrational modes in semiconductors
Energy Technology Data Exchange (ETDEWEB)
McCluskey, Matthew D. [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-06-01
Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.
Signature of nonadiabatic coupling in excited-state vibrational modes.
Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian
2014-11-13
Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.
Okuda, Masaki; Higashi, Masahiro; Ohta, Kaoru; Saito, Shinji; Tominaga, Keisuke
2017-09-01
The vibrational dynamics of SCN- in H2O are theoretically investigated by molecular dynamics simulations. Based on the vibrational solvatochromism theory, we calculate the frequency-frequency time correlation function of the SCN anti-symmetric stretching mode, which is characterized by time constants of 0.13 and 1.41 ps. We find that the frequency fluctuation is almost determined by the electrostatic interaction from the water molecules in the first-hydration shell. The collective dynamics of the water molecules in the first-hydration shell is found to be similar to that of bulk water, though the hydrogen bond between the ion and water molecule is very strong.
Frequency Identification of Vibration Signals Using Video Camera Image Data
Directory of Open Access Journals (Sweden)
Chia-Hung Wu
2012-10-01
Full Text Available This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.
Ding, Zhenyang; Yao, X Steve; Liu, Tiegen; Du, Yang; Liu, Kun; Han, Qun; Meng, Zhuo; Chen, Hongxin
2012-12-17
We present a novel method to achieve a space-resolved long- range vibration detection system based on the correlation analysis of the optical frequency-domain reflectometry (OFDR) signals. By performing two separate measurements of the vibrated and non-vibrated states on a test fiber, the vibration frequency and position of a vibration event can be obtained by analyzing the cross-correlation between beat signals of the vibrated and non-vibrated states in a spatial domain, where the beat signals are generated from interferences between local Rayleigh backscattering signals of the test fiber and local light oscillator. Using the proposed technique, we constructed a standard single-mode fiber based vibration sensor that can have a dynamic range of 12 km and a measurable vibration frequency up to 2 kHz with a spatial resolution of 5 m. Moreover, preliminarily investigation results of two vibration events located at different positions along the test fiber are also reported.
Low-frequency vibration control of floating slab tracks using dynamic vibration absorbers
Zhu, Shengyang; Yang, Jizhong; Yan, Hua; Zhang, Longqing; Cai, Chengbiao
2015-09-01
This study aims to effectively and robustly suppress the low-frequency vibrations of floating slab tracks (FSTs) using dynamic vibration absorbers (DVAs). First, the optimal locations where the DVAs are attached are determined by modal analysis with a finite element model of the FST. Further, by identifying the equivalent mass of the concerned modes, the optimal stiffness and damping coefficient of each DVA are obtained to minimise the resonant vibration amplitudes based on fixed-point theory. Finally, a three-dimensional coupled dynamic model of a metro vehicle and the FST with the DVAs is developed based on the nonlinear Hertzian contact theory and the modified Kalker linear creep theory. The track irregularities are included and generated by means of a time-frequency transformation technique. The effect of the DVAs on the vibration absorption of the FST subjected to the vehicle dynamic loads is evaluated with the help of the insertion loss in one-third octave frequency bands. The sensitivities of the mass ratio of DVAs and the damping ratio of steel-springs under the floating slab are discussed as well, which provided engineers with the DVA's adjustable room for vibration mitigation. The numerical results show that the proposed DVAs could effectively suppress low-frequency vibrations of the FST when tuned correctly and attached properly. The insertion loss due to the attachment of DVAs increases as the mass ratio increases, whereas it decreases with the increase in the damping ratio of steel-springs.
Piezoelectric nonlinear vibration focusing on the second-harmonic vibration mode.
Ozaki, Ryohei; Liu, Yaoyang; Hosaka, Hiroshi; Morita, Takeshi
2018-01-01
Resonant piezoelectric devices are driven under high power condition. In such condition, a nonlinear piezoelectric vibration becomes apparent and this nonlinearity should be taken into account in the design procedure using the finite elemental method (FEM). The purpose of this study is to introduce the nonlinear parameter to the FEM and to establish the method for measuring the nonlinear parameter through evaluating a nonlinear model for a piezoelectric vibration. In a previous study about the nonlinear piezoelectric vibration, the third term was mainly focused on because the third mode vibration affects the fundamental vibration in the case of a simple bar-type transducer. On the other hand, we considered the second nonlinear parameter of the compliance to the piezoelectric constitutive equation. We observed that this parameter affects the vibration amplitude with each position and the velocity at the tip of the transducer with a double frequency at resonant. It was confirmed that two measured nonlinear parameters based on these two relationships were almost same. From these values, we concluded that the proposed model is reasonable. Copyright © 2017. Published by Elsevier B.V.
Function generator for synthesizing complex vibration mode patterns
Naumann, E. C.; Hagood, G. J., Jr. (Inventor)
1973-01-01
A simple highly flexible device for synthesizing complex vibration mode patterns is described. These mode patterns can be used to identify vibration mode data. This device sums selected sine and cosine functions and then plots the sum against a linear function.
Displacement of polarons by vibrational modes in doped conjugated polymers
Anderson, M.; Ramanan, C.; Fontanesi, C.; Frick, A.; Surana, S.; Cheyns, D.; Furno, M.; Keller, T.; Allard, S.; Scherf, U.; Beljonne, D.; D'Avino, G.; von Hauff, E.; Da Como, E.
2017-10-01
Organic pi-conjugated polymers are deemed to be soft materials with strong electron-phonon coupling, which results in the formation of polarons, i.e., charge carriers dressed by self-localized distortion of the nuclei. Universal signatures for polarons are optical resonances below the band gap and intense vibrational modes (IVMs), both found in the infrared (IR) spectral region. Here, we study p -doped conjugated homo- and copolymers by combining first-principles modelling and optical spectroscopy from the far-IR to the visible. Polaronic IVMs are found to feature absorption intensities comparable to purely electronic transitions and, most remarkably, show only loose resemblance to the Raman or IR-active modes of the neutral polymer. The IVM frequency is dramatically scaled down (up to 50%) compared to the backbone carbon-stretching modes in the pristine polymers. The very large intensity of IVMs is associated with displacement of the excess positive charge along the backbone driven by specific vibrational modes. We propose a quantitative picture for the identification of these polaron shifting modes that solely based on structural information, directly correlates with their IR intensity. This finding finally discloses the elusive microscopic mechanism behind the huge IR intensity of IVMs in doped polymeric semiconductors.
Geometry optimization and vibrational frequencies of tetracene ...
African Journals Online (AJOL)
Tetracene is an organic semiconductor with chemical formula C18H12 used in organic field effecttransistor (OFET) and organic light emitting diode (OLED). In this work, the molecular geometry (optimized bond lengths and bond angles), vibrational frequencies and intensities, HOMO-LUMO Energy gap and Atomic charge ...
Vibration of Cracked Circular Plates at Resonance Frequencies
HUANG, CHI-HUNG; MA, CHIEN-CHING
2000-09-01
It is well known that the presence of cracks will affect the dynamic characteristics of the vibrating plate. Such a problem is complicated because it combines the field of vibration analysis and fracture mechanics. In this study, an optical system called the AF-ESPI method with the out-of-plane displacement measurement is employed to investigate the vibration characteristics of a free circular plate with a radial crack emanating from the edge. The boundary conditions along the circular edge are free. As compared with the film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally at the same time by the proposed AF-ESPI method. Numerical finite element calculations are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. The vibrating mode shapes obtained in this study can be classified into two types, symmetric and antisymmetric modes with respect to the crack line. The influence of crack length on resonant frequencies is also investigated in terms of the dimensionless frequency parameter (λ2) versus crack length ratio (a/D). We find that if the crack face displacement is out of phase, i.e., the antisymmetric type, a large value of stress intensity factor may be induced and the cracked circular plate will be dangerous, from the fracture mechanics point of view. However, there are some resonant frequencies for which the crack face displacements are completely in phase, i.e., the symmetric type, which yields a zero stress intensity factor and the cracked plate will be safe.
Inhibiting multiple mode vibration in controlled flexible systems
Hyde, James M.; Chang, Kenneth W.; Seering, Warren P.
1991-01-01
Viewgraphs on inhibiting multiple mode vibration in controlled flexible systems are presented. Topics covered include: input pre-shaping background; developing multiple-mode shapers; Middeck Active Control Experiment (MACE) test article; and tests and results.
Adaptive Semiactive Cable Vibration Control: A Frequency Domain Perspective
Directory of Open Access Journals (Sweden)
Z. H. Chen
2017-01-01
Full Text Available An adaptive solution to semiactive control of cable vibration is formulated by extending the linear quadratic Gaussian (LQG control from time domain to frequency domain. Frequency shaping is introduced via the frequency dependent weights in the cost function to address the control effectiveness and robustness. The Hilbert-Huang transform (HHT technique is further synthesized for online tuning of the controller gain adaptively to track the cable vibration evolution, which also obviates the iterative optimal gain selection for the trade-off between control performance and energy in the conventional time domain LQG (T-LQG control. The developed adaptive frequency-shaped LQG (AF-LQG control is realized by collocated self-sensing magnetorheological (MR dampers considering the nonlinear damper dynamics for force tracking control. Performance of the AF-LQG control is numerically validated on a bridge cable transversely attached with a self-sensing MR damper. The results demonstrate the adaptivity in gain tuning of the AF-LQG control to target for the dominant cable mode for vibration energy dissipation, as well as its enhanced control efficacy over the optimal passive MR damping control and the T-LQG control for different excitation modes and damper locations.
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Lee, Scott A; Pinnick, David A; Anderson, A
2015-01-01
Raman spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline cytidine at 295 K and high pressures by evaluating the logarithmic derivative of the vibrational frequency ω with respect to pressure P: [Formula: see text]. Crystalline samples of molecular materials have strong intramolecular bonds and weak intermolecular bonds. This hierarchy of bonding strengths causes the vibrational optical modes localized within a molecular unit ("internal" modes) to be relatively high in frequency while the modes in which the molecular units vibrate against each other ("external" modes) have relatively low frequencies. The value of the logarithmic derivative is a useful diagnostic probe of the nature of the eigenvector of the vibrational modes because stretching modes (which are predominantly internal to the molecule) have low logarithmic derivatives while external modes have higher logarithmic derivatives. In crystalline cytidine, the modes at 85.8, 101.4, and 110.6 cm(-1) are external in which the molecules of the unit cell vibrate against each other in either translational or librational motions (or some linear combination thereof). All of the modes above 320 cm(-1) are predominantly internal stretching modes. The remaining modes below 320 cm(-1) include external modes and internal modes, mostly involving either torsional or bending motions of groups of atoms within a molecule.
Extended and localized vibrational modes in (1-3) Penrose-like piezocomposites
Montero de Espinosa, F.; Torres, M.
1994-09-01
Acoustic vibrational modes of piezocomposites with ceramic bars arranged at the vertices of both perfect Penrose tilings and random Penrose tilings have directly been observed by recording the corresponding standing vibration amplitude pattern. The random Penrose tiling exhibits similar although smoother spectrum than the perfect Penrose one. For both structures, the existence of extended and localized modes is shown. Resonances frequencies at the edges of the spectrum pseudogap correspond to localized and highly entropic modes. As expected, the modes are more localized in the random Penrose tiling case.
Starkey, Carl A; Lee, Scott A; Anderson, Anthony
2016-01-01
High-pressure infrared spectroscopy has been used to study the eigenvectors and eigenvalues of the vibrational modes of crystalline adenosine at 298 K by evaluating the logarithmic derivative of the vibrational frequency with respect to pressure: [Formula: see text]. Crystalline samples of molecular materials such as adenosine have vibrational modes that are localized within a molecular unit ("internal" modes) as well as modes in which the molecular units vibrate against each other ("external" modes). The value of the logarithmic derivative is that it is a diagnostic probe of the nature of the eigenvector of these vibrational modes. Stretching modes, which are predominantly internal to the molecule, have low logarithmic derivatives while external modes have higher logarithmic derivatives. Particular attention is paid to modes in the 800-1000 cm(-1) range since modes in that region of the vibrational spectrum are found to be sensitive to the conformation of double-helical DNA. Since the sugar pucker is different for the various conformations of DNA, this fact suggests that these modes involve the motion of atoms in the sugar group. The vibrations of the hydrogen atoms are also of interest to study since the vibrational frequency of hydrogen atoms involved in hydrogen bonds has a negative pressure derivative. Such behavior clearly shows which hydrogen atoms are involved in hydrogen bonding.
Energy Technology Data Exchange (ETDEWEB)
Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)
2015-04-20
In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.
Ultrafast Dynamics of Vibration-Cavity Polariton Modes
Owrutsky, Jeff; Dunkelberger, Adam; Fears, Kenan; Simpkins, Blake; Spann, Bryan
Vibrational modes of polymers, liquids, and solvated compounds can couple to Fabry-Perot optical cavity modes, creating vibration-cavity polariton modes whose energy tunes with the cavity length and incidence angle. Here we report the pump-probe infrared spectroscopy of vibration-cavity polaritons in cavity-coupled W(CO)6. At very early times, we observe quantum beating between the two polariton states find an anomalously low degree of excitation. After the quantum beating, we directly observe spectroscopic signatures of excited-state absorption from both polariton modes and uncoupled reservoir modes. An analytical expression for cavity transmission reproduces these signatures. The upper polariton mode relaxes ten times more quickly than the uncoupled vibrational mode and the polariton lifetime depends on the angle of incidence of the infrared pulses. Coupling to an optical cavity gives a means of control of the lifetime of vibration-cavity polaritons and could have important implications for chemical reactivity in vibrationally excited molecules.
Xue, Jianghong; Xia, Fei; Ye, Jun; Zhang, Jianwen; Chen, Shuhua; Xiong, Ying; Tan, Zuyuan; Liu, Renhuai; Yuan, Hong
2017-06-30
This paper presents a multiscale approach to study the nonlinear vibration of fiber reinforced composite laminates containing an embedded, through-width delamination dividing the laminate into four sub-laminates. The equations of motion are established from macroscopic nonlinear mechanics for plates and shells and micro-mechanics of composite material to allow for the influences of large amplitude, membrane stretching in the neutral plane, and the interactions of the sublaminates. Analytical solutions obtained in this paper reveal that the interaction penalty at the interfaces plays a coupling effect between sublaminates, which eventually alters the vibration characters of the four-sublaminate lamina in macroscopic and microscopic mechanism. From a macro perspective, sub-laminates above and below the delamination vibrate in exactly the same mode in spite of their different stiffness and the four-sublaminate lamina has a consistent global vibration mode. In accompanying with the macro vibration, micro buckles occur on the interfaces of the delamination with amplitude about 10(-3) times of that of the global mode. It is found that the vibration frequency is an eigenvalue of the delaminated lamina determined only by the geometry of the delamination. Authentication of the multiscale study is fulfilled by comparing the analytical solutions with the FEA results.
Theoretical molecular structure, vibrational frequencies and NMR ...
African Journals Online (AJOL)
Theoretical results have been successfully compared with available experimental data in the literature. Regarding the calculations, 2mpe-4bb prefers enol-imine form and DFT method is superior to HF approach except for predicting bond lengths. KEY WORDS: Schiff bases, Normal mode frequencies, HF, DFT, NMR. Bull.
Computing Vibration-Mode Matrices From Finite-Element Output
Levy, Roy
1993-01-01
Postprocessing algorithms devised to facilitate vibrational-mode analyses of dynamics of complicated structures. Yields inertia matrices and elastic/rigid-coupling matrices. Such analyses important in simulation and control in active suppression of vibrations in large building or in precise aiming of large antenna.
selective excitation of vibrational modes of polyatomic molecule
Indian Academy of Sciences (India)
Abstract. Mode-selective dynamics of triatomic molecule in the electronic ground state under continuous wave laser pulse is investigated for the discrete vibrational bound states. A non-perturbative approach has been used to analyse the vibrational couplings and dynamics of the molecule. Keywords. Polyatomic molecule ...
A Sub-Hertz, Low-Frequency Vibration Isolation Platform
Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio
2011-01-01
struts ends are connected in pairs to the base and to the platform, forming an octahedron. The six struts provide the vibration isolation due to the properties of mechanical oscillators that behave as second-order lowpass filters for frequencies above the resonance. At high frequency, the ideal second-order low-pass filter response is spoiled by the distributed mass and the internal modes of membrane and of the platform with its payload.
High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer
Directory of Open Access Journals (Sweden)
Mihai Valentin Predoi
2014-01-01
Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.
1984-01-01
The methods used to determine the lower natural frequencies and their corresponding mode shapes of the NASA-LSS Astromast (Unmodified Test Structure), and the mass integrals associated with the mode shapes are illustrated. The test structure is modeled as a cantilever beam with 91 lumped masses and without the tip mass on the free end of the bram. This uncouples the torsion and bending modes and allows for them to be determined separately. The frequency range was limited to an upper bound of 100 rad/sec (15.92 Hz.). In this range from 0.-100. rad/sec, three bending frequencies and one torsion frequency was found.
Automobile Road Vibration Reproduction using Sliding Modes
Monsees, G.; Scherpen, J.M.A.
2001-01-01
Sliding mode controllers have a reputation for their robustness against parameter variations, modeling errors and disturbances. They have been successfully applied in several practical situations which demonstrated the potential of sliding mode control for other control problems. However research
DEFF Research Database (Denmark)
Jalkanen, Karl J.
2003-01-01
Here we present several low energy conformers of Leu-enkephalin (LeuE) calculated with the density functional theory using the Becke 3LYP hybrid functional and the 6-31G* basis set. The structures, conformational energies, vibrational frequencies, vibrational absorption (VA) intensities......, vibrational circular dichroism (VCD) intensities and Raman scattering intensities are reported for the conformers of LeuE which are expected to be populated at room temperature. The species of LeuE-present in non-polar solvents is the neutral non-ionic species with the NH2 and CO2H groups, in contrast...... to the zwitterionic neutral species with the NH3+ and CO2- groups which predominates in aqueous solution and in the crystal. All of our attempts to find the zwitterionic species in the isolated state failed, with the result that a hydrogen atom from the positively charged N-terminus ammonium group transferred either...
Vibrational resonance induced by transition of phase-locking modes in excitable systems.
Yang, Lijian; Liu, Wangheng; Yi, Ming; Wang, Canjun; Zhu, Qiaomu; Zhan, Xuan; Jia, Ya
2012-07-01
We study the occurrence of vibrational resonance as well as the underlying mechanism in excitable systems. The single vibration resonance and vibration bi-resonance are observed when tuning the amplitude and frequency of high-frequency force simultaneously. Furthermore, by virtue of the phase diagram of low-frequency-signal-free FitzHugh-Nagumo model, it is found that each maxima of response measure is located exactly at the transition boundary of phase patterns. Therefore, it is the transition between different phase-locking modes that induces vibrational resonance in the excitable systems. Finally, this mechanism is verified in the Hodgkin-Huxley neural model. Our results provide insights into the transmission of weak signals in nonlinear systems, which are valuable in engineering for potential applications.
Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode
Directory of Open Access Journals (Sweden)
Hong Zhao
2016-01-01
Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.
Directory of Open Access Journals (Sweden)
Vytautas Ostasevicius
2015-05-01
Full Text Available This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4–4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.
Continuous variable entanglement between frequency modes
Glöckl, O.; Andersen, U. L.; Leuchs, G.
2006-08-01
The pairwise production of photons in nonlinear optical processes ensures entanglement to occur between two photons. E.g. when the Kerr effect is exploited, the photons are produced in different frequency modes, which are symmetric with respect to the pump frequency. Since these photons are produced into the same spatial mode, the quadrature entanglement can be witnessed only by the use of a frequency selective device which transforms the adjacent frequency modes into two different spatial modes. We use a Mach-Zehnder interferometer with a large path length difference to separate symmetric frequency modes located 10.25 MHz from the carrier. We measure correlations of the quadrature components of 1.6 +/- 0.1dB below the shot noise in the amplitude and 1.4 +/- 0.1dB in the phase.
Non-linear vibrational modes in biomolecules: A periodic orbits description
Energy Technology Data Exchange (ETDEWEB)
Kampanarakis, Alexandros [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Farantos, Stavros C., E-mail: farantos@iesl.forth.gr [Department of Chemistry, University of Crete, and Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH), Vasilika Vouton, Heraklion 71110, Crete (Greece); Daskalakis, Vangelis; Varotsis, Constantinos [Department of Environmental Science and Technology, Cyprus University of Technology, 31 Archbishop Kyprianos St., P.O. Box 50329, 3603 Lemesos (Cyprus)
2012-05-03
Graphical abstract: Vibrational frequency shifts in Fe{sup IV} = O species of the active site of cytochrome c oxidase are attributed to changes in the surrounding Coulomb field. Periodic orbits analysis assists to find the most anharmonic modes in model biomolecules. Highlights: Black-Right-Pointing-Pointer Periodic orbits are extended to multidimensional potentials of biomolecules. Black-Right-Pointing-Pointer Highly anharmonic vibrational modes and center-saddle bifurcations are detected. Black-Right-Pointing-Pointer Vibrational frequencies shifts in Oxoferryl species of CcO are observed. - Abstract: The vibrational harmonic normal modes of a molecule, which are valid at energies close to an equilibrium point (a minimum, maximum or saddle of the potential energy surface), are extended by periodic orbits to high energies where anharmonicity and coupling of the degrees of freedom are significant. In this way the assignment of the spectra, and thus the extraction of dynamics in highly excited molecules, can be obtained. New vibrational modes emanating from bifurcations of periodic orbits and long living localized trajectories signal the birth and localization of new quantum states. In this article we review and further study non-linear vibrational modes for model biomolecules such as alanine dipeptide and the active site in the oxoferryl oxidation state of the enzyme cytochrome c oxidase. We locate periodic orbits which exhibit high anhamonicity and lead to center-saddle bifurcations. These modes are associated to an isomerization process in alanine dipeptide and to frequency shifts in the oxoferryl observed by modifying the Coulomb field around the Imidazole-Fe{sup IV} = O species.
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations of a principal machine are reduced at the fundamental and harmonic frequencies by driving the drive motor of an active balancer with balancing signals at the fundamental and selected harmonics. Vibrations are sensed to provide a signal representing the mechanical vibrations. A balancing signal generator for the fundamental and for each selected harmonic processes the sensed vibration signal with adaptive filter algorithms of adaptive filters for each frequency to generate a balancing signal for each frequency. Reference inputs for each frequency are applied to the adaptive filter algorithms of each balancing signal generator at the frequency assigned to the generator. The harmonic balancing signals for all of the frequencies are summed and applied to drive the drive motor. The harmonic balancing signals drive the drive motor with a drive voltage component in opposition to the vibration at each frequency.
Vibration Method for Tracking the Resonant Mode and Impedance of a Microwave Cavity
Barmatz, M.; Iny, O.; Yiin, T.; Khan, I.
1995-01-01
A vibration technique his been developed to continuously maintain mode resonance and impedance much between a constant frequency magnetron source and resonant cavity. This method uses a vibrating metal rod to modulate the volume of the cavity in a manner equivalent to modulating an adjustable plunger. A similar vibrating metal rod attached to a stub tuner modulates the waveguide volume between the source and cavity. A phase sensitive detection scheme determines the optimum position of the adjustable plunger and stub turner during processing. The improved power transfer during the heating of a 99.8% pure alumina rod was demonstrated using this new technique. Temperature-time and reflected power-time heating curves are presented for the cases of no tracking, impedance tracker only, mode tracker only and simultaneous impedance and mode tracking. Controlled internal melting of an alumina rod near 2000 C using both tracking units was also demonstrated.
Electronic Properties of Si-Hx Vibrational Modes at Si Waveguide Interface.
Bashouti, Muhammad Y; Yousefi, Peyman; Ristein, Jürgen; Christiansen, Silke H
2015-10-01
Attenuated total reflectance (ATR) and X-ray photoelectron spectroscopy in suite with Kelvin probe were conjugated to explore the electronic properties of Si-Hx vibrational modes by developing Si waveguide with large dynamic detection range compared with conventional IR. The Si 2p emission and work-function related to the formation and elimination of Si-Hx bonds at Si surfaces are monitored based on the detection of vibrational mode frequencies. A transition between various Si-Hx bonds and thus related vibrational modes is monitored for which effective momentum transfer could be demonstrated. The combination of the aforementioned methods provides for results that permit a model for the kinetics of hydrogen termination of Si surfaces with time and advanced surface characterizing of hybrid-terminated semiconducting solids.
Huang, C H; Ma, C C
2001-07-01
The experimental measurement of the resonant frequencies for the piezoceramic material is generally performed by impedance analysis. In this paper, we employ an optical interferometry method called the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) to investigate the vibration characteristics of piezoceramic/aluminum laminated plates. The AF-ESPI is a powerful tool for the full-field, noncontact, and real-time measurement method of surface displacement for vibrating bodies. As compared with the conventional film recording and optical reconstruction procedures used for holographic interferometry, the interferometric fringes of AF-ESPI are produced instantly by a video recording system. Because the clear fringe patterns measured by the AF-ESPI method will be shown only at resonant frequencies, both the resonant frequencies and corresponding vibration mode shapes are obtained experimentally at the same time. Excellent quality of the interferometric fringe patterns for both the in-plane and out-of-plane vibration mode shapes are demonstrated. Two different configurations of piezoceramic/aluminum laminated plates, which exhibit different vibration characteristics because of the polarization direction, are investigated in detail. From experimental results, we find that some of the out-of-plane vibration modes (Type A) with lower resonant frequencies cannot be measured by the impedance analysis; however, all of the vibration modes of piezoceramic/aluminum laminated plates can be obtained by the AF-ESPI method. Finally, the numerical finite element calculations are also performed, and the results are compared with the experimental measurements. Excellent agreements of the resonant frequencies and mode shapes are obtained for both results.
Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers
Alfosail, Feras
2016-10-15
We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.
High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple
Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei
2017-07-01
With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.
Mapping vibrational surface and bulk modes in a single nanocube
Lagos, Maureen J.; Trügler, Andreas; Hohenester, Ulrich; Batson, Philip E.
2017-03-01
Imaging of vibrational excitations in and near nanostructures is essential for developing low-loss infrared nanophotonics, controlling heat transport in thermal nanodevices, inventing new thermoelectric materials and understanding nanoscale energy transport. Spatially resolved electron energy loss spectroscopy has previously been used to image plasmonic behaviour in nanostructures in an electron microscope, but hitherto it has not been possible to map vibrational modes directly in a single nanostructure, limiting our understanding of phonon coupling with photons and plasmons. Here we present spatial mapping of optical and acoustic, bulk and surface vibrational modes in magnesium oxide nanocubes using an atom-wide electron beam. We find that the energy and the symmetry of the surface polariton phonon modes depend on the size of the nanocubes, and that they are localized to the surfaces of the nanocube. We also observe a limiting of bulk phonon scattering in the presence of surface phonon modes. Most phonon spectroscopies are selectively sensitive to either surface or bulk excitations; therefore, by demonstrating the excitation of both bulk and surface vibrational modes using a single probe, our work represents advances in the detection and visualization of spatially confined surface and bulk phonons in nanostructures.
Optimization procedure to control the coupling of vibration modes in flexible space structures
Walsh, Joanne L.
1987-01-01
As spacecraft structural concepts increase in size and flexibility, the vibration frequencies become more closely-spaced. The identification and control of such closely-spaced frequencies present a significant challenge. To validate system identification and control methods prior to actual flight, simpler space structures will be flown. To challenge the above technologies, it will be necessary to design these structures with closely-spaced or coupled vibration modes. Thus, there exists a need to develop a systematic method to design a structure which has closely-spaced vibration frequencies. This paper describes an optimization procedure which is used to design a large flexible structure to have closely-spaced vibration frequencies. The procedure uses a general-purpose finite element analysis program for the vibration and sensitivity analyses and a general-purpose optimization program. Results are presented from two studies. The first study uses a detailed model of a large flexible structure to design a structure with one pair of closely-spaced frequencies. The second study uses a simple equivalent beam model of a large flexible structure to obtain a design with two pairs of closely-spaced frequencies.
Efficient vibration mode analysis of aircraft with multiple external store configurations
Karpel, M.
1988-01-01
A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.
Electric field generated by axial longitudinal vibration modes of microtubule.
Cifra, M; Pokorný, J; Havelka, D; Kucera, O
2010-05-01
Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. We calculated electric field generated by axial longitudinal vibration modes of microtubules for random, and coherent excitation. In case of coherent excitation of vibrations, the electric field intensity is highest at the end of microtubule. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of microtubule polymerization via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play an important role in biological self-organization. 2010 Elsevier Ireland Ltd. All rights reserved.
Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils
Directory of Open Access Journals (Sweden)
Wang Chunju
2015-01-01
Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.
Vibrational relaxation pathways of AI and AII modes in N-methylacetamide clusters.
Piatkowski, L; Bakker, H J
2010-11-04
We studied the pathways of vibrational energy relaxation of the amide I (~1660 cm⁻¹) and amide II (~1560 cm⁻¹) vibrational modes of N-methylacetamide (NMA) in CCl₄ solution using two-color femtosecond vibrational spectroscopy. We measured the transient spectral dynamics upon excitation of each of these amide modes. The results show that there is no energy transfer between the amide I (AI) and amide II (AII) modes. Instead we find that the vibrational energy is transferred on a picosecond time scale to a common combination tone of lower-frequency modes. By use of polarization-resolved femtosecond pump-probe measurements we also study the reorientation dynamics of the NMA molecules and the relative angle between the transition dipole moments of the AI and AII vibrations. The spectral dynamics at later times after the excitation (>40 ps) reveal the presence of a dissociation process of the NMA aggregates, trimers, and higher order structures into dimers and monomers. By measuring the dissociation kinetics at different temperatures, we determined the activation energy of this dissociation E(a) = 35 ± 3 kJ mol⁻¹.
CO laser photoacoustic spectra and vibrational modes of heroin ...
Indian Academy of Sciences (India)
Abstract. Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 µm and 10.6 µm regions of CO2 laser. It is very difficult to assign the modes of vibrations for PA bands by comparison with ...
laser photoacoustic spectra and vibrational modes of heroin ...
Indian Academy of Sciences (India)
Heroin, morphine and narcotine are very large molecules having 50, 40 and 53 atoms respectively. Moderately high resolution photoacoustic (PA) spectra have been recorded in 9.6 m and 10.6 m regions of CO2 laser. It is very difﬁcult to assign the modes of vibrations for PA bands by comparison with conventional low ...
Energy Technology Data Exchange (ETDEWEB)
Sharpes, Nathan; Kumar, Prashant [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar; Abdelmoula, Hichem [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Adler, Jan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Institute of Dynamics and Vibration Research (IDS), Leibniz Universität, Hannover 30167 (Germany); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)
2016-07-18
Mode shapes in the design of mechanical energy harvesters, as a means of performance increase, have been largely overlooked. Currently, the vast majority of energy harvester designs employ some variation of a single-degree-of-freedom cantilever, and the mode shapes of such beams are well known. This is especially true for the first bending mode, which is almost exclusively the chosen vibration mode for energy harvesting. Two-dimensional beam shapes (those which curve, meander, spiral, etc., in a plane) have recently gained research interest, as they offer freedom to modify the vibration characteristics of the harvester beam for achieving higher power density. In this study, the second bending mode shape of the “Elephant” two-dimensional beam shape is examined, and its interaction with the first bending mode is evaluated. A combinatory mode shape created by using mass loading structural modification to lower the second bending modal frequency was found to interact with the first bending mode. This is possible since the first two bending modes do not share common areas of displacement. The combined mode shape is shown to produce the most power of any of the considered mode shapes.
He, Huijing; Yang, Jiashi; Kosinski, John A
2012-08-01
We study shear-horizontal free vibrations of an elastic cylinder with an oblate elliptical cross section and a traction-free surface. Exact vibration modes and frequencies are obtained. The results show the existence of thickness-shear and thickness-twist modes. The energy-trapping behavior of these modes is examined. Trapped modes are found wherein the vibration energy is largely confined to the central portion of the cross section and little vibration energy is found at the edges. It is also shown that face-shear modes are not allowed in such a cylinder. The results are useful for the understanding of the energy trapping phenomenon in contoured acoustic wave resonators.
High Frequency Vibration Based Fatigue Testing of Developmental Alloys
Holycross, Casey M.; Srinivasan, Raghavan; George, Tommy J.; Tamirisakandala, Seshacharyulu; Russ, Stephan M.
Many fatigue test methods have been previously developed to rapidly evaluate fatigue behavior. This increased test speed can come at some expense, since these methods may require non-standard specimen geometry or increased facility and equipment capability. One such method, developed by George et al, involves a base-excited plate specimen driven into a high frequency bending resonant mode. This resonant mode is of sufficient frequency (typically 1200 to 1700 Hertz) to accumulate 107 cycles in a few hours. One of the main limitations of this test method is that fatigue cracking is almost certainly guaranteed to be surface initiated at regions of high stress. This brings into question the validity of the fatigue test results, as compared to more traditional uniaxial, smooth-bar testing, since high stresses are subjecting only a small volume to fatigue damage. This limitation also brings into question the suitability of this method to screen developmental alloys, should their initiation life be governed by subsurface flaws. However, if applicable, the rapid generation of fatigue data using this method would facilitate faster design iterations, identifying more quickly, material and manufacturing process deficiencies. The developmental alloy used in this study was a powder metallurgy boron-modified Ti-6Al-4V, a new alloy currently being considered for gas turbine engine fan blades. Plate specimens were subjected to fully reversed bending fatigue. Results are compared with existing data from commercially available Ti-6Al-4V using both vibration based and more traditional fatigue test methods.
Estimation of the mechanical properties of the eye through the study of its vibrational modes.
Aloy, M Á; Adsuara, J E; Cerdá-Durán, P; Obergaulinger, M; Esteve-Taboada, J J; Ferrer-Blasco, T; Montés-Micó, R
2017-01-01
Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz-10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio) measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.
Vibrational relaxation of the bending mode of HDO in liquid D2O.
Bodis, Pavol; Larsen, Olaf F A; Woutersen, Sander
2005-06-23
The vibrational relaxation of the bending mode of HDO in liquid D2O has been studied using time-resolved mid-infrared pump-probe spectroscopy. At short delays, the transient spectrum clearly shows the v = 1 --> 2 induced absorption and v = 1 --> 0 bleaching and stimulated emission, whereas at long delays, the transient spectrum is dominated by the spectral changes caused by the temperature increase in the sample after vibrational relaxation. From the decay of the v = 1 --> 2 induced absorption, we obtain an estimate of 390 +/- 50 fs for the vibrational lifetime, in surprisingly good agreement with recent theoretical predictions. In the v = 0 --> 1 frequency region, the decay of the absorption change involves a second, slower component, which suggests that after vibrational relaxation the system is not yet in thermal equilibrium.
Two-mode elliptical-core weighted fiber sensors for vibration analysis
Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.
1992-01-01
Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.
Directory of Open Access Journals (Sweden)
Yizhou Yang
2017-01-01
Full Text Available To diagnose mechanical faults of rotor-bearing-casing system by analyzing its casing vibration signal, this paper proposes a training procedure of a fault classifier based on variational mode decomposition (VMD, local linear embedding (LLE, and support vector machine (SVM. VMD is used first to decompose the casing signal into several modes, which are subsignals usually modulated by fault frequencies. Vibrational features are extracted from both VMD subsignals and the original one. LLE is employed here to reduce the dimensionality of these extracted features and make the samples more separable. Then low-dimensional data sets are used to train the multiclass SVM whose accuracy is tested by classifying the test samples. When the parameters of LLE and SVM are well optimized, this proposed method performs well on experimental data, showing its capacity of diagnosing casing vibration faults.
Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.
Kim, Hun; Lim, Hee-Chang
2015-06-04
The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.
Colin, M.; Mortier, Q.; Basrour, S.; Bencheikh, N.
2013-12-01
This paper introduces an innovative architecture of a piezoelectric harvester, which enables harvesting vibration energy at low frequency using the {33}-transduction mode of a piezoelectric element. Unlike cantilevers integrating ferroelectric material combined with interdigitated electrodes, the concept that we propose is based on the elongation/compression excitation of a piezoelectric bar.
Observation of sound-induced corneal vibrational modes by optical coherence tomography
Akca, B. Imran; Chang, Ernest W.; Kling, Sabine; Ramier, Antoine; Scarcelli, Giuliano; Marcos, Susana; Yun, Seok H.
2015-01-01
The mechanical stability of the cornea is critical for maintaining its normal shape and refractive function. Here, we report an observation of the mechanical resonance modes of the cornea excited by sound waves and detected by using phase-sensitive optical coherence tomography. The cornea in bovine eye globes exhibited three resonance modes in a frequency range of 50-400 Hz. The vibration amplitude of the fundamental mode at 80-120 Hz was ~8 µm at a sound pressure level of 100 dB (2 Pa). Vibr...
Lin, Shuyu
2012-01-01
The piezoelectric ultrasonic composite transducer, which can be used in either gas or liquid media, is studied in this paper. The composite transducer is composed of a longitudinal sandwich piezoelectric transducer, a mechanical transformer, and a metal circular plate in flexural vibration. Acoustic radiation is produced by the flexural circular plate, which is excited by the longitudinal sandwich transducer and transformer. Based on the classic flexural theory of plates, the equivalent lumped parameters for a plate in axially symmetric flexural vibration with free boundary conditions are obtained. The radiation impedance of the plate is derived and the relationship between the radiation impedance and the frequency is analyzed. The equivalent circuits for the plate in flexural vibration and the composite transducer are given. The vibrational modes and the harmonic response of the composite piezoelectric transducer are simulated by the numerical method. Based on the theoretical and numerical analysis, two composite piezoelectric ultrasonic transducers are designed and manufactured, their admittance-frequency curves are measured, and the resonance frequency is obtained. The flexural vibrational displacement distribution of the transducer is measured with a laser scanning vibrometer. It is shown that the theoretical results are in good agreement with the measured resonance frequency and the displacement distribution. © 2012 IEEE
Using input command pre-shaping to suppress multiple mode vibration
Hyde, James M.; Seering, Warren P.
1990-01-01
Spacecraft, space-borne robotic systems, and manufacturing equipment often utilize lightweight materials and configurations that give rise to vibration problems. Prior research has led to the development of input command pre-shapers that can significantly reduce residual vibration. These shapers exhibit marked insensitivity to errors in natural frequency estimates and can be combined to minimize vibration at more than one frequency. This paper presents a method for the development of multiple mode input shapers which are simpler to implement than previous designs and produce smaller system response delays. The new technique involves the solution of a group of simultaneous non-linear impulse constraint equations. The resulting shapers were tested on a model of MACE, an MIT/NASA experimental flexible structure.
Design for coupled-mode flutter and non-synchronous vibration in turbomachinery
Clark, Stephen Thomas
This research presents the detailed investigation of coupled-mode flutter and non-synchronous vibration in turbomachinery. Coupled-mode flutter and non-synchronous vibration are two aeromechanical challenges in designing turbomachinery that, when present, can cause engine blade failure. Regarding flutter, current industry design practices calculate the aerodynamic loads on a blade due to a single mode. In response to these design standards, a quasi three-dimensional, reduced-order modeling tool was developed for identifying the aeroelastic conditions that cause multi-mode flutter. This tool predicts the onset of coupled-mode flutter reasonable well for four different configurations, though certain parameters were tuned to agree with experimentation. Additionally, the results of this research indicate that mass ratio, frequency separation, and solidity have an effect on critical rotor speed for flutter. Higher mass-ratio blades require larger rotational velocities before they experience coupled-mode flutter. Similarly, increasing the frequency separation between modes and raising the solidity increases the critical rotor speed. Finally, and most importantly, design guidelines were generated for defining when a multi-mode flutter analysis is required in practical turbomachinery design. Previous work has shown that industry computational fluid dynamics can approximately predict non-synchronous vibration (NSV), but no real understanding of frequency lock-in and blade limit-cycle amplitude exists. Therefore, to understand the causes of NSV, two different reduced-order modeling approaches were used. The first approach uses a van der Pol oscillator to model a non-linear fluid instability. The van der Pol model is then coupled to a structural degree of freedom. This coupled system exhibits the two chief properties seen in experimental and computational non-synchronous vibration. Under various conditions, the fluid instability and the natural structural frequency will lock
Component mode synthesis and large deflection vibrations of complex structures. [beams and trusses
Mei, C.
1984-01-01
The accuracy of the NASTRAN modal synthesis analysis was assessed by comparing it with full structure NASTRAN and nine other modal synthesis results using a nine-bay truss. A NASTRAN component mode transient response analysis was also performed on the free-free truss structure. A finite element method was developed for nonlinear vibration of beam structures subjected to harmonic excitation. Longitudinal deformation and inertia are both included in the formula. Tables show the finite element free vibration results with and without considering the effects of longitudinal deformation and inertia as well as the frequency ratios for a simply supported and a clamped beam subjected to a uniform harmonic force.
An Electromagnetic MEMS Energy Harvester Array with Multiple Vibration Modes
Directory of Open Access Journals (Sweden)
Huicong Liu
2015-07-01
Full Text Available This paper reports the design, micromachining and characterization of an array of electromagnetic energy harvesters (EHs with multiple frequency peaks. The authors present the combination of three multi-modal spring-mass structures so as to realize at least nine resonant peaks within a single microelectromechanical systems (MEMS chip. It is assembled with permanent magnet to show an electromagnetic-based energy harvesting capability. This is the first demonstration of multi-frequency MEMS EH existing with more than three resonant peaks within a limited frequency range of 189 to 662 Hz. It provides a more effective approach to harvest energy from the vibration sources of multiple frequency peaks.
Edighoffer, H. H.
1979-01-01
A component mode desynthesis procedure is developed for determining the unknown vibration characteristics of a structural component (i.e., a launch vehicle) given the vibration characteristics of a structural system composed of that component combined with a known one (i.e., a payload). At least one component static test has to be performed. These data are used in conjunction with the system measured frequencies and mode shapes to obtain the vibration characteristics of each component. The flight dynamics of an empty launch vehicle can be determined from measurements made on a vehicle/payload combination in conjunction with a static test on the payload.
Optically active vibrational modes of PPV derivatives on textile substrate
Energy Technology Data Exchange (ETDEWEB)
Silva, M.A.T. da, E-mail: seaquinhos@uel.br [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Dias, I.F.L. [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Santos, E.P. dos; Martins, A.A. [Departamento de Fisica, Universidade Vale do Paraiba-UNIVAP, Avenida Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, Sao Paulo (Brazil); Duarte, J.L.; Laureto, E.; Reis, G.A. dos [Departamento de Fisica, Universidade Estadual de Londrina-UEL, PR 445 Km 380, CP6001, CEP 86051-970 Londrina, Parana (Brazil); Guimaraes, P.S.S.; Cury, L.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, C.P. 702, Belo Horizonte, CEP 30123-970 Minas Gerais (Brazil)
2013-02-15
In this work, MEH-PPV and BDMO-PPV films were deposited by spin-coating on 'dirty' textile substrates of canvas, nylon, canvas with resin, jeans and on glass and the temperature dependence of the optical properties of them was studied by photoluminescence and Raman (300 K) techniques. The temperature dependence of the energy, of the half line width at half height of the purely electronic peak, of the integrated PL intensity and of the Huang-Rhys factor, S=I{sub (01)}/I{sub (00)}, were obtained directly from the PL spectrum. For an analysis of the vibrational modes involved, Raman measurements were performed on substrates with and without polymers deposited and the results compared with those found in the literature. The films of MEH-PPV and BDMO-PPV showed optical properties similar to those films deposited on other substrates such as glass, metals, etc. It was observed an inversion of the first vibrational band in relation to the purely electronic peak with increasing temperature in the films deposited on nylon and canvas. The vibrational modes obtained by Raman were used to compose the simulation of the PL line shape of BDMO-PPV films on canvas and nylon, using a model proposed by Lin [29]. - Highlights: Black-Right-Pointing-Pointer MEH-PPV and BDMO-PPV films were deposited by spin-coating on dirty textile. Black-Right-Pointing-Pointer Their properties were studied by photoluminescence and Raman techniques. Black-Right-Pointing-Pointer We observed inversion of first vibrational band in relation to purely electronic peak. Black-Right-Pointing-Pointer Optically active vibrational modes of PPV derivatives were studied.
Ramya, K. R.; Pavan Kumar, G. V.; Venkatnathan, Arun
2012-05-01
The sI type methane clathrate hydrate lattice is formed during the process of nucleation where methane gas molecules are encapsulated in the form of dodecahedron (512CH4) and tetrakaidecahedron (51262CH4) water cages. The characterization of change in the vibrational modes which occur on the encapsulation of CH4 in these cages plays a key role in understanding the formation of these cages and subsequent growth to form the hydrate lattice. In this present work, we have chosen the density functional theory (DFT) using the dispersion corrected B97-D functional to characterize the Raman frequency vibrational modes of CH4 and surrounding water molecules in these cages. The symmetric and asymmetric C-H stretch in the 512CH4 cage is found to shift to higher frequency due to dispersion interaction of the encapsulated CH4 molecule with the water molecules of the cages. However, the symmetric and asymmetric O-H stretch of water molecules in 512CH4 and 51262CH4 cages are shifted towards lower frequency due to hydrogen bonding, and interactions with the encapsulated CH4 molecules. The CH4 bending modes in the 512CH4 and 51262CH4 cages are blueshifted, though the magnitude of the shifts is lower compared to modes in the high frequency region which suggests bending modes are less affected on encapsulation of CH4. The low frequency librational modes which are collective motion of the water molecules and CH4 in these cages show a broad range of frequencies which suggests that these modes largely contribute to the formation of the hydrate lattice.
Kumar, Nitin; Neogi, Sanghamitra; Kent, Paul; Bandura, Andrei; Kubicki, James; Wesolowski, David; Sofo, Jorge
2008-03-01
We study the vibrational density of states (VDOS) of a thin water layer on the rutile (110) surface. The VDOS is obtained from the velocity-velocity autocorrelation function calculated from trajectories of large scale ab-initio molecular dynamics simulations. The rutile surface induces a shift to lower frequencies of the stretching modes with respect to pure water. The water vapor surface shows a peak at the vibrational frequency of free hydroxyls. Overall, the average stretching mode vibrational frequency increases with decreasing hydrogen bonding density. This density depends strongly on temperature. The water dissociation percentage at the surface can be correlated with the ratio between the weights of the stretching and the bending modes. Our results are in good agreement with inelastic neutron scattering measurements done on wet titania nanoparticles.
Directory of Open Access Journals (Sweden)
Yun Wang
2015-06-01
Full Text Available This article conceptually proposes a new method to tune the resonance frequency of piezoelectric vibration energy harvesters, in which the supporting position of the vibrator can be adjusted for frequency tuning. The corresponding analytical model is established to predict the performances of the harvester based on the principles of energy. First, the equivalent stiffness and mass of the vibrator in bending mode are derived explicitly for the different supporting positions. A simple analysis method is then established for the frequency, output voltage, and output power. Finally, some numerical examples are given to demonstrate the presented method. The results are also compared with those by finite element method and good agreement is observed.
Space structure vibration modes: How many exist? Which ones are important?
Hughes, P. C.
1984-01-01
This report attempts to shed some light on the two issues raised in the title, namely, how many vibration modes does a real structure have, and which of these modes are important? The surprise-free answers to these two questions are, respectively, an infinite number and the first several modes. The author argues that the absurd subspace (all but the first billion modes) is not a strength of continuum modeling, but, in fact, a weakness. Partial differential equations are not real structures, only mathematical models. This note also explains (1) that the PDE model and the finite element model are, in fact, the same model, the latter being a numerical method for dealing with the former, (2) that modes may be selected on dynamical grounds other than frequency alone, and (3) that long slender rods are useful as primitive cases but dangerous to extrapolate from.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
Energy Technology Data Exchange (ETDEWEB)
Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu [JILA, University of Colorado at Boulder, 440 UCB, Boulder, Colorado 80309-0440 (United States); Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Baraban, Joshua H. [Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215 (United States); Matthews, Devin A. [Institute for Computational Engineering and Science, University of Texas at Austin, 201 E. 24th St., Austin, Texas 78712 (United States); Stanton, John F. [Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A5300, Austin, Texas 78712-0165 (United States)
2015-06-21
We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Vortex-induced vibration of a tension leg platform tendon: multi-mode limit cycle oscillations
Datta, Nabanita
2017-11-01
This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, analyzed using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation (lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.
Vortex-induced vibration of a tension leg platform tendon: Multi-mode limit cycle oscillations
Datta, Nabanita
2017-12-01
This paper studies the application of mathematical models to analyze the vortex-induced vibrations of the tendons of a given TLP along the Indian coastline, by using an analytical approach, analyzed using MATLAB. The tendon is subjected to a steady current load, which causes vortex-shedding downstream, leading to cross-flow vibrations. The magnitude of the excitation (lift and drag coefficients) depends on the vortex-shedding frequency. The resulting vibration is studied for possible resonant behavior. The excitation force is quantified empirically, the added mass by potential flow hydrodynamics, and the vibration by normal mode summation method. Non-linear viscous damping of the water is considered. The non-linear oscillations are studied by the phase-plane method, investigating the limit-cycle oscillations. The stable/unstable regions of the dynamic behavior are demarcated. The modal contribution to the total deflection is studied to establish the possibility of resonance of one of the wet modes with the vortex-shedding frequency.
Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses
Lerner, Edan; Bouchbinder, Eran
2017-08-01
Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .
Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator
Directory of Open Access Journals (Sweden)
Xinhua Mao
2014-01-01
Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.
Mitchell, Deborah G; Johnson, Alan M; Johnson, Jeremy A; Judd, Kortney A; Kim, Kilyoung; Mayhew, Maurine; Powell, Amber L; Sevy, Eric T
2008-02-14
Relaxation of highly vibrationally excited 1,2-, 1,3-, and 1,4-difluorobenzne (DFB) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot DFB (E' approximately 41,000 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Collisions between hot DFB isomers and CO2 result in large amounts of rotational and translational energy transfer from the hot donors to the bath. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these states. The amount of translational energy gained by CO2 during collisions was determined using Doppler spectroscopy to measure the width of the absorption line for each transition. The energy transfer probability distribution function, P(E,E'), for the large DeltaE tail was obtained by resorting the state-indexed energy transfer probabilities as a function of DeltaE. P(E,E') was fit to a biexponential function to determine the average energy transferred in a single DFB/CO2 collision and fit parameters describing the shape of P(E,E'). P(E,E') fit parameters for DFB/CO2 and the previously studied C6F6/CO2 system are compared to various donor molecular properties. A model based on Fermi's Golden Rule indicates that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes. A fractional mode population analysis is performed, which suggests that for energy transfer from DFB and C6F6 to CO2 the two key donor vibrational modes from which energy leaks out of the donor into the bath are nu11 and nu16. These "gateway" modes are some of the same modes determined to be the most efficient energy transfer modes by quantum scattering studies of benzene/He collisions.
Eriksson, T J R; Ramadas, S N; Dixon, S M
2016-02-01
A unimorph flexural transducer design is proposed and tested with regard to mode shapes and frequencies. The transducers consist of a passive metal cap structure, and a thin piezoelectric disc, rigidly bonded to the inside. Extensive finite element (FE) modelling, and experimental 2D, time-resolved displacement measurements were done to characterise the transducers flexural properties, and to compare them to the analytical solutions of thin vibrating plates. Emphasis was put on characterising the passive layer of the unimorph structure, before bonding the piezoelectric element, to understand how the active element affects the behaviour of the flexing plate. A high power Nd:YAG laser was used to actuate the metal plate (non-contact), and the frequency content of the resulting displacement signal was analysed to identify the flexural modes. The non-axisymmetric modes, which are conventionally disregarded because of their unfavourable acoustic properties, were also taken into account. There was excellent agreement between the experimental results and the FE simulation data. There was good agreement with the analytical edge clamped plate model, but with some notable deviations, which have not previously been identified or commented upon. Specifically, the second axisymmetric mode is split into three separate modes, which is not explained by the traditional theory of vibrating plates. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Identification of surface species by vibrational normal mode analysis. A DFT study
Zhao, Zhi-Jian; Genest, Alexander; Rösch, Notker
2017-10-01
Infrared spectroscopy is an important experimental tool for identifying molecular species adsorbed on a metal surface that can be used in situ. Often vibrational modes in such IR spectra of surface species are assigned and identified by comparison with vibrational spectra of related (molecular) compounds of known structure, e. g., an organometallic cluster analogue. To check the validity of this strategy, we carried out a computational study where we compared the normal modes of three C2Hx species (x = 3, 4) in two types of systems, as adsorbates on the Pt(111) surface and as ligands in an organometallic cluster compound. The results of our DFT calculations reproduce the experimental observed frequencies with deviations of at most 50 cm-1. However, the frequencies of the C2Hx species in both types of systems have to be interpreted with due caution if the coordination mode is unknown. The comparative identification strategy works satisfactorily when the coordination mode of the molecular species (ethylidyne) is similar on the surface and in the metal cluster. However, large shifts are encountered when the molecular species (vinyl) exhibits different coordination modes on both types of substrates.
Low-frequency vibration measurement by a dual-frequency DBR fiber laser
Zhang, Bing; Cheng, Linghao; Liang, Yizhi; Jin, Long; Guo, Tuan; Guan, Bai-Ou
2017-09-01
A dual-frequency distributed Bragg reflector (DBR) fiber laser based sensor is demonstrated for low-frequency vibration measurement through the Doppler effect. The response of the proposed sensor is quite linear and is much higher than that of a conventional accelerometer. The proposed sensor can work down to 1 Hz with high sensitivity. Therefore, the proposed sensor is very efficient in low-frequency vibration measurement.
Vibrational frequencies in Car-Parrinello molecular dynamics.
Ong, Sheau Wei; Tok, Eng Soon; Kang, Hway Chuan
2010-12-07
Car-Parrinello molecular dynamics (CPMD) are widely used to investigate the dynamical properties of molecular systems. An important issue in such applications is the dependence of dynamical quantities such as molecular vibrational frequencies upon the fictitious orbital mass μ. Although it is known that the correct Born-Oppenheimer dynamics are recovered at zero μ, it is not clear how these dynamical quantities are to be rigorously extracted from CPMD calculations. Our work addresses this issue for vibrational frequencies. We show that when the system is sufficiently close to the ground state the calculated ionic vibrational frequencies are ω(M) = ω(0M)[1 -C(μ/M)] for small μ/M, where ω(0M) is the Born-Oppenheimer ionic frequency, M the ionic mass, and C a constant that depends upon the ion-orbital coupling force constants. Our analysis also provides a quantitative understanding of the orbital oscillation amplitudes, leading to a relationship between the adiabaticity of a system and the ion-orbital coupling constants. In particular, we show that there is a significant systematic dependence of calculated vibrational frequencies upon how close the CPMD trajectory is to the Born-Oppenheimer surface. We verify our analytical results with numerical simulations for N(2), Sn(2), and H/Si(100)-(2×1).
Effect of vibration frequency on biopsy needle insertion force.
Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei
2017-05-01
Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Study of surface modes on a vibrating electrowetting liquid lens
Strauch, Matthias; Shao, Yifeng; Bociort, Florian; Urbach, H. Paul
2017-10-01
The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance frequencies. The effects of those surface modes on a laser beam are simulated using Fresnel propagation, and the model is verified experimentally.
Gearbox Vibration Signal Amplitude and Frequency Modulation
Directory of Open Access Journals (Sweden)
Fakher Chaari
2012-01-01
Full Text Available Gearboxes usually run under fluctuating load conditions during service, however most of papers available in the literature describe models of gearboxes under stationary load conditions. Main task of published papers is fault modeling for their detection. Considering real situation from industry, the assumption of stationarity of load conditions cannot be longer kept. Vibration signals issued from monitoring in maintenance operations differ from mentioned models (due to load non-stationarity and may be difficult to analyze which lead to erroneous diagnosis of the system. The objective of this paper is to study the influence of time varying load conditions on a gearbox dynamic behavior. To investigate this, a simple spur gear system without defects is modeled. It is subjected to a time varying load. The speed-torque characteristic of the driving motor is considered. The load variation induces speed variation, which causes a variation in the gearmesh stiffness period. Computer simulation shows deep amplitude modulations with sidebands that don't differ from those obtained when there is a defective tooth. In order to put in evidence the time varying load effects, Short Time Fourier Transform and then Smoothed Wigner-Ville distribution are used. Results show that the last one is well suited for the studied case.
Comparison of different ultrasonic vibration modes for post removal.
Braga, Neilor Mateus Antunes; Silva, Juliana Monteiro da; Carvalho-Júnior, Jacy Ribeiro de; Ferreira, Raquel Conceição; Saquy, Paulo César; Brito-Júnior, Manoel
2012-01-01
This in vitro study compared different ultrasonic vibration modes for intraradicular cast post removal. The crowns of 24 maxillary canines were removed, the roots were embedded in acrylic resin blocks, and the canals were treated endodontically. The post holes were prepared and root canal impressions were taken with self-cured resin acrylic. After casting, the posts were cemented with zinc phosphate cement. The samples were randomly distributed into 3 groups (n=8): G1: no ultrasonic vibration (control); G2: tip of the ultrasonic device positioned perpendicularly to core surface and close to the incisal edge; and G3: tip of the ultrasonic device positioned perpendicularly to core surface at cervical region, close to the line of cementation. An Enac OE-5 ultrasound unit with an ST-09 tip was used. All samples were submitted to the tensile test using an universal testing machine at a crosshead speed of 1 mm/min. Data were subjected to one-way ANOVA and Tukey's post-hoc tests (α=0.05). Mean values of the load to dislodge the posts (MPa) were: G1 = 4.6 (± 1.4) A; G2 = 2.8 (± 0.9) B, and G3= 0.9 (± 0.3) C. Therefore, the ultrasonic vibration applied with the tip of device close to the core's cervical area showed higher ability to reduce the retention of cast post to root canal.
Keçeli, Murat; Hirata, So; Yagi, Kiyoshi
2010-07-21
The frequencies of the infrared- and/or Raman-active (k=0) vibrations of polyethylene and polyacetylene are computed by taking account of the anharmonicity in the potential energy surfaces (PESs) and the resulting phonon-phonon couplings explicitly. The electronic part of the calculations is based on Gaussian-basis-set crystalline orbital theory at the Hartree-Fock and second-order Møller-Plesset (MP2) perturbation levels, providing one-, two-, and/or three-dimensional slices of the PES (namely, using the so-called n-mode coupling approximation with n=3), which are in turn expanded in the fourth-order Taylor series with respect to the normal coordinates. The vibrational part uses the vibrational self-consistent field, vibrational MP2, and vibrational truncated configuration-interaction (VCI) methods within the Gamma approximation, which amounts to including only k=0 phonons. It is shown that accounting for both electron correlation and anharmonicity is essential in achieving good agreement (the mean and maximum absolute deviations less than 50 and 90 cm(-1), respectively, for polyethylene and polyacetylene) between computed and observed frequencies. The corresponding values for the calculations including only one of such effects are in excess of 120 and 300 cm(-1), respectively. The VCI calculations also reproduce semiquantitatively the frequency separation and intensity ratio of the Fermi doublet involving the nu(2)(0) fundamental and nu(8)(pi) first overtone in polyethylene.
Analysis of vibration frequency in transversely-isotropic semilinear ...
African Journals Online (AJOL)
Analysis of vibration frequency in transversely-isotropic semilinear elastic thin plate. AP Akinola, BA Olokuntoye, OO Fadodun, AS Botokinni. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE ...
Analysis of vibration frequency in transversely-isototropic semilinear ...
African Journals Online (AJOL)
Analysis of vibration frequency in transversely-isototropic semilinear elastic thin plate. A.P. Akinola, B.A. Olokuntoye, O.O. Fadodun, A.S. Borokinni. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online.
Vibrational echo spectral observables and frequency fluctuations of ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. Vibrational echo spectral observables and frequency fluctuations of hydration shell water around a fluoride ion from first principles simulations. DEEPAK OJHA AMALENDU CHANDRA. REGULAR ARTICLE Volume 129 Issue 7 July 2017 pp 1069-1080 ...
Vibrational echo spectral observables and frequency fluctuations of ...
Indian Academy of Sciences (India)
Deepak Ojha
Vibrational echo; frequency fluctuations; hydration shell water; fluoride ion; ab initio molecular dynamics. 1. Introduction. Ions dissolved in liquid water play important roles in several chemical and biological processes.1,2 Simi- larly, water molecules in aqueous ionic solutions exhibit different dynamics in comparison to pure ...
Vibration Control of Flexible Mode for a Beam-Type Substrate Transport Robot
Directory of Open Access Journals (Sweden)
Cheol Hoon Park
2013-07-01
Full Text Available Beam-type substrate transport robots are widely used to handle substrates, especially in the solar cell manufacturing process. To reduce the takt time and increase productivity, accurate position control becomes increasingly important as the size of the substrate increases. However, the vibration caused by the flexible forks in beam-type robots interferes with accurate positioning, which results in long takt times in the manufacturing process. To minimize the vibration and transport substrates on the fork as fast as possible, the trajectories should be prevented from exciting the flexible modes of the forks. For this purpose, a fifth-order polynomial trajectory generator and input shaping were incorporated into the controller of the beam-type robot in this study. The flexible modes of the forks were identified by measuring the frequency response function (FRF, and the input shaping was designed so as not to excite the flexible modes. The controller was implemented by using MATLAB/xPC Target. In this paper, the design procedure of input shaping and its effectiveness for vibration attenuation in both “no load” and “load” cases is presented.
Multiple mode analysis of the self-excited vibrations of rotary drilling systems
Germay, Christophe; Denoël, Vincent; Detournay, Emmanuel
2009-08-01
This paper extends the analysis of the self-excitated vibrations of a drilling structure presented in an earlier paper [T. Richard, C. Germay, E. Detournay, A simplified model to explore the root cause of stick-slip vibrations in drilling systems with drag bits, Journal of Sound and Vibration 305 (3) (2007) 432-456] by basing the formulation of the model on a continuum representation of the drillstring rather than on a characterization of the drilling structure by a 2 degree of freedom system. The particular boundary conditions at the bit-rock interface, which according to this model are responsible for the self-excited vibrations, account for both cutting and frictional contact processes. The cutting process combined with the quasi-helical motion of the bit leads to a regenerative effect that introduces a coupling between the axial and torsional modes of vibrations and a state-dependent delay in the governing equations, while the frictional contact process is associated with discontinuities in the boundary conditions when the bit sticks in its axial and angular motion. The dynamic response of the drilling structure is computed using the finite element method. While the general tendencies of the system response predicted by the discrete model are confirmed by this computational model (for example that the occurrence of stick-slip vibrations as well as the risk of bit bouncing are enhanced with an increase of the weight-on-bit or a decrease of the rotational speed), new features in the self-excited response of the drillstring can be detected. In particular, stick-slip vibrations are predicted to occur at natural frequencies of the drillstring different from the fundamental one (as sometimes observed in field operations), depending on the operating parameters.
Energy Technology Data Exchange (ETDEWEB)
Fonda, H.N.; Oertling, W.A.; Salehi, A.; Chang, C.K.; Babcock, G.T. (Michigan State Univ., East Lansing (United States))
1990-12-19
The resonance Raman (RR) and infrared (IR) spectra of the Zn, Cu, and Ni complexes of trans-octaethylchlorin (OEC) reveal significant differences in the vibrational-mode properties of metallochlorins and metalloporphyrins. Modes with a contribution from the C{sub a}C{sub m} stretching coordinate are distinguished by their sensitivity to metal substitution and to selective d{sub 2} and d{sub 4} methine deuteration. Comparison of the resonance Raman spectrum of CuOEC with that of CuECI (ECI = etiochlorin I) identifies those modes with a contribution from C{sub b}C{sub b} and C{sub b}C{sub s} stretching and C{sub b}C{sub s} bending coordinates. The results obtained show that there is substantial mixing of C{sub a}C{sub m} and C{sub b}C{sub b} stretching character in the high-frequency modes of MOEC. The suggestion that the symmetry reduction that occurs in metallochlorins relative to metalloporphyrins produces vibrational-mode localization to specific hemispheres or quadrants of the macrocycle has been tested and confirmed by specific d{sub 2} deuteration at the methine carbons. Resonance Raman spectra of CuOEP-d{sub 2} (OEP = octaethylporphyrin) and CuOEP-d{sub 4} establish that, for a delocalized mode, methine d{sub 2} deuteration can be expected to produce half the d{sub 4} shift. For CuOEC, selective deuteration at the {alpha}{beta} and {gamma},{delta} methine positions causes different patterns of frequency shifts that indicate the extent of mode localization.
A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones
Directory of Open Access Journals (Sweden)
Yongmeng Zhang
2015-01-01
Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.
Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
Directory of Open Access Journals (Sweden)
A. Fereidoon
2012-01-01
Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.
Directory of Open Access Journals (Sweden)
Xingmou Liu
2016-01-01
Full Text Available This paper presents a time–frequency analysis of the vibration of transformer under direct current (DC bias through Hilbert–Huang transform (HHT. First, the theory of DC bias for the transformer was analyzed. Next, the empirical mode decomposition (EMD process, which is the key in HHT, was introduced. The results of EMD, namely, intrinsic mode functions (IMFs, were calculated and summed by Hilbert transform(HT to obtain time-dependent series in a 2D time–frequency domain. Lastly, a test system of vibration measurement for the transformer was set up. Three direction (x, y, and z axes components of core vibration were measured. Decomposition of EMD and HHT spectra showed that vibration strength increased, and odd harmonics were produced with DC bias. Results indicated that HHT is a viable signal processing tool for transformer health monitoring.
Application of empirical mode decomposition method for characterization of random vibration signals
Directory of Open Access Journals (Sweden)
Setyamartana Parman
2016-07-01
Full Text Available Characterization of finite measured signals is a great of importance in dynamical modeling and system identification. This paper addresses an approach for characterization of measured random vibration signals where the approach rests on a method called empirical mode decomposition (EMD. The applicability of proposed approach is tested in one numerical and experimental data from a structural system, namely spar platform. The results are three main signal components, comprising: noise embedded in the measured signal as the first component, first intrinsic mode function (IMF called as the wave frequency response (WFR as the second component and second IMF called as the low frequency response (LFR as the third component while the residue is the trend. Band-pass filter (BPF method is taken as benchmark for the results obtained from EMD method.
National Research Council Canada - National Science Library
Gragson, D
1997-01-01
We have employed vibrational sum frequency generation (VSFG) to investigate the structure of water at neat oil/water and air/water interfaces through the OH stretching modes of the interfacial water molecules...
Energy Technology Data Exchange (ETDEWEB)
Zhang, Feng; Tominaga, Keisuke, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Molecular Photoscience Research Center, Kobe University, Nada, Kobe 657-0013 (Japan); Hayashi, Michitoshi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp; Wang, Houng-Wei [Center for Condensed Matter Sciences, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan (China); Kambara, Ohki; Sasaki, Tetsuo [Research Institute of Electronics, Shizuoka University, 3-5-1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Nishizawa, Jun-ichi, E-mail: atmyh@ntu.edu.tw, E-mail: tominaga@kobe-u.ca.jp, E-mail: junichi.nishizawa@hanken.jp [Jun-ichi Nishizawa Memorial Research Center, Tohoku University, 519-1176 Aoba, Aramaki, Aoba-ku, Sendai 980-0845 (Japan)
2014-05-07
The phonon modes of molecular crystals in the terahertz frequency region often feature delicately coupled inter- and intra-molecular vibrations. Recent advances in density functional theory such as DFT-D{sup *} have enabled accurate frequency calculation. However, the nature of normal modes has not been quantitatively discussed against experimental criteria such as isotope shift (IS) and correlation field splitting (CFS). Here, we report an analytical mode-decoupling method that allows for the decomposition of a normal mode of interest into intermolecular translation, libration, and intramolecular vibrational motions. We show an application of this method using the crystalline anthracene system as an example. The relationship between the experimentally obtained IS and the IS obtained by PBE-D{sup *} simulation indicates that two distinctive regions exist. Region I is associated with a pure intermolecular translation, whereas region II features coupled intramolecular vibrations that are further coupled by a weak intermolecular translation. We find that the PBE-D{sup *} data show excellent agreement with the experimental data in terms of IS and CFS in region II; however, PBE-D{sup *} produces significant deviations in IS in region I where strong coupling between inter- and intra-molecular vibrations contributes to normal modes. The result of this analysis is expected to facilitate future improvement of DFT-D{sup *}.
Vibrational relaxation pathways of AI and AII modes in N-methylacetamide clusters
Piatkowski, L.; Bakker, H.J.
2010-01-01
We studied the pathways of vibrational energy relaxation of the amide I (~1660 cm-1) and amide II (~1560 cm-1) vibrational modes of N-methylacetamide (NMA) in CCl4 solution using two-color femtosecond vibrational spectroscopy. We measured the transient spectral dynamics upon excitation of each of
Approximate natural vibration analysis of rectangular plates with openings using assumed mode method
Directory of Open Access Journals (Sweden)
Dae Seung Cho
2013-09-01
Full Text Available Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM as well as those available in the relevant literature, and very good agreement is achieved.
Algorithm for the calculation of vibration inherent frequencies bending from two-shafts transmission
Directory of Open Access Journals (Sweden)
Grigore Jan-Cristian
2017-01-01
Full Text Available The operation of the speed shaft transmissions at or near the natural frequency of the pulses at the resonance phenomenon leads to bending, when the amplitude of the oscillations increases sharply, causing deterioration or complete destruction thereof. To avoid system resonance operation is necessary to know the most accurate values its pulsations and taking appropriate constructive measures to avoid overlapping with disturbing frequency harmonics (operating speeds.This paper presents an algorithm for calculating the pulsation and vibration modes in bending, and based on numerical simulations performed on a real two-shafts transmission and will draw conclusions drawn diagrams.
Baggott, J. E.; Law, D. W.; Lightfoot, P. D.; Mills, I. M.
1986-11-01
In part I of this study [Baggott, Clase, and Mills, Spectrochim. Acta Part A 42, 319 (1986)] we presented FTIR spectra of gas phase cyclobutene and modeled the v=1-3 stretching states of both olefinic and methylenic C-H bonds in terms of a local mode model. In this paper we present some improvements to our original model and make use of recently derived ``x,K relations'' to find the equivalent normal mode descriptions. The use of both the local mode and normal mode approaches to modeling the vibrational structure is described in some detail. We present evidence for Fermi resonance interactions between the methylenic C-H stretch overtones and ring C-C stretch vibrations, revealed in laser photoacoustic spectra in the v=4-6 region. An approximate model vibrational Hamiltonian is proposed to explain the observed structure and is used to calculate the dynamics of the C-H stretch local mode decay resulting from interaction with lower frequency ring modes. The implications of our experimental and theoretical studies for mode-selective photochemistry are discussed briefly.
Phononic frequency comb via three-mode parametric resonance
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2018-01-01
This paper is motivated by the recent demonstration of a phononic frequency comb. While previous experiments have shown the existence of a three-wave mixing pathway in a system of two-coupled phonon modes, this work demonstrates a similar pathway in a system of three-coupled phonon modes. This paper also presents a number of interesting experimental facts concomitant to the three-mode parametric resonance based frequency comb observed in a specific micromechanical device. The experimental validation of frequency combs via three-mode parametric resonance along with the previous demonstration of two-mode frequency combs points to the ultimate possibility of multimode frequency combs.
Hsieh, Chih-Chun; Wang, Peng-Shuen; Wang, Jia-Siang; Wu, Weite
2014-01-01
Simultaneous vibration welding of 304 stainless steel was carried out with an eccentric circulating vibrator and a magnetic telescopic vibrator at subresonant (362 Hz and 59.3 Hz) and resonant (376 Hz and 60.9 Hz) frequencies. The experimental results indicate that the temperature gradient can be increased, accelerating nucleation and causing grain refinement during this process. During simultaneous vibration welding primary δ -ferrite can be refined and the morphologies of retained δ-ferrite become discontinuous so that δ-ferrite contents decrease. The smallest content of δ-ferrite (5.5%) occurred using the eccentric circulating vibrator. The diffraction intensities decreased and the FWHM widened with both vibration and no vibration. A residual stress can obviously be increased, producing an excellent effect on stress relief at a resonant frequency. The stress relief effect with an eccentric circulating vibrator was better than that obtained using a magnetic telescopic vibrator.
Directory of Open Access Journals (Sweden)
Miguel Cruz-Irisson
2013-04-01
Full Text Available The vibrational dispersion relations of porous germanium (pGe and germanium nanowires (GeNWs were calculated using the ab initio density functional perturbation theory with a generalized gradient approximation with norm-conserving pseudopotentials. Both pores and nanowires were modeled using the supercell technique. All of the surface dangling bonds were saturated with hydrogen atoms. To address the difference in the confinement between the pores and the nanowires, we calculated the vibrational density of states of the two materials. The results indicate that there is a slight shift in the highest optical mode of the Ge-Ge vibration interval in all of the nanostructures due to the phonon confinement effects. The GeNWs exhibit a reduced phonon confinement compared with the porous Ge due to the mixed Ge-dihydride vibrational modes around the maximum bulk Ge optical mode of approximately 300 cm−1; however, the general effects of such confinements could still be noticed, such as the shift to lower frequencies of the highest optical mode belonging to the Ge vibrations.
Internal resonance and low frequency vibration energy harvesting
Yang, Wei; Towfighian, Shahrzad
2017-09-01
A nonlinear vibration energy harvester with internal resonance is presented. The proposed harvester consists of two cantilevers, each with a permanent magnet on its tip. One cantilever has a piezoelectric layer at its base. When magnetic force is applied this two degrees-of-freedom nonlinear vibration system shows the internal resonance phenomenon that broadens the frequency bandwidth compared to a linear system. Three coupled partial differential equations are obtained to predict the dynamic behavior of the nonlinear energy harvester. The perturbation method of multiple scales is used to solve equations. Results from experiments done at different vibration levels with varying distances between the magnets validate the mathematical model. Experiments and simulations show the design outperforms the linear system by doubling the frequency bandwidth. Output voltage for frequency response is studied for different system parameters. The optimal load resistance is obtained for the maximum power in the internal resonance case. The results demonstrate that a design combining internal resonance and magnetic nonlinearity improves the efficiency of energy harvesting.
Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal
Sizov, Igor; Rahman, Masudur; Gelmont, Boris; Norton, Michael L.; Globus, Tatiana
2013-11-01
Sub-terahertz (sub-THz) vibrational spectroscopy is a new spectroscopic branch for characterizing biological macromolecules. In this work, highly resolved sub-THz resonance spectroscopy is used for characterizing engineered molecular structures, an artificially designed DNA monocrystal, built from a short DNA sequence. Using a recently developed frequency domain spectroscopic instrument operating at room temperature with high spectral and spatial resolution, we demonstrated very intense and specific spectral lines from a DNA crystal in general agreement with a computational molecular dynamics (MD) simulation of a short double stranded DNA fragment. The spectroscopic signature measured in the frequency range between 310 and 490 GHz is rich in well resolved and reproducible spectral features thus demonstrating the capability of THz resonance spectroscopy to be used for characterizing custom macromolecules and structures designed and implemented via nanotechnology for a wide variety of application domains. Analysis of MD simulation indicates that intense and narrow vibrational modes with atomic movements perpendicular (transverse) and parallel (longitudinal) to the long DNA axis coexist in dsDNA, with much higher contribution from longitudinal vibrations.
Directory of Open Access Journals (Sweden)
Zhenlong Xu
2017-11-01
Full Text Available In this paper, a novel impact-based frequency up-converting hybrid energy harvester (FUCHEH was proposed. It consisted of a piezoelectric cantilever beam and a driving beam with a magnetic tip mass. A solenoid coil was attached at the end of the piezoelectric beam. This innovative configuration amplified the relative motion velocity between magnet and coil, resulting in an enhancement of the induced electromotive force in the coil. An electromechanical coupling model was developed and a numerical simulation was performed to study the principle of impact-based frequency up-converting. A prototype was fabricated and experimentally tested. The time-domain and frequency-domain analyses were performed. Fast Fourier transform (FFT analysis verified that fundamental frequencies and coupled vibration frequency contributes most of the output voltage. The measured maximum output power was 769.13 µW at a frequency of 13 Hz and an acceleration amplitude of 1 m/s2, which was 3249.4%- and 100.6%-times larger than that of the frequency up-converting piezoelectric energy harvesters (FUCPEH and frequency up-converting electromagnetic energy harvester (FUCEMEH, respectively. The root mean square (RMS voltage of the piezoelectric energy harvester subsystem (0.919 V was more than 16 times of that of the stand-alone PEH (0.055 V. This paper provided a new scheme to improve generating performance of the vibration energy harvester with high resonant frequency working in the low-frequency vibration environment.
A disk-pivot structure micro piezoelectric actuator using vibration mode B11.
Chu, Xiangcheng; Ma, Long; Li, Longtu
2006-12-22
Micro piezoelectric actuator using vibration mode B(11) (B(mn), where m is the number of nodal circles, n is the nodal diameters) is designed. Different from conventional wobble-type ultrasonic motor using piezoelectric rod or cylinder, piezoelectric disc is used to excite wobble modes and metal cylinder stator is used to amplify the transverse displacement, metal rod rotor is actuated to rotate. The outer diameter of the actuator is 14mm. There are features such as low drive voltage, micromation, and convenient control of wobble state by modifying the structure of stator, etc. Finite element analysis (FEA) of the stator has been made. It is found that the resonant frequency of vibration mode B(11) is 49.03kHz, which is measured at 45.7kHz by the laser vibrometer and impedance analyzer. The rotation speed has been measured, which could be as high as 10,071rpm under an alternating current 100V. Such piezoelectric actuator can be optimized and adjusted to fit practical conditions. It can be applied in the fields of precise instrument, bioengineering and other micro actuator system.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Nian; Yang, Jin, E-mail: yangjin@cqu.edu.cn; Yu, Qiangmo; Zhao, Jiangxin; Liu, Jun; Wen, Yumei; Li, Ping [Department of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)
2016-01-15
This work has demonstrated a novel piezoelectric energy harvester without a complex structure and appended component that is capable of scavenging vibration energy from arbitrary directions with multiple resonant frequencies. In this harvester, a spiral-shaped elastic thin beam instead of a traditional thin cantilever beam was adopted to absorb external vibration with arbitrary direction in three-dimensional (3D) spaces owing to its ability to bend flexibly and stretch along arbitrary direction. Furthermore, multiple modes in the elastic thin beam contribute to a possibility to widen the working bandwidth with multiple resonant frequencies. The experimental results show that the harvester was capable of scavenging the vibration energy in 3D arbitrary directions; they also exhibited triple power peaks at about 16 Hz, 21 Hz, and 28 Hz with the powers of 330 μW, 313 μW, and 6 μW, respectively. In addition, human walking and water wave energies were successfully converted into electricity, proving that our harvester was practical to scavenge the time-variant or multi-directional vibration energies in our daily life.
Complex modes of vibration due to small-scale damping in a guitar topplate
Directory of Open Access Journals (Sweden)
J. A. Torres
2010-04-01
Full Text Available Modal analysis is one of the preeminent methods used by scientists and engineers to study vibrating structures. The frequency responsefunctions obtained through this method, are, in general, complex-valued. There is, however, no agreed-upon interpretation given to thereal and imaginary parts of these functions, even though it is acknowledged that their relative magnitude for different frequencies is relatedto the behaviour of the corresponding modes. A simple model is deduced to describe the shape of the spectrum associated with afinite-length time-signal. There is very good agreement between results obtained using this model and numerical results obtained for,in this case, the vibration of a guitar top-plate using finite element methods. One interpretation of the relative magnitudes of the real and imaginary parts of the frequency response functions is advanced. It is found that stationary-wave behaviour is associated with the dominance of the real or imaginary part; traveling-wave behaviour, on the other hand, occurs when the real and imaginary parts are of the same order of magnitude, as long as the scale of damping is large enough and resonance peaks in the spectrum are close enough.
Nature of the Frequency Shift of Hydrogen Valence Vibrations
Zhyganiuk, I V
2015-01-01
The physical nature of a frequency shift of hydrogen valence vibrations in a water molecule due to its interaction with neighbor molecules has been studied. Electrostatic forces connected with the multipole moments of molecules are supposed to give a dominating contribution to the intermolecular interaction. The frequency shift was calculated in the case where two neighbor molecules form a dimer. The obtained result is in qualitative agreement with the frequency shifts observed for water vapor, hexagonal ice, and liquid water, as well as for aqueous solutions of alcohols. This fact testifies to the electrostatic nature of H-bonds used to describe both the specific features of the intermolecular interaction in water and the macroscopic properties of the latter.
Time-frequency vibration analysis for the detection of motor damages caused by bearing currents
Prudhom, Aurelien; Antonino-Daviu, Jose; Razik, Hubert; Climente-Alarcon, Vicente
2017-02-01
Motor failure due to bearing currents is an issue that has drawn an increasing industrial interest over recent years. Bearing currents usually appear in motors operated by variable frequency drives (VFD); these drives may lead to common voltage modes which cause currents induced in the motor shaft that are discharged through the bearings. The presence of these currents may lead to the motor bearing failure only few months after system startup. Vibration monitoring is one of the most common ways for detecting bearing damages caused by circulating currents; the evaluation of the amplitudes of well-known characteristic components in the vibration Fourier spectrum that are associated with race, ball or cage defects enables to evaluate the bearing condition and, hence, to identify an eventual damage due to bearing currents. However, the inherent constraints of the Fourier transform may complicate the detection of the progressive bearing degradation; for instance, in some cases, other frequency components may mask or be confused with bearing defect-related while, in other cases, the analysis may not be suitable due to the eventual non-stationary nature of the captured vibration signals. Moreover, the fact that this analysis implies to lose the time-dimension limits the amount of information obtained from this technique. This work proposes the use of time-frequency (T-F) transforms to analyse vibration data in motors affected by bearing currents. The experimental results obtained in real machines show that the vibration analysis via T-F tools may provide significant advantages for the detection of bearing current damages; among other, these techniques enable to visualise the progressive degradation of the bearing while providing an effective discrimination versus other components that are not related with the fault. Moreover, their application is valid regardless of the operation regime of the machine. Both factors confirm the robustness and reliability of these tools
Energy Technology Data Exchange (ETDEWEB)
Tarana, Michal [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440 (United States); Houfek, Karel; Horacek, Jiri [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, Prague (Czech Republic); Fabrikant, Ilya I. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)
2011-11-15
We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions with the CF{sub 3}Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl symmetric stretch coordinate and the CF{sub 3} symmetric deformation (umbrella) coordinate. The complex potential energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with experimental data.
High force vibration testing with wide frequency range
Romero, Edward F.; Jepsen, Richard A.; Gregory, Danny Lynn
2013-04-02
A shaker assembly for vibration testing includes first and second shakers, where the first shaker includes a piezo-electric material for generating vibration. A support structure permits a test object to be supported for vibration of the test object by both shakers. An input permits an external vibration controller to control vibration of the shakers.
Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime
Cheng, Tin Kei; Lau, Denvid
2014-04-01
As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.
Review of sensors for low frequency seismic vibration measurement
Collette, C; Janssens, S; Artoos, K; Guinchard, M; Hauviller, C
2011-01-01
The objective of this report is to review the main different types of sensors used to measure seismic vibrations at low frequencies. After some basic background preliminaries, the main different types of relative measurements are first reviewed. Then, the following inertial sensors are treated: geophones, accelerometers and broadband seismometers. For each of these sensors, the basic working principle is explained, along with the main performances limitations. Each section ends with a tentative comparison of some commercial products, far from being exhaustive, but hopefully representative of the average characteristics of each family of sensors. The report finishes with a brief discussion on the modelling and measurement of the sensor noise
Disponibilite, modes et frequence de consommation des legumes ...
African Journals Online (AJOL)
Disponibilite, modes et frequence de consommation des legumes traditionnels Africains dans quatre localites du burkina faso a diverses activites de maraichage : Ouagadougou, Koubri, Loumbila, Kongoussi.
Vibrational modes of the Cu(100)-c(2x2)-Pd surface
DEFF Research Database (Denmark)
Stoltze, Per; Hannon, J.B.; Ibach, H.
1996-01-01
The vibrational modes of the surface have been measured using electron-energy loss spectroscopy. The measured mode energies are compared to dynamical models with parameters taken from effective medium theory. Strong Pd-Cu interplanar bonding gives rise to nearly degenerate Pd and Cu vibrations (95...... cm(-1)) at the (X) over bar point, despite the large mass difference of the ions. Upon low-temperature annealing of the surface, overlayer islands of pure Cu coalesce and order. These overlayer islands are characterized by a high-energy vibrational mode near 128 cm(-1) which grows in intensity upon...
Vibrational frequencies of anti-diabetic drug studied by terahertz time-domain spectroscopy
Du, S. Q.; Li, H.; Xie, L.; Chen, L.; Peng, Y.; Zhu, Y. M.; Li, H.; Dong, P.; Wang, J. T.
2012-04-01
By using terahertz time-domain spectroscopy, the absorption spectra of seven anti-diabetic pills have been investigated. For gliquidone, glipizide, gliclazide, and glimepiride, an obvious resonance peak is found at 1.37 THz. Furthermore, to overcome the limit of density functional theory that can analyze the normal mode frequencies of the ground state of organic material, we also present a method that relies on pharmacophore recognition, from which we can obtain the resonance peak at 1.37 THz can be attributed to the vibration of sulfonylurea group. The results indicate that the veracity of density functional theory can be increased by combining pharmacophore recognition.
Directory of Open Access Journals (Sweden)
Anelise Sonza
2015-01-01
Full Text Available The aim of this study was to investigate the effects of whole body vibration (WBV on physiological parameters, cutaneous temperature, tactile sensitivity, and balance. Twenty-four healthy adults (25.3±2.6 years participated in four WBV sessions. They spent 15 minutes on a vibration platform in the vertical mode at four different frequencies (31, 35, 40, and 44 Hz with 1 mm of amplitude. All variables were measured before and after WBV exposure. Pressure sensation in five anatomical regions and both feet was determined using Von Frey monofilaments. Postural sway was measured using a force plate. Cutaneous temperature was obtained with an infrared camera. WBV influences the discharge of the skin touch-pressure receptors, decreasing sensitivity at all measured frequencies and foot regions (P≤0.05. Regarding balance, no differences were found after 20 minutes of WBV at frequencies of 31 and 35 Hz. At 40 and 44 Hz, participants showed higher anterior-posterior center of pressure (COP velocity and length. The cutaneous temperature of the lower limbs decreased during and 10 minutes after WBV. WBV decreases touch-pressure sensitivity at all measured frequencies 10 min after exposure. This may be related to the impaired balance at higher frequencies since these variables have a role in maintaining postural stability. Vasoconstriction might explain the decreased lower limb temperature.
3D Acoustic Modes, Shot Noise and Strain Displacements in a Radio Frequency Quantum Point Contact
Stettenheim, J.; Thalakulam, M.; Pan, F.; Bal, M.; Pfeiffer, L. N.; West, K. W.; Rimberg, A. J.
2009-03-01
As previously reported, our broadband frequency resolved measurements of shot noise in a radio frequency QPC (RF-QPC) reveal a remarkable frequency dependence absent from theoretical predictions. Based on piezoelectric coupling in GaAs, our data suggest a feedback loop in which shot noise drives resonant acoustic vibrations that in turn create correlations in electron tunneling. The feedback concentrates the initially white noise in a narrow band around the sample's resonant frequency, allowing shot noise spectrum engineering. We solve for the 3D acoustic modes of our samples, finding close correspondence with measured frequencies. We have determined that the geometry and magnitude of the polarization field selects the acoustic mode excited. As polarization fields and strain displacements are linked in GaAs, we estimate the ultimate mechanical displacement sensitivity of our RF-QPC.
The diffraction signatures of individual vibrational modes in polyatomic molecules
Ryu, Seol; Weber, Peter M.; Stratt, Richard M.
2000-01-01
Though one normally thinks of single-molecule diffraction studies as tools for eliciting molecular geometry, molecular diffraction patterns are really the Fourier transforms of complete molecular wave functions. There is thus at least the possibility of imaging the vibrational wave functions of polyatomic molecules by means of a pump-probe diffraction experiment: the pump laser could prepare a specific vibrational state and an electron or x-ray could then be diffracted off the molecule some short time later. The present paper develops the general theory of diffraction signatures for individual vibrational wave functions in polyatomic molecules and investigates the feasibility of seeing such signatures experimentally using the example of a linear triatomic molecule modeled after CS2. Although aligned molecules in specific vibrational quantum states turn out to exhibit very characteristic diffraction signatures, the signatures of the vibrational wave functions are partially washed out for the complete isotropy expected from gas phase molecules. Nonetheless, it is possible to design a diffraction experiment using a pump-dump sequence with a polarized laser beam which will select a nonisotropic sample of vibrationally excited molecules. We show that the resulting level of anisotropy should enhance the diffraction signature, helping to distinguish different vibrational components. These model calculations therefore suggest the possibility of observing the dynamics of vibrational wave packets using experimentally realizable diffraction techniques.
Frequency Up-Converted Low Frequency Vibration Energy Harvester Using Trampoline Effect
Ju, S.; Chae, S. H.; Choi, Y.; Jun, S.; Park, S. M.; Lee, S.; Lee, H. W.; Ji, C.-H.
2013-12-01
This paper presents a non-resonant vibration energy harvester based on magnetoelectric transduction mechanism and mechanical frequency up-conversion using trampoline effect. The harvester utilizes a freely movable spherical permanent magnet which bounces off the aluminum springs integrated at both ends of the cavity, achieving frequency up-conversion from low frequency input vibration. Moreover, bonding method of magnetoelectric laminate composite has been optimized to provide higher strain to piezoelectric material and thus obtain a higher output voltage. A proof-of-concept energy harvesting device has been fabricated and tested. Maximum open-circuit voltage of 11.2V has been obtained and output power of 0.57μW has been achieved for a 50kΩ load, when the fabricated energy harvester was hand-shaken.
Vibrational relaxation in simulated two-dimensional infrared spectra of two amide modes in solution
Dijkstra, Arend G.; Jansen, Thomas la Cour; Bloem, Robbert; Knoester, Jasper
2007-01-01
Two-dimensional infrared spectroscopy is capable of following the transfer of vibrational energy between modes in real time. We develop a method to include vibrational relaxation in simulations of two-dimensional infrared spectra at finite temperature. The method takes into account the correlated
Precise Ab-initio prediction of terahertz vibrational modes in crystalline systems
DEFF Research Database (Denmark)
Jepsen, Peter Uhd; Clark, Stewart J.
2007-01-01
We use a combination of experimental THz time-domain spectroscopy and ab-initio density functional perturbative theory to accurately predict the terahertz vibrational spectrum of molecules in the crystalline phase. Our calculations show that distinct vibrational modes found in solid-state materials...
Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR
Iida, Daisuke; Toge, Kunihiro; Manabe, Tetsuya
2017-07-01
All-fiber distributed vibration sensing is attracting attention in relation to structural health monitoring because it is cost effective, offers high coverage of the monitored area and can detect various structural problems. And in particular the demand for high-speed vibration sensing operating at more than 10 kHz has increased because high frequency vibration indicates high energy and severe trouble in the monitored object. Optical fiber vibration sensing with phase-sensitive optical time domain reflectometry (phase-OTDR) has long been studied because it can be used for distributed vibration sensing in optical fiber. However, pulse reflectometry such as OTDR cannot measure high-frequency vibration whose cycle is shorter than the repetition time of the OTDR. That is, the maximum detectable frequency depends on fiber length. In this paper, we describe a vibration sensing technique with frequency-multiplexed OTDR that can detect the entire distribution of a high-frequency vibration thus allowing us to locate a high-speed vibration point. We can measure the position, frequency and dynamic change of a high-frequency vibration whose cycle is shorter than the repetition time. Both frequency and position are visualized simultaneously for a 5-km fiber with an 80-kHz frequency response and a 20-m spatial resolution.
National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...
Directory of Open Access Journals (Sweden)
Alexander G. Milekhin
2017-05-01
Full Text Available Nanoantenna-assisted plasmonic enhancement of IR absorption and Raman scattering was employed for studying the vibrational modes in organic molecules. Ultrathin cobalt phthalocyanine films (3 nm were deposited on Au nanoantenna arrays with specified structural parameters. The deposited organic films reveal the enhancement of both Raman scattering and IR absorption vibrational modes. To extend the possibility of implementing surface-enhanced infrared absorption (SEIRA for biological applications, the detection and analysis of the steroid hormone cortisol was demonstrated.
Acoustic vibration modes and electron-lattice coupling in self-assembled silver nanocolumns.
Burgin, J; Langot, P; Arbouet, A; Margueritat, J; Gonzalo, J; Afonso, C N; Vallée, F; Mlayah, A; Rossell, M D; Van Tendeloo, G
2008-05-01
Using ultrafast spectroscopy, we investigated electron-lattice coupling and acoustic vibrations in self-assembled silver nanocolumns embedded in an amorphous Al2O3 matrix. The measured electron-lattice energy exchange time is smaller in the nanocolumns than in bulk silver, with a value very close to that of isolated nanospheres with comparable surface to volume ratio. Two vibration modes were detected and ascribed to the breathing and extensional mode of the nanocolumns, in agreement with numerical simulations.
Vibrational relaxation of the H2O bending mode in liquid water.
Larsen, Olaf F A; Woutersen, Sander
2004-12-22
We have studied the vibrational relaxation of the H(2)O bending mode in an H(2)O:HDO:D(2)O isotopic mixture using infrared pump-probe spectroscopy. The transient spectrum and its delay dependence reveal an anharmonic shift of 55+/-10 cm(-1) for the H(2)O bending mode, and a value of 400+/-30 fs for its vibrational lifetime. (c) 2004 American Institute of Physics.
Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.
Huang, Yihua; Huang, Wei
2010-12-01
We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.
Directory of Open Access Journals (Sweden)
Darius Zizys
2015-12-01
Full Text Available The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.
Zizys, Darius; Gaidys, Rimvydas; Dauksevicius, Rolanas; Ostasevicius, Vytautas; Daniulaitis, Vytautas
2015-12-23
The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.
Structural Synthesis for Prescribed Target Natural Frequencies and Mode Shapes
Directory of Open Access Journals (Sweden)
J. A. Hernandes
2014-01-01
Full Text Available A new method for the synthesis of structures with prescribed target natural frequencies and mode shapes is presented. The introduction of a modal Rayleigh quotient approximation based on the target mode shapes is the means to propose a structural synthesis problem whose solution is free from eigenvector sensitivity analysis. The frequencies and mode shapes can be adjusted as close as possible to the desired target values, while minimizing the total mass. Several examples corroborate the efficacy of the proposed method.
Composite 3D-printed metastructures for low-frequency and broadband vibration absorption
Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara
2016-07-01
Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.
A simple method for designing structural models with closely spaced modes of vibration
Hallauer, W. L., Jr.; Weisshaar, T. A.; Shostak, A. G.
1978-01-01
A simple method for designing a mathematical model with closely spaced vibration modes is described. The design process begins with a reference model having specified geometry, continuous inertia and stiffness distributions, and degrees of freedom, all of which remain unchanged. Two natural frequencies of this model are then forced together by means of systematic perturbation of the model's discrete inertia and stiffness parameters. There is only one eigenvalue solution per design cycle, and the gradient vector is calculated directly from the resulting modal quantities. The minimization procedure employed is unconstrained. As applications, a cantilevered plane grid model with five degrees of freedom and a bending-torsion-oscillator with eleven degrees of freedom are treated.
Mei, Chuh; Shen, Mo-How
1987-01-01
Multiple-mode nonlinear forced vibration of a beam was analyzed by the finite element method. Inplane (longitudinal) displacement and inertia (IDI) are considered in the formulation. By combining the finite element method and nonlinear theory, more realistic models of structural response are obtained more easily and faster.
Coupling between flexural modes in free vibration of single-walled carbon nanotubes
Energy Technology Data Exchange (ETDEWEB)
Liu, Rumeng; Wang, Lifeng, E-mail: walfe@nuaa.edu.cn [State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)
2015-12-15
The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.
Coupling between flexural modes in free vibration of single-walled carbon nanotubes
Directory of Open Access Journals (Sweden)
Rumeng Liu
2015-12-01
Full Text Available The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.
On the correlation between phase-locking modes and Vibrational Resonance in a neuronal model
Morfu, S.; Bordet, M.
2018-02-01
We numerically and experimentally investigate the underlying mechanism leading to multiple resonances in the FitzHugh-Nagumo model driven by a bichromatic excitation. Using a FitzHugh-Nagumo circuit, we first analyze the number of spikes triggered by the system in response to a single sinusoidal wave forcing. We build an encoding diagram where different phase-locking modes are identified according to the amplitude and frequency of the sinusoidal excitation. Next, we consider the bichromatic driving which consists in a low frequency sinusoidal wave perturbed by an additive high frequency signal. Beside the classical Vibrational Resonance phenomenon, we show in real experiments that multiple resonances can be reached by an appropriate setting of the perturbation parameters. We clearly establish a correlation between these resonances and the encoding diagram of the low frequency signal free FitzHugh-Nagumo model. We show with realistic parameters that sharp transitions of the encoding diagram allow to predict the main resonances. Our experiments are confirmed by numerical simulations of the system response.
Instantaneous pair theory for high-frequency vibrational energy relaxation in fluids
Larsen, Ross E.; Stratt, Richard M.
1999-01-01
Notwithstanding the long and distinguished history of studies of vibrational energy relaxation, exactly how it is that high frequency vibrations manage to relax in a liquid remains somewhat of a mystery. Both experimental and theoretical approaches seem to say that there is a natural frequency range associated with intermolecular motion in liquids, typically spanning no more than a few hundred cm-1. Landau-Teller-type theories explain rather easily how a solvent can absorb any vibrational energy within this "band," but how is it that molecules can rid themselves of superfluous vibrational energies significantly in excess of these values? In this paper we develop a theory for such processes based on the idea that the crucial liquid motions are those that most rapidly modulate the force on the vibrating coordinate — and that by far the most important of these motions are those involving what we have called the mutual nearest neighbors of the vibrating solute. Specifically, we suggest that whenever there is a single solvent molecule sufficiently close to the solute that the solvent and solute are each other's nearest neighbors, then the instantaneous scattering dynamics of the solute-solvent pair alone suffices to explain the high-frequency relaxation. This highly reduced version of the dynamics has implications for some of the previous theoretical formulations of this problem. Previous instantaneous-normal-mode theories allowed us to understand the origin of a band of liquid frequencies, and even had some success in predicting relaxation within this band, but lacking a sensible picture of the effects of liquid anharmonicity on dynamics, were completely unable to treat higher frequency relaxation. When instantaneous-normal-mode dynamics is used to evaluate the instantaneous pair theory, though, we end up with a multiphonon picture of the relaxation which is in excellent agreement with the exact high-frequency dynamics — suggesting that the critical anharmonicity
Wang, Yu; Smolarek, Szymon; Kong, Xianggui; Buma, Wybren Jan; Brouwer, Albert Manfred; Zhang, Hong
2010-11-01
Physical and chemical properties of nanoparticles are known to be subject to the surface factors. For their biological/biomedical applications, typically, surface of the nanoparticles has to be modified which inevitably affects their performance. In this work we have studied the interaction between the surface related organic vibrational modes and the luminescent centers--rare earth ions--in one of the most efficient luminescence upconversion nanosystems--NaYF4. Specifically, the surface quenching centers, the surface related luminescent centers, as well as the role of shell properties, are investigated spectroscopically. Our results demonstrate that the surface related high-frequency vibrational modes can be critical to the spectral properties of the nanosystems once the surface is not well separated from the discrete luminescent centers.
Natural vibration frequencies of horizontal tubes partially filled with liquid
Santisteban Hidalgo, Juan Andrés; Gama, Antonio Lopes; Moreira, Roger Matsumoto
2017-11-01
This work presents an experimental and numerical study on the flexural vibration of horizontal circular tubes partially filled with liquid. The tube is configured as a free-free beam with attention being directed to the case of small amplitudes of transverse oscillation whereas the axial movements of the tube and liquid are disregarded. At first vertical and horizontal polarizations of the flexural tube are investigated experimentally for different amounts of filling liquid. In contrast with the empty and fully-filled tubes, it is observed that natural frequencies of the vertical and horizontal polarizations are different due to asymmetry induced by the liquid layer, which acts like an added mass. Less mass of liquid is added to the tube when oscillating horizontally; as a consequence, eigenfrequencies for the horizontal polarization are found to be greater than the case of the vertically polarized tube. A simple method to calculate the natural vibration frequencies using coefficients of added mass of liquid is proposed. It is shown that the added mass coefficient increases with the liquid's level and viscosity. At last a numerical investigation of the interaction between the liquid and the tube is carried out by solving in two-dimensions the full Navier-Stokes equations via a finite volume method, with the free-surface flow being modeled with a homogeneous multiphase Eulerian-Eulerian fluid approach. Vertical and horizontal polarizations are imposed to the tube with pressure and shear stresses being determined numerically to assess the liquid's forcing onto the tube's wall. The coefficient of added mass of liquid is then estimated by the ratio between the resulting force and the acceleration imposed to the wall. A good agreement is found between experimental and numerical results, especially for the horizontally oscillating tube. It is also shown that viscosity can noticeably affect the added mass coefficients, particularly at low filling levels.
Smart nanocoated structure for energy harvesting at low frequency vibration
Sharma, Sudhanshu
Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz--1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 μW, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 μW, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection
Benoit, David M.
2008-12-01
We introduce a new reduced-coupling technique to accelerate direct calculations of a selected number of vibrational frequencies in large molecular systems. Our method combines the advantages of the single-to-all correlation-corrected vibrational self-consistent field (STA-CC-VSCF) approach [D. M. Benoit, J. Chem. Phys. 125, 244110 (2006)] with those of the fast-CC-VSCF technique [D. M. Benoit, J. Chem. Phys. 120, 562 (2004)] and allows the ab initio calculation of only the relevant parts of the required potential energy surface (PES). We demonstrate, using a set of five aliphatic alcohol molecules, that the new fast-STA-CC-VSCF method is accurate and leads to very substantial time gains for the computations of the PES. We then use the fast-STA-CC-VSCF method to accelerate the computation of the OH-stretch and NH-stretch frequencies of the two lowest-energy conformers of noradrenaline, namely, AG1a and GG1a. Our new approach enables us to run the calculation 89 times faster than the standard CC-VSCF technique and makes it possible to use a high-level MP2/TZP description of the PES. We demonstrate that the influence of the strong mode-mode couplings is crucial for a realistic description of the particular OH-stretch vibrational signature of each conformer. Finally, of the two possible low-energy conformers, we identify AG1a as the one most likely to have been observed in the experiments of Snoek et al. [Mol. Phys. 101, 1239 (2003)].
Free vibrations of an arbitrary structure in terms of component modes.
Dowell, E. H.
1972-01-01
A method for the analysis of the free vibrations of an arbitrary structure in terms of component modes is presented based upon the use of the normal, free-free modes of the components in a Rayleigh-Ritz analysis with the constraint or continuity conditions
Westra, H.J.R.; Karabacak, D.M.; Brongersma, S.H.; Crego-Calama, M.; Van der Zant, H.S.J.; Venstra, W.J.
2011-01-01
The interactions between parametrically- and directly-driven vibration modes of a clamped-clamped beam resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First, the parametric amplification and oscillation of a single mode are analyzed by the
Damping of vibrational excitations in glasses at terahertz frequency: The case of 3-methylpentane
Baldi, Giacomo
2017-10-24
We report a compared analysis of inelastic X ray scattering (IXS) and of low frequency Raman data of glassy 3-methylpentane. The IXS spectra have been analysed allowing for the existence of two distinct excitations at each scattering wavevector obtaining a consistent interpretation of the spectra. In particular, this procedure allows us to interpret the linewidth of the modes in terms of a simple model which relates them to the width of the first sharp diffraction peak in the static structure factor. In this model, the width of the modes arises from the blurring of the dispersion curves which increases approaching the boundary of the first pseudo-Brillouin zone. The position of the boson peak contribution to the density of vibrational states derived from the Raman scattering measurements is in agreement with the interpretation of the two excitations in terms of a longitudinal mode and a transverse mode, the latter being a result of the mixed character of the transverse modes away from the center of the pseudo-Brillouin zone.
Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.
Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C
2016-03-21
Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.
Frequency doubling perimetry screening mode compared to the full-threshold mode
Stoutenbeek, R; Heeg, GP; Jansonius, NM
2004-01-01
The diagnostic performance of the frequency doubling perimetry (FDT) C20-1 screening mode was compared to that of the C20 full-threshold mode. For the number of defects p <1% in the total deviation plot, both modes appeared to perform similarly in terms of sensitivity, specificity, and area under
Hu, Junhui; Jong, Januar; Zhao, Chunsheng
2010-01-01
To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.
Mode selection of modal expansion method estimating vibration field of washing machine
Jung, B. K.; Jeong, W. B.
2015-03-01
This paper is about a study estimating the vibration and radiated noise of a washing machine by using a mode selection-applied modal expansion method (MEM). MEM is a technique that identifies the vibration field from a portion of eigenvectors (or mode shapes) of a structure, and thus, the selection of the eigenvectors has a big impact on the vibration results identified. However, there have been few studies about selecting the eigenvectors with respect to the structural vibration and radiated noise estimation. Accordingly, this paper proposes the use of a new mode selection method to identify the vibration based on the MEM and then calculate radiated noise of a washing machine. The results gained from the experiment were also compared. The vibration and noise results of numerical analysis using the proposed selection method are in line with the measured results. The selection method proposed in this paper corresponds well with the MEM and this process seems to be applicable to the estimation of various structure vibrations and radiated noise.
Dunn, Janette L.
2010-01-01
Understanding the normal mode vibrations of a molecule is important in the analysis of vibrational spectra. However, the complicated 3D motion of large molecules can be difficult to interpret. We show how images of normal modes of the fullerene molecule C[subscript 60] can be made easier to understand by superimposing them on images of the normal…
Aerial Ultrasonic Source Using Stripe-Mode Transverse Vibrating Plate with Jutting Driving Point
Miura, Hikaru; Ishikawa, Hitoshi
2009-07-01
Ultrasonic sources using a stripe-mode rectangular transverse vibrating plate have been used as acoustic sources emitting intense acoustic waves in air. Because these sources are based on the resonance of transverse vibration, their electric-acoustic conversion rate is as high as 90%, which is a merit. In this study, a vibrating plate with a unique shape was developed to enhance the effectiveness of acoustic sources. It is called a stripe-mode transverse vibrating plate with a jutting driving point. The advantage of this plate shape is that the acoustic source does not interfere with the emission of acoustic waves since the driving point is outside the plate, and there is no need to distinguish between the front and back sides of the vibrating plate. The conditions effective for driving the stripe-mode transverse vibrating plate were clarified. That is, the length of the side parallel to the node lines of the plate is an odd number times the length between the nodes in the stripe mode, and the length of the side perpendicular is at least 6 times but not a multiple of 3 greater than or equal to 15 times, subtracted by 0.5 times, the length between the nodes. Moreover, the length between the driving point and the edge of the plate is a positive integer with a noninteger value of 0.9.
HUANG, C.-H.
2002-06-01
Most of the work done on vibration of plates published in the literature includes analytical and numerical studies with few experimental results available. In this paper, an optical system called the amplitude-fluctuation electronic speckle pattern interferometry for the out-of-plane displacement measurement is employed to investigate the vibration behavior of plates with rounded corners and with chamfers. The boundary conditions are traction free along the circumference of the plate. Based on the fact that clear fringe patterns will appear only at resonant frequencies, both resonant frequencies and corresponding mode shapes can be obtained experimentally using the present method. Numerical calculations by finite element method are also performed and the results are compared with the experimental measurements. Good agreements are obtained for both results. It is interesting to note that the mode number sequences for some resonant modes are changed. The transition of mode shapes from the square plate to the circular plate is also discussed.
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
DEFF Research Database (Denmark)
Rodriguez, Cristian; Egusquiza, Eduard; Santos, Ilmar
2007-01-01
The highest vibration levels in large pump turbines are, in general, originated in the rotor stator interaction (RSI). This vibration has specific characteristics that can be clearly observed in the frequency domain: harmonics of the moving blade passing frequency and a particular relationship am...
Localization of natural modes of vibration in bladed disks
Bendiksen, O. O.; Valero, N. A.
1987-01-01
A study is presented of the mode localization phenomenon in imperfect blade-disk and blade-shroud-disk assemblies. The results indicate that unshrouded blades mounted on stiff disks are especially susceptible, and even small blade imperfections within manufacturing tolerances are likely to trigger mode localization. Increasing the interblade coupling by adding shrouds or reducing the disk stiffness greatly reduces the localization susceptiblity, although certain modes may still become localized if the shrouds are free to slip.
Frequency dependence of orthogonal polarisation modes in pulsars
Smits, J.M.; Stappers, B.W.; Edwards, R.T.; Kuijpers, J.; Ramachandran, R.
2006-01-01
We have carried out a study of the orthogonal polarisation mode behaviour as afunction of frequency of 18pulsars, using average pulsar data from the European Pulsar Network(EPN). Assuming that the radiation consists of two100% polarised completely orthogonal superposed modes we separated these
Reese, D. R.; Lignières, F.; Ballot, J.; Dupret, M.-A.; Barban, C.; van't Veer-Menneret, C.; MacGregor, K. B.
2017-05-01
Context. Mode identification has remained a major obstacle in the interpretation of pulsation spectra in rapidly rotating stars. This has motivated recent work on calculating realistic multi-colour mode visibilities in this type of star. Aims: We would like to test mode identification methods and seismic diagnostics in rapidly rotating stars, using oscillation spectra that are based on these new theoretical predictions. Methods: We investigate the auto-correlation function and Fourier transform of theoretically calculated frequency spectra, in which modes are selected according to their visibilities. Given that intrinsic mode amplitudes are determined by non-linear saturation and cannot currently be theoretically predicted, we experimented with various ad-hoc prescriptions for setting the mode amplitudes, including using random values. Furthermore, we analyse the ratios between mode amplitudes observed in different photometric bands to see up to what extent they can identify modes. Results: When non-random intrinsic mode amplitudes are used, our results show that it is possible to extract a mean value for the large frequency separation or half its value and, sometimes, twice the rotation rate, from the auto-correlation of the frequency spectra. Furthermore, the Fourier transforms are mostly sensitive to the large frequency separation or half its value. The combination of the two methods may therefore measure and distinguish the two types of separations. When the intrinsic mode amplitudes include random factors, which seems more representative of real stars, the results are far less favourable. It is only when the large separation or half its value coincides with twice the rotation rate, that it might be possible to detect the signature of a frequency regularity. We also find that amplitude ratios are a good way of grouping together modes with similar characteristics. By analysing the frequencies of these groups, it is possible to constrain mode identification, as
Miller, Lindsay Margaret
hundred milliwatts and are falling steadily as improvements are made, it is feasible to use energy harvesting to power WSNs. This research begins by presenting the results of a thorough survey of ambient vibrations in the machine room of a large campus building, which found that ambient vibrations are low frequency, low amplitude, time varying, and multi-frequency. The modeling and design of fixed-frequency micro scale energy harvesters are then presented. The model is able to take into account rotational inertia of the harvester's proof mass and it accepts arbitrary measured acceleration input, calculating the energy harvester's voltage as an output. The fabrication of the micro electromechanical system (MEMS) energy harvesters is discussed and results of the devices harvesting energy from ambient vibrations are presented. The harvesters had resonance frequencies ranging from 31 - 232 Hz, which was the lowest reported in literature for a MEMS device, and produced 24 pW/g2 - 10 nW/g2 of harvested power from ambient vibrations. A novel method for frequency modification of the released harvester devices using a dispenser printed mass is then presented, demonstrating a frequency shift of 20 Hz. Optimization of the MEMS energy harvester connected to a resistive load is then presented, finding that the harvested power output can be increased to several microwatts with the optimized design as long as the driving frequency matches the harvester's resonance frequency. A framework is then presented to allow a similar optimization to be conducted with the harvester connected to a synchronously switched pre-bias circuit. With the realization that the optimized energy harvester only produces usable amounts of power if the resonance frequency and driving frequency match, which is an unrealistic situation in the case of ambient vibrations which change over time and are not always known a priori, an adaptable-frequency energy harvester was designed. The adaptable-frequency harvester
Roos, P A; Stephens, M; Wieman, C E
1996-12-01
We describe a sensitive and inexpensive vibrometer based on optical feedback by diffuse scattering to a single-mode diode laser. Fluctuations in the diode laser's operating frequency that are due to scattered light from a vibrating surface are used to detect the amplitude and frequency of surface vibrations. An additional physical vibration of the laser provides an absolute amplitude calibration. The fundamental bandwidth is determined by the laser response time of roughly 10(-9)s. A noise floor of 0.23 nm/Hz(1/2) at 30 kHz with 5 × 10(-5) of the incident light returning is demonstrated. This instrument provides an inexpensive and sensitive method of noncontact measurement in solid materials with low or uneven reflectivity. It can be used as a vibration or velocity sensor.
Finite-temperature hydrogen adsorption and desorption thermodynamics driven by soft vibration modes.
Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina; Kim, Yong-Hyun
2013-08-09
It has been widely accepted that enhanced dihydrogen adsorption is required for room-temperature hydrogen storage on nanostructured porous materials. Here we report, based on results of first-principles total energy and vibrational spectrum calculations, finite-temperature adsorption and desorption thermodynamics of hydrogen molecules that are adsorbed on the metal center of metal-porphyrin-incorporated graphene. We have revealed that the room-temperature hydrogen storage is achievable not only with the enhanced adsorption enthalpy, but also with soft-mode driven vibrational entropy of the adsorbed dihydrogen molecule. The soft vibration modes mostly result from multiple orbital coupling between the hydrogen molecule and the buckled metal center, for example, in Ca-porphyrin-incorporated graphene. Our study suggests that the current design strategy for room-temperature hydrogen storage materials should be modified with explicitly taking the finite-temperature vibration thermodynamics into account.
Subfemtosecond steering of hydrocarbon deprotonation through superposition of vibrational modes
Alnaser, A. S.; Kübel, M.; Siemering, R.; Bergues, B.; Kling, Nora G.; Betsch, K. J.; Deng, Y.; Schmidt, J.; Alahmed, Z. A.; Azzeer, A. M.; Ullrich, J.; Ben-Itzhak, I.; Moshammer, R.; Kleineberg, U.; Krausz, F.; de Vivie-Riedle, R.; Kling, M. F.
2014-05-01
Subfemtosecond control of the breaking and making of chemical bonds in polyatomic molecules is poised to open new pathways for the laser-driven synthesis of chemical products. The break-up of the C-H bond in hydrocarbons is an ubiquitous process during laser-induced dissociation. While the yield of the deprotonation of hydrocarbons has been successfully manipulated in recent studies, full control of the reaction would also require a directional control (that is, which C-H bond is broken). Here, we demonstrate steering of deprotonation from symmetric acetylene molecules on subfemtosecond timescales before the break-up of the molecular dication. On the basis of quantum mechanical calculations, the experimental results are interpreted in terms of a novel subfemtosecond control mechanism involving non-resonant excitation and superposition of vibrational degrees of freedom. This mechanism permits control over the directionality of chemical reactions via vibrational excitation on timescales defined by the subcycle evolution of the laser waveform.
Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.
Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L
2016-12-16
We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.
Modes of vibration on sqaure fiberglass epoxy composite thick plate
Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.
1986-01-01
The frequencies and nodal patterns of a square thick plate of unidirectional fiberglass epoxy composite are measured experimentally. The constituent material is transversely isotropic. The plate is transversely excited at the center of the upper face, its resonant frequencies in the frequency range of 3 kHz to 21.73 kHz are detected and the measured nodal patterns are sketched.
Yenagi, Jayashree; Shettar, Anita; Tonannavar, J
2011-09-01
FT-Infrared (4000-400 cm(-1)) and NIR-FT-Raman (4000-50 cm(-1)) spectral measurements have been made for 2-chloro- and 2-bromo-3-pyridinecarboxaldehydes. A DFT vibration analysis at B3LYP/6-311++G (d,p) level, valence force-fields and vibrational mode calculations have been performed. Aided by very good agreement between observed and computed vibration spectra, a complete assignment of fundamental vibration modes to the observed absorptions and Raman bands has been proposed. Orientations of the aldehydic group have produced two oblate asymmetric rotamers for each molecule, ON-trans and ON-cis: the ON-trans rotamer being more stable than cis by 3.42 kcal mol(-1) for 2-chloro-3-pyridinecarboxaldehyde and 3.68 kcal mol(-1) for 2-bromo-3-pyridinecarboxaldehyde. High potential energy barrier ca 14 kcal/mol, induced by steric hindrance, restricts rotamers' population to ON-trans only. It is observed that, in the presence of bromine, C-H stretching modes are pronounced; a missing characteristic ring mode in chlorine's presence shows at 1557 cm(-1); the characteristic ring mode at 1051 cm(-1) is diminished; a mixed mode near 707 cm(-1) is enhanced. Further, an observed doublet near 1696-1666 cm(-1) in both IR and Raman spectra is explained on the basis of Fermi resonance between aldehydic carbonyl stretching at 1696 cm(-1) and a combination mode of ring stretch near 1059 cm(-1) and deformation vibration, 625 cm(-1). A strong Raman aldehydic torsional mode at 62 cm(-1) is interpreted to correspond to the dominant ON-trans over cis rotamers population. Copyright © 2011 Elsevier B.V. All rights reserved.
Local vibration modes and nitrogen incorporation in AlGaAs:N layers
Energy Technology Data Exchange (ETDEWEB)
Gallardo, E.; Lazic, S.; Calleja, J.M. [Dept. de Fisica de Materiales, Universidad Autonoma de Madrid (Spain); Miguel-Sanchez, J.; Montes, M.; Hierro, A.; Gargallo-Caballero, R.; Guzman, A.; Munoz, E. [Instituto de Sistemas Optoelectronicos y Microtecnologia, Universidad Politecnica de Madrid (Spain); Teweldeberhan, A.M.; Fahy, S. [Tyndall National Institute, Cork (Ireland)
2008-07-01
Raman scattering measurements in dilute AlGaAs:N films grown by plasma-assisted molecular beam epitaxy on (100) GaAs substrates reveal strong local vibration modes (LVM) associated to N complexes. The LVM observed frequencies between 325 and 540 cm{sup -1} are in good agreement with density functional theory supercell calculations of Al{sub n}Ga{sub 4-n}N complexes (n=1,2,3,4). We find that the observed LVMs correspond to all n values including Al{sub 4}N. The LVMs spectra are resonant at energies around 1.85 eV. The values of the extended phonon frequencies of the ternary compound (GaAs and AlAs-like) reveal changes in the N distribution depending on the growth conditions: A transition from random- to non-random nitrogen distribution is observed upon increasing the growth temperature. Our results confirm the preferential bonding of N to Al in AlGaAs:N, due to the higher Al-N bond strength as compared to the Ga-N bond. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Complex modes and frequencies in damped structural vibrations
DEFF Research Database (Denmark)
Krenk, Steen
2004-01-01
It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic force...
Synthesis of stiffness and mass matrices from experimental vibration modes.
Ross, R. G., Jr.
1971-01-01
With highly complex structures, it is sometimes desirable to derive a dynamic model of the system from experimental vibration data. This paper presents algorithms for synthesizing the mass and stiffness matrices from experimentally derived modal data in a way which preserves the physical significance of the individual mass and stiffness elements. The synthesizing procedures allow for the incorporation of other mass and stiffness data, whether empirical or based on the analyst's insight. The mass and stiffness matrices are derived for a cantilever beam example and are compared with those obtained using earlier techniques.
Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level
DEFF Research Database (Denmark)
Zoccante, Alberto; Seidler, Peter; Christiansen, Ove
2011-01-01
In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed...... solving iteratively a single linear set of equations. Sample calculations are presented which show that the resulting algorithm scales only with the third power of the number of modes, therefore making large systems accessible. Moreover, we present applications to water, pyrrole, and para-nitroaniline....
Numerical Analysis of the Influence of Low Frequency Vibration on Bubble Growth.
Han, D; Kedzierski, Mark A
2017-01-01
Numerical simulation of bubble growth during pool boiling under the influence of low frequency vibration was performed to understand the influence of common vibrations such as those induced by wind, highway transportation, and nearby mechanical devices on the performance of thermal systems that rely on boiling. The simulations were done for saturated R123 boiling at 277.6 K with a 15 K wall superheat. The numerical volume-of-fluid method (fixed grid) was used to define the liquid-vapor interface. The basic bubble growth characteristics including the bubble departure diameter and the bubble departure time were determined as a function of the bubble contact angle (20°-80°), the vibration displacement (10 µm-50 µm), the vibration frequency (5 Hz-25 Hz), and the initial vibration direction (positive or negative). The bubble parameters were shown to be strongly dependent on the bubble contact angle at the surface. For example, both the bubble departure diameter and the bubble departure time increased with the contact angle. At the same vibration frequency and the initial vibration direction, the bubble departure diameter and the bubble departure time both decreased with increasing vibration displacement. In addition, the vibration frequency had a greater effect on the bubble growth characteristics than did the vibration displacement. The vibration frequency effect was strongly influenced by the initial vibration direction. The pressure contour, the volume fraction of vapor phase, the temperature profile, and the velocity vector were investigated to understand these dynamic bubble behaviors. The limitation of the computational fluid dynamics approach was also described.
Direct experimental measurement of single-mode and mode-hopping dynamics in frequency swept lasers.
Butler, T P; Goulding, D; Kelleher, B; O'Shaughnessy, B; Slepneva, S; Hegarty, S P; Huyet, G
2017-10-30
A time-resolved study is presented of the single-mode and mode-switching dynamics observed in swept source vertical cavity surfing emitting lasers and swept wavelength short external cavity lasers. A self-delayed interferometric technique is used to experimentally measure the phase and intensity of these frequency swept lasers, allowing direct examination of the modal dynamics. Visualisation of the instantaneous optical spectrum reveals mode-hop free single mode lasing in the case of the vertical cavity laser, with a tuning rate of 6.3 GHz/ns. More complex mode-switching behaviour occurs in the external cavity laser, with the mode-hopping dynamics found to be dominated by the deterministic movement of the spectral filter. Evidence of transient multi-mode operation and mode-pulling is also presented.
Xu, Ben; Poduska, Kristin M
2014-09-07
We demonstrate a correlation between how an IR-active vibrational mode responds to temperature changes and how it responds to crystallinity differences. Infrared (IR) spectroscopy was used to track changes in carbonate-related vibrational modes in three different CaCO3 polymorphs (calcite, aragonite, and vaterite) and CaMg(CO3)2 (dolomite) during heating. Of the three characteristic IR-active carbonate modes, the in-plane bending mode (ν4) shows the most pronounced changes with heating in polymorphs that have planar carbonate arrangements (calcite, aragonite, and dolomite). In contrast, this mode is virtually unchanged in vaterite, which has a canted arrangement of carbonate units. We correlate these trends with recent studies that identified the ν4 mode as most susceptible to changes related to crystallinity differences in calcite and amorphous calcium carbonate. Thus, our results suggest that studies of packing arrangements could provide a generalizable approach to identify the most diagnostic vibrational modes for tracking either temperature-dependent or crystallinity-related effects in IR-active solids.
Directory of Open Access Journals (Sweden)
H Ghorbanpour
2012-09-01
Full Text Available Manual citrus harvesting is commonly performing hard, expensive and time consuming. In this study, a factorial experiment with a completely randomized design in three replications was performed to find out the effect of frequency (three levels of 5, 7.5 and 10 Hz, vibration time (three levels of 10, 15 and 20 seconds on harvesting capacity and losses of Thomson cultivar of orange. The results indicated that the effect of frequency and vibration time was significant (P≤0.01 on the harvesting capacity and losses, but their interaction effects weren’t significant. The harvesting capacity significantly increased by increasing frequency, and the highest harvesting capacity was 62.8 % at 10 Hz frequency. Although the harvesting capacity increased by increasing the vibration time, but there was no significant difference in vibration times between 15 and 20 seconds at 10 Hz frequency. Also the fruit loss was increased by increasing the vibration time. Due to these reasons, frequency of 10 Hz and vibration time of 15 seconds were selected as the most suitable condition for mechanized harvesting of this cultivar of orange. Finally a linear mathematical model was developed based on the frequency and vibration time for the harvesting capacity and fruit loss of Thomson cultivar of orange.
Kvaternik, R. G.
1975-01-01
Two computational procedures for analyzing complex structural systems for their natural modes and frequencies of vibration are presented. Both procedures are based on a substructures methodology and both employ the finite-element stiffness method to model the constituent substructures. The first procedure is a direct method based on solving the eigenvalue problem associated with a finite-element representation of the complete structure. The second procedure is a component-mode synthesis scheme in which the vibration modes of the complete structure are synthesized from modes of substructures into which the structure is divided. The analytical basis of the methods contains a combination of features which enhance the generality of the procedures. The computational procedures exhibit a unique utilitarian character with respect to the versatility, computational convenience, and ease of computer implementation. The computational procedures were implemented in two special-purpose computer programs. The results of the application of these programs to several structural configurations are shown and comparisons are made with experiment.
Carlucci, Flaminia; Orlando, Giorgio; Haxhi, Jonida; Laudani, Luca; Giombini, Arrigo; Macaluso, Andrea; Pigozzi, Fabio; Sacchetti, Massimo
2015-07-01
The aim of this study was to compare the optimal vibration frequency (OVF), which corresponds to maximal electromyographic muscle response during whole-body vibration, between young, middle-aged, and older women in four muscles of the lower-limbs. OVF was measured as the frequency corresponding to maximal root mean square of the surface electromyogram (RMSmax) during a continuous incremental protocol, with a succession of vibration frequencies from 20 to 55 Hz (A = 2 mm), on the vastus lateralis, vastus medialis, rectus femoris, and gastrocnemius lateralis muscles of the dominant lower-limb. Seventy-eight women were divided into three age groups, that is, young, 21.6 ± 2.4 yrs; middle aged, 43.0 ± 5.2 yrs; and older, 74.2 ± 6.0 yrs. OVF in the vastus medialis was lower in the older women than in the middle-aged and young women, whereas OVF in the vastus lateralis was lower in the older than in the young women. There were no differences in OVF between muscles within each group. RMSmax was higher in the older than in the young women in all muscles. Age range should be taken into consideration when determining OVF because it decreases with age. Properly individualizing the vibration protocol might greatly influence neuromuscular effects of vibration training.
Krajnak, Kristine; Miller, G R; Waugh, Stacey
2018-01-01
Repetitive exposure to hand-transmitted vibration is associated with development of peripheral vascular and sensorineural dysfunctions. These disorders and symptoms associated with it are referred to as hand-arm vibration syndrome (HAVS). Although the symptoms of the disorder have been well characterized, the etiology and contribution of various exposure factors to development of the dysfunctions are not well understood. Previous studies performed using a rat-tail model of vibration demonstrated that vascular and peripheral nervous system adverse effects of vibration are frequency-dependent, with vibration frequencies at or near the resonant frequency producing the most severe injury. However, in these investigations, the amplitude of the exposed tissue was greater than amplitude typically noted in human fingers. To determine how contact with vibrating source and amplitude of the biodynamic response of the tissue affects the risk of injury occurring, this study compared the influence of frequency using different levels of restraint to assess how maintaining contact of the tail with vibrating source affects the transmission of vibration. Data demonstrated that for the most part, increasing the contact of the tail with the platform by restraining it with additional straps resulted in an enhancement in transmission of vibration signal and elevation in factors associated with vascular and peripheral nerve injury. In addition, there were also frequency-dependent effects, with exposure at 250 Hz generating greater effects than vibration at 62.5 Hz. These observations are consistent with studies in humans demonstrating that greater contact and exposure to frequencies near the resonant frequency pose the highest risk for generating peripheral vascular and sensorineural dysfunction.
Mode-selective vibrational modulation of charge transport in organic electronic devices
Bakulin, Artem A.
2015-08-06
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-03-01
Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than
A novel broadband bi-mode active frequency selective surface
Xu, Yang; Gao, Jinsong; Xu, Nianxi; Shan, Dongzhi; Song, Naitao
2017-05-01
A novel broadband bi-mode active frequency selective surface (AFSS) is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.
A novel broadband bi-mode active frequency selective surface
Directory of Open Access Journals (Sweden)
Yang Xu
2017-05-01
Full Text Available A novel broadband bi-mode active frequency selective surface (AFSS is presented in this paper. The proposed structure is composed of a periodic array of convoluted square patches and Jerusalem Crosses. According to simulation results, the frequency response of AFSS definitely exhibits a mode switch feature between band-pass and band-stop modes when the diodes stay in ON and OFF states. In order to apply a uniform bias to each PIN diode, an ingenious biasing network based on the extension of Wheatstone bridge is adopted in prototype AFSS. The test results are in good agreement with the simulation results. A further physical mechanism of the bi-mode AFSS is shown by contrasting the distribution of electric field on the AFSS patterns for the two working states.
Study of surface modes on a vibrating electrowetting liquid lens
Strauch, M.; Shao, Y.; Bociort, F.; Urbach, Paul
2017-01-01
The increased usage of liquid lenses motivates us to investigate surface waves on the liquid's surface. During fast focal switching, the surface waves decrease the imaging quality. We propose a model that describes the surface modes appearing on a liquid lens and predicts the resonance
Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration.
Gordiz, Kiarash; Henry, Asegun
2016-03-16
We studied the modal contributions to heat conduction at crystalline Si and crystalline Ge interfaces and found that more than 15% of the interface conductance arises from less than 0.1% of the modes in the structure. Using the recently developed interface conductance modal analysis (ICMA) method along with a new complimentary methodology, we mapped the correlations between modes, which revealed that a small group of interfacial modes, which exist between 12-13 THz, exhibit extremely strong correlation with other modes in the system. It is found that these interfacial modes (e.g., modes with large eigen vectors for interfacial atoms) are enabled by the degree of anharmonicity near the interface, which is higher than in the bulk, and therefore allows this small group of modes to couple to all others. The analysis sheds light on the nature of localized vibrations at interfaces and can be enlightening for other investigations of localization.
Improved orthogonality check for measured modes. [from ground vibration testing of structures
Berman, A.
1980-01-01
A method is proposed for performing an orthogonality check for normal modes derived from ground vibration testing. The method utilizes partitioned mass and stiffness matrices for a linear undamped representation of a structure. The normalization of the modes by the proposed method inherently includes the effects of significant displacements which were not measured; and the method may allow the use of fewer measurement points than would be necessary with the conventional method.
Mischi, M; Rabotti, C; Cardinale, M
2010-01-01
Resistance exercise is essential to improve or maintain muscle performance. Vibration training has been suggested as an alternative option for muscle conditioning, aiming especially at improving muscle strength and power. Several studies link the effects of vibration training to enhanced neuromuscular stimulation, measured by electromyography (EMG) and typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms are still unclear, limiting the use of vibration training. This paper proposes additional methods to analyze the mechanisms involved in vibration training. A dedicated measurement setup was realized to relate vibration parameters to muscle fatigue in the biceps brachii. Fatigue is estimated by EMG mean frequency and conduction velocity assessments as well as by maximum voluntary contraction (MVC) force measurements. A modified maximum likelihood algorithm is proposed for the conduction velocity estimation based on high-density EMG recording. Five volunteers performed four isometric contractions of 50 s at 80% MVC with no vibration (control) and with superimposed vibration at 20, 30, and 40 Hz. Fatigue was estimated from the decay of force, EMG mean frequency, and EMG conduction velocity. 30-Hz vibrations represented the most fatiguing stimulus. Our preliminary results also show a better correlation between force and conduction velocity decay than between force and mean frequency decay, indicating the former as a better EMG indicator of fatigue. The proposed methods provide important advancements for the analysis of vibration exercise and guidance towards the definition of optimal training protocols.
Wang, Chen; Zhang, Qichang; Wang, Wei
2017-07-01
This work presents models and experiments of an impact-driven and frequency up-converted wideband piezoelectric-based vibration energy harvester with a quintuple-well potential induced by the combination effect of magnetic nonlinearity and mechanical piecewise-linearity. Analysis shows that the interwell motions during coupled vibration period enable to increase electrical power output in comparison to conventional frequency up-conversion technology. Besides, the quintuple-well potential with shallower potential wells could extend the harvester's operating bandwidth to lower frequencies. Experiments demonstrate our proposed approach can dramatically boost the measured power of the energy harvester as much as 35 times while its lower cut-off frequency is two times lower than that of a conventional counterpart. These results reveal our proposed approach shows promise for powering portable wireless smart devices from low-intensity, low-frequency vibration sources.
Directory of Open Access Journals (Sweden)
João Carlos Silva Ramos
1999-09-01
Full Text Available We analyse vibrational frequencies of 168 compounds with the AM1 model concerning its experimentally observed gaseous frequencies. Stretching of CH, NH, OH and CO bonds, its related bending frequencies, and the CC frame movements are the studied vibrations. The results show problems with the AM1 vibrational splittings. Often symmetric stretching frequencies, like in CH3, CH2 and NH3, appear switched with the corresponding antisymmetrical ones. Among the studied vibrations many stretchings are overestimated, while bendings oscillate around experimental values. Fluorine stretchings, NN, OO, CH, double and triples CC bonds and cyclic hydrocarbon breathing modes are always overestimated while torsions, umbrella modes and OH/SH stretching are, in average, underestimated. Graphical analysis show that compounds with the lowest molecular masses are the ones with the largest difference to the experimental values. From our results it is not possible to fit confortably the calculated frequencies by a simple linear relationship of the type, n(obs=a*n(AM1. Better aggreement is obtained when different curves are adjusted for the stretching and bending modes, and when a complete linear function is used. Among our studies the best obtained statistical results are for CH, NH and OH. The conclusions obtained in this work will improve the AM1 calculated frequencies leading to accurate results for these properties.
Pulsed differential holographic measurements of vibration modes of high temperature panels
Evensen, D. A.; Aprahamian, R.; Overoye, K. R.
1972-01-01
Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.
Directory of Open Access Journals (Sweden)
P. Czech
2012-10-01
Full Text Available In the article methods of vibroacoustic diagnostics of high-power toothed gears are described. It is shown below, that properly registered and processed acoustic signal or vibration signal may serve as an explicitly interpreted source of diagnostic symptoms. The presented analysis were based on vibration signals registered during the work of the gear of a rolling stand working in Katowice Steel Plant (presently one of the branches of Mittal Steel Poland JSC.
Hahn, Seungsoo
2016-10-28
The Hamiltonian matrix for the first excited vibrational states of a protein can be effectively represented by local vibrational modes constituting amide III, II, I, and A modes to simulate various vibrational spectra. Methods for obtaining the Hamiltonian matrix from ab initio quantum calculation results are discussed, where the methods consist of three steps: selection of local vibrational mode coordinates, calculation of a reduced Hessian matrix, and extraction of the Hamiltonian matrix from the Hessian matrix. We introduce several methods for each step. The methods were assessed based on the density functional theory calculation results of 24 oligopeptides with four different peptide lengths and six different secondary structures. The completeness of a Hamiltonian matrix represented in the reduced local mode space is improved by adopting a specific atom group for each amide mode and reducing the effect of ignored local modes. The calculation results are also compared to previous models using C=O stretching vibration and transition dipole couplings. We found that local electric transition dipole moments of the amide modes are mainly bound on the local peptide planes. Their direction and magnitude are well conserved except amide A modes, which show large variation. Contrary to amide I modes, the vibrational coupling constants of amide III, II, and A modes obtained by analysis of a dipeptide are not transferable to oligopeptides with the same secondary conformation because coupling constants are affected by the surrounding atomic environment.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shui-Ting; Huang, Hong-Wu [Hunan University, Changsha (China); Chiu, Yi-Jui; Yu, Guo-Fei [Xiamen University of Technology, Xiamen (China); Yang, Chia-Hao [Taipei Chengshih University of Science and Technology, Taipei (China); Jian, Sheng-Rui [I-Shou University, Kaohsiung (China)
2017-02-15
The Assumed mode method (AMM) and Finite element method (FEM) were used. Their results were compared to investigate the coupled shaft-torsion, disk-transverse, and blade-bending vibrations in a flexible-disk rotor system. The blades were grouped with a spring. The flexible-disk rotor system was divided into three modes of coupled vibrations: Shaft-disk-blade, disk-blade, and blade-blade. Two new modes of coupled vibrations were introduced, namely, lacing wires-blade and lacing wires-disk-blade. The patterns of change of the natural frequencies and mode shapes of the system were discussed. The results showed the following: first, mode shapes and natural frequencies varied, and the results of the AMM and FEM differed; second, numerical calculation results showed three influencing factors on natural frequencies, namely, the lacing wire constant, the lacing wire location, and the flexible disk; lastly, the flexible disk could affect the stability of the system as reflected in the effect of the rotational speed.
Analysis of subsystem randomness effects on the mid-frequency vibrations of built-up structures
Ji, Lin; Huang, Zhenyu
2013-06-01
The paper concerns the analysis of subsystem randomness effects on the mid-frequency vibration responses of built-up systems. The system model considered, in the first instance, is a long-wavelength finite element (FE) subsystem connected with a short-wavelength statistical energy analysis (SEA) subsystem via discrete couplings. The randomness effects of the SEA subsystem on both the displacement response of the FE subsystem and the energy response of the SEA subsystem are then investigated under the frame of the hybrid FE/SEA theory [P. Shorter, R. Langley, Vibro-acoustic analysis of complex systems, Journal of Sound and Vibration, 288 (2005) 669-700]. It is found that the subsystem randomness effects may be well indicated by a dimensionless parameter α, which is a function of the number of coupling points, the dynamic mismatch between the FE and SEA subsystems and the modal overlap factor of the SEA subsystem. The smaller the value of α is, the more insignificant the randomness effects are. As a result, a so-called "α-criterion" is derived which states that, if a built-up structure satisfies the condition of α≪1, the randomness effects of the SEA subsystem can be neglected. In this case, the SEA subsystem can be simply treated as an infinite (or semi-infinite as appropriate) structure regardless of its mode count being sufficiently high or not. Numerical examples are presented to illustrate the validity of the present theory.
Imaouchen, Yacine; Kedadouche, Mourad; Alkama, Rezak; Thomas, Marc
2017-01-01
Signal processing techniques for non-stationary and noisy signals have recently attracted considerable attentions. Among them, the empirical mode decomposition (EMD) which is an adaptive and efficient method for decomposing signals from high to low frequencies into intrinsic mode functions (IMFs). Ensemble EMD (EEMD) is proposed to overcome the mode mixing problem of the EMD. In the present paper, the Complementary EEMD (CEEMD) is used for bearing fault detection. As a noise-improved method, the CEEMD not only overcomes the mode mixing, but also eliminates the residual of added white noise persisting into the IMFs and enhance the calculation efficiency of the EEMD method. Afterward, a selection method is developed to choose relevant IMFs containing information about defects. Subsequently, a signal is reconstructed from the sum of relevant IMFs and a Frequency-Weighted Energy Operator is tailored to extract both the amplitude and frequency modulations from the selected IMFs. This operator outperforms the conventional energy operator and the enveloping methods, especially in the presence of strong noise and multiple vibration interferences. Furthermore, simulation and experimental results showed that the proposed method improves performances for detecting the bearing faults. The method has also high computational efficiency and is able to detect the fault at an early stage of degradation.
Structure-borne sound structural vibrations and sound radiation at audio frequencies
Cremer, L; Petersson, Björn AT
2005-01-01
Structure-Borne Sound"" is a thorough introduction to structural vibrations with emphasis on audio frequencies and the associated radiation of sound. The book presents in-depth discussions of fundamental principles and basic problems, in order to enable the reader to understand and solve his own problems. It includes chapters dealing with measurement and generation of vibrations and sound, various types of structural wave motion, structural damping and its effects, impedances and vibration responses of the important types of structures, as well as with attenuation of vibrations, and sound radi
Florián, Jan; Leszczynski, Jerzy; Johnson, Benny G.
1995-04-01
Harmonic force fields, frequencies, and IR and Raman intensities of the intermolecular vibrational modes in the cyclic formamide dimer and the guanine-cytosine and adenine-thymine DNA base pairs were calculated using several ab initio methods, including Hartree-Fock, MP2 and gradient-corrected density functional theory (DFT), with various basis sets. A polar environment was modeled using the polarizable continuum model (SCRF). The effect of electron correlation upon calculated Raman intensities was investigated using DFT. The normal coordinate analysis was carried out in internal coordinates observing C 2h symmetry of the formamide dimer. These coordinates were also generalized for the DNA base pairs, allowing force constants, frequencies and intensities of the characteristic intermolecular vibrational modes to be compared among the H-bonded complexes studied. In addition, coordinates defined in this way are directly related to standard DNA interbase structural parameters as pseudodyad, tilt and propeller twist angles. Extensive coupling of the intramolecular wagging vibrations of the amino groups participating in H-bonding with the tilt and propeller twist vibrations was obtained for the lowest frequency normal modes.
Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator
Energy Technology Data Exchange (ETDEWEB)
Dumas, Jean-Charles, E-mail: jcdumas@physics.uwa.edu.a [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); Ju Li; Blair, David G. [School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)
2010-08-09
We present an analytical model for a Roberts Linkage used as an ultra low frequency vibration isolator. The Roberts Linkage is a structure that simulates a very long radius conical pendulum, at a relatively small height. We show through an analytical solution that it is possible to independently tune the centre of percussion and the resonant frequency for arbitrary geometrical configurations. The result is shown to provide a practical tuning solution, which achieves near ideal vibration isolation.
Modelling of tuning of an ultra low frequency Roberts Linkage vibration isolator
Dumas, Jean-Charles; Ju, Li; Blair, David G.
2010-08-01
We present an analytical model for a Roberts Linkage used as an ultra low frequency vibration isolator. The Roberts Linkage is a structure that simulates a very long radius conical pendulum, at a relatively small height. We show through an analytical solution that it is possible to independently tune the centre of percussion and the resonant frequency for arbitrary geometrical configurations. The result is shown to provide a practical tuning solution, which achieves near ideal vibration isolation.
Current barriers to confine high frequency common mode currents
Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes
2016-01-01
A commercially produced three phase power line filter is submitted to a Current Barrier (CB) Electro-Magnetic Compatibility (EMC) zoning strategy as an attempt to confine high frequency common mode currents. The intent of the paper is not to show how to build a ’perfect’ filter, since this is known.
Modes of vibration in a circular plate with three simple support points.
Chi, C.
1972-01-01
The analytical solutions for the vibrational modes of a thin circular flat plate that is simply supported at three points on the circumference are presented. The mode shapes and corresponding eigenvalues are obtained. Results show that the modes can be grouped into four different types depending on the manner by which they receive the pressure at the supported points. The problem is of the mixed boundary value type in that some portion of the boundary is free while the other portion is simply supported.
Analysis of muscle fatigue induced by isometric vibration exercise at varying frequencies.
Mischi, M; Rabotti, C; Cardinale, M
2012-01-01
An increase in neuromuscular activity, measured by electromyography (EMG), is usually observed during vibration exercise. The underlying mechanisms are however unclear, limiting the possibilities to introduce and exploit vibration training in rehabilitation programs. In this study, a new training device is used to perform vibration exercise at varying frequency and force, therefore enabling the analysis of the relationship between vibration frequency and muscle fatigue. Fatigue is estimated by maximum voluntary contraction measurement, as well as by EMG mean-frequency and conduction-velocity analysis. Seven volunteers performed five isometric contractions of the biceps brachii with a load consisting of a baseline of 80% of their maximum voluntary contraction (MVC), with no vibration and with a superimposed 20, 30, 40, and 50 Hz vibrational force of 40 N. Myoelectric and mechanical fatigue were estimated by EMG analysis and by assessment of the MVC decay, respectively. A dedicated motion artifact canceler, making use of accelerometry, is proposed to enable accurate EMG analysis. Use of this canceler leads to better interpolation of myoelectric fatigue trends and to better correlation between mechanical and myoelectric fatigue. In general, our results suggest vibration at 30 Hz to be the most fatiguing exercise. These results contribute to the analysis of vibration exercise and motivate further research aiming at improved training protocols.
Wang, Ji; Yang, Jiashi; Li, Jiangyu
2007-03-01
Energy trapping has important applications in the design of thickness-shear resonators. Considerable efforts have been made for the effective utilization and improvement of energy trapping with variations of plate configurations, such as adding electrodes and contouring. As a new approach in seeking improved energy trapping feature, we analyze thickness-shear vibrations in an elastic plate with functionally graded material (FGM) of in-plane variation of mechanical properties, such as elastic constants and density. A simple and general equation governing the thickness-shear modes is derived from a variational analysis. A plate with piecewise constant material properties is analyzed as an example. It is shown that such a plate can support thickness-shear vibration modes with obvious energy trapping. Bechmann's number for the existence of only one trapped mode also can be determined accordingly.
Multiscale low-frequency circulation modes in the global atmosphere
Lau, K.-M.; Sheu, P.-J.; Kang, I.-S.
1994-01-01
In this paper, fundamental multiscale circulation modes in the global atmosphere are identified with the objective of providing better understanding of atmospheric low-frequency variabilities over a wide range of spatial and temporal scales. With the use of a combination of rotated principal component technique, singular spectrum analysis, and phase space portraits, three categories of basic multiscale modes in the atmosphere are found. The first is the interannual-mode (IAM), which is dominated by time scales longer than a year and can be attributed to heating and circulation anomalies associated with the coupled tropical ocean-atmosphere, in particular the El Nino-Southern Oscillation. The second is a set of tropical intraseasonal modes consisting of three separate multiscale patterns (ISO-1, -2, -3) related to tropical heating that can be identified with the different phases of the Madden-Julian Oscillation (MJO), including its teleconnection to the extratropics. The ISO spatial and temporal patterns suggest that the extratropical wave train in the North Pacific and North America is related to heating over the Maritime Continent and that the evolution of the MJO around the equator may require forcing from the extratropics spawning convection over the Indian Ocean. The third category represents extratropical intraseasonal oscillations arising from internal dynamics of the basic-state circulation. In the Northern Hemisphere, there are two distinct circulation modes with multiple frequencies in this category: the Pacific/North America (PNA) and the North Atlantic/Eurasia (NAE). In the Southern Hemisphere, two phase-locked modes (PSA-1 and PSA-2) are found depicting an eastward propagating wave train from eastern Australia, via the Pacific South America to the South Atlantic. The extratropical modes exhibit temporal characteristics such as phase locking and harmonic oscillations possibly associated with quadratically nonlinear dynamical systems. Additionally, the
Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei
2016-12-01
In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.
Directory of Open Access Journals (Sweden)
Kookhyun Kim
2012-09-01
Full Text Available An approximate method based on an assumed mode method has been presented for the free vibration analysis of a rectangular plate with arbitrary edge constraints. In the presented method, natural frequencies and their mode shapes of the plate are calculated by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. Characteristic orthogonal polynomials having the property of Timoshenko beam functions which satisfies edge constraints corresponding to those of the objective plate are used. In order to examine the accuracy of the proposed method, numerical examples of the rectangular plates with various thicknesses and edge constraints have been presented. The results have shown good agreement with those of other methods such as an analytic solution, an approximate solution, and a finite element analysis.
Tamayo, Javier; Pini, Valerio; Kosaka, Prisicila; Martinez, Nicolas F; Ahumada, Oscar; Calleja, Montserrat
2012-08-10
There is a need for noninvasive techniques for simultaneous imaging of the stress and vibration mode shapes of nanomechanical systems in the fields of scanning probe microscopy, nanomechanical biological and chemical sensors and the semiconductor industry. Here we show a novel technique that combines a scanning laser, the beam deflection method and digital multifrequency excitation and analysis for simultaneous imaging of the static out-of-plane displacement and the shape of five vibration modes of nanomechanical systems. The out-of-plane resolution is at least 100 pm Hz⁻¹/² and the lateral resolution, which is determined by the laser spot size, is 1-1.5 μm. The capability of the technique is demonstrated by imaging the residual surface stress of a microcantilever together with the shape of the first 22 vibration modes. The vibration behavior is compared with rigorous finite element simulations. The technique is suitable for major improvements in the imaging of liquids, such as higher bandwidth and enhanced spatial resolution.
Directory of Open Access Journals (Sweden)
Sun Yi-Hang
2017-01-01
Full Text Available In order to detect a mechanical type of structural failure of the circuit breaker, the characteristics of the circuit breaker mechanical vibration signal is analyzed in this paper. A combination of medium voltage circuit breaker based on empirical mode decomposition (EMD amount of energy and support vector machine (SVM theory vibration signal feature vector extraction and analysis of fault classification method is proposed. First, the vibration signal of the circuit breaker is decomposed by EMD, then intrinsic mode function (IMF is obtain. The major fault feature information intrinsic mode functions the amount of energy of the component is obtained by discrete sampling points and the amount of energy. Using the amount of energy of IMF component as a feature vector, the failure of the test sample signal as input feature vector into trained “BT-SVM” support vector machine classification mechanism for fault classification. The differences and fault type of vibration signals can be identified by this method through the experimental analysis.
Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.
2012-01-01
The A 1B1 interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies
Present and Future Modes of Low Frequency Climate Variability
Energy Technology Data Exchange (ETDEWEB)
Cane, Mark A.
2014-02-20
This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.
"Good Vibrations": A workshop on oscillations and normal modes
Barbieri, Sara; Carpineti, Marina; Giliberti, Marco; Rigon, Enrico; Stellato, Marco; Tamborini, Marina
2016-05-01
We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group "Lo spettacolo della Fisica" (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path.
Ocak, Hasan; Loparo, Kenneth A.
2004-05-01
This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.
DIAGNOSIS SHAFT BEARINGS NODE KNIFE CUTTER FOR LOW-FREQUENCY VIBRATION
Directory of Open Access Journals (Sweden)
S. T. Antipov
2015-01-01
Full Text Available The currently used system of preventive maintenance is not effective enough. Vibration diagnostics is one of the modern methods of non-destructive testing equipment components, allowing to define the appearance of defects in the early stages. The paper identifies the main areas of research, as well as selected research object, selected non-destructive testing method for efficiently determining the actual state of dynamically operating equipment. Is a schematic of vibration sensors. Measuring point vibration parameters were determined experimentally based on the conditions for obtaining the most informative vibroacoustic signal. Determine the behavior of the cutter under which minimizes the occurrence of a wide range of fluctuations that affects the accuracy of the measurements. For vibration analysis method was chosen direct spectral analysis, which involves the detection of repetitive vibrations. Presented graphically vibration spectra and spectra of vibration signals. Analysis of a wide range of vibration spectrum allowed to allocate land on which showed a significant increase in the values of vibration. Processing of the selected portion of the spectrum has led to the conclusion that in the bearing, shock pulses are in contact with each rolling body shell, and as a result, a number of harmonics in the individual frequencies. Was made a comparative analysis of the spectra of working with a defective bearing bearing on the same frequencies and determine the average increase in the values of vibration. Spectral analysis is an effective method to determine not only the extent of the defect and its location, but also allows you to effectively predict its development. The results may be useful for specialists involved in vibration diagnostics, calculation and design of rotary machines.
Wang, Zhao; Yan, Hong; Li, Qibing; Xu, Kun
2017-12-01
The unified gas-kinetic scheme (UGKS) is a direct modeling method for both continuum and rarefied flow computations. In the previous study, the UGKS was developed for diatomic molecular simulations with translation and rotational motions. In this paper, a UGKS with non-equilibrium translational, rotational, and vibrational degrees of freedom, will be developed. The new scheme is based on the phenomenological gas dynamics model, where the translational, rotational, and vibrational modes get to the equilibrium with different time scales with the introduction of rotational and vibrational collision numbers. This new scheme is tested in a few cases, such as the homogeneous flow relaxation, shock structure, shock tube problem, and flow passing through a circular and semi-circular cylinders. The analytical and DSMC solutions are used for the validation of the UGKS, and reasonable agreements have been achieved.
Hazra, Milan K.; Bagchi, Biman
2017-01-01
Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through a study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work, we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infrared spectrum obtained through the Fourier transform of total dipole moment auto-time correlation function, (ii) from the Fourier transform of the translational and angular velocity time autocorrelation functions, and (iii) a quenched normal mode analysis of the parent liquid at 300 K. The three spectra, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. The study of participation ratio of the density of states obtained from the normal mode analysis shows that the broad spectrum around 100 cm-1 involves collective oscillations of 300-400 molecules. Dipolar solvation dynamics exhibit ultrafast energy relaxation with an initial time constant around 157 fs which can be attributed to the coupling to the collective excitations. We compare the properties of DMSO with those of water vis-a-vis the existence of the low frequency collective modes. Last, we find that the collective excitation spectrum exhibits strong temperature dependence.
Hazra, Milan K; Bagchi, Biman
2017-01-14
Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through a study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work, we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infrared spectrum obtained through the Fourier transform of total dipole moment auto-time correlation function, (ii) from the Fourier transform of the translational and angular velocity time autocorrelation functions, and (iii) a quenched normal mode analysis of the parent liquid at 300 K. The three spectra, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. The study of participation ratio of the density of states obtained from the normal mode analysis shows that the broad spectrum around 100 cm -1 involves collective oscillations of 300-400 molecules. Dipolar solvation dynamics exhibit ultrafast energy relaxation with an initial time constant around 157 fs which can be attributed to the coupling to the collective excitations. We compare the properties of DMSO with those of water vis-a-vis the existence of the low frequency collective modes. Last, we find that the collective excitation spectrum exhibits strong temperature dependence.
Bastrukov, S. I.; Chang, H. -K.; Molodtsova, I. V.; Wu, E. H.; Chen, G. -T.; Lan, S. -H.
2009-01-01
Using the energy variational method of magneto-solid-mechanical theory of a perfectly conducting elastic medium threaded by magnetic field, the frequency spectrum of Lorentz-force-driven global torsional nodeless vibrations of a neutron star with Ferraro's form of axisymmetric poloidal nonhomogeneous internal and dipole-like external magnetic field is obtained and compared with that for this toroidal Alfv\\'en mode in a neutron star with homogeneous internal and dipolar external magnetic field...
Guo, Jianguang; Budarz, Timo; Ward, Joshua M; Prohofsky, Earl W
2010-10-01
Self-consistent normal mode analysis (SCNMA) is applied to heme c type cytochrome f to study temperature-dependent protein motion. Classical normal mode analysis assumes harmonic behavior and the protein mean-square displacement has a linear dependence on temperature. This is only consistent with low-temperature experimental results. To connect the protein vibrational motions between low and physiological temperatures, we have incorporated a fitted set of anharmonic potentials into SCNMA. In addition, quantum harmonic-oscillator theory has been used to calculate the displacement distribution for individual vibrational modes. We find that the modes involving soft bonds exhibit significant non-Gaussian dynamics at physiological temperature, which suggests that it may be the cause of the non-Gaussian behavior of the protein motions probed by elastic incoherent neutron scattering. The combined theory displays a dynamical transition caused by the softening of few "torsional" modes in the low-frequency regime ( 0.6 ps). These modes change from Gaussian to a classical distribution upon heating. Our theory provides an alternative way to understand the microscopic origin of the protein dynamical transition.
A smart and self-sufficient frequency tunable vibration energy harvester
Eichhorn, C.; Tchagsim, R.; Wilhelm, N.; Woias, P.
2011-10-01
We present a piezoelectric energy-harvesting system, which is able to self-tune its resonance frequency in an energy-autonomous way, in order to extend its efficient operation over a large frequency range. The system consists of a resonant and frequency-tunable piezoelectric generator and a control unit. In predefined temporal intervals, the control unit analyzes the ambient vibration frequency, decides whether an adjustment of the generator's resonance frequency is necessary or not and delivers the appropriate voltage to a piezoelectric actuator which alters the generator's mechanical stiffness to tune its resonance frequency. The control unit has been optimized to an ultralow power consumption which means that up to 90% of the harvested energy can be fed to the powered electrical load, which could be an embedded system. With frequency-tunable generators, the application range of vibration energy harvesters can be extended to environments with a non-constant vibration frequency, like e.g. the surface of an engine with a varying number of revolutions per minute. Furthermore, the presented system opens the door to off-the-shelf solutions for environments with constant but uncommon vibration frequencies. With the smart tuning algorithm presented in this work, our system is even able to compensate typical weak points of piezoelectrically tunable harvesters, like e.g. hysteresis effects, the temperature dependence of the mechanical stiffness and aging effects.
Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.
2017-08-01
Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.
Hazra, Milan
2016-01-01
Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work we investigate the intermolecular vibrational spectrum of DMSO through three different computational techniques namely (i) the far-infra red spectrum obtained through Fourier transform of total dipole moment auto time correlation function, (ii) from Fourier transform of the translational and angular velocity time autocorrelation functions and a (iii) quenched normal mode analysis of the parent liquid at 300K. The three spectrum, although exhibit differences among each other, reveal similar features which are in good, semi-quantitative, agreement with experimental results. Study of participation ratio of the density...
Mildren, Robyn L; Peters, Ryan M; Hill, Aimee J; Blouin, Jean-Sébastien; Carpenter, Mark G; Inglis, J Timothy
2017-05-01
Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults ( n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1 ) accurate reflex estimates could be obtained with vibration; 2 ) responses did not habituate over 2 min of exposure; and importantly, 3 ) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing. NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and
Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.
Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh
2014-12-14
The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.
Gribakin, G. F.; Stanton, J. F.; Danielson, J. R.; Natisin, M. R.; Surko, C. M.
2017-12-01
The dominant mechanism of low-energy positron annihilation in polyatomic molecules is through positron capture in vibrational Feshbach resonances (VFR). In this paper, we investigate theoretically the effect of anharmonic terms in the vibrational Hamiltonian on positron annihilation rates. Such interactions enable positron capture in VFRs associated with multiquantum vibrational excitations, leading to enhanced annihilation. Mode coupling can also lead to faster depopulation of VFRs, thereby reducing their contribution to the annihilation rates. To analyze this complex picture, we use coupled-cluster methods to calculate the anharmonic vibrational spectra and dipole transition amplitudes for chloroform, chloroform-d1, 1,1-dichloroethylene, and methanol, and use these data to compute positron resonant annihilation rates for these molecules. Theoretical predictions are compared with the annihilation rates measured as a function of incident positron energy. The results demonstrate the importance of mode coupling in both enhancement and suppression of the VFR. There is also experimental evidence for the direct excitation of multimode VFR. Their contribution is analyzed using a statistical approach, with an outlook towards more accurate treatment of this phenomenon.
The effects of low-frequency vibrations on hepatic profile of blood
Damijan, Z.
2008-02-01
Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of
Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo
2016-12-01
Carlucci, F, Felici, F, Piccinini, A, Haxhi, J, and Sacchetti, M. Individual optimal frequency in whole-body vibration: effect of protocol, joint angle, and fatiguing exercise. J Strength Cond Res 30(12): 3503-3511, 2016-Recent studies have shown the importance of individualizing the vibration intervention to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess the individual optimal vibration frequency (OVF) corresponding to the highest muscle activation (RMSmax) during vibration at different frequencies, comparing different protocols. Twenty-nine university students underwent 3 continuous (C) and 2 random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), to assess the effect of joint angle and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on OVF assessment. In the random protocols, vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and OVF values did not differ significantly in the C, R2, and R4 protocols. RMSmax was higher in C90 (p fatiguing exercise had no effect on OVF. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols, and therefore, it could be equally valid in identifying the OVF with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on surface electromyography response during vibration but did not affect OVF identification significantly.
Energy Technology Data Exchange (ETDEWEB)
Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel
2009-05-07
Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.
Site-selective detection of vibrational modes of an iron atom in a trinuclear complex
Energy Technology Data Exchange (ETDEWEB)
Faus, Isabelle, E-mail: faus@rhrk.uni-kl.de; Rackwitz, Sergej; Wolny, Juliusz A. [University of Kaiserslautern, Department of Physics (Germany); Banerjee, Atanu; Kelm, Harald; Krüger, Hans-Jörg [University of Kaiserslautern, Department of Chemistry (Germany); Schlage, Kai; Wille, Hans-Christian [DESY, PETRA III, P01 (Germany); Schünemann, Volker [University of Kaiserslautern, Department of Physics (Germany)
2016-12-15
Nuclear inelastic scattering (NIS) experiments on the trinuclear complex [{sup 57}Fe{L-N_4(CH_2Fc)_2} (CH{sub 3}CN){sub 2}](ClO{sub 4}){sub 2} have been performed. The octahedral iron ion in the complex was labelled with {sup 57}Fe and thereby exclusively the vibrational modes of this iron ion have been detected with NIS. The analysis of nuclear forward scattering (NFS) data yields a ferrous low-spin state for the {sup 57}Fe labelled iron ion. The simulation of the partial density of states (pDOS) for the octahedral low-spin iron(II) ion of the complex by density functional theory (DFT) calculations is in excellent agreement with the experimental pDOS of the complex determined from the NIS data obtained at 80 K. Thereby it was possible to assign almost each of the experimentally observed NIS bands to the corresponding molecular vibrational modes.
Influence of vibration modes on control system stabilization for space shuttle type vehicles
Greiner, H. G.
1972-01-01
An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.
Korayem, Moharam Habibnejad; Nahavandi, Amir
2017-04-01
This paper investigates the vibration of a tapping-mode Atomic Force Microscope (AFM) cantilever covered with two whole piezoelectric layers in a liquid medium. The authors of this article have already modeled the vibration of a cantilever immersed in liquid over rough surfaces. Five new ideas have been considered for improving the results of the previous work. Mass and damping of a cantilever probe tip have been considered. Since the probe tip of an AFM cantilever has a mass, which can itself affect the natural frequency of vibration, the significance of this mass has been explored. Also, two hydrodynamic force models for analyzing the mass and damping added to a cantilever in liquid medium have been evaluated. In modeling the vibration of a cantilever in liquid, simplifications are made to the theoretical equations used in the modeling, which may make the obtained results different from those in the real case. So, two hydrodynamic force models are introduced and compared with each other. In addition to the already introduced DMT model, the JKR model has been proposed. The forces acting on a probe tip have attractive and repulsive effects. The attractive Van der Waals force can vary depending on the surface smoothness or roughness, and the repulsive contact force, which is independent of the type of surface roughness and usually varies with the hardness or softness of a surface. When the first mode is used in the vibration of an AFM cantilever, the changes of the existing physical parameters in the simulation do not usually produce a significant difference in the response. Thus, three cantilever vibration modes have been investigated. Finally, an analytical approach for obtaining the response of equations is presented which solves the resulting motion equation by the Laplace method and, thus, a time function is obtained for cantilever deflection is determined. Also, using the COMSOL software to model a cantilever in a liquid medium, the computed natural
Travel Mode Detection with Varying Smartphone Data Collection Frequencies
Directory of Open Access Journals (Sweden)
Muhammad Awais Shafique
2016-05-01
Full Text Available Smartphones are becoming increasingly popular day-by-day. Modern smartphones are more than just calling devices. They incorporate a number of high-end sensors that provide many new dimensions to smartphone experience. The use of smartphones, however, can be extended from the usual telecommunication field to applications in other specialized fields including transportation. Sensors embedded in the smartphones like GPS, accelerometer and gyroscope can collect data passively, which in turn can be processed to infer the travel mode of the smartphone user. This will solve most of the shortcomings associated with conventional travel survey methods including biased response, no response, erroneous time recording, etc. The current study uses the sensors’ data collected by smartphones to extract nine features for classification. Variables including data frequency, moving window size and proportion of data to be used for training, are dealt with to achieve better results. Random forest is used to classify the smartphone data among six modes. An overall accuracy of 99.96% is achieved, with no mode less than 99.8% for data collected at 10 Hz frequency. The accuracy is observed to decrease with decrease in data frequency, but at the same time the computation time also decreases.
A Stepwise Optimal Design of a Dynamic Vibration Absorber with Tunable Resonant Frequency
Directory of Open Access Journals (Sweden)
Jiejian DI
2014-08-01
Full Text Available A new kind of dynamic vibration absorber (DVA with tunable resonant frequency is presented. The kinematics differential equation about it is built and the stepwise optimization is performed. Firstly, four main system parameters involving the ratios of mass m, natural frequency f, vibration frequency g and damping z are solved by small-step-search method to obtain optimal steady state amplitude. Secondly, the sizing optimization of the dynamic vibration absorber is proceeded to search an optimal damping effect based on the optimal parameters (g, m, z, f. And such the damping effect is simulated in a flat structure, and the results show that the working frequency band and damping effect of the DVA after optimization won 20 % of the effect of ascension compared with that before optimization.
Influence of low-frequency vibration on the erythrocytes acid resistance
Directory of Open Access Journals (Sweden)
O. I. Dotsenko
2011-02-01
Full Text Available The influence of low-frequency vibration (frequency range 8–32 Hz, amplitudes 0.5 ± 0.04 and 0.9 ± 0.08 mm on the erythrocytes’ acid resistance was studied. The kinetics of various hemolysis stages was investigated. The time-frequency dependences of the kinetics constants of hemolysis stages were obtained and discussed. It was shown that 8–16 Hz vibration with the 0.5 mm amplitude and 8 Hz with 0.9 mm causes destructive reorganizations of a cytoplasm’s water-protein structure. It leads to decrease in a permeability barrier for a hemolytic agent. As a result of oxidizing stress the vibration in the frequency range of 20–32 Hz causes the modifying reactions leading to the aggregation of cellular proteins and, in particular, the band 3 protein.
Graus, M; Grimm, M; Metzger, C; Dauth, M; Tusche, C; Kirschner, J; Kümmel, S; Schöll, A; Reinert, F
2016-04-08
Electron-phonon coupling is one of the most fundamental effects in condensed matter physics. We here demonstrate that photoelectron momentum mapping can reveal and visualize the coupling between specific vibrational modes and electronic excitations. When imaging molecular orbitals with high energy resolution, the intensity patterns of photoelectrons of the vibronic sidebands of molecular states show characteristic changes due to the distortion of the molecular frame in the vibronically excited state. By comparison to simulations, an assignment of specific vibronic modes is possible, thus providing unique information on the coupling between electronic and vibronic excitation.
Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin
2010-05-01
Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.
Shiba, Hayato; Kawasaki, Takeshi; Onuki, Akira
2012-10-01
We investigate the dynamic heterogeneities of glassy particle systems in the theoretical schemes of bond breakage and four-point correlation functions. In the bond-breakage scheme, we introduce the structure factor S(b)(q,t) and the susceptibility χ(b)(t) to detect the spatial correlations of configuration changes. Here χ(b)(t) attains a maximum at t=t(b)(max) as a function of time t, where the fraction of the particles with broken bonds φ(b)(t) is about 1/2. In the four-point scheme, treating the structure factor S(4)(q,t) and the susceptibility χ(4)(t), we detect superpositions of the heterogeneity of bond breakage and that of thermal low-frequency vibration modes. While the former grows slowly, the latter emerges quickly to exhibit complex space-time behavior. In two dimensions, the vibration modes extending over the system yield significant contributions to the four-point correlations, which depend on the system size logarithmically. A maximum of χ(4)(t) is attained at t=t(4)(max), where these two contributions become of the same order. As a result, t(4)(max) is considerably shorter than t(b)(max).
Zhao, Libo; Hu, Yingjie; Wang, Tongdong; Ding, Jianjun; Liu, Xixiang; Zhao, Yulong; Jiang, Zhuangde
2016-06-06
Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS) technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m³ to 900 kg/m³ and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.
Directory of Open Access Journals (Sweden)
Libo Zhao
2016-06-01
Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.
Multiple-mode nonlinear free and forced vibrations of beams using finite element method
Mei, Chuh; Decha-Umphai, Kamolphan
1987-01-01
Multiple-mode nonlinear free and forced vibration of a beam is analyzed by the finite element method. The geometric nonlinearity is investigated. Inplane displacement and inertia (IDI) are also considered in the formulation. Harmonic force matrix is derived and explained. Nonlinear free vibration can be simply treated as a special case of the general forced vibration by setting the harmonic force matrix equal to zero. The effect of the higher modes is more pronouced for the clamped supported beam than the simply supported one. Beams without IDI yield more effect of the higher modes than the one with IDI. The effects of IDI are to reduce nonlinearity. For beams with end supports restrained from axial movement (immovable cases), only the hardening type nonlinearity is observed. However, beams of small slenderness ratio (L/R = 20) with movable end supports, the softening type nonlinearity is found. The concentrated force case yields a more severe response than the uniformly distributed force case. Finite element results are in good agreement with the solution of simple elliptic response, harmonic balance method, and Runge-Kutte method and experiment.
Modeling of 1-3 piezoelectric composites operating in thickness-stretch vibration mode
Yang, Z.; Wang, H.; Zhao, C.; Zeng, D.
2015-06-01
For bulk piezoelectric ceramics plates, the fundamental thickness-stretch (TSt) waves are always coupled to the in-plane extension waves and the symmetric thickness-shear waves. The occurrence of these spurious modes in bulk piezoelectric ceramics plates is undesirable as it may interfere with the operation of transducers. 1-3 piezoelectric composites are promising candidates to suppress the spurious modes mentioned above. However, theoretical modelling of multiphase ceramic composite objects is very complex. In this study, a simple analytical TSt vibration model is constructed from three-dimensional equations of linear piezoelectricity. The mechanical damping is considered in the model by introducing a complex elastic constant. The performance of 1-3 piezoelectric composites is analysed and the electrical impedance results from theoretical and experimental analysis are compared. The results show that there is excellent agreement between the experimental electrical impedance and that obtained by the theoretical TSt vibration analysis. This indicates that 1-3 piezoelectric composites can be operated in a nearly pure TSt vibration mode near the fundamental resonance. The analytical model we present is valid for analysing 1-3 piezoelectric composites plates with large aspect ratios quickly and efficiently.
Huang, Xinchuan; Fortenberry, Ryan C.; Lee, Timothy J.
2013-01-01
The interstellar presence of protonated nitrous oxide has been suspected for some time. Using established high-accuracy quantum chemical techniques, spectroscopic constants and fundamental vibrational frequencies are provided for the lower energy O-protonated isomer of this cation and its deuterated isotopologue. The vibrationally-averaged B0 and C0 rotational constants are within 6 MHz of their experimental values and the D(subJ) quartic distortion constants agree with experiment to within 3%. The known gas phase O-H stretch of NNOH(+) is 3330.91 cm(exp-1), and the vibrational configuration interaction computed result is 3330.9 cm(exp-1). Other spectroscopic constants are also provided, as are the rest of the fundamental vibrational frequencies for NNOH(+) and its deuterated isotopologue. This high-accuracy data should serve to better inform future observational or experimental studies of the rovibrational bands of protonated nitrous oxide in the ISM and the laboratory.
USE OF WHOLE-BODY VIBRATION AS A MODE OF WARMING UP BEFORE COUNTER MOVEMENT JUMP
Directory of Open Access Journals (Sweden)
Enrique G. Artero
2007-12-01
Full Text Available Whole-body vibration (WBV has been suggested to be particularly effective on the stretch-shortening cycle-based movements, such as the counter movement jump (CMJ test (Issurin, 2005. Nevertheless, the literature on short-term vibration exposure and lower limb explosive performance (measured by CMJ test is contradictory. Either transient improvements (Bosco et al., 2000; Cochrane and Stannard, 2005; Torvinen et al., 2002a or no effects (Torvinen et al., 2002b; Rittweger et al., 2003; Cormie et al., 2006 have been reported after a single WBV exposure ranging from 30 s to 10 min. The present study aimed at better characterizing the use of a single short bout of WBV as a mode of warming up before a CMJ test.A total of 114 university students (37 men, 77 women, aged 19.6 ± 2.0 years signed an informed consent form and volunteered to participate in the study. The study protocol was approved by the Review Committee for Research Involving Human Subjects of our center. Participants were asked to come to the laboratory in three occasions three days apart. First visit: familiarization session aiming to learn the CMJ technique and to experience the vibration stimulus. Second visit: the participants performed three consecutive CMJ with one min rest interval. No significant differences were observed among the jumps, and the highest score was retained. Third visit: the participants were exposed to a single short bout of WBV and immediately after they performed three CMJ with one min rest interval.An infrared contact timing platform (ERGO JUMP Plus - BOSCO SYSTEM, Byomedic, S.C.P., Barcelona, Spain was used to measure "flight" time (t during the vertical jump (accuracy 0.001 s. Maximum height achieved by the body centre of gravity (h was then estimated, i.e. h = g · t2 / 8, where g = 9.81 m/s2. In all occasions, the participants were instructed to abstain from strenuous exercise for the preceding 24 hours.Whole-body vibration was carried out on an oscillating
Dechant, Eduard; Fedulov, Feodor; Chashin, Dmitrii V.; Fetisov, Leonid Y.; Fetisov, Yuri K.; Shamonin, Mikhail
2017-06-01
The frequencies of ambient vibrations are often low (below 30 Hz). A broadband (3 dB bandwidth is larger than 10 Hz at an acceleration amplitude of 9.81 m s-2) vibration based energy harvester is proposed for transducing mechanical energy at such low frequencies into electrical energy. The mechanical setup converts low frequency mechanical vibrations into high frequency resonance oscillations of the transducer. This conversion is done by mechanical impacts on two mechanical stoppers. The originality of the presented design is that both low-frequency and high-frequency oscillators are permanently mechanically coupled. In the equivalent mechanical circuit, this coupling is achieved by connecting the ends of the stiff spring to both seismic masses, whereas one seismic mass (collison member) is also attached to the soft spring used as the constitutive element of a low-frequency oscillator. Further, both mechanical oscillators are not realized as conventional cantilever beams. In particular, the high frequency oscillator with the natural frequency of 340 Hz is a disc-shaped diaphragm with attached piezoelectric elements and a seismic mass. It is shown that it is possible to convert mechanical vibrations with acceleration amplitude of 9.81 m s-2 in the region between approximately 7 and 25 Hz into electrical power larger than 0.1 mW with the maximum value of 0.8 mW. A simplified mathematical model based on piecewise linear coupled oscillators shows good agreement with experimental results. The ways to enhance the performance of the harvester and improve agreement with experiments are discussed.
Untoro, T.; Viridi, S.; Suprijanto; Ekawati, E.
2017-07-01
In our previous work, we have developed a mechanical coupling for energy harvester from vibration source. This energy harvester uses piezoelectric with additional cantilever beam and permanent magnets. Our work proposed alternative scheme of mechanical coupling for tune the vibration input into resonant frequency of piezoelectric. Based on the experiment, correlation between the length of cantilever beam and the output power also evaluated. In this paper, we try to modelling our work into mathematical model and apply it to some case study. For example application, we apply our energy harvester system to generate electrical energy to enlighten the street. The human footsteps can be used as vibration source to generate electrical energy.
Directory of Open Access Journals (Sweden)
Shigehiro Hashimoto
2008-10-01
Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.
Jiao, Kun; Li, Zengyong; Chen, Ming; Wang, Chengtao; Qi, Shaohua
2004-04-01
This investigation was to assess the effect of different vibration frequencies on heart rate variability (HRV) and driving fatigue in healthy subjects during simulated driving, by the use of power spectrum analysis and subjective evaluation. Sixty healthy subjects (29.6+/-3.3 years) were randomly divided into three groups, A, B and C, and the subjects of each group participated in the simulated driving for 90 min with vertical sinusoidal vibration (acceleration 0.05 g) of 1.8 Hz (group A), 6 Hz (group B) and no vibration (group C), respectively. Low-frequency (LF) and high-frequency (HF) components of HRV, reflecting sympathetic and parasympathetic activities, and the LF:HF ratio, indicating sympathovagal balance, were measured throughout all periods. All indices of HRV were calculated in the pre-experiment period, mid-experiment period and end-experiment period, and were analyzed by repeated measures analysis of variance. Subjective responses to a questionnaire were obtained after the simulated task for the three groups. Significant differences in all indices of HRV were observed between different experiment periods and between any two groups. The ratings of subjective fatigue exhibited significant differences between any two groups. The drivers' fatigue ratings were associated with vibration frequencies in simulated driving. The study quantitatively demonstrated that different effects on autonomic nerve activities were induced by different vibration frequencies.
Directory of Open Access Journals (Sweden)
Laura N Vandenberg
Full Text Available Environmental toxicants such as industrial wastes, air particulates from machinery and transportation vehicles, and pesticide run-offs, as well as many chemicals, have been widely studied for their effects on human and wildlife populations. Yet other potentially harmful environmental pollutants such as electromagnetic pulses, noise and vibrations have remained incompletely understood. Because developing embryos undergo complex morphological changes that can be affected detrimentally by alterations in physical forces, they may be particularly susceptible to exposure to these types of pollutants. We investigated the effects of low frequency vibrations on early embryonic development of two aquatic species, Xenopus laevis (frogs and Danio rerio (zebrafish, specifically focusing on the effects of varying frequencies, waveforms, and applied direction. We observed treatment-specific effects on the incidence of neural tube defects, left-right patterning defects and abnormal tail morphogenesis in Xenopus tadpoles. Additionally, we found that low frequency vibrations altered left-right patterning and tail morphogenesis, but did not induce neural tube defects, in zebrafish. The results of this study support the conclusion that low frequency vibrations are toxic to aquatic vertebrates, with detrimental effects observed in two important model species with very different embryonic architectures.
Hou, Dan; Ma, Yong-Tao; Zhang, Xiao-Long; Zhai, Yu; Li, Hui
2016-06-01
Direct infrared spectra predictions for van der Waals (vdW) complexes rely on accurate intra-molecular vibrationally excited inter-molecular potential. Due to computational cost increasing with number of freedom, constructing an effective reduced-dimension potential energy surface, which only includes direct relevant intra- molecular modes, is the most feasible way and widely used in the recent potential studies. However, because of strong intra-molecular vibrational coupling, some indirect relevant modes are also play important roles in simulating infrared spectra of vdW complexes. The questions are how many intra-molecular modes are needed, and which modes are most important in determining the effective potential and direct infrared spectra simulations. Here, we explore these issues using a simple, flexible and efficient vibration-averaged approach, and apply the method to vdW complex C_2H_2-H_2. With initial examination of the intra-molecular vibrational coupling, an effective seven-dimensional ab initio potential energy surface(PES) for C_2H_2-H_2, which explicitly takes into account the Q_1,Q_2 symmetric-stretch and Q_3 asymmetric-stretch normal modes of the C_2H_2 monomer, has been generated. Analytic four-dimensional PESs are obtained by least-squares fitting vibrationally averaged interaction energies for νb{3}(C_2H_2)=0 and 1 to the Morse/long-range(MLR) potential function form. We provide the first prediction of the infrared spectra and band origin shifts for C_2H_2-H_2 dimer. We particularly examine the dependence of the symmetric-stretch normal mode on asymmetric-stretch frequency shift for the complex.
Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718
Directory of Open Access Journals (Sweden)
Deepak Rajendra Unune
2017-02-01
Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.
Energy Technology Data Exchange (ETDEWEB)
Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)
2014-10-15
While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.
Directory of Open Access Journals (Sweden)
Kyung Ho Sun
2014-10-01
Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.
Dzung Nguyen, Sy; Kim, Wanho; Park, Jhinha; Choi, Seung-Bok
2017-04-01
Vibration control systems using smart dampers (SmDs) such as magnetorheological and electrorheological dampers (MRD and ERD), which are classified as the integrated structure-SmD control systems (ISSmDCSs), have been actively researched and widely used. This work proposes a new controller for a class of ISSmDCSs in which high accuracy of SmD models as well as increment of control ability to deal with uncertainty and time delay are to be expected. In order to achieve this goal, two formualtion steps are required; a non-parametric SmD model based on an adaptive neuro-fuzzy inference system (ANFIS) and a novel fuzzy sliding mode controller (FSMC) which can weaken the model error of the ISSmDCSs and hence provide enhanced vibration control performances. As for the formulation of the proposed controller, first, an ANFIS controller is desgned to identify SmDs using the improved control algorithm named improved establishing neuro-fuzzy system (establishing neuro-fuzzy system). Second, a new control law for the FSMC is designed via Lyapunov stability analysis. An application to a semi-active MRD vehicle suspension system is then undertaken to illustrate and evaluate the effectiveness of the proposed control method. It is demonstrated through an experimental realization that the FSMC proposed in this work shows superior vibration control performance of the vehicle suspension compared to other surveyed controller which have similar structures to the FSMC, such as fuzzy logic and sliding mode control.
Energy Technology Data Exchange (ETDEWEB)
Yuksek, N. S.; Almasri, M. [Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Feng, Z. C. [Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 (United States)
2014-09-15
In this paper, we propose an electromagnetic power harvester that uses a transformative multi-impact approach to achieve a wide bandwidth response from low frequency vibration sources through frequency-up conversion. The device consists of a pick-up coil, fixed at the free edge of a cantilever beam with high resonant frequency, and two cantilever beams with low excitation frequencies, each with an impact mass attached at its free edge. One of the two cantilevers is designed to resonate at 25 Hz, while the other resonates at 50 Hz within the range of ambient vibration frequency. When the device is subjected to a low frequency vibration, the two low-frequency cantilevers responded by vibrating at low frequencies, and thus their thick metallic masses made impacts with the high resonance frequency cantilever repeatedly at two locations. This has caused it along with the pick-up coil to oscillate, relative to the permanent magnet, with decaying amplitude at its resonance frequency, and results in a wide bandwidth response from 10 to 63 Hz at 2 g. A wide bandwidth response between 10–51 Hz and 10–58 Hz at acceleration values of 0.5 g and 2 g, respectively, were achieved by adjusting the impact cantilever frequencies closer to each other (25 Hz and 45 Hz). A maximum output power of 85 μW was achieved at 5 g at 30 Hz across a load resistor, 2.68 Ω.
Energy Technology Data Exchange (ETDEWEB)
Schliesser, A; Anetsberger, G; Riviere, R; Arcizet, O; Kippenberg, T J [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching (Germany)], E-mail: tjk@mpq.mpg.de
2008-09-15
The inherent coupling of optical and mechanical modes in high finesse optical microresonators provides a natural, highly sensitive transduction mechanism for micromechanical vibration. Using homodyne and polarization spectroscopy techniques, we achieve shot-noise limited displacement sensitivities of 10{sup -19} m Hz{sup -1/2}. In an unprecedented manner, this enables the detection and study of a variety of mechanical modes, which are identified as radial breathing, flexural and torsional modes using three-dimensional finite element modeling. Furthermore, a broadband equivalent displacement noise is measured and found to agree well with models for thermorefractive noise in silica dielectric cavities. Implications for ground-state cooling, displacement sensing and Kerr squeezing are discussed.
Dual resonant structure for energy harvesting from random vibration sources at low frequency
Directory of Open Access Journals (Sweden)
Shanshan Li
2016-01-01
Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.
A semi-continuum model on vibration frequency of silicon nanowires in <111> orientation
Energy Technology Data Exchange (ETDEWEB)
Yu, Hong, E-mail: h-yu@seu.edu.cn; Chen, Hong-Bo [Key Lab of MEMS of Ministry of Education, Nanjing, Jiangsu, 210096 (China)
2016-06-15
In this article, a new semi-continuum model is built to describe the fundamental vibration frequency of the silicon nanowires in <111> orientation. The Keating potential model and the discrete nature in the width and the thickness direction of the silicon nanowires in <111> orientation are applied in the new semi-continuum model. Based on the Keating model and the principle of conservation of energy, the vibration frequency of the silicon nanowires with the triangle, the rhombus, and the hexagon cross sections are derived. It is indicated that the calculation results based on this new model are accordant with the simulation results of the software based on molecular dynamics (MD).
An induction motor model for high-frequency torsional vibration analysis
Widdle, R. D.; Krousgrill, C. M.; Sudhoff, S. D.
2006-03-01
High-frequency torsional oscillations of a 50 horsepower (hp) induction motor are investigated up to approximately 30 kHz. It is experimentally determined that torsional oscillations, due to the switching harmonics of the motor drive, contribute significantly to the torsional oscillation of the output shaft. Two torsional vibration models are developed. One model assumes the rotor to be rigid, while the other has a compliant rotor. The compliant model allows for greater transmission of high-frequency oscillations, and a better prediction of the measured output shaft vibration.
Tunable Digital Metamaterial for Broadband Vibration Isolation at Low Frequency.
Wang, Ziwei; Zhang, Quan; Zhang, Kai; Hu, Gengkai
2016-11-01
A 3D-printed digital metamaterial embedded with electromagnets is fabricated. Switching electromagnets between the attaching (1 bit) and detaching (0 bit) modes activates different waveguides in the metamaterial. The underlying mechanism is investigated theoretically and experimentally. The hierarchical assemblies of unit cells, mimicking digital bits, allow programmable broadening of the bandgap of the metamaterial. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Jingyu; Lin, Jiahui; Liu, Yuejun; Yang, Kang; Zhou, Lanwei; Chen, Guoping
2017-08-01
It is well known that intelligent control theory has been used in many research fields, novel modeling method (DROMM) is used for flexible rectangular active vibration control, and then the validity of new model is confirmed by comparing finite element model with new model. In this paper, taking advantage of the dynamics of flexible rectangular plate, a two-loop sliding mode (TSM) MIMO approach is introduced for designing multiple-input multiple-output continuous vibration control system, which can overcome uncertainties, disturbances or unstable dynamics. An illustrative example is given in order to show the feasibility of the method. Numerical simulations and experiment confirm the effectiveness of the proposed TSM MIMO controller.
Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
Tao, Chao; Liu, Xiaojun
2011-02-01
The vocal-fold tissue is treated as a transversally isotropic fluid-saturated porous material. Effects of poroelastic coefficients on eigenfrequencies and eigenmodes of the vocal-fold vibration are investigated using the Ritz method. The study demonstrates that the often-used elastic model is only a particular case of the poroelastic model with an infinite fluid-solid mass coupling parameter. The elastic model may be considered appropriate for the vocal-fold tissue when the absolute value of the fluid-solid mass coupling parameter is larger than 10(5) kg/m(3). Otherwise, the poroelastic model may be more accurate. The degree of compressibility of the vocal tissue can also been described by the poroelastic coefficients. Finally, it is revealed that the liquid and solid components in a poroelastic model could have different modal shapes when the coupling between them is weak. The mode decoupling could cause desynchronization and irregular vibration of the folds.
Goos-Hänchen effect for optical vibrational modes in a semiconductor structure
Villegas, Diosdado; Arriaga, J.; de León-Pérez, Fernando; Pérez-Álvarez, R.
2017-03-01
We study the tunneling of optical vibrational modes with transverse horizontal polarization that impinge, at a given angle, on a semiconductor heterostructure. We find a large influence of the Goos-Hänchen shift on tunneling times. In particular, a Goos-Hänchen shift larger than the barrier thickness is reported for the first time. The relation between Goos-Hänchen and Hartman effects is also discussed. The identity that equals the dwell time to the sum of transmission and interference times, previously derived for one-dimensional tunneling problems, is extended to the two-dimensional case. Closed-form expressions are developed for the relevant quantities. Instead of using the standard approach, the interference time is computed from the vibrational energy density. The present study could be useful for the design of semiconductor devices.
Active Mechanisms of Vibration Encoding and Frequency Filtering in Central Mechanosensory Neurons.
Azevedo, Anthony W; Wilson, Rachel I
2017-10-11
To better understand biophysical mechanisms of mechanosensory processing, we investigated two cell types in the Drosophila brain (A2 and B1 cells) that are postsynaptic to antennal vibration receptors. A2 cells receive excitatory synaptic currents in response to both directions of movement: thus, twice per vibration cycle. The membrane acts as a low-pass filter, so that voltage and spiking mainly track the vibration envelope rather than individual cycles. By contrast, B1 cells are excited by only forward or backward movement, meaning they are sensitive to vibration phase. They receive oscillatory synaptic currents at the stimulus frequency, and they bandpass filter these inputs to favor specific frequencies. Different cells prefer different frequencies, due to differences in their voltage-gated conductances. Both Na + and K + conductances suppress low-frequency synaptic inputs, so cells with larger voltage-gated conductances prefer higher frequencies. These results illustrate how membrane properties and voltage-gated conductances can extract distinct stimulus features into parallel channels. Copyright © 2017 Elsevier Inc. All rights reserved.
Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods
Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.
2003-01-01
In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.
Effects of low frequency vibration of a limb
Agarwal, G. C.; Gottlieb, G. L.
1975-01-01
Low frequency oscillations were applied on the ankle joint in plantarflexion/dorsiflexion rotation using a torque motor. The torque, the angular rotation and the evoked electromyogram from the gastronemius soleus and the anterior tibial muscles were recorded. Significant nonlinearities were observed in the angular rotation from 8 to 12 Hz. The following methods are used for data analysis: (1) Two cycle averaged response; (2) Fourier transform; and (3) Fourier analysis at the driving frequency. Important observations are: (1) resonance near 6 to 8 Hz; (2) slowly increasing amplitudes of oscillation near resonance; (3) self sustaining oscillations after the motor is turned off, particularly in the fatigued limb; and (4) distortion of angular rotation during which there are spontaneous recurrences of oscillation at the driving frequency.
A quantitative mode-resolved frequency comb spectrometer.
Hébert, Nicolas Bourbeau; Scholten, Sarah K; White, Richard T; Genest, Jérôme; Luiten, Andre N; Anstie, James D
2015-06-01
We have developed a frequency-comb spectrometer that records 35-nm (4 THz) spectra with 2-pm (250 MHz) spectral sampling and an absolute frequency accuracy of 2 kHz. We achieve a signal-to-noise ratio of ~400 in a measurement time of 8.2 s. The spectrometer is based on a commercial frequency comb decimated by a variable-length, low-finesse Fabry Pérot filter cavity to fully resolve the comb modes as imaged by a virtually imaged phased array (VIPA), diffraction grating and near-IR camera. By tuning the cavity length, spectra derived from all unique decimated combs are acquired and then interleaved to achieve frequency sampling at the comb repetition rate of 250 MHz. We have validated the performance of the spectrometer by comparison with a previous high-precision absorption measurement of H13C14N near 1543 nm. We find excellent agreement, with deviations from the expected line centers and widths of, at most, 1 pm (125 MHz) and 3 pm (360 MHz), respectively.
Charge-sensitive vibrational modes in the (EDT-TTF-OX)2AsF6 chiral molecular conductors
Olejniczak, Iwona; Frąckowiak, Arkadiusz; Matysiak, Jacek; Madalan, Augustin; Pop, Flavia; Avarvari, Narcis
2014-03-01
Infrared and Raman spectra of three chiral molecular conductors (EDT-TTF-OX)2AsF6, comprising of two salts based on enantiopure EDT-TTF-OX donor molecules and one based on their racemic mixture, have been measured as a function of temperature. In the frequency range of the C=C stretching vibrations of EDT-TTF-OX, charge-sensitive modes are identified based on theoretical calculations for neutral and oxidized EDT-TTF-OX using density functional theory (DFT) methods. The positions of C=C stretching modes in both Raman and infrared spectra of the (EDT-TTF-OX)2AsF6 materials are analyzed assuming a linear relationship between the frequency and charge of the molecule. The charge density on the EDTTTF-OX donor molecule is estimated to be +0.5 in all investigated materials and does not change with temperature. Therefore we suggest, that M-I transition observed in (EDT-TTF-OX)2AsF6 chiral molecular conductors at low temperature is not related to the charge ordering mechanism.
Wang, Xiao Hu; Zheng, Chang Cheng; Ning, Ji Qiang
2016-01-01
Transition-metal dichalcogenides (TMDs) nanostructures including nanotubes and monolayers have attracted great interests in materials science, chemistry to condensed matter physics. We present an interesting study of the vibration modes in multi-walled tungsten sulfide (WS2) nanotubes prepared via sulfurizing tungsten oxide (WO3) nanowires which are investigated by confocal micro-Raman spectroscopy. The inter-layer vibration mode of WS2 nanotubes, A1g, is found to be sensitive to the diameter and curvature strain, while the in-plane vibration mode, E12g, is not. A1g mode frequency shows a redshift by 2.5 cm−1 for the multi-layered nanotubes with small outer-diameters, which is an outcome of the competition between the Van der Waals force stiffening and the curvature strain softening. We also show that the Raman peak intensity ratio is significantly different between the 1–2 wall layered nanotubes and monolayer flat sheets. PMID:27620879
Modeling Carbon Dioxide Vibrational Frequencies in Ionic Liquids: II. Spectroscopic Map.
Daly, Clyde A; Berquist, Eric J; Brinzer, Thomas; Garrett-Roe, Sean; Lambrecht, Daniel S; Corcelli, Steven A
2016-12-15
The primary challenge for connecting molecular dynamics (MD) simulations to linear and two-dimensional infrared measurements is the calculation of the vibrational frequency for the chromophore of interest. Computing the vibrational frequency at each time step of the simulation with a quantum mechanical method like density functional theory (DFT) is generally prohibitively expensive. One approach to circumnavigate this problem is the use of spectroscopic maps. Spectroscopic maps are empirical relationships that correlate the frequency of interest to properties of the surrounding solvent that are readily accessible in the MD simulation. Here, we develop a spectroscopic map for the asymmetric stretch of CO2 in the 1-butyl-3-methylimidazolium hexafluorophosphate ([C4C1im][PF6]) ionic liquid (IL). DFT is used to compute the vibrational frequency of 500 statistically independent CO2-[C4C1im][PF6] clusters extracted from an MD simulation. When the map was tested on 500 different CO2-[C4C1im][PF6] clusters, the correlation coefficient between the benchmark frequencies and the predicted frequencies was R = 0.94, and the root-mean-square error was 2.7 cm-1. The calculated distribution of frequencies also agrees well with experiment. The spectroscopic map required information about the CO2 angle, the electrostatics of the surrounding solvent, and the Lennard-Jones interaction between the CO2 and the IL. The contribution of each term in the map was investigated using symmetry-adapted perturbation theory calculations.
Local vibration of an elastic plate and zero-group velocity Lamb modes.
Prada, Claire; Clorennec, Dominique; Royer, Daniel
2008-07-01
Elastic plates or cylinders can support guided modes with zero group velocity (ZGV) at a nonzero value of the wave number. Using laser-based ultrasonic techniques, we experimentally investigate some fascinating properties of these ZGV modes: resonance and ringing effects, backward wave propagation, interference between backward and forward modes. Then, the conditions required for the existence of ZGV Lamb modes in isotropic plates are discussed. It is shown that these modes appear in a range of Poisson's ratio about the value for which the cutoff frequency curves of modes belonging to the same family intercept, i.e., for a bulk wave velocity ratio equal to a rational number. An interpretation of this phenomenon in terms of a strong repulsion between a pair of modes having a different parity in the vicinity of the cutoff frequencies is given. Experiments performed with materials of various Poisson's ratio demonstrate that the resonance spectrum of an unloaded elastic plate, locally excited by a laser pulse, is dominated by the ZGV Lamb modes.
Casale, Roberto; Ring, Haim; Rainoldi, Alberto
2009-10-01
Vibration conditioning has been adopted as a tool to improve muscle force and reduce fatigue onset in various rehabilitation settings. This study was designed to asses if high frequency vibration can induce some conditioning effects detectable in surface EMG (sEMG) signal; and whether these effects are central or peripheral in origin. 300 Hz vibration was applied for 30 min during 5 consecutive days, to the right biceps brachii muscle of 10 healthy males aged from 25 to 50 years. sEMG was recorded with a 16 electrode linear array placed on the skin overlying the vibrated muscle. The test protocol consisted of 30% and 60% maximal voluntary contraction (MVC) as well as involuntary (electrically elicited) contractions before and after treatment. No statistically significant differences were found between PRE and POST vibration conditioning when involuntary stimulus-evoked contraction and 30% MVC were used. Significant differences in the initial values and rates of change of muscle fibre conduction velocity were found only at 60% MVC. 300 Hz vibration did not induce any peripheral changes as demonstrated by the lack of differences when fatigue was electrically induced. Differences were found only when the muscle was voluntarily fatigued at 60% MVC suggesting a modification in the centrally driven motor unit recruitment order, and interpreted as an adaptive response to the reiteration of the vibratory conditioning.
Energy Technology Data Exchange (ETDEWEB)
Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei
2014-06-04
We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.
Investigation on Locking and Pulling Modes in Analog Frequency Dividers
Directory of Open Access Journals (Sweden)
Antonio Buonomo
2013-01-01
Full Text Available We compare the main analytical results available to estimate the locking range, which is the key figure-of-merit of LC frequency dividers based on the injection locking phenomenon. Starting from the classical result by Adler concerning injection-locked oscillators, we elucidate the merits and the shortcomings of the different approaches to study injection-locked frequency dividers, with particular emphasis on divider-by-2. In particular, we show the potential of a perturbation approach which enables a more complete analysis of frequency dividers, making it possible to calculate not only the amplitude and the phase of the locked oscillation, but also the region where it exists and is stable, which defines the locking region. Finally, we analyze the dynamical behaviour of the dividers in the vicinity of the boundary of the locking region, showing that there exists a border region where the occurrence of the locking or the pulling operation mode is possible, depending on the initial conditions of the system.
Whispering gallery mode resonators for frequency metrology applications
Baumgartel, Lukas
This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical
Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing
Directory of Open Access Journals (Sweden)
Toshiaki Natsuki
2017-01-01
Full Text Available In this study, the vibrational properties of single- and double-layer graphene sheets (GSs with attached nanoparticles are analyzed based on the nonlocal elasticity theory. The potential applications of atomic-scale mass sensing are presented using GSs with simply supported boundary condition. The frequency equation for GSs with an attached nanoparticle is derived to investigate the vibration frequency of the GSs under thermal environment. Using the proposed model, the relationship between the frequency shifts of graphene-based mass sensor and the attached nanoparticles is obtained. The nonlocal effect and the temperature dependence on the variation of frequency shifts with the attached nanomass and the positions on the GS are investigated and discussed in detail. The obtained results show that the nanomass can be easily detected by using GS resonator which provides a highly sensitive nanomechanical element in sensor systems. The vibrational frequency shift of GS increases with increasing the temperature dependence. The double-layer GSs (DLGSs have higher sensitivity than the single-layer GSs (SLGSs due to high frequency shifts.
Resonant electron-impact excitation of vibrational modes in polyatomic molecules
Cartwright, David C.; Trajmar, Sandor
1996-04-01
Measured differential cross sections (DCSs) for electron-impact excitation of bending vibrational modes involving an odd number of vibrational quanta in 0953-4075/29/8/018/img5 by 4 eV incident energy electrons display a strong trend to zero for forward and backward scattering which is characteristic of `symmetry-forbidden' transitions. This DCS behaviour is postulated here to be produced by a Feshbach resonant mechanism involving a low-lying bent excited state of 0953-4075/29/8/018/img5. The model described here identifies three additional low-lying bent excited states of 0953-4075/29/8/018/img5 which could also be parent states for core-excited Feshbach resonances, one of which may play a role in dissociative attachment in this 3.5 - 5.0 eV energy region. The resonant vibrational excitation mechanism proposed here is also believed to be operative in other polyatomic molecules and could be investigated by performing selected electron energy-loss measurements within the lowest energy resonance regions of the molecules 0953-4075/29/8/018/img8 and 0953-4075/29/8/018/img9.
Aouani, Heykel; Šípová, Hana; Rahmani, Mohsen; Navarro-Cia, Miguel; Hegnerová, Kateřina; Homola, Jiří; Hong, Minghui; Maier, Stefan A
2013-01-22
Optical antennas represent an enabling technology for enhancing the detection of molecular vibrational signatures at low concentrations and probing the chemical composition of a sample in order to identify target molecules. However, efficiently detecting different vibrational modes to determine the presence (or the absence) of a molecular species requires a multispectral interrogation in a window of several micrometers, as many molecules present informative fingerprint spectra in the mid-infrared between 2.5 and 10 μm. As most nanoantennas exhibit a narrow-band response because of their dipolar nature, they are not suitable for such applications. Here, we propose the use of multifrequency optical antennas designed for operating with a bandwidth of several octaves. We demonstrate that surface-enhanced infrared absorption gains in the order of 10(5) can be easily obtained in a spectral window of 3 μm with attomolar concentrations of molecules, providing new opportunities for ultrasensitive broadband detection of molecular species via vibrational spectroscopy techniques.
Pacheco-Londono, Leonardo C.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.
2004-12-01
Fully optimized molecular geometry, parameters of reactivity and vibrational spectra of triacetone triperoxide (TATP) and homologue organic peroxides were calculated using B3LYP/6-31G(d,p) method within the Density Functional Theory formalism. Infrared and Raman Spectroscopy were utilized to obtain vibrational spectra of the energetic compound. The model consists in the relation found between the Raman Shift location of the important symmetric stretch ν(O-O) of the organic peroxides and the reactivity of the organic peroxides. A good correlation between the band location in the series studied and the x-y plane polarizability component and the ionization energy was found. Gas phase IR absorption of TATP in air was used for developing stand-off detection schemes of the important organic peroxide in air. The sublimation properties of TATP were measured using two methods: Grazing Angle Probe-Fiber Coupled FTIR and gravimetric on stainless steel surfaces. Sublimation rates, loading concentration values and absorbance band areas were measured and modeled using the persistent IR vibrational signature of the ν(C-O) mode.
Oosterhout, G.M.; van der Hoogt, Peter; Spiering, R.M.E.J.
1995-01-01
Various computational methods have been studied with respect to their suitability for obtaining very accurate solutions of plate vibration problems, especially for the higher modes. Because of the interest in the higher modes, also higher order effects such as transverse shear deformation and
Weber, F.; Distl, H.
2015-11-01
This paper derives an approximate collocated control solution for the mitigation of multi-mode cable vibration by semi-active damping with negative stiffness based on the control force characteristics of clipped linear quadratic regulator (LQR). The control parameters are derived from optimal modal viscous damping and corrected in order to guarantee that both the equivalent viscous damping coefficient and the equivalent stiffness coefficient of the semi-active cable damper force are equal to their desired counterparts. The collocated control solution with corrected control parameters is numerically validated by free decay tests of the first four cable modes and combinations of these modes. The results of the single-harmonic tests demonstrate that the novel approach yields 1.86 times more cable damping than optimal modal viscous damping and 1.87 to 2.33 times more damping compared to a passive oil damper whose viscous damper coefficient is optimally tuned to the targeted mode range of the first four modes. The improvement in case of the multi-harmonic vibration tests, i.e. when modes 1 and 3 and modes 2 and 4 are vibrating at the same time, is between 1.55 and 3.81. The results also show that these improvements are obtained almost independent of the cable anti-node amplitude. Thus, the proposed approximate real-time applicable collocated semi-active control solution which can be realized by magnetorheological dampers represents a promising tool for the efficient mitigation of stay cable vibrations.
Non-linear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
DEFF Research Database (Denmark)
Fereidoon, A.; Ghadimi, M.; Barari, Amin
2012-01-01
In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifthorder nonlinearity for two examples using He’s Frequency Amplitude Formulation (HFAF).The effectiveness and convenience of the method is illustrated in these examples. It will be shown...... that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems....
Portnov, Alexander; Epshtein, Michael; Bar, Ilana
2017-06-01
Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.
Mode-locked frequency doubled Nd:YAG laser
Brookman, J. S.
1976-01-01
The design, fabrication, test, and delivery of two mode-locked, frequency doubled Nd:YAG laser systems are described. Each system was comprised of two units, the laser head and optics on an Invar plate and the electronics control unit in a relay rack chassis panel. Laser number one operated at a repetition rate of 400 MHz and was designed for use in an optical communication system. Laser number two operated at 200 MHz repetition rate and was designed for optical ranging and target signature experiments. Both lasers had a pulse width of 200 ps at the 10% amplitude points at 1.064 micrometer wavelength (150 ps at 0.532 micrometers) with an amplitude stability of + or - 4%. Output power exceeded the design goals.
Landry, Thomas G; Bance, Manohar L; Leadbetter, Jeffrey; Adamson, Robert B; Brown, Jeremy A
2017-06-01
The basilar membrane and organ of Corti in the cochlea are essential for sound detection and frequency discrimination in normal hearing. There are currently no methods used for real-time high resolution clinical imaging or vibrometry of these structures. The ability to perform such imaging could aid in the diagnosis of some pathologies and advance understanding of the causes. It is demonstrated that high frequency ultrasound can be used to measure basilar membrane vibrations through the round window of chinchilla cochleas in vivo. The basic vibration characteristics of the basilar membrane agree with previous studies that used other methods, although as expected, the sensitivity of ultrasound was not as high as optical methods. At the best frequency for the recording location, the average vibration velocity amplitude was about 4 mm/s/Pa with stimulus intensity of 50 dB sound pressure level. The displacement noise floor was about 0.4 nm with 256 trial averages (5.12 ms per trial). Although vibration signals were observed, which likely originated from the organ of Corti, the spatial resolution was not adequate to resolve any of the sub-structures. Improvements to the ultrasound probe design may improve resolution and allow the responses of these different structures to be better discriminated.
Directory of Open Access Journals (Sweden)
N. Bezrukavyy
2013-08-01
Full Text Available Purpose. Taking into account the traffic safety priority on the railway transport the search of factors promoting increase of derailment stability coefficient is an actual task. Purpose of the paper is the influence researches of the high-frequency vibrations on the train traffic safety parameter. In this case the special form of the wheel rim, at which its rigidity changes according to the harmonious law, was considered as a source of vibrations. Methodology. For the analysis of the vibration influence on the change of friction coefficient values the methods of so called vibrational mechanics were used. For determination of vibration amplitudes through moving the wheel flange points the finite-elements method was also used in the paper. Findings. During calculations it was established that the derailment stability coefficient to a great extent depends on the friction coefficient between wheel and rail. The paper shows that the friction coefficient in turn is influenced by the high-frequency vibrations. The form of the wheel rim was considered as a vibration source and the parameters characterizing vibration were calculated. It was given the quantitative estimation of the friction coefficient change under the vibration influence. It was also scientifically based the high-frequency vibration influence on the derailment stability coefficient. Originality. The paper proved the possibility of high-frequency vibration influence on the derailment stability coefficient. The studies theoretically substantiated the traffic safety increase in the presence of vibrations in the contact area of the wheel flange with the rail caused by special form of the wheel disc. Practical value. It is shown that the use of undulating wheel disc form do not constitute a threat to the traffic safety, and the availability of high-frequency vibration can reduce the derailment probability.
Elastic Metamaterial Insulator for Broadband Low-Frequency Flexural Vibration Shielding
Oh, Joo Hwan; Qi, Shuibao; Kim, Yoon Young; Assouar, Badreddine
2017-11-01
Achieving stop band over broadband at low-frequency range has remained a great scientific challenge in spite of various efforts made using metamaterials or other technologies. In this work, we propose an idea that creates a stop band for broadband at low-frequency range. The dual mechanism of shear stiffening and rotation softening is initiated here to achieve a broad stop band at low-frequency range. Through analytical, numerical, and experimental studies, we reveal the underlying physical mechanism and confirm the effectiveness of this metamaterial on vibration shielding for flexural elastic wave covering 235 to 4520 Hz. This work opens an avenue for the development of elastic metamaterials with performance and functionalities that are highly desirable in many fields such as vibration shielding.
Coupled analysis of multi-impact energy harvesting from low-frequency wind induced vibrations
Zhu, Jin; Zhang, Wei
2015-04-01
Energy need from off-grid locations has been critical for effective real-time monitoring and control to ensure structural safety and reliability. To harvest energy from ambient environments, the piezoelectric-based energy-harvesting system has been proven very efficient to convert high frequency vibrations into usable electrical energy. However, due to the low frequency nature of the vibrations of civil infrastructures, such as those induced from vehicle impacts, wind, and waves, the application of a traditional piezoelectric-based energy-harvesting system is greatly restrained since the output power drops dramatically with the reduction of vibration frequencies. This paper focuses on the coupled analysis of a proposed piezoelectric multi-impact wind-energy-harvesting device that can effectively up-convert low frequency wind-induced vibrations into high frequency ones. The device consists of an H-shape beam and four bimorph piezoelectric cantilever beams. The H-shape beam, which can be easily triggered to vibrate at a low wind speed, is originated from the first Tacoma Narrows Bridge, which failed at wind speeds of 18.8 m s-1 in 1940. The multi-impact mechanism between the H-shape beam and the bimorph piezoelectric cantilever beams is incorporated to improve the harvesting performance at lower frequencies. During the multi-impact process, a series of sequential impacts between the H-shape beam and the cantilever beams can trigger high frequency vibrations of the cantilever beams and result in high output power with a considerably high efficiency. In the coupled analysis, the coupled structural, aerodynamic, and electrical equations are solved to obtain the dynamic response and the power output of the proposed harvesting device. A parametric study for several parameters in the coupled analysis framework is carried out including the external resistance, wind speed, and the configuration of the H-shape beam. The average harvested power for the piezoelectric cantilever
Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent.
Zory, Raphael F; Raphael, Zory F; Aulbrook, Wesley; Wesley, Aulbrook; Keir, Daniel A; Daniel, Keir A; Serresse, Olivier; Olivier, Serresse
2013-09-01
The aim of this study was to determine whether neuromuscular adaptations (magnitude and location) induced by isometric exercise performed on an oscillating platform are dependent on whole-body vibration (WBV) frequency. Eleven young men performed 4 separate fatigue sessions of static squatting exercise at 3 frequencies of WBV (V20, V40, and V60) and 1 session without vibration (V0). Isometric torque and electromyographic activity of the vastus lateralis, rectus femoris, and biceps femoris were recorded during maximal voluntary and evoked contractions of the knee extensor muscles before and after each fatigue session to examine both peripheral and central adaptations. Isometric torque decreased significantly after each of the 4 frequency sessions (V0: -9.4 ± 6.1%, p = 0.003; V20: -8.1 ± 9.9%, p = 0.010; V40: -11.9 ± 12.7%, p = 0.011; and V60: -7.8 ± 9.2%, p = 0.001, respectively), but this reduction was not significantly different between frequencies. The torque produced by evoked contraction significantly decreased from pre-exercise values after each session (V0: -14.9 ± 15.6%, p = 0.012; V20: -15.8 ± 16.4%, p = 0.010; V40: -21.0 ± 14.3%, p = 0.004; and V60: -17.3 ± 11.6%, p = 0.005, respectively); however, there was no effect of vibration frequency. In both conditions, the maximal voluntary contraction torque reduction observed was mainly attributable to peripheral fatigue and was not because of central modifications of the neuromuscular system. The present study demonstrates that the frequency of vibration does not significantly influence the magnitude and location of neuromuscular fatigue, suggesting that adding WBV to static squat exercise (on a vertically oscillating platform) does not provide an additional training stimulus.
Theory and experiment research for ultra-low frequency maglev vibration sensor
Energy Technology Data Exchange (ETDEWEB)
Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)
2015-10-15
A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.
Directory of Open Access Journals (Sweden)
Ehsan Maani Miandoab
2013-01-01
Full Text Available Two different control methods, namely, adaptive sliding mode control and impulse damper, are used to control the chaotic vibration of a block on a belt system due to the rate-dependent friction. In the first method, using the sliding mode control technique and based on the Lyapunov stability theory, a sliding surface is determined, and an adaptive control law is established which stabilizes the chaotic response of the system. In the second control method, the vibration of this system is controlled by an impulse damper. In this method, an impulsive force is applied to the system by expanding and contracting the PZT stack according to efficient control law. Numerical simulations demonstrate the effectiveness of both methods in controlling the chaotic vibration of the system. It is shown that the settling time of the controlled system using impulse damper is less than that one controlled by adaptive sliding mode control; however, it needs more control effort.
Furumachi, S.; Ueno, T.
2016-04-01
We study magnetostrictive vibration based power generator using iron-gallium alloy (Galfenol). The generator is advantages over conventional, such as piezoelectric material in the point of high efficiency highly robust and low electrical impedance. Generally, the generator exhibits maximum power when its resonant frequency matches the frequency of ambient vibration. In other words, the mismatch of these frequencies results in significant decrease of the output. One solution is making the spring characteristics nonlinear using magnetic force, which distorts the resonant peak toward higher or lower frequency side. In this paper, vibrational generator consisting of Galfenol plate of 6 by 0.5 by 13 mm wound with coil and U shape-frame accompanied with plates and pair of permanent magnets was investigated. The experimental results show that lean of resonant peak appears attributed on the non-linear spring characteristics, and half bandwidth with magnets is 1.2 times larger than that without. It was also demonstrated that the addition of proof mass is effective to increase the sensitivity but also the bandwidth. The generator with generating power of sub mW order is useful for power source of wireless heath monitoring for bridge and factory machine.
Zheng, Li Ming; Pu, Chun Sheng; Liu, Jing; Ma, Bo; Khan, Nasir
2017-01-01
Flowing gel plugging and low-frequency vibration oil extraction technology have been widely applied in low-permeability formation. High probability of overlapping in action spheres of two technologies might lead to poor operating efficiency during gel injection. Study on flowing gel rheological properties under low-frequency vibration was essential, which was carried out indoor with viscosity measurement. Potential dynamic mechanisms were analyzed for the rheological variation. Under low-frequency vibration, gel rheological properties were found to be obviously influenced, with vibration delaying gel cross-linking in induction period, causing a two-stage gel viscosity change in acceleration period, and decreasing gel strength in stable period. Surface of gel system under vibration presented different fluctuating phenomenon from initial harmonic vibrating to heterogeneous fluctuating (droplet separation might appear) to final harmonic vibrating again. Dynamic displacement in unconsolidated sand pack revealed that low-frequency vibration during gel injection might be a measure to achieve deep profile control, with the gel injection depth increased by 65.8 % compared with the vibration-free sample. At last, suggestions for field test were given in the paper to achieve lower injection friction and better gel plugging efficiency.
Kvaternik, R. G.; Durling, B. J.
1978-01-01
The use of the SUDAN computer program for analyzing structural systems for their natural modes and frequencies of vibration is described. SUDAN is intended for structures which can be represented as an equivalent system of beam, spring, and rigid-body substructures. User-written constraint equations are used to analytically join the mass and stiffness matrices of the substructures to form the mass and stiffness matrices of the complete structure from which all the frequencies and modes of the system are determined. The SUDAN program can treat the case in which both the mass and stiffness matrices of the coupled system may be singular simultaneously. A general description of the FORTRAN IV program is given, the computer hardware and software specifications are indicated, and the input required by the program is described.
Oversampling in virtual visual sensors as a means to recover higher modes of vibration
Shariati, Ali; Schumacher, Thomas
2015-03-01
Vibration-based structural health monitoring (SHM) techniques require modal information from the monitored structure in order to estimate the location and severity of damage. Natural frequencies also provide useful information to calibrate finite element models. There are several types of physical sensors that can measure the response over a range of frequencies. For most of those sensors however, accessibility, limitation of measurement points, wiring, and high system cost represent major challenges. Recent optical sensing approaches offer advantages such as easy access to visible areas, distributed sensing capabilities, and comparatively inexpensive data recording while having no wiring issues. In this research we propose a novel methodology to measure natural frequencies of structures using digital video cameras based on virtual visual sensors (VVS). In our initial study where we worked with commercially available inexpensive digital video cameras we found that for multiple degrees of freedom systems it is difficult to detect all of the natural frequencies simultaneously due to low quantization resolution. In this study we show how oversampling enabled by the use of high-end high-frame-rate video cameras enable recovering all of the three natural frequencies from a three story lab-scale structure.
Directory of Open Access Journals (Sweden)
Susilo Widyanto
2010-10-01
Full Text Available The research of deposition process is the first step in development process of multi materials selective laser sintering. The deposition process enables to settle multi materials powder in horizontal formation on one layer. In this research we use low frequency (70 - 200Hz to vibrate a hopper nozzle in which powder is settled. The research method consists of two steps, the first step is to determine flow-ability parameters and the second is to join flow ability parameter with other parameters such that the line width can be controlled. The results show that the line width depends on uniformity of particle size, particle size, frequency of vibration, deposition gap, particle shape and feed-rate of hopper-nozzle.
A magnetic damper for first mode vibration reduction in multimass flexible rotors
Kasarda, M. E. F.; Allaire, P. E.; Humphris, R. R.; Barrett, L. E.
1989-01-01
Many rotating machines such as compressors, turbines and pumps have long thin shafts with resulting vibration problems, and would benefit from additional damping near the center of the shaft. Magnetic dampers have the potential to be employed in these machines because they can operate in the working fluid environment unlike conventional bearings. An experimental test rig is described which was set up with a long thin shaft and several masses to represent a flexible shaft machine. An active magnetic damper was placed in three locations: near the midspan, near one end disk, and close to the bearing. With typical control parameter settings, the midspan location reduced the first mode vibration 82 percent, the disk location reduced it 75 percent and the bearing location attained a 74 percent reduction. Magnetic damper stiffness and damping values used to obtain these reductions were only a few percent of the bearing stiffness and damping values. A theoretical model of both the rotor and the damper was developed and compared to the measured results. The agreement was good.
Directory of Open Access Journals (Sweden)
Ming-Chang Pai
2012-01-01
Full Text Available Input shaping technique is widely used in reducing or eliminating residual vibration of flexible structures. The exact elimination of the residual vibration via input shaping technique depends on the amplitudes and instants of impulse application. However, systems always have parameter uncertainties which can lead to performance degradation. In this paper, a closed-loop input shaping control scheme is developed for uncertain flexible structures. The algorithm is based on input shaping control and adaptive sliding mode control. The proposed scheme does not need a priori knowledge of upper bounds on the norm of the uncertainties, but estimates them by using the adaptation technique. This scheme guarantees closed-loop system stability, and yields good performance and robustness in the presence of parameter uncertainties and external disturbances as well. Furthermore, it is shown that increasing the robustness to parameter uncertainties does not lengthen the duration of the impulse sequence. Simulation results demonstrate the efficacy of the proposed closed-loop input shaping control scheme.
A comparison of several methods for the calculation of vibration mode shape derivatives
Sutter, T. R.; Camarda, C. J.; Walsh, J. L.; Adelman, H. M.
1986-01-01
Four methods for the calculation of derivatives of vibration mode shapes (eigenvectors) with respect to design parameters are reviewed and compared. These methods (finite difference method, Nelson's method, modal method and a modified modal method) are implemented in a general-purpose commercial finite element program and applied to a cantilever beam and a stiffened cylinder with a cutout. A beam tip mass, a beam root height and specific dimensions of the cylinder model comprise the design variables. Data are presented showing the amount of central processor time used to compute the first four eigenvector derivatives for each example problem; errors and rapidity of convergence of the approximate derivative to the exact derivative are taken into account. Nelson's method proved to be most reliable and efficient.
Local vibration modes of shallow thermal donors in nitrogen-doped CZ silicon crystals
Energy Technology Data Exchange (ETDEWEB)
Inoue, N. [RIAST, Osaka Prefecture University, Sakai, 599-8570 (Japan) and Nitrogen Measurement WG, JEITA, Tokyo, 101-0062 (Japan)]. E-mail: inouen@riast.osakafu-u.ac.jp; Nakatsu, M. [RIAST, Osaka Prefecture University, Sakai, 599-8570 (Japan); Ono, H. [Japan Fine Ceramics Center, Tokyo, 105-0003 (Japan); Nitrogen Measurement WG, JEITA, Tokyo, 101-0062 (Japan)
2006-04-01
Local vibration mode (LVM) infrared absorption from shallow thermal donors (STD) composed of nitrogen-oxygen complexes in nitrogen-doped CZ silicon crystals was examined. The samples whose STD concentration had been determined were measured. The sample dependence of the peaks at 810 and 1018cm{sup -1} was similar to that of STD but the estimated concentration was slightly higher. New LVM peaks were found at 855, 973, 982, 1002cm{sup -1} and so on. Their magnitude and sample dependence agreed well with those of STD. Annealing temperature dependence of other samples supported the results. Annealing time dependence of STD concentration at 650 deg. C was examined. STD peaks at 250, 242 and those at 240, 234 and 238cm{sup -1} behaved differently, suggesting the presence of two kinds of STD origin.
Al-Qaisia, A. A.; Hamdan, M. N.
2013-09-01
This work presents an investigation on the effect of an initial geometric imperfection wavelength, amplitude and degree of localization on the in-plane nonlinear natural frequencies veering and mode localization of an elastic Euler-Bernoulli beam resting on a Winkler elastic foundation. The beam is assumed to be pinned-pinned with a linear torsional spring at one end. The effect of the axial force induced by mid-plane stretching is accounted for in the derivation of the mathematical model, due to its known importance and significant effect on the nonlinear dynamic behavior of the beam, as it was proved and presented in earlier investigations. The governing partial differential equation is discretized using the assumed mode method and the resulting nonlinear temporal equation was solved using the harmonic balance method to obtain results for the nonlinear natural frequencies and mode shapes. The results are presented in the form of characteristic curves which show the variations of the nonlinear natural frequencies of the first three modes of vibration, for a selected range of physical parameters like; torsional spring constant, elastic foundation stiffness and amplitude and wavelength of a localized and non-localized initial slack.
Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo
Directory of Open Access Journals (Sweden)
Shengwei He
2017-01-01
Full Text Available Objective(s:To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligan, and pre-collagen type 1 a were measured. Results:Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor k-B ligand, and pre-collagen type 1 a were also markedly higher following 25 and 50 Hz treatment. Conclusion:Low frequency (25–50 Hz vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.
National Research Council Canada - National Science Library
Jianghong Xue; Fei Xia; Jun Ye; Jianwen Zhang; Shuhua Chen; Ying Xiong; Zuyuan Tan; Renhuai Liu; Hong Yuan
2017-01-01
This paper presents a multiscale approach to study the nonlinear vibration of fiber reinforced composite laminates containing an embedded, through-width delamination dividing the laminate into four sub-laminates...
Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R
2017-03-31
The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.
Directory of Open Access Journals (Sweden)
Bo Zhu
2016-03-01
Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.
Time-frequency analysis : mathematical analysis of the empirical mode decomposition.
2009-01-01
Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...
Conformational energetics and low-frequency vibrations of cyclohexene and its oxygen analogs
Ocola, Esther J.; Brito, Teresa; McCann, Kathleen; Laane, Jaan
2010-08-01
Ab initio and DFT calculations with MP2/cc-pVTZ and B3LYP/cc-pVTZ basis sets have been carried out for cyclohexene and four of its oxygen analogs. All of the molecules possess a twisted structure while the bent forms represent saddle points in two-dimensional surfaces. The structures, relative energies, and frequencies for the lowest energy vibrations of the twisted, bent, and planar forms were calculated and compared to experimental results. The calculated results agree very well with the microwave data but the computed barriers are somewhat less than those based on low-frequency infrared data.
DEFF Research Database (Denmark)
Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng
2016-01-01
and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity...
Directory of Open Access Journals (Sweden)
Wen-qi Zou
2016-07-01
Full Text Available In the present research, high chromium cast irons (HCCIs were prepared using the lost foam casting (LFC process. To improve the wear resistance of the high chromium cast irons (HCCIs, mechanical vibration was employed during the solidification of the HCCIs. The effects of vibration frequency on the microstructure and performance of the HCCIs under as-cast, as-quenched and as-tempered conditions were investigated. The results indicated that the microstructures of the LFC-produced HCCIs were refined due to the introduction of mechanical vibration, and the hardness was improved compared to that of the alloy without vibration. However, only a slight improvement in hardness was found in spite of the increase of vibration frequency. In contrast, the impact toughness of the as-tempered HCCIs increased with an increase in the vibration frequency. In addition, the wear resistance of the HCCIs was improved as a result of the introduction of vibration and increased with an increase in the vibration frequency.
Directory of Open Access Journals (Sweden)
Giordano Avellaneda
2012-12-01
Full Text Available En la presente investigación, se propone una nueva metodología para estimar la tensión de los tirantes con base en sus modos y frecuencias naturales de vibración, mediante el desarrollo de un aplicativo computacional apoyado en el método de los elementos finitos (FEM y en el análisis detallado de las señales. Para ello se presenta en este documento un estado del arte con algunos de los trabajos desarrollados en el mundo, un marco conceptual y la metodología planteada para su desarrollo y ejecución. El aplicativo computacional fue generado en MATLAB® y validado a través de mediciones experimentales en un prototipo a escala y en algunos cables de un puente atirantado en Colombia cuando estaba en proceso de construcción, con el cual se permite estimar la magnitud de la tensión de los tirantes con errores mínimos.In the present research, is proposed a new methodology for estimating tension forces in cables on the basis of their modes and natural frequencies of vibration, by developing a computer application leaning on the finite element method (FEM and a detailed analysis of signals. In this paper is presented a state of the art with some of the work done around the world, a conceptual framework and a proposed methodology for its development and implementation. The computer application which was programmed in MATLAB ®, which was validated through experimental measurements on a scaled prototype and some cables of a cable stayed bridge under construction in Colombia, allows to estimate the magnitude of the cable's tension with minimal errors.
Vibration sensor data denoising using a time-frequency manifold for machinery fault diagnosis.
He, Qingbo; Wang, Xiangxiang; Zhou, Qiang
2013-12-27
Vibration sensor data from a mechanical system are often associated with important measurement information useful for machinery fault diagnosis. However, in practice the existence of background noise makes it difficult to identify the fault signature from the sensing data. This paper introduces the time-frequency manifold (TFM) concept into sensor data denoising and proposes a novel denoising method for reliable machinery fault diagnosis. The TFM signature reflects the intrinsic time-frequency structure of a non-stationary signal. The proposed method intends to realize data denoising by synthesizing the TFM using time-frequency synthesis and phase space reconstruction (PSR) synthesis. Due to the merits of the TFM in noise suppression and resolution enhancement, the denoised signal would have satisfactory denoising effects, as well as inherent time-frequency structure keeping. Moreover, this paper presents a clustering-based statistical parameter to evaluate the proposed method, and also presents a new diagnostic approach, called frequency probability time series (FPTS) spectral analysis, to show its effectiveness in fault diagnosis. The proposed TFM-based data denoising method has been employed to deal with a set of vibration sensor data from defective bearings, and the results verify that for machinery fault diagnosis the method is superior to two traditional denoising methods.
Vibration Frequencies Extraction of the Forth Road Bridge Using High Sampling GPS Data
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available This paper proposes a scheme for vibration frequencies extraction of the Forth Road Bridge in Scotland from high sampling GPS data. The interaction between the dynamic response and the ambient loadings is carefully analysed. A bilinear Chebyshev high-pass filter is designed to isolate the quasistatic movements, the FFT algorithm and peak-picking approach are applied to extract the vibration frequencies, and a GPS data accumulation counter is suggested for real-time monitoring applications. To understand the change in the structural characteristics under different loadings, the deformation results from three different loading conditions are presented, that is, the ambient circulation loading, the strong wind under abrupt wind speed change, and the specific trial with two 40 t lorries passing the bridge. The results show that GPS not only can capture absolute 3D deflections reliably, but also can be used to extract the frequency response accurately. It is evident that the frequencies detected using the filtered deflection time series in different direction show quite different characteristics, and more stable results can be obtained from the height displacement time series. The frequency responses of 0.105 and 0.269 Hz extracted from the lateral displacement time series correlate well with the data using height displacement time series.
Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators.
Farnesi, D; Barucci, A; Righini, G C; Berneschi, S; Soria, S; Nunzi Conti, G
2014-03-07
High quality factor whispering-gallery-mode microresonators are ideally suited for nonlinear optical interactions. We analyze, experimentally and theoretically, a variety of χ((3)) nonlinear interactions in silica microspheres, consisting of third harmonic generation and Raman assisted third order sum-frequency generation in the visible. A tunable, room temperature, cw multicolor emission in silica microspherical whispering-gallery-mode microresonators has been achieved by controlling the cavity mode dispersion and exciting nonequatorial modes for efficient frequency conversion.
Oxaal, J.; Hella, M.; Borca-Tasciuc, D.-A.
2016-12-01
This paper reports on electrostatic MEMS vibration energy harvesters with gap-closing interdigitated electrodes, designed for and tested on HVAC air ducts. The harvesters were fabricated on SOI wafers with 200 µm device layer using a custom microfabrication process. Designs with aspects ratio (electrodes’ gap versus depth) of 10 and 20 were implemented, while the overall footprint was approximately 1 cm × 1 cm in both cases. In order to enhance the power output, a dual-level physical stopper system was designed to control the minimum gap between the electrodes, which is a key parameter in the conversion process. The dual-level stopper utilizes cantilever beams to absorb a portion of the impact energy as the electrodes approach the impact point, and a film of parylene with nanometer thickness deposited on the electrode sidewalls. The parylene layer defines the absolute minimum gap and provides electrical insulation. The fabricated devices were first tested on a vibration shaker to characterize the resonant behavior. Devices with aspect ratio 10 were found to exhibit frequency up-conversion, which enhances the amount of converted power. Devices with both aspect ratios were found to exhibits spring hardening due to impact with the stoppers and spring softening behavior at increasing voltage bias. The highest power measured on shaker table for sinusoidal vibrations was 3.13 µW (includes enhancement due to frequency up-conversion driven by impact) for aspect ratio 10, and 0.166 µW for aspect ratio 20. The corresponding dimensional figure-of-merit, defined as the power output normalized to vibration acceleration and frequency, squared voltage and device mass, was in the range of 10 · 10-8 m V-2 for both devices, about an order of magnitude higher than state-of-the-art. Testing was carried out on HVAC air duct vibrating with an RMS acceleration of 155 mg RMS, a primary frequency of 60 Hz and a PSD of 7.15 · 10-2 g2 Hz-1. The peak power measured was
a Hamiltonian to Obtain a Global Frequency Analysis of all the Vibrational Bands of Ethane
Moazzen-Ahmadi, Nasser; Norooz Oliaee, Jalal
2016-06-01
The interest in laboratory spectroscopy of ethane stems from the desire to understand the methane cycle in the atmospheres of planets and their moons and from the importance of ethane as a trace species in the terrestrial atmosphere. Solar decomposition of methane in the upper part of these atmospheres followed by a series of reactions leads to a variety of hydrocarbon compounds among which ethane is often the second most abundant species. Because of its high abundance, ethane spectra have been measured by Voyager and Cassini in the regions around 30, 12, 7, and 3 μm. Therefore, a complete knowledge of line parameters of ethane is crucial for spectroscopic remote sensing of planetary atmospheres. Experimental characterization of torsion-vibration states of ethane lying below 1400 cm-1 have been made previously, but extension of the Hamiltonian model for treatment of the strongly perturbed νb{8} fundamental and the complex band system of ethane in the 3 micron region requires careful examination of the operators for many new torsionally mediated vibration-rotation interactions. Following the procedures outlined by Hougen, we have re-examined the transformation properties of the total angular momentum, the translational and vibrational coordinates and momenta of ethane, and for vibration-torsion-rotation interaction terms constructed by taking products of these basic operators. It is found that for certain choices of phase, the doubly degenerate vibrational coordinates with and symmetry can be made to transform under the group elements in such a way as to yield real matrix elements for the torsion-vibration-rotation couplings whereas other choices of phase may require complex algebra. In this talk, I will discuss the construction of a very general torsion-vibration-rotation Hamiltonian for ethane, as well as the prospect for using such a Hamiltonian to obtain a global frequency analysis (based in large part on an extension of earlier programs and ethane fits^a from
Analysis of Vibration Exercise at Varying Frequencies by Different Fatigue Estimators.
Xu, Lin; Rabotti, Chiara; Mischi, Massimo
2016-12-01
Vibration exercise (VE) has been suggested to improve muscle strength and power performance, due to enhanced neuromuscular demand. However, understanding of the most appropriate VE protocols is lacking, limiting the optimal use of VE in rehabilitation programs. In this study, the fatiguing effect of vibration at different frequencies was investigated by employing a force-modulation VE system. Twenty volunteers performed 12-s isometric contractions of the biceps brachii with a load consisting of a baseline force of 80% of their maximum voluntary contraction (MVC) and a superimposed sinusoidal force at 0 (control condition with no vibration), 20, 30, and 40 Hz. Mechanical fatigue was estimated by assessment of MVC decay after each task while myoelectric fatigue was estimated by analysis of multichannel electromyography (EMG) signals recorded during VE. EMG conduction velocity, spectral compression, power, and fractal dimension were estimated as indicators of myoelectric fatigue. Our results suggest vibration, in particular at 30 Hz, to produce a larger degree of fatigue as compared to control condition. These results motivate further research aiming at introducing VE in rehabilitation programs with improved training protocols.
Naito, Koki; Asami, Takuya; Miura, Hikaru
2015-07-01
Intense aerial acoustic waves can be produced by an ultrasonic source consisting of a transverse vibrating plate and an external jutting driving point. Previously, we studied the dimensional parameters of vibrating plates to produce stripe-mode patterns and thereby determine the plate dimensions that generate high-quality patterns. In this research, we use four transverse vibrating plates as ultrasonic sources to produce intense standing wave fields in air. As a result, an aerial standing wave field was formed in the field surrounded by four vibrating plates. Furthermore, for a total input power of 30 W for the two ultrasonic sources, a very strong (sound pressure level, 167 dB) wave field is obtained.
Dijkstra, Arend G.; Jansen, Thomas la Cour; Knoester, Jasper
2011-01-01
The amide vibrational modes play an important role in energy transport and relaxation in polypeptides and proteins and provide us with spectral markers for structure and structural dynamics of these macromolecules. Here, we present a detailed model to describe the dynamic properties of the amide I
Stretching dependence of the vibration modes of a single-molecule Pt-H-2-Pt bridge
DEFF Research Database (Denmark)
Djukic, D.; Thygesen, Kristian Sommer; Untiedt, C.
2005-01-01
A conducting bridge of a single hydrogen molecule between Pt electrodes is formed in a break junction experiment. It has a conductance near the quantum unit, G(0)=2e(2)/h, carried by a single channel. Using point-contact spectroscopy three vibration modes are observed and their variation upon...
VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.
Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György
2015-09-01
The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Qian Zhao
Full Text Available Low magnitude high frequency vibration (LMHFV has been mainly reported for its influence on the musculoskeletal system, particularly the bone tissue. In the bone structure, osteogenic activity is the main focus of study with regards to LMHFV. However, adipogenesis, another important mode of differentiation in the bone marrow cavity that might be affected by LMHFV, is much less researched. Furthermore, the molecular mechanism of how LMHFV influences adipogenesis still needs to be understood. Here, we tested the effect of LMHFV (0.3g, 40 Hz, amplitude: 50μm, 15min/d, on multipotent stem cells (MSCs, which are the common progenitors of osteogenic, chondrogenic, adipogenic and myogenic cells. It is previously shown that LMHFV promotes osteogenesis of MSCs. In this study, we further revealed its effect on adipo-differentiation of bone marrow stem cells (BMSCs and studied the underlying signaling pathway. We found that when treated with LMHFV, the cells showed a higher expression of PPARγ, C/EBPα, adiponectin and showed more oil droplets. After vibration, the protein expression of PPARγ increased, and the phosphorylation of p38 MAPK was enhanced. After treating cells with SB203580, a specific p38 inhibitor, both the protein level of PPARγ illustrated by immunofluorescent staining and the oil droplets number, were decreased. Altogether, this indicates that p38 MAPK is activated during adipogenesis of BMSCs, and this is promoted by LMHFV. Our results demonstrating that specific parameters of LMHFV promotes adipogenesis of MSCs and enhances osteogenesis, highlights an unbeneficial side effect of vibration therapy used for preventing obesity and osteoporosis.
Dillman, Kevin L; Shelly, Katherine R; Beck, Warren F
2009-04-30
Ground-state coherent wavepacket motions arising from intermolecular modes with clustered, first-shell solvent molecules were observed using the femtosecond dynamic absorption technique in polar solutions of Zn(II) meso-tetrakis(N-methylpyridyl)porphyrin (ZnTMPyP) with excitation in the Soret absorption band. As was observed previously in bacteriochlorophyll a solution, the pump-probe transients in ZnTMPyP solutions are weakly modulated by slowly damped (effective damping time gamma > 1 ps) features that are assigned to intramolecular modes, the skeletal normal modes of vibration of the porphyrin. The 40 cm(-1) and 215 cm(-1) modes from the metal-doming and metal-solvent-ligand modes, respectively, are members of this set of modulation components. A slowly damped 2-4 cm(-1) component is assigned to the internal rotation of the N-methylpyridyl rings with respect to the porphyrin macrocycle; this mode obtains strong resonance Raman intensity enhancement from an extensive delocalization of pi-electron density from the porphyrin in the ground state onto the rings in the pi* excited states. The dominant features observed in the pump-probe transients are a pair of rapidly damped (gamma modes with solvent molecules. This structural assignment is supported by an isotope-dependent shift of the average mode frequencies in methanol and perdeuterated methanol. The solvent dependence of the mean intermolecular mode frequency is consistent with a van der Waals intermolecular potential that has significant contributions only from the London dispersion and induction interactions; ion-dipole or ion-induced-dipole terms do not make large contributions because the pi-electron density is not extensively delocalized onto the N-methylpyridyl rings. The modulation depth associated with the intermolecular modes exhibits a marked dependence on the electronic structure of the solvent that is probably related to the degree of covalency; the strongest modulations are observed in acetonitrile
Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David
2017-02-01
user supervision and calibration. First a multi-scale image processing method is applied on the frames of the video of a vibrating structure to extract the local pixel phases that encode local structural vibration, establishing a full-field spatiotemporal motion matrix. Then a high-spatial dimensional, yet low-modal-dimensional, over-complete model is used to represent the extracted full-field motion matrix using modal superposition, which is physically connected and manipulated by a family of unsupervised learning models and techniques, respectively. Thus, the proposed method is able to blindly extract modal frequencies, damping ratios, and full-field (as many points as the pixel number of the video frame) mode shapes from line of sight video measurements of the structure. The method is validated by laboratory experiments on a bench-scale building structure and a cantilever beam. Its ability for output (video measurements)-only identification and visualization of the weakly-excited mode is demonstrated and several issues with its implementation are discussed.
Minimum component high frequency current mode rectifier | Sampe ...
African Journals Online (AJOL)
In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...
Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes
Directory of Open Access Journals (Sweden)
Hugo Lourenço-Martins
2017-12-01
Full Text Available Recently, two reports [Krivanek et al. Nature (London 514, 209 (2014NATUAS0028-083610.1038/nature13870, Lagos et al. Nature (London 543, 529 (2017NATUAS0028-083610.1038/nature21699] have demonstrated the amazing possibility to probe vibrational excitations from nanoparticles with a spatial resolution much smaller than the corresponding free-space phonon wavelength using electron-energy-loss spectroscopy (EELS. While Lagos et al. evidenced a strong spatial and spectral modulation of the EELS signal over a nanoparticle, Krivanek et al. did not. Here, we show that discrepancies among different EELS experiments as well as their relation to optical near- and far-field optical experiments [Dai et al. Science 343, 1125 (2014SCIEAS0036-807510.1126/science.1246833] can be understood by introducing the concept of confined bright and dark surface phonon modes, whose density of states is probed by EELS. Such a concise formalism is the vibrational counterpart of the broadly used formalism for localized surface plasmons [Ouyang and Isaacson Philos. Mag. B 60, 481 (1989PMABDJ1364-281210.1080/13642818908205921, García de Abajo and Aizpurua Phys. Rev. B 56, 15873 (1997PRBMDO0163-182910.1103/PhysRevB.56.15873, García de Abajo and Kociak Phys. Rev. Lett. 100, 106804 (2008PRLTAO0031-900710.1103/PhysRevLett.100.106804, Boudarham and Kociak Phys. Rev. B 85, 245447 (2012PRBMDO1098-012110.1103/PhysRevB.85.245447]; it makes it straightforward to predict or interpret phenomena already known for localized surface plasmons such as environment-related energy shifts or the possibility of 3D mapping of the related surface charge densities [Collins et al. ACS Photonics 2, 1628 (2015APCHD52330-402210.1021/acsphotonics.5b00421].
He, Haijun; Shao, Li-Yang; Luo, Bin; Li, Zonglei; Zou, Xihua; Zhang, Zhiyong; Pan, Wei; Yan, Lianshan
2016-03-07
A novel measurement scheme for multiple high-frequency vibrations has been demonstrated by combining phase-sensitive optical time domain reflectometry (Ф-OTDR) and Mach-Zehnder interferometer (MZI) based on frequency division multiplexing. The light source is directly launched into the MZI structure, while it was modulated by an acoustic optical modulator (AOM) with a frequency shift of 200 MHz for the Ф-OTDR part. The vibration frequency is obtained by demodulating the interference signal obtained by the MZI structure, while the vibration position is located by Ф-OTDR system. The spatial resolution of 10m is obtained over 3 km sensing fiber. And the detectable vibration frequency reaches up to 40 kHz. Compared to the previous schemes, this system works without dead zone in the detectable frequency range. Furthermore, the frequency spectrum mapping method has been adopted to determine multiple high-frequency vibrations simultaneously. The experimental results prove the concept and match well with the theoretical analysis.
Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Fei
2016-04-01
A time-domain filtered-x Newton narrowband algorithm (the Fx-Newton algorithm) is proposed to address three major problems in active isolation of machinery vibration: multiple narrowband components, MIMO coupling, and amplitude and frequency fluctuations. In this algorithm, narrowband components are extracted by narrowband-pass filters (NBPF) and independently controlled by multi-controllers, and fast convergence of the control algorithm is achieved by inverse secondary-path filtering of the extracted sinusoidal reference signal and its orthogonal component using L×L numbers of 2nd-order filters in the time domain. Controller adapting and control signal generation are also implemented in the time domain, to ensure good real-time performance. The phase shift caused by narrowband filter is compensated online to improve the robustness of control system to frequency fluctuations. A double-reference Fx-Newton algorithm is also proposed to control double sinusoids in the same frequency band, under the precondition of acquiring two independent reference signals. Experiments are conducted with an MIMO single-deck vibration isolation system on which a 200 kW ship diesel generator is mounted, and the algorithms are tested under the vibration alternately excited by the diesel generator and inertial shakers. The results of control over sinusoidal vibration excited by inertial shakers suggest that the Fx-Newton algorithm with NBPF have much faster convergence rate and better attenuation effect than the Fx-LMS algorithm. For swept, frequency-jumping, double, double frequency-swept and double frequency-jumping sinusoidal vibration, and multiple high-level harmonics in broadband vibration excited by the diesel generator, the proposed algorithms also demonstrate large vibration suppression at fast convergence rate, and good robustness to vibration with frequency fluctuations.
Directory of Open Access Journals (Sweden)
Elie-Jacques Fares
Full Text Available There is increasing recognition about the importance of enhancing energy expenditure (EE for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS. Whole-body vibration (WBV increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF and EE, nor if WBV influences respiratory quotient (RQ, and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz.EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz. Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest, separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest at 40 Hz, separated by 5 min seated rest.Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, p<0.001. However, no differences in EE were observed across VFs. Similarly, no effect of VF on RQ was found, nor did WBV alter RQ relative to standing without vibration.No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS.
Li, Q.; Wu, D. J.
2013-09-01
The use of concrete bridges in urban rail transit systems has raised many concerns regarding low-frequency (20-200 Hz) structure-borne noise due to the vibration of bridges when subjected to moving trains. Understanding the mechanism that determines the dominant frequencies of bridge vibrations is essential for both vibration and noise reduction. This paper presents a general procedure based on the force method to obtain the power flows within a coupled vehicle-track-bridge system, the point mobility of the system and the dynamic interaction forces connecting various components. The general coupling system consists of multi-rigid-bodies for the vehicles, infinite Euler beams representing the rails, two-dimensional or three-dimensional elements of the concrete bridges, and spring-dashpot pairs to model the wheel-rail contacts, the vehicle suspensions, the rail pads and the bridge bearings. The dynamic interaction of the coupled system is solved in the frequency domain by assuming the combined wheel-rail roughness moves forward relative to the stationary vehicles. The proposed procedure is first applied to a rail on discrete supports and then to a real urban rail transit U-shaped concrete bridge. The computed results show that the wheel-rail contact forces, the power flows to the rail/bridge subsystem and the accelerations of the bridge are primarily dominated by the contents around the natural frequency of a single wheel adhered to the elastically supported rail. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same rigid body, then δmnab(ω) can be expressed as δmnab(ω)=-{(}/{Mlω}, where Ml is the mass of the lth rigid body. If the ath node of the mth spring-dashpot pair and the bth node of the nth spring-dashpot pair are connected to the same infinite rail, δmnab(ω) can be expressed as [8] δmnab(ω)=-j{((e-je)}/{4EIk}, where xm and xn are the x-coordinates of the mth and nth spring
Resonant vibration control of rotating beams
DEFF Research Database (Denmark)
Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker
2011-01-01
Rotatingstructures,like e.g.wind turbine blades, may be prone to vibrations associated with particular modes of vibration. It is demonstrated, how this type of vibrations can be reduced by using a collocated sensor–actuator system, governed by a resonant controller. The theory is here demonstrated...... modal connectivity, only very limited modal spill-over is generated. The controller acts by resonance and therefore has only a moderate energy consumption, and successfully reduces modal vibrations at the resonance frequency....
Directory of Open Access Journals (Sweden)
O. I. Dotsenko
2014-04-01
Full Text Available This paper deals with the peculiarities of functioning of murine erythron system under vibrational stress on the basis of experimental data about erythrocytes acid resistance. Experiments were made on the outbred male mice at about one age and weight that were maintained in vivarium conditions on usual diet. Animals were divided into 5 groups. Animals of 1–4 groups were exposed to daily thirty-minute vibration at frequencies of 8, 16, 24 and 32 Hz respectively, with amplitude of 0.8 ±0.12 mmduring 14 days. Animal exposure to vibration was provided by the electromechanical converter connected to the generator of low frequency signals. The fifth group of animals was not exposed to vibration and it was used as a control. Kinetic dependences of acid hemolysis of erythrocytes was registered daily, from the 1st to the 5th day, and further at the 7th, 9th and 14th days of experiment. Blood for analysis was taken from tail veins in 15–20 min after stopping of vibration. As the basic indicators characterizing resistance of erythrocytes to the hemolytic agent influence we used the hemolysis rate constant, i.e. the value inverse to cell half-life time. For analysis of acid erythrograms we also used such indicators as hemolysis duration, maximum erythrogram’s time and width of the interval of erythrocyte group dominating in the population. We processed the results of research statistically. The study showed that acid resistance of erythrocytes decreased during the first five days of vibration influence at frequencies of 8–16 Hz. Besides, erythrocytes were divided into fractions that indicated the erythrocytes aging and strengthening of the population heterogeneity. On the fifth day of 16 Hz influence the emission of reticulocytes was recorded. At 8 Hz influence these processes were registered on the 7th day of the experiment. During the subsequent days the hemolysis curves were slightly displaced in relation to the control. Increase in hemolysis
Mei, Chuh
1987-01-01
A finite element method is presented for the large amplitude vibrations of complex structures that can be modelled with beam and rectangular plate elements subjected to harmonic excitation. Both inplane deformation and inertia are considered in the formulation. Derivation of the harmonic force and nonlinear stiffness matrices for a beam and a rectangular plate element are presented. Solution procedures and convergence characteristics of the finite element method are described. Nonlinear response to uniform and concentrated harmonic loadings and improved nonlinear free vibration results are presented for beams and rectangular plates of various boundary conditions.
Nonlinear vibration analysis of axially moving strings based on gyroscopic modes decoupling
Yang, Xiao-Dong; Wu, Hang; Qian, Ying-Jing; Zhang, Wei; Lim, C. W.
2017-04-01
A novel idea that applies the multiple scale analysis to a discretized decoupled system of gyroscopic continua is introduced and an axial moving string is treated as an example. First, the invariant manifold method is applied to the discretized ordinary differential equations of the axially moving string. Complex gyroscopic mode functions that agree well with true analytical results are obtained. The gyroscopic modes are subsequently used for the discretized ordinary differential equations with gyroscopic and nonlinear coupling terms that yield a gyroscopically decoupled system. Further the method of multiple scales is used to obtain the equations at a slow scale. This novel procedure is compared to solutions obtained by directly applying the classical multiple scale analysis to the gyroscopically coupled system without decoupling. The modal decoupled system analysis yields better frequency with comparing to the classic method. The proposed methodology provides a novel alternative for nonlinear dynamic analysis of gyroscopic continua.
Directory of Open Access Journals (Sweden)
R. A. Jafari-Talookolaei
2011-01-01
Full Text Available The aim of this paper is to present analytical and exact expressions for the frequency and buckling of large amplitude vibration of the symmetrical laminated composite beam (LCB with simple and clamped end conditions. The equations of motion are derived by using Hamilton's principle. The influences of axial force, Poisson effect, shear deformation, and rotary inertia are taken into account in the formulation. First, the geometric nonlinearity based on the von Karman's assumptions is incorporated in the formulation while retaining the linear behavior for the material. Then, the displacement fields used for the analysis are coupled using the equilibrium equations of the composite beam. Substituting this coupled displacement fields in the potential and kinetic energies and using harmonic balance method, we obtain the ordinary differential equation in time domain. Finally, applying first order of homotopy analysis method (HAM, we get the closed form solutions for the natural frequency and deflection of the LCB. A detailed numerical study is carried out to highlight the influences of amplitude of vibration, shear deformation and rotary inertia, slenderness ratios, and layup in the case of laminates on the natural frequency and buckling load.
Frequency Stabilization of a Single Mode Terahertz Quantum Cascade Laser to the Kilohertz Level
2009-04-27
Frequency stabilization of a single mode terahertz quantum cascade laser to the kilohertz level 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...primarily in a single-longitudinal mode (SLM) up to a bias voltage of 3.7 V and a multi-lodgitudinal mode ( MLM ) at higher voltages. It was mounted in a
Directory of Open Access Journals (Sweden)
Dao Van Dung
Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.
A piezoelectric pulse generator for low frequency non-harmonic vibration
Jiang, Hao; Yeatman, Eric M.
2013-12-01
This paper reports a new piezoelectric prototype for pulse generation by energy harvesting from low frequency non-harmonic vibration. The pulse generator presented here consists of two parts: the electromechanical part and the load circuit. A metal rolling rod is used as the proof mass, moving along the substrate to achieve both actuating of the piezoelectric cantilever by magnetic coupling and self-synchronous switching of the circuit. By using this new approach, the energy from the piezoelectric transduction mechanism is regulated simultaneously when it is extracted. This allows a series of tuneable pulses to be generated, which can be applied to self-powered RF wireless sensor network (WSN) nodes.
Optical Synthesis of Terahertz and Millimeter-Wave Frequencies with Discrete Mode Diode Lasers
O'Brien, Stephen; Bitauld, David; Brandonisio, Nicola; Amann, Andreas; Phelan, Richard; Kelly, Brian; O'Gorman, James
2010-01-01
It is shown that optical synthesis of terahertz and millimeter-wave frequencies can be achieved using two-mode and mode-locked discrete mode diode lasers. These edge-emitting devices incorporate a spatially varying refractive index profile which is designed according to the spectral output desired of the laser. We first demonstrate a device which supports two primary modes simultaneously with high spectral purity. In this case sinusoidal modulation of the optical intensity at terahertz frequencies can be obtained. Cross saturation of the material gain in quantum well lasers prevents simultaneous lasing of two modes with spacings in the millimeter-wave region. We show finally that by mode-locking of devices that are designed to support a minimal set of four primary modes, we obtain a sinusoidal modulation of the optical intensity in this frequency region.
Non-Seismology Seismology: Using QuakeCatchers to Analyze the Frequency of Bridge Vibrations
Courtier, A. M.; Constantin, C.; Wilson, C. F.
2013-12-01
We conducted an experiment to test the feasibility of measuring seismic waves generated by traffic near James Madison University. We used QuakeCatcher seismometers (originally designed for passive seismic measurement) to measure vibrations associated with traffic on a wooden bridge as well as a nearby concrete bridge. This experiment was a signal processing exercise for a student research project and did not draw any conclusions regarding bridge safety or security. The experiment consisted of two temporary measurement stations comprised of a laptop computer and a QuakeCatcher - a small seismometer that plugs directly into the laptop via a USB cable. The QuakeCatcher was taped to the ground at the edge of the bridge to achieve good coupling, and vibrational events were triggered repeatedly with a control vehicle to accumulate a consistent dataset of the bridge response. For the wooden bridge, the resulting 'seismograms' were converted to Seismic Analysis Code (SAC) format and analyzed in MATLAB. The concrete bridge did not generate vibrations significant enough to trigger the recording mechanism on the QuakeCatchers. We will present an overview of the experimental design and frequency content of the traffic patterns, as well as a discussion of the instructional benefits of using the QuakeCatcher sensors in this non-traditional setting.
Ye, Shuji; Wei, Feng
2011-06-21
In this paper, we designed a compatible multiple nonlinear vibrational spectroscopy system that can be used for recording infrared-visible sum frequency generation vibrational spectra (SFG) and infrared-infrared-visible three-pump-field four-wave-mixing (IIV-TPF-FWM) spectra using a commercial EKSPLA SFG system. This is the first time IIV-TPF-FWM signals were obtained using picosecond laser pulses. We have applied this compatible system to study the surface and vibrational structures of riboflavin molecules (also known as vitamin B2). The SFG spectra of eight polarization combinations have non-vanishing signals. The signals with incoming s-polarized IR are relatively weaker than the signals with incoming p-polarized IR. Under the double resonant conditions, the SFG signals of the conjugated tricyclic ring are greatly enhanced. For the IIV-TPF-FWM spectra with incoming p-polarized IR, only the sspp and pppp polarization combinations have non-vanishing signals. The IIV-TPF-FWM spectra show a very strong peak at 1585 cm(-1) that is mainly dominated by the N(5)-C(4a) stretch. The method developed in this study will be helpful for researchers, either using a home-built or commercial (EKSPLA) SFG system, to obtain independent and complementary measurements for SFG spectroscopy and more detailed structural information of interfacial molecules.
Bastida, Adolfo; Soler, Miguel A; Zúñiga, José; Requena, Alberto; Kalstein, Adrián; Fernández-Alberti, Sebastian
2010-11-04
Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH₃)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH₃) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH₃) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH₃) modes to the methyl bending modes δ(CH₃), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH₃) vibrational energy relaxation in NMAD/D₂O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Londos, C. A.; Antonaras, G. [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece); Chroneos, A. [Materials Engineering, The Open University, Milton Keynes MK7 6AA (United Kingdom); Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)
2013-07-28
The evolution of self-interstitial clusters in silicon (Si), produced by fast neutron irradiation of silicon crystals followed by anneals up to 750 °C, is investigated using localised vibrational mode spectroscopy. A band at 582 cm{sup −1} appears after irradiation and is stable up to 550 °C was attributed to small self-interstitial clusters (I{sub n}, n ≤ 4), with the most probable candidate the I{sub 4} structure. Two bands at 713 and 758 cm{sup −1} arising in the spectra upon annealing of the 582 cm{sup −1} band and surviving up to ∼750 °C were correlated with larger interstitial clusters (I{sub n}, 5 ≤ n ≤ 8), with the most probable candidate the I{sub 8} structure or/and with chainlike defects which are precursors of the (311) extended defects. The results illustrate the presence of different interstitial clusters I{sub n}, at the various temperature intervals of the material, in the course of an isochronal anneal sequence. As the annealing temperature increases, they evolve from first-order structures with a small number of self-interstitials (I{sub n}, n ≤ 4) for the temperatures 50 < T < 550 °C, to second order structures (I{sub n}, 5 ≤ n ≤ 8) with a larger number of interstitials, for the temperatures 550 < T < 750 °C.
Tihanyi, J; Di Giminiani, R; Tihanyi, T; Gyulai, G; Trzaskoma, L; Horváth, M
2010-06-01
The objective of the study was to investigate the chronic effect of low frequency whole body vibration (WBV) on isometric and eccentric strength of knee extensors with different force exertion capacity. It was hypothesized that (1) four-week WBV intervention with the low frequency domain would enhance muscle strength and (2) the improvement would be more pronounced in the weaker muscle. To test our hypothesis twenty patients with acute stroke were recruited. Ten patients were randomly assigned to vibration and the remaining ten patients served for control.The patients in the vibration group received WBV with 20 Hz frequency three times per week standing on a vibration platform in half squat position meanwhile flexing and extending the joints and placing the weight from one leg to the other. Knee extensor strength was determined under isometric and eccentric contraction before and after WBV intervention. Myoelectrical activity (EMG) of the vastus lateralis muscle was also measured.Significant improvement was revealed in the vibration group only. The maximum isometric torque and EMG activity increased significantly for both paretic and non-paretic leg, but the improvement was threefold greater in the vibration group. No significant alteration was found in rate of torque development. Maximum eccentric torque and EMG increased significantly for the paretic leg only. Mechanical work enhanced significantly in the paretic side only.The results of our study indicate that the selection of the effective vibration frequency depends upon the physical condition of neuromuscular system. Low vibration frequency intervention can increase the strength in weak muscles due to neuromuscular impairment and restricted physical activity.
Directory of Open Access Journals (Sweden)
Paulo Antonio Delgado-Arredondo
2015-01-01
Full Text Available Induction motors are critical components for most industries and the condition monitoring has become necessary to detect faults. There are several techniques for fault diagnosis of induction motors and analyzing the startup transient vibration signals is not as widely used as other techniques like motor current signature analysis. Vibration analysis gives a fault diagnosis focused on the location of spectral components associated with faults. Therefore, this paper presents a comparative study of different time-frequency analysis methodologies that can be used for detecting faults in induction motors analyzing vibration signals during the startup transient. The studied methodologies are the time-frequency distribution of Gabor (TFDG, the time-frequency Morlet scalogram (TFMS, multiple signal classification (MUSIC, and fast Fourier transform (FFT. The analyzed vibration signals are one broken rotor bar, two broken bars, unbalance, and bearing defects. The obtained results have shown the feasibility of detecting faults in induction motors using the time-frequency spectral analysis applied to vibration signals, and the proposed methodology is applicable when it does not have current signals and only has vibration signals. Also, the methodology has applications in motors that are not fed directly to the supply line, in such cases the analysis of current signals is not recommended due to poor current signal quality.
Fares, Elie-Jacques; Charrière, Nathalie; Montani, Jean-Pierre; Schutz, Yves; Dulloo, Abdul G; Miles-Chan, Jennifer L
2016-01-01
There is increasing recognition about the importance of enhancing energy expenditure (EE) for weight control through increases in low-intensity physical activities comparable with daily life (1.5-4 METS). Whole-body vibration (WBV) increases EE modestly and could present both a useful adjuvant for obesity management and tool for metabolic phenotyping. However, it is unclear whether a "dose-response" exists between commonly-used vibration frequencies (VF) and EE, nor if WBV influences respiratory quotient (RQ), and hence substrate oxidation. We aimed to investigate the EE-VF and RQ-VF relationships across three different frequencies (30, 40, and 50Hz). EE and RQ were measured in 8 healthy young adults by indirect calorimetry at rest, and subsequently during side-alternating WBV at one of 3 VFs (30, 40, and 50 Hz). Each frequency was assessed over 5 cycles of intermittent WBV (30s vibration/30s rest), separated by 5 min seated rest. During the WBV participants stood on the platform with knees flexed sufficiently to maintain comfort, prevent transmission of vibration to the upper body, and minimise voluntary physical exertion. Repeatability was assessed across 3 separate days in a subset of 4 individuals. In order to assess any sequence/habituation effect, an additional group of 6 men underwent 5 cycles of intermittent WBV (30s vibration/30s rest) at 40 Hz, separated by 5 min seated rest. Side-alternating WBV increased EE relative to standing, non-vibration levels (+36%, pvibration. No relationship could be demonstrated between EE and VF in the range of 30-50Hz, and substrate oxidation did not change in response to WBV. Furthermore, the thermogenic effect of intermittent WBV, whilst robust, was quantitatively small (<2 METS).
Taleb-Mokhtari, Ilham Naoual; Lazreg, Abbassia; Sekkal-Rahal, Majda; Bestaoui, Noreya
2016-01-15
A structural investigation of the organic molecules is being carried out using vibrational spectroscopy. In this study, normal co-ordinate calculations of anomers of the methyl-D-glucopyranoside and methyl-β-D-xylopyranoside in the crystalline state have been performed using the modified Urey-Bradley-Shimanouchi force field (mUBSFF) combined with an intermolecular potential energy function. The latter includes Van der Waals interactions, electrostatic terms, and explicit hydrogen bond functions. The vibrational spectra of the compounds recorded in the crystalline state, in the 4000-500 cm(-1) spectral region for the IR spectra, and in the 4000-20 cm(-1) spectral range for the Raman spectra are presented. After their careful examination, several differences in the intensities and frequency shifts have been observed. The theoretical spectra have been obtained after a tedious refinement of the force constants. Thus, on the basis of the obtained potential distribution, each observed band in IR and in Raman has been assigned to a vibrational mode. The obtained results are indeed in agreement with those observed experimentally and thus confirm the previous assignments made for the methyl-α and β-D-glucopyranoside, as well as for the methyl-β-D-xylopyranoside. Copyright © 2015 Elsevier B.V. All rights reserved.
Sun, Limin; Chen, Lin
2017-10-01
Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
Energy Technology Data Exchange (ETDEWEB)
Li, Pengwei, E-mail: lipengwei@tyut.edu.cn; Wang, Yanfen; Luo, Cuixian; Li, Gang; Hu, Jie; Zhang, Wendong [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Ying [MicroNano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China); Liu, Wei [Baicheng Ordnance Test Center of China, Baicheng 137000, Jilin (China)
2015-04-15
As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams) show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.
Low-frequency and wideband vibration energy harvester with flexible frame and interdigital structure
Directory of Open Access Journals (Sweden)
Pengwei Li
2015-04-01
Full Text Available As an alternative to traditional cantilever beam structures and their evolutions, a flexible beam based, interdigital structure, vibration energy harvester has been presented and investigated. The proposed interdigital-shaped oscillator consists of a rectangular flexible frame and series of cantilever beams interdigitally bonded to it. In order to achieve low frequency and wide-bandwidth harvesting, Young’s modulus of materials, frame size and the amount of the cantilevers have been studied systematically. The measured frequency responses of the designed device (PDMS frame, quintuple piezoelectric cantilever beams show a 460% increase in bandwidth below 80Hz. When excited at an acceleration of 1.0 g, the energy harvester achieves to a maximum open-circuit voltage of 65V, and the maximum output power 4.5 mW.
Natural frequency and vibration analysis of jacket type foundation for offshore wind power
Hung, Y.-C.; Chang, Y.-Y.; Chen, S.-Y.
2017-12-01
There are various types of foundation structure for offshore wind power, engineers may assess the condition of ocean at wind farm, and arrange the transportation, installation of each structure members, furthermore, considering the ability of manufacture steel structure as well, then make an optimum design. To design jacket offshore structure, unlike onshore cases, offshore structure also need to estimate the wave excitation effect. The aim of this paper is to study the difference of natural frequency between different kinds of structural stiffness and discuss the effect of different setting of boundary condition during analysis, besides, compare this value with the natural frequency of sea wave, in order to avoid the resonance effect. In this paper, the finite element analysis software ABAQUS is used to model and analyze the natural vibration behavior of the jacket structure.
Integrated Very High Frequency Switch Mode Power Supplies: Design Considerations
DEFF Research Database (Denmark)
Hertel, Jens Christian; Nour, Yasser; Knott, Arnold
2017-01-01
This paper presents a power supply using an increased switching frequency to minimize the size of energy storing components, thereby addressing the demands for increased power densities in power supplies. 100 MHz and higher switching frequencies have been used in resonant power converters, which...... simulations. The required spiral inductors was modeled, and simulations show Q values of as high as 14 at a switching frequency of 250 MHz. Simulations of the converter show an efficiency of 55 % with a self oscillating gate drive. However the modeled inductor was not adequate for operating with the self...
Siegel, JH; Cerka, AJ; Recio-Spinoso, A; Temchin, AN; van Dijk, P; Ruggero, MA
2005-01-01
When stimulated by tones, the ear appears to emit tones of its own, stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs were measured in 17 chinchillas and their group delays were compared with a place map of basilar-membrane vibration group delays measured at the characteristic frequency. The
Directory of Open Access Journals (Sweden)
Qiang Zhang
2015-01-01
Full Text Available An analytical model on electromechanical coupling coefficient and the length optimization of a bending piezoelectric ultrasonic transducer are proposed. The piezoelectric transducer consists of 8 PZT elements sandwiched between four thin electrodes, and the PZT elements are clamped by a screwed connection between fore beam and back beam. Firstly, bending vibration model of the piezoelectric transducer is built based on the Timoshenko beam theory. Secondly, the analytical model of effective electromechanical coupling coefficient is built based on the bending vibration model. Energy method and electromechanical equivalent circuit method are involved in the modelling process. To validate the analytical model, sandwich type piezoelectric transducer example in second order bending vibration mode is analysed. Effective electromechanical coupling coefficient of the transducer is optimized with simplex reflection technique, and the optimized ratio of length of the transducers is obtained. Finally, experimental prototypes of the sandwich type piezoelectric transducers are fabricated. Bending vibration mode and impedance of the experimental prototypes are tested, and electromechanical coupling coefficient is obtained according to the testing results. Results show that the analytical model is in good agreement with the experimental model.
Pan, Huilin; Liu, Kopin
2018-01-07
(2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them-including partially and fully deuterated isotopologs-four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands-CHD2(611), CH2D(311), CH2D(511), and CH2D(611)-are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.
A Large Span Crossbeam Vibration Frequencies Analysis Based on an Analogous Beam Method
Directory of Open Access Journals (Sweden)
Zhifeng Liu
2013-01-01
Full Text Available The novel method of an analogous beam is studied, which the flexural rigidity and mass per unit length correspond was described as the reciprocal of the mass per unit and the reciprocal of the flexural rigidity of the beam. It is shown that both beams possess the same natural frequencies of flexural vibration. In order to approximate calculation of these frequencies, the continuously distributed mass of the original beam is substituted for a number of concentrated masses. The analogous beam then becomes a chain of rigid links connected by pins and equipped with springs restraining the relative rotation of adjacent links. The equations of motion for the analogous beam can be solved by a procedure which consists of assuming a value for the natural frequency and calculating the deflections successively from one end of the beam to the other. Under normal circumstances, there will be a certain error, and one boundary condition will not be satisfied. The procedure is repeated with different values of the frequency until the error is removed. The method is illustrated by an example of a Crossbeam for which the fundamental frequency is found.
PEELUKHANA, Srikara V.; GOENKA, Shilpi; KIM, Brian; KIM, Jay; BHATTACHARYA, Amit; STRINGER, Keith F.; BANERJEE, Rupak K.
2015-01-01
To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s2, for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D). PMID:25843564
Fry-Petit, A M; Rebola, A F; Mourigal, M; Valentine, M; Drichko, N; Sheckelton, J P; Fennie, C J; McQueen, T M
2015-09-28
For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.
Ultrafast electronic relaxation and vibrational dynamics in a polyacetylene derivative
Kobayashi, Takayoshi; Iiyama, Tsugumasa; Okamura, Kotaro; Du, Juan; Masuda, Toshio
2013-04-01
Real-time vibrational spectra in a polyacetylene derivative, poly[o-TFMPA([o-(trifluoromethyl) phenyl]acetylene)] in a broad electronic spectral region were observed using a sub-7-fs laser. Using the frequencies and initial phases of vibrational modes obtained by the spectroscopy, the assignment of the wavepackets was made. From the first moment, Huang-Rhys parameters were determined for six most prominent modes, which characterize the potential hypersurface composed of multi-dimensional vibrational mode spaces.
Vibration Attenuation of Plate Using Multiple Vibration Absorbers
Directory of Open Access Journals (Sweden)
Zaman Izzuddin
2014-07-01
Full Text Available Vibrations are undesired phenomenon and it can cause harm, distress and unsettling influence to the systems or structures, for example, aircraft, automobile, machinery and building. One of the approach to limit this vibration by introducing passive vibration absorber attached to the structure. In this paper, the adequacy of utilizing passive vibration absorbers are investigated. The vibration absorber system is designed to minimize the vibration of a thin plate fixed along edges. The plate’s vibration characteristics, such as, natural frequency and mode shape are determined using three techniques: theoretical equations, finite element (FE analysis and experiment. The results demonstrate that the first four natural frequencies of fixed-fixed ends plate are 48, 121, 193 and 242 Hz, and these results are corroborated well with theoretical, FE simulation and experiment. The experiment work is further carried out with attached single and multiple vibration absorbers onto plate by tuning the absorber’s frequency to match with the excitation frequency. The outcomes depict that multiple vibration absorbers are more viable in lessening the global structural vibration.
Directory of Open Access Journals (Sweden)
Cosmin-Mihai MIRIŢOIU
2013-05-01
Full Text Available In this paper we present the experimental testings used to study the vibration of the drill tool, during the drilling of the bronze products. We have used the experimental setup presented in Miriţoiu (2013[1]. In this paper the vibrations are analyzed during the drilling on the universal lathe machines. The main purpose of to find a correlation between the cutting speed and the frequency of the vibration by using the experimental results and the regression analysis
Hazra, Milan; Bagchi, Biman
2016-01-01
Valuable dynamical and structural information about neat liquid DMSO at ambient conditions can be obtained through study of low frequency vibrations in the far infrared (FIR), that is, terahertz regime. For DMSO, collective excitations as well as single molecule stretches and bends have been measured by different kinds of experiments such as OHD-RIKES and terahertz spectroscopy. In the present work we investigate the intermolecular vibrational spectrum of DMSO through three different computat...
Stehbens, W E; Liepsch, D W; Poll, A; Erhardt, W
1995-01-01
Because arteriovenous fistulae are associated with a palpable thrill and an audible murmur, the vibrational activity of the blood vessel walls about experimental arteriovenous fistulae in rabbits was investigated using, for the first time, a high-resolution laser vibrometer. Frequencies of mural vibrations up to 2200 Hz were recorded at different sites about the fistulae. The relationship of this vibratory activity of blood vessel walls to physiological and pathological conditions warrants further investigation.
Nordenfelt, Anders
2011-01-01
We demonstrate theoretically the feasibility of selective self-excitation of higher-mode flexural vibrations of graphene nano-ribbons and carbon nanotubes by the means of magnetomotive instability. Apart from the mechanical resonator, the device consists only of a constant voltage source, an inductor, a capacitor, a gate electrode and a constant magnetic field. Numerical simluations were performed on both graphene and carbon nanotubes displaying an overall similar behaviour, but with some dif...
Abstract: Stoichiometry, Vibrational Modes and Structures of Molten Nb2O5-K2S2O7 Mixtures
DEFF Research Database (Denmark)
Boghosian, S.; Borup, F.; Berg, Rolf W.
1998-01-01
High temperature Raman spectroscopy is used tostudy the vibrational modes and structures of the Nb205-K2S207(0 stoichiometry are performed...... in order to characterise the complex(es) formed. The determination of stoichiometry is done following a general procedure which is based on a simple formalism correlating measurements of relative Raman band intensities with the stoichiometry of solutes in molten salt solvents....
Energy Technology Data Exchange (ETDEWEB)
Hu, S.; Mukherjee, A.; Spiro, T.G. (Princeton Univ., NJ (United States))
1993-12-29
Resonance Raman (RR) and FT-IR spectra are reported for nickel(II) 1,5-dihydroxy-1,5-dimethyloctaethylbacteriochlorin [Ni(HOEBC)] and its meso-d[sub 4] isotopomer. All the in-plane skeletal RR-active modes and most IR-active modes are assigned with the aid of a normal mode analysis by using a force field developed for nickel(II) octaethylporphyrin and by scaling the bond stretch force constants to bond lengths revealed in the crystal structure of nickel(II) octaethylbacteriochlorin. The calculated eigenvectors provide insight into the essential vibrational characteristics of metallobacteriochlorins. The RR spectra of Ni(HOEBC) were acquired with a variety of excitation wavelengths, near resonance with the B[sub x], Q[sub x], and Q[sub y] transitions. The enhancement pattern of the observed RR intensities reveals that the B[sub x]- and near-Q[sub y]-resonant spectra are dominated by Franck-Condon-active modes while the Q[sub x]-resonant spectrum is dominated by vibronically active modes. The B[sub x]-resonant spectrum also shows significant vibronic scattering, via coupling between the B[sub x]- and B[sub y]-excited states. Frequencies correlate well among Ni(II) complexes of octaethylporphine (OEP) and hydroporphyrins for modes containing similar local mode contributions, when allowance is made for C[sub beta]-C[sub beta] bond order reduction and the effects of symmetry lowering. Assignments are proposed for the existing RR data on bacteriochlorophyll a. 32 refs., 14 figs., 6 tabs.
Frequency-shaped and observer-based discrete-time sliding mode control
Mehta, Axaykumar
2015-01-01
It is well established that the sliding mode control strategy provides an effective and robust method of controlling the deterministic system due to its well-known invariance property to a class of bounded disturbance and parameter variations. Advances in microcomputer technologies have made digital control increasingly popular among the researchers worldwide. And that led to the study of discrete-time sliding mode control design and its implementation. This brief presents, a method for multi-rate frequency shaped sliding mode controller design based on switching and non-switching type of reaching law. In this approach, the frequency dependent compensator dynamics are introduced through a frequency-shaped sliding surface by assigning frequency dependent weighing matrices in a linear quadratic regulator (LQR) design procedure. In this way, the undesired high frequency dynamics or certain frequency disturbance can be eliminated. The states are implicitly obtained by measuring the output at a faster rate than th...
Dance, Ian
2011-06-28
The intramolecular hydrogenation paradigm for the reducing actions of the enzyme nitrogenase postulates that the iron-molybdenum cofactor (FeMo-co, Fe(7)MoS(9)N(homocitrate)) as active site contains H atoms bound to Fe and S during the catalytic cycle, and that these H atoms are the reducing agents. The reduction of N(2) and of all other non-physiological substrates is strongly inhibited by carbon monoxide, except for the formation of H(2) from protons. It has been recently reported that vanadium nitrogenase and modified molybdenum nitrogenase reduce CO to hydrocarbons. Therefore many questions now arise about relationships between CO and H on the nitrogenase cofactors. In order to assist the interpretation of kinetic infrared spectral data, vibrational frequencies and modes have been calculated for a variety of possible structures in which FeMo-co bears H atoms, or CO ligands, or both. Fe-H stretching frequencies occur in the same spectral window as the C-O stretching frequencies, with lesser intensity, and both stretches are strongly coupled in some structures. Symmetrical bridging of CO between two Fe atoms of FeMo-co is destabilised by the presence of other ligands on Fe, and the reason for this is evident. Two results for bound formyl, HCO, are reported. These calculations of reference structures allow some interpretation of existing experimental spectra, but, more significantly, they suggest further kinetic infrared experiments to elucidate the chemical mechanism of catalysis by nitrogenase under normal turnover conditions. This journal is © The Royal Society of Chemistry 2011
Red Giant Oscillations: Stellar Models and Mode Frequency Calculations
DEFF Research Database (Denmark)
Jendreieck, A.; Weiss, A.; Aguirre, Victor Silva
2012-01-01
We present preliminary results on modelling KIC 7693833, the so far most metal-poor red-giant star observed by {\\it Kepler}. From time series spanning several months, global oscillation parameters and individual frequencies were obtained and compared to theoretical calculations. Evolution models ...
Calculation of exact vibration modes for plane grillages by the dynamic stiffness method
Hallauer, W. L., Jr.; Liu, R. Y. L.
1982-01-01
A dynamic stiffness method is developed for the calculation of the exact modal parameters for plane grillages which consist of straight and uniform beams with coincident elastic and inertial axes. Elementary bending-torsion beam theory is utilized, and bending translation is restricted to one direction. The exact bending-torsion dynamic stiffness matrix is obtained for a straight and uniform beam element with coincident elastic and inertial axes. The element stiffness matrices are assembled using the standard procedure of the static stiffness method to form the dynamic stiffness matrix of the complete grillage. The exact natural frequencies, mode shapes, and generalized masses of the grillage are then calculated by solving a nonlinear eigenvalue problem based on the dynamic stiffness matrix. The exact modal solutions for an example grillage are calculated and compared with the approximate solutions obtained by using the finite element method.
Disponibilite, modes et frequence de consommation des legumes ...
African Journals Online (AJOL)
Les légumes traditionnels constituent une source importante de nutriments pour les ménages des pays en développement. La présente étude s'est intéressée à la diversité, à la disponibilité, et aux modes de consommation des légumes traditionnels africains dans des localités à diverses activités de maraîchage au Burkina ...
Three-dimensional free vibration analysis of thick laminated circular ...
African Journals Online (AJOL)
Dr Oke
mechanical systems is understanding the free vibration behavior of different plate components. The dynamic response of complex engineering systems is intimately linked with plate response frequencies as well as vibration mode shapes. A thorough analysis of free vibration data is often useful in arriving at the resonant ...
Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode
Directory of Open Access Journals (Sweden)
Mostafa Khazaee
Full Text Available AbstractPneumatic isolators are promising candidates for increasing the quality of accurate instruments. For this purpose, higher performance of such isolators is a prerequisite. In particular, the time-delay due to the air transmission is an inherent issue with pneumatic systems, which needs to be overcome using modern control methods. In this paper an adaptive fuzzy sliding mode controller is proposed to improve the performance of a pneumatic isolator in the low frequency range, i.e., where the passive techniques have obvious shortcomings. The main idea is to combine the adaptive fuzzy controller with adaptive predictor as a new time delay control technique. The adaptive fuzzy sliding mode control and the adaptive fuzzy predictor help to circumvent the input delay and nonlinearities in such isolators. The main advantage of the proposed method is that the closed-loop system stability is guaranteed under certain conditions. Simulation results reveal the effectiveness of the proposed method, compared with other existing time -delay control methods.
A complete ensemble empirical mode decomposition for GPR signal time-frequency analysis
Li, Jing; Chen, Lingna; Xia, Shugao; Xu, Penglong; Liu, Fengshan
2014-05-01
In this paper, we apply a time and frequency analysis method based on the complete ensemble empirical mode decomposition (CEEMD) in GPR signal processing. It decomposes the GPR signal into a sum of oscillatory components, with guaranteed positive and smoothly varying instantaneous frequencies. The key idea of this method relies on averaging the modes obtained by EMD applied to several realizations of Gaussian white noise added to the original signal. It can solve the mode mixing problem in empirical mode decomposition (EMD) method and improve the resolution of ensemble empirical mode decomposition (EEMD) when the signal has low signal noise ratio (SNR). First, we analyze the difference between the basic theory of EMD, EEMD and CEEMD. Then, we compare the time and frequency analysis results of different methods. The synthetic and real GPR data demonstrate that CEEMD promises higher spectral-spatial resolution than the other two EMDs method. Its decomposition is complete, with a numerically negligible error.
Krier, James M.
2012-08-23
Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.
Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies
Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.
Michotte, Jean-Bernard; Staderini, Enrico; Le Pennec, Deborah; Dugernier, Jonathan; Rusu, Rares; Roeseler, Jean; Vecellio, Laurent; Liistro, Giuseppe; Reychler, Grégory
2016-08-01
Backround: Coupling nebulization with noninvasive ventilation (NIV) has been shown to be effective in patients with respiratory diseases. However, a breath-synchronized nebulization option that could potentially improve drug delivery by limiting drug loss during exhalation is currently not available on bilevel ventilators. The aim of this in vitro study was to compare aerosol delivery of amikacin with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. Using an adult lung bench model of NIV, we tested a vibrating mesh device coupled with a bilevel ventilator in both nebulization modes. Inspi-Neb delivered aerosol only during the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. The nebulizer was charged with amikacin solution (250 mg/3 mL) and placed at two different positions: between the lung and exhalation port and between the ventilator and exhalation port. Inhaled, expiratory wasted and circuit lost doses were assessed by residual gravimetric method. Particle size distribution of aerosol delivered at the outlet of the ventilator circuit during both nebulization modes was measured by laser diffraction method. Regardless of the nebulizer position, Inspi-Neb produced higher inhaled dose (p lung and exhalation port (48.7% ± 0.3% of the nominal dose). During simulated NIV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization improves respirable dose and reduces drug loss of amikacin compared with continuous vibrating mesh nebulization.
Very High Frequency Switch-Mode Power Supplies
DEFF Research Database (Denmark)
Madsen, Mickey Pierre
The importance of technology and electronics in our daily life is constantly increasing. At the same time portability and energy efficiency are currently some of the hottest topics. This creates a huge need for power converters in a compact form factor and with high efficiency, which can supply...... band gap semiconductors and integrated power supplies. Afterwards a wide range of topologies suited for operation at very high frequencies is investigated and the most promising ones are tested experimentally. Through a comparison of these topologies the class DE inverter is found to be superior...... to the other alternatives, at least for converters with hundreds of volts as input and a few tens of watts output power. A class DE inverter does however require a high side gate drive, which have never been presented before for these frequencies and voltages. This thesis presents the worlds first high side...
R-mode frequencies of rapidly and differentially rotating relativistic neutron stars
Jasiulek, Michael
2016-01-01
R-modes of neutron stars could be a source of gravitational waves for ground based detectors. If the precise frequency $\\sigma$ is known, guided gravitational wave searches with enhanced detectability are possible. Because of its physical importance many authors have calculated the r-mode frequency. For the dominant mode, the associated gravitational wave frequency is 4/3 times the angular velocity of the star $\\Omega$, subject to various corrections of which relativistic and rotational corrections are the most important. This has led several authors to investigate the dependence of the r-mode frequency on factors such as the relativistic compactness parameter ($M/R$) and the angular velocity of stars with different equations of state. The results found so far, however, are almost independent of the equation of state. Here we investigate the effect of rapid rotation and differential rotation on $\\sigma$. We evolve the perturbation equations using the Cowling approximation by applying finite differencing metho...
Wu, C. S.; Lin, C. S.; Wong, H. K.; Tsai, S. T.; Zhou, R. L.
1981-01-01
An investigation is presented of two cases: (1) weakly relativistic electrons with a loss-cone type distribution, and (2) electrons with a drift velocity parallel to the ambient magnetic field. Numerical computations are given for physical parameters close to those in the polar region of the earth magnetosphere and laboratory experiments, with attention to the fast extraordinary-mode radiation whose frequency is near that of the electron cyclotron frequency. The fast extraordinary mode can escape from a strong field region to the weaker field region and may therefore be measured outside the plasma. It is found that the X mode radiation can be amplified by means of a cyclotron maser effect when the electrons have a loss-cone distribution, and it is concluded that, when the electron energy is sufficiently high, the X mode cutoff frequency may be lower than the cyclotron frequency.
Effect of magnetic bending on the EBT high-frequency modes
Energy Technology Data Exchange (ETDEWEB)
El-Nadi, A.M.; Hiroe, S.; Whitson, J.C.; Hassen, H.F.; Kirolous, H.A.
1986-02-01
The high-frequency stability of the ELMO Bumpy Torus (EBT) device is studied when the wave vector has a finite component along the magnetic field lines. Unstable modes exist for any finite hot electron density. 9 refs., 1 fig.
Interaction between a low-frequency electrostatic mode and resonant magnetic perturbations in MAST
Robinson, J. R.; Hnat, B.; Dura, P.; Kirk, A.; Tamain, P.; the MAST Team
2012-10-01
A strong ≈10 kHz mode is detected in both potential and density fluctuations of the edge plasma of the MAST tokamak using a reciprocating probe. The mode is radially localized, with outer limit ≈2 cm inside the separatrix, and is affected on application of resonant magnetic perturbations generated by external coils. A shift in frequency with plasma rotation is found, and a rapid suppression of the mode is observed when it can couple to the imposed n = 3 magnetic perturbations in the rotating frame. Non-linear coupling to high wave number turbulence is evident, and an increase in power of turbulence fluctuations is seen after suppression. These observations are then interpreted in the context of known low-frequency plasma modes present in the toroidal configuration. A possibility that the observed mode is a geodesic acoustic mode is considered and motivated by observations.
Belichenko, M. V.
2016-11-01
The motion of a heavy rigid body one of whose points (the suspension point) executes horizontal harmonic high-frequency vibrations with small amplitude is considered. The problem of existence of high-frequency periodic motions with period equal to the period of the suspension point vibrations is considered. The stability conditions for the revealed motions are obtained in the linear approximation. The following three special cases of mass distribution in the body are considered; a body whose center of mass lies on the principal axis of inertia, a body whose center of mass lies in the principal plane of inertia, and a dynamically symmetric body.
Niga, Petru; Wakeham, Deborah; Nelson, Andrew; Warr, Gregory G; Rutland, Mark; Atkin, Rob
2010-06-01
X-ray reflectivity and vibrational sum frequency spectroscopy are used to probe the structure of the ethylammonium nitrate (EAN)-air interface. X-ray reflectivity reveals that the EAN-air interface is structured and consists of alternating nonpolar and charged layers that extend 31 A into the bulk. Vibrational sum frequency spectroscopy reveals interfacial cations have their ethyl moieties oriented toward air, with the CH(3) C(3) axis positioned approximately 36.5 degrees from interface normal. This structure is invariant between 15 and 51 degrees C. On account of its molecular symmetry, the orientation of the nitrate anion cannot be determined with certainty.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
Janke Włodzimierz; Walczak Marcin
2017-01-01
Characteristic frequencies corresponding to poles and zeros of small-signal control-to-output transfer functions of popular DC-DC converters (BUCK and BOOST) are analyzed. The main attention is paid to influence of load conductance on the characteristic frequencies for converters working in continuous conduction mode (CCM) as well as in discontinuous conduction mode (DCM). Parasitic resistances of all converter components are included in calculations. In addition the improved description of C...
Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark
2014-07-01
Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations.
Theoretical study of sum-frequency vibrational spectroscopy on limonene surface
Energy Technology Data Exchange (ETDEWEB)
Zheng, Ren-Hui, E-mail: zrh@iccas.ac.cn; Liu, Hao; Jing, Yuan-Yuan; Wang, Bo-Yang; Shi, Qiang [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Wei, Wen-Mei [Department of Chemistry, College of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032 (China)
2014-03-14
By combining molecule dynamics (MD) simulation and quantum chemistry computation, we calculate the surface sum-frequency vibrational spectroscopy (SFVS) of R-limonene molecules at the gas-liquid interface for SSP, PPP, and SPS polarization combinations. The distributions of the Euler angles are obtained using MD simulation, the ψ-distribution is between isotropic and Gaussian. Instead of the MD distributions, different analytical distributions such as the δ-function, Gaussian and isotropic distributions are applied to simulate surface SFVS. We find that different distributions significantly affect the absolute SFVS intensity and also influence on relative SFVS intensity, and the δ-function distribution should be used with caution when the orientation distribution is broad. Furthermore, the reason that the SPS signal is weak in reflected arrangement is discussed.
Note: A kinematic shaker system for high amplitude, low frequency vibration testing.
Swaminathan, Anand; Poese, Matthew E; Smith, Robert W M; Garrett, Steven L
2015-11-01
This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.
Energy Technology Data Exchange (ETDEWEB)
Bratlie, Kaitlin M.; Komvopoulos, Kyriakos; Somorjai, Gabor A.
2008-02-22
Pyridine hydrogenation in the presence of a surface monolayer consisting of cubic Pt nanoparticles stabilized by tetradecyltrimethylammonium bromide (TTAB) was investigated by sum frequency generation (SFG) vibrational spectroscopy using total internal reflection (TIR) geometry. TIR-SFG spectra analysis revealed that a pyridinium cation (C{sub 5}H{sub 5}NH{sup +}) forms during pyridine hydrogenation on the Pt nanoparticle surface, and the NH group in the C{sub 5}H{sub 5}NH{sup +} cation becomes more hydrogen bound with the increase of the temperature. In addition, the surface coverage of the cation decreases with the increase of the temperature. An important contribution of this study is the in situ identification of reaction intermediates adsorbed on the Pt nanoparticle monolayer during pyridine hydrogenation.
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
Sharpes, Nathan; Abdelkefi, Abdessattar; Priya, Shashank
2015-08-01
Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm2 area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.
Coupled rotor-fuselage vibration reduction with multiple frequency blade pitch control
Papavassiliou, I.; Friedmann, P. P.; Venkatesan, C.
1991-01-01
A nonlinear coupled rotor/flexible fuselage analysis has been developed and used to study the effects of higher harmonic blade pitch control on the vibratory hub loads and fuselage acceleration levels. Previous results, obtained with this model have shown that conventional higher harmonic control (HHC) inputs aimed at hub shear reduction cause an increase in the fuselage accelerations and vice-versa. It was also found that for simultaneous reduction of hub shears and fuselage accelerations, a pitch input representing a combination of two higher harmonic components of different frequencies was needed. Subsequently, it was found that this input could not be implemented through a conventional swashplate. This paper corrects a mistake originally made in the representation of the multiple frequency pitch input and shows that such a pitch input can be only implemented in the rotating reference frame. A rigorous mathematical solution is found, for the pitch input in the rotating reference frame, which produces simultaneous reduction of hub shears and fuselage acceleration. New insight on vibration reduction in coupled rotor/fuselage systems is obtained from the sensitivity of hub shears to the frequency and amplitude of the open loop HHC signal in the rotating reference frame. Finally the role of fuselage flexibility in this class of problems is determined.
Directory of Open Access Journals (Sweden)
C. S. Oliveira
2014-01-01
Full Text Available Since 1995, we have been measuring the in situ dynamic characteristics of different types of footbridges built in Portugal (essentially steel and precast reinforced concrete decks with single spans running from 11 to 110 m long, using expedite exciting and measuring techniques. A database has been created, containing not only the fundamental dynamic characteristics of those structures (transversal, longitudinal, and vertical frequencies but also their most important geometric and mechanical properties. This database, with 79 structures organized into 5 main typologies, allows the setting of correlations of fundamental frequencies as a negative power function of span lengths L (L-0.6 to L-1.4. For 63 footbridges of more simple geometry, it was possible to obtain these correlations by typology. A few illustrative cases representing the most common typologies show that linear numerical models can reproduce the in situ measurements with great accuracy, not only matching the frequencies of vibration but also the amplitudes of motion caused by several pedestrian load patterns.
Energy Technology Data Exchange (ETDEWEB)
Mifflin, Amanda L.; Velarde Ruiz Esparza, Luis A.; Ho, Junming; Psciuk, Brian; Negre, Christian; Ebben, Carlena J.; Upshur, Mary Alice; Lu, Zhou; Strick, Benjamin; Thomson, Regan; Batista, Victor; Wang, Hongfei; Geiger, Franz M.
2015-02-26
Room temperature sub-wavenumber high-resolution broadband sum frequency generation (HR-BB-SFG) spectra of the common terpene (+)-α-pinene reveal ten peaks in the C–H stretching region. The spectral resolution exceeds that of Fourier transform infrared, femtosecond stimulated Raman, and traditional BB-SFG and scanning SFG spectroscopy of the same molecule. Experiment and simulation show the spectral lineshapes to be accurate. Homogeneous vibrational decoherence lifetimes of up to 1.7 psec are assigned to specific oscillators and compare favorably to lifetimes computed from density functional tight binding molecular dynamics calculations, while phase-resolved spectra yield orientation information for them. We propose the new spectroscopy as an attractive alternative to time-resolved vibrational spectroscopy or heterodyne-detection schemes for studying vibrational energy relaxation and vibrational coherences in molecules.
Influence of high-frequency vibrations on the onset of convection in a two-layer system
Zenkovskaya, Svetlana M.; Novosiadliy, Vasili A.
2008-03-01
This Note deals with the influence of high-frequency translational oscillations on the onset of convection in a two-layer system of weakly heterogeneous immiscible fluids with deformable interface. The averaging method is applied to the generalized Oberbeck-Boussinesq equations. Vibration-generated forces and tensions appear as the result. A transition to the Oberbeck-Boussinesq approximation is made in the averaged equations. Analysis of averaged equations leads to the following conclusions. Horizontal vibrations are obtained not influencing the onset of convection, and in the cases of other directions the influence of vibration is determined by a single parameter, depending on velocity amplitude and direction. Vibration is shown to generate effective surface tension, smoothing the interface. Critical parameters are calculated for the case of homogeneous fluids. To cite this article: S.M. Zenkovskaya, V.A. Novosiadliy, C. R. Mecanique 336 (2008).
Design of serial linkage-type vibration energy harvester with three resonant frequencies
Kim, Hyun Soo; Kim, Jun Woo; Park, Shi-Baek; Choi, Yong Je
2017-11-01
This paper presents a new design method of a planar 3 degrees-of-freedom(DOF) serial linkage-type vibration energy harvester with a single proof mass. The harvester is designed to generate electrical power at equally spaced three target resonant frequencies which can be chosen arbitrarily. For given target frequencies and a proof mass, the design method involves (1) the determination of the stiffness matrix, (2) the synthesis of the stiffness by means of a parallel connection of three line springs and (3) its conversion into a 3DOF device connected serially by torsional springs. The torsional springs are realized by the flexible hinge joints and the polyvinylidene fluoride(PVDF) films are attached on the joints. Upon determination of the desired stiffness matrix, the SQP algorithm is utilized to find the optimum locations and spring constants of the serial hinge joints for the minimum difference among three electrical power peaks. The FEM analysis and experiments are conducted to verify the proposed design method. Three measured resonant power peaks occur at 24.7, 30.4 and 33.6 Hz comparing to the target frequencies of 25, 30 and 35 Hz. The normalized maximum power of 14.5 {{uW}}/{({{{ms}}}-2)}2 is generated at 24.7 Hz. The experimental results also demonstrate that the harvester can generate at least 18.6% of the peak power throughout the frequency range from 23.1 to 36.5 Hz, which ensures consistently acquirable power within the operating frequency range by virtue of the coupled effect of a serial linkage-type structure.
Experimental and DFT dimer modeling studies of the H-bond induced-vibration modes of l-β-Homoserine.
Yalagi, Shashikala; Tonannavar, J; Yenagi, Jayashree
2017-06-15
The vibrational spectra for l-β-Homoserine have been measured (IR absorption: 4000-400cm(-1)/Raman spectra: 4000-200cm(-1)). Characteristic vibrational modes of ammonium (-NH3(+)), carboxylate (-CO2(-)) and hydroxyl (-OH) groups across the 3700-1400cm(-1) are all identified to have originated in inter-molecular hydrogen bonding involving these functional groups. DFT calculations at B3LYP/6-311++G(d, p) level have yielded a single neutral monomer in the gas phase. Since as a member of the amino acids which are known to possess zwitterionic structure in condensed phase, the neutral monomer of l-β-Homoserine is optimized to a zwitterionic structure in a water medium. Consideration of two dimer structures, one dimer with -NH‧‧‧O bond and another -OH‧‧‧O bond, has given rise to vibrational modes that satisfactorily fit to all the observed absorption and Raman bands. It is found that the dimer with -OH‧‧‧O bond (binding energy, 8.896kcal/mol) is more tightly bound than the dimer with -NH‧‧‧O bond (8.363kcal/mol). Copyright © 2017 Elsevier B.V. All rights reserved.
Versluis, Michel; Palanchon, P.; Goertz, D.; van der Meer, S.M.; Chin, C.T.; Lohse, Detlef; de Jong, N.
2004-01-01
We have investigated surface vibrations generated by ultrasound excitation of individual unencapsulated micron-sized bubbles. In addition, we present surface modes (n=2 and 3) observed for phospholipid-coated ultrasound contrast agents excited through excitation of radial modes at frequencies
Malekinejad, Mohsen; Rahgozar, Reza; Malekinejad, Ali; Rahgozar, Peyman
2016-09-01
In this paper, a continuous-discrete approach based on the concept of lumped mass and equivalent continuous approach is proposed for free vibration analysis of combined system of framed tube, shear core and outrigger-belt truss in high-rise buildings. This system is treated as a continuous system (i.e., discrete beams and columns are replaced with equivalent continuous membranes) and a discrete system (or lumped mass system) at different stages of dynamic analysis. The structure is discretized at each floor of the building as a series of lumped masses placed at the center of shear core. Each mass has two transitional degrees of freedom (lateral and axial( and one rotational. The effect of shear core and outrigger-belt truss on framed tube system is modeled as a rotational spring placed at the location of outrigger-belt truss system along structure's height. By solving the resulting eigen problem, natural frequencies and mode-shapes are obtained. Numerical examples are presented to show acceptable accuracy of the procedure in estimating the fundamental frequencies and corresponding mode shapes of the combined system as compared to finite element analysis of the complete structure. The simplified proposed method is much faster and should be more suitable for rapid interactive design.
McBride, William R.; McBride, Daniel R.
2016-08-01
The Daniel K Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, providing a significant increase in the resolution of solar data available to the scientific community. Vibration mitigation is critical in long focal-length telescopes such as the Inouye Solar Telescope, especially when adaptive optics are employed to correct for atmospheric seeing. For this reason, a vibration error budget has been implemented. Initially, the FRFs for the various mounting points of ancillary equipment were estimated using the finite element analysis (FEA) of the telescope structures. FEA analysis is well documented and understood; the focus of this paper is on the methods involved in estimating a set of experimental (measured) transfer functions of the as-built telescope structure for the purpose of vibration management. Techniques to measure low-frequency single-input-single-output (SISO) frequency response functions (FRF) between vibration source locations and image motion on the focal plane are described. The measurement equipment includes an instrumented inertial-mass shaker capable of operation down to 4 Hz along with seismic accelerometers. The measurement of vibration at frequencies below 10 Hz with good signal-to-noise ratio (SNR) requires several noise reduction techniques including high-performance windows, noise-averaging, tracking filters, and spectral estimation. These signal-processing techniques are described in detail.
Energy Technology Data Exchange (ETDEWEB)
Inostroza, Natalia; Fortenberry, Ryan C.; Lee, Timothy J. [NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Huang, Xinchuan, E-mail: Timothy.J.Lee@nasa.gov [SETI Institute, 189 Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States)
2013-12-01
Through established, highly accurate ab initio quartic force fields, a complete set of fundamental vibrational frequencies, rotational constants, and rovibrational coupling and centrifugal distortion constants have been determined for both the cyclic 1 {sup 1} A' and bent 2 {sup 1} A' DCCN, H{sup 13}CCN, HC{sup 13}CN, and HCC{sup 15}N isotopologues of HCCN. Spectroscopic constants are computed for all isotopologues using second-order vibrational perturbation theory (VPT2), and the fundamental vibrational frequencies are computed with VPT2 and vibrational configuration interaction (VCI) theory. Agreement between VPT2 and VCI results is quite good, with the fundamental vibrational frequencies of the bent isomer isotopologues in accord to within a 0.1-3.2 cm{sup –1} range. Similar accuracies are present for the cyclic isomer isotopologues. The data generated here serve as a reference for astronomical observations of these closed-shell, highly dipolar molecules using new, high-resolution telescopes and as reference for laboratory studies where isotopic labeling may lead to elucidation of the formation mechanism for the known interstellar molecule: X {sup 3} A' HCCN.
Ennis, C.; Auchettl, R.; Appadoo, D. R. T.; Robertson, E. G.
2017-11-01
Solid-state density functional theory code has been implemented for the structure optimization of crystalline methanol, acetaldehyde and acetic acid and for the calculation of infrared frequencies. The results are compared to thin film spectra obtained from low-temperature experiments performed at the Australian Synchrotron. Harmonic frequency calculations of the internal modes calculated at the B3LYP-D3/m-6-311G(d) level shows higher deviation from infrared experiment than more advanced theory applied to the gas phase. Importantly for the solid-state, the simulation of low-frequency molecular lattice modes closely resembles the observed far-infrared features after application of a 0.92 scaling factor. This allowed experimental peaks to be assigned to specific translation and libration modes, including acetaldehyde and acetic acid lattice features for the first time. These frequency calculations have been performed without the need for supercomputing resources that are required for large molecular clusters using comparable levels of theory. This new theoretical approach will find use for the rapid characterization of intermolecular interactions and bonding in crystals, and the assignment of far-infrared spectra for crystalline samples such as pharmaceuticals and molecular ices. One interesting application may be for the detection of species of prebiotic interest on the surfaces of Kuiper-Belt and Trans-Neptunian Objects. At such locations, the three small organic molecules studied here could reside in their crystalline phase. The far-infrared spectra for their low-temperature solid phases are collected under planetary conditions, allowing us to compile and assign their most intense spectral features to assist future far-infrared surveys of icy Solar system surfaces.
Shaw, D J; Panman, M R; Woutersen, S
2009-11-27
Vibrational energy relaxation of the NH-, OH-, and OD-stretching modes in hydrogen-bonded liquids has been investigated by means of infrared pump-probe spectroscopy. The relaxation rates have been determined both in neat liquids and in isotopic mixtures with systematically varied isotope fractions. In all liquids, the vibrational relaxation rate increases as the isotope fraction is increased and reaches a maximum in the neat liquid. The dependence of the relaxation rate on the isotope fraction suggests a relaxation channel in which the vibrational energy is partitioned between accepting modes of two neighboring molecules.
Directory of Open Access Journals (Sweden)
Susan A Novotny
Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.
Guo, Xiang; Zou, Chang-Ling; Jung, Hojoong; Tang, Hong X
2016-09-16
While the frequency conversion of photons has been realized with various approaches, the realization of strong coupling between optical modes of different colors has never been reported. Here, we present an experimental demonstration of strong coupling between telecom (1550 nm) and visible (775 nm) optical modes on an aluminum nitride photonic chip. The nonreciprocal normal-mode splitting is demonstrated as a result of the coherent interference between photons with different colors. Furthermore, a wideband, bidirectional frequency conversion with 0.14 on-chip conversion efficiency and a bandwidth up to 1.2 GHz is demonstrated.
Estimating the p-mode frequencies of the solar twin 18 Scorpii
DEFF Research Database (Denmark)
Bazot, M.; Campante, T. L.; Chaplin, W. J.
2012-01-01
spectrometer to extract the oscillation frequencies of 18 Sco, the brightest solar twin. We used the tools of spectral analysis to estimate these quantities. We estimate 52 frequencies using an MCMC algorithm. After examination of their probability densities and comparison with results from direct MAP...... optimization, we obtain a minimal set of 21 reliable modes. The identification of each pulsation mode is straightforwardly accomplished by comparing to the well-established solar pulsation modes. We also derived some basic seismic indicators using these values. These results offer a good basis to start...... a detailed seismic analysis of 18 Sco using stellar models....
Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes
Energy Technology Data Exchange (ETDEWEB)
Farengo, R. [Comisión Nacional de Energía Atómica, Centro Atómico Bariloche e Instituto Balseiro, 8400 Bariloche, RN (Argentina); Ferrari, H. E. [Comisión Nacional de Energía Atómica, Centro Atómico Bariloche e Instituto Balseiro, 8400 Bariloche, RN (Argentina); CONICET, 8400 Bariloche, RN (Argentina); Garcia-Martinez, P. L. [CONICET, 8400 Bariloche, RN (Argentina); Firpo, M.-C.; Ettoumi, W. [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, 91128, Palaiseau cedex (France); Lifschitz, A. F. [Laboratoire d' Optique Appliquee, ENSTA, CNRS, Ecole Polytechnique, 91761 Palaiseau cedex (France)
2014-08-15
The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18 keV and 3.5 MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E≳1 MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1 MeV, depending on the mode frequency. These results can have important implications for ash removal.
Time-frequency analysis of epileptic EEG patterns by means of empirical modes and wavelets
Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.
2015-03-01
In this paper we perform a time-frequency analysis of epileptic EEG patterns based on two approaches for characterizing nonstationary multi-frequency signals, namely, the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). Possibilities and limitations of both these techniques are considered, and a combined approach for automatic pattern detection is proposed.
Simulation study of high-frequency energetic particle driven geodesic acoustic mode
Energy Technology Data Exchange (ETDEWEB)
Wang, Hao, E-mail: wanghao@nifs.ac.jp; Ido, Takeshi; Osakabe, Masaki [National Institute for Fusion Science, Toki 509-5292 (Japan); Todo, Yasushi [National Institute for Fusion Science, Toki 509-5292 (Japan); The Graduate University for Advanced Studies, Toki 509-5292 (Japan)
2015-09-15
High-frequency energetic particle driven geodesic acoustic modes (EGAM) observed in the large helical device plasmas are investigated using a hybrid simulation code for energetic particles and magnetohydrodynamics (MHD). Energetic particle inertia is incorporated in the MHD momentum equation for the simulation where the beam ion density is comparable to the bulk plasma density. Bump-on-tail type beam ion velocity distribution created by slowing down and charge exchange is considered. It is demonstrated that EGAMs have frequencies higher than the geodesic acoustic modes and the dependence on bulk plasma temperature is weak if (1) energetic particle density is comparable to the bulk plasma density and (2) charge exchange time (τ{sub cx}) is sufficiently shorter than the slowing down time (τ{sub s}) to create a bump-on-tail type distribution. The frequency of high-frequency EGAM rises as the energetic particle pressure increases under the condition of high energetic particle pressure. The frequency also increases as the energetic particle pitch angle distribution shifts to higher transit frequency. It is found that there are two kinds of particles resonant with EGAM: (1) trapped particles and (2) passing particles with transit frequency close to the mode frequency. The EGAMs investigated in this work are destabilized primarily by the passing particles whose transit frequencies are close to the EGAM frequency.
Cao, Yan; Sheremetyeva, Natalya; Liang, Liangbo; Yuan, Hui; Zhong, Tingting; Meunier, Vincent; Pan, Minghu
2017-09-01
When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a 2D geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe2 as a vibrational mode centered at ~86.9 cm-1 in the monolayer splits into two active modes at 82.9 and 89.6 cm-1 in the bilayer. Davydov splitting of these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.
Energy Technology Data Exchange (ETDEWEB)
Li, Fangyu, E-mail: cqufangyuli@hotmail.com [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wen, Hao [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fang, Zhenyun [Institute of Gravitational Physics, Department of Physics, Chongqing University, Chongqing 400044 (China); Wei, Lianfu; Wang, Yiwen; Zhang, Miao [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)
2016-10-15
Interaction of very low-frequency primordial (relic) gravitational waves (GWs) to cosmic microwave background (CMB) can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM) response to high-frequency GWs (HFGWs) would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.
Directory of Open Access Journals (Sweden)
F.Y. Fangyu Li
2016-10-01
Full Text Available Interaction of very low-frequency primordial (relic gravitational waves (GWs to cosmic microwave background (CMB can generate B-mode polarization. Here, for the first time we point out that the electromagnetic (EM response to high-frequency GWs (HFGWs would produce quasi-B-mode distribution of the perturbative photon fluxes. We study the duality and high complementarity between such two B-modes, and it is shown that such two effects are from the same physical origin: the tensor perturbation of the GWs and not the density perturbation. Based on this quasi-B-mode in HFGWs and related numerical calculation, it is shown that the distinguishing and observing of HFGWs from the braneworld would be quite possible due to their large amplitude, higher frequency and very different physical behaviors between the perturbative photon fluxes and background photons, and the measurement of relic HFGWs may also be possible though face to enormous challenge.
Frequency and Mode Shapes of Au Nanowires Using the Continuous Beam Models
Directory of Open Access Journals (Sweden)
Hayri Metin Numanoglu
2017-04-01
Full Text Available Free vibration analysis of Au nanowires has been investigated. Au nanowire is modeled as a thin beam by using the continuum theory. Three-different cross-sections such as circular, rectangular and triangular are taken into consideration for ultra thin nanowires. Frequency values have been obtained for different geometric parameters and simply supported boundary condition (S-S. This study is helpful for design of the nanowires based instruments in modern Nanoelectromechanical systems (NEMS.
Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
Directory of Open Access Journals (Sweden)
Ted W Cranford
Full Text Available Hearing mechanisms in baleen whales (Mysticeti are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT scans. We CT scanned the head of a small fin whale (Balaenoptera physalus in a scanner designed for solid-fuel rocket motors. Our computer (finite element modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1 the skull-vibration enabled bone conduction mechanism and (2 a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.
Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.
Cranford, Ted W; Krysl, Petr
2015-01-01
Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.
Fin Whale Sound Reception Mechanisms: Skull Vibration Enables Low-Frequency Hearing
Cranford, Ted W.; Krysl, Petr
2015-01-01
Hearing mechanisms in baleen whales (Mysticeti) are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT) scans. We CT scanned the head of a small fin whale (Balaenoptera physalus) in a scanner designed for solid-fuel rocket motors. Our computer (finite element) modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale’s head. Simulations reveal two mechanisms that excite both bony ear complexes, (1) the skull-vibration enabled bone conduction mechanism and (2) a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies. PMID:25633412
A refined nonlinear averaged model for constant frequency current mode controlled PWM converters
Rodriguez, Francis D.; Chen, Jesse E.
1991-10-01
A refined, duo-mode model for current programmed buck converters is presented. The refined model uses a form of the current mode control law which is truly invariant with respect to operating conditions. That is, it is valid for both transient and steady-state operating conditions regardless of the converter operating mode, which could be etiher continuous conduction mode (CCM) or discontinuous conduction mode (DCM). The large-signal transient response predicted using the refined average model is shown to be virtually indistinguishable, in an average sense, from that predicted using a pulse-by-pulse simulation. The refined model is shown to exhibit improved high-frequency accuracy in both time and frequency domains. The model has been implemented in SPICE 2G6 and runs with default analysis options.
Vandenrijt, Jean-François; Thizy, Cédric; Georges, Marc P.
2015-08-01
We present investigation of interferometric methods for vibration mode identification to be applied on shakers in industrial environment. We consider long wave infrared ESPI in time-averaged mode with the use of phase-stepping which allows transforming Bessel fringes, typical to the time averaging, into phase values which provide a better way for identification of vibration mode shapes. The use of long laser wavelength allows measuring larger amplitudes of vibrations compared to what is achieved in visible light. Also longer wavelengths allow lower sensitivity to external perturbations. Time-averaged phase-stepped shearography in visible is also used as a compared alternative to LWIR ESPI for working in industrial environments. Although not demonstrated here, an interesting feature for the future investigations on LWIR ESPI is its potentiality of simultaneous temperature measurement during vibrations.
Zheng, Anshou; Zhang, Guangyong; Gui, Liangwei; Liu, Jibing
2015-06-01
Based on constructive interference in Sagnac waveguide loop, an efficient scheme is proposed for selective frequency conversion and multifrequency modes W entanglement via input-output formalism. We can adjust the probability amplitudes of output photons by choosing parameter values properly. The tunable probability amplitude will lead to the generation of output photon with a selectable frequency and W photonic entanglement of different frequencies modes in a wide range of parameter values. Our calculations show the present scheme is robust to the deviation of parameters and spontaneous decay.
Saidi, Wissam A
2014-09-04
Defects are ubiquitous in carbon nanotubes (CNTs), despite their large formation energies, and have astounding effects on their physicochemical properties. In this study, we employ density-functional theory (DFT) calculations to study systematically the atomic structure, stability, and characteristic vibrations of pristine and defected zigzag CNTs, where the defects are of the form of Stone-Wales (SW) and diatom vacancies (DV). The DFT optimized structures and the phonon modes are subsequently used in conjunction with a semiempirical bond-polarization model to study the nonresonant Raman spectra. For each defect type, we find two CNT structures with defects parallel or oblique to the tube axis. For the SW defects, the two structures have similar formation energies, whereas for the DV defect, only defects parallel to the tube axis are likely to exist. The results show that the defects induce a blue shift in the radial breathing mode (RBM) of metallic CNTs, whereas this mode is not shifted for semiconducting CNTs. However, the RBM shift or its Raman profile is not sensitive to the defect type. The G-band showed more sensitivity to the defects in the form of a red/blue shift in the frequency, or a partial/complete defragmentation of the G bands.
Cammi, R.; Cappelli, C.; Mennucci, B.; Tomasi, J.
2012-10-01
We present a new quantum chemical method for the calculation of the equilibrium geometry and the harmonic vibrational frequencies of molecular systems in dense medium at high pressures (of the order of GPa). The new computational method, named PCM-XP, is based on the polarizable continuum model (PCM), amply used for the study of the solvent effects at standard condition of pressure, and it is accompanied by a new method of analysis for the interpretation of the mechanisms underpinning the effects of pressure on the molecular geometries and the harmonic vibrational frequencies. The PCM-XP has been applied at the density functional theory level to diborane as a molecular system under high pressure. The computed harmonic vibrational frequencies as a function of the pressure have shown a satisfactory agreement with the corresponding experimental results, and the parallel application of the method of analysis has reveled that the effects of the pressure on the equilibrium geometry can be interpreted in terms of direct effects on the electronic charge distribution of the molecular solutes, and that the effects on the harmonic vibrational frequencies can be described in terms of two physically distinct effects of the pressure (curvature and relaxation) on the potential energy for the motion of the nuclei.
Yuan, Ying; Zhang, Hulin; Wang, Jie; Xie, Yuhang; Khan, Saeed Ahmed; Jin, Long; Yan, Zhuocheng; Huang, Long; Pan, Taisong; Yang, Weiqing; Lin, Yuan
2018-01-01
Hybrid energy harvesters based on different physical effects is fascinating, but a rational design for multiple energy harvesting is challenging. In this work, a spring-magnet oscillator-based triboelectric-electromagnetic generator (EMG) with a solar cell cap is proposed. A power was produced by a triboelectric nanogenerator (TENG) and an EMG independently or simultaneously by using a shared spring-magnet oscillator. The oscillator configuration enables versatile energy harvesting with the excellent size scalability and self-packaged structure which can perform well at low frequency ranging from 3.5 to 5 Hz. The solar cell cap mounted above the oscillator can harvest solar energy. Under vibrations at the frequency of 4 Hz, the TENG and the EMG produced maximum output power of 5.46 nW cm‑3 and 378.79 μW cm‑3, respectively. The generated electricity by the hybrid nanogenerator can be stored in a capacitor or Li-ion battery, which is capable of powering a wireless locator for real-time locating data reporting to a personal cell phone. The light-weight and handy hybrid nanogenerator can directly light a caution light or play as a portable flashlight by shaking hands at night.
Yin, Jianfei; Hopkins, Carl
2013-04-01
Prediction of structure-borne sound transmission on built-up structures at audio frequencies is well-suited to Statistical Energy Analysis (SEA) although the inclusion of periodic ribbed plates presents challenges. This paper considers an approach using Advanced SEA (ASEA) that can incorporate tunneling mechanisms within a statistical approach. The coupled plates used for the investigation form an L-junction comprising a periodic ribbed plate with symmetric ribs and an isotropic homogeneous plate. Experimental SEA (ESEA) is carried out with input data from Finite Element Methods (FEM). This indicates that indirect coupling is significant at high frequencies where bays on the periodic ribbed plate can be treated as individual subsystems. SEA using coupling loss factors from wave theory leads to significant underestimates in the energy of the bays when the isotropic homogeneous plate is excited. This is due to the absence of tunneling mechanisms in the SEA model. In contrast, ASEA shows close agreement with FEM and laboratory measurements. The errors incurred with SEA rapidly increase as the bays become more distant from the source subsystem. ASEA provides significantly more accurate predictions by accounting for the spatial filtering that leads to non-diffuse vibration fields on these more distant bays.
Harker, K. J.
1972-01-01
Two basic high-frequency ionospheric instabilities are discussed - i.e., the three-wave parametric interaction, and the oscillating two-stream instability. In the parametric instability, the ion-acoustic wave has a complex frequency, whereas in the oscillating two-stream instability the ion-acoustic frequency is purely imaginary. The parametric instability is shown to be the only one whose threshold depends on the ion collision frequency. A coupled-mode theory is proposed which permits study and classification of high-frequency instabilities on a unified basis.
Fixed switching frequency sliding mode control using an hysteresis band controller
Repecho del Corral, Víctor; Biel Solé, Domingo; Fossas Colet, Enric
2014-01-01
This paper presents a hysteresis band controller in charge of fixing the switching frequency of a sliding mode controller. The proposed control measures the switching period of the control signal and modifies the hysteresis band of the comparator to regulate the switching frequency of the sliding motion. The switching frequency control system is modelled and a design criterion of the control parameters is derived to guarantee the closed loop stability.
Kiss, Norbert; Krolopp, Ádám; Lőrincz, Kende; Bánvölgyi, András; Szipőcs, Róbert; Wikonkál, Norbert
2017-11-04
Basal cell carcinoma (BCC) is the most common malignancy in Caucasians. Nonlinear microscopy has been previously utilized for the imaging of BCC, but the captured images do not correlate with H&E staining. Recently, Freudiger et al. introduced a novel method to visualize tissue morphology analogous to H&E staining, using coherent anti-Stokes Raman scattering (CARS) technique. In our present work, we introduce a novel algorithm to post-process images obtained from dual vibration resonance frequency (DVRF) CARS measurements to acquire high-quality pseudo H&E images of BCC samples. We adapted our CARS setup to utilize the distinct vibrational properties of CH 3 (mainly in proteins) and CH 2 bonds (primarily in lipids). In a narrowband setup, the central wavelength of the pump laser is set to 791 nm and 796 nm to obtain optimal excitation. Due to the partial overlap of the excitation spectra and the 5-10 nm FWHM spectral bandwidth of our lasers, we set the wavelengths to 790 nm (proteins) and 800 nm (lipids). Nonresonant background from water molecules also reduces the chemical selectivity which can be significantly improved if we subtract the DVRF images from each other. As a result, we acquired two images: one for "lipids" and one for" proteins" when we properly set a multiplication factor to minimize the non-specific background. By merging these images, we obtained high contrast H&E "stained" images of BBC's. Nonlinear microscope systems upgraded for real time DVRF CARS measurements, providing pseudo H&E images can be suitable for in vivo assessment of BCC in the future.
Multiple Rabi Splittings under Ultrastrong Vibrational Coupling.
George, Jino; Chervy, Thibault; Shalabney, Atef; Devaux, Eloïse; Hiura, Hidefumi; Genet, Cyriaque; Ebbesen, Thomas W
2016-10-07
From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad possibilities in the vibrational ultrastrong coupling regime which impact both the optical and the molecular properties of such coupled systems, in particular, in the context of mode-selective chemistry.
Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator
Labadze, G.; Dukalski, M.S.; Blanter, Y.M.
2016-01-01
We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classically, the behavior of the non-driven mode is reminiscent of that of a parametrically driven
Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters
Energy Technology Data Exchange (ETDEWEB)
Sharpes, Nathan [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Abdelkefi, Abdessattar [Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States); Priya, Shashank [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Bio-Inspired Materials and Devices Laboratory (BMDL), Virginia Tech, Blacksburg, Virginia 24061 (United States)
2015-08-31
Vibration-based energy harvesters using piezoelectric materials have long made use of the cantilever beam structure. Surmounting the deficiencies in one-dimensional cantilever-based energy harvesters has been a major focus in the literature. In this work, we demonstrate a strategy of using two-dimensional beam shapes to harvest energy from low frequency excitations. A characteristic Zigzag-shaped beam is created to compare against the two proposed two-dimensional beam shapes, all of which occupy a 25.4 × 25.4 mm{sup 2} area. In addition to maintaining the low-resonance bending frequency, the proposed beam shapes are designed with the goal of realizing a concentrated stress structure, whereby stress in the beam is concentrated in a single area where a piezoelectric layer may be placed, rather than being distributed throughout the beam. It is shown analytically, numerically, and experimentally that one of the proposed harvesters is able to provide significant increase in power production, when the base acceleration is set equal to 0.1 g, with only a minimal change in the resonant frequency compared to the current state-of-the-art Zigzag shape. This is accomplished by eliminating torsional effects, producing a more pure bending motion that is necessary for high electromechanical coupling. In addition, the proposed harvesters have a large effective beam tip whereby large tip mass may be placed while retaining a low-profile, resulting in a low volume harvester and subsequently large power density.
Koven, Robert; Mills, Matthew; Gale, Richard; Aksak, Burak
2017-11-01
Piezoelectric vibration energy harvesters often consist of a cantilevered beam composed of a support layer and one or two piezoelectric layers with a tip mass. While this configuration is advantageous for maximizing electromechanical coupling, the mechanical properties of the piezoelectric material can place limitations on harvester size and resonant frequency. Here, we present numerical and experimental results from a new type of piezoelectric energy harvester in which the mechanical properties and the resonant frequency of the cantilever beam resonator are effectively decoupled from the piezoelectric component. Referred to as a base-mounted piezoelectric (BMP) harvester in this paper, this new design features a piezoelectric transducer mounted beneath the base of the cantilevered beam resonator. The flexibility in the material choice for the cantilever beam resonator means that the resonant frequency and the beam dimensions are essentially free parameters. A prototype made with a 1.6 mm mm mm polyurethane beam, a PZT-5H piezoelectric transducer, and an 8.36-g tip mass is shown to produce an average power of 8.75 and at 45 Hz across a 13.0- load under harmonic base excitations of constant peak acceleration at 0.25 and 1.0-g, respectively. We also show an increase in full-width half-maximum bandwidth approximately from 1.5 to 5.6 Hz using an array of four individual BMP harvesters of similar dimensions with peak power generation of at 37.6 Hz across a 1.934- load at 0.25-g peak base excitation. Finite elements-based numerical simulations are shown to be in reasonable agreement with experimental results, indicating that the harvester behaves like a damped mass-spring system as proposed in this paper. Fabricated using casting and laser machining techniques, this harvester shows potential as a low-cost option for powering small, low-power wireless sensor nodes and other low-power devices.
Frequency-dependent behavior of the barotropic and baroclinic modes of zonal jet variability
Sheshadri, A.; Plumb, R. A.
2016-12-01
Stratosphere-troposphere interactions are frequently described in terms of the leading modes of variability, i.e. the annular modes. An idealized dynamical core model is used to explore the differences between the low- and high- frequency (periods greater and less than 30 days) behavior of the first two principal components of zonal mean zonal wind and eddy kinetic energy, i.e., the barotropic/baroclinic annular modes of variability of the extratropical circulation. The modes show similar spatial characteristics in the different frequency ranges considered, however the ranking of the modes switches in some cases from one range to the other. There is some cancelation in the signatures of eddy heat flux and eddy kinetic energy in the leading low-pass and high-pass filtered zonal wind mode, partly explaining their small signature in the total. At low frequencies, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and the persistence of zonal wind anomalies appears to be sustained primarily by a baroclinic, rather than a barotropic, feedback. On shorter time scales, the behavior is more complicated and transient.
Directory of Open Access Journals (Sweden)
Robby Christian
2015-03-01
A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.
Zhang, Z. L.; Lim, J. W. M.; Nie, Q. Y.; Zhang, X. N.; Jiang, B. H.
2017-10-01
Plasma ionization, excitation, mode transitions and associated electron heating mechanisms in atmospheric pressure dielectric barrier discharges (DBD) driven by dual radio frequency sources are investigated in this paper. The electrons are found to be heated mainly by the high frequency component in the plasma bulk when discharged in α mode. On the contrary, the low frequency component is primarily responsible for heating in the sheath which is caused by intense motion in the sheath. It was also found that variation of the lower frequency component ratio could effectively modulate the electron energy distribution as determined from time averaged EEDF. The results above have demonstrated that the independent control of plasma parameters via non-linear synergistic effect between the dual frequency sources can be achieved through reasonable selection of processing parameters.
Directory of Open Access Journals (Sweden)
J.-J. Sinou
2017-01-01
Full Text Available During the past decades, the problem of friction-induced vibration and noise has been the subject of a huge amount of works. Various numerical simulations with finite elements models have been largely investigated to predict squeal events. Although a nonlinear analysis is more predictive than Complex Eigenvalues Analysis, one of the main drawbacks of the time analysis is the need of large computational efforts. In view of the complexity of the subject, this approach appears still computationally too expensive to be used in industry for finite element models. In this study, the potential of a new reduced model based on a double modal synthesis (i.e., a classical modal reduction via Craig and Bampton plus a condensation at the frictional interface based on complex modes for the prediction of self-excited vibrations of brake squeal is discussed. The effectiveness of the proposed modal reduction is tested on a finite element model of a simplified brake system. It will be shown that numerical results of times analysis by applying the proposed reduction correlate well with those of the nonlinear analysis based on a reference model, hence demonstrating the potential of using adapted modal reductions to predict the squeal propensity and to estimate self-excited vibrations and noise.
Naumann, E. C.
1972-01-01
Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.
A Simple Reduction Process for the Normal Vibrational Modes Occurring in Linear Molecules
McInerny, William
2005-01-01
The students in molecular spectroscopy courses are often required to determine the permitted normal vibrations for linear molecules that belong to particular groups. The reducible group representations generated by the use of Cartesian coordinates can be reduced by the use of a simple algebraic process applied to the group representations. The…
Excess vibrational modes of a crystal in an external non-affine field
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 7. Excess vibrational ... While the former couples to external stress with familiar consequences, the response of a crystal when nonaffine displacements are enhanced using the thermodynamically conjugate field, is relatively less studied. We examine this ...
DEFF Research Database (Denmark)
Dantan, Aurélien; Marler, Joan; Albert, Magnus
2010-01-01
We report on a novel noninvasive method to determine the normal mode frequencies of ion Coulomb crystals in traps based on the resonance enhanced collective coupling between the electronic states of the ions and an optical cavity field at the single photon level. Excitations of the normal modes...... are observed through a Doppler broadening of the resonance. An excellent agreement with the predictions of a zero-temperature uniformly charged liquid plasma model is found. The technique opens up for investigations of the heating and damping of cold plasma modes, as well as the coupling between them....
Halim, M. A.; Cho, H. O.; Park, J. Y.
2014-11-01
We have presented a frequency up-converted hybrid type (Piezoelectric and Electromagnetic) vibration energy harvester that can be used in powering portable and wearable smart devices by handy motion. A transverse impact mechanism has been employed for frequency up-conversion. Use of two transduction mechanisms increases the output power as well as power density. The proposed device consists of a non-magnetic spherical ball (freely movable at handy motion frequency) to impact periodically on the parabolic top of a piezoelectric (PZT) cantilevered mass by sliding over it, allowing it to vibrate at its higher resonant frequency and generates voltage by virtue of piezoelectric effect. A magnet attached to the cantilever vibrates along with it at the same frequency and a relative motion between the magnet and a coil placed below it, induces emf voltage across the coil terminals as well. A macro-scale prototype of the harvester has been fabricated and tested by handy motion. With an optimum magnet-coil overlap, a maximum 0.98mW and 0.64mW peak powers have been obtained from the piezoelectric and the electromagnetic transducers of the proposed device while shaken, respectively. It offers 84.4μWcm-3 peak power density.
A hybrid single-end-access MZI and Φ-OTDR vibration sensing system with high frequency response
Zhang, Yixin; Xia, Lan; Cao, Chunqi; Sun, Zhenhong; Li, Yanting; Zhang, Xuping
2017-01-01
A hybrid single-end-access Mach-Zehnder interferometer (MZI) and phase sensitive OTDR (Φ-OTDR) vibration sensing system is proposed and demonstrated experimentally. In our system, the narrow optical pulses and the continuous wave are injected into the fiber through the front end of the fiber at the same time. And at the rear end of the fiber, a frequency-shift-mirror (FSM) is designed to back propagate the continuous wave modulated by the external vibration. Thus the Rayleigh backscattering signals (RBS) and the back propagated continuous wave interfere with the reference light at the same end of the sensing fiber and a single-end-access configuration is achieved. The RBS can be successfully separated from the interference signal (IS) through digital signal process due to their different intermediate frequency based on frequency division multiplexing technique. There is no influence between these two schemes. The experimental results show 10 m spatial resolution and up to 1.2 MHz frequency response along a 6.35 km long fiber. This newly designed single-end-access setup can achieve vibration events locating and high frequency events response, which can be widely used in health monitoring for civil infrastructures and transportation.
Power system low frequency oscillation mode estimation using wide area measurement systems
Directory of Open Access Journals (Sweden)
Papia Ray
2017-04-01
Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project
Howard, J Coleman; Tschumper, Gregory S
2015-05-12
A series of (H2O)n clusters ranging from the dimer to the hexamer have been characterized with the CCSD(T) and the 2-body:Many-body CCSD(T):MP2 methods near the complete basis set (CBS) limit to generate benchmark-quality optimized structures and harmonic vibrational frequencies for these important systems. Quadruple-ζ correlation-consistent basis sets that augment the O atoms with diffuse functions have been employed in the analytic computation of harmonic vibrational frequencies for the global minima of the dimer, trimer, tetramer, and pentamer as well as the ring, book, cage, and prism isomers of the hexamer. Prior calibration [J. Chem. Phys. 2013, 139, 184113 and J. Chem. Theory Comput. 2014, 10, 5426] suggests that harmonic frequencies computed with this approach will lie within a few cm(-1) of the canonical CCSD(T) CBS limit. These data are used as reference values to gauge the performance of harmonic frequencies obtained with other ab initio methods (e.g., LCCSD(T) and MP2) and water potentials (e.g., TTM3-F and WHBB). This comparison reveals that it is far more challenging to converge harmonic vibrational frequencies for the bound OH stretching modes in these (H2O)n clusters to the CCSD(T) CBS limit than the free OH stretches, the n intramonomer HOH bending modes and even the 6n - 6 intermonomer modes. Deviations associated with the bound OH stretching harmonic frequencies increase rapidly with the size of the cluster for all methods and potentials examined, as do the corresponding frequency shifts relative to the monomer OH stretches.
Feng, Rong-Juan; Li, Xia; Zhang, Zhen; Lu, Zhou; Guo, Yuan
2016-12-28
The interfacial behavior of the benchmark zwitterionic phospholipid molecule dipalmitoylphosphatidylcholine (DPPC) has been extensively investigated by surface-selective vibrational sum frequency generation spectroscopy (VSFG). However, there is still a lack of agreement between various orientational measurements of phospholipid monolayers at the air/water interface, mainly because of the difficulty in assigning congested VSFG features. In this study, polarization-dependent VSFG measurements reveal a frequency shift between the in-plane and out-of-plane antisymmetric stretching modes of the terminal methyl groups in the DPPC alkyl tails, favoring the model of Cs local symmetry rather than the previously assumed C3v symmetry. Further VSFG experiments of isotopically labeled DPPC successfully capture the vibrational signatures of the glycerol backbone. With the newly derived VSFG polarization selection rules for Cs symmetry and the refreshed spectral assignments, the average tilt angles of the alkyl tail groups, choline headgroup, and glycerol backbone of DPPC molecules can all be determined, showing the powerful capability of VSFG spectroscopy in revealing the structural details at interfaces. The VSFG polarization dependence rules and the orientational analysis procedures developed for Cs symmetry in this work are applicable to other bulky molecules in which the methyl group cannot freely rotate, and they therefore have general applications in future VSFG studies.
Observation of Modes at Frequencies Near the Second Alfvin Gap in TFTR
Energy Technology Data Exchange (ETDEWEB)
Fredrickson. E.; Van Dam, J.W.; Budny, R.V.; Darrow, D.; Fu, G.Y.; Hosea, J.; Phillips, C.K.; Wilson, J.R.
1999-04-01
Modes has been observed in the frequency range of the second Alfvenic gap in H-minority ICRF heated plasmas in TFTR. This observation is surprising in that the second gap is generally considered to be small in circular cross section plasmas. The mode is inferred to be a core mode, i.e., localized in some sense within the q=1 surface. This follows from the observation that the time dependence of the mode frequency is consistent with the changes in the central density, with the appearance of the mode in the latter part of the sawtooth period when the central fast ion beta has peaked up, and with the direction of propagation, the last of these being explained by a hollow first ion beta profile, which is only present in the core region. The modes are generally not observed during on-axis H-minority heating, but commonly observed during off-axis heating on the high field side (with the resonant layer outside the q=1 surface). A model has been proposed that the beta of the fast ions opens the second gap, allowing instability. For TFTR parameters, the model predicts a gap width of approximately 10 kHz, which is 2.5% of the second gap frequency. If the backwards mode propagation is due to a hollow fast ion profile (as indicated in the TRANSP calculations), then instability due to wave-particle resonance at the magnetic curvature precessional frequency can occur only if the precessional frequency is reversed--which can indeed be the case for off-axis heating on the high field side. Thus, trapped fast ion pressure effects seem to explain several of the observed features of these second gap fluctuations.
DEFF Research Database (Denmark)
Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Olausson, Christina Bjarnal Thulin
2014-01-01
Frequency conversion through spontaneous degenerate four wave mixing (FWM) is investigated in large mode area hybrid photonic crystal fibers. Different FWM processes are observed, phasematching between fiber modes of orthogonal polarization, intermodal phasematching across bandgaps, and intramoda...... phasematching within the same transmission band as the one containing the pump laser. Furthermore first and second order Raman scattering is observed. The interplay between the different FWM processes and Raman scattering are investigated....
Continuous-variable quantum computing in optical time-frequency modes using quantum memories.
Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A
2014-09-26
We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.
Flute mode waves near the lower hybrid frequency excited by ion rings in velocity space
Cattell, C.; Hudson, M.
1982-01-01
Discrete emissions at the lower hybrid frequency are often seen on the S3-3 satellite. Simultaneous observation of perpendicularly heated ions suggests that these ions may provide the free energy necessary to drive the instability. Studies of the dispersion relation for flute modes excited by warm ion rings in velocity space show that waves are excited with real frequencies near the lower hybrid frequency and with growth rates ranging from about 0.01 to 1 times the ion cyclotron frequency. Numerical results are therefore consistent with the possibility that the observed ions are the free energy source for the observed waves.
Zeng, Jianhua; Chen, Lei; Dai, Qiaofeng; Lan, Sheng; Tie, Shaolong
2016-01-21
We proposed a scheme in which normal Raman scattering is coupled with hyper-Raman scattering for generating a strong anti-Stokes hyper-Raman scattering in nanomaterials by using femtosecond laser pulses. The proposal was experimentally demonstrated by using a single-layer MoS2 on a SiO2/Si substrate, a 17 nm-thick MoS2 on an Au/SiO2 substrate and a 9 nm-thick MoS2 on a SiO2-SnO2/Ag/SiO2 substrate which were confirmed to be highly efficient for second harmonic generation. A strong anti-Stokes hyper-Raman scattering was also observed in other nanomaterials possessing large second-order susceptibilities, such as silicon quantum dots self-assembled into "coffee" rings and tubular Cu-doped ZnO nanorods. In all the cases, many Raman inactive vibration modes were clearly revealed in the anti-Stokes hyper-Raman scattering. Apart from the strong anti-Stokes hyper-Raman scattering, Stokes hyper-Raman scattering with small Raman shifts was detected during the ablation process of thick MoS2 layers. It was also observed by slightly defocusing the excitation light. The detection of anti-Stokes hyper-Raman scattering may serve as a new technique for studying the Raman inactive vibration modes in nanomaterials.
Wodecki, Jacek
2018-01-01
Local damage detection in rotating machine elements is very important problem widely researched in the literature. One of the most common approaches is the vibration signal analysis. Since time domain processing is often insufficient, other representations are frequently favored. One of the most common one is time-frequency representation hence authors propose to separate internal processes occurring in the vibration signal by spectrogram matrix factorization. In order to achieve this, it is proposed to use the approach of Nonnegative Matrix Factorization (NMF). In this paper three NMF algorithms are tested using real and simulated data describing single-channel vibration signal acquired on damaged rolling bearing operating in drive pulley in belt conveyor driving station. Results are compared with filtration using Spectral Kurtosis, which is currently recognized as classical method for impulsive information extraction, to verify the validity of presented methodology.
Zhang, Hongjiang; Jiang, Senlin; He, Xuefeng
2017-05-01
This letter proposes an impact-based piezoelectric energy harvester that uses a rolling bead contained in a bracket that is supported by a spring. Under either translational or rotational base excitation, the bead moves within the bracket and collides with piezoelectric cantilevers that are located around the bracket; these collisions cause the piezoelectric beams to vibrate and thus produce electrical outputs. The low rolling friction and the motion amplification effect of the spring make the resulting device suitable for collection of low-level vibration energy. Experiments show that the proposed harvester is promising for use in scavenging of energy from the multidimensional, low-level, broadband, and low-frequency vibrations that occur in natural environments.
Directory of Open Access Journals (Sweden)
Janke Włodzimierz
2017-03-01
Full Text Available Characteristic frequencies corresponding to poles and zeros of small-signal control-to-output transfer functions of popular DC-DC converters (BUCK and BOOST are analyzed. The main attention is paid to influence of load conductance on the characteristic frequencies for converters working in continuous conduction mode (CCM as well as in discontinuous conduction mode (DCM. Parasitic resistances of all converter components are included in calculations. In addition the improved description of CCM-DCM boundary is presented. The calculations are verified experimentally and good consistency of the results is observed.
Zero-frequency and slow elastic modes in phononic monolayer granular membranes.
Zheng, Li-Yang; Pichard, Hélène; Tournat, Vincent; Theocharis, Georgios; Gusev, Vitalyi
2016-07-01
We theoretically study the dispersion properties of elastic waves in hexagonal and honeycomb monolayer granular membranes with either out-of-plane or in-plane particle motion. The particles interact predominantly via normal and transverse contact rigidities. When rotational degrees of freedom are taken into account, the bending and torsional rigidities of the intergrain contacts can control some of the phononic modes. The existence of zero-frequency modes, zero-group-velocity modes and their transformation into slow propagating phononic modes due to weak bending and torsional intergrain interactions are investigated. We also study the formation and manipulation of Dirac cones and multiple degenerated modes. This could motivate variety of potential applications in elastic waves control by manipulating the contact rigidities in granular phononic crystals. Copyright © 2015 Elsevier B.V. All rights reserved.
Low-frequency vibration isolation in six degrees of freedom: the Hummingbird
Rijnveld, N.; Braber, R. van den; Fraanje, P.R.; Dool, T.C. van den
2010-01-01
TNO Science and Industry and MECAL have developed a six degree of freedom vibration isolation system that suppresses both floor vibrations and direct forces on a table top. The achieved reduction of transmissibility and compliance is 40 dB between 1 and 50 Hz in vertical direction, and 30 dB between
Transmission Characteristics of Hybrid Modes in Corrugated Waveguides Above the Bragg Frequency
Ohkubo, Kunizo; Saito, Teruo; Yamaguchi, Yuusuke; Tatematsu, Yoshinori; Kasa, Jun; Kubo, Shin; Shimozuma, Takashi; Tanaka, Kenji; Nishiura, Masaki
2017-07-01
We studied the transmission characteristics of hybrid modes in a corrugated circular waveguide above the Bragg frequency to develop a broad-band transmission line for millimeter waves. Millimeter waves at 294 GHz were transmitted into a straight waveguide. From observed power profiles in waveguide cross-sections, a high attenuation rate of 0.13 dB/m was obtained. To match a theoretical attenuation constant with the experimental one, we introduced an ad hoc coefficient of conventional surface reactance in the waveguide wall. This was necessary because the wall began to look like the surface with a decreasing anisotropic reactance owing to the frequency above the Bragg frequency. Using nonlinear optimization for mode content analysis, the observed power profiles in the waveguide cross-section were matched with theoretical profiles. There was good agreement between the calculated and observed centers of power profiles and attenuation rate along the waveguide. The theoretical analysis showed that the magnetic field at the waveguide wall increases and the substantial attenuation takes place. Above the Bragg frequency coupling to backwards propagating modes is a point of consideration. A combination of the backwards propagating EH1,26 and the forward propagating HE11 modes satisfied the Bragg condition at 294.7 GHz which was the nearest frequency of operating frequency. A strong attenuation of the incoming HE11 mode by Bragg resonance was not expected due to large difference of 0.7 GHz. It becomes clear that the observed high transmission loss outside of the Bragg resonance can be explained by a decrease in anisotropic surface reactance at the wall.
Latosińska, Jolanta Natalia; Latosińska, Magdalena; Kasprzak, Jerzy; Tomczak, Magdalena; Maurin, Jan Krzysztof
2012-10-25
The application of combined (35)Cl-NQR/X-ray/DFT/QTAIM methods to study the temperature variation of anisotropic displacement parameters and ultralow frequency modes of anharmonic torsional vibrations in the solid state is illustrated on the example of 2,4-dichloro-5-sulfamolybenzoic acid (lasamide, DSBA) which is a diuretic and an intermediate in the synthesis of furosemide and thus its common impurity. The crystallographic structure of lasamide is solved by X-ray diffraction and refined to a final R-factor of 3.06% at room temperature. Lasamide is found to crystallize in the triclinic space group P-1, with two equivalent molecules in the unit cell a = 7.5984(3) Å, b = 8.3158(3) Å, c = 8.6892(3) Å; α = 81.212(3)°, β = 73.799(3)°, γ = 67.599(3)°. Its molecules form symmetric dimers linked by two short and linear intermolecular hydrogen bonds O-H···O (O-H···O = 2.648 Å and ∠OHO = 171.5°), which are further linked by weaker and longer intermolecular hydrogen bonds N-H···O (N-H···O = 2.965 Å and ∠NHO = 166.4°). Two (35)Cl-NQR resonance frequencies, 36.899 and 37.129 MHz, revealed at room temperature are assigned to chlorine sites at the ortho and para positions, relative to the carboxyl functional group, respectively. The difference in C-Cl(1) and C-Cl(2) bond lengths only slightly affects the value of (35)Cl-NQR frequencies, which results mainly from chemical inequivalence of chlorine atoms but also involvement in different intermolecular interactions pattern. The smooth decrease in both (35)Cl-NQR frequencies with increasing temperature in the range of 77-300 K testifies to the averaging of EFG tensor at each chlorine site due to anharmonic torsional vibrations. Lasamide is thermally stable; no temperature-induced release of chlorine or decomposition of this compound is detected. The temperature dependence of ultralow frequency modes of anharmonic small-angle internal torsional vibrations averaging EFG tensor and mean square angle
A dual-mode complex filter for GNSS receivers with frequency tuning
Energy Technology Data Exchange (ETDEWEB)
Gan Yebing; Yuan Guoshun [Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China); Ma Chengyan, E-mail: ganyebing@casic.ac.c [Hangzhou Zhongke Microelectronics Co, Ltd, Hangzhou 310053 (China)
2009-10-15
A fifth/seventh order dual-mode OTA-C complex filter for global navigation satellite system receivers is implemented in a 0.18 {mu}m CMOS process. This filter can be configured as the narrow mode of a 4.4 MHz bandwidth center at 4.1 MHz or the wide mode of a 22 MHz bandwidth center at 15.42 MHz. A fully differential OTA with source degeneration is used to provide sufficient linearity. Furthermore, a ring CCO based frequency tuning scheme is proposed to reduce frequency variation. The measured results show that in narrow-band mode the image rejection ratio (IMRR) is 35 dB, the filter dissipates 0.8 mA from the 1.8 V power supply, and the out-of-band rejection is 50 dB at 6 MHz offset. In wide-band mode, IMRR is 28 dB and the filter dissipates 3.2 mA. The frequency tuning error is less than {+-}2%.
Modes of low-frequency circulation variability in the Southern Hemisphere
Huth, Radan
2015-04-01
In the Northern Hemisphere (NH), the modes of variability of tropospheric circulation on intra-seasonal timescales (also referred to as teleconnections) were described in detail several decades ago. Somewhat surprisingly, a similar description for the Southern Hemisphere (SH) is lacking, a possible reason for this being that the atmospheric circulation in the SH is more transient and less stationary than in the NH, which may have downplayed the importance of the modes for the description of the SH circulation. The only three exceptions that have been described and discussed in detail, including the temporal changes and effects on surface climate elements, are the Southern Annular Mode and two Pacific-South American modes. In the contribution, we present an overview of all the modes of the low-frequency circulation variabiltiy in the Southern Hemisphere extratropics, in all seasons, detected by rotated principal component analysis of monthly mean values of 500 hPa heights. The modes have different spatial structures: zonally oriented dipoles, annular strctures, wavetrains, and monopoles appear among them. Some of the modes are active throughout the year (e.g., the Southern Annular Mode); some of them are active in parts of year only (e.g., wavenumber-3 pattern in the cold half year and wavenumber-4 pattern in the warm half year); some modes forming circumpolar wavetrains in winter are split into two parts in other seasons. One particular mode, consisting of a bi-annular structure, active in all seasons except summer, carries the response of SH circulation to the climate shift in the late 1970's and/or the introducton of satellites in 1979. We provide evidence of the physical realism of the modes by comparing them with correlation maps.
Hédoux, Alain; Derollez, Patrick; Guinet, Yannick; Dianoux, Albert José; Descamps, Marc
2001-04-01
The vibrational density of states in the triphenyl phosphite, measured by inelastic neutron scattering, were obtained during isothermal aging at Ta=210, 213, and 216 K. The low-frequency ωn behavior of the vibrational density of states was observed to be time dependent. This is suggestive of an abortive crystallization process because the ω exponent has not reached the characteristic value of the crystalline state (n=2) at the end of the transformation. The confrontation of inelastic neutron scattering and Raman data in the low-frequency range reveals interesting information about the structural organization in the liquid, the glass, the undercooled liquid, and the glacial state, through the observation of the boson peak.
Oscillation mode frequencies of 61 main-sequence and subgiant stars observed by Kepler
DEFF Research Database (Denmark)
Appourchaux, T.; Chaplin, W. J.; García, R. A.
2012-01-01
Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars, thereby providing a way to probe the stars using asteroseismology Aims. We provide the mode frequencies of the oscillations of various stars required to perform a comparison with those obtained from stella...
Directory of Open Access Journals (Sweden)
Marijn Van Dongen
2015-03-01
Full Text Available This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100kHz duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation.These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.
Thompson, Blair; Mazer, Joseph P.
2009-01-01
Research suggests that student academic support plays a vital role at the college level as students often view communication with peers as their primary source of academic support (Thompson, 2008). This research advances the Student Academic Support Scale (SASS) as a method of assessing the frequency, importance, and mode of communicating academic…
Computational imaging using a mode-mixing cavity at microwave frequencies
Fromenteze, Thomas; Yurduseven, Okan; Imani, Mohammadreza F.; Gollub, Jonah; Decroze, Cyril; Carsenat, David; Smith, David R.
2015-05-01
We present a 3D computational imaging system based on a mode-mixing cavity at microwave frequencies. The core component of this system is an electrically large rectangular cavity with one corner re-shaped to catalyze mode mixing, often called a Sinai Billiard. The front side of the cavity is perforated with a grid of periodic apertures that sample the cavity modes and project them into the imaging scene. The radiated fields are scattered by the scene and are measured by low gain probe antennas. The complex radiation patterns generated by the cavity thus encode the scene information onto a set of frequency modes. Assuming the first Born approximation for scattering dynamics, the received signal is processed using computational methods to reconstruct a 3D image of the scene with resolution determined by the diffraction limit. The proposed mode-mixing cavity is simple to fabricate, exhibits low losses, and can generate highly diverse measurement modes. The imaging system demonstrated in this letter can find application in security screening and medical diagnostic imaging.
National Aeronautics and Space Administration — The Phase I project successfully demonstrated that the advanced non-contacting stress measurement system (NSMS) was able to address closely spaced modes and...
Directory of Open Access Journals (Sweden)
Eduard Dechant
2017-12-01
Full Text Available Wireless sensor networks usually rely on internal permanent or rechargeable batteries as a power supply, causing high maintenance efforts. An alternative solution is to supply the entire system by harvesting the ambient energy, for example, by transducing ambient vibrations into electric energy by virtue of the piezoelectric effect. The purpose of this paper is to present a simple engineering approach for the bandwidth optimization of vibration energy harvesting systems comprising multiple piezoelectric cantilevers (PECs. The frequency tuning of a particular cantilever is achieved by changing the tip mass. It is shown that the bandwidth enhancement by mass tuning is limited and requires several PECs with close resonance frequencies. At a fixed frequency detuning between subsequent PECs, the achievable bandwidth shows a saturation behavior as a function of the number of cantilevers used. Since the resonance frequency of each PEC is different, the output voltages at a particular excitation frequency have different amplitudes and phases. A simple power-transfer circuit where several PECs with an individual full wave bridge rectifier are connected in parallel allows one to extract the electrical power close to the theoretical maximum excluding the diode losses. The experiments performed on two- and three-PEC arrays show reasonable agreement with simulations and demonstrate that this power-transfer circuit additionally influences the frequency dependence of the harvested electrical power.
Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems
He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.
2018-02-01
Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against
Energy Technology Data Exchange (ETDEWEB)
Velarde Ruiz Esparza, Luis A.; Wang, Hongfei
2013-08-28
Even though in principle the frequency-domain and time-domain spectroscopic measurement should generate identical information for a given molecular system, inhomogeneous character of surface vibrations in the sum-frequency generation vibrational spectroscopy (SFG-VS) studies has only been studied with the time-domain SFGVS by mapping the decay of the vibrational polarization using ultrafast lasers, due to the lack of SFG vibrational spectra with high enough spectral resolution and accurate enough line shape. Here with recently developed high-resolution broadband SFG-VS (HR-BB-SFG-VS) we show that the inhomogeneous line shape can be obtained in the frequency-domain, for the anchoring CN stretch of the 4-n-octyl-4'-cyanobiphenyl (8CB) Langmuir monolayer at the air-water interface, and that an excellent agreement with the time-domain SFG free-induction-decay (FID) results can be established. We found that the 8CB CN stretch spectrum consists of a single peak centered at 2234.00 + * 0.01 cm-1 with a total line width of 10.9 + - 0.3 cm-1 at half maximum. The Lorentzian contribution accounts only for 4:7 + -0:4 cm-1 to this width and the Gaussian (inhomogeneous) broadening for as much as 8:1+*0:2 cm-1. Polarization analysis of the -CN spectra showed that the -CN group is tilted 57 + - 2 degrees from the surface normal. The large heterogeneity in the -CN spectrum is tentatively attributed to the -CN group interactions with the interfacial water molecules penetrated/accomodated into the 8CB monolayer, a unique phenomenon for the nCB Langmuir monolayers reported previously.
Temporal mode selectivity by frequency conversion in second-order nonlinear optical waveguides
DEFF Research Database (Denmark)
Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.
2013-01-01
in a transparent optical network using temporally orthogonal waveforms to encode different channels. We model the process using coupled-mode equations appropriate for wave mixing in a uniform second-order nonlinear optical medium pumped by a strong laser pulse. We find Green functions describing the process......We explore theoretically the feasibility of using frequency conversion by sum- or difference-frequency generation, enabled by three-wave-mixing, for selectively multiplexing orthogonal input waveforms that overlap in time and frequency. Such a process would enable a drop device for use...
Holliday, Ezekiel S. (Inventor)
2014-01-01
Vibrations at harmonic frequencies are reduced by injecting harmonic balancing signals into the armature of a linear motor/alternator coupled to a Stirling machine. The vibrations are sensed to provide a signal representing the mechanical vibrations. A harmonic balancing signal is generated for selected harmonics of the operating frequency by processing the sensed vibration signal with adaptive filter algorithms of adaptive filters for each harmonic. Reference inputs for each harmonic are applied to the adaptive filter algorithms at the frequency of the selected harmonic. The harmonic balancing signals for all of the harmonics are summed with a principal control signal. The harmonic balancing signals modify the principal electrical drive voltage and drive the motor/alternator with a drive voltage component in opposition to the vibration at each harmonic.
Frequency shift and hysteresis suppression in contact-mode AFM using contact stiffness modulation
Directory of Open Access Journals (Sweden)
Belhaq M.
2012-07-01
Full Text Available In this paper the frequency response shift and hysteresis suppression of contact-mode atomic force microscopy is investigated using parametric modulation of the contact stiffness. Based on the Hertzian contact theory, a lumped single degree of freedom oscillator is considered for modeling the cantilever dynamics contact-mode atomic force microscopy. We use the technique of direct partition of motion and the method of multiple scales to obtain, respectively, the slow dynamic and the corresponding slow flow of the system. As results, this study shows that the amplitude of the contact stiffness modulation has a significant effect on the frequency response. Specifically, increasing the amplitude of the stiffness modulation suppresses hysteresis, decreases the peak amplitude and produces shifts towards higher and lower frequencies.
Huang, Yu-Hsi; Ma, Chien-Ching
2012-04-01
Piezoelectric plates can provide low-frequency transverse vibrational displacements and high-frequency planar vibrational displacements, which are usually uncoupled. However, piezoelectric shells can induce three-dimensional coupled vibrational displacements over a large frequency range. In this study, three-dimensional coupled vibrational characteristics of piezoelectric shells with free boundary conditions are investigated using three different experimental methods and finite element numerical modeling. For the experimental measurements, amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) is used to obtain resonant frequencies and radial, lateral, and angular mode shapes. This optical technique utilizes a real-time, full-field, non-contact optical system that measures both the natural frequency and corresponding vibration mode shape simultaneously. The second experimental technique used, laser Doppler vibrometry (LDV), is a pointwise displacement measurement method that determines the resonant frequencies of the piezoelectric shell. An impedance analyzer is also used to determine the resonant frequencies of the piezoelectric shell. The experimental results of the resonant frequencies and mode shapes for the piezoelectric shell are verified with a numerical finite element model. Excellent agreement between the experimental and numerical results is found for the three-dimensional coupled vibrational characteristics of the piezoelectric shell. It is noted in this study that there is no coupled phenomenon at low frequencies over which radial modes dominate. However, three-dimensional coupled vibrational modes do occur at high resonant frequencies over which lateral or angular modes dominate.
Directory of Open Access Journals (Sweden)
Cemal Parlak
2012-08-01
Full Text Available The normal mode frequencies and corresponding vibrational assignments, 1H and 13C NMR chemical shifts and structural parameters (bond lengths, bond and dihedral angles of 2-[(1E-2-aza-2-(5-methyl(2-pyridylethenyl]-4-bromobenzen-1-ol (2mpe-4bb Schiff base compound have been theoretically examined by means of Hartree-Fock (HF and Becke-3-Lee-Yang-Parr (B3LYP density functional methods with 6-31G(d and 6-311++G(d,p basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO of 2mpe-4bb have been predicted. Theoretical results have been successfully compared with available experimental data in the literature. Regarding the calculations, 2mpe-4bb prefers enol-imine form and DFT method is superior to HF approach except for predicting bond lengths.DOI: http://dx.doi.org/10.4314/bcse.v26i2.11
Li, Y.; Cutright, S.; Dyke, R.; Templeton, J.; Gasbarre, J.; Novak, F.
2015-01-01
The Stratospheric Aerosol and Gas Experiment (SAGE) III - International Space Station (ISS) instrument will be used to study ozone, providing global, long-term measurements of key components of the Earth's atmosphere for the continued health of Earth and its inhabitants. SAGE III is launched into orbit in an inverted configuration on SpaceX;s Falcon 9 launch vehicle. As one of its four supporting elements, a Contamination Monitoring Package (CMP) mounted to the top panel of the Interface Adapter Module (IAM) box experiences high-frequency response due to structural coupling between the two structures during the SpaceX launch. These vibrations, which were initially observed in the IAM Engineering Development Unit (EDU) test and later verified through finite element analysis (FEA) for the SpaceX launch loads, may damage the internal electronic cards and the Thermoelectric Quartz Crystal Microbalance (TQCM) sensors mounted on the CMP. Three-dimensional (3D) vibration isolators were required to be inserted between the CMP and IAM interface in order to attenuate the high frequency vibrations without resulting in any major changes to the existing system. Wire rope isolators were proposed as the isolation system between the CMP and IAM due to the low impact to design. Most 3D isolation systems are designed for compression and roll, therefore little dynamic data was available for using wire rope isolators in an inverted or tension configuration. From the isolator FEA and test results, it is shown that by using the 3D wire rope isolators, the CMP high-frequency responses have been suppressed by several orders of magnitude over a wide excitation frequency range. Consequently, the TQCM sensor responses are well below their qualification environments. It is indicated that these high-frequency responses due to the typical instrument structural coupling can be significantly suppressed by a vibration passive control using the 3D vibration isolator. Thermal and contamination
Study of high frequency MHD modes from ECE radiometer in Tore Supra
Directory of Open Access Journals (Sweden)
Dubuit N.
2012-09-01
Full Text Available Tore Supra ECE diagnostic has been recently upgraded to study MHD modes driven by energetic particles up to 400 kHz. To improve the measurement sensitivity, the ECE signals of the 32 channels radiometer were amplified just below the saturation limit and sources of noise were investigated in order to keep it as low as possible. With such an improvement, fast particle driven modes with frequencies up to 200 kHz were detected. A 4-channel correlation ECE system using YIG filters with tuneable frequency was also installed. It allows fine radial scans of MHD modes and correlation length measurements. For the two kinds of YIG filter in use, the minimum frequency separation between two ECE channels that could be achieved was established measuring the correlation coefficient between the respective radiation noises. Finally, by modelling the ECE radiometer taking into account the antenna radiation pattern and the vertical position of the ECE beam relative to the plasma centre we improved the data analysis tools, thus giving a better determination of the phase radial structure of ECE oscillations. The poloidal structure of MHD modes can then be identified from ECE data and, for off axis ECE lines of sight, the direction of the plasma rotation can also be determined. This method allows identifying the occurrence of an inverse cascade of electron fishbone modes ranging from m/n=4/4 to 1/1 (m and n are the poloidal and toroidal mode numbers, respectively which appears in lower hybrid current drive plasmas.